diff options
Diffstat (limited to 'src/share')
-rw-r--r-- | src/share/algebra/browse.daase | 1536 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 1246 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1299 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 8628 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 31393 |
5 files changed, 22057 insertions, 22045 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 70334282..967cece3 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2235836 . 3415311729) +(2236562 . 3416411997) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4245 . T) (-4244 . T) (-3656 . T)) +((-4249 . T) (-4248 . T) (-4069 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,23 +46,23 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4241 . T) (-4239 . T) (-4238 . T) ((-4246 "*") . T) (-4237 . T) (-4242 . T) (-4236 . T) (-3656 . T)) +((-4245 . T) (-4243 . T) (-4242 . T) ((-4250 "*") . T) (-4241 . T) (-4246 . T) (-4240 . T) (-4069 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) NIL NIL -(-31 R -2315) +(-31 R -3539) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (-32 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4244))) +((|HasAttribute| |#1| (QUOTE -4248))) (-33) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-3656 . T)) +((-4069 . T)) NIL (-34) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -70,7 +70,7 @@ NIL NIL (-35 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4244 . T) (-4245 . T) (-3656 . T)) +((-4248 . T) (-4249 . T) (-4069 . T)) NIL (-36 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -78,17 +78,17 @@ NIL NIL (-37 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) NIL (-38 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-39 -2315 UP UPUP -3507) +(-39 -3539 UP UPUP -2547) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4237 |has| (-383 |#2|) (-339)) (-4242 |has| (-383 |#2|) (-339)) (-4236 |has| (-383 |#2|) (-339)) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| (-383 |#2|) (QUOTE (-134))) (|HasCategory| (-383 |#2|) (QUOTE (-136))) (|HasCategory| (-383 |#2|) (QUOTE (-325))) (-3262 (|HasCategory| (-383 |#2|) (QUOTE (-339))) (|HasCategory| (-383 |#2|) (QUOTE (-325)))) (|HasCategory| (-383 |#2|) (QUOTE (-339))) (|HasCategory| (-383 |#2|) (QUOTE (-344))) (-3262 (-12 (|HasCategory| (-383 |#2|) (QUOTE (-211))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (|HasCategory| (-383 |#2|) (QUOTE (-325)))) (-3262 (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-325))))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344))) (-3262 (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (QUOTE (-211))) (|HasCategory| (-383 |#2|) (QUOTE (-339))))) -(-40 R -2315) +((-4241 |has| (-383 |#2|) (-339)) (-4246 |has| (-383 |#2|) (-339)) (-4240 |has| (-383 |#2|) (-339)) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| (-383 |#2|) (QUOTE (-134))) (|HasCategory| (-383 |#2|) (QUOTE (-136))) (|HasCategory| (-383 |#2|) (QUOTE (-325))) (-3172 (|HasCategory| (-383 |#2|) (QUOTE (-339))) (|HasCategory| (-383 |#2|) (QUOTE (-325)))) (|HasCategory| (-383 |#2|) (QUOTE (-339))) (|HasCategory| (-383 |#2|) (QUOTE (-344))) (-3172 (-12 (|HasCategory| (-383 |#2|) (QUOTE (-211))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (|HasCategory| (-383 |#2|) (QUOTE (-325)))) (-3172 (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-325))))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344))) (-3172 (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (QUOTE (-211))) (|HasCategory| (-383 |#2|) (QUOTE (-339))))) +(-40 R -3539) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -406) (|devaluate| |#1|))))) @@ -102,23 +102,23 @@ NIL ((|HasCategory| |#1| (QUOTE (-284)))) (-43 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4241 |has| |#1| (-515)) (-4239 . T) (-4238 . T)) +((-4245 |has| |#1| (-515)) (-4243 . T) (-4242 . T)) ((|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-44 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4244 . T) (-4245 . T)) -((-3262 (-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-786))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|))))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-786))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-786))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-3172 (-12 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-786))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2482) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2482) (|devaluate| |#2|))))))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-786))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-786))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (-12 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2482) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) (-45 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339)))) (-46 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-47) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) ((|HasCategory| $ (QUOTE (-973))) (|HasCategory| $ (LIST (QUOTE -964) (QUOTE (-523))))) (-48) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) @@ -126,7 +126,7 @@ NIL NIL (-49 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4241 . T)) +((-4245 . T)) NIL (-50 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -140,7 +140,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-53 |Base| R -2315) +(-53 |Base| R -3539) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -150,7 +150,7 @@ NIL NIL (-55 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4244 . T) (-4245 . T) (-3656 . T)) +((-4248 . T) (-4249 . T) (-4069 . T)) NIL (-56 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -158,65 +158,65 @@ NIL NIL (-57 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-58 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) -(-59 -4038) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-59 -4198) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-60 -4038) +(-60 -4198) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-61 -4038) +(-61 -4198) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -4038) +(-62 -4198) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-63 -4038) +(-63 -4198) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -4038) +(-64 -4198) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -4038) +(-65 -4198) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -4038) +(-66 -4198) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -4038) +(-67 -4198) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-68 -4038) +(-68 -4198) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-69 -4038) +(-69 -4198) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-70 -4038) +(-70 -4198) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-71 -4038) +(-71 -4198) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-72 -4038) +(-72 -4198) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -228,55 +228,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -4038) +(-75 -4198) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-76 -4038) +(-76 -4198) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -4038) +(-77 -4198) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -4038) +(-78 -4198) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -4038) +(-79 -4198) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -4038) +(-80 -4198) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -4038) +(-81 -4198) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -4038) +(-82 -4198) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -4038) +(-83 -4198) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -4038) +(-84 -4198) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -4038) +(-85 -4198) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -4038) +(-86 -4198) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-87 -4038) +(-87 -4198) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -286,8 +286,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-339)))) (-89 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-90 S) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL @@ -298,15 +298,15 @@ NIL NIL (-92) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4244 . T)) +((-4248 . T)) NIL (-93) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4244 . T) ((-4246 "*") . T) (-4245 . T) (-4241 . T) (-4239 . T) (-4238 . T) (-4237 . T) (-4242 . T) (-4236 . T) (-4235 . T) (-4234 . T) (-4233 . T) (-4232 . T) (-4240 . T) (-4243 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4231 . T)) +((-4248 . T) ((-4250 "*") . T) (-4249 . T) (-4245 . T) (-4243 . T) (-4242 . T) (-4241 . T) (-4246 . T) (-4240 . T) (-4239 . T) (-4238 . T) (-4237 . T) (-4236 . T) (-4244 . T) (-4247 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4235 . T)) NIL (-94 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4241 . T)) +((-4245 . T)) NIL (-95 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -322,15 +322,15 @@ NIL NIL (-98 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-99 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4246 "*")))) +((|HasAttribute| |#1| (QUOTE (-4250 "*")))) (-100) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4244 . T)) +((-4248 . T)) NIL (-101 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -338,12 +338,12 @@ NIL NIL (-102 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4245 . T) (-3656 . T)) +((-4249 . T) (-4069 . T)) NIL (-103) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| (-523) (QUOTE (-840))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-523) (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-136))) (|HasCategory| (-523) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-949))) (|HasCategory| (-523) (QUOTE (-759))) (-3262 (|HasCategory| (-523) (QUOTE (-759))) (|HasCategory| (-523) (QUOTE (-786)))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-1063))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-523) (QUOTE (-211))) (|HasCategory| (-523) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-523) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -286) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -263) (QUOTE (-523)) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-284))) (|HasCategory| (-523) (QUOTE (-508))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-523) (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (|HasCategory| (-523) (QUOTE (-134))))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| (-523) (QUOTE (-840))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-523) (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-136))) (|HasCategory| (-523) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-949))) (|HasCategory| (-523) (QUOTE (-759))) (-3172 (|HasCategory| (-523) (QUOTE (-759))) (|HasCategory| (-523) (QUOTE (-786)))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-1063))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-523) (QUOTE (-211))) (|HasCategory| (-523) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-523) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -286) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -263) (QUOTE (-523)) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-284))) (|HasCategory| (-523) (QUOTE (-508))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-523) (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (|HasCategory| (-523) (QUOTE (-134))))) (-104) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -354,11 +354,11 @@ NIL NIL (-106) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) ((-12 (|HasCategory| (-108) (QUOTE (-1016))) (|HasCategory| (-108) (LIST (QUOTE -286) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-108) (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-108) (QUOTE (-1016))) (|HasCategory| (-108) (LIST (QUOTE -563) (QUOTE (-794))))) (-107 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4239 . T) (-4238 . T)) +((-4243 . T) (-4242 . T)) NIL (-108) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) @@ -372,25 +372,25 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-111 -2315 UP) +(-111 -3539 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-112 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-113 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| (-112 |#1|) (QUOTE (-840))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-112 |#1|) (QUOTE (-134))) (|HasCategory| (-112 |#1|) (QUOTE (-136))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-112 |#1|) (QUOTE (-949))) (|HasCategory| (-112 |#1|) (QUOTE (-759))) (-3262 (|HasCategory| (-112 |#1|) (QUOTE (-759))) (|HasCategory| (-112 |#1|) (QUOTE (-786)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-112 |#1|) (QUOTE (-1063))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-112 |#1|) (QUOTE (-211))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -263) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-284))) (|HasCategory| (-112 |#1|) (QUOTE (-508))) (|HasCategory| (-112 |#1|) (QUOTE (-786))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-112 |#1|) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-112 |#1|) (QUOTE (-840)))) (|HasCategory| (-112 |#1|) (QUOTE (-134))))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| (-112 |#1|) (QUOTE (-840))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-112 |#1|) (QUOTE (-134))) (|HasCategory| (-112 |#1|) (QUOTE (-136))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-112 |#1|) (QUOTE (-949))) (|HasCategory| (-112 |#1|) (QUOTE (-759))) (-3172 (|HasCategory| (-112 |#1|) (QUOTE (-759))) (|HasCategory| (-112 |#1|) (QUOTE (-786)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-112 |#1|) (QUOTE (-1063))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-112 |#1|) (QUOTE (-211))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -263) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-284))) (|HasCategory| (-112 |#1|) (QUOTE (-508))) (|HasCategory| (-112 |#1|) (QUOTE (-786))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-112 |#1|) (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-112 |#1|) (QUOTE (-840)))) (|HasCategory| (-112 |#1|) (QUOTE (-134))))) (-114 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4245))) +((|HasAttribute| |#1| (QUOTE -4249))) (-115 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-3656 . T)) +((-4069 . T)) NIL (-116 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) @@ -398,15 +398,15 @@ NIL NIL (-117 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-118 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-119) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4245 . T) (-4244 . T) (-3656 . T)) +((-4249 . T) (-4248 . T) (-4069 . T)) NIL (-120 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -414,16 +414,16 @@ NIL NIL (-121 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4244 . T) (-4245 . T) (-3656 . T)) +((-4248 . T) (-4249 . T) (-4069 . T)) NIL (-122 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-123 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-124) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL @@ -434,14 +434,14 @@ NIL NIL (-126) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4246 "*") . T)) +(((-4250 "*") . T)) NIL -(-127 |minix| -1346 S T$) +(-127 |minix| -1996 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-128 |minix| -1346 R) -((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\^= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) +(-128 |minix| -1996 R) +((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL (-129) @@ -450,8 +450,8 @@ NIL NIL (-130) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4244 . T) (-4234 . T) (-4245 . T)) -((-3262 (-12 (|HasCategory| (-133) (QUOTE (-344))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133)))))) (|HasCategory| (-133) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-133) (QUOTE (-344))) (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-133) (QUOTE (-1016))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (|HasCategory| (-133) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4238 . T) (-4249 . T)) +((-3172 (-12 (|HasCategory| (-133) (QUOTE (-344))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133)))))) (|HasCategory| (-133) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-133) (QUOTE (-344))) (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-133) (QUOTE (-1016))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (|HasCategory| (-133) (LIST (QUOTE -563) (QUOTE (-794))))) (-131 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -466,7 +466,7 @@ NIL NIL (-134) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4241 . T)) +((-4245 . T)) NIL (-135 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -474,9 +474,9 @@ NIL NIL (-136) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4241 . T)) +((-4245 . T)) NIL -(-137 -2315 UP UPUP) +(-137 -3539 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -485,16 +485,16 @@ NIL NIL NIL (-139 A S) -((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) +((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasAttribute| |#1| (QUOTE -4244))) +((|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasAttribute| |#1| (QUOTE -4248))) (-140 S) -((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-3656 . T)) +((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) +((-4069 . T)) NIL (-141 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4239 . T) (-4238 . T) (-4241 . T)) +((-4243 . T) (-4242 . T) (-4245 . T)) NIL (-142) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -508,7 +508,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-145 R -2315) +(-145 R -3539) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -535,10 +535,10 @@ NIL (-151 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-930))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-982))) (|HasCategory| |#2| (QUOTE (-949))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-339))) (|HasAttribute| |#2| (QUOTE -4240)) (|HasAttribute| |#2| (QUOTE -4243)) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-786)))) +((|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-930))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-982))) (|HasCategory| |#2| (QUOTE (-949))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-339))) (|HasAttribute| |#2| (QUOTE -4244)) (|HasAttribute| |#2| (QUOTE -4247)) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-786)))) (-152 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4237 -3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4240 |has| |#1| (-6 -4240)) (-4243 |has| |#1| (-6 -4243)) (-2571 . T) (-3656 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 -3172 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4244 |has| |#1| (-6 -4244)) (-4247 |has| |#1| (-6 -4247)) (-4115 . T) (-4069 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-153 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -550,8 +550,8 @@ NIL NIL (-155 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4237 -3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4240 |has| |#1| (-6 -4240)) (-4243 |has| |#1| (-6 -4243)) (-2571 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-325))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-325)))) (|HasCategory| |#1| (QUOTE (-211))) (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-767)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-786)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-949)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-1108)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-840))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-840))))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#1| (QUOTE (-982))) (-12 (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-508))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-211))) (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasAttribute| |#1| (QUOTE -4240)) (|HasAttribute| |#1| (QUOTE -4243)) (-12 (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087))))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-325))))) +((-4241 -3172 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4244 |has| |#1| (-6 -4244)) (-4247 |has| |#1| (-6 -4247)) (-4115 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-325))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-325)))) (|HasCategory| |#1| (QUOTE (-211))) (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-767)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-786)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-949)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-1109)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-840))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-840))))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#1| (QUOTE (-982))) (-12 (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-508))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339)))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-211))) (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasAttribute| |#1| (QUOTE -4244)) (|HasAttribute| |#1| (QUOTE -4247)) (-12 (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087))))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-325))))) (-156 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -562,11 +562,11 @@ NIL NIL (-158) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-159 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4246 "*") . T) (-4237 . T) (-4242 . T) (-4236 . T) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") . T) (-4241 . T) (-4246 . T) (-4240 . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-160) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -600,7 +600,7 @@ NIL ((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor"))) NIL NIL -(-168 R -2315) +(-168 R -3539) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -704,19 +704,19 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-194 -2315 UP UPUP R) +(-194 -3539 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-195 -2315 FP) +(-195 -3539 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-196) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| (-523) (QUOTE (-840))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-523) (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-136))) (|HasCategory| (-523) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-949))) (|HasCategory| (-523) (QUOTE (-759))) (-3262 (|HasCategory| (-523) (QUOTE (-759))) (|HasCategory| (-523) (QUOTE (-786)))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-1063))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-523) (QUOTE (-211))) (|HasCategory| (-523) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-523) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -286) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -263) (QUOTE (-523)) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-284))) (|HasCategory| (-523) (QUOTE (-508))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-523) (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (|HasCategory| (-523) (QUOTE (-134))))) -(-197 R -2315) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| (-523) (QUOTE (-840))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-523) (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-136))) (|HasCategory| (-523) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-949))) (|HasCategory| (-523) (QUOTE (-759))) (-3172 (|HasCategory| (-523) (QUOTE (-759))) (|HasCategory| (-523) (QUOTE (-786)))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-1063))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-523) (QUOTE (-211))) (|HasCategory| (-523) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-523) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -286) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -263) (QUOTE (-523)) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-284))) (|HasCategory| (-523) (QUOTE (-508))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-523) (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (|HasCategory| (-523) (QUOTE (-134))))) +(-197 R -3539) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -730,19 +730,19 @@ NIL NIL (-200 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-201 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4241 . T)) +((-4245 . T)) NIL -(-202 R -2315) +(-202 R -3539) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-203) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2562 . T) (-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4108 . T) (-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-204) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) @@ -750,15 +750,15 @@ NIL NIL (-205 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-515))) (|HasAttribute| |#1| (QUOTE (-4246 "*"))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-515))) (|HasAttribute| |#1| (QUOTE (-4250 "*"))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-206 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-207 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4245 . T) (-3656 . T)) +((-4249 . T) (-4069 . T)) NIL (-208 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) @@ -766,7 +766,7 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211)))) (-209 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4241 . T)) +((-4245 . T)) NIL (-210 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) @@ -774,36 +774,36 @@ NIL NIL (-211) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4241 . T)) +((-4245 . T)) NIL (-212 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4244))) +((|HasAttribute| |#1| (QUOTE -4248))) (-213 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4245 . T) (-3656 . T)) +((-4249 . T) (-4069 . T)) NIL (-214) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-215 S -1346 R) +(-215 S -1996 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-784))) (|HasAttribute| |#3| (QUOTE -4241)) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-666))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (QUOTE (-1016)))) -(-216 -1346 R) +((|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-784))) (|HasAttribute| |#3| (QUOTE -4245)) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-666))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (QUOTE (-1016)))) +(-216 -1996 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4238 |has| |#2| (-973)) (-4239 |has| |#2| (-973)) (-4241 |has| |#2| (-6 -4241)) ((-4246 "*") |has| |#2| (-158)) (-4244 . T) (-3656 . T)) +((-4242 |has| |#2| (-973)) (-4243 |has| |#2| (-973)) (-4245 |has| |#2| (-6 -4245)) ((-4250 "*") |has| |#2| (-158)) (-4248 . T) (-4069 . T)) NIL -(-217 -1346 A B) +(-217 -1996 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-218 -1346 R) +(-218 -1996 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4238 |has| |#2| (-973)) (-4239 |has| |#2| (-973)) (-4241 |has| |#2| (-6 -4241)) ((-4246 "*") |has| |#2| (-158)) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-732))) (-3262 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784)))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-158)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016))))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (|HasCategory| |#2| (QUOTE (-666))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-3262 (|HasCategory| |#2| (QUOTE (-973))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasAttribute| |#2| (QUOTE -4241)) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4242 |has| |#2| (-973)) (-4243 |has| |#2| (-973)) (-4245 |has| |#2| (-6 -4245)) ((-4250 "*") |has| |#2| (-158)) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3172 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (QUOTE (-339))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-732))) (-3172 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784)))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-158))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-158)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016))))) (-3172 (-12 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (|HasCategory| |#2| (QUOTE (-666))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-3172 (|HasCategory| |#2| (QUOTE (-973))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasAttribute| |#2| (QUOTE -4245)) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (-219) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -814,47 +814,47 @@ NIL NIL (-221) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4237 . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-222 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-3656 . T)) +((-4069 . T)) NIL (-223 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-224 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-225 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4246 "*") |has| |#2| (-158)) (-4237 |has| |#2| (-515)) (-4242 |has| |#2| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#2| (QUOTE (-840))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#2| (QUOTE -4242)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) +(((-4250 "*") |has| |#2| (-158)) (-4241 |has| |#2| (-515)) (-4246 |has| |#2| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#2| (QUOTE (-840))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#2| (QUOTE -4246)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) (-226) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL (-227 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4241 -3262 (-4099 (|has| |#4| (-973)) (|has| |#4| (-211))) (-4099 (|has| |#4| (-973)) (|has| |#4| (-831 (-1087)))) (|has| |#4| (-6 -4241)) (-4099 (|has| |#4| (-973)) (|has| |#4| (-585 (-523))))) (-4238 |has| |#4| (-973)) (-4239 |has| |#4| (-973)) ((-4246 "*") |has| |#4| (-158)) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-339))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#4| (QUOTE (-339))) (-3262 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (QUOTE (-339))) (|HasCategory| |#4| (QUOTE (-973)))) (-3262 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (QUOTE (-339)))) (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (QUOTE (-732))) (-3262 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (QUOTE (-784)))) (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (QUOTE (-158))) (-3262 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (QUOTE (-973)))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (QUOTE (-973)))) (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-158)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-211)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-339)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-344)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-732)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-784)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-973)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-1016))))) (-3262 (-12 (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-339))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#4| (QUOTE (-666))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (QUOTE (-973)))) (-3262 (|HasCategory| |#4| (QUOTE (-973))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-1016)))) (-3262 (|HasAttribute| |#4| (QUOTE -4241)) (-12 (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (QUOTE (-973)))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#4| (QUOTE (-124))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4245 -3172 (-3147 (|has| |#4| (-973)) (|has| |#4| (-211))) (-3147 (|has| |#4| (-973)) (|has| |#4| (-831 (-1087)))) (|has| |#4| (-6 -4245)) (-3147 (|has| |#4| (-973)) (|has| |#4| (-585 (-523))))) (-4242 |has| |#4| (-973)) (-4243 |has| |#4| (-973)) ((-4250 "*") |has| |#4| (-158)) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-339))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#4| (QUOTE (-339))) (-3172 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (QUOTE (-339))) (|HasCategory| |#4| (QUOTE (-973)))) (-3172 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (QUOTE (-339)))) (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (QUOTE (-732))) (-3172 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (QUOTE (-784)))) (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (QUOTE (-158))) (-3172 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (QUOTE (-973)))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3172 (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (QUOTE (-973)))) (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-158)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-211)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-339)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-344)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-732)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-784)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-973)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-1016))))) (-3172 (-12 (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-339))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#4| (QUOTE (-666))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (QUOTE (-973)))) (-3172 (|HasCategory| |#4| (QUOTE (-973))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-1016)))) (-3172 (|HasAttribute| |#4| (QUOTE -4245)) (-12 (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (QUOTE (-973)))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#4| (QUOTE (-124))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) (-228 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4241 -3262 (-4099 (|has| |#3| (-973)) (|has| |#3| (-211))) (-4099 (|has| |#3| (-973)) (|has| |#3| (-831 (-1087)))) (|has| |#3| (-6 -4241)) (-4099 (|has| |#3| (-973)) (|has| |#3| (-585 (-523))))) (-4238 |has| |#3| (-973)) (-4239 |has| |#3| (-973)) ((-4246 "*") |has| |#3| (-158)) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#3| (QUOTE (-339))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339)))) (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (QUOTE (-732))) (-3262 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-784)))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-158))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-973)))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-158)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-211)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-339)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016))))) (-3262 (-12 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#3| (QUOTE (-666))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (-3262 (|HasCategory| |#3| (QUOTE (-973))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-3262 (|HasAttribute| |#3| (QUOTE -4241)) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4245 -3172 (-3147 (|has| |#3| (-973)) (|has| |#3| (-211))) (-3147 (|has| |#3| (-973)) (|has| |#3| (-831 (-1087)))) (|has| |#3| (-6 -4245)) (-3147 (|has| |#3| (-973)) (|has| |#3| (-585 (-523))))) (-4242 |has| |#3| (-973)) (-4243 |has| |#3| (-973)) ((-4250 "*") |has| |#3| (-158)) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#3| (QUOTE (-339))) (-3172 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3172 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339)))) (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (QUOTE (-732))) (-3172 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-784)))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-158))) (-3172 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-973)))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3172 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-158)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-211)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-339)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016))))) (-3172 (-12 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#3| (QUOTE (-666))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (-3172 (|HasCategory| |#3| (QUOTE (-973))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-3172 (|HasAttribute| |#3| (QUOTE -4245)) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-794))))) (-229 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-211)))) (-230 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) NIL (-231 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4244 . T) (-4245 . T) (-3656 . T)) +((-4248 . T) (-4249 . T) (-4069 . T)) NIL (-232) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -894,8 +894,8 @@ NIL NIL (-241 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-840))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#3| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#3| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#3| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#3| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#3| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#3| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4246)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) (-242 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -940,11 +940,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-253 R -2315) +(-253 R -3539) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-254 R -2315) +(-254 R -3539) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -966,7 +966,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016)))) (-259 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4245 . T) (-3656 . T)) +((-4249 . T) (-4069 . T)) NIL (-260 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -987,18 +987,18 @@ NIL (-264 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4245))) +((|HasAttribute| |#1| (QUOTE -4249))) (-265 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-266 S R |Mod| -2227 -2178 |exactQuo|) +(-266 S R |Mod| -1327 -3780 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-267) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4237 . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-268) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1014,21 +1014,21 @@ NIL NIL (-271 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4241 -3262 (|has| |#1| (-973)) (|has| |#1| (-448))) (-4238 |has| |#1| (-973)) (-4239 |has| |#1| (-973))) -((|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-666)))) (|HasCategory| |#1| (QUOTE (-448))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-1016)))) (-3262 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-1028)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-279))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-448)))) (-3262 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-666)))) (-3262 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-973)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) +((-4245 -3172 (|has| |#1| (-973)) (|has| |#1| (-448))) (-4242 |has| |#1| (-973)) (-4243 |has| |#1| (-973))) +((|HasCategory| |#1| (QUOTE (-339))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-973)))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-973)))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-973)))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-973)))) (-3172 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-666)))) (|HasCategory| |#1| (QUOTE (-448))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-1016)))) (-3172 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-1028)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-279))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-448)))) (-3172 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-666)))) (-3172 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-973)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) (-272 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2482) (|devaluate| |#2|)))))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) (-273) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-274 -2315 S) +(-274 -3539 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-275 E -2315) +(-275 E -3539) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL @@ -1066,7 +1066,7 @@ NIL NIL (-284) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-285 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1076,7 +1076,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-287 -2315) +(-287 -3539) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1086,8 +1086,8 @@ NIL NIL (-289 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-840))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-949))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-759))) (-3262 (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-759))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-786)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-1063))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-211))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1154) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1154) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -263) (LIST (QUOTE -1154) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1154) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-284))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-508))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-786))) (-12 (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-840))) (|HasCategory| $ (QUOTE (-134)))) (-3262 (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (-12 (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-840))) (|HasCategory| $ (QUOTE (-134)))))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-840))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-949))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-759))) (-3172 (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-759))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-786)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-1063))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-211))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (LIST (QUOTE -263) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-284))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-508))) (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-786))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-840))) (|HasCategory| $ (QUOTE (-134)))) (-3172 (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3| |#4|) (QUOTE (-840))) (|HasCategory| $ (QUOTE (-134)))))) (-290 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1098,9 +1098,9 @@ NIL NIL (-292 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4241 -3262 (-4099 (|has| |#1| (-973)) (|has| |#1| (-585 (-523)))) (-12 (|has| |#1| (-515)) (-3262 (-4099 (|has| |#1| (-973)) (|has| |#1| (-585 (-523)))) (|has| |#1| (-973)) (|has| |#1| (-448)))) (|has| |#1| (-973)) (|has| |#1| (-448))) (-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) ((-4246 "*") |has| |#1| (-515)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-515)) (-4236 |has| |#1| (-515))) -((-3262 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-515))) (-3262 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (-3262 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-1028)))) (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523))))) (-3262 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-1028)))) (-3262 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))))) (-3262 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-1028)))) (-3262 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))))) (-3262 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| $ (QUOTE (-973))) (|HasCategory| $ (LIST (QUOTE -964) (QUOTE (-523))))) -(-293 R -2315) +((-4245 -3172 (-3147 (|has| |#1| (-973)) (|has| |#1| (-585 (-523)))) (-12 (|has| |#1| (-515)) (-3172 (-3147 (|has| |#1| (-973)) (|has| |#1| (-585 (-523)))) (|has| |#1| (-973)) (|has| |#1| (-448)))) (|has| |#1| (-973)) (|has| |#1| (-448))) (-4243 |has| |#1| (-158)) (-4242 |has| |#1| (-158)) ((-4250 "*") |has| |#1| (-515)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-515)) (-4240 |has| |#1| (-515))) +((-3172 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-515))) (-3172 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (-3172 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-1028)))) (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973)))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973)))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523))))) (-3172 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-1028)))) (-3172 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))))) (-3172 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-1028)))) (-3172 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))))) (-3172 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-973)))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| $ (QUOTE (-973))) (|HasCategory| $ (LIST (QUOTE -964) (QUOTE (-523))))) +(-293 R -3539) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL @@ -1110,8 +1110,8 @@ NIL NIL (-295 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1691) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -2814) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1292) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) (-296 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1122,7 +1122,7 @@ NIL NIL (-298 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4239 . T) (-4238 . T)) +((-4243 . T) (-4242 . T)) ((|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-731)))) (-299 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) @@ -1138,19 +1138,19 @@ NIL ((|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158)))) (-302 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-303 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) -(-304 S -2315) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-304 S -3539) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-344)))) -(-305 -2315) +(-305 -3539) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-306) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) @@ -1168,15 +1168,15 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-310 S -2315 UP UPUP R) +(-310 S -3539 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-311 -2315 UP UPUP R) +(-311 -3539 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-312 -2315 UP UPUP R) +(-312 -3539 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1190,32 +1190,32 @@ NIL NIL (-315 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) ((|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-355)))) (|HasCategory| $ (QUOTE (-973))) (|HasCategory| $ (LIST (QUOTE -964) (QUOTE (-523))))) (-316 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-317 S -2315 UP UPUP) +(-317 S -3539 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-339)))) -(-318 -2315 UP UPUP) +(-318 -3539 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4237 |has| (-383 |#2|) (-339)) (-4242 |has| (-383 |#2|) (-339)) (-4236 |has| (-383 |#2|) (-339)) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 |has| (-383 |#2|) (-339)) (-4246 |has| (-383 |#2|) (-339)) (-4240 |has| (-383 |#2|) (-339)) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-319 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (|HasCategory| (-841 |#1|) (QUOTE (-134))) (|HasCategory| (-841 |#1|) (QUOTE (-344)))) (|HasCategory| (-841 |#1|) (QUOTE (-136))) (|HasCategory| (-841 |#1|) (QUOTE (-344))) (|HasCategory| (-841 |#1|) (QUOTE (-134)))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (|HasCategory| (-841 |#1|) (QUOTE (-134))) (|HasCategory| (-841 |#1|) (QUOTE (-344)))) (|HasCategory| (-841 |#1|) (QUOTE (-136))) (|HasCategory| (-841 |#1|) (QUOTE (-344))) (|HasCategory| (-841 |#1|) (QUOTE (-134)))) (-320 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) (-321 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) (-322 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1230,33 +1230,33 @@ NIL NIL (-325) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-326 R UP -2315) +(-326 R UP -3539) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-327 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (|HasCategory| (-841 |#1|) (QUOTE (-134))) (|HasCategory| (-841 |#1|) (QUOTE (-344)))) (|HasCategory| (-841 |#1|) (QUOTE (-136))) (|HasCategory| (-841 |#1|) (QUOTE (-344))) (|HasCategory| (-841 |#1|) (QUOTE (-134)))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (|HasCategory| (-841 |#1|) (QUOTE (-134))) (|HasCategory| (-841 |#1|) (QUOTE (-344)))) (|HasCategory| (-841 |#1|) (QUOTE (-136))) (|HasCategory| (-841 |#1|) (QUOTE (-344))) (|HasCategory| (-841 |#1|) (QUOTE (-134)))) (-328 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) (-329 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) (-330 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (|HasCategory| (-841 |#1|) (QUOTE (-134))) (|HasCategory| (-841 |#1|) (QUOTE (-344)))) (|HasCategory| (-841 |#1|) (QUOTE (-136))) (|HasCategory| (-841 |#1|) (QUOTE (-344))) (|HasCategory| (-841 |#1|) (QUOTE (-134)))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (|HasCategory| (-841 |#1|) (QUOTE (-134))) (|HasCategory| (-841 |#1|) (QUOTE (-344)))) (|HasCategory| (-841 |#1|) (QUOTE (-136))) (|HasCategory| (-841 |#1|) (QUOTE (-344))) (|HasCategory| (-841 |#1|) (QUOTE (-134)))) (-331 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) -(-332 -2315 GF) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) +(-332 -3539 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1264,21 +1264,21 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-334 -2315 FP FPP) +(-334 -3539 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-335 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) (-336 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-337 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4241 . T)) +((-4245 . T)) NIL (-338 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1286,7 +1286,7 @@ NIL NIL (-339) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-340 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) @@ -1302,7 +1302,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-515)))) (-343 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4241 |has| |#1| (-515)) (-4239 . T) (-4238 . T)) +((-4245 |has| |#1| (-515)) (-4243 . T) (-4242 . T)) NIL (-344) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1314,7 +1314,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-339)))) (-346 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) NIL (-347 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1323,14 +1323,14 @@ NIL (-348 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4245)) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016)))) +((|HasAttribute| |#1| (QUOTE -4249)) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016)))) (-349 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4244 . T) (-3656 . T)) +((-4248 . T) (-4069 . T)) NIL (-350 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4239 . T) (-4238 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4243 . T) (-4242 . T)) NIL (-351 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1342,15 +1342,15 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-353 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4241 . T)) +((-4245 . T)) NIL (-354 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL (-355) -((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4227 . T) (-4235 . T) (-2562 . T) (-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) +((-4231 . T) (-4239 . T) (-4108 . T) (-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-356 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1358,23 +1358,23 @@ NIL NIL (-357 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4239 . T) (-4238 . T)) +((-4243 . T) (-4242 . T)) ((|HasCategory| |#1| (QUOTE (-158)))) (-358 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4239 . T) (-4238 . T)) +((-4243 . T) (-4242 . T)) NIL (-359) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-3656 . T)) +((-4069 . T)) NIL (-360) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-3656 . T)) +((-4069 . T)) NIL (-361 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4239 . T) (-4238 . T)) +((-4243 . T) (-4242 . T)) ((|HasCategory| |#1| (QUOTE (-158)))) (-362 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) @@ -1382,7 +1382,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-786)))) (-363) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-364) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1394,13 +1394,13 @@ NIL NIL (-366 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4239 . T) (-4238 . T)) +((-4243 . T) (-4242 . T)) NIL (-367) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-368 -2315 UP UPUP R) +(-368 -3539 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1414,27 +1414,27 @@ NIL NIL (-371) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-3656 . T)) +((-4069 . T)) NIL (-372) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-3656 . T)) +((-4069 . T)) NIL (-373) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-374 -4038 |returnType| -2455 |symbols|) +(-374 -4198 |returnType| -2134 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-375 -2315 UP) +(-375 -3539 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL (-376 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-3656 . T)) +((-4069 . T)) NIL (-377 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) @@ -1442,15 +1442,15 @@ NIL NIL (-378) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-379 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4227)) (|HasAttribute| |#1| (QUOTE -4235))) +((|HasAttribute| |#1| (QUOTE -4231)) (|HasAttribute| |#1| (QUOTE -4239))) (-380) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2562 . T) (-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4108 . T) (-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-381 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1462,15 +1462,15 @@ NIL NIL (-383 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4231 -12 (|has| |#1| (-6 -4242)) (|has| |#1| (-427)) (|has| |#1| (-6 -4231))) (-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-759))) (-3262 (|HasCategory| |#1| (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-786)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-1063))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767))))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-508))) (-12 (|HasAttribute| |#1| (QUOTE -4242)) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-427)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +((-4235 -12 (|has| |#1| (-6 -4246)) (|has| |#1| (-427)) (|has| |#1| (-6 -4235))) (-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-759))) (-3172 (|HasCategory| |#1| (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-786)))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-1063))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767))))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-508))) (-12 (|HasAttribute| |#1| (QUOTE -4246)) (|HasAttribute| |#1| (QUOTE -4235)) (|HasCategory| |#1| (QUOTE (-427)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) (-384 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-385 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) NIL (-386 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) @@ -1484,11 +1484,11 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-389 R -2315 UP A) +(-389 R -3539 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4241 . T)) +((-4245 . T)) NIL -(-390 R -2315 UP A |ibasis|) +(-390 R -3539 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL ((|HasCategory| |#4| (LIST (QUOTE -964) (|devaluate| |#2|)))) @@ -1502,12 +1502,12 @@ NIL ((|HasCategory| |#2| (QUOTE (-339)))) (-393 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4241 |has| |#1| (-515)) (-4239 . T) (-4238 . T)) +((-4245 |has| |#1| (-515)) (-4243 . T) (-4242 . T)) NIL (-394 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -263) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-1126))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-1126)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-427)))) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -263) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-1127))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-1127)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-427)))) (-395 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL @@ -1534,17 +1534,17 @@ NIL ((|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-344)))) (-401 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4244 . T) (-4234 . T) (-4245 . T) (-3656 . T)) +((-4248 . T) (-4238 . T) (-4249 . T) (-4069 . T)) NIL -(-402 R -2315) +(-402 R -3539) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-403 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4231 -12 (|has| |#1| (-6 -4231)) (|has| |#2| (-6 -4231))) (-4238 . T) (-4239 . T) (-4241 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4231)) (|HasAttribute| |#2| (QUOTE -4231)))) -(-404 R -2315) +((-4235 -12 (|has| |#1| (-6 -4235)) (|has| |#2| (-6 -4235))) (-4242 . T) (-4243 . T) (-4245 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4235)) (|HasAttribute| |#2| (QUOTE -4235)))) +(-404 R -3539) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL @@ -1554,17 +1554,17 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-448))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (-406 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4241 -3262 (|has| |#1| (-973)) (|has| |#1| (-448))) (-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) ((-4246 "*") |has| |#1| (-515)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-515)) (-4236 |has| |#1| (-515)) (-3656 . T)) +((-4245 -3172 (|has| |#1| (-973)) (|has| |#1| (-448))) (-4243 |has| |#1| (-158)) (-4242 |has| |#1| (-158)) ((-4250 "*") |has| |#1| (-515)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-515)) (-4240 |has| |#1| (-515)) (-4069 . T)) NIL -(-407 R -2315) +(-407 R -3539) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-408 R -2315) +(-408 R -3539) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-409 R -2315) +(-409 R -3539) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1572,7 +1572,7 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-411 R -2315 UP) +(-411 R -3539 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL ((|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-47))))) @@ -1590,17 +1590,17 @@ NIL NIL (-415) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-3656 . T)) +((-4069 . T)) NIL (-416) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-3656 . T)) +((-4069 . T)) NIL (-417 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-418 R UP -2315) +(-418 R UP -3539) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1638,16 +1638,16 @@ NIL NIL (-427) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-428 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4241 |has| (-383 (-883 |#1|)) (-515)) (-4239 . T) (-4238 . T)) +((-4245 |has| (-383 (-883 |#1|)) (-515)) (-4243 . T) (-4242 . T)) ((|HasCategory| (-383 (-883 |#1|)) (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| (-383 (-883 |#1|)) (QUOTE (-515)))) (-429 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4246 "*") |has| |#2| (-158)) (-4237 |has| |#2| (-515)) (-4242 |has| |#2| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#2| (QUOTE (-840))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#2| (QUOTE -4242)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) +(((-4250 "*") |has| |#2| (-158)) (-4241 |has| |#2| (-515)) (-4246 |has| |#2| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#2| (QUOTE (-840))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#2| (QUOTE -4246)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) (-430 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1674,7 +1674,7 @@ NIL NIL (-436 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4239 . T) (-4238 . T)) +((-4243 . T) (-4242 . T)) NIL (-437 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1682,7 +1682,7 @@ NIL NIL (-438 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) (-439 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) @@ -1712,7 +1712,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-446 |lv| -2315 R) +(-446 |lv| -3539 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1722,45 +1722,45 @@ NIL NIL (-448) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4241 . T)) +((-4245 . T)) NIL (-449 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1691) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -2814) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1292) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) (-450 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4245 . T)) -((-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-786))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T)) +((-12 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2482) (|devaluate| |#2|)))))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-786))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) (-451 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) (-452) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-453 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2482) (|devaluate| |#2|)))))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) (-454) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-455 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4246 "*") |has| |#2| (-158)) (-4237 |has| |#2| (-515)) (-4242 |has| |#2| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#2| (QUOTE (-840))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#2| (QUOTE -4242)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) -(-456 -1346 S) +(((-4250 "*") |has| |#2| (-158)) (-4241 |has| |#2| (-515)) (-4246 |has| |#2| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#2| (QUOTE (-840))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#2| (QUOTE -4246)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) +(-456 -1996 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4238 |has| |#2| (-973)) (-4239 |has| |#2| (-973)) (-4241 |has| |#2| (-6 -4241)) ((-4246 "*") |has| |#2| (-158)) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-732))) (-3262 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784)))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-158)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016))))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (|HasCategory| |#2| (QUOTE (-666))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-3262 (|HasCategory| |#2| (QUOTE (-973))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasAttribute| |#2| (QUOTE -4241)) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4242 |has| |#2| (-973)) (-4243 |has| |#2| (-973)) (-4245 |has| |#2| (-6 -4245)) ((-4250 "*") |has| |#2| (-158)) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3172 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (QUOTE (-339))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-732))) (-3172 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784)))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-158))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-158)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016))))) (-3172 (-12 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (|HasCategory| |#2| (QUOTE (-666))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-3172 (|HasCategory| |#2| (QUOTE (-973))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasAttribute| |#2| (QUOTE -4245)) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (-457 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) -(-458 -2315 UP UPUP R) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-458 -3539 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1770,15 +1770,15 @@ NIL NIL (-460) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| (-523) (QUOTE (-840))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-523) (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-136))) (|HasCategory| (-523) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-949))) (|HasCategory| (-523) (QUOTE (-759))) (-3262 (|HasCategory| (-523) (QUOTE (-759))) (|HasCategory| (-523) (QUOTE (-786)))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-1063))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-523) (QUOTE (-211))) (|HasCategory| (-523) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-523) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -286) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -263) (QUOTE (-523)) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-284))) (|HasCategory| (-523) (QUOTE (-508))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-523) (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (|HasCategory| (-523) (QUOTE (-134))))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| (-523) (QUOTE (-840))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-523) (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-136))) (|HasCategory| (-523) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-949))) (|HasCategory| (-523) (QUOTE (-759))) (-3172 (|HasCategory| (-523) (QUOTE (-759))) (|HasCategory| (-523) (QUOTE (-786)))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-1063))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-523) (QUOTE (-211))) (|HasCategory| (-523) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-523) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -286) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -263) (QUOTE (-523)) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-284))) (|HasCategory| (-523) (QUOTE (-508))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-523) (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (|HasCategory| (-523) (QUOTE (-134))))) (-461 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4244)) (|HasAttribute| |#1| (QUOTE -4245)) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) +((|HasAttribute| |#1| (QUOTE -4248)) (|HasAttribute| |#1| (QUOTE -4249)) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (-462 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-3656 . T)) +((-4069 . T)) NIL (-463 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) @@ -1788,33 +1788,33 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-465 -2315 UP |AlExt| |AlPol|) +(-465 -3539 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-466) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) ((|HasCategory| $ (QUOTE (-973))) (|HasCategory| $ (LIST (QUOTE -964) (QUOTE (-523))))) (-467 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-468 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-469 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-470 R UP -2315) +(-470 R UP -3539) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-471 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) ((-12 (|HasCategory| (-108) (QUOTE (-1016))) (|HasCategory| (-108) (LIST (QUOTE -286) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-108) (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-108) (QUOTE (-1016))) (|HasCategory| (-108) (LIST (QUOTE -563) (QUOTE (-794))))) (-472 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) @@ -1828,7 +1828,7 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-475 -2315 |Expon| |VarSet| |DPoly|) +(-475 -3539 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -564) (QUOTE (-1087))))) @@ -1874,32 +1874,32 @@ NIL ((|HasCategory| |#2| (QUOTE (-731)))) (-486 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-487 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (|HasCategory| (-536 |#1|) (QUOTE (-134))) (|HasCategory| (-536 |#1|) (QUOTE (-344)))) (|HasCategory| (-536 |#1|) (QUOTE (-136))) (|HasCategory| (-536 |#1|) (QUOTE (-344))) (|HasCategory| (-536 |#1|) (QUOTE (-134)))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (|HasCategory| (-536 |#1|) (QUOTE (-134))) (|HasCategory| (-536 |#1|) (QUOTE (-344)))) (|HasCategory| (-536 |#1|) (QUOTE (-136))) (|HasCategory| (-536 |#1|) (QUOTE (-344))) (|HasCategory| (-536 |#1|) (QUOTE (-134)))) (-488 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-489 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-490 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4245))) +((|HasAttribute| |#3| (QUOTE -4249))) (-491 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4245))) +((|HasAttribute| |#7| (QUOTE -4249))) (-492 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-515))) (|HasAttribute| |#1| (QUOTE (-4246 "*"))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-515))) (|HasAttribute| |#1| (QUOTE (-4250 "*"))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-493 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL @@ -1912,7 +1912,7 @@ NIL ((|constructor| (NIL "converts entire exponents to OutputForm"))) NIL NIL -(-496 K -2315 |Par|) +(-496 K -3539 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -1932,7 +1932,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-501 K -2315 |Par|) +(-501 K -3539 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -1962,17 +1962,17 @@ NIL NIL (-508) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4242 . T) (-4243 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4246 . T) (-4247 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-509 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) -(-510 R -2315) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2482) (|devaluate| |#2|)))))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +(-510 R -3539) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-511 R0 -2315 UP UPUP R) +(-511 R0 -3539 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -1982,7 +1982,7 @@ NIL NIL (-513 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2562 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4108 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-514 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -1990,9 +1990,9 @@ NIL NIL (-515) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-516 R -2315) +(-516 R -3539) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2004,39 +2004,39 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-519 R -2315 L) +(-519 R -3539 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -599) (|devaluate| |#2|)))) (-520) -((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) +((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-521 -2315 UP UPUP R) +(-521 -3539 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-522 -2315 UP) +(-522 -3539 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-523) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4226 . T) (-4232 . T) (-4236 . T) (-4231 . T) (-4242 . T) (-4243 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4230 . T) (-4236 . T) (-4240 . T) (-4235 . T) (-4246 . T) (-4247 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-524) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-525 R -2315 L) +(-525 R -3539 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -599) (|devaluate| |#2|)))) -(-526 R -2315) +(-526 R -3539) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-575))))) -(-527 -2315 UP) +(-527 -3539 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2044,53 +2044,53 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-529 -2315) +(-529 -3539) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-530 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2562 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4108 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-531) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-532 R -2315) +(-532 R -3539) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (QUOTE (-575))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087))))) (-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-261)))) (|HasCategory| |#1| (QUOTE (-515)))) -(-533 -2315 UP) +(-533 -3539 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-534 R -2315) +(-534 R -3539) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL (-535 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-536 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) ((|HasCategory| $ (QUOTE (-136))) (|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-344)))) (-537) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-538 R -2315) +(-538 R -3539) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-539 E -2315) +(-539 E -3539) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-540 -2315) +(-540 -3539) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4239 . T) (-4238 . T)) +((-4243 . T) (-4242 . T)) ((|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-1087))))) (-541 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) @@ -2114,19 +2114,19 @@ NIL NIL (-546 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133)))))) (-3262 (|HasCategory| (-133) (LIST (QUOTE -563) (QUOTE (-794)))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133)))))) (|HasCategory| (-133) (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-133) (QUOTE (-1016)))) (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-133) (QUOTE (-1016))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (|HasCategory| (-133) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133)))))) (-3172 (|HasCategory| (-133) (LIST (QUOTE -563) (QUOTE (-794)))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133)))))) (|HasCategory| (-133) (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-133) (QUOTE (-1016)))) (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-133) (QUOTE (-1016))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (|HasCategory| (-133) (LIST (QUOTE -563) (QUOTE (-794))))) (-547 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL (-548 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|)))) (|HasCategory| (-523) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523)))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|)))) (|HasCategory| (-523) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -1691) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523)))))) (-549 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4239 |has| |#1| (-515)) (-4238 |has| |#1| (-515)) ((-4246 "*") |has| |#1| (-515)) (-4237 |has| |#1| (-515)) (-4241 . T)) +((-4243 |has| |#1| (-515)) (-4242 |has| |#1| (-515)) ((-4250 "*") |has| |#1| (-515)) (-4241 |has| |#1| (-515)) (-4245 . T)) ((|HasCategory| |#1| (QUOTE (-515)))) (-550 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) @@ -2136,7 +2136,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-552 R -2315 FG) +(-552 R -3539 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2146,31 +2146,31 @@ NIL NIL (-554 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-555 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4245)) (|HasCategory| |#2| (QUOTE (-786))) (|HasAttribute| |#1| (QUOTE -4244)) (|HasCategory| |#3| (QUOTE (-1016)))) +((|HasAttribute| |#1| (QUOTE -4249)) (|HasCategory| |#2| (QUOTE (-786))) (|HasAttribute| |#1| (QUOTE -4248)) (|HasCategory| |#3| (QUOTE (-1016)))) (-556 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-3656 . T)) +((-4069 . T)) NIL (-557 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4241 -3262 (-4099 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))) (-4239 . T) (-4238 . T)) -((-3262 (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|)))) +((-4245 -3172 (-3147 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))) (-4243 . T) (-4242 . T)) +((-3172 (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|)))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|)))) (-558 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| (-1070) (QUOTE (-786))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2482) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| (-1070) (QUOTE (-786))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (LIST (QUOTE -563) (QUOTE (-794))))) (-559 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL (-560 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4245 . T) (-3656 . T)) +((-4249 . T) (-4069 . T)) NIL (-561 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) @@ -2188,7 +2188,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-565 -2315 UP) +(-565 -3539 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2198,19 +2198,19 @@ NIL NIL (-567 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4241 . T)) +((-4245 . T)) NIL (-568 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) ((|HasCategory| |#1| (QUOTE (-784)))) -(-569 R -2315) +(-569 R -3539) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL (-570 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4239 . T) (-4238 . T) ((-4246 "*") . T) (-4237 . T) (-4241 . T)) +((-4243 . T) (-4242 . T) ((-4250 "*") . T) (-4241 . T) (-4245 . T)) ((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (-571 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) @@ -2222,7 +2222,7 @@ NIL NIL (-573 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4241 . T)) +((-4245 . T)) NIL (-574 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) @@ -2232,30 +2232,30 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-576 R -2315) +(-576 R -3539) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-577 |lv| -2315) +(-577 |lv| -3539) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-578) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4245 . T)) -((-12 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2433) (QUOTE (-51))))))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-51) (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -286) (QUOTE (-51))))) (|HasCategory| (-1070) (QUOTE (-786))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T)) +((-12 (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2482) (QUOTE (-51))))))) (-3172 (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (QUOTE (-1016))) (|HasCategory| (-51) (QUOTE (-1016)))) (-3172 (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -286) (QUOTE (-51))))) (|HasCategory| (-1070) (QUOTE (-786))) (-3172 (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (LIST (QUOTE -563) (QUOTE (-794))))) (-579 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-339)))) (-580 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4239 . T) (-4238 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4243 . T) (-4242 . T)) NIL (-581 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4241 -3262 (-4099 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))) (-4239 . T) (-4238 . T)) -((-3262 (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|)))) +((-4245 -3172 (-3147 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))) (-4243 . T) (-4242 . T)) +((-3172 (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|)))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|)))) (-582 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL @@ -2267,10 +2267,10 @@ NIL (-584 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3900 (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-339)))) +((-4179 (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-339)))) (-585 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4241 . T)) +((-4245 . T)) NIL (-586 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) @@ -2286,12 +2286,12 @@ NIL NIL (-589 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-590 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-591 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL @@ -2303,22 +2303,22 @@ NIL (-593 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4245))) +((|HasAttribute| |#1| (QUOTE -4249))) (-594 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-3656 . T)) +((-4069 . T)) NIL -(-595 R -2315 L) +(-595 R -3539 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL (-596 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) ((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-339)))) (-597 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) ((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-339)))) (-598 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) @@ -2326,15 +2326,15 @@ NIL ((|HasCategory| |#2| (QUOTE (-339)))) (-599 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-600 -2315 UP) +(-600 -3539 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-601 A -4168) +(-601 A -2576) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) ((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-339)))) (-602 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) @@ -2350,7 +2350,7 @@ NIL NIL (-605 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4239 . T) (-4238 . T)) +((-4243 . T) (-4242 . T)) ((|HasCategory| |#1| (QUOTE (-730)))) (-606 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) @@ -2358,7 +2358,7 @@ NIL NIL (-607 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4239 . T) (-4238 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4243 . T) (-4242 . T)) ((|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-158)))) (-608 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) @@ -2366,13 +2366,13 @@ NIL NIL (-609 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4245 . T) (-4244 . T) (-3656 . T)) +((-4249 . T) (-4248 . T) (-4069 . T)) NIL -(-610 -2315) +(-610 -3539) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-611 -2315 |Row| |Col| M) +(-611 -3539 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2382,8 +2382,8 @@ NIL NIL (-613 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4241 . T) (-4244 . T) (-4238 . T) (-4239 . T)) -((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasAttribute| |#2| (QUOTE (-4246 "*"))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (-3262 (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-515))) (-3262 (|HasAttribute| |#2| (QUOTE (-4246 "*"))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-158)))) +((-4245 . T) (-4248 . T) (-4242 . T) (-4243 . T)) +((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasAttribute| |#2| (QUOTE (-4250 "*"))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (-3172 (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-515))) (-3172 (|HasAttribute| |#2| (QUOTE (-4250 "*"))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-158)))) (-614 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL @@ -2394,12 +2394,12 @@ NIL NIL (-616 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-3656 . T)) +((-4069 . T)) NIL (-617 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-618 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL @@ -2435,24 +2435,24 @@ NIL (-626 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4246 "*"))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-515)))) +((|HasAttribute| |#2| (QUOTE (-4250 "*"))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-515)))) (-627 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4244 . T) (-4245 . T) (-3656 . T)) +((-4248 . T) (-4249 . T) (-4069 . T)) NIL (-628 R |Row| |Col| M) -((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) +((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL ((|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-515)))) (-629 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4244 . T) (-4245 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-515))) (|HasAttribute| |#1| (QUOTE (-4246 "*"))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-515))) (|HasAttribute| |#1| (QUOTE (-4250 "*"))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-630 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-631 S -2315 FLAF FLAS) +(-631 S -3539 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2462,11 +2462,11 @@ NIL NIL (-633) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4237 . T) (-4242 |has| (-638) (-339)) (-4236 |has| (-638) (-339)) (-2571 . T) (-4243 |has| (-638) (-6 -4243)) (-4240 |has| (-638) (-6 -4240)) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| (-638) (QUOTE (-136))) (|HasCategory| (-638) (QUOTE (-134))) (|HasCategory| (-638) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-638) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-638) (QUOTE (-344))) (|HasCategory| (-638) (QUOTE (-339))) (|HasCategory| (-638) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-638) (QUOTE (-211))) (-3262 (|HasCategory| (-638) (QUOTE (-339))) (|HasCategory| (-638) (QUOTE (-325)))) (|HasCategory| (-638) (QUOTE (-325))) (|HasCategory| (-638) (LIST (QUOTE -263) (QUOTE (-638)) (QUOTE (-638)))) (|HasCategory| (-638) (LIST (QUOTE -286) (QUOTE (-638)))) (|HasCategory| (-638) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-638)))) (|HasCategory| (-638) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-638) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-638) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-638) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (-3262 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-339))) (|HasCategory| (-638) (QUOTE (-325)))) (|HasCategory| (-638) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-638) (QUOTE (-949))) (|HasCategory| (-638) (QUOTE (-1108))) (-12 (|HasCategory| (-638) (QUOTE (-930))) (|HasCategory| (-638) (QUOTE (-1108)))) (-3262 (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-339))) (-12 (|HasCategory| (-638) (QUOTE (-325))) (|HasCategory| (-638) (QUOTE (-840))))) (-3262 (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (-12 (|HasCategory| (-638) (QUOTE (-339))) (|HasCategory| (-638) (QUOTE (-840)))) (-12 (|HasCategory| (-638) (QUOTE (-325))) (|HasCategory| (-638) (QUOTE (-840))))) (|HasCategory| (-638) (QUOTE (-508))) (-12 (|HasCategory| (-638) (QUOTE (-982))) (|HasCategory| (-638) (QUOTE (-1108)))) (|HasCategory| (-638) (QUOTE (-982))) (-3262 (|HasCategory| (-638) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-638) (QUOTE (-339)))) (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840))) (-3262 (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-339)))) (-3262 (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-515)))) (-12 (|HasCategory| (-638) (QUOTE (-211))) (|HasCategory| (-638) (QUOTE (-339)))) (-12 (|HasCategory| (-638) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-638) (QUOTE (-339)))) (|HasCategory| (-638) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-638) (QUOTE (-786))) (|HasCategory| (-638) (QUOTE (-515))) (|HasAttribute| (-638) (QUOTE -4243)) (|HasAttribute| (-638) (QUOTE -4240)) (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-134)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-325))))) +((-4241 . T) (-4246 |has| (-638) (-339)) (-4240 |has| (-638) (-339)) (-4115 . T) (-4247 |has| (-638) (-6 -4247)) (-4244 |has| (-638) (-6 -4244)) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| (-638) (QUOTE (-136))) (|HasCategory| (-638) (QUOTE (-134))) (|HasCategory| (-638) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-638) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-638) (QUOTE (-344))) (|HasCategory| (-638) (QUOTE (-339))) (|HasCategory| (-638) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-638) (QUOTE (-211))) (-3172 (|HasCategory| (-638) (QUOTE (-339))) (|HasCategory| (-638) (QUOTE (-325)))) (|HasCategory| (-638) (QUOTE (-325))) (|HasCategory| (-638) (LIST (QUOTE -263) (QUOTE (-638)) (QUOTE (-638)))) (|HasCategory| (-638) (LIST (QUOTE -286) (QUOTE (-638)))) (|HasCategory| (-638) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-638)))) (|HasCategory| (-638) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-638) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-638) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-638) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (-3172 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-339))) (|HasCategory| (-638) (QUOTE (-325)))) (|HasCategory| (-638) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-638) (QUOTE (-949))) (|HasCategory| (-638) (QUOTE (-1109))) (-12 (|HasCategory| (-638) (QUOTE (-930))) (|HasCategory| (-638) (QUOTE (-1109)))) (-3172 (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-339))) (-12 (|HasCategory| (-638) (QUOTE (-325))) (|HasCategory| (-638) (QUOTE (-840))))) (-3172 (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (-12 (|HasCategory| (-638) (QUOTE (-339))) (|HasCategory| (-638) (QUOTE (-840)))) (-12 (|HasCategory| (-638) (QUOTE (-325))) (|HasCategory| (-638) (QUOTE (-840))))) (|HasCategory| (-638) (QUOTE (-508))) (-12 (|HasCategory| (-638) (QUOTE (-982))) (|HasCategory| (-638) (QUOTE (-1109)))) (|HasCategory| (-638) (QUOTE (-982))) (-3172 (|HasCategory| (-638) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-638) (QUOTE (-339)))) (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840))) (-3172 (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-339)))) (-3172 (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-515)))) (-12 (|HasCategory| (-638) (QUOTE (-211))) (|HasCategory| (-638) (QUOTE (-339)))) (-12 (|HasCategory| (-638) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-638) (QUOTE (-339)))) (|HasCategory| (-638) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-638) (QUOTE (-786))) (|HasCategory| (-638) (QUOTE (-515))) (|HasAttribute| (-638) (QUOTE -4247)) (|HasAttribute| (-638) (QUOTE -4244)) (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-134)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-325))))) (-634 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4245 . T) (-3656 . T)) +((-4249 . T) (-4069 . T)) NIL (-635 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) @@ -2476,13 +2476,13 @@ NIL ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-637 OV E -2315 PG) +(-637 OV E -3539 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-638) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2562 . T) (-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4108 . T) (-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-639 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2490,7 +2490,7 @@ NIL NIL (-640) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4243 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4247 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-641 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) @@ -2512,7 +2512,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-646 S -2862 I) +(-646 S -2909 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2521,8 +2521,8 @@ NIL NIL NIL (-648 R) -((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\^= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) +((-4242 . T) (-4243 . T) (-4245 . T)) NIL (-649 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) @@ -2532,25 +2532,25 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-651 R |Mod| -2227 -2178 |exactQuo|) +(-651 R |Mod| -1327 -3780 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-652 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4240 |has| |#1| (-339)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-325))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4244 |has| |#1| (-339)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-325))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasAttribute| |#1| (QUOTE -4246)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) (-653 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL (-654 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) (-4241 . T)) +((-4243 |has| |#1| (-158)) (-4242 |has| |#1| (-158)) (-4245 . T)) ((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136)))) -(-655 R |Mod| -2227 -2178 |exactQuo|) +(-655 R |Mod| -1327 -3780 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4241 . T)) +((-4245 . T)) NIL (-656 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) @@ -2558,11 +2558,11 @@ NIL NIL (-657 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4239 . T) (-4238 . T)) +((-4243 . T) (-4242 . T)) NIL -(-658 -2315) +(-658 -3539) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4241 . T)) +((-4245 . T)) NIL (-659 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) @@ -2586,7 +2586,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-325))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-344)))) (-664 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4237 |has| |#1| (-339)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 |has| |#1| (-339)) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-665 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) @@ -2596,7 +2596,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-667 -2315 UP) +(-667 -3539 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2614,8 +2614,8 @@ NIL NIL (-671 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4246 "*") |has| |#2| (-158)) (-4237 |has| |#2| (-515)) (-4242 |has| |#2| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#2| (QUOTE (-840))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#2| (QUOTE -4242)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) +(((-4250 "*") |has| |#2| (-158)) (-4241 |has| |#2| (-515)) (-4246 |has| |#2| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#2| (QUOTE (-840))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#2| (QUOTE -4246)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) (-672 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -2630,15 +2630,15 @@ NIL NIL (-675 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) (-4241 . T)) +((-4243 |has| |#1| (-158)) (-4242 |has| |#1| (-158)) (-4245 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-786)))) (-676 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4234 . T) (-4245 . T) (-3656 . T)) +((-4238 . T) (-4249 . T) (-4069 . T)) NIL (-677 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4244 . T) (-4234 . T) (-4245 . T)) +((-4248 . T) (-4238 . T) (-4249 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-678) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) @@ -2650,7 +2650,7 @@ NIL NIL (-680 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4239 . T) (-4238 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4243 . T) (-4242 . T) (-4245 . T)) NIL (-681 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) @@ -2666,7 +2666,7 @@ NIL NIL (-684 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4239 . T) (-4238 . T)) +((-4243 . T) (-4242 . T)) NIL (-685) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) @@ -2748,15 +2748,15 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-705 -2315) +(-705 -3539) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-706 P -2315) +(-706 P -3539) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-707 UP -2315) +(-707 UP -3539) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -2770,9 +2770,9 @@ NIL NIL (-710) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4246 "*") . T)) +(((-4250 "*") . T)) NIL -(-711 R -2315) +(-711 R -3539) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -2792,7 +2792,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-716 -2315 |ExtF| |SUEx| |ExtP| |n|) +(-716 -3539 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -2806,23 +2806,23 @@ NIL NIL (-719 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-840))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (-3900 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (-3900 (|HasCategory| |#1| (QUOTE (-508)))) (-3900 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (-3900 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-523))))) (-3900 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (-3900 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-523))))))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087))))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (-4179 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (-4179 (|HasCategory| |#1| (QUOTE (-508)))) (-4179 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (-4179 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-523))))) (-4179 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (-4179 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-523))))))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4246)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) (-720 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL (-721 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4240 |has| |#1| (-339)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4244 |has| |#1| (-339)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasAttribute| |#1| (QUOTE -4246)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) (-722 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-723 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4245 . T) (-4244 . T) (-3656 . T)) +((-4249 . T) (-4248 . T) (-4069 . T)) NIL (-724 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) @@ -2874,25 +2874,25 @@ NIL ((|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-982))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-344)))) (-736 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-737 -3262 R OS S) +(-737 -3172 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL (-738 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (-3262 (|HasCategory| (-927 |#1|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (|HasCategory| (-927 |#1|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| (-927 |#1|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-927 |#1|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) +((-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (-3172 (|HasCategory| (-927 |#1|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3172 (|HasCategory| (-927 |#1|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| (-927 |#1|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-927 |#1|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (-739) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-740 R -2315 L) +(-740 R -3539 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-741 R -2315) +(-741 R -3539) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -2900,7 +2900,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-743 R -2315) +(-743 R -3539) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -2908,11 +2908,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-745 -2315 UP UPUP R) +(-745 -3539 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-746 -2315 UP L LQ) +(-746 -3539 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -2920,41 +2920,41 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-748 -2315 UP L LQ) +(-748 -3539 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-749 -2315 UP) +(-749 -3539 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-750 -2315 L UP A LO) +(-750 -3539 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-751 -2315 UP) +(-751 -3539 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-752 -2315 LO) +(-752 -3539 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-753 -2315 LODO) +(-753 -3539 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-754 -1346 S |f|) +(-754 -1996 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4238 |has| |#2| (-973)) (-4239 |has| |#2| (-973)) (-4241 |has| |#2| (-6 -4241)) ((-4246 "*") |has| |#2| (-158)) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-732))) (-3262 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784)))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-158)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016))))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (|HasCategory| |#2| (QUOTE (-666))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-3262 (|HasCategory| |#2| (QUOTE (-973))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasAttribute| |#2| (QUOTE -4241)) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4242 |has| |#2| (-973)) (-4243 |has| |#2| (-973)) (-4245 |has| |#2| (-6 -4245)) ((-4250 "*") |has| |#2| (-158)) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3172 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (QUOTE (-339))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-732))) (-3172 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784)))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-158))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-158)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016))))) (-3172 (-12 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (|HasCategory| |#2| (QUOTE (-666))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-3172 (|HasCategory| |#2| (QUOTE (-973))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasAttribute| |#2| (QUOTE -4245)) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (-755 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-840))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4246)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) (-756 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4246 "*") |has| |#2| (-339)) (-4237 |has| |#2| (-339)) (-4242 |has| |#2| (-339)) (-4236 |has| |#2| (-339)) (-4241 . T) (-4239 . T) (-4238 . T)) +(((-4250 "*") |has| |#2| (-339)) (-4241 |has| |#2| (-339)) (-4246 |has| |#2| (-339)) (-4240 |has| |#2| (-339)) (-4245 . T) (-4243 . T) (-4242 . T)) ((|HasCategory| |#2| (QUOTE (-339)))) (-757 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) @@ -2966,7 +2966,7 @@ NIL NIL (-759) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-760) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) @@ -2994,7 +2994,7 @@ NIL NIL (-766 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) ((|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-211)))) (-767) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) @@ -3006,7 +3006,7 @@ NIL NIL (-769 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4244 . T) (-4234 . T) (-4245 . T) (-3656 . T)) +((-4248 . T) (-4238 . T) (-4249 . T) (-4069 . T)) NIL (-770) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) @@ -3018,11 +3018,11 @@ NIL NIL (-772 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4241 |has| |#1| (-784))) -((|HasCategory| |#1| (QUOTE (-784))) (-3262 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-784)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-508))) (-3262 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-21)))) +((-4245 |has| |#1| (-784))) +((|HasCategory| |#1| (QUOTE (-784))) (-3172 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-784)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-508))) (-3172 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-21)))) (-773 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) (-4241 . T)) +((-4243 |has| |#1| (-158)) (-4242 |has| |#1| (-158)) (-4245 . T)) ((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136)))) (-774) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) @@ -3046,13 +3046,13 @@ NIL NIL (-779 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4241 |has| |#1| (-784))) -((|HasCategory| |#1| (QUOTE (-784))) (-3262 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-784)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-508))) (-3262 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-21)))) +((-4245 |has| |#1| (-784))) +((|HasCategory| |#1| (QUOTE (-784))) (-3172 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-784)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-508))) (-3172 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-21)))) (-780) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-781 -1346 S) +(-781 -1996 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3066,7 +3066,7 @@ NIL NIL (-784) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4241 . T)) +((-4245 . T)) NIL (-785 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) @@ -3077,24 +3077,24 @@ NIL NIL NIL (-787 S R) -((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) +((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL ((|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158)))) (-788 R) -((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) +((-4242 . T) (-4243 . T) (-4245 . T)) NIL (-789 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) -(-790 R |sigma| -2594) +(-790 R |sigma| -1566) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) ((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-339)))) -(-791 |x| R |sigma| -2594) +(-791 |x| R |sigma| -1566) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) ((|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-339)))) (-792 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) @@ -3105,7 +3105,7 @@ NIL NIL NIL (-794) -((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (^= (($ $ $) "\\spad{f ^= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) +((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL (-795) @@ -3118,7 +3118,7 @@ NIL NIL (-797 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) (-4241 . T)) +((-4243 |has| |#1| (-158)) (-4242 |has| |#1| (-158)) (-4245 . T)) ((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339)))) (-798 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) @@ -3130,24 +3130,24 @@ NIL NIL (-800 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-801 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-802 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| (-801 |#1|) (QUOTE (-840))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-801 |#1|) (QUOTE (-134))) (|HasCategory| (-801 |#1|) (QUOTE (-136))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-801 |#1|) (QUOTE (-949))) (|HasCategory| (-801 |#1|) (QUOTE (-759))) (-3262 (|HasCategory| (-801 |#1|) (QUOTE (-759))) (|HasCategory| (-801 |#1|) (QUOTE (-786)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-801 |#1|) (QUOTE (-1063))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-801 |#1|) (QUOTE (-211))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -263) (LIST (QUOTE -801) (|devaluate| |#1|)) (LIST (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| (-801 |#1|) (QUOTE (-284))) (|HasCategory| (-801 |#1|) (QUOTE (-508))) (|HasCategory| (-801 |#1|) (QUOTE (-786))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-801 |#1|) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-801 |#1|) (QUOTE (-840)))) (|HasCategory| (-801 |#1|) (QUOTE (-134))))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| (-801 |#1|) (QUOTE (-840))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-801 |#1|) (QUOTE (-134))) (|HasCategory| (-801 |#1|) (QUOTE (-136))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-801 |#1|) (QUOTE (-949))) (|HasCategory| (-801 |#1|) (QUOTE (-759))) (-3172 (|HasCategory| (-801 |#1|) (QUOTE (-759))) (|HasCategory| (-801 |#1|) (QUOTE (-786)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-801 |#1|) (QUOTE (-1063))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-801 |#1|) (QUOTE (-211))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -263) (LIST (QUOTE -801) (|devaluate| |#1|)) (LIST (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| (-801 |#1|) (QUOTE (-284))) (|HasCategory| (-801 |#1|) (QUOTE (-508))) (|HasCategory| (-801 |#1|) (QUOTE (-786))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-801 |#1|) (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-801 |#1|) (QUOTE (-840)))) (|HasCategory| (-801 |#1|) (QUOTE (-134))))) (-803 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-949))) (|HasCategory| |#2| (QUOTE (-759))) (-3262 (|HasCategory| |#2| (QUOTE (-759))) (|HasCategory| |#2| (QUOTE (-786)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -263) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-786))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-949))) (|HasCategory| |#2| (QUOTE (-759))) (-3172 (|HasCategory| |#2| (QUOTE (-759))) (|HasCategory| |#2| (QUOTE (-786)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -263) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-786))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) (-804 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))))) (-805) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL @@ -3203,7 +3203,7 @@ NIL (-818 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3900 (|HasCategory| |#2| (QUOTE (-973)))) (-3900 (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (-3900 (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087))))) +((-12 (-4179 (|HasCategory| |#2| (QUOTE (-973)))) (-4179 (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (-4179 (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087))))) (-819 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL @@ -3212,7 +3212,7 @@ NIL ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-821 R -2862) +(-821 R -2909) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL @@ -3236,7 +3236,7 @@ NIL ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-827 UP -2315) +(-827 UP -3539) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL @@ -3254,19 +3254,19 @@ NIL NIL (-831 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4241 . T)) +((-4245 . T)) NIL (-832 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-833 |n| R) -((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ^= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) +((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL (-834 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4241 . T)) +((-4245 . T)) NIL (-835 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) @@ -3274,8 +3274,8 @@ NIL NIL (-836 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4241 . T)) -((-3262 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-786)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-786)))) +((-4245 . T)) +((-3172 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-786)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-786)))) (-837 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL @@ -3290,13 +3290,13 @@ NIL ((|HasCategory| |#1| (QUOTE (-134)))) (-840) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-841 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) ((|HasCategory| $ (QUOTE (-136))) (|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-344)))) -(-842 R0 -2315 UP UPUP R) +(-842 R0 -3539 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL @@ -3310,7 +3310,7 @@ NIL NIL (-845 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-846 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) @@ -3324,7 +3324,7 @@ NIL ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-849 -2315) +(-849 -3539) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL @@ -3334,22 +3334,22 @@ NIL NIL (-851) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-852) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4246 "*") . T)) +(((-4250 "*") . T)) NIL -(-853 -2315 P) +(-853 -3539 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-854 |xx| -2315) +(-854 |xx| -3539) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL (-855 R |Var| |Expon| GR) -((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) +((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL (-856 S) @@ -3368,7 +3368,7 @@ NIL ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-860 R -2315) +(-860 R -3539) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL @@ -3380,7 +3380,7 @@ NIL ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-863 S R -2315) +(-863 S R -3539) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL @@ -3400,11 +3400,11 @@ NIL ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -817) (|devaluate| |#1|)))) -(-868 R -2315 -2862) +(-868 R -3539 -2909) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-869 -2862) +(-869 -2909) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL @@ -3426,8 +3426,8 @@ NIL NIL (-874 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-875 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3447,12 +3447,12 @@ NIL (-879 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-840))) (|HasAttribute| |#2| (QUOTE -4242)) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#4| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#4| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#4| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#4| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-786)))) +((|HasCategory| |#2| (QUOTE (-840))) (|HasAttribute| |#2| (QUOTE -4246)) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#4| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#4| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#4| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#4| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-786)))) (-880 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) NIL -(-881 E V R P -2315) +(-881 E V R P -3539) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL @@ -3462,9 +3462,9 @@ NIL NIL (-883 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-840))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) -(-884 E V R P -2315) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4246)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-884 E V R P -3539) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-427)))) @@ -3482,13 +3482,13 @@ NIL NIL (-888 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-889) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-890 -2315) +(-890 -3539) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL @@ -3502,12 +3502,12 @@ NIL NIL (-893 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-124)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-6 -4246)) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-124)))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4246))) (-894 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4241 -12 (|has| |#2| (-448)) (|has| |#1| (-448)))) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-786))))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#2| (QUOTE (-448)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#2| (QUOTE (-448)))) (-12 (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#2| (QUOTE (-666))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-344)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#2| (QUOTE (-448)))) (-12 (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#2| (QUOTE (-666)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#2| (QUOTE (-666)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-786))))) +((-4245 -12 (|has| |#2| (-448)) (|has| |#1| (-448)))) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-786))))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#2| (QUOTE (-448)))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#2| (QUOTE (-448)))) (-12 (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#2| (QUOTE (-666))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-344)))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#2| (QUOTE (-448)))) (-12 (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#2| (QUOTE (-666)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#2| (QUOTE (-666)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-786))))) (-895) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL @@ -3522,7 +3522,7 @@ NIL NIL (-898 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4244 . T) (-4245 . T) (-3656 . T)) +((-4248 . T) (-4249 . T) (-4069 . T)) NIL (-899 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) @@ -3538,7 +3538,7 @@ NIL NIL (-902 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-903) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) @@ -3550,7 +3550,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-515)))) (-905 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4244 . T) (-3656 . T)) +((-4248 . T) (-4069 . T)) NIL (-906 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) @@ -3566,7 +3566,7 @@ NIL NIL (-909 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4245 . T) (-4244 . T) (-3656 . T)) +((-4249 . T) (-4248 . T) (-4069 . T)) NIL (-910 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) @@ -3584,7 +3584,7 @@ NIL ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-914 K R UP -2315) +(-914 K R UP -3539) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL @@ -3593,7 +3593,7 @@ NIL NIL NIL (-916 R |Var| |Expon| |Dpoly|) -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-284))))) (-917 R E V P TS) @@ -3614,7 +3614,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-949))) (|HasCategory| |#2| (QUOTE (-759))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-1063)))) (-921 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-3656 . T) (-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4069 . T) (-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-922 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) @@ -3622,7 +3622,7 @@ NIL NIL (-923 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4244 . T) (-4245 . T) (-3656 . T)) +((-4248 . T) (-4249 . T) (-4069 . T)) NIL (-924 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) @@ -3630,7 +3630,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-982))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-267)))) (-925 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4237 |has| |#1| (-267)) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 |has| |#1| (-267)) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-926 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) @@ -3638,12 +3638,12 @@ NIL NIL (-927 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4237 |has| |#1| (-267)) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-267))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-267))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-508))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339))))) +((-4241 |has| |#1| (-267)) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (|HasCategory| |#1| (QUOTE (-267))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-267))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-508))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339))))) (-928 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-929 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL @@ -3652,14 +3652,14 @@ NIL ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-931 -2315 UP UPUP |radicnd| |n|) +(-931 -3539 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4237 |has| (-383 |#2|) (-339)) (-4242 |has| (-383 |#2|) (-339)) (-4236 |has| (-383 |#2|) (-339)) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| (-383 |#2|) (QUOTE (-134))) (|HasCategory| (-383 |#2|) (QUOTE (-136))) (|HasCategory| (-383 |#2|) (QUOTE (-325))) (-3262 (|HasCategory| (-383 |#2|) (QUOTE (-339))) (|HasCategory| (-383 |#2|) (QUOTE (-325)))) (|HasCategory| (-383 |#2|) (QUOTE (-339))) (|HasCategory| (-383 |#2|) (QUOTE (-344))) (-3262 (-12 (|HasCategory| (-383 |#2|) (QUOTE (-211))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (|HasCategory| (-383 |#2|) (QUOTE (-325)))) (-3262 (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-325))))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344))) (-3262 (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (QUOTE (-211))) (|HasCategory| (-383 |#2|) (QUOTE (-339))))) +((-4241 |has| (-383 |#2|) (-339)) (-4246 |has| (-383 |#2|) (-339)) (-4240 |has| (-383 |#2|) (-339)) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| (-383 |#2|) (QUOTE (-134))) (|HasCategory| (-383 |#2|) (QUOTE (-136))) (|HasCategory| (-383 |#2|) (QUOTE (-325))) (-3172 (|HasCategory| (-383 |#2|) (QUOTE (-339))) (|HasCategory| (-383 |#2|) (QUOTE (-325)))) (|HasCategory| (-383 |#2|) (QUOTE (-339))) (|HasCategory| (-383 |#2|) (QUOTE (-344))) (-3172 (-12 (|HasCategory| (-383 |#2|) (QUOTE (-211))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (|HasCategory| (-383 |#2|) (QUOTE (-325)))) (-3172 (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-325))))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344))) (-3172 (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (QUOTE (-211))) (|HasCategory| (-383 |#2|) (QUOTE (-339))))) (-932 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| (-523) (QUOTE (-840))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-523) (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-136))) (|HasCategory| (-523) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-949))) (|HasCategory| (-523) (QUOTE (-759))) (-3262 (|HasCategory| (-523) (QUOTE (-759))) (|HasCategory| (-523) (QUOTE (-786)))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-1063))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-523) (QUOTE (-211))) (|HasCategory| (-523) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-523) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -286) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -263) (QUOTE (-523)) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-284))) (|HasCategory| (-523) (QUOTE (-508))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-523) (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (|HasCategory| (-523) (QUOTE (-134))))) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| (-523) (QUOTE (-840))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-523) (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-136))) (|HasCategory| (-523) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-949))) (|HasCategory| (-523) (QUOTE (-759))) (-3172 (|HasCategory| (-523) (QUOTE (-759))) (|HasCategory| (-523) (QUOTE (-786)))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-1063))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-523) (QUOTE (-211))) (|HasCategory| (-523) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-523) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -286) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -263) (QUOTE (-523)) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-284))) (|HasCategory| (-523) (QUOTE (-508))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-523) (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (|HasCategory| (-523) (QUOTE (-134))))) (-933) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL @@ -3679,10 +3679,10 @@ NIL (-937 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4245)) (|HasCategory| |#2| (QUOTE (-1016)))) +((|HasAttribute| |#1| (QUOTE -4249)) (|HasCategory| |#2| (QUOTE (-1016)))) (-938 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-3656 . T)) +((-4069 . T)) NIL (-939 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) @@ -3690,21 +3690,21 @@ NIL NIL (-940) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4237 . T) (-4242 . T) (-4236 . T) (-4239 . T) (-4238 . T) ((-4246 "*") . T) (-4241 . T)) +((-4241 . T) (-4246 . T) (-4240 . T) (-4243 . T) (-4242 . T) ((-4250 "*") . T) (-4245 . T)) NIL -(-941 R -2315) +(-941 R -3539) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-942 R -2315) +(-942 R -3539) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-943 -2315 UP) +(-943 -3539 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-944 -2315 UP) +(-944 -3539 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL @@ -3734,9 +3734,9 @@ NIL NIL (-951 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4237 . T) (-4242 . T) (-4236 . T) (-4239 . T) (-4238 . T) ((-4246 "*") . T) (-4241 . T)) -((-3262 (|HasCategory| (-383 (-523)) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-383 (-523)) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 (-523)) (LIST (QUOTE -964) (QUOTE (-523))))) -(-952 -2315 L) +((-4241 . T) (-4246 . T) (-4240 . T) (-4243 . T) (-4242 . T) ((-4250 "*") . T) (-4245 . T)) +((-3172 (|HasCategory| (-383 (-523)) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-383 (-523)) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 (-523)) (LIST (QUOTE -964) (QUOTE (-523))))) +(-952 -3539 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL @@ -3746,12 +3746,12 @@ NIL ((|HasCategory| |#1| (QUOTE (-1016)))) (-954 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) (-955 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4246 "*")))) +((|HasAttribute| |#1| (QUOTE (-4250 "*")))) (-956 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL @@ -3772,14 +3772,14 @@ NIL ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-961 -2315 |Expon| |VarSet| |FPol| |LFPol|) +(-961 -3539 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-962) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (QUOTE (-1087))) (LIST (QUOTE |:|) (QUOTE -2433) (QUOTE (-51))))))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-51) (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -286) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-1087) (QUOTE (-786))) (|HasCategory| (-51) (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (QUOTE (-1087))) (LIST (QUOTE |:|) (QUOTE -2482) (QUOTE (-51))))))) (-3172 (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (QUOTE (-1016))) (|HasCategory| (-51) (QUOTE (-1016)))) (-3172 (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -286) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (QUOTE (-1016))) (|HasCategory| (-1087) (QUOTE (-786))) (|HasCategory| (-51) (QUOTE (-1016))) (-3172 (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (LIST (QUOTE -563) (QUOTE (-794))))) (-963 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL @@ -3810,7 +3810,7 @@ NIL NIL (-970 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) ((-12 (|HasCategory| (-719 |#1| (-796 |#2|)) (QUOTE (-1016))) (|HasCategory| (-719 |#1| (-796 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -719) (|devaluate| |#1|) (LIST (QUOTE -796) (|devaluate| |#2|)))))) (|HasCategory| (-719 |#1| (-796 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-719 |#1| (-796 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| (-796 |#2|) (QUOTE (-344))) (|HasCategory| (-719 |#1| (-796 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) (-971) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) @@ -3822,9 +3822,9 @@ NIL NIL (-973) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4241 . T)) +((-4245 . T)) NIL -(-974 |xx| -2315) +(-974 |xx| -3539) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL @@ -3834,12 +3834,12 @@ NIL ((|HasCategory| |#4| (QUOTE (-284))) (|HasCategory| |#4| (QUOTE (-339))) (|HasCategory| |#4| (QUOTE (-515))) (|HasCategory| |#4| (QUOTE (-158)))) (-976 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4244 . T) (-3656 . T) (-4239 . T) (-4238 . T)) +((-4248 . T) (-4069 . T) (-4243 . T) (-4242 . T)) NIL (-977 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4244 . T) (-4239 . T) (-4238 . T)) -((-3262 (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339)))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-284))) (|HasCategory| |#3| (QUOTE (-515))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-794)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))))) +((-4248 . T) (-4243 . T) (-4242 . T)) +((-3172 (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339)))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-284))) (|HasCategory| |#3| (QUOTE (-515))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-794)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))))) (-978 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL @@ -3858,7 +3858,7 @@ NIL NIL (-982) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-983 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) @@ -3866,19 +3866,19 @@ NIL NIL (-984) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4232 . T) (-4236 . T) (-4231 . T) (-4242 . T) (-4243 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4236 . T) (-4240 . T) (-4235 . T) (-4246 . T) (-4247 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-985) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (QUOTE (-1087))) (LIST (QUOTE |:|) (QUOTE -2433) (QUOTE (-51))))))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-51) (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -286) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-1087) (QUOTE (-786))) (|HasCategory| (-51) (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (QUOTE (-1087))) (LIST (QUOTE |:|) (QUOTE -2482) (QUOTE (-51))))))) (-3172 (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (QUOTE (-1016))) (|HasCategory| (-51) (QUOTE (-1016)))) (-3172 (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -286) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (QUOTE (-1016))) (|HasCategory| (-1087) (QUOTE (-786))) (|HasCategory| (-51) (QUOTE (-1016))) (-3172 (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (LIST (QUOTE -563) (QUOTE (-794))))) (-986 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL ((|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-1087))))) (-987 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) NIL (-988 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) @@ -3898,7 +3898,7 @@ NIL NIL (-992 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4245 . T) (-4244 . T) (-3656 . T)) +((-4249 . T) (-4248 . T) (-4069 . T)) NIL (-993 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) @@ -3908,11 +3908,11 @@ NIL ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-995 |Base| R -2315) +(-995 |Base| R -3539) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-996 |Base| R -2315) +(-996 |Base| R -3539) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL @@ -3926,8 +3926,8 @@ NIL NIL (-999 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4237 |has| |#1| (-339)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-325))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-325)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087))))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339))))) +((-4241 |has| |#1| (-339)) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-325))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-325)))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087))))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339))))) (-1000 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -3950,8 +3950,8 @@ NIL NIL (-1005 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-840))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4246)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) (-1006 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -3970,7 +3970,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-1016)))) (-1010 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-3656 . T)) +((-4069 . T)) NIL (-1011 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) @@ -3978,7 +3978,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1012 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-3656 . T)) +((-4069 . T)) NIL (-1013 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) @@ -3986,7 +3986,7 @@ NIL NIL (-1014 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4234 . T) (-3656 . T)) +((-4238 . T) (-4069 . T)) NIL (-1015 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) @@ -4002,8 +4002,8 @@ NIL NIL (-1018 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4244 . T) (-4234 . T) (-4245 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4238 . T) (-4249 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-1019 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL @@ -4030,7 +4030,7 @@ NIL NIL (-1025 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4245 . T) (-4244 . T) (-3656 . T)) +((-4249 . T) (-4248 . T) (-4069 . T)) NIL (-1026) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) @@ -4046,13 +4046,13 @@ NIL NIL (-1029 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4238 |has| |#3| (-973)) (-4239 |has| |#3| (-973)) (-4241 |has| |#3| (-6 -4241)) ((-4246 "*") |has| |#3| (-158)) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3262 (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#3| (QUOTE (-339))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339)))) (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (QUOTE (-732))) (-3262 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-784)))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-158))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-973)))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (QUOTE (-1016)))) (-3262 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3262 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3262 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3262 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-124)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-158)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-211)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-339)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016))))) (-3262 (-12 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (|HasCategory| |#3| (QUOTE (-666))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-3262 (|HasCategory| |#3| (QUOTE (-973))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasAttribute| |#3| (QUOTE -4241)) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4242 |has| |#3| (-973)) (-4243 |has| |#3| (-973)) (-4245 |has| |#3| (-6 -4245)) ((-4250 "*") |has| |#3| (-158)) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3172 (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#3| (QUOTE (-339))) (-3172 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3172 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339)))) (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (QUOTE (-732))) (-3172 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-784)))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-158))) (-3172 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-973)))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3172 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (QUOTE (-1016)))) (-3172 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3172 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3172 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3172 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-124)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-158)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-211)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-339)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016))))) (-3172 (-12 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (|HasCategory| |#3| (QUOTE (-666))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-3172 (|HasCategory| |#3| (QUOTE (-973))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasAttribute| |#3| (QUOTE -4245)) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-794))))) (-1030 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-427)))) -(-1031 R -2315) +(-1031 R -3539) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL @@ -4066,19 +4066,19 @@ NIL NIL (-1034) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4232 . T) (-4236 . T) (-4231 . T) (-4242 . T) (-4243 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4236 . T) (-4240 . T) (-4235 . T) (-4246 . T) (-4247 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-1035 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4244 . T) (-4245 . T) (-3656 . T)) +((-4248 . T) (-4249 . T) (-4069 . T)) NIL (-1036 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-339))) (|HasAttribute| |#3| (QUOTE (-4246 "*"))) (|HasCategory| |#3| (QUOTE (-158)))) +((|HasCategory| |#3| (QUOTE (-339))) (|HasAttribute| |#3| (QUOTE (-4250 "*"))) (|HasCategory| |#3| (QUOTE (-158)))) (-1037 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-3656 . T) (-4244 . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4069 . T) (-4248 . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL (-1038 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) @@ -4086,17 +4086,17 @@ NIL NIL (-1039 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-840))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4246)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) (-1040 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-339)))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-339)))) (-1041 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4245 . T) (-4244 . T) (-3656 . T)) +((-4249 . T) (-4248 . T) (-4069 . T)) NIL -(-1042 UP -2315) +(-1042 UP -3539) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL @@ -4142,19 +4142,19 @@ NIL NIL (-1053 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| (-1052 |#1| |#2|) (LIST (QUOTE -286) (LIST (QUOTE -1052) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1016)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1016))) (-3262 (|HasCategory| (-1052 |#1| |#2|) (LIST (QUOTE -563) (QUOTE (-794)))) (-12 (|HasCategory| (-1052 |#1| |#2|) (LIST (QUOTE -286) (LIST (QUOTE -1052) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1016))))) (|HasCategory| (-1052 |#1| |#2|) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| (-1052 |#1| |#2|) (LIST (QUOTE -286) (LIST (QUOTE -1052) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1016)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1016))) (-3172 (|HasCategory| (-1052 |#1| |#2|) (LIST (QUOTE -563) (QUOTE (-794)))) (-12 (|HasCategory| (-1052 |#1| |#2|) (LIST (QUOTE -286) (LIST (QUOTE -1052) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1016))))) (|HasCategory| (-1052 |#1| |#2|) (LIST (QUOTE -563) (QUOTE (-794))))) (-1054 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}."))) -((-4241 . T) (-4233 |has| |#2| (-6 (-4246 "*"))) (-4244 . T) (-4238 . T) (-4239 . T)) -((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasAttribute| |#2| (QUOTE (-4246 "*"))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (-3262 (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasAttribute| |#2| (QUOTE (-4246 "*"))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-158)))) +((-4245 . T) (-4237 |has| |#2| (-6 (-4250 "*"))) (-4248 . T) (-4242 . T) (-4243 . T)) +((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasAttribute| |#2| (QUOTE (-4250 "*"))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (-3172 (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-339))) (-3172 (|HasAttribute| |#2| (QUOTE (-4250 "*"))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-158)))) (-1055 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL (-1056) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4245 . T) (-4244 . T) (-3656 . T)) +((-4249 . T) (-4248 . T) (-4069 . T)) NIL (-1057 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) @@ -4162,24 +4162,24 @@ NIL NIL (-1058 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) (-1059 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-1060 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL (-1061 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-3656 . T)) +((-4069 . T)) NIL (-1062 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4245 . T)) -((-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-786))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T)) +((-12 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2482) (|devaluate| |#2|)))))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-786))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) (-1063) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL @@ -4202,20 +4202,20 @@ NIL NIL (-1068 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4245 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-1069) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4245 . T) (-4244 . T) (-3656 . T)) +((-4249 . T) (-4248 . T) (-4069 . T)) NIL (-1070) NIL -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133)))))) (|HasCategory| (-133) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-133) (QUOTE (-1016))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (|HasCategory| (-133) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133)))))) (|HasCategory| (-133) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-133) (QUOTE (-1016))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (|HasCategory| (-133) (LIST (QUOTE -563) (QUOTE (-794))))) (-1071 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#1|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (QUOTE (-1016))) (|HasCategory| (-1070) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -563) (QUOTE (-794))))) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2482) (|devaluate| |#1|)))))) (-3172 (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-1016)))) (-3172 (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (QUOTE (-1016))) (|HasCategory| (-1070) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (LIST (QUOTE -563) (QUOTE (-794))))) (-1072 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL @@ -4242,9 +4242,9 @@ NIL NIL (-1078 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4246 "*") -3262 (-4099 (|has| |#1| (-339)) (|has| (-1085 |#1| |#2| |#3|) (-759))) (|has| |#1| (-158)) (-4099 (|has| |#1| (-339)) (|has| (-1085 |#1| |#2| |#3|) (-840)))) (-4237 -3262 (-4099 (|has| |#1| (-339)) (|has| (-1085 |#1| |#2| |#3|) (-759))) (|has| |#1| (-515)) (-4099 (|has| |#1| (-339)) (|has| (-1085 |#1| |#2| |#3|) (-840)))) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -263) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|)))))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (|HasCategory| (-523) (QUOTE (-1028))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339))))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -263) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-134))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-158)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-134))))) -(-1079 R -2315) +(((-4250 "*") -3172 (-3147 (|has| |#1| (-339)) (|has| (-1085 |#1| |#2| |#3|) (-759))) (|has| |#1| (-158)) (-3147 (|has| |#1| (-339)) (|has| (-1085 |#1| |#2| |#3|) (-840)))) (-4241 -3172 (-3147 (|has| |#1| (-339)) (|has| (-1085 |#1| |#2| |#3|) (-759))) (|has| |#1| (-515)) (-3147 (|has| |#1| (-339)) (|has| (-1085 |#1| |#2| |#3|) (-840)))) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -263) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3172 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3172 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|)))))) (-3172 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (|HasCategory| (-523) (QUOTE (-1028))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-339)))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-3172 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339))))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -263) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -1691) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -2814) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1292) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-134))) (-3172 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3172 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-158)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-1079 R -3539) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL @@ -4262,16 +4262,16 @@ NIL NIL (-1083 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4240 |has| |#1| (-339)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4244 |has| |#1| (-339)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasAttribute| |#1| (QUOTE -4246)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) (-1084 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1691) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -2814) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1292) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) (-1085 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-710)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-710)) (|devaluate| |#1|)))) (|HasCategory| (-710) (QUOTE (-1028))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-710))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-710))))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-710)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-710)) (|devaluate| |#1|)))) (|HasCategory| (-710) (QUOTE (-1028))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-710))))) (|HasSignature| |#1| (LIST (QUOTE -1691) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-710))))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -2814) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1292) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) (-1086) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL @@ -4286,8 +4286,8 @@ NIL NIL (-1089 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| (-900) (QUOTE (-124))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242))) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-6 -4246)) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| (-900) (QUOTE (-124))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4246))) (-1090) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL @@ -4304,409 +4304,413 @@ NIL ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1094 S) -((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) +(-1094) +((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL (-1095 S) +((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) +NIL +NIL +(-1096 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1096 |Key| |Entry|) +(-1097 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4244 . T) (-4245 . T)) -((-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) -(-1097 R) +((-4248 . T) (-4249 . T)) +((-12 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3772) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2482) (|devaluate| |#2|)))))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (-3172 (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +(-1098 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1098 S |Key| |Entry|) +(-1099 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1099 |Key| |Entry|) +(-1100 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4245 . T) (-3656 . T)) +((-4249 . T) (-4069 . T)) NIL -(-1100 |Key| |Entry|) +(-1101 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1101) +(-1102) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1102 S) +(-1103 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1103) +(-1104) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1104) +(-1105) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1105 R) +(-1106 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1106) +(-1107) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1107 S) +(-1108 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1108) +(-1109) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1109 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4245 . T) (-4244 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-1110 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4249 . T) (-4248 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-1111 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1111) +(-1112) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1112 R -2315) +(-1113 R -3539) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1113 R |Row| |Col| M) +(-1114 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1114 R -2315) +(-1115 R -3539) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -817) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -817) (|devaluate| |#1|))))) -(-1115 S R E V P) +(-1116 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-344)))) -(-1116 R E V P) +(-1117 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4245 . T) (-4244 . T) (-3656 . T)) +((-4249 . T) (-4248 . T) (-4069 . T)) NIL -(-1117 |Coef|) +(-1118 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-339)))) -(-1118 |Curve|) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-339)))) +(-1119 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1119) +(-1120) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1120 S) +(-1121 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL ((|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) -(-1121 -2315) +(-1122 -3539) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1122) +(-1123) ((|constructor| (NIL "The fundamental Type."))) -((-3656 . T)) +((-4069 . T)) NIL -(-1123 S) +(-1124 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL ((|HasCategory| |#1| (QUOTE (-786)))) -(-1124) +(-1125) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1125 S) +(-1126 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1126) +(-1127) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-1127 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1128 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1128 |Coef|) +(-1129 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-1129 S |Coef| UTS) +(-1130 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-339)))) -(-1130 |Coef| UTS) +(-1131 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-3656 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4069 |has| |#1| (-339)) (-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-1131 |Coef| UTS) +(-1132 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -263) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-759)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-786)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-949)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-134))))) (-3262 (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-136))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-211)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (|HasCategory| (-523) (QUOTE (-1028))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-949)))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-759)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-759)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-786))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -263) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-786)))) (|HasCategory| |#2| (QUOTE (-840))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-134)))))) -(-1132 |Coef| |var| |cen|) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -263) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-759)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-786)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-949)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-134))))) (-3172 (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-136))))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-211)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (|HasCategory| (-523) (QUOTE (-1028))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-949)))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-759)))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-759)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-786))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -263) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -1691) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -2814) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1292) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-786)))) (|HasCategory| |#2| (QUOTE (-840))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-134)))))) +(-1133 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4246 "*") -3262 (-4099 (|has| |#1| (-339)) (|has| (-1160 |#1| |#2| |#3|) (-759))) (|has| |#1| (-158)) (-4099 (|has| |#1| (-339)) (|has| (-1160 |#1| |#2| |#3|) (-840)))) (-4237 -3262 (-4099 (|has| |#1| (-339)) (|has| (-1160 |#1| |#2| |#3|) (-759))) (|has| |#1| (-515)) (-4099 (|has| |#1| (-339)) (|has| (-1160 |#1| |#2| |#3|) (-840)))) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) -((-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -263) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|)))))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (|HasCategory| (-523) (QUOTE (-1028))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339))))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -263) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-134))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-158)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-134))))) -(-1133 ZP) +(((-4250 "*") -3172 (-3147 (|has| |#1| (-339)) (|has| (-1161 |#1| |#2| |#3|) (-759))) (|has| |#1| (-158)) (-3147 (|has| |#1| (-339)) (|has| (-1161 |#1| |#2| |#3|) (-840)))) (-4241 -3172 (-3147 (|has| |#1| (-339)) (|has| (-1161 |#1| |#2| |#3|) (-759))) (|has| |#1| (-515)) (-3147 (|has| |#1| (-339)) (|has| (-1161 |#1| |#2| |#3|) (-840)))) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4242 . T) (-4243 . T) (-4245 . T)) +((-3172 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -263) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3172 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3172 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|)))))) (-3172 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (|HasCategory| (-523) (QUOTE (-1028))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-339)))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-3172 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339))))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -263) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -1691) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -2814) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1292) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-134))) (-3172 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3172 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-158)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-1134 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1134 R S) +(-1135 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL ((|HasCategory| |#1| (QUOTE (-784)))) -(-1135 S) +(-1136 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL ((|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1016)))) -(-1136 |x| R |y| S) +(-1137 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1137 R Q UP) +(-1138 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1138 R UP) +(-1139 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1139 R UP) +(-1140 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1140 R U) +(-1141 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1141 |x| R) +(-1142 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4246 "*") |has| |#2| (-158)) (-4237 |has| |#2| (-515)) (-4240 |has| |#2| (-339)) (-4242 |has| |#2| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#2| (QUOTE (-211))) (|HasAttribute| |#2| (QUOTE -4242)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) -(-1142 R PR S PS) +(((-4250 "*") |has| |#2| (-158)) (-4241 |has| |#2| (-515)) (-4244 |has| |#2| (-339)) (-4246 |has| |#2| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-3172 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3172 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#2| (QUOTE (-211))) (|HasAttribute| |#2| (QUOTE -4246)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3172 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) +(-1143 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1143 S R) +(-1144 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-1063)))) -(-1144 R) +(-1145 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4240 |has| |#1| (-339)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4244 |has| |#1| (-339)) (-4246 |has| |#1| (-6 -4246)) (-4243 . T) (-4242 . T) (-4245 . T)) NIL -(-1145 S |Coef| |Expon|) +(-1146 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1028))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1458) (LIST (|devaluate| |#2|) (QUOTE (-1087)))))) -(-1146 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1028))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1691) (LIST (|devaluate| |#2|) (QUOTE (-1087)))))) +(-1147 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-1147 RC P) +(-1148 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1148 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1149 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1149 |Coef|) +(-1150 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-1150 S |Coef| ULS) +(-1151 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1151 |Coef| ULS) +(-1152 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-1152 |Coef| ULS) +(-1153 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) -(-1153 |Coef| |var| |cen|) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1691) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -2814) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1292) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) +(-1154 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) -(-1154 R FE |var| |cen|) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4246 |has| |#1| (-339)) (-4240 |has| |#1| (-339)) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3172 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1691) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -2814) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1292) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) +(-1155 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4246 "*") |has| (-1153 |#2| |#3| |#4|) (-158)) (-4237 |has| (-1153 |#2| |#3| |#4|) (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| (-1153 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-1153 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1153 |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1153 |#2| |#3| |#4|) (QUOTE (-158))) (|HasCategory| (-1153 |#2| |#3| |#4|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-1153 |#2| |#3| |#4|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-1153 |#2| |#3| |#4|) (QUOTE (-339))) (|HasCategory| (-1153 |#2| |#3| |#4|) (QUOTE (-427))) (-3262 (|HasCategory| (-1153 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-1153 |#2| |#3| |#4|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| (-1153 |#2| |#3| |#4|) (QUOTE (-515)))) -(-1155 A S) +(((-4250 "*") |has| (-1154 |#2| |#3| |#4|) (-158)) (-4241 |has| (-1154 |#2| |#3| |#4|) (-515)) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| (-1154 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-1154 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1154 |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1154 |#2| |#3| |#4|) (QUOTE (-158))) (|HasCategory| (-1154 |#2| |#3| |#4|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-1154 |#2| |#3| |#4|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-1154 |#2| |#3| |#4|) (QUOTE (-339))) (|HasCategory| (-1154 |#2| |#3| |#4|) (QUOTE (-427))) (-3172 (|HasCategory| (-1154 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-1154 |#2| |#3| |#4|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| (-1154 |#2| |#3| |#4|) (QUOTE (-515)))) +(-1156 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4245))) -(-1156 S) +((|HasAttribute| |#1| (QUOTE -4249))) +(-1157 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-3656 . T)) +((-4069 . T)) NIL -(-1157 |Coef1| |Coef2| UTS1 UTS2) +(-1158 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1158 S |Coef|) +(-1159 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-889))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasSignature| |#2| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3417) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1087))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339)))) -(-1159 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-889))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasSignature| |#2| (LIST (QUOTE -1292) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2814) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1087))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339)))) +(-1160 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-1160 |Coef| |var| |cen|) +(-1161 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-710)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-710)) (|devaluate| |#1|)))) (|HasCategory| (-710) (QUOTE (-1028))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-710))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-710))))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) -(-1161 |Coef| UTS) +(((-4250 "*") |has| |#1| (-158)) (-4241 |has| |#1| (-515)) (-4242 . T) (-4243 . T) (-4245 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3172 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-710)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-710)) (|devaluate| |#1|)))) (|HasCategory| (-710) (QUOTE (-1028))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-710))))) (|HasSignature| |#1| (LIST (QUOTE -1691) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-710))))) (|HasCategory| |#1| (QUOTE (-339))) (-3172 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -2814) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1292) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) +(-1162 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1162 -2315 UP L UTS) +(-1163 -3539 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-515)))) -(-1163) +(-1164) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-3656 . T)) +((-4069 . T)) NIL -(-1164 |sym|) +(-1165 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1165 S R) +(-1166 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL ((|HasCategory| |#2| (QUOTE (-930))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-666))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1166 R) +(-1167 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4245 . T) (-4244 . T) (-3656 . T)) +((-4249 . T) (-4248 . T) (-4069 . T)) NIL -(-1167 A B) +(-1168 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1168 R) +(-1169 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4245 . T) (-4244 . T)) -((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) -(-1169) +((-4249 . T) (-4248 . T)) +((-3172 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3172 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3172 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-1170) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1170) +(-1171) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1171) +(-1172) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1172) +(-1173) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1173) +(-1174) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1174 A S) +(-1175 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1175 S) +(-1176 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4239 . T) (-4238 . T)) +((-4243 . T) (-4242 . T)) NIL -(-1176 R) +(-1177 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1177 K R UP -2315) +(-1178 K R UP -3539) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1178 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1179 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) (-4241 . T)) +((-4243 |has| |#1| (-158)) (-4242 |has| |#1| (-158)) (-4245 . T)) ((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339)))) -(-1179 R E V P) +(-1180 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) -(-1180 R) +(-1181 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4238 . T) (-4239 . T) (-4241 . T)) +((-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-1181 |vl| R) +(-1182 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4241 . T) (-4237 |has| |#2| (-6 -4237)) (-4239 . T) (-4238 . T)) -((|HasCategory| |#2| (QUOTE (-158))) (|HasAttribute| |#2| (QUOTE -4237))) -(-1182 R |VarSet| XPOLY) +((-4245 . T) (-4241 |has| |#2| (-6 -4241)) (-4243 . T) (-4242 . T)) +((|HasCategory| |#2| (QUOTE (-158))) (|HasAttribute| |#2| (QUOTE -4241))) +(-1183 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1183 |vl| R) +(-1184 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4237 |has| |#2| (-6 -4237)) (-4239 . T) (-4238 . T) (-4241 . T)) +((-4241 |has| |#2| (-6 -4241)) (-4243 . T) (-4242 . T) (-4245 . T)) NIL -(-1184 S -2315) +(-1185 S -3539) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136)))) -(-1185 -2315) +(-1186 -3539) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-4240 . T) (-4246 . T) (-4241 . T) ((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL -(-1186 |VarSet| R) +(-1187 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4237 |has| |#2| (-6 -4237)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -657) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasAttribute| |#2| (QUOTE -4237))) -(-1187 |vl| R) +((-4241 |has| |#2| (-6 -4241)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -657) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasAttribute| |#2| (QUOTE -4241))) +(-1188 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4237 |has| |#2| (-6 -4237)) (-4239 . T) (-4238 . T) (-4241 . T)) +((-4241 |has| |#2| (-6 -4241)) (-4243 . T) (-4242 . T) (-4245 . T)) NIL -(-1188 R) +(-1189 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4237 |has| |#1| (-6 -4237)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#1| (QUOTE (-158))) (|HasAttribute| |#1| (QUOTE -4237))) -(-1189 R E) +((-4241 |has| |#1| (-6 -4241)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#1| (QUOTE (-158))) (|HasAttribute| |#1| (QUOTE -4241))) +(-1190 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4241 . T) (-4242 |has| |#1| (-6 -4242)) (-4237 |has| |#1| (-6 -4237)) (-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasAttribute| |#1| (QUOTE -4241)) (|HasAttribute| |#1| (QUOTE -4242)) (|HasAttribute| |#1| (QUOTE -4237))) -(-1190 |VarSet| R) +((-4245 . T) (-4246 |has| |#1| (-6 -4246)) (-4241 |has| |#1| (-6 -4241)) (-4243 . T) (-4242 . T)) +((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasAttribute| |#1| (QUOTE -4245)) (|HasAttribute| |#1| (QUOTE -4246)) (|HasAttribute| |#1| (QUOTE -4241))) +(-1191 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4237 |has| |#2| (-6 -4237)) (-4239 . T) (-4238 . T) (-4241 . T)) -((|HasCategory| |#2| (QUOTE (-158))) (|HasAttribute| |#2| (QUOTE -4237))) -(-1191 A) +((-4241 |has| |#2| (-6 -4241)) (-4243 . T) (-4242 . T) (-4245 . T)) +((|HasCategory| |#2| (QUOTE (-158))) (|HasAttribute| |#2| (QUOTE -4241))) +(-1192 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1192 R |ls| |ls2|) +(-1193 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1193 R) +(-1194 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1194 |p|) +(-1195 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +(((-4250 "*") . T) (-4242 . T) (-4243 . T) (-4245 . T)) NIL NIL NIL @@ -4724,4 +4728,4 @@ NIL NIL NIL NIL -((-3 NIL 2235816 2235821 2235826 2235831) (-2 NIL 2235796 2235801 2235806 2235811) (-1 NIL 2235776 2235781 2235786 2235791) (0 NIL 2235756 2235761 2235766 2235771) (-1194 "ZMOD.spad" 2235565 2235578 2235694 2235751) (-1193 "ZLINDEP.spad" 2234609 2234620 2235555 2235560) (-1192 "ZDSOLVE.spad" 2224458 2224480 2234599 2234604) (-1191 "YSTREAM.spad" 2223951 2223962 2224448 2224453) (-1190 "XRPOLY.spad" 2223171 2223191 2223807 2223876) (-1189 "XPR.spad" 2220900 2220913 2222889 2222988) (-1188 "XPOLY.spad" 2220455 2220466 2220756 2220825) (-1187 "XPOLYC.spad" 2219772 2219788 2220381 2220450) (-1186 "XPBWPOLY.spad" 2218209 2218229 2219552 2219621) (-1185 "XF.spad" 2216670 2216685 2218111 2218204) (-1184 "XF.spad" 2215111 2215128 2216554 2216559) (-1183 "XFALG.spad" 2212135 2212151 2215037 2215106) (-1182 "XEXPPKG.spad" 2211386 2211412 2212125 2212130) (-1181 "XDPOLY.spad" 2211000 2211016 2211242 2211311) (-1180 "XALG.spad" 2210598 2210609 2210956 2210995) (-1179 "WUTSET.spad" 2206437 2206454 2210244 2210271) (-1178 "WP.spad" 2205451 2205495 2206295 2206362) (-1177 "WFFINTBS.spad" 2203014 2203036 2205441 2205446) (-1176 "WEIER.spad" 2201228 2201239 2203004 2203009) (-1175 "VSPACE.spad" 2200901 2200912 2201196 2201223) (-1174 "VSPACE.spad" 2200594 2200607 2200891 2200896) (-1173 "VOID.spad" 2200184 2200193 2200584 2200589) (-1172 "VIEW.spad" 2197806 2197815 2200174 2200179) (-1171 "VIEWDEF.spad" 2193003 2193012 2197796 2197801) (-1170 "VIEW3D.spad" 2176838 2176847 2192993 2192998) (-1169 "VIEW2D.spad" 2164575 2164584 2176828 2176833) (-1168 "VECTOR.spad" 2163252 2163263 2163503 2163530) (-1167 "VECTOR2.spad" 2161879 2161892 2163242 2163247) (-1166 "VECTCAT.spad" 2159767 2159778 2161835 2161874) (-1165 "VECTCAT.spad" 2157476 2157489 2159546 2159551) (-1164 "VARIABLE.spad" 2157256 2157271 2157466 2157471) (-1163 "UTYPE.spad" 2156890 2156899 2157236 2157251) (-1162 "UTSODETL.spad" 2156183 2156207 2156846 2156851) (-1161 "UTSODE.spad" 2154371 2154391 2156173 2156178) (-1160 "UTS.spad" 2149160 2149188 2152838 2152935) (-1159 "UTSCAT.spad" 2146611 2146627 2149058 2149155) (-1158 "UTSCAT.spad" 2143706 2143724 2146155 2146160) (-1157 "UTS2.spad" 2143299 2143334 2143696 2143701) (-1156 "URAGG.spad" 2137921 2137932 2143279 2143294) (-1155 "URAGG.spad" 2132517 2132530 2137877 2137882) (-1154 "UPXSSING.spad" 2130163 2130189 2131601 2131734) (-1153 "UPXS.spad" 2127190 2127218 2128295 2128444) (-1152 "UPXSCONS.spad" 2124947 2124967 2125322 2125471) (-1151 "UPXSCCA.spad" 2123405 2123425 2124793 2124942) (-1150 "UPXSCCA.spad" 2122005 2122027 2123395 2123400) (-1149 "UPXSCAT.spad" 2120586 2120602 2121851 2122000) (-1148 "UPXS2.spad" 2120127 2120180 2120576 2120581) (-1147 "UPSQFREE.spad" 2118539 2118553 2120117 2120122) (-1146 "UPSCAT.spad" 2116132 2116156 2118437 2118534) (-1145 "UPSCAT.spad" 2113431 2113457 2115738 2115743) (-1144 "UPOLYC.spad" 2108409 2108420 2113273 2113426) (-1143 "UPOLYC.spad" 2103279 2103292 2108145 2108150) (-1142 "UPOLYC2.spad" 2102748 2102767 2103269 2103274) (-1141 "UP.spad" 2099793 2099808 2100301 2100454) (-1140 "UPMP.spad" 2098683 2098696 2099783 2099788) (-1139 "UPDIVP.spad" 2098246 2098260 2098673 2098678) (-1138 "UPDECOMP.spad" 2096483 2096497 2098236 2098241) (-1137 "UPCDEN.spad" 2095690 2095706 2096473 2096478) (-1136 "UP2.spad" 2095052 2095073 2095680 2095685) (-1135 "UNISEG.spad" 2094405 2094416 2094971 2094976) (-1134 "UNISEG2.spad" 2093898 2093911 2094361 2094366) (-1133 "UNIFACT.spad" 2092999 2093011 2093888 2093893) (-1132 "ULS.spad" 2083558 2083586 2084651 2085080) (-1131 "ULSCONS.spad" 2077601 2077621 2077973 2078122) (-1130 "ULSCCAT.spad" 2075198 2075218 2077421 2077596) (-1129 "ULSCCAT.spad" 2072929 2072951 2075154 2075159) (-1128 "ULSCAT.spad" 2071145 2071161 2072775 2072924) (-1127 "ULS2.spad" 2070657 2070710 2071135 2071140) (-1126 "UFD.spad" 2069722 2069731 2070583 2070652) (-1125 "UFD.spad" 2068849 2068860 2069712 2069717) (-1124 "UDVO.spad" 2067696 2067705 2068839 2068844) (-1123 "UDPO.spad" 2065123 2065134 2067652 2067657) (-1122 "TYPE.spad" 2065045 2065054 2065103 2065118) (-1121 "TWOFACT.spad" 2063695 2063710 2065035 2065040) (-1120 "TUPLE.spad" 2063081 2063092 2063594 2063599) (-1119 "TUBETOOL.spad" 2059918 2059927 2063071 2063076) (-1118 "TUBE.spad" 2058559 2058576 2059908 2059913) (-1117 "TS.spad" 2057148 2057164 2058124 2058221) (-1116 "TSETCAT.spad" 2044263 2044280 2057104 2057143) (-1115 "TSETCAT.spad" 2031376 2031395 2044219 2044224) (-1114 "TRMANIP.spad" 2025742 2025759 2031082 2031087) (-1113 "TRIMAT.spad" 2024701 2024726 2025732 2025737) (-1112 "TRIGMNIP.spad" 2023218 2023235 2024691 2024696) (-1111 "TRIGCAT.spad" 2022730 2022739 2023208 2023213) (-1110 "TRIGCAT.spad" 2022240 2022251 2022720 2022725) (-1109 "TREE.spad" 2020811 2020822 2021847 2021874) (-1108 "TRANFUN.spad" 2020642 2020651 2020801 2020806) (-1107 "TRANFUN.spad" 2020471 2020482 2020632 2020637) (-1106 "TOPSP.spad" 2020145 2020154 2020461 2020466) (-1105 "TOOLSIGN.spad" 2019808 2019819 2020135 2020140) (-1104 "TEXTFILE.spad" 2018365 2018374 2019798 2019803) (-1103 "TEX.spad" 2015382 2015391 2018355 2018360) (-1102 "TEX1.spad" 2014938 2014949 2015372 2015377) (-1101 "TEMUTL.spad" 2014493 2014502 2014928 2014933) (-1100 "TBCMPPK.spad" 2012586 2012609 2014483 2014488) (-1099 "TBAGG.spad" 2011610 2011633 2012554 2012581) (-1098 "TBAGG.spad" 2010654 2010679 2011600 2011605) (-1097 "TANEXP.spad" 2010030 2010041 2010644 2010649) (-1096 "TABLE.spad" 2008441 2008464 2008711 2008738) (-1095 "TABLEAU.spad" 2007922 2007933 2008431 2008436) (-1094 "TABLBUMP.spad" 2004705 2004716 2007912 2007917) (-1093 "SYSSOLP.spad" 2002178 2002189 2004695 2004700) (-1092 "SYNTAX.spad" 1998370 1998379 2002168 2002173) (-1091 "SYMTAB.spad" 1996426 1996435 1998360 1998365) (-1090 "SYMS.spad" 1992411 1992420 1996416 1996421) (-1089 "SYMPOLY.spad" 1991421 1991432 1991503 1991630) (-1088 "SYMFUNC.spad" 1990896 1990907 1991411 1991416) (-1087 "SYMBOL.spad" 1988232 1988241 1990886 1990891) (-1086 "SWITCH.spad" 1984989 1984998 1988222 1988227) (-1085 "SUTS.spad" 1981888 1981916 1983456 1983553) (-1084 "SUPXS.spad" 1978902 1978930 1980020 1980169) (-1083 "SUP.spad" 1975674 1975685 1976455 1976608) (-1082 "SUPFRACF.spad" 1974779 1974797 1975664 1975669) (-1081 "SUP2.spad" 1974169 1974182 1974769 1974774) (-1080 "SUMRF.spad" 1973135 1973146 1974159 1974164) (-1079 "SUMFS.spad" 1972768 1972785 1973125 1973130) (-1078 "SULS.spad" 1963314 1963342 1964420 1964849) (-1077 "SUCH.spad" 1962994 1963009 1963304 1963309) (-1076 "SUBSPACE.spad" 1955001 1955016 1962984 1962989) (-1075 "SUBRESP.spad" 1954161 1954175 1954957 1954962) (-1074 "STTF.spad" 1950260 1950276 1954151 1954156) (-1073 "STTFNC.spad" 1946728 1946744 1950250 1950255) (-1072 "STTAYLOR.spad" 1939126 1939137 1946609 1946614) (-1071 "STRTBL.spad" 1937631 1937648 1937780 1937807) (-1070 "STRING.spad" 1937040 1937049 1937054 1937081) (-1069 "STRICAT.spad" 1936816 1936825 1936996 1937035) (-1068 "STREAM.spad" 1933584 1933595 1936341 1936356) (-1067 "STREAM3.spad" 1933129 1933144 1933574 1933579) (-1066 "STREAM2.spad" 1932197 1932210 1933119 1933124) (-1065 "STREAM1.spad" 1931901 1931912 1932187 1932192) (-1064 "STINPROD.spad" 1930807 1930823 1931891 1931896) (-1063 "STEP.spad" 1930008 1930017 1930797 1930802) (-1062 "STBL.spad" 1928534 1928562 1928701 1928716) (-1061 "STAGG.spad" 1927599 1927610 1928514 1928529) (-1060 "STAGG.spad" 1926672 1926685 1927589 1927594) (-1059 "STACK.spad" 1926023 1926034 1926279 1926306) (-1058 "SREGSET.spad" 1923727 1923744 1925669 1925696) (-1057 "SRDCMPK.spad" 1922272 1922292 1923717 1923722) (-1056 "SRAGG.spad" 1917357 1917366 1922228 1922267) (-1055 "SRAGG.spad" 1912474 1912485 1917347 1917352) (-1054 "SQMATRIX.spad" 1910100 1910118 1911008 1911095) (-1053 "SPLTREE.spad" 1904652 1904665 1909536 1909563) (-1052 "SPLNODE.spad" 1901240 1901253 1904642 1904647) (-1051 "SPFCAT.spad" 1900017 1900026 1901230 1901235) (-1050 "SPECOUT.spad" 1898567 1898576 1900007 1900012) (-1049 "spad-parser.spad" 1898032 1898041 1898557 1898562) (-1048 "SPACEC.spad" 1882045 1882056 1898022 1898027) (-1047 "SPACE3.spad" 1881821 1881832 1882035 1882040) (-1046 "SORTPAK.spad" 1881366 1881379 1881777 1881782) (-1045 "SOLVETRA.spad" 1879123 1879134 1881356 1881361) (-1044 "SOLVESER.spad" 1877643 1877654 1879113 1879118) (-1043 "SOLVERAD.spad" 1873653 1873664 1877633 1877638) (-1042 "SOLVEFOR.spad" 1872073 1872091 1873643 1873648) (-1041 "SNTSCAT.spad" 1871661 1871678 1872029 1872068) (-1040 "SMTS.spad" 1869921 1869947 1871226 1871323) (-1039 "SMP.spad" 1867363 1867383 1867753 1867880) (-1038 "SMITH.spad" 1866206 1866231 1867353 1867358) (-1037 "SMATCAT.spad" 1864304 1864334 1866138 1866201) (-1036 "SMATCAT.spad" 1862346 1862378 1864182 1864187) (-1035 "SKAGG.spad" 1861295 1861306 1862302 1862341) (-1034 "SINT.spad" 1859603 1859612 1861161 1861290) (-1033 "SIMPAN.spad" 1859331 1859340 1859593 1859598) (-1032 "SIGNRF.spad" 1858439 1858450 1859321 1859326) (-1031 "SIGNEF.spad" 1857708 1857725 1858429 1858434) (-1030 "SHP.spad" 1855626 1855641 1857664 1857669) (-1029 "SHDP.spad" 1847016 1847043 1847525 1847654) (-1028 "SGROUP.spad" 1846482 1846491 1847006 1847011) (-1027 "SGROUP.spad" 1845946 1845957 1846472 1846477) (-1026 "SGCF.spad" 1838827 1838836 1845936 1845941) (-1025 "SFRTCAT.spad" 1837743 1837760 1838783 1838822) (-1024 "SFRGCD.spad" 1836806 1836826 1837733 1837738) (-1023 "SFQCMPK.spad" 1831443 1831463 1836796 1836801) (-1022 "SFORT.spad" 1830878 1830892 1831433 1831438) (-1021 "SEXOF.spad" 1830721 1830761 1830868 1830873) (-1020 "SEX.spad" 1830613 1830622 1830711 1830716) (-1019 "SEXCAT.spad" 1827717 1827757 1830603 1830608) (-1018 "SET.spad" 1826017 1826028 1827138 1827177) (-1017 "SETMN.spad" 1824451 1824468 1826007 1826012) (-1016 "SETCAT.spad" 1823936 1823945 1824441 1824446) (-1015 "SETCAT.spad" 1823419 1823430 1823926 1823931) (-1014 "SETAGG.spad" 1819942 1819953 1823387 1823414) (-1013 "SETAGG.spad" 1816485 1816498 1819932 1819937) (-1012 "SEGXCAT.spad" 1815597 1815610 1816465 1816480) (-1011 "SEG.spad" 1815410 1815421 1815516 1815521) (-1010 "SEGCAT.spad" 1814229 1814240 1815390 1815405) (-1009 "SEGBIND.spad" 1813301 1813312 1814184 1814189) (-1008 "SEGBIND2.spad" 1812997 1813010 1813291 1813296) (-1007 "SEG2.spad" 1812422 1812435 1812953 1812958) (-1006 "SDVAR.spad" 1811698 1811709 1812412 1812417) (-1005 "SDPOL.spad" 1809091 1809102 1809382 1809509) (-1004 "SCPKG.spad" 1807170 1807181 1809081 1809086) (-1003 "SCOPE.spad" 1806315 1806324 1807160 1807165) (-1002 "SCACHE.spad" 1804997 1805008 1806305 1806310) (-1001 "SAOS.spad" 1804869 1804878 1804987 1804992) (-1000 "SAERFFC.spad" 1804582 1804602 1804859 1804864) (-999 "SAE.spad" 1802761 1802776 1803371 1803506) (-998 "SAEFACT.spad" 1802463 1802482 1802751 1802756) (-997 "RURPK.spad" 1800105 1800120 1802453 1802458) (-996 "RULESET.spad" 1799547 1799570 1800095 1800100) (-995 "RULE.spad" 1797752 1797775 1799537 1799542) (-994 "RULECOLD.spad" 1797605 1797617 1797742 1797747) (-993 "RSETGCD.spad" 1793984 1794003 1797595 1797600) (-992 "RSETCAT.spad" 1783757 1783773 1793940 1793979) (-991 "RSETCAT.spad" 1773562 1773580 1783747 1783752) (-990 "RSDCMPK.spad" 1772015 1772034 1773552 1773557) (-989 "RRCC.spad" 1770400 1770429 1772005 1772010) (-988 "RRCC.spad" 1768783 1768814 1770390 1770395) (-987 "RPOLCAT.spad" 1748144 1748158 1768651 1768778) (-986 "RPOLCAT.spad" 1727220 1727236 1747729 1747734) (-985 "ROUTINE.spad" 1723084 1723092 1725867 1725894) (-984 "ROMAN.spad" 1722317 1722325 1722950 1723079) (-983 "ROIRC.spad" 1721398 1721429 1722307 1722312) (-982 "RNS.spad" 1720302 1720310 1721300 1721393) (-981 "RNS.spad" 1719292 1719302 1720292 1720297) (-980 "RNG.spad" 1719028 1719036 1719282 1719287) (-979 "RMODULE.spad" 1718667 1718677 1719018 1719023) (-978 "RMCAT2.spad" 1718076 1718132 1718657 1718662) (-977 "RMATRIX.spad" 1716756 1716774 1717243 1717282) (-976 "RMATCAT.spad" 1712278 1712308 1716700 1716751) (-975 "RMATCAT.spad" 1707702 1707734 1712126 1712131) (-974 "RINTERP.spad" 1707591 1707610 1707692 1707697) (-973 "RING.spad" 1706949 1706957 1707571 1707586) (-972 "RING.spad" 1706315 1706325 1706939 1706944) (-971 "RIDIST.spad" 1705700 1705708 1706305 1706310) (-970 "RGCHAIN.spad" 1704280 1704295 1705185 1705212) (-969 "RF.spad" 1701895 1701905 1704270 1704275) (-968 "RFFACTOR.spad" 1701358 1701368 1701885 1701890) (-967 "RFFACT.spad" 1701094 1701105 1701348 1701353) (-966 "RFDIST.spad" 1700083 1700091 1701084 1701089) (-965 "RETSOL.spad" 1699501 1699513 1700073 1700078) (-964 "RETRACT.spad" 1698851 1698861 1699491 1699496) (-963 "RETRACT.spad" 1698199 1698211 1698841 1698846) (-962 "RESULT.spad" 1696260 1696268 1696846 1696873) (-961 "RESRING.spad" 1695608 1695654 1696198 1696255) (-960 "RESLATC.spad" 1694933 1694943 1695598 1695603) (-959 "REPSQ.spad" 1694663 1694673 1694923 1694928) (-958 "REP.spad" 1692216 1692224 1694653 1694658) (-957 "REPDB.spad" 1691922 1691932 1692206 1692211) (-956 "REP2.spad" 1681495 1681505 1691764 1691769) (-955 "REP1.spad" 1675486 1675496 1681445 1681450) (-954 "REGSET.spad" 1673284 1673300 1675132 1675159) (-953 "REF.spad" 1672614 1672624 1673239 1673244) (-952 "REDORDER.spad" 1671791 1671807 1672604 1672609) (-951 "RECLOS.spad" 1670581 1670600 1671284 1671377) (-950 "REALSOLV.spad" 1669714 1669722 1670571 1670576) (-949 "REAL.spad" 1669587 1669595 1669704 1669709) (-948 "REAL0Q.spad" 1666870 1666884 1669577 1669582) (-947 "REAL0.spad" 1663699 1663713 1666860 1666865) (-946 "RDIV.spad" 1663351 1663375 1663689 1663694) (-945 "RDIST.spad" 1662915 1662925 1663341 1663346) (-944 "RDETRS.spad" 1661712 1661729 1662905 1662910) (-943 "RDETR.spad" 1659820 1659837 1661702 1661707) (-942 "RDEEFS.spad" 1658894 1658910 1659810 1659815) (-941 "RDEEF.spad" 1657891 1657907 1658884 1658889) (-940 "RCFIELD.spad" 1655075 1655083 1657793 1657886) (-939 "RCFIELD.spad" 1652345 1652355 1655065 1655070) (-938 "RCAGG.spad" 1650248 1650258 1652325 1652340) (-937 "RCAGG.spad" 1648088 1648100 1650167 1650172) (-936 "RATRET.spad" 1647449 1647459 1648078 1648083) (-935 "RATFACT.spad" 1647142 1647153 1647439 1647444) (-934 "RANDSRC.spad" 1646462 1646470 1647132 1647137) (-933 "RADUTIL.spad" 1646217 1646225 1646452 1646457) (-932 "RADIX.spad" 1643010 1643023 1644687 1644780) (-931 "RADFF.spad" 1641427 1641463 1641545 1641701) (-930 "RADCAT.spad" 1641021 1641029 1641417 1641422) (-929 "RADCAT.spad" 1640613 1640623 1641011 1641016) (-928 "QUEUE.spad" 1639956 1639966 1640220 1640247) (-927 "QUAT.spad" 1638542 1638552 1638884 1638949) (-926 "QUATCT2.spad" 1638161 1638179 1638532 1638537) (-925 "QUATCAT.spad" 1636326 1636336 1638091 1638156) (-924 "QUATCAT.spad" 1634243 1634255 1636010 1636015) (-923 "QUAGG.spad" 1633057 1633067 1634199 1634238) (-922 "QFORM.spad" 1632520 1632534 1633047 1633052) (-921 "QFCAT.spad" 1631211 1631221 1632410 1632515) (-920 "QFCAT.spad" 1629508 1629520 1630709 1630714) (-919 "QFCAT2.spad" 1629199 1629215 1629498 1629503) (-918 "QEQUAT.spad" 1628756 1628764 1629189 1629194) (-917 "QCMPACK.spad" 1623503 1623522 1628746 1628751) (-916 "QALGSET.spad" 1619578 1619610 1623417 1623422) (-915 "QALGSET2.spad" 1617574 1617592 1619568 1619573) (-914 "PWFFINTB.spad" 1614884 1614905 1617564 1617569) (-913 "PUSHVAR.spad" 1614213 1614232 1614874 1614879) (-912 "PTRANFN.spad" 1610339 1610349 1614203 1614208) (-911 "PTPACK.spad" 1607427 1607437 1610329 1610334) (-910 "PTFUNC2.spad" 1607248 1607262 1607417 1607422) (-909 "PTCAT.spad" 1606330 1606340 1607204 1607243) (-908 "PSQFR.spad" 1605637 1605661 1606320 1606325) (-907 "PSEUDLIN.spad" 1604495 1604505 1605627 1605632) (-906 "PSETPK.spad" 1589928 1589944 1604373 1604378) (-905 "PSETCAT.spad" 1583836 1583859 1589896 1589923) (-904 "PSETCAT.spad" 1577730 1577755 1583792 1583797) (-903 "PSCURVE.spad" 1576713 1576721 1577720 1577725) (-902 "PSCAT.spad" 1575480 1575509 1576611 1576708) (-901 "PSCAT.spad" 1574337 1574368 1575470 1575475) (-900 "PRTITION.spad" 1573180 1573188 1574327 1574332) (-899 "PRS.spad" 1562742 1562759 1573136 1573141) (-898 "PRQAGG.spad" 1562161 1562171 1562698 1562737) (-897 "PROPLOG.spad" 1561564 1561572 1562151 1562156) (-896 "PROPFRML.spad" 1559429 1559440 1561500 1561505) (-895 "PROPERTY.spad" 1558923 1558931 1559419 1559424) (-894 "PRODUCT.spad" 1556603 1556615 1556889 1556944) (-893 "PR.spad" 1554992 1555004 1555697 1555824) (-892 "PRINT.spad" 1554744 1554752 1554982 1554987) (-891 "PRIMES.spad" 1552995 1553005 1554734 1554739) (-890 "PRIMELT.spad" 1550976 1550990 1552985 1552990) (-889 "PRIMCAT.spad" 1550599 1550607 1550966 1550971) (-888 "PRIMARR.spad" 1549604 1549614 1549782 1549809) (-887 "PRIMARR2.spad" 1548327 1548339 1549594 1549599) (-886 "PREASSOC.spad" 1547699 1547711 1548317 1548322) (-885 "PPCURVE.spad" 1546836 1546844 1547689 1547694) (-884 "POLYROOT.spad" 1545608 1545630 1546792 1546797) (-883 "POLY.spad" 1542908 1542918 1543425 1543552) (-882 "POLYLIFT.spad" 1542169 1542192 1542898 1542903) (-881 "POLYCATQ.spad" 1540271 1540293 1542159 1542164) (-880 "POLYCAT.spad" 1533677 1533698 1540139 1540266) (-879 "POLYCAT.spad" 1526385 1526408 1532849 1532854) (-878 "POLY2UP.spad" 1525833 1525847 1526375 1526380) (-877 "POLY2.spad" 1525428 1525440 1525823 1525828) (-876 "POLUTIL.spad" 1524369 1524398 1525384 1525389) (-875 "POLTOPOL.spad" 1523117 1523132 1524359 1524364) (-874 "POINT.spad" 1521958 1521968 1522045 1522072) (-873 "PNTHEORY.spad" 1518624 1518632 1521948 1521953) (-872 "PMTOOLS.spad" 1517381 1517395 1518614 1518619) (-871 "PMSYM.spad" 1516926 1516936 1517371 1517376) (-870 "PMQFCAT.spad" 1516513 1516527 1516916 1516921) (-869 "PMPRED.spad" 1515982 1515996 1516503 1516508) (-868 "PMPREDFS.spad" 1515426 1515448 1515972 1515977) (-867 "PMPLCAT.spad" 1514496 1514514 1515358 1515363) (-866 "PMLSAGG.spad" 1514077 1514091 1514486 1514491) (-865 "PMKERNEL.spad" 1513644 1513656 1514067 1514072) (-864 "PMINS.spad" 1513220 1513230 1513634 1513639) (-863 "PMFS.spad" 1512793 1512811 1513210 1513215) (-862 "PMDOWN.spad" 1512079 1512093 1512783 1512788) (-861 "PMASS.spad" 1511091 1511099 1512069 1512074) (-860 "PMASSFS.spad" 1510060 1510076 1511081 1511086) (-859 "PLOTTOOL.spad" 1509840 1509848 1510050 1510055) (-858 "PLOT.spad" 1504671 1504679 1509830 1509835) (-857 "PLOT3D.spad" 1501091 1501099 1504661 1504666) (-856 "PLOT1.spad" 1500232 1500242 1501081 1501086) (-855 "PLEQN.spad" 1487448 1487475 1500222 1500227) (-854 "PINTERP.spad" 1487064 1487083 1487438 1487443) (-853 "PINTERPA.spad" 1486846 1486862 1487054 1487059) (-852 "PI.spad" 1486453 1486461 1486820 1486841) (-851 "PID.spad" 1485409 1485417 1486379 1486448) (-850 "PICOERCE.spad" 1485066 1485076 1485399 1485404) (-849 "PGROEB.spad" 1483663 1483677 1485056 1485061) (-848 "PGE.spad" 1474916 1474924 1483653 1483658) (-847 "PGCD.spad" 1473798 1473815 1474906 1474911) (-846 "PFRPAC.spad" 1472941 1472951 1473788 1473793) (-845 "PFR.spad" 1469598 1469608 1472843 1472936) (-844 "PFOTOOLS.spad" 1468856 1468872 1469588 1469593) (-843 "PFOQ.spad" 1468226 1468244 1468846 1468851) (-842 "PFO.spad" 1467645 1467672 1468216 1468221) (-841 "PF.spad" 1467219 1467231 1467450 1467543) (-840 "PFECAT.spad" 1464885 1464893 1467145 1467214) (-839 "PFECAT.spad" 1462579 1462589 1464841 1464846) (-838 "PFBRU.spad" 1460449 1460461 1462569 1462574) (-837 "PFBR.spad" 1457987 1458010 1460439 1460444) (-836 "PERM.spad" 1453668 1453678 1457817 1457832) (-835 "PERMGRP.spad" 1448404 1448414 1453658 1453663) (-834 "PERMCAT.spad" 1446956 1446966 1448384 1448399) (-833 "PERMAN.spad" 1445488 1445502 1446946 1446951) (-832 "PENDTREE.spad" 1444761 1444771 1445117 1445122) (-831 "PDRING.spad" 1443252 1443262 1444741 1444756) (-830 "PDRING.spad" 1441751 1441763 1443242 1443247) (-829 "PDEPROB.spad" 1440708 1440716 1441741 1441746) (-828 "PDEPACK.spad" 1434710 1434718 1440698 1440703) (-827 "PDECOMP.spad" 1434172 1434189 1434700 1434705) (-826 "PDECAT.spad" 1432526 1432534 1434162 1434167) (-825 "PCOMP.spad" 1432377 1432390 1432516 1432521) (-824 "PBWLB.spad" 1430959 1430976 1432367 1432372) (-823 "PATTERN.spad" 1425390 1425400 1430949 1430954) (-822 "PATTERN2.spad" 1425126 1425138 1425380 1425385) (-821 "PATTERN1.spad" 1423428 1423444 1425116 1425121) (-820 "PATRES.spad" 1420975 1420987 1423418 1423423) (-819 "PATRES2.spad" 1420637 1420651 1420965 1420970) (-818 "PATMATCH.spad" 1418799 1418830 1420350 1420355) (-817 "PATMAB.spad" 1418224 1418234 1418789 1418794) (-816 "PATLRES.spad" 1417308 1417322 1418214 1418219) (-815 "PATAB.spad" 1417072 1417082 1417298 1417303) (-814 "PARTPERM.spad" 1414434 1414442 1417062 1417067) (-813 "PARSURF.spad" 1413862 1413890 1414424 1414429) (-812 "PARSU2.spad" 1413657 1413673 1413852 1413857) (-811 "script-parser.spad" 1413177 1413185 1413647 1413652) (-810 "PARSCURV.spad" 1412605 1412633 1413167 1413172) (-809 "PARSC2.spad" 1412394 1412410 1412595 1412600) (-808 "PARPCURV.spad" 1411852 1411880 1412384 1412389) (-807 "PARPC2.spad" 1411641 1411657 1411842 1411847) (-806 "PAN2EXPR.spad" 1411053 1411061 1411631 1411636) (-805 "PALETTE.spad" 1410023 1410031 1411043 1411048) (-804 "PAIR.spad" 1409006 1409019 1409611 1409616) (-803 "PADICRC.spad" 1406339 1406357 1407514 1407607) (-802 "PADICRAT.spad" 1404357 1404369 1404578 1404671) (-801 "PADIC.spad" 1404052 1404064 1404283 1404352) (-800 "PADICCT.spad" 1402593 1402605 1403978 1404047) (-799 "PADEPAC.spad" 1401272 1401291 1402583 1402588) (-798 "PADE.spad" 1400012 1400028 1401262 1401267) (-797 "OWP.spad" 1398996 1399026 1399870 1399937) (-796 "OVAR.spad" 1398777 1398800 1398986 1398991) (-795 "OUT.spad" 1397861 1397869 1398767 1398772) (-794 "OUTFORM.spad" 1387275 1387283 1397851 1397856) (-793 "OSI.spad" 1386750 1386758 1387265 1387270) (-792 "ORTHPOL.spad" 1385211 1385221 1386667 1386672) (-791 "OREUP.spad" 1384571 1384599 1384893 1384932) (-790 "ORESUP.spad" 1383872 1383896 1384253 1384292) (-789 "OREPCTO.spad" 1381691 1381703 1383792 1383797) (-788 "OREPCAT.spad" 1375748 1375758 1381647 1381686) (-787 "OREPCAT.spad" 1369695 1369707 1375596 1375601) (-786 "ORDSET.spad" 1368861 1368869 1369685 1369690) (-785 "ORDSET.spad" 1368025 1368035 1368851 1368856) (-784 "ORDRING.spad" 1367415 1367423 1368005 1368020) (-783 "ORDRING.spad" 1366813 1366823 1367405 1367410) (-782 "ORDMON.spad" 1366668 1366676 1366803 1366808) (-781 "ORDFUNS.spad" 1365794 1365810 1366658 1366663) (-780 "ORDFIN.spad" 1365728 1365736 1365784 1365789) (-779 "ORDCOMP.spad" 1364196 1364206 1365278 1365307) (-778 "ORDCOMP2.spad" 1363481 1363493 1364186 1364191) (-777 "OPTPROB.spad" 1362061 1362069 1363471 1363476) (-776 "OPTPACK.spad" 1354446 1354454 1362051 1362056) (-775 "OPTCAT.spad" 1352121 1352129 1354436 1354441) (-774 "OPQUERY.spad" 1351670 1351678 1352111 1352116) (-773 "OP.spad" 1351412 1351422 1351492 1351559) (-772 "ONECOMP.spad" 1350160 1350170 1350962 1350991) (-771 "ONECOMP2.spad" 1349578 1349590 1350150 1350155) (-770 "OMSERVER.spad" 1348580 1348588 1349568 1349573) (-769 "OMSAGG.spad" 1348356 1348366 1348524 1348575) (-768 "OMPKG.spad" 1346968 1346976 1348346 1348351) (-767 "OM.spad" 1345933 1345941 1346958 1346963) (-766 "OMLO.spad" 1345358 1345370 1345819 1345858) (-765 "OMEXPR.spad" 1345192 1345202 1345348 1345353) (-764 "OMERR.spad" 1344735 1344743 1345182 1345187) (-763 "OMERRK.spad" 1343769 1343777 1344725 1344730) (-762 "OMENC.spad" 1343113 1343121 1343759 1343764) (-761 "OMDEV.spad" 1337402 1337410 1343103 1343108) (-760 "OMCONN.spad" 1336811 1336819 1337392 1337397) (-759 "OINTDOM.spad" 1336574 1336582 1336737 1336806) (-758 "OFMONOID.spad" 1332761 1332771 1336564 1336569) (-757 "ODVAR.spad" 1332022 1332032 1332751 1332756) (-756 "ODR.spad" 1331470 1331496 1331834 1331983) (-755 "ODPOL.spad" 1328819 1328829 1329159 1329286) (-754 "ODP.spad" 1320345 1320365 1320718 1320847) (-753 "ODETOOLS.spad" 1318928 1318947 1320335 1320340) (-752 "ODESYS.spad" 1316578 1316595 1318918 1318923) (-751 "ODERTRIC.spad" 1312519 1312536 1316535 1316540) (-750 "ODERED.spad" 1311906 1311930 1312509 1312514) (-749 "ODERAT.spad" 1309457 1309474 1311896 1311901) (-748 "ODEPRRIC.spad" 1306348 1306370 1309447 1309452) (-747 "ODEPROB.spad" 1305547 1305555 1306338 1306343) (-746 "ODEPRIM.spad" 1302821 1302843 1305537 1305542) (-745 "ODEPAL.spad" 1302197 1302221 1302811 1302816) (-744 "ODEPACK.spad" 1288799 1288807 1302187 1302192) (-743 "ODEINT.spad" 1288230 1288246 1288789 1288794) (-742 "ODEIFTBL.spad" 1285625 1285633 1288220 1288225) (-741 "ODEEF.spad" 1280992 1281008 1285615 1285620) (-740 "ODECONST.spad" 1280511 1280529 1280982 1280987) (-739 "ODECAT.spad" 1279107 1279115 1280501 1280506) (-738 "OCT.spad" 1277254 1277264 1277970 1278009) (-737 "OCTCT2.spad" 1276898 1276919 1277244 1277249) (-736 "OC.spad" 1274672 1274682 1276854 1276893) (-735 "OC.spad" 1272172 1272184 1274356 1274361) (-734 "OCAMON.spad" 1272020 1272028 1272162 1272167) (-733 "OASGP.spad" 1271835 1271843 1272010 1272015) (-732 "OAMONS.spad" 1271355 1271363 1271825 1271830) (-731 "OAMON.spad" 1271216 1271224 1271345 1271350) (-730 "OAGROUP.spad" 1271078 1271086 1271206 1271211) (-729 "NUMTUBE.spad" 1270665 1270681 1271068 1271073) (-728 "NUMQUAD.spad" 1258527 1258535 1270655 1270660) (-727 "NUMODE.spad" 1249663 1249671 1258517 1258522) (-726 "NUMINT.spad" 1247221 1247229 1249653 1249658) (-725 "NUMFMT.spad" 1246061 1246069 1247211 1247216) (-724 "NUMERIC.spad" 1238134 1238144 1245867 1245872) (-723 "NTSCAT.spad" 1236624 1236640 1238090 1238129) (-722 "NTPOLFN.spad" 1236169 1236179 1236541 1236546) (-721 "NSUP.spad" 1229182 1229192 1233722 1233875) (-720 "NSUP2.spad" 1228574 1228586 1229172 1229177) (-719 "NSMP.spad" 1224773 1224792 1225081 1225208) (-718 "NREP.spad" 1223145 1223159 1224763 1224768) (-717 "NPCOEF.spad" 1222391 1222411 1223135 1223140) (-716 "NORMRETR.spad" 1221989 1222028 1222381 1222386) (-715 "NORMPK.spad" 1219891 1219910 1221979 1221984) (-714 "NORMMA.spad" 1219579 1219605 1219881 1219886) (-713 "NONE.spad" 1219320 1219328 1219569 1219574) (-712 "NONE1.spad" 1218996 1219006 1219310 1219315) (-711 "NODE1.spad" 1218465 1218481 1218986 1218991) (-710 "NNI.spad" 1217352 1217360 1218439 1218460) (-709 "NLINSOL.spad" 1215974 1215984 1217342 1217347) (-708 "NIPROB.spad" 1214457 1214465 1215964 1215969) (-707 "NFINTBAS.spad" 1211917 1211934 1214447 1214452) (-706 "NCODIV.spad" 1210115 1210131 1211907 1211912) (-705 "NCNTFRAC.spad" 1209757 1209771 1210105 1210110) (-704 "NCEP.spad" 1207917 1207931 1209747 1209752) (-703 "NASRING.spad" 1207513 1207521 1207907 1207912) (-702 "NASRING.spad" 1207107 1207117 1207503 1207508) (-701 "NARNG.spad" 1206451 1206459 1207097 1207102) (-700 "NARNG.spad" 1205793 1205803 1206441 1206446) (-699 "NAGSP.spad" 1204866 1204874 1205783 1205788) (-698 "NAGS.spad" 1194391 1194399 1204856 1204861) (-697 "NAGF07.spad" 1192784 1192792 1194381 1194386) (-696 "NAGF04.spad" 1187016 1187024 1192774 1192779) (-695 "NAGF02.spad" 1180825 1180833 1187006 1187011) (-694 "NAGF01.spad" 1176428 1176436 1180815 1180820) (-693 "NAGE04.spad" 1169888 1169896 1176418 1176423) (-692 "NAGE02.spad" 1160230 1160238 1169878 1169883) (-691 "NAGE01.spad" 1156114 1156122 1160220 1160225) (-690 "NAGD03.spad" 1154034 1154042 1156104 1156109) (-689 "NAGD02.spad" 1146565 1146573 1154024 1154029) (-688 "NAGD01.spad" 1140678 1140686 1146555 1146560) (-687 "NAGC06.spad" 1136465 1136473 1140668 1140673) (-686 "NAGC05.spad" 1134934 1134942 1136455 1136460) (-685 "NAGC02.spad" 1134189 1134197 1134924 1134929) (-684 "NAALG.spad" 1133724 1133734 1134157 1134184) (-683 "NAALG.spad" 1133279 1133291 1133714 1133719) (-682 "MULTSQFR.spad" 1130237 1130254 1133269 1133274) (-681 "MULTFACT.spad" 1129620 1129637 1130227 1130232) (-680 "MTSCAT.spad" 1127654 1127675 1129518 1129615) (-679 "MTHING.spad" 1127311 1127321 1127644 1127649) (-678 "MSYSCMD.spad" 1126745 1126753 1127301 1127306) (-677 "MSET.spad" 1124687 1124697 1126451 1126490) (-676 "MSETAGG.spad" 1124520 1124530 1124643 1124682) (-675 "MRING.spad" 1121491 1121503 1124228 1124295) (-674 "MRF2.spad" 1121059 1121073 1121481 1121486) (-673 "MRATFAC.spad" 1120605 1120622 1121049 1121054) (-672 "MPRFF.spad" 1118635 1118654 1120595 1120600) (-671 "MPOLY.spad" 1116073 1116088 1116432 1116559) (-670 "MPCPF.spad" 1115337 1115356 1116063 1116068) (-669 "MPC3.spad" 1115152 1115192 1115327 1115332) (-668 "MPC2.spad" 1114794 1114827 1115142 1115147) (-667 "MONOTOOL.spad" 1113129 1113146 1114784 1114789) (-666 "MONOID.spad" 1112303 1112311 1113119 1113124) (-665 "MONOID.spad" 1111475 1111485 1112293 1112298) (-664 "MONOGEN.spad" 1110221 1110234 1111335 1111470) (-663 "MONOGEN.spad" 1108989 1109004 1110105 1110110) (-662 "MONADWU.spad" 1107003 1107011 1108979 1108984) (-661 "MONADWU.spad" 1105015 1105025 1106993 1106998) (-660 "MONAD.spad" 1104159 1104167 1105005 1105010) (-659 "MONAD.spad" 1103301 1103311 1104149 1104154) (-658 "MOEBIUS.spad" 1101987 1102001 1103281 1103296) (-657 "MODULE.spad" 1101857 1101867 1101955 1101982) (-656 "MODULE.spad" 1101747 1101759 1101847 1101852) (-655 "MODRING.spad" 1101078 1101117 1101727 1101742) (-654 "MODOP.spad" 1099737 1099749 1100900 1100967) (-653 "MODMONOM.spad" 1099269 1099287 1099727 1099732) (-652 "MODMON.spad" 1095974 1095990 1096750 1096903) (-651 "MODFIELD.spad" 1095332 1095371 1095876 1095969) (-650 "MMLFORM.spad" 1094192 1094200 1095322 1095327) (-649 "MMAP.spad" 1093932 1093966 1094182 1094187) (-648 "MLO.spad" 1092359 1092369 1093888 1093927) (-647 "MLIFT.spad" 1090931 1090948 1092349 1092354) (-646 "MKUCFUNC.spad" 1090464 1090482 1090921 1090926) (-645 "MKRECORD.spad" 1090066 1090079 1090454 1090459) (-644 "MKFUNC.spad" 1089447 1089457 1090056 1090061) (-643 "MKFLCFN.spad" 1088403 1088413 1089437 1089442) (-642 "MKCHSET.spad" 1088179 1088189 1088393 1088398) (-641 "MKBCFUNC.spad" 1087664 1087682 1088169 1088174) (-640 "MINT.spad" 1087103 1087111 1087566 1087659) (-639 "MHROWRED.spad" 1085604 1085614 1087093 1087098) (-638 "MFLOAT.spad" 1084049 1084057 1085494 1085599) (-637 "MFINFACT.spad" 1083449 1083471 1084039 1084044) (-636 "MESH.spad" 1081181 1081189 1083439 1083444) (-635 "MDDFACT.spad" 1079374 1079384 1081171 1081176) (-634 "MDAGG.spad" 1078649 1078659 1079342 1079369) (-633 "MCMPLX.spad" 1074629 1074637 1075243 1075444) (-632 "MCDEN.spad" 1073837 1073849 1074619 1074624) (-631 "MCALCFN.spad" 1070939 1070965 1073827 1073832) (-630 "MATSTOR.spad" 1068215 1068225 1070929 1070934) (-629 "MATRIX.spad" 1066919 1066929 1067403 1067430) (-628 "MATLIN.spad" 1064245 1064269 1066803 1066808) (-627 "MATCAT.spad" 1055818 1055840 1064201 1064240) (-626 "MATCAT.spad" 1047275 1047299 1055660 1055665) (-625 "MATCAT2.spad" 1046543 1046591 1047265 1047270) (-624 "MAPPKG3.spad" 1045442 1045456 1046533 1046538) (-623 "MAPPKG2.spad" 1044776 1044788 1045432 1045437) (-622 "MAPPKG1.spad" 1043594 1043604 1044766 1044771) (-621 "MAPHACK3.spad" 1043402 1043416 1043584 1043589) (-620 "MAPHACK2.spad" 1043167 1043179 1043392 1043397) (-619 "MAPHACK1.spad" 1042797 1042807 1043157 1043162) (-618 "MAGMA.spad" 1040587 1040604 1042787 1042792) (-617 "M3D.spad" 1038285 1038295 1039967 1039972) (-616 "LZSTAGG.spad" 1035503 1035513 1038265 1038280) (-615 "LZSTAGG.spad" 1032729 1032741 1035493 1035498) (-614 "LWORD.spad" 1029434 1029451 1032719 1032724) (-613 "LSQM.spad" 1027662 1027676 1028060 1028111) (-612 "LSPP.spad" 1027195 1027212 1027652 1027657) (-611 "LSMP.spad" 1026035 1026063 1027185 1027190) (-610 "LSMP1.spad" 1023839 1023853 1026025 1026030) (-609 "LSAGG.spad" 1023496 1023506 1023795 1023834) (-608 "LSAGG.spad" 1023185 1023197 1023486 1023491) (-607 "LPOLY.spad" 1022139 1022158 1023041 1023110) (-606 "LPEFRAC.spad" 1021396 1021406 1022129 1022134) (-605 "LO.spad" 1020797 1020811 1021330 1021357) (-604 "LOGIC.spad" 1020399 1020407 1020787 1020792) (-603 "LOGIC.spad" 1019999 1020009 1020389 1020394) (-602 "LODOOPS.spad" 1018917 1018929 1019989 1019994) (-601 "LODO.spad" 1018303 1018319 1018599 1018638) (-600 "LODOF.spad" 1017347 1017364 1018260 1018265) (-599 "LODOCAT.spad" 1016005 1016015 1017303 1017342) (-598 "LODOCAT.spad" 1014661 1014673 1015961 1015966) (-597 "LODO2.spad" 1013936 1013948 1014343 1014382) (-596 "LODO1.spad" 1013338 1013348 1013618 1013657) (-595 "LODEEF.spad" 1012110 1012128 1013328 1013333) (-594 "LNAGG.spad" 1007902 1007912 1012090 1012105) (-593 "LNAGG.spad" 1003668 1003680 1007858 1007863) (-592 "LMOPS.spad" 1000404 1000421 1003658 1003663) (-591 "LMODULE.spad" 1000046 1000056 1000394 1000399) (-590 "LMDICT.spad" 999329 999339 999597 999624) (-589 "LIST.spad" 997047 997057 998476 998503) (-588 "LIST3.spad" 996338 996352 997037 997042) (-587 "LIST2.spad" 994978 994990 996328 996333) (-586 "LIST2MAP.spad" 991855 991867 994968 994973) (-585 "LINEXP.spad" 991287 991297 991835 991850) (-584 "LINDEP.spad" 990064 990076 991199 991204) (-583 "LIMITRF.spad" 987978 987988 990054 990059) (-582 "LIMITPS.spad" 986861 986874 987968 987973) (-581 "LIE.spad" 984875 984887 986151 986296) (-580 "LIECAT.spad" 984351 984361 984801 984870) (-579 "LIECAT.spad" 983855 983867 984307 984312) (-578 "LIB.spad" 981903 981911 982514 982529) (-577 "LGROBP.spad" 979256 979275 981893 981898) (-576 "LF.spad" 978175 978191 979246 979251) (-575 "LFCAT.spad" 977194 977202 978165 978170) (-574 "LEXTRIPK.spad" 972697 972712 977184 977189) (-573 "LEXP.spad" 970700 970727 972677 972692) (-572 "LEADCDET.spad" 969084 969101 970690 970695) (-571 "LAZM3PK.spad" 967788 967810 969074 969079) (-570 "LAUPOL.spad" 966479 966492 967383 967452) (-569 "LAPLACE.spad" 966052 966068 966469 966474) (-568 "LA.spad" 965492 965506 965974 966013) (-567 "LALG.spad" 965268 965278 965472 965487) (-566 "LALG.spad" 965052 965064 965258 965263) (-565 "KOVACIC.spad" 963765 963782 965042 965047) (-564 "KONVERT.spad" 963487 963497 963755 963760) (-563 "KOERCE.spad" 963224 963234 963477 963482) (-562 "KERNEL.spad" 961759 961769 963008 963013) (-561 "KERNEL2.spad" 961462 961474 961749 961754) (-560 "KDAGG.spad" 960553 960575 961430 961457) (-559 "KDAGG.spad" 959664 959688 960543 960548) (-558 "KAFILE.spad" 958627 958643 958862 958889) (-557 "JORDAN.spad" 956454 956466 957917 958062) (-556 "IXAGG.spad" 954567 954591 956434 956449) (-555 "IXAGG.spad" 952545 952571 954414 954419) (-554 "IVECTOR.spad" 951318 951333 951473 951500) (-553 "ITUPLE.spad" 950463 950473 951308 951313) (-552 "ITRIGMNP.spad" 949274 949293 950453 950458) (-551 "ITFUN3.spad" 948768 948782 949264 949269) (-550 "ITFUN2.spad" 948498 948510 948758 948763) (-549 "ITAYLOR.spad" 946290 946305 948334 948459) (-548 "ISUPS.spad" 938701 938716 945264 945361) (-547 "ISUMP.spad" 938198 938214 938691 938696) (-546 "ISTRING.spad" 937201 937214 937367 937394) (-545 "IRURPK.spad" 935914 935933 937191 937196) (-544 "IRSN.spad" 933874 933882 935904 935909) (-543 "IRRF2F.spad" 932349 932359 933830 933835) (-542 "IRREDFFX.spad" 931950 931961 932339 932344) (-541 "IROOT.spad" 930281 930291 931940 931945) (-540 "IR.spad" 928071 928085 930137 930164) (-539 "IR2.spad" 927091 927107 928061 928066) (-538 "IR2F.spad" 926291 926307 927081 927086) (-537 "IPRNTPK.spad" 926051 926059 926281 926286) (-536 "IPF.spad" 925616 925628 925856 925949) (-535 "IPADIC.spad" 925377 925403 925542 925611) (-534 "INVLAPLA.spad" 925022 925038 925367 925372) (-533 "INTTR.spad" 918268 918285 925012 925017) (-532 "INTTOOLS.spad" 915980 915996 917843 917848) (-531 "INTSLPE.spad" 915286 915294 915970 915975) (-530 "INTRVL.spad" 914852 914862 915200 915281) (-529 "INTRF.spad" 913216 913230 914842 914847) (-528 "INTRET.spad" 912648 912658 913206 913211) (-527 "INTRAT.spad" 911323 911340 912638 912643) (-526 "INTPM.spad" 909686 909702 910966 910971) (-525 "INTPAF.spad" 907454 907472 909618 909623) (-524 "INTPACK.spad" 897764 897772 907444 907449) (-523 "INT.spad" 897125 897133 897618 897759) (-522 "INTHERTR.spad" 896391 896408 897115 897120) (-521 "INTHERAL.spad" 896057 896081 896381 896386) (-520 "INTHEORY.spad" 892470 892478 896047 896052) (-519 "INTG0.spad" 885933 885951 892402 892407) (-518 "INTFTBL.spad" 879962 879970 885923 885928) (-517 "INTFACT.spad" 879021 879031 879952 879957) (-516 "INTEF.spad" 877336 877352 879011 879016) (-515 "INTDOM.spad" 875951 875959 877262 877331) (-514 "INTDOM.spad" 874628 874638 875941 875946) (-513 "INTCAT.spad" 872881 872891 874542 874623) (-512 "INTBIT.spad" 872384 872392 872871 872876) (-511 "INTALG.spad" 871566 871593 872374 872379) (-510 "INTAF.spad" 871058 871074 871556 871561) (-509 "INTABL.spad" 869576 869607 869739 869766) (-508 "INS.spad" 866972 866980 869478 869571) (-507 "INS.spad" 864454 864464 866962 866967) (-506 "INPSIGN.spad" 863888 863901 864444 864449) (-505 "INPRODPF.spad" 862954 862973 863878 863883) (-504 "INPRODFF.spad" 862012 862036 862944 862949) (-503 "INNMFACT.spad" 860983 861000 862002 862007) (-502 "INMODGCD.spad" 860467 860497 860973 860978) (-501 "INFSP.spad" 858752 858774 860457 860462) (-500 "INFPROD0.spad" 857802 857821 858742 858747) (-499 "INFORM.spad" 855070 855078 857792 857797) (-498 "INFORM1.spad" 854695 854705 855060 855065) (-497 "INFINITY.spad" 854247 854255 854685 854690) (-496 "INEP.spad" 852779 852801 854237 854242) (-495 "INDE.spad" 852685 852702 852769 852774) (-494 "INCRMAPS.spad" 852106 852116 852675 852680) (-493 "INBFF.spad" 847876 847887 852096 852101) (-492 "IMATRIX.spad" 846821 846847 847333 847360) (-491 "IMATQF.spad" 845915 845959 846777 846782) (-490 "IMATLIN.spad" 844520 844544 845871 845876) (-489 "ILIST.spad" 843176 843191 843703 843730) (-488 "IIARRAY2.spad" 842564 842602 842783 842810) (-487 "IFF.spad" 841974 841990 842245 842338) (-486 "IFARRAY.spad" 839461 839476 841157 841184) (-485 "IFAMON.spad" 839323 839340 839417 839422) (-484 "IEVALAB.spad" 838712 838724 839313 839318) (-483 "IEVALAB.spad" 838099 838113 838702 838707) (-482 "IDPO.spad" 837897 837909 838089 838094) (-481 "IDPOAMS.spad" 837653 837665 837887 837892) (-480 "IDPOAM.spad" 837373 837385 837643 837648) (-479 "IDPC.spad" 836307 836319 837363 837368) (-478 "IDPAM.spad" 836052 836064 836297 836302) (-477 "IDPAG.spad" 835799 835811 836042 836047) (-476 "IDECOMP.spad" 833036 833054 835789 835794) (-475 "IDEAL.spad" 827959 827998 832971 832976) (-474 "ICDEN.spad" 827110 827126 827949 827954) (-473 "ICARD.spad" 826299 826307 827100 827105) (-472 "IBPTOOLS.spad" 824892 824909 826289 826294) (-471 "IBITS.spad" 824091 824104 824528 824555) (-470 "IBATOOL.spad" 820966 820985 824081 824086) (-469 "IBACHIN.spad" 819453 819468 820956 820961) (-468 "IARRAY2.spad" 818441 818467 819060 819087) (-467 "IARRAY1.spad" 817486 817501 817624 817651) (-466 "IAN.spad" 815701 815709 817304 817397) (-465 "IALGFACT.spad" 815302 815335 815691 815696) (-464 "HYPCAT.spad" 814726 814734 815292 815297) (-463 "HYPCAT.spad" 814148 814158 814716 814721) (-462 "HOAGG.spad" 811406 811416 814128 814143) (-461 "HOAGG.spad" 808449 808461 811173 811178) (-460 "HEXADEC.spad" 806321 806329 806919 807012) (-459 "HEUGCD.spad" 805336 805347 806311 806316) (-458 "HELLFDIV.spad" 804926 804950 805326 805331) (-457 "HEAP.spad" 804318 804328 804533 804560) (-456 "HDP.spad" 795840 795856 796217 796346) (-455 "HDMP.spad" 793019 793034 793637 793764) (-454 "HB.spad" 791256 791264 793009 793014) (-453 "HASHTBL.spad" 789726 789757 789937 789964) (-452 "HACKPI.spad" 789209 789217 789628 789721) (-451 "GTSET.spad" 788148 788164 788855 788882) (-450 "GSTBL.spad" 786667 786702 786841 786856) (-449 "GSERIES.spad" 783834 783861 784799 784948) (-448 "GROUP.spad" 783008 783016 783814 783829) (-447 "GROUP.spad" 782190 782200 782998 783003) (-446 "GROEBSOL.spad" 780678 780699 782180 782185) (-445 "GRMOD.spad" 779249 779261 780668 780673) (-444 "GRMOD.spad" 777818 777832 779239 779244) (-443 "GRIMAGE.spad" 770423 770431 777808 777813) (-442 "GRDEF.spad" 768802 768810 770413 770418) (-441 "GRAY.spad" 767261 767269 768792 768797) (-440 "GRALG.spad" 766308 766320 767251 767256) (-439 "GRALG.spad" 765353 765367 766298 766303) (-438 "GPOLSET.spad" 764807 764830 765035 765062) (-437 "GOSPER.spad" 764072 764090 764797 764802) (-436 "GMODPOL.spad" 763210 763237 764040 764067) (-435 "GHENSEL.spad" 762279 762293 763200 763205) (-434 "GENUPS.spad" 758380 758393 762269 762274) (-433 "GENUFACT.spad" 757957 757967 758370 758375) (-432 "GENPGCD.spad" 757541 757558 757947 757952) (-431 "GENMFACT.spad" 756993 757012 757531 757536) (-430 "GENEEZ.spad" 754932 754945 756983 756988) (-429 "GDMP.spad" 751953 751970 752729 752856) (-428 "GCNAALG.spad" 745848 745875 751747 751814) (-427 "GCDDOM.spad" 745020 745028 745774 745843) (-426 "GCDDOM.spad" 744254 744264 745010 745015) (-425 "GB.spad" 741772 741810 744210 744215) (-424 "GBINTERN.spad" 737792 737830 741762 741767) (-423 "GBF.spad" 733549 733587 737782 737787) (-422 "GBEUCLID.spad" 731423 731461 733539 733544) (-421 "GAUSSFAC.spad" 730720 730728 731413 731418) (-420 "GALUTIL.spad" 729042 729052 730676 730681) (-419 "GALPOLYU.spad" 727488 727501 729032 729037) (-418 "GALFACTU.spad" 725653 725672 727478 727483) (-417 "GALFACT.spad" 715786 715797 725643 725648) (-416 "FVFUN.spad" 712799 712807 715766 715781) (-415 "FVC.spad" 711841 711849 712779 712794) (-414 "FUNCTION.spad" 711690 711702 711831 711836) (-413 "FT.spad" 709902 709910 711680 711685) (-412 "FTEM.spad" 709065 709073 709892 709897) (-411 "FSUPFACT.spad" 707966 707985 709002 709007) (-410 "FST.spad" 706052 706060 707956 707961) (-409 "FSRED.spad" 705530 705546 706042 706047) (-408 "FSPRMELT.spad" 704354 704370 705487 705492) (-407 "FSPECF.spad" 702431 702447 704344 704349) (-406 "FS.spad" 696482 696492 702195 702426) (-405 "FS.spad" 690324 690336 696039 696044) (-404 "FSINT.spad" 689982 689998 690314 690319) (-403 "FSERIES.spad" 689169 689181 689802 689901) (-402 "FSCINT.spad" 688482 688498 689159 689164) (-401 "FSAGG.spad" 687587 687597 688426 688477) (-400 "FSAGG.spad" 686666 686678 687507 687512) (-399 "FSAGG2.spad" 685365 685381 686656 686661) (-398 "FS2UPS.spad" 679754 679788 685355 685360) (-397 "FS2.spad" 679399 679415 679744 679749) (-396 "FS2EXPXP.spad" 678522 678545 679389 679394) (-395 "FRUTIL.spad" 677464 677474 678512 678517) (-394 "FR.spad" 671161 671171 676491 676560) (-393 "FRNAALG.spad" 666248 666258 671103 671156) (-392 "FRNAALG.spad" 661347 661359 666204 666209) (-391 "FRNAAF2.spad" 660801 660819 661337 661342) (-390 "FRMOD.spad" 660196 660226 660733 660738) (-389 "FRIDEAL.spad" 659391 659412 660176 660191) (-388 "FRIDEAL2.spad" 658993 659025 659381 659386) (-387 "FRETRCT.spad" 658504 658514 658983 658988) (-386 "FRETRCT.spad" 657883 657895 658364 658369) (-385 "FRAMALG.spad" 656211 656224 657839 657878) (-384 "FRAMALG.spad" 654571 654586 656201 656206) (-383 "FRAC.spad" 651674 651684 652077 652250) (-382 "FRAC2.spad" 651277 651289 651664 651669) (-381 "FR2.spad" 650611 650623 651267 651272) (-380 "FPS.spad" 647420 647428 650501 650606) (-379 "FPS.spad" 644257 644267 647340 647345) (-378 "FPC.spad" 643299 643307 644159 644252) (-377 "FPC.spad" 642427 642437 643289 643294) (-376 "FPATMAB.spad" 642179 642189 642407 642422) (-375 "FPARFRAC.spad" 640652 640669 642169 642174) (-374 "FORTRAN.spad" 639158 639201 640642 640647) (-373 "FORT.spad" 638087 638095 639148 639153) (-372 "FORTFN.spad" 635247 635255 638067 638082) (-371 "FORTCAT.spad" 634921 634929 635227 635242) (-370 "FORMULA.spad" 632259 632267 634911 634916) (-369 "FORMULA1.spad" 631738 631748 632249 632254) (-368 "FORDER.spad" 631429 631453 631728 631733) (-367 "FOP.spad" 630630 630638 631419 631424) (-366 "FNLA.spad" 630054 630076 630598 630625) (-365 "FNCAT.spad" 628382 628390 630044 630049) (-364 "FNAME.spad" 628274 628282 628372 628377) (-363 "FMTC.spad" 628072 628080 628200 628269) (-362 "FMONOID.spad" 625127 625137 628028 628033) (-361 "FM.spad" 624822 624834 625061 625088) (-360 "FMFUN.spad" 621842 621850 624802 624817) (-359 "FMC.spad" 620884 620892 621822 621837) (-358 "FMCAT.spad" 618538 618556 620852 620879) (-357 "FM1.spad" 617895 617907 618472 618499) (-356 "FLOATRP.spad" 615616 615630 617885 617890) (-355 "FLOAT.spad" 608780 608788 615482 615611) (-354 "FLOATCP.spad" 606197 606211 608770 608775) (-353 "FLINEXP.spad" 605909 605919 606177 606192) (-352 "FLINEXP.spad" 605575 605587 605845 605850) (-351 "FLASORT.spad" 604895 604907 605565 605570) (-350 "FLALG.spad" 602541 602560 604821 604890) (-349 "FLAGG.spad" 599547 599557 602509 602536) (-348 "FLAGG.spad" 596466 596478 599430 599435) (-347 "FLAGG2.spad" 595147 595163 596456 596461) (-346 "FINRALG.spad" 593176 593189 595103 595142) (-345 "FINRALG.spad" 591131 591146 593060 593065) (-344 "FINITE.spad" 590283 590291 591121 591126) (-343 "FINAALG.spad" 579264 579274 590225 590278) (-342 "FINAALG.spad" 568257 568269 579220 579225) (-341 "FILE.spad" 567840 567850 568247 568252) (-340 "FILECAT.spad" 566358 566375 567830 567835) (-339 "FIELD.spad" 565764 565772 566260 566353) (-338 "FIELD.spad" 565256 565266 565754 565759) (-337 "FGROUP.spad" 563865 563875 565236 565251) (-336 "FGLMICPK.spad" 562652 562667 563855 563860) (-335 "FFX.spad" 562027 562042 562368 562461) (-334 "FFSLPE.spad" 561516 561537 562017 562022) (-333 "FFPOLY.spad" 552768 552779 561506 561511) (-332 "FFPOLY2.spad" 551828 551845 552758 552763) (-331 "FFP.spad" 551225 551245 551544 551637) (-330 "FF.spad" 550673 550689 550906 550999) (-329 "FFNBX.spad" 549185 549205 550389 550482) (-328 "FFNBP.spad" 547698 547715 548901 548994) (-327 "FFNB.spad" 546163 546184 547379 547472) (-326 "FFINTBAS.spad" 543577 543596 546153 546158) (-325 "FFIELDC.spad" 541152 541160 543479 543572) (-324 "FFIELDC.spad" 538813 538823 541142 541147) (-323 "FFHOM.spad" 537561 537578 538803 538808) (-322 "FFF.spad" 534996 535007 537551 537556) (-321 "FFCGX.spad" 533843 533863 534712 534805) (-320 "FFCGP.spad" 532732 532752 533559 533652) (-319 "FFCG.spad" 531524 531545 532413 532506) (-318 "FFCAT.spad" 524425 524447 531363 531519) (-317 "FFCAT.spad" 517405 517429 524345 524350) (-316 "FFCAT2.spad" 517150 517190 517395 517400) (-315 "FEXPR.spad" 508863 508909 516910 516949) (-314 "FEVALAB.spad" 508569 508579 508853 508858) (-313 "FEVALAB.spad" 508060 508072 508346 508351) (-312 "FDIV.spad" 507502 507526 508050 508055) (-311 "FDIVCAT.spad" 505544 505568 507492 507497) (-310 "FDIVCAT.spad" 503584 503610 505534 505539) (-309 "FDIV2.spad" 503238 503278 503574 503579) (-308 "FCPAK1.spad" 501791 501799 503228 503233) (-307 "FCOMP.spad" 501170 501180 501781 501786) (-306 "FC.spad" 490995 491003 501160 501165) (-305 "FAXF.spad" 483930 483944 490897 490990) (-304 "FAXF.spad" 476917 476933 483886 483891) (-303 "FARRAY.spad" 475063 475073 476100 476127) (-302 "FAMR.spad" 473183 473195 474961 475058) (-301 "FAMR.spad" 471287 471301 473067 473072) (-300 "FAMONOID.spad" 470937 470947 471241 471246) (-299 "FAMONC.spad" 469159 469171 470927 470932) (-298 "FAGROUP.spad" 468765 468775 469055 469082) (-297 "FACUTIL.spad" 466961 466978 468755 468760) (-296 "FACTFUNC.spad" 466137 466147 466951 466956) (-295 "EXPUPXS.spad" 462970 462993 464269 464418) (-294 "EXPRTUBE.spad" 460198 460206 462960 462965) (-293 "EXPRODE.spad" 457070 457086 460188 460193) (-292 "EXPR.spad" 452372 452382 453086 453489) (-291 "EXPR2UPS.spad" 448464 448477 452362 452367) (-290 "EXPR2.spad" 448167 448179 448454 448459) (-289 "EXPEXPAN.spad" 445108 445133 445742 445835) (-288 "EXIT.spad" 444779 444787 445098 445103) (-287 "EVALCYC.spad" 444237 444251 444769 444774) (-286 "EVALAB.spad" 443801 443811 444227 444232) (-285 "EVALAB.spad" 443363 443375 443791 443796) (-284 "EUCDOM.spad" 440905 440913 443289 443358) (-283 "EUCDOM.spad" 438509 438519 440895 440900) (-282 "ESTOOLS.spad" 430349 430357 438499 438504) (-281 "ESTOOLS2.spad" 429950 429964 430339 430344) (-280 "ESTOOLS1.spad" 429635 429646 429940 429945) (-279 "ES.spad" 422182 422190 429625 429630) (-278 "ES.spad" 414637 414647 422082 422087) (-277 "ESCONT.spad" 411410 411418 414627 414632) (-276 "ESCONT1.spad" 411159 411171 411400 411405) (-275 "ES2.spad" 410654 410670 411149 411154) (-274 "ES1.spad" 410220 410236 410644 410649) (-273 "ERROR.spad" 407541 407549 410210 410215) (-272 "EQTBL.spad" 406013 406035 406222 406249) (-271 "EQ.spad" 400897 400907 403696 403805) (-270 "EQ2.spad" 400613 400625 400887 400892) (-269 "EP.spad" 396927 396937 400603 400608) (-268 "ENV.spad" 395629 395637 396917 396922) (-267 "ENTIRER.spad" 395297 395305 395573 395624) (-266 "EMR.spad" 394498 394539 395223 395292) (-265 "ELTAGG.spad" 392738 392757 394488 394493) (-264 "ELTAGG.spad" 390942 390963 392694 392699) (-263 "ELTAB.spad" 390389 390407 390932 390937) (-262 "ELFUTS.spad" 389768 389787 390379 390384) (-261 "ELEMFUN.spad" 389457 389465 389758 389763) (-260 "ELEMFUN.spad" 389144 389154 389447 389452) (-259 "ELAGG.spad" 387075 387085 389112 389139) (-258 "ELAGG.spad" 384955 384967 386994 386999) (-257 "ELABEXPR.spad" 383886 383894 384945 384950) (-256 "EFUPXS.spad" 380662 380692 383842 383847) (-255 "EFULS.spad" 377498 377521 380618 380623) (-254 "EFSTRUC.spad" 375453 375469 377488 377493) (-253 "EF.spad" 370219 370235 375443 375448) (-252 "EAB.spad" 368495 368503 370209 370214) (-251 "E04UCFA.spad" 368031 368039 368485 368490) (-250 "E04NAFA.spad" 367608 367616 368021 368026) (-249 "E04MBFA.spad" 367188 367196 367598 367603) (-248 "E04JAFA.spad" 366724 366732 367178 367183) (-247 "E04GCFA.spad" 366260 366268 366714 366719) (-246 "E04FDFA.spad" 365796 365804 366250 366255) (-245 "E04DGFA.spad" 365332 365340 365786 365791) (-244 "E04AGNT.spad" 361174 361182 365322 365327) (-243 "DVARCAT.spad" 357859 357869 361164 361169) (-242 "DVARCAT.spad" 354542 354554 357849 357854) (-241 "DSMP.spad" 351976 351990 352281 352408) (-240 "DROPT.spad" 345921 345929 351966 351971) (-239 "DROPT1.spad" 345584 345594 345911 345916) (-238 "DROPT0.spad" 340411 340419 345574 345579) (-237 "DRAWPT.spad" 338566 338574 340401 340406) (-236 "DRAW.spad" 331166 331179 338556 338561) (-235 "DRAWHACK.spad" 330474 330484 331156 331161) (-234 "DRAWCX.spad" 327916 327924 330464 330469) (-233 "DRAWCURV.spad" 327453 327468 327906 327911) (-232 "DRAWCFUN.spad" 316625 316633 327443 327448) (-231 "DQAGG.spad" 314781 314791 316581 316620) (-230 "DPOLCAT.spad" 310122 310138 314649 314776) (-229 "DPOLCAT.spad" 305549 305567 310078 310083) (-228 "DPMO.spad" 299536 299552 299674 299970) (-227 "DPMM.spad" 293536 293554 293661 293957) (-226 "DOMAIN.spad" 292807 292815 293526 293531) (-225 "DMP.spad" 290032 290047 290604 290731) (-224 "DLP.spad" 289380 289390 290022 290027) (-223 "DLIST.spad" 287792 287802 288563 288590) (-222 "DLAGG.spad" 286193 286203 287772 287787) (-221 "DIVRING.spad" 285640 285648 286137 286188) (-220 "DIVRING.spad" 285131 285141 285630 285635) (-219 "DISPLAY.spad" 283311 283319 285121 285126) (-218 "DIRPROD.spad" 274570 274586 275210 275339) (-217 "DIRPROD2.spad" 273378 273396 274560 274565) (-216 "DIRPCAT.spad" 272310 272326 273232 273373) (-215 "DIRPCAT.spad" 270982 271000 271906 271911) (-214 "DIOSP.spad" 269807 269815 270972 270977) (-213 "DIOPS.spad" 268779 268789 269775 269802) (-212 "DIOPS.spad" 267737 267749 268735 268740) (-211 "DIFRING.spad" 267029 267037 267717 267732) (-210 "DIFRING.spad" 266329 266339 267019 267024) (-209 "DIFEXT.spad" 265488 265498 266309 266324) (-208 "DIFEXT.spad" 264564 264576 265387 265392) (-207 "DIAGG.spad" 264182 264192 264532 264559) (-206 "DIAGG.spad" 263820 263832 264172 264177) (-205 "DHMATRIX.spad" 262124 262134 263277 263304) (-204 "DFSFUN.spad" 255532 255540 262114 262119) (-203 "DFLOAT.spad" 252055 252063 255422 255527) (-202 "DFINTTLS.spad" 250264 250280 252045 252050) (-201 "DERHAM.spad" 248174 248206 250244 250259) (-200 "DEQUEUE.spad" 247492 247502 247781 247808) (-199 "DEGRED.spad" 247107 247121 247482 247487) (-198 "DEFINTRF.spad" 244632 244642 247097 247102) (-197 "DEFINTEF.spad" 243128 243144 244622 244627) (-196 "DECIMAL.spad" 241012 241020 241598 241691) (-195 "DDFACT.spad" 238811 238828 241002 241007) (-194 "DBLRESP.spad" 238409 238433 238801 238806) (-193 "DBASE.spad" 236981 236991 238399 238404) (-192 "D03FAFA.spad" 236809 236817 236971 236976) (-191 "D03EEFA.spad" 236629 236637 236799 236804) (-190 "D03AGNT.spad" 235709 235717 236619 236624) (-189 "D02EJFA.spad" 235171 235179 235699 235704) (-188 "D02CJFA.spad" 234649 234657 235161 235166) (-187 "D02BHFA.spad" 234139 234147 234639 234644) (-186 "D02BBFA.spad" 233629 233637 234129 234134) (-185 "D02AGNT.spad" 228433 228441 233619 233624) (-184 "D01WGTS.spad" 226752 226760 228423 228428) (-183 "D01TRNS.spad" 226729 226737 226742 226747) (-182 "D01GBFA.spad" 226251 226259 226719 226724) (-181 "D01FCFA.spad" 225773 225781 226241 226246) (-180 "D01ASFA.spad" 225241 225249 225763 225768) (-179 "D01AQFA.spad" 224687 224695 225231 225236) (-178 "D01APFA.spad" 224111 224119 224677 224682) (-177 "D01ANFA.spad" 223605 223613 224101 224106) (-176 "D01AMFA.spad" 223115 223123 223595 223600) (-175 "D01ALFA.spad" 222655 222663 223105 223110) (-174 "D01AKFA.spad" 222181 222189 222645 222650) (-173 "D01AJFA.spad" 221704 221712 222171 222176) (-172 "D01AGNT.spad" 217763 217771 221694 221699) (-171 "CYCLOTOM.spad" 217269 217277 217753 217758) (-170 "CYCLES.spad" 214101 214109 217259 217264) (-169 "CVMP.spad" 213518 213528 214091 214096) (-168 "CTRIGMNP.spad" 212008 212024 213508 213513) (-167 "CTORCALL.spad" 211596 211604 211998 212003) (-166 "CSTTOOLS.spad" 210839 210852 211586 211591) (-165 "CRFP.spad" 204543 204556 210829 210834) (-164 "CRAPACK.spad" 203586 203596 204533 204538) (-163 "CPMATCH.spad" 203086 203101 203511 203516) (-162 "CPIMA.spad" 202791 202810 203076 203081) (-161 "COORDSYS.spad" 197684 197694 202781 202786) (-160 "CONTOUR.spad" 197086 197094 197674 197679) (-159 "CONTFRAC.spad" 192698 192708 196988 197081) (-158 "COMRING.spad" 192372 192380 192636 192693) (-157 "COMPPROP.spad" 191886 191894 192362 192367) (-156 "COMPLPAT.spad" 191653 191668 191876 191881) (-155 "COMPLEX.spad" 185686 185696 185930 186191) (-154 "COMPLEX2.spad" 185399 185411 185676 185681) (-153 "COMPFACT.spad" 185001 185015 185389 185394) (-152 "COMPCAT.spad" 183057 183067 184723 184996) (-151 "COMPCAT.spad" 180820 180832 182488 182493) (-150 "COMMUPC.spad" 180566 180584 180810 180815) (-149 "COMMONOP.spad" 180099 180107 180556 180561) (-148 "COMM.spad" 179908 179916 180089 180094) (-147 "COMBOPC.spad" 178813 178821 179898 179903) (-146 "COMBINAT.spad" 177558 177568 178803 178808) (-145 "COMBF.spad" 174926 174942 177548 177553) (-144 "COLOR.spad" 173763 173771 174916 174921) (-143 "CMPLXRT.spad" 173472 173489 173753 173758) (-142 "CLIP.spad" 169564 169572 173462 173467) (-141 "CLIF.spad" 168203 168219 169520 169559) (-140 "CLAGG.spad" 164678 164688 168183 168198) (-139 "CLAGG.spad" 161034 161046 164541 164546) (-138 "CINTSLPE.spad" 160359 160372 161024 161029) (-137 "CHVAR.spad" 158437 158459 160349 160354) (-136 "CHARZ.spad" 158352 158360 158417 158432) (-135 "CHARPOL.spad" 157860 157870 158342 158347) (-134 "CHARNZ.spad" 157613 157621 157840 157855) (-133 "CHAR.spad" 155481 155489 157603 157608) (-132 "CFCAT.spad" 154797 154805 155471 155476) (-131 "CDEN.spad" 153955 153969 154787 154792) (-130 "CCLASS.spad" 152104 152112 153366 153405) (-129 "CATEGORY.spad" 151883 151891 152094 152099) (-128 "CARTEN.spad" 146986 147010 151873 151878) (-127 "CARTEN2.spad" 146372 146399 146976 146981) (-126 "CARD.spad" 143661 143669 146346 146367) (-125 "CACHSET.spad" 143283 143291 143651 143656) (-124 "CABMON.spad" 142836 142844 143273 143278) (-123 "BTREE.spad" 141905 141915 142443 142470) (-122 "BTOURN.spad" 140908 140918 141512 141539) (-121 "BTCAT.spad" 140284 140294 140864 140903) (-120 "BTCAT.spad" 139692 139704 140274 140279) (-119 "BTAGG.spad" 138708 138716 139648 139687) (-118 "BTAGG.spad" 137756 137766 138698 138703) (-117 "BSTREE.spad" 136491 136501 137363 137390) (-116 "BRILL.spad" 134686 134697 136481 136486) (-115 "BRAGG.spad" 133600 133610 134666 134681) (-114 "BRAGG.spad" 132488 132500 133556 133561) (-113 "BPADICRT.spad" 130472 130484 130727 130820) (-112 "BPADIC.spad" 130136 130148 130398 130467) (-111 "BOUNDZRO.spad" 129792 129809 130126 130131) (-110 "BOP.spad" 125256 125264 129782 129787) (-109 "BOP1.spad" 122642 122652 125212 125217) (-108 "BOOLEAN.spad" 121895 121903 122632 122637) (-107 "BMODULE.spad" 121607 121619 121863 121890) (-106 "BITS.spad" 121026 121034 121243 121270) (-105 "BINFILE.spad" 120369 120377 121016 121021) (-104 "BINDING.spad" 119788 119796 120359 120364) (-103 "BINARY.spad" 117681 117689 118258 118351) (-102 "BGAGG.spad" 116866 116876 117649 117676) (-101 "BGAGG.spad" 116071 116083 116856 116861) (-100 "BFUNCT.spad" 115635 115643 116051 116066) (-99 "BEZOUT.spad" 114770 114796 115585 115590) (-98 "BBTREE.spad" 111590 111599 114377 114404) (-97 "BASTYPE.spad" 111263 111270 111580 111585) (-96 "BASTYPE.spad" 110934 110943 111253 111258) (-95 "BALFACT.spad" 110374 110386 110924 110929) (-94 "AUTOMOR.spad" 109821 109830 110354 110369) (-93 "ATTREG.spad" 106540 106547 109573 109816) (-92 "ATTRBUT.spad" 102563 102570 106520 106535) (-91 "ATRIG.spad" 102033 102040 102553 102558) (-90 "ATRIG.spad" 101501 101510 102023 102028) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2236542 2236547 2236552 2236557) (-2 NIL 2236522 2236527 2236532 2236537) (-1 NIL 2236502 2236507 2236512 2236517) (0 NIL 2236482 2236487 2236492 2236497) (-1195 "ZMOD.spad" 2236291 2236304 2236420 2236477) (-1194 "ZLINDEP.spad" 2235335 2235346 2236281 2236286) (-1193 "ZDSOLVE.spad" 2225184 2225206 2235325 2235330) (-1192 "YSTREAM.spad" 2224677 2224688 2225174 2225179) (-1191 "XRPOLY.spad" 2223897 2223917 2224533 2224602) (-1190 "XPR.spad" 2221626 2221639 2223615 2223714) (-1189 "XPOLY.spad" 2221181 2221192 2221482 2221551) (-1188 "XPOLYC.spad" 2220498 2220514 2221107 2221176) (-1187 "XPBWPOLY.spad" 2218935 2218955 2220278 2220347) (-1186 "XF.spad" 2217396 2217411 2218837 2218930) (-1185 "XF.spad" 2215837 2215854 2217280 2217285) (-1184 "XFALG.spad" 2212861 2212877 2215763 2215832) (-1183 "XEXPPKG.spad" 2212112 2212138 2212851 2212856) (-1182 "XDPOLY.spad" 2211726 2211742 2211968 2212037) (-1181 "XALG.spad" 2211324 2211335 2211682 2211721) (-1180 "WUTSET.spad" 2207163 2207180 2210970 2210997) (-1179 "WP.spad" 2206177 2206221 2207021 2207088) (-1178 "WFFINTBS.spad" 2203740 2203762 2206167 2206172) (-1177 "WEIER.spad" 2201954 2201965 2203730 2203735) (-1176 "VSPACE.spad" 2201627 2201638 2201922 2201949) (-1175 "VSPACE.spad" 2201320 2201333 2201617 2201622) (-1174 "VOID.spad" 2200910 2200919 2201310 2201315) (-1173 "VIEW.spad" 2198532 2198541 2200900 2200905) (-1172 "VIEWDEF.spad" 2193729 2193738 2198522 2198527) (-1171 "VIEW3D.spad" 2177564 2177573 2193719 2193724) (-1170 "VIEW2D.spad" 2165301 2165310 2177554 2177559) (-1169 "VECTOR.spad" 2163978 2163989 2164229 2164256) (-1168 "VECTOR2.spad" 2162605 2162618 2163968 2163973) (-1167 "VECTCAT.spad" 2160493 2160504 2162561 2162600) (-1166 "VECTCAT.spad" 2158202 2158215 2160272 2160277) (-1165 "VARIABLE.spad" 2157982 2157997 2158192 2158197) (-1164 "UTYPE.spad" 2157616 2157625 2157962 2157977) (-1163 "UTSODETL.spad" 2156909 2156933 2157572 2157577) (-1162 "UTSODE.spad" 2155097 2155117 2156899 2156904) (-1161 "UTS.spad" 2149886 2149914 2153564 2153661) (-1160 "UTSCAT.spad" 2147337 2147353 2149784 2149881) (-1159 "UTSCAT.spad" 2144432 2144450 2146881 2146886) (-1158 "UTS2.spad" 2144025 2144060 2144422 2144427) (-1157 "URAGG.spad" 2138647 2138658 2144005 2144020) (-1156 "URAGG.spad" 2133243 2133256 2138603 2138608) (-1155 "UPXSSING.spad" 2130889 2130915 2132327 2132460) (-1154 "UPXS.spad" 2127916 2127944 2129021 2129170) (-1153 "UPXSCONS.spad" 2125673 2125693 2126048 2126197) (-1152 "UPXSCCA.spad" 2124131 2124151 2125519 2125668) (-1151 "UPXSCCA.spad" 2122731 2122753 2124121 2124126) (-1150 "UPXSCAT.spad" 2121312 2121328 2122577 2122726) (-1149 "UPXS2.spad" 2120853 2120906 2121302 2121307) (-1148 "UPSQFREE.spad" 2119265 2119279 2120843 2120848) (-1147 "UPSCAT.spad" 2116858 2116882 2119163 2119260) (-1146 "UPSCAT.spad" 2114157 2114183 2116464 2116469) (-1145 "UPOLYC.spad" 2109135 2109146 2113999 2114152) (-1144 "UPOLYC.spad" 2104005 2104018 2108871 2108876) (-1143 "UPOLYC2.spad" 2103474 2103493 2103995 2104000) (-1142 "UP.spad" 2100519 2100534 2101027 2101180) (-1141 "UPMP.spad" 2099409 2099422 2100509 2100514) (-1140 "UPDIVP.spad" 2098972 2098986 2099399 2099404) (-1139 "UPDECOMP.spad" 2097209 2097223 2098962 2098967) (-1138 "UPCDEN.spad" 2096416 2096432 2097199 2097204) (-1137 "UP2.spad" 2095778 2095799 2096406 2096411) (-1136 "UNISEG.spad" 2095131 2095142 2095697 2095702) (-1135 "UNISEG2.spad" 2094624 2094637 2095087 2095092) (-1134 "UNIFACT.spad" 2093725 2093737 2094614 2094619) (-1133 "ULS.spad" 2084284 2084312 2085377 2085806) (-1132 "ULSCONS.spad" 2078327 2078347 2078699 2078848) (-1131 "ULSCCAT.spad" 2075924 2075944 2078147 2078322) (-1130 "ULSCCAT.spad" 2073655 2073677 2075880 2075885) (-1129 "ULSCAT.spad" 2071871 2071887 2073501 2073650) (-1128 "ULS2.spad" 2071383 2071436 2071861 2071866) (-1127 "UFD.spad" 2070448 2070457 2071309 2071378) (-1126 "UFD.spad" 2069575 2069586 2070438 2070443) (-1125 "UDVO.spad" 2068422 2068431 2069565 2069570) (-1124 "UDPO.spad" 2065849 2065860 2068378 2068383) (-1123 "TYPE.spad" 2065771 2065780 2065829 2065844) (-1122 "TWOFACT.spad" 2064421 2064436 2065761 2065766) (-1121 "TUPLE.spad" 2063807 2063818 2064320 2064325) (-1120 "TUBETOOL.spad" 2060644 2060653 2063797 2063802) (-1119 "TUBE.spad" 2059285 2059302 2060634 2060639) (-1118 "TS.spad" 2057874 2057890 2058850 2058947) (-1117 "TSETCAT.spad" 2044989 2045006 2057830 2057869) (-1116 "TSETCAT.spad" 2032102 2032121 2044945 2044950) (-1115 "TRMANIP.spad" 2026468 2026485 2031808 2031813) (-1114 "TRIMAT.spad" 2025427 2025452 2026458 2026463) (-1113 "TRIGMNIP.spad" 2023944 2023961 2025417 2025422) (-1112 "TRIGCAT.spad" 2023456 2023465 2023934 2023939) (-1111 "TRIGCAT.spad" 2022966 2022977 2023446 2023451) (-1110 "TREE.spad" 2021537 2021548 2022573 2022600) (-1109 "TRANFUN.spad" 2021368 2021377 2021527 2021532) (-1108 "TRANFUN.spad" 2021197 2021208 2021358 2021363) (-1107 "TOPSP.spad" 2020871 2020880 2021187 2021192) (-1106 "TOOLSIGN.spad" 2020534 2020545 2020861 2020866) (-1105 "TEXTFILE.spad" 2019091 2019100 2020524 2020529) (-1104 "TEX.spad" 2016108 2016117 2019081 2019086) (-1103 "TEX1.spad" 2015664 2015675 2016098 2016103) (-1102 "TEMUTL.spad" 2015219 2015228 2015654 2015659) (-1101 "TBCMPPK.spad" 2013312 2013335 2015209 2015214) (-1100 "TBAGG.spad" 2012336 2012359 2013280 2013307) (-1099 "TBAGG.spad" 2011380 2011405 2012326 2012331) (-1098 "TANEXP.spad" 2010756 2010767 2011370 2011375) (-1097 "TABLE.spad" 2009167 2009190 2009437 2009464) (-1096 "TABLEAU.spad" 2008648 2008659 2009157 2009162) (-1095 "TABLBUMP.spad" 2005431 2005442 2008638 2008643) (-1094 "SYSTEM.spad" 2004705 2004714 2005421 2005426) (-1093 "SYSSOLP.spad" 2002178 2002189 2004695 2004700) (-1092 "SYNTAX.spad" 1998370 1998379 2002168 2002173) (-1091 "SYMTAB.spad" 1996426 1996435 1998360 1998365) (-1090 "SYMS.spad" 1992411 1992420 1996416 1996421) (-1089 "SYMPOLY.spad" 1991421 1991432 1991503 1991630) (-1088 "SYMFUNC.spad" 1990896 1990907 1991411 1991416) (-1087 "SYMBOL.spad" 1988232 1988241 1990886 1990891) (-1086 "SWITCH.spad" 1984989 1984998 1988222 1988227) (-1085 "SUTS.spad" 1981888 1981916 1983456 1983553) (-1084 "SUPXS.spad" 1978902 1978930 1980020 1980169) (-1083 "SUP.spad" 1975674 1975685 1976455 1976608) (-1082 "SUPFRACF.spad" 1974779 1974797 1975664 1975669) (-1081 "SUP2.spad" 1974169 1974182 1974769 1974774) (-1080 "SUMRF.spad" 1973135 1973146 1974159 1974164) (-1079 "SUMFS.spad" 1972768 1972785 1973125 1973130) (-1078 "SULS.spad" 1963314 1963342 1964420 1964849) (-1077 "SUCH.spad" 1962994 1963009 1963304 1963309) (-1076 "SUBSPACE.spad" 1955001 1955016 1962984 1962989) (-1075 "SUBRESP.spad" 1954161 1954175 1954957 1954962) (-1074 "STTF.spad" 1950260 1950276 1954151 1954156) (-1073 "STTFNC.spad" 1946728 1946744 1950250 1950255) (-1072 "STTAYLOR.spad" 1939126 1939137 1946609 1946614) (-1071 "STRTBL.spad" 1937631 1937648 1937780 1937807) (-1070 "STRING.spad" 1937040 1937049 1937054 1937081) (-1069 "STRICAT.spad" 1936816 1936825 1936996 1937035) (-1068 "STREAM.spad" 1933584 1933595 1936341 1936356) (-1067 "STREAM3.spad" 1933129 1933144 1933574 1933579) (-1066 "STREAM2.spad" 1932197 1932210 1933119 1933124) (-1065 "STREAM1.spad" 1931901 1931912 1932187 1932192) (-1064 "STINPROD.spad" 1930807 1930823 1931891 1931896) (-1063 "STEP.spad" 1930008 1930017 1930797 1930802) (-1062 "STBL.spad" 1928534 1928562 1928701 1928716) (-1061 "STAGG.spad" 1927599 1927610 1928514 1928529) (-1060 "STAGG.spad" 1926672 1926685 1927589 1927594) (-1059 "STACK.spad" 1926023 1926034 1926279 1926306) (-1058 "SREGSET.spad" 1923727 1923744 1925669 1925696) (-1057 "SRDCMPK.spad" 1922272 1922292 1923717 1923722) (-1056 "SRAGG.spad" 1917357 1917366 1922228 1922267) (-1055 "SRAGG.spad" 1912474 1912485 1917347 1917352) (-1054 "SQMATRIX.spad" 1910100 1910118 1911008 1911095) (-1053 "SPLTREE.spad" 1904652 1904665 1909536 1909563) (-1052 "SPLNODE.spad" 1901240 1901253 1904642 1904647) (-1051 "SPFCAT.spad" 1900017 1900026 1901230 1901235) (-1050 "SPECOUT.spad" 1898567 1898576 1900007 1900012) (-1049 "spad-parser.spad" 1898032 1898041 1898557 1898562) (-1048 "SPACEC.spad" 1882045 1882056 1898022 1898027) (-1047 "SPACE3.spad" 1881821 1881832 1882035 1882040) (-1046 "SORTPAK.spad" 1881366 1881379 1881777 1881782) (-1045 "SOLVETRA.spad" 1879123 1879134 1881356 1881361) (-1044 "SOLVESER.spad" 1877643 1877654 1879113 1879118) (-1043 "SOLVERAD.spad" 1873653 1873664 1877633 1877638) (-1042 "SOLVEFOR.spad" 1872073 1872091 1873643 1873648) (-1041 "SNTSCAT.spad" 1871661 1871678 1872029 1872068) (-1040 "SMTS.spad" 1869921 1869947 1871226 1871323) (-1039 "SMP.spad" 1867363 1867383 1867753 1867880) (-1038 "SMITH.spad" 1866206 1866231 1867353 1867358) (-1037 "SMATCAT.spad" 1864304 1864334 1866138 1866201) (-1036 "SMATCAT.spad" 1862346 1862378 1864182 1864187) (-1035 "SKAGG.spad" 1861295 1861306 1862302 1862341) (-1034 "SINT.spad" 1859603 1859612 1861161 1861290) (-1033 "SIMPAN.spad" 1859331 1859340 1859593 1859598) (-1032 "SIGNRF.spad" 1858439 1858450 1859321 1859326) (-1031 "SIGNEF.spad" 1857708 1857725 1858429 1858434) (-1030 "SHP.spad" 1855626 1855641 1857664 1857669) (-1029 "SHDP.spad" 1847016 1847043 1847525 1847654) (-1028 "SGROUP.spad" 1846482 1846491 1847006 1847011) (-1027 "SGROUP.spad" 1845946 1845957 1846472 1846477) (-1026 "SGCF.spad" 1838827 1838836 1845936 1845941) (-1025 "SFRTCAT.spad" 1837743 1837760 1838783 1838822) (-1024 "SFRGCD.spad" 1836806 1836826 1837733 1837738) (-1023 "SFQCMPK.spad" 1831443 1831463 1836796 1836801) (-1022 "SFORT.spad" 1830878 1830892 1831433 1831438) (-1021 "SEXOF.spad" 1830721 1830761 1830868 1830873) (-1020 "SEX.spad" 1830613 1830622 1830711 1830716) (-1019 "SEXCAT.spad" 1827717 1827757 1830603 1830608) (-1018 "SET.spad" 1826017 1826028 1827138 1827177) (-1017 "SETMN.spad" 1824451 1824468 1826007 1826012) (-1016 "SETCAT.spad" 1823936 1823945 1824441 1824446) (-1015 "SETCAT.spad" 1823419 1823430 1823926 1823931) (-1014 "SETAGG.spad" 1819942 1819953 1823387 1823414) (-1013 "SETAGG.spad" 1816485 1816498 1819932 1819937) (-1012 "SEGXCAT.spad" 1815597 1815610 1816465 1816480) (-1011 "SEG.spad" 1815410 1815421 1815516 1815521) (-1010 "SEGCAT.spad" 1814229 1814240 1815390 1815405) (-1009 "SEGBIND.spad" 1813301 1813312 1814184 1814189) (-1008 "SEGBIND2.spad" 1812997 1813010 1813291 1813296) (-1007 "SEG2.spad" 1812422 1812435 1812953 1812958) (-1006 "SDVAR.spad" 1811698 1811709 1812412 1812417) (-1005 "SDPOL.spad" 1809091 1809102 1809382 1809509) (-1004 "SCPKG.spad" 1807170 1807181 1809081 1809086) (-1003 "SCOPE.spad" 1806315 1806324 1807160 1807165) (-1002 "SCACHE.spad" 1804997 1805008 1806305 1806310) (-1001 "SAOS.spad" 1804869 1804878 1804987 1804992) (-1000 "SAERFFC.spad" 1804582 1804602 1804859 1804864) (-999 "SAE.spad" 1802761 1802776 1803371 1803506) (-998 "SAEFACT.spad" 1802463 1802482 1802751 1802756) (-997 "RURPK.spad" 1800105 1800120 1802453 1802458) (-996 "RULESET.spad" 1799547 1799570 1800095 1800100) (-995 "RULE.spad" 1797752 1797775 1799537 1799542) (-994 "RULECOLD.spad" 1797605 1797617 1797742 1797747) (-993 "RSETGCD.spad" 1793984 1794003 1797595 1797600) (-992 "RSETCAT.spad" 1783757 1783773 1793940 1793979) (-991 "RSETCAT.spad" 1773562 1773580 1783747 1783752) (-990 "RSDCMPK.spad" 1772015 1772034 1773552 1773557) (-989 "RRCC.spad" 1770400 1770429 1772005 1772010) (-988 "RRCC.spad" 1768783 1768814 1770390 1770395) (-987 "RPOLCAT.spad" 1748144 1748158 1768651 1768778) (-986 "RPOLCAT.spad" 1727220 1727236 1747729 1747734) (-985 "ROUTINE.spad" 1723084 1723092 1725867 1725894) (-984 "ROMAN.spad" 1722317 1722325 1722950 1723079) (-983 "ROIRC.spad" 1721398 1721429 1722307 1722312) (-982 "RNS.spad" 1720302 1720310 1721300 1721393) (-981 "RNS.spad" 1719292 1719302 1720292 1720297) (-980 "RNG.spad" 1719028 1719036 1719282 1719287) (-979 "RMODULE.spad" 1718667 1718677 1719018 1719023) (-978 "RMCAT2.spad" 1718076 1718132 1718657 1718662) (-977 "RMATRIX.spad" 1716756 1716774 1717243 1717282) (-976 "RMATCAT.spad" 1712278 1712308 1716700 1716751) (-975 "RMATCAT.spad" 1707702 1707734 1712126 1712131) (-974 "RINTERP.spad" 1707591 1707610 1707692 1707697) (-973 "RING.spad" 1706949 1706957 1707571 1707586) (-972 "RING.spad" 1706315 1706325 1706939 1706944) (-971 "RIDIST.spad" 1705700 1705708 1706305 1706310) (-970 "RGCHAIN.spad" 1704280 1704295 1705185 1705212) (-969 "RF.spad" 1701895 1701905 1704270 1704275) (-968 "RFFACTOR.spad" 1701358 1701368 1701885 1701890) (-967 "RFFACT.spad" 1701094 1701105 1701348 1701353) (-966 "RFDIST.spad" 1700083 1700091 1701084 1701089) (-965 "RETSOL.spad" 1699501 1699513 1700073 1700078) (-964 "RETRACT.spad" 1698851 1698861 1699491 1699496) (-963 "RETRACT.spad" 1698199 1698211 1698841 1698846) (-962 "RESULT.spad" 1696260 1696268 1696846 1696873) (-961 "RESRING.spad" 1695608 1695654 1696198 1696255) (-960 "RESLATC.spad" 1694933 1694943 1695598 1695603) (-959 "REPSQ.spad" 1694663 1694673 1694923 1694928) (-958 "REP.spad" 1692216 1692224 1694653 1694658) (-957 "REPDB.spad" 1691922 1691932 1692206 1692211) (-956 "REP2.spad" 1681495 1681505 1691764 1691769) (-955 "REP1.spad" 1675486 1675496 1681445 1681450) (-954 "REGSET.spad" 1673284 1673300 1675132 1675159) (-953 "REF.spad" 1672614 1672624 1673239 1673244) (-952 "REDORDER.spad" 1671791 1671807 1672604 1672609) (-951 "RECLOS.spad" 1670581 1670600 1671284 1671377) (-950 "REALSOLV.spad" 1669714 1669722 1670571 1670576) (-949 "REAL.spad" 1669587 1669595 1669704 1669709) (-948 "REAL0Q.spad" 1666870 1666884 1669577 1669582) (-947 "REAL0.spad" 1663699 1663713 1666860 1666865) (-946 "RDIV.spad" 1663351 1663375 1663689 1663694) (-945 "RDIST.spad" 1662915 1662925 1663341 1663346) (-944 "RDETRS.spad" 1661712 1661729 1662905 1662910) (-943 "RDETR.spad" 1659820 1659837 1661702 1661707) (-942 "RDEEFS.spad" 1658894 1658910 1659810 1659815) (-941 "RDEEF.spad" 1657891 1657907 1658884 1658889) (-940 "RCFIELD.spad" 1655075 1655083 1657793 1657886) (-939 "RCFIELD.spad" 1652345 1652355 1655065 1655070) (-938 "RCAGG.spad" 1650248 1650258 1652325 1652340) (-937 "RCAGG.spad" 1648088 1648100 1650167 1650172) (-936 "RATRET.spad" 1647449 1647459 1648078 1648083) (-935 "RATFACT.spad" 1647142 1647153 1647439 1647444) (-934 "RANDSRC.spad" 1646462 1646470 1647132 1647137) (-933 "RADUTIL.spad" 1646217 1646225 1646452 1646457) (-932 "RADIX.spad" 1643010 1643023 1644687 1644780) (-931 "RADFF.spad" 1641427 1641463 1641545 1641701) (-930 "RADCAT.spad" 1641021 1641029 1641417 1641422) (-929 "RADCAT.spad" 1640613 1640623 1641011 1641016) (-928 "QUEUE.spad" 1639956 1639966 1640220 1640247) (-927 "QUAT.spad" 1638542 1638552 1638884 1638949) (-926 "QUATCT2.spad" 1638161 1638179 1638532 1638537) (-925 "QUATCAT.spad" 1636326 1636336 1638091 1638156) (-924 "QUATCAT.spad" 1634243 1634255 1636010 1636015) (-923 "QUAGG.spad" 1633057 1633067 1634199 1634238) (-922 "QFORM.spad" 1632520 1632534 1633047 1633052) (-921 "QFCAT.spad" 1631211 1631221 1632410 1632515) (-920 "QFCAT.spad" 1629508 1629520 1630709 1630714) (-919 "QFCAT2.spad" 1629199 1629215 1629498 1629503) (-918 "QEQUAT.spad" 1628756 1628764 1629189 1629194) (-917 "QCMPACK.spad" 1623503 1623522 1628746 1628751) (-916 "QALGSET.spad" 1619578 1619610 1623417 1623422) (-915 "QALGSET2.spad" 1617574 1617592 1619568 1619573) (-914 "PWFFINTB.spad" 1614884 1614905 1617564 1617569) (-913 "PUSHVAR.spad" 1614213 1614232 1614874 1614879) (-912 "PTRANFN.spad" 1610339 1610349 1614203 1614208) (-911 "PTPACK.spad" 1607427 1607437 1610329 1610334) (-910 "PTFUNC2.spad" 1607248 1607262 1607417 1607422) (-909 "PTCAT.spad" 1606330 1606340 1607204 1607243) (-908 "PSQFR.spad" 1605637 1605661 1606320 1606325) (-907 "PSEUDLIN.spad" 1604495 1604505 1605627 1605632) (-906 "PSETPK.spad" 1589928 1589944 1604373 1604378) (-905 "PSETCAT.spad" 1583836 1583859 1589896 1589923) (-904 "PSETCAT.spad" 1577730 1577755 1583792 1583797) (-903 "PSCURVE.spad" 1576713 1576721 1577720 1577725) (-902 "PSCAT.spad" 1575480 1575509 1576611 1576708) (-901 "PSCAT.spad" 1574337 1574368 1575470 1575475) (-900 "PRTITION.spad" 1573180 1573188 1574327 1574332) (-899 "PRS.spad" 1562742 1562759 1573136 1573141) (-898 "PRQAGG.spad" 1562161 1562171 1562698 1562737) (-897 "PROPLOG.spad" 1561564 1561572 1562151 1562156) (-896 "PROPFRML.spad" 1559429 1559440 1561500 1561505) (-895 "PROPERTY.spad" 1558923 1558931 1559419 1559424) (-894 "PRODUCT.spad" 1556603 1556615 1556889 1556944) (-893 "PR.spad" 1554992 1555004 1555697 1555824) (-892 "PRINT.spad" 1554744 1554752 1554982 1554987) (-891 "PRIMES.spad" 1552995 1553005 1554734 1554739) (-890 "PRIMELT.spad" 1550976 1550990 1552985 1552990) (-889 "PRIMCAT.spad" 1550599 1550607 1550966 1550971) (-888 "PRIMARR.spad" 1549604 1549614 1549782 1549809) (-887 "PRIMARR2.spad" 1548327 1548339 1549594 1549599) (-886 "PREASSOC.spad" 1547699 1547711 1548317 1548322) (-885 "PPCURVE.spad" 1546836 1546844 1547689 1547694) (-884 "POLYROOT.spad" 1545608 1545630 1546792 1546797) (-883 "POLY.spad" 1542908 1542918 1543425 1543552) (-882 "POLYLIFT.spad" 1542169 1542192 1542898 1542903) (-881 "POLYCATQ.spad" 1540271 1540293 1542159 1542164) (-880 "POLYCAT.spad" 1533677 1533698 1540139 1540266) (-879 "POLYCAT.spad" 1526385 1526408 1532849 1532854) (-878 "POLY2UP.spad" 1525833 1525847 1526375 1526380) (-877 "POLY2.spad" 1525428 1525440 1525823 1525828) (-876 "POLUTIL.spad" 1524369 1524398 1525384 1525389) (-875 "POLTOPOL.spad" 1523117 1523132 1524359 1524364) (-874 "POINT.spad" 1521958 1521968 1522045 1522072) (-873 "PNTHEORY.spad" 1518624 1518632 1521948 1521953) (-872 "PMTOOLS.spad" 1517381 1517395 1518614 1518619) (-871 "PMSYM.spad" 1516926 1516936 1517371 1517376) (-870 "PMQFCAT.spad" 1516513 1516527 1516916 1516921) (-869 "PMPRED.spad" 1515982 1515996 1516503 1516508) (-868 "PMPREDFS.spad" 1515426 1515448 1515972 1515977) (-867 "PMPLCAT.spad" 1514496 1514514 1515358 1515363) (-866 "PMLSAGG.spad" 1514077 1514091 1514486 1514491) (-865 "PMKERNEL.spad" 1513644 1513656 1514067 1514072) (-864 "PMINS.spad" 1513220 1513230 1513634 1513639) (-863 "PMFS.spad" 1512793 1512811 1513210 1513215) (-862 "PMDOWN.spad" 1512079 1512093 1512783 1512788) (-861 "PMASS.spad" 1511091 1511099 1512069 1512074) (-860 "PMASSFS.spad" 1510060 1510076 1511081 1511086) (-859 "PLOTTOOL.spad" 1509840 1509848 1510050 1510055) (-858 "PLOT.spad" 1504671 1504679 1509830 1509835) (-857 "PLOT3D.spad" 1501091 1501099 1504661 1504666) (-856 "PLOT1.spad" 1500232 1500242 1501081 1501086) (-855 "PLEQN.spad" 1487448 1487475 1500222 1500227) (-854 "PINTERP.spad" 1487064 1487083 1487438 1487443) (-853 "PINTERPA.spad" 1486846 1486862 1487054 1487059) (-852 "PI.spad" 1486453 1486461 1486820 1486841) (-851 "PID.spad" 1485409 1485417 1486379 1486448) (-850 "PICOERCE.spad" 1485066 1485076 1485399 1485404) (-849 "PGROEB.spad" 1483663 1483677 1485056 1485061) (-848 "PGE.spad" 1474916 1474924 1483653 1483658) (-847 "PGCD.spad" 1473798 1473815 1474906 1474911) (-846 "PFRPAC.spad" 1472941 1472951 1473788 1473793) (-845 "PFR.spad" 1469598 1469608 1472843 1472936) (-844 "PFOTOOLS.spad" 1468856 1468872 1469588 1469593) (-843 "PFOQ.spad" 1468226 1468244 1468846 1468851) (-842 "PFO.spad" 1467645 1467672 1468216 1468221) (-841 "PF.spad" 1467219 1467231 1467450 1467543) (-840 "PFECAT.spad" 1464885 1464893 1467145 1467214) (-839 "PFECAT.spad" 1462579 1462589 1464841 1464846) (-838 "PFBRU.spad" 1460449 1460461 1462569 1462574) (-837 "PFBR.spad" 1457987 1458010 1460439 1460444) (-836 "PERM.spad" 1453668 1453678 1457817 1457832) (-835 "PERMGRP.spad" 1448404 1448414 1453658 1453663) (-834 "PERMCAT.spad" 1446956 1446966 1448384 1448399) (-833 "PERMAN.spad" 1445488 1445502 1446946 1446951) (-832 "PENDTREE.spad" 1444761 1444771 1445117 1445122) (-831 "PDRING.spad" 1443252 1443262 1444741 1444756) (-830 "PDRING.spad" 1441751 1441763 1443242 1443247) (-829 "PDEPROB.spad" 1440708 1440716 1441741 1441746) (-828 "PDEPACK.spad" 1434710 1434718 1440698 1440703) (-827 "PDECOMP.spad" 1434172 1434189 1434700 1434705) (-826 "PDECAT.spad" 1432526 1432534 1434162 1434167) (-825 "PCOMP.spad" 1432377 1432390 1432516 1432521) (-824 "PBWLB.spad" 1430959 1430976 1432367 1432372) (-823 "PATTERN.spad" 1425390 1425400 1430949 1430954) (-822 "PATTERN2.spad" 1425126 1425138 1425380 1425385) (-821 "PATTERN1.spad" 1423428 1423444 1425116 1425121) (-820 "PATRES.spad" 1420975 1420987 1423418 1423423) (-819 "PATRES2.spad" 1420637 1420651 1420965 1420970) (-818 "PATMATCH.spad" 1418799 1418830 1420350 1420355) (-817 "PATMAB.spad" 1418224 1418234 1418789 1418794) (-816 "PATLRES.spad" 1417308 1417322 1418214 1418219) (-815 "PATAB.spad" 1417072 1417082 1417298 1417303) (-814 "PARTPERM.spad" 1414434 1414442 1417062 1417067) (-813 "PARSURF.spad" 1413862 1413890 1414424 1414429) (-812 "PARSU2.spad" 1413657 1413673 1413852 1413857) (-811 "script-parser.spad" 1413177 1413185 1413647 1413652) (-810 "PARSCURV.spad" 1412605 1412633 1413167 1413172) (-809 "PARSC2.spad" 1412394 1412410 1412595 1412600) (-808 "PARPCURV.spad" 1411852 1411880 1412384 1412389) (-807 "PARPC2.spad" 1411641 1411657 1411842 1411847) (-806 "PAN2EXPR.spad" 1411053 1411061 1411631 1411636) (-805 "PALETTE.spad" 1410023 1410031 1411043 1411048) (-804 "PAIR.spad" 1409006 1409019 1409611 1409616) (-803 "PADICRC.spad" 1406339 1406357 1407514 1407607) (-802 "PADICRAT.spad" 1404357 1404369 1404578 1404671) (-801 "PADIC.spad" 1404052 1404064 1404283 1404352) (-800 "PADICCT.spad" 1402593 1402605 1403978 1404047) (-799 "PADEPAC.spad" 1401272 1401291 1402583 1402588) (-798 "PADE.spad" 1400012 1400028 1401262 1401267) (-797 "OWP.spad" 1398996 1399026 1399870 1399937) (-796 "OVAR.spad" 1398777 1398800 1398986 1398991) (-795 "OUT.spad" 1397861 1397869 1398767 1398772) (-794 "OUTFORM.spad" 1387275 1387283 1397851 1397856) (-793 "OSI.spad" 1386750 1386758 1387265 1387270) (-792 "ORTHPOL.spad" 1385211 1385221 1386667 1386672) (-791 "OREUP.spad" 1384571 1384599 1384893 1384932) (-790 "ORESUP.spad" 1383872 1383896 1384253 1384292) (-789 "OREPCTO.spad" 1381691 1381703 1383792 1383797) (-788 "OREPCAT.spad" 1375748 1375758 1381647 1381686) (-787 "OREPCAT.spad" 1369695 1369707 1375596 1375601) (-786 "ORDSET.spad" 1368861 1368869 1369685 1369690) (-785 "ORDSET.spad" 1368025 1368035 1368851 1368856) (-784 "ORDRING.spad" 1367415 1367423 1368005 1368020) (-783 "ORDRING.spad" 1366813 1366823 1367405 1367410) (-782 "ORDMON.spad" 1366668 1366676 1366803 1366808) (-781 "ORDFUNS.spad" 1365794 1365810 1366658 1366663) (-780 "ORDFIN.spad" 1365728 1365736 1365784 1365789) (-779 "ORDCOMP.spad" 1364196 1364206 1365278 1365307) (-778 "ORDCOMP2.spad" 1363481 1363493 1364186 1364191) (-777 "OPTPROB.spad" 1362061 1362069 1363471 1363476) (-776 "OPTPACK.spad" 1354446 1354454 1362051 1362056) (-775 "OPTCAT.spad" 1352121 1352129 1354436 1354441) (-774 "OPQUERY.spad" 1351670 1351678 1352111 1352116) (-773 "OP.spad" 1351412 1351422 1351492 1351559) (-772 "ONECOMP.spad" 1350160 1350170 1350962 1350991) (-771 "ONECOMP2.spad" 1349578 1349590 1350150 1350155) (-770 "OMSERVER.spad" 1348580 1348588 1349568 1349573) (-769 "OMSAGG.spad" 1348356 1348366 1348524 1348575) (-768 "OMPKG.spad" 1346968 1346976 1348346 1348351) (-767 "OM.spad" 1345933 1345941 1346958 1346963) (-766 "OMLO.spad" 1345358 1345370 1345819 1345858) (-765 "OMEXPR.spad" 1345192 1345202 1345348 1345353) (-764 "OMERR.spad" 1344735 1344743 1345182 1345187) (-763 "OMERRK.spad" 1343769 1343777 1344725 1344730) (-762 "OMENC.spad" 1343113 1343121 1343759 1343764) (-761 "OMDEV.spad" 1337402 1337410 1343103 1343108) (-760 "OMCONN.spad" 1336811 1336819 1337392 1337397) (-759 "OINTDOM.spad" 1336574 1336582 1336737 1336806) (-758 "OFMONOID.spad" 1332761 1332771 1336564 1336569) (-757 "ODVAR.spad" 1332022 1332032 1332751 1332756) (-756 "ODR.spad" 1331470 1331496 1331834 1331983) (-755 "ODPOL.spad" 1328819 1328829 1329159 1329286) (-754 "ODP.spad" 1320345 1320365 1320718 1320847) (-753 "ODETOOLS.spad" 1318928 1318947 1320335 1320340) (-752 "ODESYS.spad" 1316578 1316595 1318918 1318923) (-751 "ODERTRIC.spad" 1312519 1312536 1316535 1316540) (-750 "ODERED.spad" 1311906 1311930 1312509 1312514) (-749 "ODERAT.spad" 1309457 1309474 1311896 1311901) (-748 "ODEPRRIC.spad" 1306348 1306370 1309447 1309452) (-747 "ODEPROB.spad" 1305547 1305555 1306338 1306343) (-746 "ODEPRIM.spad" 1302821 1302843 1305537 1305542) (-745 "ODEPAL.spad" 1302197 1302221 1302811 1302816) (-744 "ODEPACK.spad" 1288799 1288807 1302187 1302192) (-743 "ODEINT.spad" 1288230 1288246 1288789 1288794) (-742 "ODEIFTBL.spad" 1285625 1285633 1288220 1288225) (-741 "ODEEF.spad" 1280992 1281008 1285615 1285620) (-740 "ODECONST.spad" 1280511 1280529 1280982 1280987) (-739 "ODECAT.spad" 1279107 1279115 1280501 1280506) (-738 "OCT.spad" 1277254 1277264 1277970 1278009) (-737 "OCTCT2.spad" 1276898 1276919 1277244 1277249) (-736 "OC.spad" 1274672 1274682 1276854 1276893) (-735 "OC.spad" 1272172 1272184 1274356 1274361) (-734 "OCAMON.spad" 1272020 1272028 1272162 1272167) (-733 "OASGP.spad" 1271835 1271843 1272010 1272015) (-732 "OAMONS.spad" 1271355 1271363 1271825 1271830) (-731 "OAMON.spad" 1271216 1271224 1271345 1271350) (-730 "OAGROUP.spad" 1271078 1271086 1271206 1271211) (-729 "NUMTUBE.spad" 1270665 1270681 1271068 1271073) (-728 "NUMQUAD.spad" 1258527 1258535 1270655 1270660) (-727 "NUMODE.spad" 1249663 1249671 1258517 1258522) (-726 "NUMINT.spad" 1247221 1247229 1249653 1249658) (-725 "NUMFMT.spad" 1246061 1246069 1247211 1247216) (-724 "NUMERIC.spad" 1238134 1238144 1245867 1245872) (-723 "NTSCAT.spad" 1236624 1236640 1238090 1238129) (-722 "NTPOLFN.spad" 1236169 1236179 1236541 1236546) (-721 "NSUP.spad" 1229182 1229192 1233722 1233875) (-720 "NSUP2.spad" 1228574 1228586 1229172 1229177) (-719 "NSMP.spad" 1224773 1224792 1225081 1225208) (-718 "NREP.spad" 1223145 1223159 1224763 1224768) (-717 "NPCOEF.spad" 1222391 1222411 1223135 1223140) (-716 "NORMRETR.spad" 1221989 1222028 1222381 1222386) (-715 "NORMPK.spad" 1219891 1219910 1221979 1221984) (-714 "NORMMA.spad" 1219579 1219605 1219881 1219886) (-713 "NONE.spad" 1219320 1219328 1219569 1219574) (-712 "NONE1.spad" 1218996 1219006 1219310 1219315) (-711 "NODE1.spad" 1218465 1218481 1218986 1218991) (-710 "NNI.spad" 1217352 1217360 1218439 1218460) (-709 "NLINSOL.spad" 1215974 1215984 1217342 1217347) (-708 "NIPROB.spad" 1214457 1214465 1215964 1215969) (-707 "NFINTBAS.spad" 1211917 1211934 1214447 1214452) (-706 "NCODIV.spad" 1210115 1210131 1211907 1211912) (-705 "NCNTFRAC.spad" 1209757 1209771 1210105 1210110) (-704 "NCEP.spad" 1207917 1207931 1209747 1209752) (-703 "NASRING.spad" 1207513 1207521 1207907 1207912) (-702 "NASRING.spad" 1207107 1207117 1207503 1207508) (-701 "NARNG.spad" 1206451 1206459 1207097 1207102) (-700 "NARNG.spad" 1205793 1205803 1206441 1206446) (-699 "NAGSP.spad" 1204866 1204874 1205783 1205788) (-698 "NAGS.spad" 1194391 1194399 1204856 1204861) (-697 "NAGF07.spad" 1192784 1192792 1194381 1194386) (-696 "NAGF04.spad" 1187016 1187024 1192774 1192779) (-695 "NAGF02.spad" 1180825 1180833 1187006 1187011) (-694 "NAGF01.spad" 1176428 1176436 1180815 1180820) (-693 "NAGE04.spad" 1169888 1169896 1176418 1176423) (-692 "NAGE02.spad" 1160230 1160238 1169878 1169883) (-691 "NAGE01.spad" 1156114 1156122 1160220 1160225) (-690 "NAGD03.spad" 1154034 1154042 1156104 1156109) (-689 "NAGD02.spad" 1146565 1146573 1154024 1154029) (-688 "NAGD01.spad" 1140678 1140686 1146555 1146560) (-687 "NAGC06.spad" 1136465 1136473 1140668 1140673) (-686 "NAGC05.spad" 1134934 1134942 1136455 1136460) (-685 "NAGC02.spad" 1134189 1134197 1134924 1134929) (-684 "NAALG.spad" 1133724 1133734 1134157 1134184) (-683 "NAALG.spad" 1133279 1133291 1133714 1133719) (-682 "MULTSQFR.spad" 1130237 1130254 1133269 1133274) (-681 "MULTFACT.spad" 1129620 1129637 1130227 1130232) (-680 "MTSCAT.spad" 1127654 1127675 1129518 1129615) (-679 "MTHING.spad" 1127311 1127321 1127644 1127649) (-678 "MSYSCMD.spad" 1126745 1126753 1127301 1127306) (-677 "MSET.spad" 1124687 1124697 1126451 1126490) (-676 "MSETAGG.spad" 1124520 1124530 1124643 1124682) (-675 "MRING.spad" 1121491 1121503 1124228 1124295) (-674 "MRF2.spad" 1121059 1121073 1121481 1121486) (-673 "MRATFAC.spad" 1120605 1120622 1121049 1121054) (-672 "MPRFF.spad" 1118635 1118654 1120595 1120600) (-671 "MPOLY.spad" 1116073 1116088 1116432 1116559) (-670 "MPCPF.spad" 1115337 1115356 1116063 1116068) (-669 "MPC3.spad" 1115152 1115192 1115327 1115332) (-668 "MPC2.spad" 1114794 1114827 1115142 1115147) (-667 "MONOTOOL.spad" 1113129 1113146 1114784 1114789) (-666 "MONOID.spad" 1112303 1112311 1113119 1113124) (-665 "MONOID.spad" 1111475 1111485 1112293 1112298) (-664 "MONOGEN.spad" 1110221 1110234 1111335 1111470) (-663 "MONOGEN.spad" 1108989 1109004 1110105 1110110) (-662 "MONADWU.spad" 1107003 1107011 1108979 1108984) (-661 "MONADWU.spad" 1105015 1105025 1106993 1106998) (-660 "MONAD.spad" 1104159 1104167 1105005 1105010) (-659 "MONAD.spad" 1103301 1103311 1104149 1104154) (-658 "MOEBIUS.spad" 1101987 1102001 1103281 1103296) (-657 "MODULE.spad" 1101857 1101867 1101955 1101982) (-656 "MODULE.spad" 1101747 1101759 1101847 1101852) (-655 "MODRING.spad" 1101078 1101117 1101727 1101742) (-654 "MODOP.spad" 1099737 1099749 1100900 1100967) (-653 "MODMONOM.spad" 1099269 1099287 1099727 1099732) (-652 "MODMON.spad" 1095974 1095990 1096750 1096903) (-651 "MODFIELD.spad" 1095332 1095371 1095876 1095969) (-650 "MMLFORM.spad" 1094192 1094200 1095322 1095327) (-649 "MMAP.spad" 1093932 1093966 1094182 1094187) (-648 "MLO.spad" 1092359 1092369 1093888 1093927) (-647 "MLIFT.spad" 1090931 1090948 1092349 1092354) (-646 "MKUCFUNC.spad" 1090464 1090482 1090921 1090926) (-645 "MKRECORD.spad" 1090066 1090079 1090454 1090459) (-644 "MKFUNC.spad" 1089447 1089457 1090056 1090061) (-643 "MKFLCFN.spad" 1088403 1088413 1089437 1089442) (-642 "MKCHSET.spad" 1088179 1088189 1088393 1088398) (-641 "MKBCFUNC.spad" 1087664 1087682 1088169 1088174) (-640 "MINT.spad" 1087103 1087111 1087566 1087659) (-639 "MHROWRED.spad" 1085604 1085614 1087093 1087098) (-638 "MFLOAT.spad" 1084049 1084057 1085494 1085599) (-637 "MFINFACT.spad" 1083449 1083471 1084039 1084044) (-636 "MESH.spad" 1081181 1081189 1083439 1083444) (-635 "MDDFACT.spad" 1079374 1079384 1081171 1081176) (-634 "MDAGG.spad" 1078649 1078659 1079342 1079369) (-633 "MCMPLX.spad" 1074629 1074637 1075243 1075444) (-632 "MCDEN.spad" 1073837 1073849 1074619 1074624) (-631 "MCALCFN.spad" 1070939 1070965 1073827 1073832) (-630 "MATSTOR.spad" 1068215 1068225 1070929 1070934) (-629 "MATRIX.spad" 1066919 1066929 1067403 1067430) (-628 "MATLIN.spad" 1064245 1064269 1066803 1066808) (-627 "MATCAT.spad" 1055818 1055840 1064201 1064240) (-626 "MATCAT.spad" 1047275 1047299 1055660 1055665) (-625 "MATCAT2.spad" 1046543 1046591 1047265 1047270) (-624 "MAPPKG3.spad" 1045442 1045456 1046533 1046538) (-623 "MAPPKG2.spad" 1044776 1044788 1045432 1045437) (-622 "MAPPKG1.spad" 1043594 1043604 1044766 1044771) (-621 "MAPHACK3.spad" 1043402 1043416 1043584 1043589) (-620 "MAPHACK2.spad" 1043167 1043179 1043392 1043397) (-619 "MAPHACK1.spad" 1042797 1042807 1043157 1043162) (-618 "MAGMA.spad" 1040587 1040604 1042787 1042792) (-617 "M3D.spad" 1038285 1038295 1039967 1039972) (-616 "LZSTAGG.spad" 1035503 1035513 1038265 1038280) (-615 "LZSTAGG.spad" 1032729 1032741 1035493 1035498) (-614 "LWORD.spad" 1029434 1029451 1032719 1032724) (-613 "LSQM.spad" 1027662 1027676 1028060 1028111) (-612 "LSPP.spad" 1027195 1027212 1027652 1027657) (-611 "LSMP.spad" 1026035 1026063 1027185 1027190) (-610 "LSMP1.spad" 1023839 1023853 1026025 1026030) (-609 "LSAGG.spad" 1023496 1023506 1023795 1023834) (-608 "LSAGG.spad" 1023185 1023197 1023486 1023491) (-607 "LPOLY.spad" 1022139 1022158 1023041 1023110) (-606 "LPEFRAC.spad" 1021396 1021406 1022129 1022134) (-605 "LO.spad" 1020797 1020811 1021330 1021357) (-604 "LOGIC.spad" 1020399 1020407 1020787 1020792) (-603 "LOGIC.spad" 1019999 1020009 1020389 1020394) (-602 "LODOOPS.spad" 1018917 1018929 1019989 1019994) (-601 "LODO.spad" 1018303 1018319 1018599 1018638) (-600 "LODOF.spad" 1017347 1017364 1018260 1018265) (-599 "LODOCAT.spad" 1016005 1016015 1017303 1017342) (-598 "LODOCAT.spad" 1014661 1014673 1015961 1015966) (-597 "LODO2.spad" 1013936 1013948 1014343 1014382) (-596 "LODO1.spad" 1013338 1013348 1013618 1013657) (-595 "LODEEF.spad" 1012110 1012128 1013328 1013333) (-594 "LNAGG.spad" 1007902 1007912 1012090 1012105) (-593 "LNAGG.spad" 1003668 1003680 1007858 1007863) (-592 "LMOPS.spad" 1000404 1000421 1003658 1003663) (-591 "LMODULE.spad" 1000046 1000056 1000394 1000399) (-590 "LMDICT.spad" 999329 999339 999597 999624) (-589 "LIST.spad" 997047 997057 998476 998503) (-588 "LIST3.spad" 996338 996352 997037 997042) (-587 "LIST2.spad" 994978 994990 996328 996333) (-586 "LIST2MAP.spad" 991855 991867 994968 994973) (-585 "LINEXP.spad" 991287 991297 991835 991850) (-584 "LINDEP.spad" 990064 990076 991199 991204) (-583 "LIMITRF.spad" 987978 987988 990054 990059) (-582 "LIMITPS.spad" 986861 986874 987968 987973) (-581 "LIE.spad" 984875 984887 986151 986296) (-580 "LIECAT.spad" 984351 984361 984801 984870) (-579 "LIECAT.spad" 983855 983867 984307 984312) (-578 "LIB.spad" 981903 981911 982514 982529) (-577 "LGROBP.spad" 979256 979275 981893 981898) (-576 "LF.spad" 978175 978191 979246 979251) (-575 "LFCAT.spad" 977194 977202 978165 978170) (-574 "LEXTRIPK.spad" 972697 972712 977184 977189) (-573 "LEXP.spad" 970700 970727 972677 972692) (-572 "LEADCDET.spad" 969084 969101 970690 970695) (-571 "LAZM3PK.spad" 967788 967810 969074 969079) (-570 "LAUPOL.spad" 966479 966492 967383 967452) (-569 "LAPLACE.spad" 966052 966068 966469 966474) (-568 "LA.spad" 965492 965506 965974 966013) (-567 "LALG.spad" 965268 965278 965472 965487) (-566 "LALG.spad" 965052 965064 965258 965263) (-565 "KOVACIC.spad" 963765 963782 965042 965047) (-564 "KONVERT.spad" 963487 963497 963755 963760) (-563 "KOERCE.spad" 963224 963234 963477 963482) (-562 "KERNEL.spad" 961759 961769 963008 963013) (-561 "KERNEL2.spad" 961462 961474 961749 961754) (-560 "KDAGG.spad" 960553 960575 961430 961457) (-559 "KDAGG.spad" 959664 959688 960543 960548) (-558 "KAFILE.spad" 958627 958643 958862 958889) (-557 "JORDAN.spad" 956454 956466 957917 958062) (-556 "IXAGG.spad" 954567 954591 956434 956449) (-555 "IXAGG.spad" 952545 952571 954414 954419) (-554 "IVECTOR.spad" 951318 951333 951473 951500) (-553 "ITUPLE.spad" 950463 950473 951308 951313) (-552 "ITRIGMNP.spad" 949274 949293 950453 950458) (-551 "ITFUN3.spad" 948768 948782 949264 949269) (-550 "ITFUN2.spad" 948498 948510 948758 948763) (-549 "ITAYLOR.spad" 946290 946305 948334 948459) (-548 "ISUPS.spad" 938701 938716 945264 945361) (-547 "ISUMP.spad" 938198 938214 938691 938696) (-546 "ISTRING.spad" 937201 937214 937367 937394) (-545 "IRURPK.spad" 935914 935933 937191 937196) (-544 "IRSN.spad" 933874 933882 935904 935909) (-543 "IRRF2F.spad" 932349 932359 933830 933835) (-542 "IRREDFFX.spad" 931950 931961 932339 932344) (-541 "IROOT.spad" 930281 930291 931940 931945) (-540 "IR.spad" 928071 928085 930137 930164) (-539 "IR2.spad" 927091 927107 928061 928066) (-538 "IR2F.spad" 926291 926307 927081 927086) (-537 "IPRNTPK.spad" 926051 926059 926281 926286) (-536 "IPF.spad" 925616 925628 925856 925949) (-535 "IPADIC.spad" 925377 925403 925542 925611) (-534 "INVLAPLA.spad" 925022 925038 925367 925372) (-533 "INTTR.spad" 918268 918285 925012 925017) (-532 "INTTOOLS.spad" 915980 915996 917843 917848) (-531 "INTSLPE.spad" 915286 915294 915970 915975) (-530 "INTRVL.spad" 914852 914862 915200 915281) (-529 "INTRF.spad" 913216 913230 914842 914847) (-528 "INTRET.spad" 912648 912658 913206 913211) (-527 "INTRAT.spad" 911323 911340 912638 912643) (-526 "INTPM.spad" 909686 909702 910966 910971) (-525 "INTPAF.spad" 907454 907472 909618 909623) (-524 "INTPACK.spad" 897764 897772 907444 907449) (-523 "INT.spad" 897125 897133 897618 897759) (-522 "INTHERTR.spad" 896391 896408 897115 897120) (-521 "INTHERAL.spad" 896057 896081 896381 896386) (-520 "INTHEORY.spad" 892470 892478 896047 896052) (-519 "INTG0.spad" 885933 885951 892402 892407) (-518 "INTFTBL.spad" 879962 879970 885923 885928) (-517 "INTFACT.spad" 879021 879031 879952 879957) (-516 "INTEF.spad" 877336 877352 879011 879016) (-515 "INTDOM.spad" 875951 875959 877262 877331) (-514 "INTDOM.spad" 874628 874638 875941 875946) (-513 "INTCAT.spad" 872881 872891 874542 874623) (-512 "INTBIT.spad" 872384 872392 872871 872876) (-511 "INTALG.spad" 871566 871593 872374 872379) (-510 "INTAF.spad" 871058 871074 871556 871561) (-509 "INTABL.spad" 869576 869607 869739 869766) (-508 "INS.spad" 866972 866980 869478 869571) (-507 "INS.spad" 864454 864464 866962 866967) (-506 "INPSIGN.spad" 863888 863901 864444 864449) (-505 "INPRODPF.spad" 862954 862973 863878 863883) (-504 "INPRODFF.spad" 862012 862036 862944 862949) (-503 "INNMFACT.spad" 860983 861000 862002 862007) (-502 "INMODGCD.spad" 860467 860497 860973 860978) (-501 "INFSP.spad" 858752 858774 860457 860462) (-500 "INFPROD0.spad" 857802 857821 858742 858747) (-499 "INFORM.spad" 855070 855078 857792 857797) (-498 "INFORM1.spad" 854695 854705 855060 855065) (-497 "INFINITY.spad" 854247 854255 854685 854690) (-496 "INEP.spad" 852779 852801 854237 854242) (-495 "INDE.spad" 852685 852702 852769 852774) (-494 "INCRMAPS.spad" 852106 852116 852675 852680) (-493 "INBFF.spad" 847876 847887 852096 852101) (-492 "IMATRIX.spad" 846821 846847 847333 847360) (-491 "IMATQF.spad" 845915 845959 846777 846782) (-490 "IMATLIN.spad" 844520 844544 845871 845876) (-489 "ILIST.spad" 843176 843191 843703 843730) (-488 "IIARRAY2.spad" 842564 842602 842783 842810) (-487 "IFF.spad" 841974 841990 842245 842338) (-486 "IFARRAY.spad" 839461 839476 841157 841184) (-485 "IFAMON.spad" 839323 839340 839417 839422) (-484 "IEVALAB.spad" 838712 838724 839313 839318) (-483 "IEVALAB.spad" 838099 838113 838702 838707) (-482 "IDPO.spad" 837897 837909 838089 838094) (-481 "IDPOAMS.spad" 837653 837665 837887 837892) (-480 "IDPOAM.spad" 837373 837385 837643 837648) (-479 "IDPC.spad" 836307 836319 837363 837368) (-478 "IDPAM.spad" 836052 836064 836297 836302) (-477 "IDPAG.spad" 835799 835811 836042 836047) (-476 "IDECOMP.spad" 833036 833054 835789 835794) (-475 "IDEAL.spad" 827959 827998 832971 832976) (-474 "ICDEN.spad" 827110 827126 827949 827954) (-473 "ICARD.spad" 826299 826307 827100 827105) (-472 "IBPTOOLS.spad" 824892 824909 826289 826294) (-471 "IBITS.spad" 824091 824104 824528 824555) (-470 "IBATOOL.spad" 820966 820985 824081 824086) (-469 "IBACHIN.spad" 819453 819468 820956 820961) (-468 "IARRAY2.spad" 818441 818467 819060 819087) (-467 "IARRAY1.spad" 817486 817501 817624 817651) (-466 "IAN.spad" 815701 815709 817304 817397) (-465 "IALGFACT.spad" 815302 815335 815691 815696) (-464 "HYPCAT.spad" 814726 814734 815292 815297) (-463 "HYPCAT.spad" 814148 814158 814716 814721) (-462 "HOAGG.spad" 811406 811416 814128 814143) (-461 "HOAGG.spad" 808449 808461 811173 811178) (-460 "HEXADEC.spad" 806321 806329 806919 807012) (-459 "HEUGCD.spad" 805336 805347 806311 806316) (-458 "HELLFDIV.spad" 804926 804950 805326 805331) (-457 "HEAP.spad" 804318 804328 804533 804560) (-456 "HDP.spad" 795840 795856 796217 796346) (-455 "HDMP.spad" 793019 793034 793637 793764) (-454 "HB.spad" 791256 791264 793009 793014) (-453 "HASHTBL.spad" 789726 789757 789937 789964) (-452 "HACKPI.spad" 789209 789217 789628 789721) (-451 "GTSET.spad" 788148 788164 788855 788882) (-450 "GSTBL.spad" 786667 786702 786841 786856) (-449 "GSERIES.spad" 783834 783861 784799 784948) (-448 "GROUP.spad" 783008 783016 783814 783829) (-447 "GROUP.spad" 782190 782200 782998 783003) (-446 "GROEBSOL.spad" 780678 780699 782180 782185) (-445 "GRMOD.spad" 779249 779261 780668 780673) (-444 "GRMOD.spad" 777818 777832 779239 779244) (-443 "GRIMAGE.spad" 770423 770431 777808 777813) (-442 "GRDEF.spad" 768802 768810 770413 770418) (-441 "GRAY.spad" 767261 767269 768792 768797) (-440 "GRALG.spad" 766308 766320 767251 767256) (-439 "GRALG.spad" 765353 765367 766298 766303) (-438 "GPOLSET.spad" 764807 764830 765035 765062) (-437 "GOSPER.spad" 764072 764090 764797 764802) (-436 "GMODPOL.spad" 763210 763237 764040 764067) (-435 "GHENSEL.spad" 762279 762293 763200 763205) (-434 "GENUPS.spad" 758380 758393 762269 762274) (-433 "GENUFACT.spad" 757957 757967 758370 758375) (-432 "GENPGCD.spad" 757541 757558 757947 757952) (-431 "GENMFACT.spad" 756993 757012 757531 757536) (-430 "GENEEZ.spad" 754932 754945 756983 756988) (-429 "GDMP.spad" 751953 751970 752729 752856) (-428 "GCNAALG.spad" 745848 745875 751747 751814) (-427 "GCDDOM.spad" 745020 745028 745774 745843) (-426 "GCDDOM.spad" 744254 744264 745010 745015) (-425 "GB.spad" 741772 741810 744210 744215) (-424 "GBINTERN.spad" 737792 737830 741762 741767) (-423 "GBF.spad" 733549 733587 737782 737787) (-422 "GBEUCLID.spad" 731423 731461 733539 733544) (-421 "GAUSSFAC.spad" 730720 730728 731413 731418) (-420 "GALUTIL.spad" 729042 729052 730676 730681) (-419 "GALPOLYU.spad" 727488 727501 729032 729037) (-418 "GALFACTU.spad" 725653 725672 727478 727483) (-417 "GALFACT.spad" 715786 715797 725643 725648) (-416 "FVFUN.spad" 712799 712807 715766 715781) (-415 "FVC.spad" 711841 711849 712779 712794) (-414 "FUNCTION.spad" 711690 711702 711831 711836) (-413 "FT.spad" 709902 709910 711680 711685) (-412 "FTEM.spad" 709065 709073 709892 709897) (-411 "FSUPFACT.spad" 707966 707985 709002 709007) (-410 "FST.spad" 706052 706060 707956 707961) (-409 "FSRED.spad" 705530 705546 706042 706047) (-408 "FSPRMELT.spad" 704354 704370 705487 705492) (-407 "FSPECF.spad" 702431 702447 704344 704349) (-406 "FS.spad" 696482 696492 702195 702426) (-405 "FS.spad" 690324 690336 696039 696044) (-404 "FSINT.spad" 689982 689998 690314 690319) (-403 "FSERIES.spad" 689169 689181 689802 689901) (-402 "FSCINT.spad" 688482 688498 689159 689164) (-401 "FSAGG.spad" 687587 687597 688426 688477) (-400 "FSAGG.spad" 686666 686678 687507 687512) (-399 "FSAGG2.spad" 685365 685381 686656 686661) (-398 "FS2UPS.spad" 679754 679788 685355 685360) (-397 "FS2.spad" 679399 679415 679744 679749) (-396 "FS2EXPXP.spad" 678522 678545 679389 679394) (-395 "FRUTIL.spad" 677464 677474 678512 678517) (-394 "FR.spad" 671161 671171 676491 676560) (-393 "FRNAALG.spad" 666248 666258 671103 671156) (-392 "FRNAALG.spad" 661347 661359 666204 666209) (-391 "FRNAAF2.spad" 660801 660819 661337 661342) (-390 "FRMOD.spad" 660196 660226 660733 660738) (-389 "FRIDEAL.spad" 659391 659412 660176 660191) (-388 "FRIDEAL2.spad" 658993 659025 659381 659386) (-387 "FRETRCT.spad" 658504 658514 658983 658988) (-386 "FRETRCT.spad" 657883 657895 658364 658369) (-385 "FRAMALG.spad" 656211 656224 657839 657878) (-384 "FRAMALG.spad" 654571 654586 656201 656206) (-383 "FRAC.spad" 651674 651684 652077 652250) (-382 "FRAC2.spad" 651277 651289 651664 651669) (-381 "FR2.spad" 650611 650623 651267 651272) (-380 "FPS.spad" 647420 647428 650501 650606) (-379 "FPS.spad" 644257 644267 647340 647345) (-378 "FPC.spad" 643299 643307 644159 644252) (-377 "FPC.spad" 642427 642437 643289 643294) (-376 "FPATMAB.spad" 642179 642189 642407 642422) (-375 "FPARFRAC.spad" 640652 640669 642169 642174) (-374 "FORTRAN.spad" 639158 639201 640642 640647) (-373 "FORT.spad" 638087 638095 639148 639153) (-372 "FORTFN.spad" 635247 635255 638067 638082) (-371 "FORTCAT.spad" 634921 634929 635227 635242) (-370 "FORMULA.spad" 632259 632267 634911 634916) (-369 "FORMULA1.spad" 631738 631748 632249 632254) (-368 "FORDER.spad" 631429 631453 631728 631733) (-367 "FOP.spad" 630630 630638 631419 631424) (-366 "FNLA.spad" 630054 630076 630598 630625) (-365 "FNCAT.spad" 628382 628390 630044 630049) (-364 "FNAME.spad" 628274 628282 628372 628377) (-363 "FMTC.spad" 628072 628080 628200 628269) (-362 "FMONOID.spad" 625127 625137 628028 628033) (-361 "FM.spad" 624822 624834 625061 625088) (-360 "FMFUN.spad" 621842 621850 624802 624817) (-359 "FMC.spad" 620884 620892 621822 621837) (-358 "FMCAT.spad" 618538 618556 620852 620879) (-357 "FM1.spad" 617895 617907 618472 618499) (-356 "FLOATRP.spad" 615616 615630 617885 617890) (-355 "FLOAT.spad" 608780 608788 615482 615611) (-354 "FLOATCP.spad" 606197 606211 608770 608775) (-353 "FLINEXP.spad" 605909 605919 606177 606192) (-352 "FLINEXP.spad" 605575 605587 605845 605850) (-351 "FLASORT.spad" 604895 604907 605565 605570) (-350 "FLALG.spad" 602541 602560 604821 604890) (-349 "FLAGG.spad" 599547 599557 602509 602536) (-348 "FLAGG.spad" 596466 596478 599430 599435) (-347 "FLAGG2.spad" 595147 595163 596456 596461) (-346 "FINRALG.spad" 593176 593189 595103 595142) (-345 "FINRALG.spad" 591131 591146 593060 593065) (-344 "FINITE.spad" 590283 590291 591121 591126) (-343 "FINAALG.spad" 579264 579274 590225 590278) (-342 "FINAALG.spad" 568257 568269 579220 579225) (-341 "FILE.spad" 567840 567850 568247 568252) (-340 "FILECAT.spad" 566358 566375 567830 567835) (-339 "FIELD.spad" 565764 565772 566260 566353) (-338 "FIELD.spad" 565256 565266 565754 565759) (-337 "FGROUP.spad" 563865 563875 565236 565251) (-336 "FGLMICPK.spad" 562652 562667 563855 563860) (-335 "FFX.spad" 562027 562042 562368 562461) (-334 "FFSLPE.spad" 561516 561537 562017 562022) (-333 "FFPOLY.spad" 552768 552779 561506 561511) (-332 "FFPOLY2.spad" 551828 551845 552758 552763) (-331 "FFP.spad" 551225 551245 551544 551637) (-330 "FF.spad" 550673 550689 550906 550999) (-329 "FFNBX.spad" 549185 549205 550389 550482) (-328 "FFNBP.spad" 547698 547715 548901 548994) (-327 "FFNB.spad" 546163 546184 547379 547472) (-326 "FFINTBAS.spad" 543577 543596 546153 546158) (-325 "FFIELDC.spad" 541152 541160 543479 543572) (-324 "FFIELDC.spad" 538813 538823 541142 541147) (-323 "FFHOM.spad" 537561 537578 538803 538808) (-322 "FFF.spad" 534996 535007 537551 537556) (-321 "FFCGX.spad" 533843 533863 534712 534805) (-320 "FFCGP.spad" 532732 532752 533559 533652) (-319 "FFCG.spad" 531524 531545 532413 532506) (-318 "FFCAT.spad" 524425 524447 531363 531519) (-317 "FFCAT.spad" 517405 517429 524345 524350) (-316 "FFCAT2.spad" 517150 517190 517395 517400) (-315 "FEXPR.spad" 508863 508909 516910 516949) (-314 "FEVALAB.spad" 508569 508579 508853 508858) (-313 "FEVALAB.spad" 508060 508072 508346 508351) (-312 "FDIV.spad" 507502 507526 508050 508055) (-311 "FDIVCAT.spad" 505544 505568 507492 507497) (-310 "FDIVCAT.spad" 503584 503610 505534 505539) (-309 "FDIV2.spad" 503238 503278 503574 503579) (-308 "FCPAK1.spad" 501791 501799 503228 503233) (-307 "FCOMP.spad" 501170 501180 501781 501786) (-306 "FC.spad" 490995 491003 501160 501165) (-305 "FAXF.spad" 483930 483944 490897 490990) (-304 "FAXF.spad" 476917 476933 483886 483891) (-303 "FARRAY.spad" 475063 475073 476100 476127) (-302 "FAMR.spad" 473183 473195 474961 475058) (-301 "FAMR.spad" 471287 471301 473067 473072) (-300 "FAMONOID.spad" 470937 470947 471241 471246) (-299 "FAMONC.spad" 469159 469171 470927 470932) (-298 "FAGROUP.spad" 468765 468775 469055 469082) (-297 "FACUTIL.spad" 466961 466978 468755 468760) (-296 "FACTFUNC.spad" 466137 466147 466951 466956) (-295 "EXPUPXS.spad" 462970 462993 464269 464418) (-294 "EXPRTUBE.spad" 460198 460206 462960 462965) (-293 "EXPRODE.spad" 457070 457086 460188 460193) (-292 "EXPR.spad" 452372 452382 453086 453489) (-291 "EXPR2UPS.spad" 448464 448477 452362 452367) (-290 "EXPR2.spad" 448167 448179 448454 448459) (-289 "EXPEXPAN.spad" 445108 445133 445742 445835) (-288 "EXIT.spad" 444779 444787 445098 445103) (-287 "EVALCYC.spad" 444237 444251 444769 444774) (-286 "EVALAB.spad" 443801 443811 444227 444232) (-285 "EVALAB.spad" 443363 443375 443791 443796) (-284 "EUCDOM.spad" 440905 440913 443289 443358) (-283 "EUCDOM.spad" 438509 438519 440895 440900) (-282 "ESTOOLS.spad" 430349 430357 438499 438504) (-281 "ESTOOLS2.spad" 429950 429964 430339 430344) (-280 "ESTOOLS1.spad" 429635 429646 429940 429945) (-279 "ES.spad" 422182 422190 429625 429630) (-278 "ES.spad" 414637 414647 422082 422087) (-277 "ESCONT.spad" 411410 411418 414627 414632) (-276 "ESCONT1.spad" 411159 411171 411400 411405) (-275 "ES2.spad" 410654 410670 411149 411154) (-274 "ES1.spad" 410220 410236 410644 410649) (-273 "ERROR.spad" 407541 407549 410210 410215) (-272 "EQTBL.spad" 406013 406035 406222 406249) (-271 "EQ.spad" 400897 400907 403696 403805) (-270 "EQ2.spad" 400613 400625 400887 400892) (-269 "EP.spad" 396927 396937 400603 400608) (-268 "ENV.spad" 395629 395637 396917 396922) (-267 "ENTIRER.spad" 395297 395305 395573 395624) (-266 "EMR.spad" 394498 394539 395223 395292) (-265 "ELTAGG.spad" 392738 392757 394488 394493) (-264 "ELTAGG.spad" 390942 390963 392694 392699) (-263 "ELTAB.spad" 390389 390407 390932 390937) (-262 "ELFUTS.spad" 389768 389787 390379 390384) (-261 "ELEMFUN.spad" 389457 389465 389758 389763) (-260 "ELEMFUN.spad" 389144 389154 389447 389452) (-259 "ELAGG.spad" 387075 387085 389112 389139) (-258 "ELAGG.spad" 384955 384967 386994 386999) (-257 "ELABEXPR.spad" 383886 383894 384945 384950) (-256 "EFUPXS.spad" 380662 380692 383842 383847) (-255 "EFULS.spad" 377498 377521 380618 380623) (-254 "EFSTRUC.spad" 375453 375469 377488 377493) (-253 "EF.spad" 370219 370235 375443 375448) (-252 "EAB.spad" 368495 368503 370209 370214) (-251 "E04UCFA.spad" 368031 368039 368485 368490) (-250 "E04NAFA.spad" 367608 367616 368021 368026) (-249 "E04MBFA.spad" 367188 367196 367598 367603) (-248 "E04JAFA.spad" 366724 366732 367178 367183) (-247 "E04GCFA.spad" 366260 366268 366714 366719) (-246 "E04FDFA.spad" 365796 365804 366250 366255) (-245 "E04DGFA.spad" 365332 365340 365786 365791) (-244 "E04AGNT.spad" 361174 361182 365322 365327) (-243 "DVARCAT.spad" 357859 357869 361164 361169) (-242 "DVARCAT.spad" 354542 354554 357849 357854) (-241 "DSMP.spad" 351976 351990 352281 352408) (-240 "DROPT.spad" 345921 345929 351966 351971) (-239 "DROPT1.spad" 345584 345594 345911 345916) (-238 "DROPT0.spad" 340411 340419 345574 345579) (-237 "DRAWPT.spad" 338566 338574 340401 340406) (-236 "DRAW.spad" 331166 331179 338556 338561) (-235 "DRAWHACK.spad" 330474 330484 331156 331161) (-234 "DRAWCX.spad" 327916 327924 330464 330469) (-233 "DRAWCURV.spad" 327453 327468 327906 327911) (-232 "DRAWCFUN.spad" 316625 316633 327443 327448) (-231 "DQAGG.spad" 314781 314791 316581 316620) (-230 "DPOLCAT.spad" 310122 310138 314649 314776) (-229 "DPOLCAT.spad" 305549 305567 310078 310083) (-228 "DPMO.spad" 299536 299552 299674 299970) (-227 "DPMM.spad" 293536 293554 293661 293957) (-226 "DOMAIN.spad" 292807 292815 293526 293531) (-225 "DMP.spad" 290032 290047 290604 290731) (-224 "DLP.spad" 289380 289390 290022 290027) (-223 "DLIST.spad" 287792 287802 288563 288590) (-222 "DLAGG.spad" 286193 286203 287772 287787) (-221 "DIVRING.spad" 285640 285648 286137 286188) (-220 "DIVRING.spad" 285131 285141 285630 285635) (-219 "DISPLAY.spad" 283311 283319 285121 285126) (-218 "DIRPROD.spad" 274570 274586 275210 275339) (-217 "DIRPROD2.spad" 273378 273396 274560 274565) (-216 "DIRPCAT.spad" 272310 272326 273232 273373) (-215 "DIRPCAT.spad" 270982 271000 271906 271911) (-214 "DIOSP.spad" 269807 269815 270972 270977) (-213 "DIOPS.spad" 268779 268789 269775 269802) (-212 "DIOPS.spad" 267737 267749 268735 268740) (-211 "DIFRING.spad" 267029 267037 267717 267732) (-210 "DIFRING.spad" 266329 266339 267019 267024) (-209 "DIFEXT.spad" 265488 265498 266309 266324) (-208 "DIFEXT.spad" 264564 264576 265387 265392) (-207 "DIAGG.spad" 264182 264192 264532 264559) (-206 "DIAGG.spad" 263820 263832 264172 264177) (-205 "DHMATRIX.spad" 262124 262134 263277 263304) (-204 "DFSFUN.spad" 255532 255540 262114 262119) (-203 "DFLOAT.spad" 252055 252063 255422 255527) (-202 "DFINTTLS.spad" 250264 250280 252045 252050) (-201 "DERHAM.spad" 248174 248206 250244 250259) (-200 "DEQUEUE.spad" 247492 247502 247781 247808) (-199 "DEGRED.spad" 247107 247121 247482 247487) (-198 "DEFINTRF.spad" 244632 244642 247097 247102) (-197 "DEFINTEF.spad" 243128 243144 244622 244627) (-196 "DECIMAL.spad" 241012 241020 241598 241691) (-195 "DDFACT.spad" 238811 238828 241002 241007) (-194 "DBLRESP.spad" 238409 238433 238801 238806) (-193 "DBASE.spad" 236981 236991 238399 238404) (-192 "D03FAFA.spad" 236809 236817 236971 236976) (-191 "D03EEFA.spad" 236629 236637 236799 236804) (-190 "D03AGNT.spad" 235709 235717 236619 236624) (-189 "D02EJFA.spad" 235171 235179 235699 235704) (-188 "D02CJFA.spad" 234649 234657 235161 235166) (-187 "D02BHFA.spad" 234139 234147 234639 234644) (-186 "D02BBFA.spad" 233629 233637 234129 234134) (-185 "D02AGNT.spad" 228433 228441 233619 233624) (-184 "D01WGTS.spad" 226752 226760 228423 228428) (-183 "D01TRNS.spad" 226729 226737 226742 226747) (-182 "D01GBFA.spad" 226251 226259 226719 226724) (-181 "D01FCFA.spad" 225773 225781 226241 226246) (-180 "D01ASFA.spad" 225241 225249 225763 225768) (-179 "D01AQFA.spad" 224687 224695 225231 225236) (-178 "D01APFA.spad" 224111 224119 224677 224682) (-177 "D01ANFA.spad" 223605 223613 224101 224106) (-176 "D01AMFA.spad" 223115 223123 223595 223600) (-175 "D01ALFA.spad" 222655 222663 223105 223110) (-174 "D01AKFA.spad" 222181 222189 222645 222650) (-173 "D01AJFA.spad" 221704 221712 222171 222176) (-172 "D01AGNT.spad" 217763 217771 221694 221699) (-171 "CYCLOTOM.spad" 217269 217277 217753 217758) (-170 "CYCLES.spad" 214101 214109 217259 217264) (-169 "CVMP.spad" 213518 213528 214091 214096) (-168 "CTRIGMNP.spad" 212008 212024 213508 213513) (-167 "CTORCALL.spad" 211596 211604 211998 212003) (-166 "CSTTOOLS.spad" 210839 210852 211586 211591) (-165 "CRFP.spad" 204543 204556 210829 210834) (-164 "CRAPACK.spad" 203586 203596 204533 204538) (-163 "CPMATCH.spad" 203086 203101 203511 203516) (-162 "CPIMA.spad" 202791 202810 203076 203081) (-161 "COORDSYS.spad" 197684 197694 202781 202786) (-160 "CONTOUR.spad" 197086 197094 197674 197679) (-159 "CONTFRAC.spad" 192698 192708 196988 197081) (-158 "COMRING.spad" 192372 192380 192636 192693) (-157 "COMPPROP.spad" 191886 191894 192362 192367) (-156 "COMPLPAT.spad" 191653 191668 191876 191881) (-155 "COMPLEX.spad" 185686 185696 185930 186191) (-154 "COMPLEX2.spad" 185399 185411 185676 185681) (-153 "COMPFACT.spad" 185001 185015 185389 185394) (-152 "COMPCAT.spad" 183057 183067 184723 184996) (-151 "COMPCAT.spad" 180820 180832 182488 182493) (-150 "COMMUPC.spad" 180566 180584 180810 180815) (-149 "COMMONOP.spad" 180099 180107 180556 180561) (-148 "COMM.spad" 179908 179916 180089 180094) (-147 "COMBOPC.spad" 178813 178821 179898 179903) (-146 "COMBINAT.spad" 177558 177568 178803 178808) (-145 "COMBF.spad" 174926 174942 177548 177553) (-144 "COLOR.spad" 173763 173771 174916 174921) (-143 "CMPLXRT.spad" 173472 173489 173753 173758) (-142 "CLIP.spad" 169564 169572 173462 173467) (-141 "CLIF.spad" 168203 168219 169520 169559) (-140 "CLAGG.spad" 164678 164688 168183 168198) (-139 "CLAGG.spad" 161034 161046 164541 164546) (-138 "CINTSLPE.spad" 160359 160372 161024 161029) (-137 "CHVAR.spad" 158437 158459 160349 160354) (-136 "CHARZ.spad" 158352 158360 158417 158432) (-135 "CHARPOL.spad" 157860 157870 158342 158347) (-134 "CHARNZ.spad" 157613 157621 157840 157855) (-133 "CHAR.spad" 155481 155489 157603 157608) (-132 "CFCAT.spad" 154797 154805 155471 155476) (-131 "CDEN.spad" 153955 153969 154787 154792) (-130 "CCLASS.spad" 152104 152112 153366 153405) (-129 "CATEGORY.spad" 151883 151891 152094 152099) (-128 "CARTEN.spad" 146986 147010 151873 151878) (-127 "CARTEN2.spad" 146372 146399 146976 146981) (-126 "CARD.spad" 143661 143669 146346 146367) (-125 "CACHSET.spad" 143283 143291 143651 143656) (-124 "CABMON.spad" 142836 142844 143273 143278) (-123 "BTREE.spad" 141905 141915 142443 142470) (-122 "BTOURN.spad" 140908 140918 141512 141539) (-121 "BTCAT.spad" 140284 140294 140864 140903) (-120 "BTCAT.spad" 139692 139704 140274 140279) (-119 "BTAGG.spad" 138708 138716 139648 139687) (-118 "BTAGG.spad" 137756 137766 138698 138703) (-117 "BSTREE.spad" 136491 136501 137363 137390) (-116 "BRILL.spad" 134686 134697 136481 136486) (-115 "BRAGG.spad" 133600 133610 134666 134681) (-114 "BRAGG.spad" 132488 132500 133556 133561) (-113 "BPADICRT.spad" 130472 130484 130727 130820) (-112 "BPADIC.spad" 130136 130148 130398 130467) (-111 "BOUNDZRO.spad" 129792 129809 130126 130131) (-110 "BOP.spad" 125256 125264 129782 129787) (-109 "BOP1.spad" 122642 122652 125212 125217) (-108 "BOOLEAN.spad" 121895 121903 122632 122637) (-107 "BMODULE.spad" 121607 121619 121863 121890) (-106 "BITS.spad" 121026 121034 121243 121270) (-105 "BINFILE.spad" 120369 120377 121016 121021) (-104 "BINDING.spad" 119788 119796 120359 120364) (-103 "BINARY.spad" 117681 117689 118258 118351) (-102 "BGAGG.spad" 116866 116876 117649 117676) (-101 "BGAGG.spad" 116071 116083 116856 116861) (-100 "BFUNCT.spad" 115635 115643 116051 116066) (-99 "BEZOUT.spad" 114770 114796 115585 115590) (-98 "BBTREE.spad" 111590 111599 114377 114404) (-97 "BASTYPE.spad" 111263 111270 111580 111585) (-96 "BASTYPE.spad" 110934 110943 111253 111258) (-95 "BALFACT.spad" 110374 110386 110924 110929) (-94 "AUTOMOR.spad" 109821 109830 110354 110369) (-93 "ATTREG.spad" 106540 106547 109573 109816) (-92 "ATTRBUT.spad" 102563 102570 106520 106535) (-91 "ATRIG.spad" 102033 102040 102553 102558) (-90 "ATRIG.spad" 101501 101510 102023 102028) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 505188a0..94f9b9eb 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,14 +1,14 @@ -(142548 . 3415311735) -(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(142548 . 3416412006) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) #0#) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) (((|#2| |#2|) . T)) ((((-523)) . T)) -((($ $) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((|#2| |#2|) . T) ((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523))))) +((($ $) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((|#2| |#2|) . T) ((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523))))) ((($) . T)) (((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#2|) . T)) -((($) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((|#2|) . T) (((-383 (-523))) |has| |#2| (-37 (-383 (-523))))) +((($) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((|#2|) . T) (((-383 (-523))) |has| |#2| (-37 (-383 (-523))))) (|has| |#1| (-840)) ((((-794)) . T)) ((((-794)) . T)) @@ -23,28 +23,28 @@ ((((-203)) . T) (((-794)) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1|) . T)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) -((($ $) . T) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1| |#1|) . T)) -(-3262 (|has| |#1| (-759)) (|has| |#1| (-786))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-784))) +((($ $) . T) ((#0=(-383 (-523)) #0#) -3172 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1| |#1|) . T)) +(-3172 (|has| |#1| (-759)) (|has| |#1| (-786))) ((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) ((((-794)) . T)) ((((-794)) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (|has| |#1| (-784)) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1| |#2| |#3|) . T)) (((|#4|) . T)) -((($) . T) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((($) . T) (((-383 (-523))) -3172 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) ((((-794)) . T)) ((((-794)) |has| |#1| (-1016))) (((|#1|) . T) ((|#2|) . T)) (((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) -(((|#2| (-456 (-2676 |#1|) (-710))) . T)) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(((|#2| (-456 (-2810 |#1|) (-710))) . T)) (((|#1| (-495 (-1087))) . T)) (((#0=(-801 |#1|) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (|has| |#4| (-344)) (|has| |#3| (-344)) (((|#1|) . T)) @@ -54,10 +54,10 @@ (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-515)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) ((($) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) ((((-499)) |has| |#1| (-564 (-499)))) ((($) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T)) ((($) . T)) @@ -66,59 +66,59 @@ ((((-794)) . T)) ((((-794)) . T)) ((((-383 (-523))) . T) (($) . T)) -((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-339)) (($) . T) ((|#1|) . T)) +((((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (((-1161 |#1| |#2| |#3|)) |has| |#1| (-339)) (($) . T) ((|#1|) . T)) ((((-794)) . T)) ((((-794)) . T)) ((((-794)) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) . T)) +(((|#1|) . T) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) . T)) (((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) (($) . T)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (((|#1| |#2|) . T)) ((((-794)) . T)) (((|#1|) . T)) -(((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523)))) ((|#2| |#2|) . T) (($ $) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +(((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523)))) ((|#2| |#2|) . T) (($ $) -3172 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) (((|#1|) . T)) -((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) -((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((($) -3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) -(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) ((($ $) . T)) (((|#2|) . T)) -((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T) (($) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) -((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T) (($) -3172 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) ((($) . T)) (|has| |#1| (-344)) (((|#1|) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) ((((-794)) . T)) ((((-794)) . T)) (((|#1| |#2|) . T)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) (((|#1| |#1|) . T)) (|has| |#1| (-515)) (((|#2| |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-286 |#2|))) (((-1087) |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-484 (-1087) |#2|)))) ((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-784))) ((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (|has| |#1| (-1016)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (|has| |#1| (-1016)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (|has| |#1| (-784)) ((($) . T) (((-383 (-523))) . T)) (((|#1|) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) -(-3262 (|has| |#4| (-732)) (|has| |#4| (-784))) -(-3262 (|has| |#4| (-732)) (|has| |#4| (-784))) -(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) -(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#4| (-732)) (|has| |#4| (-784))) +(-3172 (|has| |#4| (-732)) (|has| |#4| (-784))) +(-3172 (|has| |#3| (-732)) (|has| |#3| (-784))) +(-3172 (|has| |#3| (-732)) (|has| |#3| (-784))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-1016)) @@ -132,21 +132,21 @@ ((((-523)) . T)) ((((-523)) . T)) (((|#1|) . T)) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) (((|#1| (-710)) . T)) (|has| |#2| (-732)) -(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3172 (|has| |#2| (-732)) (|has| |#2| (-784))) (|has| |#2| (-784)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) ((((-1070) |#1|) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) (((|#1|) . T)) (((|#3| (-710)) . T)) (|has| |#1| (-136)) (|has| |#1| (-134)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (|has| |#1| (-1016)) ((((-383 (-523))) . T) (((-523)) . T)) ((((-1087) |#2|) |has| |#2| (-484 (-1087) |#2|)) ((|#2| |#2|) |has| |#2| (-286 |#2|))) @@ -154,7 +154,7 @@ (((|#1|) . T) (($) . T)) ((((-523)) . T)) ((((-523)) . T)) -((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) |has| |#1| (-158))) +((($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) |has| |#1| (-158))) ((((-523)) . T)) ((((-523)) . T)) (((#0=(-638) (-1083 #0#)) . T)) @@ -173,12 +173,12 @@ ((((-794)) . T)) ((((-794)) . T)) (((|#1| |#1|) . T)) -(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) (((|#1|) . T)) -((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) -((($) -3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973)))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((|#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973)))) ((((-794)) . T)) ((((-794)) . T)) ((((-794)) . T)) @@ -189,40 +189,40 @@ ((((-155 (-203))) |has| |#1| (-949)) (((-155 (-355))) |has| |#1| (-949)) (((-499)) |has| |#1| (-564 (-499))) (((-1083 |#1|)) . T) (((-823 (-523))) |has| |#1| (-564 (-823 (-523)))) (((-823 (-355))) |has| |#1| (-564 (-823 (-355))))) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1|) . T)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) -((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#2|) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) -(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515)))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-784))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-784))) +((((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#2|) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515)))) (|has| |#1| (-339)) (-12 (|has| |#4| (-211)) (|has| |#4| (-973))) (-12 (|has| |#3| (-211)) (|has| |#3| (-973))) -(-3262 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) -(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3172 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) +(-3172 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) ((((-794)) . T)) (((|#1|) . T)) ((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) (((|#1|) . T) (((-523)) |has| |#1| (-585 (-523)))) -(((|#2|) . T) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +(((|#2|) . T) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) . T)) (|has| |#1| (-515)) (|has| |#1| (-515)) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (((|#1|) . T)) (|has| |#1| (-515)) (|has| |#1| (-515)) (|has| |#1| (-515)) ((((-638)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-930)) (|has| |#1| (-1108))) +(-12 (|has| |#1| (-930)) (|has| |#1| (-1109))) (((|#2|) . T) (($) . T) (((-383 (-523))) . T)) (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))) ((($) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T)) -((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (((-1085 |#1| |#2| |#3|)) |has| |#1| (-339)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) . T)) +((((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (((-1085 |#1| |#2| |#3|)) |has| |#1| (-339)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) . T)) (((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) (($) . T)) -(((|#4| |#4|) -3262 (|has| |#4| (-158)) (|has| |#4| (-339)) (|has| |#4| (-973))) (($ $) |has| |#4| (-158))) -(((|#3| |#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973))) (($ $) |has| |#3| (-158))) +(((|#4| |#4|) -3172 (|has| |#4| (-158)) (|has| |#4| (-339)) (|has| |#4| (-973))) (($ $) |has| |#4| (-158))) +(((|#3| |#3|) -3172 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973))) (($ $) |has| |#3| (-158))) (((|#1|) . T)) (((|#2|) . T)) ((((-499)) |has| |#2| (-564 (-499))) (((-823 (-355))) |has| |#2| (-564 (-823 (-355)))) (((-823 (-523))) |has| |#2| (-564 (-823 (-523))))) @@ -231,21 +231,21 @@ ((((-794)) . T)) ((((-499)) |has| |#1| (-564 (-499))) (((-823 (-355))) |has| |#1| (-564 (-823 (-355)))) (((-823 (-523))) |has| |#1| (-564 (-823 (-523))))) ((((-794)) . T)) -(((|#4|) -3262 (|has| |#4| (-158)) (|has| |#4| (-339)) (|has| |#4| (-973))) (($) |has| |#4| (-158))) -(((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973))) (($) |has| |#3| (-158))) +(((|#4|) -3172 (|has| |#4| (-158)) (|has| |#4| (-339)) (|has| |#4| (-973))) (($) |has| |#4| (-158))) +(((|#3|) -3172 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973))) (($) |has| |#3| (-158))) ((((-794)) . T)) ((((-499)) . T) (((-523)) . T) (((-823 (-523))) . T) (((-355)) . T) (((-203)) . T)) (((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) ((($) . T) (((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T)) ((((-383 $) (-383 $)) |has| |#2| (-515)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) . T)) +((((-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) . T)) (((|#1|) . T)) (|has| |#2| (-840)) ((((-1070) (-51)) . T)) ((((-523)) |has| #0=(-383 |#2|) (-585 (-523))) ((#0#) . T)) ((((-499)) . T) (((-203)) . T) (((-355)) . T) (((-823 (-355))) . T)) ((((-794)) . T)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) (((|#1|) |has| |#1| (-158))) (((|#1| $) |has| |#1| (-263 |#1| |#1|))) ((((-794)) . T)) @@ -256,13 +256,13 @@ (|has| |#1| (-786)) (|has| |#1| (-1016)) (((|#1|) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) ((((-499)) |has| |#1| (-564 (-499)))) -((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) -((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) -((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((($) -3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-211)) -((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#1| (-495 (-757 (-1087)))) . T)) (((|#1| (-900)) . T)) (((#0=(-801 |#1|) $) |has| #0# (-263 #0# #0#))) @@ -271,9 +271,9 @@ (((|#1|) . T)) (((|#2| |#2|) . T)) (|has| |#1| (-1063)) -((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) -(|has| (-1154 |#1| |#2| |#3| |#4|) (-134)) -(|has| (-1154 |#1| |#2| |#3| |#4|) (-136)) +((((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) . T)) +(|has| (-1155 |#1| |#2| |#3| |#4|) (-134)) +(|has| (-1155 |#1| |#2| |#3| |#4|) (-136)) (|has| |#1| (-134)) (|has| |#1| (-136)) (((|#1|) |has| |#1| (-158))) @@ -288,40 +288,40 @@ ((($) . T) ((|#1|) . T)) (((|#2|) |has| |#2| (-973))) ((((-794)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) #0#) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((#0=(-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) #0#) |has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((#0=(-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) #0#) |has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))))) ((((-523) |#1|) . T)) ((((-794)) . T)) ((((-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#2| (-564 (-499)))) (((-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355))))) (((-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) ((((-794)) . T)) ((((-794)) . T)) ((($) . T)) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) ((((-794)) . T)) ((((-794)) . T)) -(|has| (-1153 |#2| |#3| |#4|) (-136)) -(|has| (-1153 |#2| |#3| |#4|) (-134)) +(|has| (-1154 |#2| |#3| |#4|) (-136)) +(|has| (-1154 |#2| |#3| |#4|) (-134)) (((|#2|) |has| |#2| (-1016)) (((-523)) -12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (((-383 (-523))) -12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((|#1|) . T)) (|has| |#1| (-1016)) ((((-794)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) (((|#1|) . T)) ((((-523) |#1|) . T)) (((|#2|) |has| |#2| (-158))) (((|#1|) |has| |#1| (-158))) (((|#1|) . T)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-784))) ((((-794)) |has| |#1| (-1016))) -(-3262 (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)) (|has| |#1| (-1028))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)) (|has| |#1| (-1028))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-325))) ((((-841 |#1|)) . T)) ((((-383 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-523) |#1|))) @@ -333,7 +333,7 @@ (((|#1|) . T)) ((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515))) (|has| |#1| (-339)) -(-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))) +(-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-339)) ((((-523)) . T)) @@ -345,31 +345,31 @@ (((|#1|) . T)) ((((-523) |#1|) . T)) (((|#2|) . T)) -(-3262 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) -(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) -(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3172 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3172 (|has| |#2| (-732)) (|has| |#2| (-784))) (((|#1|) . T)) ((((-1087)) -12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (-12 (|has| |#1| (-339)) (|has| |#2| (-759))) -(-3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325)) (|has| |#1| (-515))) -(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515)))) +(-3172 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325)) (|has| |#1| (-515))) +(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-515)))) ((($ $) |has| |#1| (-515))) (((#0=(-638) (-1083 #0#)) . T)) ((((-794)) . T)) -((((-794)) . T) (((-1168 |#4|)) . T)) -((((-794)) . T) (((-1168 |#3|)) . T)) -((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515)))) +((((-794)) . T) (((-1169 |#4|)) . T)) +((((-794)) . T) (((-1169 |#3|)) . T)) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3172 (|has| |#1| (-158)) (|has| |#1| (-515)))) ((($) |has| |#1| (-515))) ((((-794)) . T)) ((($) . T)) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((#1=(-1160 |#1| |#2| |#3|) #1#) |has| |#1| (-339)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) . T)) -(((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((#1=(-1161 |#1| |#2| |#3|) #1#) |has| |#1| (-339)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (((-1161 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) . T)) +(((|#1|) . T) (($) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) (((|#3|) |has| |#3| (-973))) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-1016)) (((|#2| (-758 |#1|)) . T)) (((|#1|) . T)) @@ -381,37 +381,37 @@ ((((-133)) . T)) (((|#3|) |has| |#3| (-1016)) (((-523)) -12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016))) (((-383 (-523))) -12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016)))) ((((-794)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (((|#1|) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) ((((-499)) |has| |#1| (-564 (-499)))) -((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +((((-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) . T)) (|has| |#1| (-339)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-784))) ((((-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((|#1| |#1|) |has| |#1| (-286 |#1|))) (|has| |#2| (-759)) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-784)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) ((((-794)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((((-499)) |has| |#1| (-564 (-499)))) (((|#1| |#2|) . T)) ((((-1087)) -12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) ((((-1070) |#1|) . T)) (((|#1| |#2| |#3| (-495 |#3|)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (|has| |#1| (-344)) (|has| |#1| (-344)) (|has| |#1| (-344)) ((((-794)) . T)) (((|#1|) . T)) -(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) (|has| |#1| (-344)) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((((-523)) . T)) ((((-523)) . T)) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((((-794)) . T)) ((((-794)) . T)) (-12 (|has| |#2| (-211)) (|has| |#2| (-973))) @@ -420,10 +420,10 @@ ((((-523) |#4|) . T)) ((((-523) |#3|) . T)) (((|#1|) . T) (((-523)) |has| |#1| (-585 (-523)))) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) -((((-1154 |#1| |#2| |#3| |#4|)) . T)) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) ((((-383 (-523))) . T) (((-523)) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) @@ -452,37 +452,37 @@ ((($) . T)) ((($ $) . T) ((#0=(-1087) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-158))) -((($) -3262 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((|#2|) |has| |#2| (-158)) (((-383 (-523))) |has| |#2| (-37 (-383 (-523))))) -(((|#2| |#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($ $) |has| |#2| (-158))) +((($) -3172 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((|#2|) |has| |#2| (-158)) (((-383 (-523))) |has| |#2| (-37 (-383 (-523))))) +(((|#2| |#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($ $) |has| |#2| (-158))) ((((-133)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-344)) (|has| |#2| (-344))) ((((-794)) . T)) -(((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($) |has| |#2| (-158))) +(((|#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($) |has| |#2| (-158))) (((|#1|) . T)) ((((-794)) . T)) (|has| |#1| (-1016)) (|has| $ (-136)) ((((-523) |#1|) . T)) -((($) -3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((($) -3172 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325)) (|has| |#1| (-515))) (((-383 (-523))) -3172 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) ((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (|has| |#1| (-339)) -(-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))) +(-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-339)) (|has| |#1| (-15 * (|#1| (-710) |#1|))) (((|#1|) . T)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) ((((-794)) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) (((|#2| (-495 (-796 |#1|))) . T)) ((((-794)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1|) . T)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((((-536 |#1|)) . T)) ((($) . T)) (((|#1|) . T) (($) . T)) @@ -499,28 +499,28 @@ ((((-794)) . T)) ((((-794)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515)))) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((#1=(-1085 |#1| |#2| |#3|) #1#) |has| |#1| (-339)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-515)))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((#1=(-1085 |#1| |#2| |#3|) #1#) |has| |#1| (-339)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) (((|#2|) |has| |#2| (-973))) (|has| |#1| (-1016)) -((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515)))) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (((-1085 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) . T)) -(((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3172 (|has| |#1| (-158)) (|has| |#1| (-515)))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (((-1085 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) . T)) +(((|#1|) . T) (($) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#1|) |has| |#1| (-158)) (($) . T)) (((|#1|) . T)) -(((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523)))) ((|#2| |#2|) . T) (($ $) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +(((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523)))) ((|#2| |#2|) . T) (($ $) -3172 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) ((((-794)) . T)) -((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) -3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) (((#0=(-1001) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T) (($) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T) (($) -3172 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) ((($) . T)) (((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) (($) . T)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (((|#2|) |has| |#1| (-339))) (((|#1|) . T)) (((|#2|) |has| |#2| (-1016)) (((-523)) -12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (((-383 (-523))) -12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) @@ -535,8 +535,8 @@ (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-134)) (|has| |#1| (-136)) -((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) -((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((($) -3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) ((((-383 (-523))) . T) (($) . T)) ((((-383 (-523))) . T) (($) . T)) ((((-383 (-523))) . T) (($) . T)) @@ -547,12 +547,12 @@ (((|#1| (-710) (-1001)) . T)) ((((-383 (-523))) |has| |#2| (-339)) (($) . T)) (((|#1| (-495 (-1006 (-1087))) (-1006 (-1087))) . T)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) (((|#1|) . T)) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) (|has| |#2| (-732)) -(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3172 (|has| |#2| (-732)) (|has| |#2| (-784))) (|has| |#1| (-344)) (|has| |#1| (-344)) (|has| |#1| (-344)) @@ -576,7 +576,7 @@ ((($ $) . T)) (((|#1| |#1|) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) -((((-1160 |#1| |#2| |#3|) $) -12 (|has| (-1160 |#1| |#2| |#3|) (-263 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339))) (($ $) . T)) +((((-1161 |#1| |#2| |#3|) $) -12 (|has| (-1161 |#1| |#2| |#3|) (-263 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-339))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) @@ -584,61 +584,61 @@ (((|#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (((|#2|) . T) (((-523)) |has| |#2| (-964 (-523))) (((-383 (-523))) |has| |#2| (-964 (-383 (-523))))) (((|#3| |#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) -(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) -(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) (((|#2|) . T)) -((((-794)) -3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-563 (-794))) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (((-1168 |#2|)) . T)) +((((-794)) -3172 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-563 (-794))) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (((-1169 |#2|)) . T)) (((|#1|) |has| |#1| (-158))) ((((-523)) . T)) -((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) -((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) -3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +((($) -3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) ((((-523) (-133)) . T)) -((($) -3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973)))) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) +((($) -3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((|#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973)))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) (((|#1|) . T)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) (((|#2|) |has| |#1| (-339))) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) |has| |#1| (-158))) +((($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) |has| |#1| (-158))) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1| (-495 #0=(-1087)) #0#) . T)) (((|#1|) . T) (($) . T)) (|has| |#4| (-158)) (|has| |#3| (-158)) (((#0=(-383 (-883 |#1|)) #0#) . T)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (|has| |#1| (-1016)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (|has| |#1| (-1016)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) ((((-499)) |has| |#1| (-564 (-499)))) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (((|#1| |#1|) |has| |#1| (-158))) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1|) . T)) ((((-383 (-883 |#1|))) . T)) (((|#1|) |has| |#1| (-158))) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((((-794)) . T)) -((((-1154 |#1| |#2| |#3| |#4|)) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) |has| |#1| (-973)) (((-523)) -12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) (((|#1| |#2|) . T)) -(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3172 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) (|has| |#3| (-732)) -(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +(-3172 (|has| |#3| (-732)) (|has| |#3| (-784))) (|has| |#3| (-784)) -((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#2|) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) -(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515)))) +((((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#2|) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515)))) (((|#2|) . T)) ((((-794)) . T)) ((((-794)) . T)) @@ -653,22 +653,22 @@ (|has| |#1| (-1016)) (((|#2|) . T)) ((((-499)) |has| |#2| (-564 (-499))) (((-823 (-355))) |has| |#2| (-564 (-823 (-355)))) (((-823 (-523))) |has| |#2| (-564 (-823 (-523))))) -(((|#4|) -3262 (|has| |#4| (-158)) (|has| |#4| (-339)))) -(((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)))) +(((|#4|) -3172 (|has| |#4| (-158)) (|has| |#4| (-339)))) +(((|#3|) -3172 (|has| |#3| (-158)) (|has| |#3| (-339)))) ((((-794)) . T)) (((|#1|) . T)) -(-3262 (|has| |#2| (-427)) (|has| |#2| (-840))) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-840))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-840))) +(-3172 (|has| |#2| (-427)) (|has| |#2| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-840))) ((($ $) . T) ((#0=(-1087) $) |has| |#1| (-211)) ((#0# |#1|) |has| |#1| (-211)) ((#1=(-757 (-1087)) |#1|) . T) ((#1# $) . T)) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-840))) ((((-523) |#2|) . T)) ((((-794)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) -((($) -3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) ((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973)))) +((($) -3172 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) ((|#3|) -3172 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973)))) ((((-523) |#1|) . T)) (|has| (-383 |#2|) (-136)) (|has| (-383 |#2|) (-134)) @@ -681,21 +681,21 @@ (|has| |#1| (-515)) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((((-794)) . T)) -((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +((((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) . T)) (|has| |#1| (-37 (-383 (-523)))) -((((-364) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +((((-364) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) . T)) (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-1063)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (((|#1|) . T)) ((((-364) (-1070)) . T)) (|has| |#1| (-515)) ((((-112 |#1|)) . T)) ((((-523) |#1|) . T)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) (((|#2|) . T)) ((((-794)) . T)) ((((-758 |#1|)) . T)) @@ -708,7 +708,7 @@ (((|#1|) |has| |#1| (-158))) ((((-794)) . T)) ((((-499)) |has| |#1| (-564 (-499)))) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (((|#2|) |has| |#2| (-286 |#2|))) (((#0=(-523) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) (((|#1|) . T)) @@ -718,7 +718,7 @@ (((#0=(-523) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) ((($) . T) (((-523)) . T) (((-383 (-523))) . T)) (|has| |#2| (-344)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) @@ -729,24 +729,24 @@ ((((-1085 |#1| |#2| |#3|) $) -12 (|has| (-1085 |#1| |#2| |#3|) (-263 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339))) (($ $) . T)) ((((-794)) . T)) ((((-794)) . T)) -((($) . T) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((($) . T) (((-383 (-523))) -3172 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) ((((-499)) |has| |#1| (-564 (-499)))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) ((($ $) . T)) ((($ $) . T)) ((((-794)) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) -(((#0=(-1160 |#1| |#2| |#3|) #0#) -12 (|has| (-1160 |#1| |#2| |#3|) (-286 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339))) (((-1087) #0#) -12 (|has| (-1160 |#1| |#2| |#3|) (-484 (-1087) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) +(((#0=(-1161 |#1| |#2| |#3|) #0#) -12 (|has| (-1161 |#1| |#2| |#3|) (-286 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-339))) (((-1087) #0#) -12 (|has| (-1161 |#1| |#2| |#3|) (-484 (-1087) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) ((((-383 (-523))) . T) (((-523)) . T)) ((((-523) (-133)) . T)) ((((-133)) . T)) (((|#1|) . T)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) ((((-108)) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) ((((-108)) . T)) @@ -754,38 +754,38 @@ ((((-499)) |has| |#1| (-564 (-499))) (((-203)) . #0=(|has| |#1| (-949))) (((-355)) . #0#)) ((((-794)) . T)) (|has| |#1| (-759)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) (|has| |#1| (-786)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-515))) (|has| |#1| (-515)) (|has| |#1| (-840)) (((|#1|) . T)) (|has| |#1| (-1016)) ((((-794)) . T)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-515))) ((((-794)) . T)) ((((-794)) . T)) ((((-794)) . T)) -(((|#1| (-1168 |#1|) (-1168 |#1|)) . T)) +(((|#1| (-1169 |#1|) (-1169 |#1|)) . T)) ((((-523) (-133)) . T)) ((($) . T)) -(-3262 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) -(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3172 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) +(-3172 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) ((((-794)) . T)) (|has| |#1| (-1016)) (((|#1| (-900)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) -(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3172 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3172 (|has| |#2| (-732)) (|has| |#2| (-784))) (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) -(-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))) (((|#1|) . T)) (|has| |#2| (-732)) -(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3172 (|has| |#2| (-732)) (|has| |#2| (-784))) (((|#1| |#2|) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (|has| |#2| (-784)) @@ -800,7 +800,7 @@ (((|#1|) . T)) (((|#1|) . T)) ((((-383 (-523))) . T) (($) . T)) -((($) . T) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) . T)) +((($) . T) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) . T)) (|has| |#1| (-767)) ((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) (|has| |#1| (-1016)) @@ -811,8 +811,8 @@ (((|#3|) |has| |#3| (-1016))) (|has| |#3| (-344)) (((|#1|) . T) (((-794)) . T)) -((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) -(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515)))) +((((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-1161 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515)))) ((((-794)) . T)) ((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#2|) . T)) @@ -822,30 +822,30 @@ (((|#1|) . T)) (((|#1|) |has| |#1| (-158))) ((((-383 (-523))) . T) (((-523)) . T)) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) ((((-133)) . T)) (((|#1|) . T)) ((((-133)) . T)) -((($) -3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973)))) +((($) -3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((|#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973)))) ((((-133)) . T)) (((|#1| |#2| |#3|) . T)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) (|has| $ (-136)) (|has| $ (-136)) (|has| |#1| (-1016)) ((((-794)) . T)) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-448)) (|has| |#1| (-515)) (|has| |#1| (-973)) (|has| |#1| (-1028))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-448)) (|has| |#1| (-515)) (|has| |#1| (-973)) (|has| |#1| (-1028))) ((($ $) |has| |#1| (-263 $ $)) ((|#1| $) |has| |#1| (-263 |#1| |#1|))) (((|#1| (-383 (-523))) . T)) (((|#1|) . T)) ((((-1087)) . T)) (|has| |#1| (-515)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (|has| |#1| (-515)) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) @@ -856,7 +856,7 @@ (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#4| (-784)) -(((|#2| (-218 (-2676 |#1|) (-710)) (-796 |#1|)) . T)) +(((|#2| (-218 (-2810 |#1|) (-710)) (-796 |#1|)) . T)) (|has| |#3| (-784)) (((|#1| (-495 |#3|) |#3|) . T)) (|has| |#1| (-136)) @@ -870,21 +870,21 @@ (|has| |#1| (-134)) ((((-383 (-523))) |has| |#2| (-339)) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) -(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) -(-3262 (|has| |#1| (-325)) (|has| |#1| (-344))) +(-3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#1| (-325)) (|has| |#1| (-344))) ((((-1054 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-158)) (((|#1| |#2|) . T)) (-12 (|has| |#2| (-211)) (|has| |#2| (-973))) -(((|#2|) . T) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) -(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) -(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +(((|#2|) . T) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) +(-3172 (|has| |#3| (-732)) (|has| |#3| (-784))) +(-3172 (|has| |#3| (-732)) (|has| |#3| (-784))) ((((-794)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) (((|#1|) . T) (($) . T)) ((((-638)) . T)) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) (|has| |#1| (-515)) (((|#1|) . T)) (((|#1|) . T)) @@ -906,10 +906,10 @@ (((|#1| (-383 (-523))) . T)) (((|#3|) . T) (((-562 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) (((#0=(-1085 |#1| |#2| |#3|) #0#) -12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339))) (((-1087) #0#) -12 (|has| (-1085 |#1| |#2| |#3|) (-484 (-1087) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) @@ -917,8 +917,8 @@ ((((-794)) . T)) ((((-794)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) -(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) |has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))))) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) |has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))))) ((((-794)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) @@ -929,10 +929,10 @@ ((($ $) . T) ((#0=(-796 |#1|) $) . T) ((#0# |#2|) . T)) (|has| |#1| (-767)) (|has| |#1| (-1016)) -(((|#2| |#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($ $) |has| |#2| (-158))) -(((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)))) -((((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($) |has| |#2| (-158))) +(((|#2| |#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($ $) |has| |#2| (-158))) +(((|#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)))) +((((-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($) |has| |#2| (-158))) ((((-710)) . T)) ((((-523)) . T)) (|has| |#1| (-515)) @@ -945,29 +945,29 @@ ((((-112 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-136)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-515))) ((((-823 (-523))) . T) (((-823 (-355))) . T) (((-499)) . T) (((-1087)) . T)) ((((-794)) . T)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) ((($) . T)) ((((-794)) . T)) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) (((|#2|) |has| |#2| (-158))) -((($) -3262 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((|#2|) |has| |#2| (-158)) (((-383 (-523))) |has| |#2| (-37 (-383 (-523))))) +((($) -3172 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((|#2|) |has| |#2| (-158)) (((-383 (-523))) |has| |#2| (-37 (-383 (-523))))) ((((-801 |#1|)) . T)) -(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) +(-3172 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (-12 (|has| |#3| (-211)) (|has| |#3| (-973))) (|has| |#2| (-1063)) -(((#0=(-51)) . T) (((-2 (|:| -1853 (-1087)) (|:| -2433 #0#))) . T)) +(((#0=(-51)) . T) (((-2 (|:| -3772 (-1087)) (|:| -2482 #0#))) . T)) (((|#1| |#2|) . T)) -(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3172 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) (((|#1| (-523) (-1001)) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1| (-383 (-523)) (-1001)) . T)) -((($) -3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((($) -3172 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325)) (|has| |#1| (-515))) (((-383 (-523))) -3172 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) ((((-523) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) @@ -975,37 +975,37 @@ (-12 (|has| |#1| (-344)) (|has| |#2| (-344))) ((((-794)) . T)) ((((-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((|#1| |#1|) |has| |#1| (-286 |#1|))) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-344))) (((|#1|) . T)) ((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515))) -((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-1085 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) -(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515)))) +((((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-1085 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515)))) ((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) ((((-794)) . T)) (|has| |#1| (-325)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) #0#) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) (|has| |#1| (-515)) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) ((((-794)) . T)) (((|#1| |#2|) . T)) -(-3262 (|has| |#2| (-427)) (|has| |#2| (-840))) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-840))) +(-3172 (|has| |#2| (-427)) (|has| |#2| (-840))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-840))) ((((-383 (-523))) . T) (((-523)) . T)) ((((-523)) . T)) -((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) ((($) . T)) ((((-794)) . T)) (((|#1|) . T)) ((((-801 |#1|)) . T) (($) . T) (((-383 (-523))) . T)) ((((-794)) . T)) -(((|#3| |#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973))) (($ $) |has| |#3| (-158))) +(((|#3| |#3|) -3172 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973))) (($ $) |has| |#3| (-158))) (|has| |#1| (-949)) ((((-794)) . T)) -(((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973))) (($) |has| |#3| (-158))) +(((|#3|) -3172 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973))) (($) |has| |#3| (-158))) ((((-523) (-108)) . T)) (((|#1|) |has| |#1| (-286 |#1|))) (|has| |#1| (-344)) @@ -1013,32 +1013,32 @@ (|has| |#1| (-344)) ((((-1087) $) |has| |#1| (-484 (-1087) $)) (($ $) |has| |#1| (-286 $)) ((|#1| |#1|) |has| |#1| (-286 |#1|)) (((-1087) |#1|) |has| |#1| (-484 (-1087) |#1|))) ((((-1087)) |has| |#1| (-831 (-1087)))) -(-3262 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325))) +(-3172 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325))) ((((-364) (-1034)) . T)) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((((-364) |#1|) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-325))) (|has| |#1| (-1016)) ((((-794)) . T)) ((((-794)) . T)) ((((-841 |#1|)) . T)) -((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) -((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) -3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) (((|#1| |#2|) . T)) ((($) . T)) (((|#1| |#1|) . T)) (((#0=(-801 |#1|)) |has| #0# (-286 #0#))) (((|#1| |#2|) . T)) -(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) -(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3172 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3172 (|has| |#2| (-732)) (|has| |#2| (-784))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (((|#1|) . T)) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) -(|has| |#1| (-1108)) +(((|#2|) . T) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) +(|has| |#1| (-1109)) (((#0=(-523) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) ((((-383 (-523))) . T) (($) . T)) (((|#4|) |has| |#4| (-973))) @@ -1048,8 +1048,8 @@ (((|#1| |#1|) . T) (($ $) . T) ((#0=(-383 (-523)) #0#) . T)) (|has| |#1| (-339)) ((((-523)) . T) (((-383 (-523))) . T) (($) . T)) -((($ $) . T) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1| |#1|) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((($ $) . T) ((#0=(-383 (-523)) #0#) -3172 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1| |#1|) . T)) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) (((|#1|) . T) (($) . T) (((-383 (-523))) . T)) ((((-794)) . T)) ((((-794)) . T)) @@ -1064,14 +1064,14 @@ (((|#1| |#2|) . T)) (|has| |#1| (-784)) (|has| |#1| (-784)) -((($) . T) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) -(((#0=(-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) #0#) |has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))))) +((($) . T) (((-383 (-523))) -3172 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-515))) +(((#0=(-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) #0#) |has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))))) ((($) . T)) (|has| |#2| (-786)) ((($) . T)) (((|#2|) |has| |#2| (-1016))) -((((-794)) -3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-563 (-794))) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (((-1168 |#2|)) . T)) +((((-794)) -3172 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-563 (-794))) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (((-1169 |#2|)) . T)) (|has| |#1| (-786)) (|has| |#1| (-786)) ((((-1070) (-51)) . T)) @@ -1079,10 +1079,10 @@ ((((-794)) . T)) ((((-523)) |has| #0=(-383 |#2|) (-585 (-523))) ((#0#) . T)) ((((-523) (-133)) . T)) -((((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((|#1| |#2|) . T)) +((((-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T) ((|#1| |#2|) . T)) ((((-383 (-523))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((((-794)) . T)) ((((-841 |#1|)) . T)) (|has| |#1| (-339)) @@ -1096,7 +1096,7 @@ (|has| |#1| (-784)) ((((-1087)) |has| |#1| (-831 (-1087)))) (((|#1| (-1087)) . T)) -(((|#1| (-1168 |#1|) (-1168 |#1|)) . T)) +(((|#1| (-1169 |#1|) (-1169 |#1|)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) (|has| |#1| (-1016)) @@ -1107,31 +1107,31 @@ ((($) . T)) (((|#2|) . T) (($) . T)) (((|#1|) |has| |#1| (-158))) -((((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((|#1| |#2|) . T)) +((((-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) ((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-158))) -((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) -((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) -3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +((($) -3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#1|) . T)) (((|#1|) . T)) ((((-499)) |has| |#1| (-564 (-499))) (((-823 (-355))) |has| |#1| (-564 (-823 (-355)))) (((-823 (-523))) |has| |#1| (-564 (-823 (-523))))) ((((-794)) . T)) -(((|#2|) . T) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (|has| |#2| (-784)) (-12 (|has| |#2| (-211)) (|has| |#2| (-973))) (|has| |#1| (-515)) (|has| |#1| (-1063)) ((((-1070) |#1|) . T)) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) -(((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#1| |#1|) . T)) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(((#0=(-383 (-523)) #0#) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#1| |#1|) . T)) ((((-383 (-523))) |has| |#1| (-964 (-523))) (((-523)) |has| |#1| (-964 (-523))) (((-1087)) |has| |#1| (-964 (-1087))) ((|#1|) . T)) ((((-523) |#2|) . T)) ((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) ((((-523)) |has| |#1| (-817 (-523))) (((-355)) |has| |#1| (-817 (-355)))) -((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#1|) . T)) +((((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#1|) . T)) (((|#1|) . T)) ((((-589 |#4|)) . T) (((-794)) . T)) ((((-499)) |has| |#4| (-564 (-499)))) @@ -1144,17 +1144,17 @@ (((|#1|) . T)) (((|#2|) . T)) ((((-1087)) |has| (-383 |#2|) (-831 (-1087)))) -(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) #0#) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) -((((-794)) -3262 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-563 (-794))) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-344)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973)) (|has| |#3| (-1016))) (((-1168 |#3|)) . T)) +((((-794)) -3172 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-563 (-794))) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-344)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973)) (|has| |#3| (-1016))) (((-1169 |#3|)) . T)) ((((-523) |#2|) . T)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) -(((|#2| |#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($ $) |has| |#2| (-158))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(((|#2| |#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($ $) |has| |#2| (-158))) ((((-794)) . T)) ((((-794)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T) ((|#2|) . T)) ((((-794)) . T)) ((((-794)) . T)) ((((-1070) (-1087) (-523) (-203) (-794)) . T)) @@ -1189,8 +1189,8 @@ (|has| |#1| (-37 (-383 (-523)))) ((((-794)) . T)) ((((-499)) |has| |#1| (-564 (-499)))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) -(((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($) |has| |#2| (-158))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +(((|#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($) |has| |#2| (-158))) (|has| $ (-136)) ((((-383 |#2|)) . T)) ((((-383 (-523))) |has| #0=(-383 |#2|) (-964 (-383 (-523)))) (((-523)) |has| #0# (-964 (-523))) ((#0#) . T)) @@ -1201,11 +1201,11 @@ (((|#3|) |has| |#3| (-158))) (|has| |#1| (-136)) (|has| |#1| (-134)) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-344))) (|has| |#1| (-136)) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-344))) (|has| |#1| (-136)) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-344))) (|has| |#1| (-136)) (((|#1|) . T)) (((|#2|) . T)) @@ -1236,7 +1236,7 @@ ((((-927 |#1|)) . T) ((|#1|) . T)) ((((-794)) . T)) ((((-794)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((((-383 (-523))) . T) (((-383 |#1|)) . T) ((|#1|) . T) (($) . T)) (((|#1| (-1083 |#1|)) . T)) ((((-523)) . T) (($) . T) (((-383 (-523))) . T)) @@ -1244,15 +1244,15 @@ (|has| |#1| (-786)) (((|#2|) . T)) ((((-523)) . T) (($) . T) (((-383 (-523))) . T)) -((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +((((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) . T)) ((((-523) |#2|) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) (((|#2|) . T)) ((((-523) |#3|) . T)) (((|#2|) . T)) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +((((-1161 |#1| |#2| |#3|)) |has| |#1| (-339))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) ((((-794)) . T)) @@ -1261,7 +1261,7 @@ (((|#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (((|#2|) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) #0#) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) (((|#2| |#2|) . T)) (|has| |#2| (-339)) (((|#2|) . T) (((-523)) |has| |#2| (-964 (-523))) (((-383 (-523))) |has| |#2| (-964 (-383 (-523))))) @@ -1291,19 +1291,19 @@ (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1| |#2|) . T)) ((((-523) (-133)) . T)) -(((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) -((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(((#0=(-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) #0#) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) +((($) -3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-786)) (((|#2| (-710) (-1001)) . T)) (((|#1| |#2|) . T)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-515))) (|has| |#1| (-730)) (((|#1|) |has| |#1| (-158))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-3262 (|has| |#1| (-136)) (-12 (|has| |#1| (-339)) (|has| |#2| (-136)))) -(-3262 (|has| |#1| (-134)) (-12 (|has| |#1| (-339)) (|has| |#2| (-134)))) +(-3172 (|has| |#1| (-136)) (-12 (|has| |#1| (-339)) (|has| |#2| (-136)))) +(-3172 (|has| |#1| (-134)) (-12 (|has| |#1| (-339)) (|has| |#2| (-134)))) (((|#4|) . T)) (|has| |#1| (-134)) ((((-1070) |#1|) . T)) @@ -1315,11 +1315,11 @@ ((((-794)) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#3|) . T)) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +((((-1161 |#1| |#2| |#3|)) |has| |#1| (-339))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (((|#1|) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016))) (((-888 |#1|)) . T)) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016))) (((-888 |#1|)) . T)) (|has| |#1| (-784)) (|has| |#1| (-784)) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) @@ -1332,8 +1332,8 @@ ((($) . T)) ((((-364) (-1070)) . T)) ((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) -((((-794)) -3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-563 (-794))) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (((-1168 |#2|)) . T)) -(((#0=(-51)) . T) (((-2 (|:| -1853 (-1070)) (|:| -2433 #0#))) . T)) +((((-794)) -3172 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-563 (-794))) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (((-1169 |#2|)) . T)) +(((#0=(-51)) . T) (((-2 (|:| -3772 (-1070)) (|:| -2482 #0#))) . T)) (((|#1|) . T)) ((((-794)) . T)) (((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) @@ -1341,7 +1341,7 @@ (|has| |#2| (-134)) (|has| |#2| (-136)) (|has| |#1| (-448)) -(-3262 (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) +(-3172 (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) (|has| |#1| (-339)) ((((-794)) . T)) (|has| |#1| (-37 (-383 (-523)))) @@ -1350,8 +1350,8 @@ (|has| |#1| (-784)) (|has| |#1| (-784)) ((((-794)) . T)) -((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) -(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515)))) +((((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-1161 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515)))) ((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#1| |#2|) . T)) ((((-1087)) |has| |#1| (-831 (-1087)))) @@ -1359,7 +1359,7 @@ ((((-794)) . T)) ((((-794)) . T)) (|has| |#1| (-1016)) -(((|#2| (-456 (-2676 |#1|) (-710)) (-796 |#1|)) . T)) +(((|#2| (-456 (-2810 |#1|) (-710)) (-796 |#1|)) . T)) ((((-383 (-523))) . #0=(|has| |#2| (-339))) (($) . #0#)) (((|#1| (-495 (-1087)) (-1087)) . T)) (((|#1|) . T)) @@ -1379,22 +1379,22 @@ (|has| |#1| (-136)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) -((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +(((|#1|) . T) (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) +((((-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) . T)) ((((-1085 |#1| |#2| |#3|)) |has| |#1| (-339))) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((((-1087) (-51)) . T)) ((($ $) . T)) (((|#1| (-523)) . T)) ((((-841 |#1|)) . T)) -(((|#1|) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-973))) (($) -3262 (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)))) +(((|#1|) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-973))) (($) -3172 (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)))) (((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) (|has| |#1| (-786)) (|has| |#1| (-786)) ((((-523) |#2|) . T)) ((((-523)) . T)) -((((-1160 |#1| |#2| |#3|)) -12 (|has| (-1160 |#1| |#2| |#3|) (-286 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) +((((-1161 |#1| |#2| |#3|)) -12 (|has| (-1161 |#1| |#2| |#3|) (-286 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (|has| |#1| (-786)) ((((-629 |#2|)) . T) (((-794)) . T)) (((|#1| |#2|) . T)) @@ -1403,13 +1403,13 @@ (((|#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (((|#1|) |has| |#1| (-158))) (((|#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) -(((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)))) +(((|#3|) -3172 (|has| |#3| (-158)) (|has| |#3| (-339)))) (|has| |#2| (-786)) (|has| |#1| (-786)) -(-3262 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-840))) +(-3172 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-840))) ((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) ((((-523) |#2|) . T)) -(((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)))) +(((|#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)))) (|has| |#1| (-325)) (((|#3| |#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) ((($) . T) (((-383 (-523))) . T)) @@ -1417,7 +1417,7 @@ (|has| |#1| (-759)) (|has| |#1| (-759)) (((|#1|) . T)) -(-3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325))) (|has| |#1| (-784)) (|has| |#1| (-784)) (|has| |#1| (-784)) @@ -1426,13 +1426,13 @@ ((((-523)) . T) (($) . T) (((-383 (-523))) . T)) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-325))) (|has| |#1| (-37 (-383 (-523)))) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((((-1087)) |has| |#1| (-831 (-1087))) (((-1001)) . T)) (((|#1|) . T)) (|has| |#1| (-784)) -(((#0=(-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) #0#) |has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))))) +(((#0=(-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) #0#) |has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))))) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (|has| |#1| (-1016)) (((|#1|) . T)) @@ -1450,7 +1450,7 @@ (((|#1|) . T)) ((((-133)) . T)) (((|#2|) |has| |#2| (-158))) -(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) +(-3172 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (((|#1|) . T)) (|has| |#1| (-134)) (|has| |#1| (-136)) @@ -1472,32 +1472,32 @@ (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((#0=(-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) #0#) |has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))))) -(-3262 (|has| |#2| (-427)) (|has| |#2| (-840))) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-840))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((#0=(-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) #0#) |has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))))) +(-3172 (|has| |#2| (-427)) (|has| |#2| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-840))) (((|#1|) . T) (($) . T)) (((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)))) +(((|#3|) -3172 (|has| |#3| (-158)) (|has| |#3| (-339)))) (|has| |#1| (-786)) (|has| |#1| (-515)) ((((-536 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-3262 (-12 (|has| |#1| (-339)) (|has| |#2| (-759))) (-12 (|has| |#1| (-339)) (|has| |#2| (-786)))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (-12 (|has| |#1| (-339)) (|has| |#2| (-759))) (-12 (|has| |#1| (-339)) (|has| |#2| (-786)))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) ((((-841 |#1|)) . T)) (((|#1| (-467 |#1| |#3|) (-467 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) (((|#1| (-710)) . T)) ((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515))) -((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-1085 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) -(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515)))) +((((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-1085 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515)))) ((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) -((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +((((-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) . T)) ((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) ((((-614 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) @@ -1505,19 +1505,19 @@ ((((-794)) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) ((((-794)) . T)) -((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) ((((-794)) . T)) ((((-794)) . T)) ((((-794)) . T)) (((|#2|) . T)) -(-3262 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-344)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973)) (|has| |#3| (-1016))) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-344)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973)) (|has| |#3| (-1016))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) -(|has| |#1| (-1108)) -(|has| |#1| (-1108)) -(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) -(|has| |#1| (-1108)) -(|has| |#1| (-1108)) +(|has| |#1| (-1109)) +(|has| |#1| (-1109)) +(-3172 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) +(|has| |#1| (-1109)) +(|has| |#1| (-1109)) (((|#3| |#3|) . T)) (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) ((($ $) . T) ((#0=(-383 (-523)) #0#) . T) ((#1=(-383 |#1|) #1#) . T) ((|#1| |#1|) . T)) @@ -1528,43 +1528,43 @@ (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) ((((-1070) (-51)) . T)) (|has| |#1| (-1016)) -(-3262 (|has| |#2| (-759)) (|has| |#2| (-786))) +(-3172 (|has| |#2| (-759)) (|has| |#2| (-786))) (((|#1|) . T)) -((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((($) -3172 (|has| |#1| (-339)) (|has| |#1| (-325))) (((-383 (-523))) -3172 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) (((|#1|) |has| |#1| (-158)) (($) . T)) ((($) . T)) ((((-1085 |#1| |#2| |#3|)) -12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) ((((-794)) . T)) -(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((($) . T)) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) ((((-794)) . T)) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-840))) (|has| |#2| (-840)) (|has| |#1| (-339)) (((|#2|) |has| |#2| (-1016))) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((($) . T) ((|#2|) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-840))) (|has| |#1| (-840)) (|has| |#1| (-840)) ((((-499)) . T) (((-383 (-1083 (-523)))) . T) (((-203)) . T) (((-355)) . T)) ((((-355)) . T) (((-203)) . T) (((-794)) . T)) (|has| |#1| (-840)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (((|#1|) . T)) (((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) ((($ $) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((($ $) . T)) ((((-523) (-108)) . T)) ((($) . T)) (((|#1|) . T)) ((((-523)) . T)) ((((-108)) . T)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (|has| |#1| (-37 (-383 (-523)))) (((|#1| (-523)) . T)) ((($) . T)) @@ -1580,13 +1580,13 @@ (((|#1|) . T)) ((((-794)) . T)) (((|#1| (-523)) . T)) -(((|#1| (-1160 |#1| |#2| |#3|)) . T)) +(((|#1| (-1161 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-383 (-523))) . T)) -(((|#1| (-1132 |#1| |#2| |#3|)) . T)) +(((|#1| (-1133 |#1| |#2| |#3|)) . T)) (((|#1| (-710)) . T)) (((|#1|) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((((-794)) . T)) (|has| |#1| (-1016)) ((((-1070) |#1|) . T)) @@ -1595,8 +1595,8 @@ (|has| |#2| (-134)) (((|#1| (-495 (-757 (-1087))) (-757 (-1087))) . T)) ((((-794)) . T)) -((((-1154 |#1| |#2| |#3| |#4|)) . T)) -((((-1154 |#1| |#2| |#3| |#4|)) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) |has| |#1| (-973))) ((((-523) (-108)) . T)) ((((-794)) |has| |#1| (-1016))) @@ -1606,34 +1606,34 @@ (((|#1|) . T)) ((((-523)) . T)) ((((-794)) . T)) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-325))) ((((-794)) . T)) (|has| |#1| (-136)) (((|#3|) . T)) -(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3172 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) ((((-794)) . T)) -((((-1153 |#2| |#3| |#4|)) . T) (((-1154 |#1| |#2| |#3| |#4|)) . T)) +((((-1154 |#2| |#3| |#4|)) . T) (((-1155 |#1| |#2| |#3| |#4|)) . T)) ((((-794)) . T)) -((((-47)) -12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523)))) (((-562 $)) . T) ((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) -3262 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523)))) (|has| |#1| (-964 (-383 (-523))))) (((-383 (-883 |#1|))) |has| |#1| (-515)) (((-883 |#1|)) |has| |#1| (-973)) (((-1087)) . T)) +((((-47)) -12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523)))) (((-562 $)) . T) ((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) -3172 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523)))) (|has| |#1| (-964 (-383 (-523))))) (((-383 (-883 |#1|))) |has| |#1| (-515)) (((-883 |#1|)) |has| |#1| (-973)) (((-1087)) . T)) (((|#1|) . T) (($) . T)) (((|#1| (-710)) . T)) -((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) |has| |#1| (-158))) +((($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) |has| |#1| (-158))) (((|#1|) |has| |#1| (-286 |#1|))) -((((-1154 |#1| |#2| |#3| |#4|)) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) ((((-523)) |has| |#1| (-817 (-523))) (((-355)) |has| |#1| (-817 (-355)))) (((|#1|) . T)) (|has| |#1| (-515)) (((|#1|) . T)) ((((-794)) . T)) -(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) (((|#1|) |has| |#1| (-158))) ((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (((|#1|) . T)) (((|#3|) |has| |#3| (-1016))) -(((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)))) -((((-1153 |#2| |#3| |#4|)) . T)) +(((|#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-339)))) +((((-1154 |#2| |#3| |#4|)) . T)) ((((-108)) . T)) (|has| |#1| (-759)) (|has| |#1| (-759)) @@ -1642,8 +1642,8 @@ (|has| |#1| (-784)) (|has| |#1| (-784)) (((|#1| (-523) (-1001)) . T)) -(-3262 (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(-3172 (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (((|#1| (-383 (-523)) (-1001)) . T)) (((|#1| (-710) (-1001)) . T)) (|has| |#1| (-786)) @@ -1659,28 +1659,28 @@ (((|#1|) . T)) (|has| |#1| (-1016)) ((((-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-585 (-523)))) ((|#2|) |has| |#1| (-339))) -(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) +(-3172 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (((|#2|) |has| |#2| (-158))) (((|#1|) |has| |#1| (-158))) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) -((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) +((((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) . T)) ((((-794)) . T)) (|has| |#3| (-784)) ((((-794)) . T)) -((((-1153 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) . T)) +((((-1154 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) . T)) ((((-794)) . T)) -(((|#1| |#1|) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-973)))) +(((|#1| |#1|) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-973)))) (((|#1|) . T)) ((((-523)) . T)) ((((-523)) . T)) -(((|#1|) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-973)))) +(((|#1|) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-973)))) (((|#2|) |has| |#2| (-339))) ((($) . T) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-339))) (|has| |#1| (-786)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) |has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))))) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-840))) +((((-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) |has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-840))) (((|#2|) . T) (((-523)) |has| |#2| (-585 (-523)))) ((((-794)) . T)) ((((-794)) . T)) @@ -1714,18 +1714,18 @@ (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) (((|#1|) . T)) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) (((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) . T) (($ $) . T)) ((((-794)) . T)) (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) ((($) . T) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) (|has| |#1| (-339)) (|has| |#1| (-339)) (|has| (-383 |#2|) (-211)) (|has| |#1| (-840)) (((|#2|) |has| |#2| (-973))) -(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) (|has| |#1| (-339)) (((|#1|) |has| |#1| (-158))) (((|#1| |#1|) . T)) @@ -1750,7 +1750,7 @@ (((|#1| (-383 (-523)) (-1001)) . T)) (((|#1| (-710) (-1001)) . T)) (((#0=(-383 |#2|) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-523)) -3262 (|has| (-383 (-523)) (-964 (-523))) (|has| |#1| (-964 (-523)))) (((-383 (-523))) . T)) +(((|#1|) . T) (((-523)) -3172 (|has| (-383 (-523)) (-964 (-523))) (|has| |#1| (-964 (-523)))) (((-383 (-523))) . T)) (((|#1| (-554 |#1| |#3|) (-554 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-158))) (((|#1|) . T)) @@ -1769,24 +1769,24 @@ ((((-638)) . T)) (((|#2|) |has| |#2| (-158))) (|has| |#2| (-784)) -((((-108)) |has| |#1| (-1016)) (((-794)) -3262 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)) (|has| |#1| (-1028)) (|has| |#1| (-1016)))) +((((-108)) |has| |#1| (-1016)) (((-794)) -3172 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)) (|has| |#1| (-1028)) (|has| |#1| (-1016)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) . T)) +((((-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) . T)) ((((-794)) . T)) ((((-523) |#1|) . T)) ((((-638)) . T) (((-383 (-523))) . T) (((-523)) . T)) (((|#1| |#1|) |has| |#1| (-158))) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) ((((-355)) . T)) ((((-638)) . T)) ((((-383 (-523))) . #0=(|has| |#2| (-339))) (($) . #0#)) (((|#1|) |has| |#1| (-158))) ((((-383 (-883 |#1|))) . T)) (((|#2| |#2|) . T)) -(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) (((|#2|) . T)) (|has| |#2| (-786)) (((|#3|) |has| |#3| (-973))) @@ -1796,14 +1796,14 @@ (|has| |#1| (-786)) ((((-1087)) |has| |#2| (-831 (-1087)))) ((((-794)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((((-383 (-523))) . T) (($) . T)) (|has| |#1| (-448)) (|has| |#1| (-344)) (|has| |#1| (-344)) (|has| |#1| (-344)) (|has| |#1| (-339)) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-448)) (|has| |#1| (-515)) (|has| |#1| (-973)) (|has| |#1| (-1028))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-448)) (|has| |#1| (-515)) (|has| |#1| (-973)) (|has| |#1| (-1028))) (|has| |#1| (-37 (-383 (-523)))) ((((-112 |#1|)) . T)) ((((-112 |#1|)) . T)) @@ -1824,11 +1824,11 @@ (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-786)) -((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +((((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-136)) (|has| |#1| (-134)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) ((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) ((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (((|#2|) . T)) (((|#3|) . T)) ((((-112 |#1|)) . T)) @@ -1846,11 +1846,11 @@ ((((-499)) |has| |#1| (-564 (-499))) (((-823 (-523))) |has| |#1| (-564 (-823 (-523)))) (((-823 (-355))) |has| |#1| (-564 (-823 (-355)))) (((-355)) . #0=(|has| |#1| (-949))) (((-203)) . #0#)) (((|#1|) |has| |#1| (-339))) ((((-794)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((($ $) . T) (((-562 $) $) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) -((($) . T) (((-1154 |#1| |#2| |#3| |#4|)) . T) (((-383 (-523))) . T)) -((($) -3262 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) +((($) . T) (((-1155 |#1| |#2| |#3| |#4|)) . T) (((-383 (-523))) . T)) +((($) -3172 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-515))) (|has| |#1| (-339)) (|has| |#1| (-339)) (|has| |#1| (-339)) @@ -1861,11 +1861,11 @@ ((((-355)) . T)) (((|#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) ((((-794)) . T)) -(-3262 (|has| |#2| (-427)) (|has| |#2| (-840))) +(-3172 (|has| |#2| (-427)) (|has| |#2| (-840))) (((|#1|) . T)) (|has| |#1| (-786)) (|has| |#1| (-786)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) ((((-499)) |has| |#1| (-564 (-499)))) (((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (|has| |#1| (-1016)) @@ -1874,13 +1874,13 @@ (|has| |#1| (-134)) (|has| |#1| (-136)) ((((-523)) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) -(((#0=(-1153 |#2| |#3| |#4|)) . T) (((-383 (-523))) |has| #0# (-37 (-383 (-523)))) (($) . T)) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) +(((#0=(-1154 |#2| |#3| |#4|)) . T) (((-383 (-523))) |has| #0# (-37 (-383 (-523)))) (($) . T)) ((((-523)) . T)) (|has| |#1| (-339)) -(-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-136)) (|has| |#1| (-339))) (|has| |#1| (-136))) -(-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))) +(-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-136)) (|has| |#1| (-339))) (|has| |#1| (-136))) +(-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))) (|has| |#1| (-339)) (|has| |#1| (-134)) (|has| |#1| (-136)) @@ -1897,18 +1897,18 @@ (((|#1| |#2|) . T)) (((|#1|) . T) (((-523)) |has| |#1| (-585 (-523)))) (((|#3|) |has| |#3| (-158))) -(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) +(-3172 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) ((((-523)) . T)) (((|#1| $) |has| |#1| (-263 |#1| |#1|))) ((((-383 (-523))) . T) (($) . T) (((-383 |#1|)) . T) ((|#1|) . T)) ((((-794)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-267)) (|has| |#1| (-339))) ((#0=(-383 (-523)) #0#) |has| |#1| (-339))) -((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +(((|#1| |#1|) . T) (($ $) -3172 (|has| |#1| (-267)) (|has| |#1| (-339))) ((#0=(-383 (-523)) #0#) |has| |#1| (-339))) +((((-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) . T)) ((($) . T)) ((((-523) |#1|) . T)) ((((-1087)) |has| (-383 |#2|) (-831 (-1087)))) -(((|#1|) . T) (($) -3262 (|has| |#1| (-267)) (|has| |#1| (-339))) (((-383 (-523))) |has| |#1| (-339))) +(((|#1|) . T) (($) -3172 (|has| |#1| (-267)) (|has| |#1| (-339))) (((-383 (-523))) |has| |#1| (-339))) ((((-499)) |has| |#2| (-564 (-499)))) ((((-629 |#2|)) . T) (((-794)) . T)) (((|#1|) . T)) @@ -1916,8 +1916,8 @@ (((|#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) ((((-801 |#1|)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) -(-3262 (|has| |#4| (-732)) (|has| |#4| (-784))) -(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +(-3172 (|has| |#4| (-732)) (|has| |#4| (-784))) +(-3172 (|has| |#3| (-732)) (|has| |#3| (-784))) ((((-794)) . T)) ((((-794)) . T)) (((|#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) @@ -1933,17 +1933,17 @@ ((((-383 (-523))) . T) (($) . T)) ((((-383 (-523))) . T) (($) . T)) ((((-383 (-523))) . T) (($) . T)) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-1126))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-1127))) ((($) . T)) ((((-383 (-523))) |has| #0=(-383 |#2|) (-964 (-383 (-523)))) (((-523)) |has| #0# (-964 (-523))) ((#0#) . T)) (((|#2|) . T) (((-523)) |has| |#2| (-585 (-523)))) (((|#1| (-710)) . T)) (|has| |#1| (-786)) (((|#1|) . T) (((-523)) |has| |#1| (-585 (-523)))) -((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((($) -3172 (|has| |#1| (-339)) (|has| |#1| (-325))) (((-383 (-523))) -3172 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) ((((-523)) . T)) (|has| |#1| (-37 (-383 (-523)))) -((((-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) |has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))))) +((((-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) |has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))))) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (|has| |#1| (-784)) (|has| |#1| (-37 (-383 (-523)))) @@ -1968,24 +1968,24 @@ (((|#1| |#2|) . T)) ((((-133)) . T)) ((((-719 |#1| (-796 |#2|))) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) -(|has| |#1| (-1108)) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +(|has| |#1| (-1109)) (((|#1|) . T)) -(-3262 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-344)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973)) (|has| |#3| (-1016))) +(-3172 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-344)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973)) (|has| |#3| (-1016))) ((((-1087) |#1|) |has| |#1| (-484 (-1087) |#1|))) (((|#2|) . T)) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) ((((-841 |#1|)) . T)) ((($) . T)) ((((-383 (-883 |#1|))) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) ((((-499)) |has| |#4| (-564 (-499)))) ((((-794)) . T) (((-589 |#4|)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (((|#1|) . T)) (|has| |#1| (-784)) -(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) |has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) |has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))))) (|has| |#1| (-1016)) (|has| |#1| (-339)) (|has| |#1| (-786)) @@ -1993,17 +1993,17 @@ (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-383 (-523))) . T)) -((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) |has| |#1| (-158))) +((($) -3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) |has| |#1| (-158))) (|has| |#1| (-134)) (|has| |#1| (-136)) -(-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-136)) (|has| |#1| (-339))) (|has| |#1| (-136))) -(-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))) +(-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-136)) (|has| |#1| (-339))) (|has| |#1| (-136))) +(-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-136)) (|has| |#1| (-134)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-1161 |#1| |#2| |#3|)) |has| |#1| (-339))) (|has| |#1| (-784)) (((|#1| |#2|) . T)) (((|#1|) . T) (((-523)) |has| |#1| (-585 (-523)))) @@ -2025,9 +2025,9 @@ ((((-794)) . T)) ((((-794)) . T)) ((((-499)) |has| |#1| (-564 (-499)))) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((((-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((|#1| |#1|) |has| |#1| (-286 |#1|))) -(((|#1|) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)))) +(((|#1|) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)))) ((((-292 |#1|)) . T)) (((|#2|) |has| |#2| (-339))) (((|#2|) . T)) @@ -2048,14 +2048,14 @@ (|has| |#1| (-134)) (|has| |#1| (-136)) ((($ $) . T)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)) (|has| |#1| (-1028)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)) (|has| |#1| (-1028)) (|has| |#1| (-1016))) (|has| |#1| (-515)) (((|#2|) . T)) ((((-523)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) ((((-536 |#1|)) . T)) ((($) . T)) (((|#1| (-57 |#1|) (-57 |#1|)) . T)) @@ -2063,7 +2063,7 @@ ((($) . T)) (((|#1|) . T)) ((((-794)) . T)) -(((|#2|) |has| |#2| (-6 (-4246 "*")))) +(((|#2|) |has| |#2| (-6 (-4250 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2080,17 +2080,17 @@ (((|#1| |#2|) . T)) ((((-1087) |#1|) . T)) (((|#4|) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-325))) ((((-1087) (-51)) . T)) -((((-1153 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) . T)) +((((-1154 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) . T)) ((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) ((((-794)) . T)) -(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) -(((#0=(-1154 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) +(-3172 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) +(((#0=(-1155 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) (((|#1| |#1|) |has| |#1| (-158)) ((#0=(-383 (-523)) #0#) |has| |#1| (-515)) (($ $) |has| |#1| (-515))) (((|#1|) . T) (($) . T) (((-383 (-523))) . T)) (((|#1| $) |has| |#1| (-263 |#1| |#1|))) -((((-1154 |#1| |#2| |#3| |#4|)) . T) (((-383 (-523))) . T) (($) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T) (((-383 (-523))) . T) (($) . T)) (((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-515)) (($) |has| |#1| (-515))) (|has| |#1| (-339)) (|has| |#1| (-134)) @@ -2104,29 +2104,29 @@ (((|#1|) . T)) (((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (((|#2| |#3|) . T)) -(-3262 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) (((|#1| (-495 |#2|)) . T)) (((|#1| (-710)) . T)) (((|#1| (-495 (-1006 (-1087)))) . T)) (((|#1|) |has| |#1| (-158))) (((|#1|) . T)) (|has| |#2| (-840)) -(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3172 (|has| |#2| (-732)) (|has| |#2| (-784))) ((((-794)) . T)) -((($ $) . T) ((#0=(-1153 |#2| |#3| |#4|) #0#) . T) ((#1=(-383 (-523)) #1#) |has| #0# (-37 (-383 (-523))))) +((($ $) . T) ((#0=(-1154 |#2| |#3| |#4|) #0#) . T) ((#1=(-383 (-523)) #1#) |has| #0# (-37 (-383 (-523))))) ((((-841 |#1|)) . T)) (-12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((($) . T) (((-383 (-523))) . T)) ((($) . T)) ((($) . T)) (|has| |#1| (-339)) -(-3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325)) (|has| |#1| (-515))) (|has| |#1| (-339)) -((($) . T) ((#0=(-1153 |#2| |#3| |#4|)) . T) (((-383 (-523))) |has| #0# (-37 (-383 (-523))))) +((($) . T) ((#0=(-1154 |#2| |#3| |#4|)) . T) (((-383 (-523))) |has| #0# (-37 (-383 (-523))))) (((|#1| |#2|) . T)) ((((-1085 |#1| |#2| |#3|)) |has| |#1| (-339))) -(-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339)) (|has| |#1| (-325))) -(-3262 (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) +(-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) ((((-523)) |has| |#1| (-585 (-523))) ((|#1|) . T)) (((|#1| |#2|) . T)) ((((-794)) . T)) @@ -2158,27 +2158,27 @@ (((|#1|) |has| |#1| (-158))) ((((-794)) . T)) (((|#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) -(((|#2|) -3262 (|has| |#2| (-6 (-4246 "*"))) (|has| |#2| (-158)))) -(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(((|#2|) -3172 (|has| |#2| (-6 (-4250 "*"))) (|has| |#2| (-158)))) +(-3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) (|has| |#2| (-786)) (|has| |#2| (-840)) (|has| |#1| (-840)) (((|#2|) |has| |#2| (-158))) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) +((((-1161 |#1| |#2| |#3|)) |has| |#1| (-339))) ((((-794)) . T)) ((((-794)) . T)) ((((-499)) . T) (((-523)) . T) (((-823 (-523))) . T) (((-355)) . T) (((-203)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) -((((-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) +((((-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) . T)) (((|#1|) . T)) ((((-794)) . T)) (((|#1| |#2|) . T)) (((|#1| (-383 (-523))) . T)) (((|#1|) . T)) -(-3262 (|has| |#1| (-267)) (|has| |#1| (-339))) +(-3172 (|has| |#1| (-267)) (|has| |#1| (-339))) ((((-133)) . T)) ((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) (|has| |#1| (-784)) @@ -2193,7 +2193,7 @@ ((((-383 (-523))) . T) (($) . T)) ((((-794)) . T)) ((((-794)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) ((((-794)) . T)) ((((-794)) . T)) @@ -2204,7 +2204,7 @@ (((|#1|) . T)) ((((-589 (-133))) . T) (((-1070)) . T)) ((((-794)) . T)) -((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +((((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) . T)) ((((-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((|#1| |#1|) |has| |#1| (-286 |#1|))) (|has| |#1| (-786)) ((((-794)) . T)) @@ -2216,16 +2216,16 @@ ((((-794)) . T) (((-589 |#4|)) . T)) (((|#2|) . T)) ((((-841 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) -(-3262 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) -(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3172 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) +(-3172 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) ((((-1087) (-51)) . T)) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-784)) (|has| |#2| (-973))) (|has| |#1| (-840)) (|has| |#1| (-840)) (((|#2|) . T)) @@ -2240,12 +2240,12 @@ (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) (|has| |#1| (-759)) (((#0=(-841 |#1|) #0#) . T) (($ $) . T) ((#1=(-383 (-523)) #1#) . T)) ((((-383 |#2|)) . T)) (|has| |#1| (-784)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) (((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) . T) ((#1=(-523) #1#) . T) (($ $) . T)) ((((-841 |#1|)) . T) (($) . T) (((-383 (-523))) . T)) (((|#2|) |has| |#2| (-973)) (((-523)) -12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) @@ -2255,25 +2255,25 @@ (|has| |#1| (-134)) (((|#2|) . T)) ((((-794)) . T)) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) -((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) -(((#0=(-51)) . T) (((-2 (|:| -1853 (-1087)) (|:| -2433 #0#))) . T)) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-344))) +((((-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) . T)) +(((#0=(-51)) . T) (((-2 (|:| -3772 (-1087)) (|:| -2482 #0#))) . T)) (|has| |#1| (-325)) ((((-523)) . T)) ((((-794)) . T)) -(((#0=(-1154 |#1| |#2| |#3| |#4|) $) |has| #0# (-263 #0# #0#))) +(((#0=(-1155 |#1| |#2| |#3| |#4|) $) |has| #0# (-263 #0# #0#))) (|has| |#1| (-339)) (((#0=(-1001) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-325))) (((#0=(-383 (-523)) #0#) . T) ((#1=(-638) #1#) . T) (($ $) . T)) ((((-292 |#1|)) . T) (($) . T)) (((|#1|) . T) (((-383 (-523))) |has| |#1| (-339))) (|has| |#1| (-1016)) (((|#1|) . T)) -(((|#1|) -3262 (|has| |#2| (-343 |#1|)) (|has| |#2| (-393 |#1|)))) -(((|#1|) -3262 (|has| |#2| (-343 |#1|)) (|has| |#2| (-393 |#1|)))) +(((|#1|) -3172 (|has| |#2| (-343 |#1|)) (|has| |#2| (-393 |#1|)))) +(((|#1|) -3172 (|has| |#2| (-343 |#1|)) (|has| |#2| (-393 |#1|)))) (((|#2|) . T)) ((((-383 (-523))) . T) (((-638)) . T) (($) . T)) (((|#3| |#3|) . T)) @@ -2292,7 +2292,7 @@ (((|#2|) . T)) (((|#1|) . T)) ((((-523)) . T)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) (((|#2|) . T) (((-523)) |has| |#2| (-585 (-523)))) (((|#1| |#2|) . T)) ((($) . T)) @@ -2300,7 +2300,7 @@ ((($) . T) (((-383 (-523))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-1168 |#1|) (-1168 |#1|)) . T)) +(((|#1| (-1169 |#1|) (-1169 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) ((((-794)) . T)) ((((-794)) . T)) @@ -2329,7 +2329,7 @@ (|has| |#2| (-949)) ((($) . T)) (|has| |#1| (-840)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) @@ -2337,24 +2337,24 @@ ((($) . T)) (|has| |#1| (-339)) ((((-841 |#1|)) . T)) -((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) ((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) -(-3262 (|has| |#1| (-344)) (|has| |#1| (-786))) +(-3172 (|has| |#1| (-344)) (|has| |#1| (-786))) (((|#1|) . T)) ((((-794)) . T)) ((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) ((((-383 |#2|) |#3|) . T)) ((($) . T) (((-383 (-523))) . T)) ((((-710) |#1|) . T)) -(((|#2| (-218 (-2676 |#1|) (-710))) . T)) +(((|#2| (-218 (-2810 |#1|) (-710))) . T)) (((|#1| (-495 |#3|)) . T)) ((((-383 (-523))) . T)) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((((-794)) . T)) -(((#0=(-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) #0#) |has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))))) +(((#0=(-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) #0#) |has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))))) (|has| |#1| (-840)) (|has| |#2| (-339)) -(-3262 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((((-155 (-355))) . T) (((-203)) . T) (((-355)) . T)) ((((-794)) . T)) (((|#1|) . T)) @@ -2371,11 +2371,11 @@ (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) -(-3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325))) (|has| |#1| (-37 (-383 (-523)))) (-12 (|has| |#1| (-508)) (|has| |#1| (-767))) ((((-794)) . T)) -((((-1087)) -3262 (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))) (-12 (|has| |#1| (-339)) (|has| |#2| (-831 (-1087)))))) +((((-1087)) -3172 (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))) (-12 (|has| |#1| (-339)) (|has| |#2| (-831 (-1087)))))) (|has| |#1| (-339)) ((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (|has| |#1| (-339)) @@ -2385,13 +2385,13 @@ (((|#1|) . T)) (((|#2|) |has| |#1| (-339))) (((|#2|) |has| |#1| (-339))) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-158))) (((|#1|) . T)) (((|#2|) . T) (((-1087)) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-1087)))) (((-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-523)))) (((-383 (-523))) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-523))))) (((|#2|) . T)) -((((-1087) #0=(-1154 |#1| |#2| |#3| |#4|)) |has| #0# (-484 (-1087) #0#)) ((#0# #0#) |has| #0# (-286 #0#))) +((((-1087) #0=(-1155 |#1| |#2| |#3| |#4|)) |has| #0# (-484 (-1087) #0#)) ((#0# #0#) |has| #0# (-286 #0#))) ((((-562 $) $) . T) (($ $) . T)) ((((-155 (-203))) . T) (((-155 (-355))) . T) (((-1083 (-638))) . T) (((-823 (-355))) . T)) ((((-794)) . T)) @@ -2408,31 +2408,31 @@ (((|#2|) |has| |#1| (-339))) ((((-355)) -12 (|has| |#1| (-339)) (|has| |#2| (-817 (-355)))) (((-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-817 (-523))))) (|has| |#1| (-339)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (|has| |#1| (-339)) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) (|has| |#1| (-339)) (|has| |#1| (-515)) (((|#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (((|#3|) . T)) (((|#1|) . T)) -(-3262 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) (((|#2|) . T)) (((|#2|) . T)) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) -((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) +((((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (|has| |#1| (-37 (-383 (-523)))) (((|#1| |#2|) . T)) (|has| |#1| (-37 (-383 (-523)))) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-344))) (|has| |#1| (-136)) ((((-1070) |#1|) . T)) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-344))) (|has| |#1| (-136)) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-344))) (|has| |#1| (-136)) ((((-536 |#1|)) . T)) ((($) . T)) @@ -2440,7 +2440,7 @@ (|has| |#1| (-515)) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-325))) (|has| |#1| (-136)) ((((-794)) . T)) ((($) . T)) @@ -2465,13 +2465,13 @@ (|has| |#1| (-730)) (|has| |#1| (-730)) ((((-499)) |has| |#1| (-564 (-499)))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) ((((-110)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-203)) . T) (((-355)) . T) (((-823 (-355))) . T)) ((((-794)) . T)) -((((-1154 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-383 (-523))) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-383 (-523))) . T)) (((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515)) (((-383 (-523))) |has| |#1| (-515))) ((((-794)) . T)) ((((-794)) . T)) @@ -2486,7 +2486,7 @@ ((((-523)) . T)) ((((-794)) . T)) ((((-523)) . T)) -(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3172 (|has| |#2| (-732)) (|has| |#2| (-784))) ((((-155 (-355))) . T) (((-203)) . T) (((-355)) . T)) ((((-794)) . T)) ((((-794)) . T)) @@ -2494,13 +2494,13 @@ ((((-794)) . T)) (|has| |#1| (-136)) (|has| |#1| (-134)) -((($) . T) ((#0=(-1153 |#2| |#3| |#4|)) |has| #0# (-158)) (((-383 (-523))) |has| #0# (-37 (-383 (-523))))) +((($) . T) ((#0=(-1154 |#2| |#3| |#4|)) |has| #0# (-158)) (((-383 (-523))) |has| #0# (-37 (-383 (-523))))) (((|#1|) . T) (($) . T) (((-383 (-523))) . T)) (|has| |#1| (-339)) (|has| |#1| (-339)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)) (|has| |#1| (-1028)) (|has| |#1| (-1016))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)) (|has| |#1| (-1028)) (|has| |#1| (-1016))) (|has| |#1| (-1063)) ((((-523) |#1|) . T)) (((|#1|) . T)) @@ -2518,8 +2518,8 @@ (((|#1|) . T)) (|has| |#1| (-515)) ((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) ((((-355)) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2528,7 +2528,7 @@ (|has| |#1| (-515)) (|has| |#1| (-1016)) ((((-719 |#1| (-796 |#2|))) |has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|))))) -(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) (((|#1|) . T)) (((|#2| |#3|) . T)) (|has| |#2| (-840)) @@ -2538,12 +2538,12 @@ (|has| |#1| (-211)) (((|#1| (-495 (-1006 (-1087)))) . T)) (|has| |#2| (-339)) -((((-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) . T)) +((((-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) . T)) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) ((((-794)) . T)) ((((-794)) . T)) -(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +(-3172 (|has| |#3| (-732)) (|has| |#3| (-784))) ((((-794)) . T)) ((((-794)) . T)) (((|#1|) . T)) @@ -2552,21 +2552,21 @@ ((((-523)) . T)) (((|#3|) . T)) ((((-794)) . T)) -(-3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325))) -(-3262 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) +(-3172 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) (((#0=(-536 |#1|) #0#) . T) (($ $) . T) ((#1=(-383 (-523)) #1#) . T)) ((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) (((|#1|) |has| |#1| (-158))) -(((|#1| (-1168 |#1|) (-1168 |#1|)) . T)) +(((|#1| (-1169 |#1|) (-1169 |#1|)) . T)) ((((-536 |#1|)) . T) (($) . T) (((-383 (-523))) . T)) ((($) . T) (((-383 (-523))) . T)) ((($) . T) (((-383 (-523))) . T)) -(((|#2|) |has| |#2| (-6 (-4246 "*")))) +(((|#2|) |has| |#2| (-6 (-4250 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((((-794)) |has| |#1| (-563 (-794)))) ((((-271 |#3|)) . T)) -(((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523)))) ((|#2| |#2|) . T) (($ $) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +(((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523)))) ((|#2| |#2|) . T) (($ $) -3172 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) ((($) . T) (((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T)) @@ -2574,20 +2574,20 @@ (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) (((|#1|) . T) (((-383 (-523))) . T) (($) . T)) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) (((|#2|) . T)) -((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T) (($) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T) (($) -3172 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) ((((-794)) . T)) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (|has| |#2| (-840)) (|has| |#1| (-840)) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#1|) . T)) -((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +((((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) @@ -2601,29 +2601,29 @@ (((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (((#0=(-383 (-523)) #0#) . T)) ((((-383 (-523))) . T)) -(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) (((|#1|) . T)) (((|#1|) . T)) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((((-499)) . T)) ((((-794)) . T)) ((((-1087)) |has| |#2| (-831 (-1087))) (((-1001)) . T)) -((((-1153 |#2| |#3| |#4|)) . T)) +((((-1154 |#2| |#3| |#4|)) . T)) ((((-841 |#1|)) . T)) ((($) . T) (((-383 (-523))) . T)) (-12 (|has| |#1| (-339)) (|has| |#2| (-759))) (-12 (|has| |#1| (-339)) (|has| |#2| (-759))) -(|has| |#1| (-1126)) +(|has| |#1| (-1127)) (((|#2|) . T)) ((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) ((((-1087)) |has| |#1| (-831 (-1087)))) ((((-841 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) -((($) . T) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) . T)) -(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515)))) +((($) . T) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) . T)) +(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-515)))) ((($) . T) (((-383 (-523))) . T)) (((|#1|) . T) (((-383 (-523))) . T) (((-523)) . T) (($) . T)) (((|#2|) |has| |#2| (-973)) (((-523)) -12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) -((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515)))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3172 (|has| |#1| (-158)) (|has| |#1| (-515)))) (|has| |#1| (-515)) (((|#1|) |has| |#1| (-339))) ((((-523)) . T)) @@ -2642,8 +2642,8 @@ ((((-794)) . T)) (|has| |#2| (-759)) (|has| |#2| (-759)) -((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#2|) |has| |#1| (-339)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) . T)) +((((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#2|) |has| |#1| (-339)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) ((((-523)) |has| |#1| (-817 (-523))) (((-355)) |has| |#1| (-817 (-355)))) @@ -2669,12 +2669,12 @@ (((|#2| (-710)) . T)) ((((-1087)) . T)) ((((-801 |#1|)) . T)) -(-3262 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973))) -(-3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3172 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3172 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-784)) (|has| |#3| (-973))) ((((-794)) . T)) (((|#1|) . T)) -(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) -(-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))) +(-3172 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3172 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))) ((((-801 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-344)) @@ -2700,7 +2700,7 @@ (((|#1|) . T)) ((((-794)) . T)) (|has| |#2| (-840)) -((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +((((-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) . T)) ((((-499)) |has| |#2| (-564 (-499))) (((-823 (-355))) |has| |#2| (-564 (-823 (-355)))) (((-823 (-523))) |has| |#2| (-564 (-823 (-523))))) ((((-794)) . T)) ((((-794)) . T)) @@ -2733,11 +2733,11 @@ ((((-383 |#2|) |#3|) . T)) (((|#1|) . T)) (|has| |#1| (-1016)) -(((|#2| (-456 (-2676 |#1|) (-710))) . T)) +(((|#2| (-456 (-2810 |#1|) (-710))) . T)) ((((-523) |#1|) . T)) (((|#2| |#2|) . T)) (((|#1| (-495 (-1087))) . T)) -(-3262 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((((-523)) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -2747,9 +2747,9 @@ ((($) . T) (((-383 (-523))) . T)) ((($) . T)) ((($) . T)) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) (((|#1|) . T)) -((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) ((((-794)) . T)) ((((-133)) . T)) (((|#1|) . T) (((-383 (-523))) . T)) @@ -2766,7 +2766,7 @@ ((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T) ((|#2|) . T)) ((((-1001)) . T) ((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) ((((-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#2| (-817 (-355)))) (((-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#2| (-817 (-523))))) -((((-1154 |#1| |#2| |#3| |#4|)) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) ((((-523) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) @@ -2789,27 +2789,27 @@ (|has| |#1| (-211)) (((|#1| (-495 |#3|)) . T)) (|has| |#1| (-344)) -(((|#2| (-218 (-2676 |#1|) (-710))) . T)) +(((|#2| (-218 (-2810 |#1|) (-710))) . T)) (|has| |#1| (-344)) (|has| |#1| (-344)) (((|#1|) . T) (($) . T)) (((|#1| (-495 |#2|)) . T)) -(-3262 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) (((|#1| (-710)) . T)) (|has| |#1| (-515)) -(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-784)) (|has| |#2| (-973))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ((((-794)) . T)) -(-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) -(-3262 (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973))) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) +(-3172 (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) (((|#1|) |has| |#1| (-158))) (((|#4|) |has| |#4| (-973))) (((|#3|) |has| |#3| (-973))) (-12 (|has| |#1| (-339)) (|has| |#2| (-759))) (-12 (|has| |#1| (-339)) (|has| |#2| (-759))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) ((((-499)) |has| |#1| (-564 (-499)))) ((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) ((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) @@ -2822,21 +2822,21 @@ (((|#2|) |has| |#2| (-973)) (((-523)) -12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((|#1|) . T)) (|has| |#2| (-339)) -(((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523)))) ((|#2| |#2|) . T) (($ $) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +(((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523)))) ((|#2| |#2|) . T) (($ $) -3172 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-383 (-523)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-383 (-523)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-383 (-523)) #0#) . T)) (((|#2| |#2|) . T)) -((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T) (($) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T) (($) -3172 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#1|) . T) (($) . T) (((-383 (-523))) . T)) (((|#1|) . T) (($) . T) (((-383 (-523))) . T)) (((|#1|) . T) (($) . T) (((-383 (-523))) . T)) (((|#2|) . T)) ((($) . T)) ((((-794)) |has| |#1| (-1016))) -((((-1154 |#1| |#2| |#3| |#4|)) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#2| (-759)) @@ -2848,41 +2848,41 @@ (((|#1|) |has| |#2| (-393 |#1|))) (((|#1|) |has| |#2| (-393 |#1|))) ((((-841 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) ((((-499)) |has| |#1| (-564 (-499)))) ((((-794)) . T)) -((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) |has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))))) -(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +((((-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) |has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))))) +(-3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((((-523) |#1|) . T)) ((((-523) |#1|) . T)) ((((-523) |#1|) . T)) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((((-523) |#1|) . T)) (((|#1|) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((((-1087)) |has| |#1| (-831 (-1087))) (((-757 (-1087))) . T)) -(-3262 (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3172 (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973))) ((((-758 |#1|)) . T)) (((|#1| |#2|) . T)) ((((-794)) . T)) -(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3172 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) (((|#1| |#2|) . T)) (|has| |#1| (-37 (-383 (-523)))) ((((-794)) . T)) -((((-1154 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-383 (-523))) . T)) +((((-1155 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-383 (-523))) . T)) (((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515)) (((-383 (-523))) |has| |#1| (-515))) (((|#2|) . T) (((-523)) |has| |#2| (-585 (-523)))) (|has| |#1| (-339)) -(-3262 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (-12 (|has| |#1| (-339)) (|has| |#2| (-211)))) +(-3172 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (-12 (|has| |#1| (-339)) (|has| |#2| (-211)))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-339)) (((|#1|) . T)) -(((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#1| |#1|) . T)) +(((#0=(-383 (-523)) #0#) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#1| |#1|) . T)) ((((-523) |#1|) . T)) ((((-292 |#1|)) . T)) (((#0=(-638) (-1083 #0#)) . T)) -((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#1|) . T)) +((((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-784)) ((($ $) . T) ((#0=(-796 |#1|) $) . T) ((#0# |#2|) . T)) @@ -2894,17 +2894,17 @@ ((($) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T) (((-383 (-523))) |has| |#2| (-37 (-383 (-523))))) (|has| |#2| (-840)) -((($) . T) ((#0=(-1153 |#2| |#3| |#4|)) |has| #0# (-158)) (((-383 (-523))) |has| #0# (-37 (-383 (-523))))) +((($) . T) ((#0=(-1154 |#2| |#3| |#4|)) |has| #0# (-158)) (((-383 (-523))) |has| #0# (-37 (-383 (-523))))) ((((-523) |#1|) . T)) -(((#0=(-1154 |#1| |#2| |#3| |#4|)) |has| #0# (-286 #0#))) +(((#0=(-1155 |#1| |#2| |#3| |#4|)) |has| #0# (-286 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#2| |#2|) |has| |#1| (-339)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) +((($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#2| |#2|) |has| |#1| (-339)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) (|has| |#2| (-211)) (|has| $ (-136)) ((((-794)) . T)) -((($) . T) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((($) . T) (((-383 (-523))) -3172 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) ((((-794)) . T)) (|has| |#1| (-784)) ((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) @@ -2916,40 +2916,40 @@ (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#4|) . T)) (|has| |#1| (-515)) -((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#2|) |has| |#1| (-339)) ((|#1|) . T)) -((((-1087)) -3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) -(((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) +((($) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#2|) |has| |#1| (-339)) ((|#1|) . T)) +((((-1087)) -3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) +(((|#1|) . T) (($) -3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) ((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) ((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (((|#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) ((((-523) |#1|) . T)) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) (((|#1|) . T)) (((|#1| (-495 (-757 (-1087)))) . T)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) (((|#1|) . T)) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) (((|#1|) . T)) -(-3262 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) -(-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +(-3172 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) +((((-1161 |#1| |#2| |#3|)) |has| |#1| (-339))) ((($) . T) (((-801 |#1|)) . T) (((-383 (-523))) . T)) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +((((-1161 |#1| |#2| |#3|)) |has| |#1| (-339))) (|has| |#1| (-515)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-383 |#2|)) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-325))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) ((((-499)) |has| |#1| (-564 (-499)))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) ((((-499)) |has| |#1| (-564 (-499)))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) ((((-499)) |has| |#1| (-564 (-499)))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) (((|#1|) . T)) (((|#2| |#2|) . T) ((#0=(-383 (-523)) #0#) . T) (($ $) . T)) ((((-523)) . T)) @@ -2961,8 +2961,8 @@ ((((-523) |#1|) . T)) ((((-794)) . T)) ((($ $) . T) (((-1087) $) . T)) -((((-1160 |#1| |#2| |#3|)) . T)) -((((-1160 |#1| |#2| |#3|)) . T) (((-1132 |#1| |#2| |#3|)) . T)) +((((-1161 |#1| |#2| |#3|)) . T)) +((((-1161 |#1| |#2| |#3|)) . T) (((-1133 |#1| |#2| |#3|)) . T)) (((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|))) . T)) ((((-499)) |has| |#2| (-564 (-499))) (((-823 (-355))) |has| |#2| (-564 (-823 (-355)))) (((-823 (-523))) |has| |#2| (-564 (-823 (-523))))) @@ -2975,35 +2975,35 @@ ((((-794)) . T)) (((|#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) . T)) ((((-794)) . T)) -((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +((((-1161 |#1| |#2| |#3|)) |has| |#1| (-339))) ((((-1087)) . T) (((-794)) . T)) (|has| |#1| (-339)) -((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) (((|#2|) . T) ((|#6|) . T)) ((($) . T) (((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T)) -((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) -((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) ((((-1020)) . T)) ((((-794)) . T)) ((($) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T)) ((($) . T)) -((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (|has| |#2| (-840)) (|has| |#1| (-840)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-158))) ((((-638)) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) (((|#1|) |has| |#1| (-158))) (((|#1|) |has| |#1| (-158))) ((((-383 (-523))) . T) (($) . T)) (((|#1| (-523)) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-325))) (|has| |#1| (-339)) (|has| |#1| (-339)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) -(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-158)) (|has| |#1| (-515))) (((|#1| (-523)) . T)) (((|#1| (-383 (-523))) . T)) (((|#1| (-710)) . T)) @@ -3018,16 +3018,16 @@ ((((-823 (-355))) . T) (((-823 (-523))) . T) (((-1087)) . T) (((-499)) . T)) (((|#1|) . T)) ((((-794)) . T)) -(-3262 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) -(-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) +(-3172 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) ((((-523)) . T)) ((((-523)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3172 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((((-1087)) -12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) -(-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))) +(-3172 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-339)) @@ -3051,7 +3051,7 @@ ((((-1070) (-1087) (-523) (-203) (-794)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(-3262 (|has| |#1| (-325)) (|has| |#1| (-344))) +(-3172 (|has| |#1| (-325)) (|has| |#1| (-344))) (((|#1| |#2|) . T)) ((($) . T) ((|#1|) . T)) ((((-794)) . T)) @@ -3059,7 +3059,7 @@ ((($) . T) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#2|) |has| |#2| (-1016)) (((-523)) -12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (((-383 (-523))) -12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((((-499)) |has| |#1| (-564 (-499)))) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) ((($) . T) (((-383 (-523))) . T)) (|has| |#1| (-840)) (|has| |#1| (-840)) @@ -3068,14 +3068,14 @@ ((((-794)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-158))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-784))) (((|#2|) . T)) -(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +(-3172 (|has| |#1| (-21)) (|has| |#1| (-784))) (((|#1|) |has| |#1| (-158))) (((|#1|) . T)) (((|#1|) . T)) -((((-794)) -3262 (-12 (|has| |#1| (-563 (-794))) (|has| |#2| (-563 (-794)))) (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))))) +((((-794)) -3172 (-12 (|has| |#1| (-563 (-794))) (|has| |#2| (-563 (-794)))) (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))))) ((((-383 |#2|) |#3|) . T)) ((((-383 (-523))) . T) (($) . T)) (|has| |#1| (-37 (-383 (-523)))) @@ -3087,17 +3087,17 @@ (((|#1|) . T) (((-383 (-523))) . T) (((-523)) . T) (($) . T)) (((#0=(-523) #0#) . T)) ((($) . T) (((-383 (-523))) . T)) -(-3262 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) -(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3172 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) +(-3172 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) (|has| |#4| (-732)) -(-3262 (|has| |#4| (-732)) (|has| |#4| (-784))) +(-3172 (|has| |#4| (-732)) (|has| |#4| (-784))) (|has| |#4| (-784)) (|has| |#3| (-732)) -(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +(-3172 (|has| |#3| (-732)) (|has| |#3| (-784))) (|has| |#3| (-784)) ((((-523)) . T)) (((|#2|) . T)) -((((-1087)) -3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) +((((-1087)) -3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) ((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) ((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (((|#1| |#1|) . T) (($ $) . T)) @@ -3112,11 +3112,11 @@ ((((-1085 |#1| |#2| |#3|)) |has| |#1| (-339))) ((((-1085 |#1| |#2| |#3|)) |has| |#1| (-339))) ((((-1052 |#1| |#2|)) . T)) -(((|#2|) . T) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) -((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +(((|#2|) . T) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) +((((-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) . T)) ((($) . T)) (|has| |#1| (-949)) -(((|#2|) . T) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) ((((-794)) . T)) ((((-499)) |has| |#2| (-564 (-499))) (((-823 (-523))) |has| |#2| (-564 (-823 (-523)))) (((-823 (-355))) |has| |#2| (-564 (-823 (-355)))) (((-355)) . #0=(|has| |#2| (-949))) (((-203)) . #0#)) ((((-1087) (-51)) . T)) @@ -3128,15 +3128,15 @@ ((((-1085 |#1| |#2| |#3|)) . T)) ((((-1085 |#1| |#2| |#3|)) . T) (((-1078 |#1| |#2| |#3|)) . T)) ((((-794)) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) ((((-523) |#1|) . T)) ((((-1085 |#1| |#2| |#3|)) |has| |#1| (-339))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-339)) -(((|#3|) . T) ((|#2|) . T) (($) -3262 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) ((|#4|) -3262 (|has| |#4| (-158)) (|has| |#4| (-339)) (|has| |#4| (-973)))) -(((|#2|) . T) (($) -3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) ((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973)))) +(((|#3|) . T) ((|#2|) . T) (($) -3172 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) ((|#4|) -3172 (|has| |#4| (-158)) (|has| |#4| (-339)) (|has| |#4| (-973)))) +(((|#2|) . T) (($) -3172 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) ((|#3|) -3172 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973)))) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-339)) @@ -3148,37 +3148,37 @@ ((((-794)) . T)) ((((-794)) . T)) (((|#1|) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) ((((-523) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-339)) (|has| |#2| (-263 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-840))) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-840))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) ((((-794)) . T)) ((((-794)) . T)) ((((-794)) . T)) (((|#1| (-495 |#2|)) . T)) -((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +((((-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) . T)) (((|#1| (-523)) . T)) (((|#1| (-383 (-523))) . T)) (((|#1| (-710)) . T)) ((((-112 |#1|)) . T) (($) . T) (((-383 (-523))) . T)) -(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) -(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3172 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3172 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((($) . T)) (((|#2| (-495 (-796 |#1|))) . T)) ((((-523) |#1|) . T)) (((|#2|) . T)) (((|#2| (-710)) . T)) -((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3172 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((((-1070) |#1|) . T)) ((((-383 |#2|)) . T)) -((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T)) (|has| |#1| (-515)) (|has| |#1| (-515)) ((($) . T) ((|#2|) . T)) @@ -3186,12 +3186,12 @@ (((|#1| |#2|) . T)) (((|#2| $) |has| |#2| (-263 |#2| |#2|))) (((|#1| (-589 |#1|)) |has| |#1| (-784))) -(-3262 (|has| |#1| (-211)) (|has| |#1| (-325))) -(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-211)) (|has| |#1| (-325))) +(-3172 (|has| |#1| (-339)) (|has| |#1| (-325))) (|has| |#1| (-1016)) (((|#1|) . T)) ((((-383 (-523))) . T) (($) . T)) -((((-927 |#1|)) . T) ((|#1|) . T) (((-523)) -3262 (|has| (-927 |#1|) (-964 (-523))) (|has| |#1| (-964 (-523)))) (((-383 (-523))) -3262 (|has| (-927 |#1|) (-964 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) +((((-927 |#1|)) . T) ((|#1|) . T) (((-523)) -3172 (|has| (-927 |#1|) (-964 (-523))) (|has| |#1| (-964 (-523)))) (((-383 (-523))) -3172 (|has| (-927 |#1|) (-964 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) @@ -3202,10 +3202,10 @@ (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((#0=(-1052 |#1| |#2|) #0#) |has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|)))) -(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) #0#) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) (((#0=(-112 |#1|)) |has| #0# (-286 #0#))) -(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3172 (|has| |#1| (-786)) (|has| |#1| (-1016))) ((($ $) . T)) ((($ $) . T) ((#0=(-796 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-211)) ((|#2| |#1|) |has| |#1| (-211)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-605 . -1016) T) ((-241 . -484) 142439) ((-225 . -484) 142382) ((-530 . -107) 142367) ((-495 . -23) T) ((-223 . -1016) 142317) ((-113 . -286) 142274) ((-453 . -484) 142066) ((-633 . -97) T) ((-1053 . -484) 141985) ((-366 . -124) T) ((-1179 . -905) 141954) ((-554 . -462) 141938) ((-568 . -124) T) ((-758 . -782) T) ((-492 . -55) 141888) ((-57 . -484) 141821) ((-488 . -484) 141754) ((-394 . -831) 141713) ((-155 . -973) T) ((-486 . -484) 141646) ((-468 . -484) 141579) ((-467 . -484) 141512) ((-738 . -964) 141299) ((-638 . -37) 141264) ((-319 . -325) T) ((-1011 . -1010) 141248) ((-1011 . -1016) 141226) ((-155 . -221) 141177) ((-155 . -211) 141128) ((-1011 . -1012) 141086) ((-803 . -263) 141044) ((-203 . -734) T) ((-203 . -731) T) ((-633 . -261) NIL) ((-1062 . -1099) 141023) ((-383 . -921) 141007) ((-640 . -21) T) ((-640 . -25) T) ((-1181 . -591) 140981) ((-292 . -147) 140960) ((-292 . -132) 140939) ((-1062 . -102) 140889) ((-126 . -25) T) ((-39 . -209) 140866) ((-112 . -21) T) ((-112 . -25) T) ((-558 . -265) 140842) ((-450 . -265) 140821) ((-1141 . -973) T) ((-791 . -973) T) ((-738 . -314) 140805) ((-113 . -1063) NIL) ((-89 . -563) 140737) ((-452 . -124) T) ((-546 . -1122) T) ((-1141 . -302) 140714) ((-530 . -973) T) ((-1141 . -211) T) ((-605 . -657) 140698) ((-888 . -265) 140675) ((-58 . -33) T) ((-984 . -734) T) ((-984 . -731) T) ((-755 . -666) T) ((-671 . -46) 140640) ((-570 . -37) 140627) ((-331 . -267) T) ((-328 . -267) T) ((-320 . -267) T) ((-241 . -267) 140558) ((-225 . -267) 140489) ((-951 . -97) T) ((-389 . -666) T) ((-113 . -37) 140434) ((-389 . -448) T) ((-330 . -97) T) ((-1117 . -980) T) ((-651 . -980) T) ((-1085 . -46) 140411) ((-1084 . -46) 140381) ((-1078 . -46) 140358) ((-962 . -140) 140304) ((-841 . -267) T) ((-1040 . -46) 140276) ((-633 . -286) NIL) ((-485 . -563) 140258) ((-480 . -563) 140240) ((-478 . -563) 140222) ((-303 . -1016) 140172) ((-652 . -427) 140103) ((-47 . -97) T) ((-1152 . -263) 140088) ((-1131 . -263) 140008) ((-589 . -609) 139992) ((-589 . -594) 139976) ((-315 . -21) T) ((-315 . -25) T) ((-39 . -325) NIL) ((-159 . -21) T) ((-159 . -25) T) ((-589 . -349) 139960) ((-554 . -263) 139937) ((-364 . -97) T) ((-1034 . -132) T) ((-122 . -563) 139869) ((-805 . -1016) T) ((-601 . -387) 139853) ((-654 . -563) 139835) ((-148 . -563) 139817) ((-144 . -563) 139799) ((-1181 . -666) T) ((-1018 . -33) T) ((-802 . -734) NIL) ((-802 . -731) NIL) ((-793 . -786) T) ((-671 . -817) NIL) ((-1190 . -124) T) ((-357 . -124) T) ((-835 . -97) T) ((-671 . -964) 139677) ((-495 . -124) T) ((-1005 . -387) 139661) ((-928 . -462) 139645) ((-113 . -376) 139622) ((-1078 . -1122) 139601) ((-721 . -387) 139585) ((-719 . -387) 139569) ((-874 . -33) T) ((-633 . -1063) NIL) ((-228 . -591) 139406) ((-227 . -591) 139230) ((-756 . -851) 139209) ((-429 . -387) 139193) ((-554 . -19) 139177) ((-1058 . -1116) 139146) ((-1078 . -817) NIL) ((-1078 . -815) 139098) ((-554 . -556) 139075) ((-1109 . -563) 139007) ((-1086 . -563) 138989) ((-60 . -371) T) ((-1084 . -964) 138924) ((-1078 . -964) 138890) ((-633 . -37) 138840) ((-449 . -263) 138825) ((-671 . -353) 138809) ((-601 . -980) T) ((-1152 . -930) 138775) ((-1131 . -930) 138741) ((-985 . -1099) 138716) ((-803 . -564) 138524) ((-803 . -563) 138506) ((-1096 . -462) 138443) ((-394 . -949) 138422) ((-47 . -286) 138409) ((-985 . -102) 138355) ((-453 . -462) 138292) ((-489 . -1122) T) ((-1053 . -462) 138263) ((-1078 . -314) 138215) ((-1078 . -353) 138167) ((-413 . -97) T) ((-1005 . -980) T) ((-228 . -33) T) ((-227 . -33) T) ((-721 . -980) T) ((-719 . -980) T) ((-671 . -831) 138144) ((-429 . -980) T) ((-57 . -462) 138128) ((-961 . -979) 138102) ((-488 . -462) 138086) ((-486 . -462) 138070) ((-468 . -462) 138054) ((-467 . -462) 138038) ((-223 . -484) 137971) ((-961 . -107) 137938) ((-1085 . -831) 137851) ((-613 . -1028) T) ((-1084 . -831) 137757) ((-1078 . -831) 137590) ((-1040 . -831) 137574) ((-330 . -1063) T) ((-298 . -979) 137556) ((-228 . -730) 137535) ((-228 . -733) 137486) ((-228 . -732) 137465) ((-227 . -730) 137444) ((-227 . -733) 137395) ((-227 . -732) 137374) ((-49 . -980) T) ((-228 . -666) 137305) ((-227 . -666) 137236) ((-1117 . -1016) T) ((-613 . -23) T) ((-536 . -980) T) ((-487 . -980) T) ((-355 . -979) 137201) ((-298 . -107) 137176) ((-71 . -359) T) ((-71 . -371) T) ((-951 . -37) 137113) ((-633 . -376) 137095) ((-94 . -97) T) ((-651 . -1016) T) ((-931 . -134) 137067) ((-931 . -136) 137039) ((-355 . -107) 136995) ((-295 . -1126) 136974) ((-449 . -930) 136940) ((-330 . -37) 136905) ((-39 . -346) 136877) ((-804 . -563) 136749) ((-123 . -121) 136733) ((-117 . -121) 136717) ((-773 . -979) 136687) ((-772 . -21) 136639) ((-766 . -979) 136623) ((-772 . -25) 136575) ((-295 . -515) 136526) ((-523 . -767) T) ((-218 . -1122) T) ((-773 . -107) 136491) ((-766 . -107) 136470) ((-1152 . -563) 136452) ((-1131 . -563) 136434) ((-1131 . -564) 136107) ((-1083 . -840) 136086) ((-1039 . -840) 136065) ((-47 . -37) 136030) ((-1188 . -1028) T) ((-554 . -563) 135942) ((-554 . -564) 135903) ((-1186 . -1028) T) ((-218 . -964) 135732) ((-1083 . -591) 135657) ((-1039 . -591) 135582) ((-658 . -563) 135564) ((-790 . -591) 135538) ((-1188 . -23) T) ((-1186 . -23) T) ((-961 . -973) T) ((-1096 . -263) 135517) ((-155 . -344) 135468) ((-932 . -1122) T) ((-43 . -23) T) ((-453 . -263) 135447) ((-540 . -1016) T) ((-1058 . -1025) 135416) ((-1020 . -1019) 135368) ((-366 . -21) T) ((-366 . -25) T) ((-141 . -1028) T) ((-1194 . -97) T) ((-932 . -815) 135350) ((-932 . -817) 135332) ((-1117 . -657) 135229) ((-570 . -209) 135213) ((-568 . -21) T) ((-266 . -515) T) ((-568 . -25) T) ((-1103 . -1016) T) ((-651 . -657) 135178) ((-218 . -353) 135148) ((-932 . -964) 135108) ((-355 . -973) T) ((-201 . -980) T) ((-113 . -209) 135085) ((-57 . -263) 135062) ((-141 . -23) T) ((-486 . -263) 135039) ((-303 . -484) 134972) ((-467 . -263) 134949) ((-355 . -221) T) ((-355 . -211) T) ((-773 . -973) T) ((-766 . -973) T) ((-652 . -880) 134918) ((-640 . -786) T) ((-449 . -563) 134900) ((-766 . -211) 134879) ((-126 . -786) T) ((-601 . -1016) T) ((-1096 . -556) 134858) ((-509 . -1099) 134837) ((-312 . -1016) T) ((-295 . -339) 134816) ((-383 . -136) 134795) ((-383 . -134) 134774) ((-894 . -1028) 134673) ((-218 . -831) 134606) ((-754 . -1028) 134537) ((-597 . -788) 134521) ((-453 . -556) 134500) ((-509 . -102) 134450) ((-932 . -353) 134432) ((-932 . -314) 134414) ((-92 . -1016) T) ((-894 . -23) 134225) ((-452 . -21) T) ((-452 . -25) T) ((-754 . -23) 134096) ((-1087 . -563) 134078) ((-57 . -19) 134062) ((-1087 . -564) 133984) ((-1083 . -666) T) ((-1039 . -666) T) ((-486 . -19) 133968) ((-467 . -19) 133952) ((-57 . -556) 133929) ((-1005 . -1016) T) ((-832 . -97) 133907) ((-790 . -666) T) ((-721 . -1016) T) ((-486 . -556) 133884) ((-467 . -556) 133861) ((-719 . -1016) T) ((-719 . -987) 133828) ((-436 . -1016) T) ((-429 . -1016) T) ((-540 . -657) 133803) ((-592 . -1016) T) ((-932 . -831) NIL) ((-1160 . -46) 133780) ((-573 . -1028) T) ((-613 . -124) T) ((-1154 . -97) T) ((-1153 . -46) 133750) ((-1132 . -46) 133727) ((-1117 . -158) 133678) ((-999 . -1126) 133629) ((-252 . -1016) T) ((-83 . -416) T) ((-83 . -371) T) ((-1084 . -284) 133608) ((-1078 . -284) 133587) ((-49 . -1016) T) ((-999 . -515) 133538) ((-651 . -158) T) ((-548 . -46) 133515) ((-203 . -591) 133480) ((-536 . -1016) T) ((-487 . -1016) T) ((-335 . -1126) T) ((-329 . -1126) T) ((-321 . -1126) T) ((-460 . -759) T) ((-460 . -851) T) ((-295 . -1028) T) ((-103 . -1126) T) ((-315 . -786) T) ((-196 . -851) T) ((-196 . -759) T) ((-654 . -979) 133450) ((-335 . -515) T) ((-329 . -515) T) ((-321 . -515) T) ((-103 . -515) T) ((-601 . -657) 133420) ((-1078 . -949) NIL) ((-295 . -23) T) ((-65 . -1122) T) ((-928 . -563) 133352) ((-633 . -209) 133334) ((-654 . -107) 133299) ((-589 . -33) T) ((-223 . -462) 133283) ((-1018 . -1014) 133267) ((-157 . -1016) T) ((-883 . -840) 133246) ((-455 . -840) 133225) ((-1190 . -21) T) ((-1190 . -25) T) ((-1188 . -124) T) ((-1186 . -124) T) ((-1005 . -657) 133074) ((-984 . -591) 133061) ((-883 . -591) 132986) ((-499 . -563) 132968) ((-499 . -564) 132949) ((-721 . -657) 132778) ((-719 . -657) 132627) ((-1179 . -97) T) ((-996 . -97) T) ((-357 . -25) T) ((-357 . -21) T) ((-455 . -591) 132552) ((-436 . -657) 132523) ((-429 . -657) 132372) ((-916 . -97) T) ((-677 . -97) T) ((-495 . -25) T) ((-1132 . -1122) 132351) ((-1164 . -563) 132317) ((-1132 . -817) NIL) ((-1132 . -815) 132269) ((-130 . -97) T) ((-43 . -124) T) ((-1096 . -564) NIL) ((-1096 . -563) 132251) ((-1054 . -1037) 132196) ((-319 . -980) T) ((-607 . -563) 132178) ((-266 . -1028) T) ((-331 . -563) 132160) ((-328 . -563) 132142) ((-320 . -563) 132124) ((-241 . -564) 131872) ((-241 . -563) 131854) ((-225 . -563) 131836) ((-225 . -564) 131697) ((-970 . -1116) 131626) ((-832 . -286) 131564) ((-1194 . -1063) T) ((-1153 . -964) 131499) ((-1132 . -964) 131465) ((-1117 . -484) 131432) ((-1053 . -563) 131414) ((-758 . -666) T) ((-554 . -265) 131391) ((-536 . -657) 131356) ((-453 . -564) NIL) ((-453 . -563) 131338) ((-487 . -657) 131283) ((-292 . -97) T) ((-289 . -97) T) ((-266 . -23) T) ((-141 . -124) T) ((-362 . -666) T) ((-803 . -979) 131235) ((-841 . -563) 131217) ((-841 . -564) 131199) ((-803 . -107) 131137) ((-128 . -97) T) ((-110 . -97) T) ((-652 . -1144) 131121) ((-654 . -973) T) ((-633 . -325) NIL) ((-488 . -563) 131053) ((-355 . -734) T) ((-201 . -1016) T) ((-355 . -731) T) ((-203 . -733) T) ((-203 . -730) T) ((-57 . -564) 131014) ((-57 . -563) 130926) ((-203 . -666) T) ((-486 . -564) 130887) ((-486 . -563) 130799) ((-468 . -563) 130731) ((-467 . -564) 130692) ((-467 . -563) 130604) ((-999 . -339) 130555) ((-39 . -387) 130532) ((-75 . -1122) T) ((-802 . -840) NIL) ((-335 . -305) 130516) ((-335 . -339) T) ((-329 . -305) 130500) ((-329 . -339) T) ((-321 . -305) 130484) ((-321 . -339) T) ((-292 . -261) 130463) ((-103 . -339) T) ((-68 . -1122) T) ((-1132 . -314) 130415) ((-802 . -591) 130360) ((-1132 . -353) 130312) ((-894 . -124) 130167) ((-754 . -124) 130038) ((-888 . -594) 130022) ((-1005 . -158) 129933) ((-888 . -349) 129917) ((-984 . -733) T) ((-984 . -730) T) ((-721 . -158) 129808) ((-719 . -158) 129719) ((-755 . -46) 129681) ((-984 . -666) T) ((-303 . -462) 129665) ((-883 . -666) T) ((-429 . -158) 129576) ((-223 . -263) 129553) ((-455 . -666) T) ((-1179 . -286) 129491) ((-1160 . -831) 129404) ((-1153 . -831) 129310) ((-1152 . -979) 129145) ((-1132 . -831) 128978) ((-1131 . -979) 128786) ((-1117 . -267) 128765) ((-1058 . -140) 128749) ((-994 . -97) T) ((-858 . -885) T) ((-73 . -1122) T) ((-677 . -286) 128687) ((-155 . -840) 128640) ((-607 . -358) 128612) ((-30 . -885) T) ((-1 . -563) 128594) ((-1034 . -97) T) ((-999 . -23) T) ((-49 . -567) 128578) ((-999 . -1028) T) ((-931 . -385) 128550) ((-548 . -831) 128463) ((-414 . -97) T) ((-130 . -286) NIL) ((-803 . -973) T) ((-772 . -786) 128442) ((-79 . -1122) T) ((-651 . -267) T) ((-39 . -980) T) ((-536 . -158) T) ((-487 . -158) T) ((-481 . -563) 128424) ((-155 . -591) 128334) ((-477 . -563) 128316) ((-327 . -136) 128298) ((-327 . -134) T) ((-335 . -1028) T) ((-329 . -1028) T) ((-321 . -1028) T) ((-932 . -284) T) ((-845 . -284) T) ((-803 . -221) T) ((-103 . -1028) T) ((-803 . -211) 128277) ((-1152 . -107) 128098) ((-1131 . -107) 127887) ((-223 . -1156) 127871) ((-523 . -784) T) ((-335 . -23) T) ((-330 . -325) T) ((-292 . -286) 127858) ((-289 . -286) 127799) ((-329 . -23) T) ((-295 . -124) T) ((-321 . -23) T) ((-932 . -949) T) ((-103 . -23) T) ((-223 . -556) 127776) ((-1154 . -37) 127668) ((-1141 . -840) 127647) ((-108 . -1016) T) ((-962 . -97) T) ((-1141 . -591) 127572) ((-802 . -733) NIL) ((-791 . -591) 127546) ((-802 . -730) NIL) ((-755 . -817) NIL) ((-802 . -666) T) ((-1005 . -484) 127419) ((-721 . -484) 127366) ((-719 . -484) 127318) ((-530 . -591) 127305) ((-755 . -964) 127135) ((-429 . -484) 127078) ((-364 . -365) T) ((-58 . -1122) T) ((-568 . -786) 127057) ((-471 . -604) T) ((-1058 . -905) 127026) ((-931 . -427) T) ((-638 . -784) T) ((-480 . -731) T) ((-449 . -979) 126861) ((-319 . -1016) T) ((-289 . -1063) NIL) ((-266 . -124) T) ((-370 . -1016) T) ((-633 . -346) 126828) ((-801 . -980) T) ((-201 . -567) 126805) ((-303 . -263) 126782) ((-449 . -107) 126603) ((-1152 . -973) T) ((-1131 . -973) T) ((-755 . -353) 126587) ((-155 . -666) T) ((-597 . -97) T) ((-1152 . -221) 126566) ((-1152 . -211) 126518) ((-1131 . -211) 126423) ((-1131 . -221) 126402) ((-931 . -378) NIL) ((-613 . -585) 126350) ((-292 . -37) 126260) ((-289 . -37) 126189) ((-67 . -563) 126171) ((-295 . -464) 126137) ((-1096 . -265) 126116) ((-1029 . -1028) 126047) ((-81 . -1122) T) ((-59 . -563) 126029) ((-453 . -265) 126008) ((-1181 . -964) 125985) ((-1076 . -1016) T) ((-1029 . -23) 125856) ((-755 . -831) 125792) ((-1141 . -666) T) ((-1018 . -1122) T) ((-1005 . -267) 125723) ((-824 . -97) T) ((-721 . -267) 125634) ((-303 . -19) 125618) ((-57 . -265) 125595) ((-719 . -267) 125526) ((-791 . -666) T) ((-113 . -784) NIL) ((-486 . -265) 125503) ((-303 . -556) 125480) ((-467 . -265) 125457) ((-429 . -267) 125388) ((-962 . -286) 125239) ((-530 . -666) T) ((-605 . -563) 125221) ((-223 . -564) 125182) ((-223 . -563) 125094) ((-1059 . -33) T) ((-874 . -1122) T) ((-319 . -657) 125039) ((-613 . -25) T) ((-613 . -21) T) ((-449 . -973) T) ((-581 . -393) 125004) ((-557 . -393) 124969) ((-1034 . -1063) T) ((-536 . -267) T) ((-487 . -267) T) ((-1153 . -284) 124948) ((-449 . -211) 124900) ((-449 . -221) 124879) ((-1132 . -284) 124858) ((-999 . -124) T) ((-803 . -734) 124837) ((-133 . -97) T) ((-39 . -1016) T) ((-803 . -731) 124816) ((-589 . -938) 124800) ((-535 . -980) T) ((-523 . -980) T) ((-466 . -980) T) ((-383 . -427) T) ((-335 . -124) T) ((-292 . -376) 124784) ((-289 . -376) 124745) ((-329 . -124) T) ((-321 . -124) T) ((-1132 . -949) NIL) ((-1092 . -1016) T) ((-1011 . -563) 124712) ((-103 . -124) T) ((-1034 . -37) 124699) ((-852 . -1016) T) ((-710 . -1016) T) ((-614 . -1016) T) ((-640 . -136) T) ((-112 . -136) T) ((-1188 . -21) T) ((-1188 . -25) T) ((-1186 . -21) T) ((-1186 . -25) T) ((-607 . -979) 124683) ((-495 . -786) T) ((-471 . -786) T) ((-331 . -979) 124635) ((-328 . -979) 124587) ((-320 . -979) 124539) ((-228 . -1122) T) ((-227 . -1122) T) ((-241 . -979) 124382) ((-225 . -979) 124225) ((-607 . -107) 124204) ((-331 . -107) 124142) ((-328 . -107) 124080) ((-320 . -107) 124018) ((-241 . -107) 123847) ((-225 . -107) 123676) ((-756 . -1126) 123655) ((-570 . -387) 123639) ((-43 . -21) T) ((-43 . -25) T) ((-754 . -585) 123547) ((-756 . -515) 123526) ((-228 . -964) 123355) ((-227 . -964) 123184) ((-122 . -115) 123168) ((-841 . -979) 123133) ((-638 . -980) T) ((-652 . -97) T) ((-319 . -158) T) ((-141 . -21) T) ((-141 . -25) T) ((-86 . -563) 123115) ((-841 . -107) 123071) ((-39 . -657) 123016) ((-801 . -1016) T) ((-303 . -564) 122977) ((-303 . -563) 122889) ((-1131 . -731) 122842) ((-1131 . -734) 122795) ((-228 . -353) 122765) ((-227 . -353) 122735) ((-597 . -37) 122705) ((-558 . -33) T) ((-456 . -1028) 122636) ((-450 . -33) T) ((-1029 . -124) 122507) ((-894 . -25) 122318) ((-805 . -563) 122300) ((-894 . -21) 122255) ((-754 . -21) 122166) ((-754 . -25) 122018) ((-570 . -980) T) ((-1089 . -515) 121997) ((-1083 . -46) 121974) ((-331 . -973) T) ((-328 . -973) T) ((-456 . -23) 121845) ((-320 . -973) T) ((-241 . -973) T) ((-225 . -973) T) ((-1039 . -46) 121817) ((-113 . -980) T) ((-961 . -591) 121791) ((-888 . -33) T) ((-331 . -211) 121770) ((-331 . -221) T) ((-328 . -211) 121749) ((-225 . -302) 121706) ((-328 . -221) T) ((-320 . -211) 121685) ((-320 . -221) T) ((-241 . -302) 121657) ((-241 . -211) 121636) ((-1068 . -140) 121620) ((-228 . -831) 121553) ((-227 . -831) 121486) ((-1001 . -786) T) ((-1135 . -1122) T) ((-390 . -1028) T) ((-977 . -23) T) ((-841 . -973) T) ((-298 . -591) 121468) ((-951 . -784) T) ((-1117 . -930) 121434) ((-1084 . -851) 121413) ((-1078 . -851) 121392) ((-841 . -221) T) ((-756 . -339) 121371) ((-361 . -23) T) ((-123 . -1016) 121349) ((-117 . -1016) 121327) ((-841 . -211) T) ((-1078 . -759) NIL) ((-355 . -591) 121292) ((-801 . -657) 121279) ((-970 . -140) 121244) ((-39 . -158) T) ((-633 . -387) 121226) ((-652 . -286) 121213) ((-773 . -591) 121173) ((-766 . -591) 121147) ((-295 . -25) T) ((-295 . -21) T) ((-601 . -263) 121126) ((-535 . -1016) T) ((-523 . -1016) T) ((-466 . -1016) T) ((-223 . -265) 121103) ((-289 . -209) 121064) ((-1083 . -817) NIL) ((-1039 . -817) 120923) ((-1083 . -964) 120805) ((-1039 . -964) 120690) ((-167 . -563) 120672) ((-790 . -964) 120570) ((-721 . -263) 120497) ((-756 . -1028) T) ((-961 . -666) T) ((-554 . -594) 120481) ((-970 . -905) 120410) ((-927 . -97) T) ((-756 . -23) T) ((-652 . -1063) 120388) ((-633 . -980) T) ((-554 . -349) 120372) ((-327 . -427) T) ((-319 . -267) T) ((-1169 . -1016) T) ((-375 . -97) T) ((-266 . -21) T) ((-266 . -25) T) ((-337 . -666) T) ((-650 . -1016) T) ((-638 . -1016) T) ((-337 . -448) T) ((-1117 . -563) 120354) ((-1083 . -353) 120338) ((-1039 . -353) 120322) ((-951 . -387) 120284) ((-130 . -207) 120266) ((-355 . -733) T) ((-355 . -730) T) ((-801 . -158) T) ((-355 . -666) T) ((-651 . -563) 120248) ((-652 . -37) 120077) ((-1168 . -1166) 120061) ((-327 . -378) T) ((-1168 . -1016) 120011) ((-535 . -657) 119998) ((-523 . -657) 119985) ((-466 . -657) 119950) ((-292 . -575) 119929) ((-773 . -666) T) ((-766 . -666) T) ((-589 . -1122) T) ((-999 . -585) 119877) ((-1083 . -831) 119820) ((-1039 . -831) 119804) ((-605 . -979) 119788) ((-103 . -585) 119770) ((-456 . -124) 119641) ((-1089 . -1028) T) ((-883 . -46) 119610) ((-570 . -1016) T) ((-605 . -107) 119589) ((-303 . -265) 119566) ((-455 . -46) 119523) ((-1089 . -23) T) ((-113 . -1016) T) ((-98 . -97) 119501) ((-1178 . -1028) T) ((-977 . -124) T) ((-951 . -980) T) ((-758 . -964) 119485) ((-931 . -664) 119457) ((-1178 . -23) T) ((-638 . -657) 119422) ((-540 . -563) 119404) ((-362 . -964) 119388) ((-330 . -980) T) ((-361 . -124) T) ((-300 . -964) 119372) ((-203 . -817) 119354) ((-932 . -851) T) ((-89 . -33) T) ((-932 . -759) T) ((-845 . -851) T) ((-460 . -1126) T) ((-1103 . -563) 119336) ((-1021 . -1016) T) ((-196 . -1126) T) ((-927 . -286) 119301) ((-203 . -964) 119261) ((-39 . -267) T) ((-999 . -21) T) ((-999 . -25) T) ((-1034 . -767) T) ((-460 . -515) T) ((-335 . -25) T) ((-196 . -515) T) ((-335 . -21) T) ((-329 . -25) T) ((-329 . -21) T) ((-654 . -591) 119221) ((-321 . -25) T) ((-321 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -980) T) ((-535 . -158) T) ((-523 . -158) T) ((-466 . -158) T) ((-601 . -563) 119203) ((-677 . -676) 119187) ((-312 . -563) 119169) ((-66 . -359) T) ((-66 . -371) T) ((-1018 . -102) 119153) ((-984 . -817) 119135) ((-883 . -817) 119060) ((-596 . -1028) T) ((-570 . -657) 119047) ((-455 . -817) NIL) ((-1058 . -97) T) ((-984 . -964) 119029) ((-92 . -563) 119011) ((-452 . -136) T) ((-883 . -964) 118893) ((-113 . -657) 118838) ((-596 . -23) T) ((-455 . -964) 118716) ((-1005 . -564) NIL) ((-1005 . -563) 118698) ((-721 . -564) NIL) ((-721 . -563) 118659) ((-719 . -564) 118294) ((-719 . -563) 118208) ((-1029 . -585) 118116) ((-436 . -563) 118098) ((-429 . -563) 118080) ((-429 . -564) 117941) ((-962 . -207) 117887) ((-122 . -33) T) ((-756 . -124) T) ((-803 . -840) 117866) ((-592 . -563) 117848) ((-331 . -1185) 117832) ((-328 . -1185) 117816) ((-320 . -1185) 117800) ((-123 . -484) 117733) ((-117 . -484) 117666) ((-481 . -731) T) ((-481 . -734) T) ((-480 . -733) T) ((-98 . -286) 117604) ((-200 . -97) 117582) ((-633 . -1016) T) ((-638 . -158) T) ((-803 . -591) 117534) ((-63 . -360) T) ((-252 . -563) 117516) ((-63 . -371) T) ((-883 . -353) 117500) ((-801 . -267) T) ((-49 . -563) 117482) ((-927 . -37) 117430) ((-536 . -563) 117412) ((-455 . -353) 117396) ((-536 . -564) 117378) ((-487 . -563) 117360) ((-841 . -1185) 117347) ((-802 . -1122) T) ((-640 . -427) T) ((-466 . -484) 117313) ((-460 . -339) T) ((-331 . -344) 117292) ((-328 . -344) 117271) ((-320 . -344) 117250) ((-196 . -339) T) ((-654 . -666) T) ((-112 . -427) T) ((-1189 . -1180) 117234) ((-802 . -815) 117211) ((-802 . -817) NIL) ((-894 . -786) 117110) ((-754 . -786) 117061) ((-597 . -599) 117045) ((-1109 . -33) T) ((-157 . -563) 117027) ((-1029 . -21) 116938) ((-1029 . -25) 116790) ((-802 . -964) 116767) ((-883 . -831) 116748) ((-1141 . -46) 116725) ((-841 . -344) T) ((-57 . -594) 116709) ((-486 . -594) 116693) ((-455 . -831) 116670) ((-69 . -416) T) ((-69 . -371) T) ((-467 . -594) 116654) ((-57 . -349) 116638) ((-570 . -158) T) ((-486 . -349) 116622) ((-467 . -349) 116606) ((-766 . -648) 116590) ((-1083 . -284) 116569) ((-1089 . -124) T) ((-113 . -158) T) ((-1058 . -286) 116507) ((-155 . -1122) T) ((-581 . -684) 116491) ((-557 . -684) 116475) ((-1178 . -124) T) ((-1153 . -851) 116454) ((-1132 . -851) 116433) ((-1132 . -759) NIL) ((-633 . -657) 116383) ((-1131 . -840) 116336) ((-951 . -1016) T) ((-802 . -353) 116313) ((-802 . -314) 116290) ((-836 . -1028) T) ((-155 . -815) 116274) ((-155 . -817) 116199) ((-460 . -1028) T) ((-330 . -1016) T) ((-196 . -1028) T) ((-74 . -416) T) ((-74 . -371) T) ((-155 . -964) 116097) ((-295 . -786) T) ((-1168 . -484) 116030) ((-1152 . -591) 115927) ((-1131 . -591) 115797) ((-803 . -733) 115776) ((-803 . -730) 115755) ((-803 . -666) T) ((-460 . -23) T) ((-201 . -563) 115737) ((-159 . -427) T) ((-200 . -286) 115675) ((-84 . -416) T) ((-84 . -371) T) ((-196 . -23) T) ((-1190 . -1183) 115654) ((-535 . -267) T) ((-523 . -267) T) ((-618 . -964) 115638) ((-466 . -267) T) ((-128 . -445) 115593) ((-47 . -1016) T) ((-652 . -209) 115577) ((-802 . -831) NIL) ((-1141 . -817) NIL) ((-820 . -97) T) ((-816 . -97) T) ((-364 . -1016) T) ((-155 . -353) 115561) ((-155 . -314) 115545) ((-1141 . -964) 115427) ((-791 . -964) 115325) ((-1054 . -97) T) ((-596 . -124) T) ((-113 . -484) 115233) ((-605 . -731) 115212) ((-605 . -734) 115191) ((-530 . -964) 115173) ((-271 . -1175) 115143) ((-797 . -97) T) ((-893 . -515) 115122) ((-1117 . -979) 115005) ((-456 . -585) 114913) ((-835 . -1016) T) ((-951 . -657) 114850) ((-651 . -979) 114815) ((-554 . -33) T) ((-1059 . -1122) T) ((-1117 . -107) 114684) ((-449 . -591) 114581) ((-330 . -657) 114526) ((-155 . -831) 114485) ((-638 . -267) T) ((-633 . -158) T) ((-651 . -107) 114441) ((-1194 . -980) T) ((-1141 . -353) 114425) ((-394 . -1126) 114403) ((-289 . -784) NIL) ((-394 . -515) T) ((-203 . -284) T) ((-1131 . -730) 114356) ((-1131 . -733) 114309) ((-1152 . -666) T) ((-1131 . -666) T) ((-47 . -657) 114274) ((-203 . -949) T) ((-327 . -1175) 114251) ((-1154 . -387) 114217) ((-658 . -666) T) ((-1141 . -831) 114160) ((-108 . -563) 114142) ((-108 . -564) 114124) ((-658 . -448) T) ((-456 . -21) 114035) ((-123 . -462) 114019) ((-117 . -462) 114003) ((-456 . -25) 113855) ((-570 . -267) T) ((-540 . -979) 113830) ((-413 . -1016) T) ((-984 . -284) T) ((-113 . -267) T) ((-1020 . -97) T) ((-931 . -97) T) ((-540 . -107) 113798) ((-1054 . -286) 113736) ((-1117 . -973) T) ((-984 . -949) T) ((-64 . -1122) T) ((-977 . -25) T) ((-977 . -21) T) ((-651 . -973) T) ((-361 . -21) T) ((-361 . -25) T) ((-633 . -484) NIL) ((-951 . -158) T) ((-651 . -221) T) ((-984 . -508) T) ((-473 . -97) T) ((-330 . -158) T) ((-319 . -563) 113718) ((-370 . -563) 113700) ((-449 . -666) T) ((-1034 . -784) T) ((-823 . -964) 113668) ((-103 . -786) T) ((-601 . -979) 113652) ((-460 . -124) T) ((-1154 . -980) T) ((-196 . -124) T) ((-1068 . -97) 113630) ((-94 . -1016) T) ((-223 . -609) 113614) ((-223 . -594) 113598) ((-601 . -107) 113577) ((-292 . -387) 113561) ((-223 . -349) 113545) ((-1071 . -213) 113492) ((-927 . -209) 113476) ((-72 . -1122) T) ((-47 . -158) T) ((-640 . -363) T) ((-640 . -132) T) ((-1189 . -97) T) ((-1005 . -979) 113319) ((-241 . -840) 113298) ((-225 . -840) 113277) ((-721 . -979) 113100) ((-719 . -979) 112943) ((-558 . -1122) T) ((-1076 . -563) 112925) ((-1005 . -107) 112754) ((-970 . -97) T) ((-450 . -1122) T) ((-436 . -979) 112725) ((-429 . -979) 112568) ((-607 . -591) 112552) ((-802 . -284) T) ((-721 . -107) 112361) ((-719 . -107) 112190) ((-331 . -591) 112142) ((-328 . -591) 112094) ((-320 . -591) 112046) ((-241 . -591) 111971) ((-225 . -591) 111896) ((-1070 . -786) T) ((-1006 . -964) 111880) ((-436 . -107) 111841) ((-429 . -107) 111670) ((-995 . -964) 111647) ((-928 . -33) T) ((-896 . -563) 111608) ((-888 . -1122) T) ((-122 . -938) 111592) ((-893 . -1028) T) ((-802 . -949) NIL) ((-675 . -1028) T) ((-655 . -1028) T) ((-1168 . -462) 111576) ((-1054 . -37) 111536) ((-893 . -23) T) ((-779 . -97) T) ((-756 . -21) T) ((-756 . -25) T) ((-675 . -23) T) ((-655 . -23) T) ((-106 . -604) T) ((-841 . -591) 111501) ((-536 . -979) 111466) ((-487 . -979) 111411) ((-205 . -55) 111369) ((-428 . -23) T) ((-383 . -97) T) ((-240 . -97) T) ((-633 . -267) T) ((-797 . -37) 111339) ((-536 . -107) 111295) ((-487 . -107) 111224) ((-394 . -1028) T) ((-292 . -980) 111115) ((-289 . -980) T) ((-601 . -973) T) ((-1194 . -1016) T) ((-155 . -284) 111046) ((-394 . -23) T) ((-39 . -563) 111028) ((-39 . -564) 111012) ((-103 . -921) 110994) ((-112 . -800) 110978) ((-47 . -484) 110944) ((-1109 . -938) 110928) ((-1092 . -563) 110910) ((-1096 . -33) T) ((-852 . -563) 110892) ((-1029 . -786) 110843) ((-710 . -563) 110825) ((-614 . -563) 110807) ((-1068 . -286) 110745) ((-453 . -33) T) ((-1009 . -1122) T) ((-452 . -427) T) ((-1005 . -973) T) ((-1053 . -33) T) ((-721 . -973) T) ((-719 . -973) T) ((-590 . -213) 110729) ((-578 . -213) 110675) ((-1141 . -284) 110654) ((-1005 . -302) 110615) ((-429 . -973) T) ((-1089 . -21) T) ((-1005 . -211) 110594) ((-721 . -302) 110571) ((-721 . -211) T) ((-719 . -302) 110543) ((-303 . -594) 110527) ((-671 . -1126) 110506) ((-1089 . -25) T) ((-57 . -33) T) ((-488 . -33) T) ((-486 . -33) T) ((-429 . -302) 110485) ((-303 . -349) 110469) ((-468 . -33) T) ((-467 . -33) T) ((-931 . -1063) NIL) ((-581 . -97) T) ((-557 . -97) T) ((-671 . -515) 110400) ((-331 . -666) T) ((-328 . -666) T) ((-320 . -666) T) ((-241 . -666) T) ((-225 . -666) T) ((-970 . -286) 110308) ((-832 . -1016) 110286) ((-49 . -973) T) ((-1178 . -21) T) ((-1178 . -25) T) ((-1085 . -515) 110265) ((-1084 . -1126) 110244) ((-536 . -973) T) ((-487 . -973) T) ((-1078 . -1126) 110223) ((-337 . -964) 110207) ((-298 . -964) 110191) ((-951 . -267) T) ((-355 . -817) 110173) ((-1084 . -515) 110124) ((-1078 . -515) 110075) ((-931 . -37) 110020) ((-738 . -1028) T) ((-841 . -666) T) ((-536 . -221) T) ((-536 . -211) T) ((-487 . -211) T) ((-487 . -221) T) ((-1040 . -515) 109999) ((-330 . -267) T) ((-590 . -634) 109983) ((-355 . -964) 109943) ((-1034 . -980) T) ((-98 . -121) 109927) ((-738 . -23) T) ((-1168 . -263) 109904) ((-383 . -286) 109869) ((-1188 . -1183) 109845) ((-1186 . -1183) 109824) ((-1154 . -1016) T) ((-801 . -563) 109806) ((-773 . -964) 109775) ((-183 . -726) T) ((-182 . -726) T) ((-181 . -726) T) ((-180 . -726) T) ((-179 . -726) T) ((-178 . -726) T) ((-177 . -726) T) ((-176 . -726) T) ((-175 . -726) T) ((-174 . -726) T) ((-466 . -930) T) ((-251 . -775) T) ((-250 . -775) T) ((-249 . -775) T) ((-248 . -775) T) ((-47 . -267) T) ((-247 . -775) T) ((-246 . -775) T) ((-245 . -775) T) ((-173 . -726) T) ((-562 . -786) T) ((-597 . -387) 109759) ((-106 . -786) T) ((-596 . -21) T) ((-596 . -25) T) ((-1189 . -37) 109729) ((-113 . -263) 109680) ((-1168 . -19) 109664) ((-1168 . -556) 109641) ((-1179 . -1016) T) ((-996 . -1016) T) ((-916 . -1016) T) ((-893 . -124) T) ((-677 . -1016) T) ((-675 . -124) T) ((-655 . -124) T) ((-481 . -732) T) ((-383 . -1063) 109619) ((-428 . -124) T) ((-481 . -733) T) ((-201 . -973) T) ((-271 . -97) 109402) ((-130 . -1016) T) ((-638 . -930) T) ((-89 . -1122) T) ((-123 . -563) 109334) ((-117 . -563) 109266) ((-1194 . -158) T) ((-1084 . -339) 109245) ((-1078 . -339) 109224) ((-292 . -1016) T) ((-394 . -124) T) ((-289 . -1016) T) ((-383 . -37) 109176) ((-1047 . -97) T) ((-1154 . -657) 109068) ((-597 . -980) T) ((-295 . -134) 109047) ((-295 . -136) 109026) ((-128 . -1016) T) ((-110 . -1016) T) ((-793 . -97) T) ((-535 . -563) 109008) ((-523 . -564) 108907) ((-523 . -563) 108889) ((-466 . -563) 108871) ((-466 . -564) 108816) ((-458 . -23) T) ((-456 . -786) 108767) ((-460 . -585) 108749) ((-895 . -563) 108731) ((-196 . -585) 108713) ((-203 . -380) T) ((-605 . -591) 108697) ((-1083 . -851) 108676) ((-671 . -1028) T) ((-327 . -97) T) ((-757 . -786) T) ((-671 . -23) T) ((-319 . -979) 108621) ((-1070 . -1069) T) ((-1059 . -102) 108605) ((-1085 . -1028) T) ((-1084 . -1028) T) ((-485 . -964) 108589) ((-1078 . -1028) T) ((-1040 . -1028) T) ((-319 . -107) 108518) ((-932 . -1126) T) ((-122 . -1122) T) ((-845 . -1126) T) ((-633 . -263) NIL) ((-1169 . -563) 108500) ((-1085 . -23) T) ((-1084 . -23) T) ((-1078 . -23) T) ((-932 . -515) T) ((-1054 . -209) 108484) ((-845 . -515) T) ((-1040 . -23) T) ((-226 . -563) 108466) ((-994 . -1016) T) ((-738 . -124) T) ((-650 . -563) 108448) ((-292 . -657) 108358) ((-289 . -657) 108287) ((-638 . -563) 108269) ((-638 . -564) 108214) ((-383 . -376) 108198) ((-414 . -1016) T) ((-460 . -25) T) ((-460 . -21) T) ((-1034 . -1016) T) ((-196 . -25) T) ((-196 . -21) T) ((-652 . -387) 108182) ((-654 . -964) 108151) ((-1168 . -563) 108063) ((-1168 . -564) 108024) ((-1154 . -158) T) ((-223 . -33) T) ((-857 . -903) T) ((-1109 . -1122) T) ((-605 . -730) 108003) ((-605 . -733) 107982) ((-374 . -371) T) ((-492 . -97) 107960) ((-962 . -1016) T) ((-200 . -923) 107944) ((-475 . -97) T) ((-570 . -563) 107926) ((-44 . -786) NIL) ((-570 . -564) 107903) ((-962 . -560) 107878) ((-832 . -484) 107811) ((-319 . -973) T) ((-113 . -564) NIL) ((-113 . -563) 107793) ((-803 . -1122) T) ((-613 . -393) 107777) ((-613 . -1037) 107722) ((-471 . -140) 107704) ((-319 . -211) T) ((-319 . -221) T) ((-39 . -979) 107649) ((-803 . -815) 107633) ((-803 . -817) 107558) ((-652 . -980) T) ((-633 . -930) NIL) ((-3 . |UnionCategory|) T) ((-1152 . -46) 107528) ((-1131 . -46) 107505) ((-1053 . -938) 107476) ((-203 . -851) T) ((-39 . -107) 107405) ((-803 . -964) 107272) ((-1034 . -657) 107259) ((-1021 . -563) 107241) ((-999 . -136) 107220) ((-999 . -134) 107171) ((-932 . -339) T) ((-295 . -1111) 107137) ((-355 . -284) T) ((-295 . -1108) 107103) ((-292 . -158) 107082) ((-289 . -158) T) ((-931 . -209) 107059) ((-845 . -339) T) ((-536 . -1185) 107046) ((-487 . -1185) 107023) ((-335 . -136) 107002) ((-335 . -134) 106953) ((-329 . -136) 106932) ((-329 . -134) 106883) ((-558 . -1099) 106859) ((-321 . -136) 106838) ((-321 . -134) 106789) ((-295 . -34) 106755) ((-450 . -1099) 106734) ((0 . |EnumerationCategory|) T) ((-295 . -91) 106700) ((-355 . -949) T) ((-103 . -136) T) ((-103 . -134) NIL) ((-44 . -213) 106650) ((-597 . -1016) T) ((-558 . -102) 106597) ((-458 . -124) T) ((-450 . -102) 106547) ((-218 . -1028) 106478) ((-803 . -353) 106462) ((-803 . -314) 106446) ((-218 . -23) 106317) ((-984 . -851) T) ((-984 . -759) T) ((-536 . -344) T) ((-487 . -344) T) ((-327 . -1063) T) ((-303 . -33) T) ((-43 . -393) 106301) ((-804 . -1122) T) ((-366 . -684) 106285) ((-1179 . -484) 106218) ((-671 . -124) T) ((-1160 . -515) 106197) ((-1153 . -1126) 106176) ((-1153 . -515) 106127) ((-677 . -484) 106060) ((-1132 . -1126) 106039) ((-1132 . -515) 105990) ((-824 . -1016) T) ((-133 . -780) T) ((-1131 . -1122) 105969) ((-1131 . -817) 105842) ((-1131 . -815) 105812) ((-492 . -286) 105750) ((-1085 . -124) T) ((-130 . -484) NIL) ((-1084 . -124) T) ((-1078 . -124) T) ((-1040 . -124) T) ((-951 . -930) T) ((-327 . -37) 105715) ((-932 . -1028) T) ((-845 . -1028) T) ((-80 . -563) 105697) ((-39 . -973) T) ((-801 . -979) 105684) ((-932 . -23) T) ((-803 . -831) 105643) ((-640 . -97) T) ((-931 . -325) NIL) ((-554 . -1122) T) ((-900 . -23) T) ((-845 . -23) T) ((-801 . -107) 105628) ((-403 . -1028) T) ((-449 . -46) 105598) ((-126 . -97) T) ((-39 . -211) 105570) ((-39 . -221) T) ((-112 . -97) T) ((-549 . -515) 105549) ((-548 . -515) 105528) ((-633 . -563) 105510) ((-633 . -564) 105418) ((-292 . -484) 105384) ((-289 . -484) 105276) ((-1152 . -964) 105260) ((-1131 . -964) 105049) ((-927 . -387) 105033) ((-403 . -23) T) ((-1034 . -158) T) ((-1154 . -267) T) ((-597 . -657) 105003) ((-133 . -1016) T) ((-47 . -930) T) ((-383 . -209) 104987) ((-272 . -213) 104937) ((-802 . -851) T) ((-802 . -759) NIL) ((-796 . -786) T) ((-1131 . -314) 104907) ((-1131 . -353) 104877) ((-200 . -1035) 104861) ((-1168 . -265) 104838) ((-1117 . -591) 104763) ((-893 . -21) T) ((-893 . -25) T) ((-675 . -21) T) ((-675 . -25) T) ((-655 . -21) T) ((-655 . -25) T) ((-651 . -591) 104728) ((-428 . -21) T) ((-428 . -25) T) ((-315 . -97) T) ((-159 . -97) T) ((-927 . -980) T) ((-801 . -973) T) ((-713 . -97) T) ((-1153 . -339) 104707) ((-1152 . -831) 104613) ((-1132 . -339) 104592) ((-1131 . -831) 104443) ((-951 . -563) 104425) ((-383 . -767) 104378) ((-1085 . -464) 104344) ((-155 . -851) 104275) ((-1084 . -464) 104241) ((-1078 . -464) 104207) ((-652 . -1016) T) ((-1040 . -464) 104173) ((-535 . -979) 104160) ((-523 . -979) 104147) ((-466 . -979) 104112) ((-292 . -267) 104091) ((-289 . -267) T) ((-330 . -563) 104073) ((-394 . -25) T) ((-394 . -21) T) ((-94 . -263) 104052) ((-535 . -107) 104037) ((-523 . -107) 104022) ((-466 . -107) 103978) ((-1087 . -817) 103945) ((-832 . -462) 103929) ((-47 . -563) 103911) ((-47 . -564) 103856) ((-218 . -124) 103727) ((-1141 . -851) 103706) ((-755 . -1126) 103685) ((-962 . -484) 103529) ((-364 . -563) 103511) ((-755 . -515) 103442) ((-540 . -591) 103417) ((-241 . -46) 103389) ((-225 . -46) 103346) ((-495 . -479) 103323) ((-928 . -1122) T) ((-638 . -979) 103288) ((-1160 . -1028) T) ((-1153 . -1028) T) ((-1132 . -1028) T) ((-931 . -346) 103260) ((-108 . -344) T) ((-449 . -831) 103166) ((-1160 . -23) T) ((-1153 . -23) T) ((-835 . -563) 103148) ((-89 . -102) 103132) ((-1117 . -666) T) ((-836 . -786) 103083) ((-640 . -1063) T) ((-638 . -107) 103039) ((-1132 . -23) T) ((-549 . -1028) T) ((-548 . -1028) T) ((-652 . -657) 102868) ((-651 . -666) T) ((-1034 . -267) T) ((-932 . -124) T) ((-460 . -786) T) ((-900 . -124) T) ((-845 . -124) T) ((-738 . -25) T) ((-196 . -786) T) ((-535 . -973) T) ((-523 . -973) T) ((-738 . -21) T) ((-466 . -973) T) ((-549 . -23) T) ((-319 . -1185) 102845) ((-295 . -427) 102824) ((-315 . -286) 102811) ((-548 . -23) T) ((-403 . -124) T) ((-601 . -591) 102785) ((-223 . -938) 102769) ((-803 . -284) T) ((-1190 . -1180) 102753) ((-640 . -37) 102740) ((-523 . -211) T) ((-466 . -221) T) ((-466 . -211) T) ((-710 . -731) T) ((-710 . -734) T) ((-1062 . -213) 102690) ((-1005 . -840) 102669) ((-112 . -37) 102656) ((-189 . -739) T) ((-188 . -739) T) ((-187 . -739) T) ((-186 . -739) T) ((-803 . -949) 102635) ((-1179 . -462) 102619) ((-721 . -840) 102598) ((-719 . -840) 102577) ((-1096 . -1122) T) ((-429 . -840) 102556) ((-677 . -462) 102540) ((-1005 . -591) 102465) ((-721 . -591) 102390) ((-570 . -979) 102377) ((-453 . -1122) T) ((-319 . -344) T) ((-130 . -462) 102359) ((-719 . -591) 102284) ((-1053 . -1122) T) ((-436 . -591) 102255) ((-241 . -817) 102114) ((-225 . -817) NIL) ((-113 . -979) 102059) ((-429 . -591) 101984) ((-607 . -964) 101961) ((-570 . -107) 101946) ((-331 . -964) 101930) ((-328 . -964) 101914) ((-320 . -964) 101898) ((-241 . -964) 101744) ((-225 . -964) 101622) ((-113 . -107) 101551) ((-57 . -1122) T) ((-488 . -1122) T) ((-486 . -1122) T) ((-468 . -1122) T) ((-467 . -1122) T) ((-413 . -563) 101533) ((-410 . -563) 101515) ((-3 . -97) T) ((-954 . -1116) 101484) ((-772 . -97) T) ((-629 . -55) 101442) ((-638 . -973) T) ((-49 . -591) 101416) ((-266 . -427) T) ((-451 . -1116) 101385) ((0 . -97) T) ((-536 . -591) 101350) ((-487 . -591) 101295) ((-48 . -97) T) ((-841 . -964) 101282) ((-638 . -221) T) ((-999 . -385) 101261) ((-671 . -585) 101209) ((-927 . -1016) T) ((-652 . -158) 101100) ((-460 . -921) 101082) ((-241 . -353) 101066) ((-225 . -353) 101050) ((-375 . -1016) T) ((-315 . -37) 101034) ((-953 . -97) 101012) ((-196 . -921) 100994) ((-159 . -37) 100926) ((-1152 . -284) 100905) ((-1131 . -284) 100884) ((-601 . -666) T) ((-94 . -563) 100866) ((-1078 . -585) 100818) ((-458 . -25) T) ((-458 . -21) T) ((-1131 . -949) 100771) ((-570 . -973) T) ((-355 . -380) T) ((-366 . -97) T) ((-241 . -831) 100717) ((-225 . -831) 100694) ((-113 . -973) T) ((-755 . -1028) T) ((-1005 . -666) T) ((-570 . -211) 100673) ((-568 . -97) T) ((-721 . -666) T) ((-719 . -666) T) ((-389 . -1028) T) ((-113 . -221) T) ((-39 . -344) NIL) ((-113 . -211) NIL) ((-429 . -666) T) ((-755 . -23) T) ((-671 . -25) T) ((-671 . -21) T) ((-642 . -786) T) ((-996 . -263) 100652) ((-76 . -372) T) ((-76 . -371) T) ((-633 . -979) 100602) ((-1160 . -124) T) ((-1153 . -124) T) ((-1132 . -124) T) ((-1054 . -387) 100586) ((-581 . -343) 100518) ((-557 . -343) 100450) ((-1068 . -1061) 100434) ((-98 . -1016) 100412) ((-1085 . -25) T) ((-1085 . -21) T) ((-1084 . -21) T) ((-927 . -657) 100360) ((-201 . -591) 100327) ((-633 . -107) 100261) ((-49 . -666) T) ((-1084 . -25) T) ((-327 . -325) T) ((-1078 . -21) T) ((-999 . -427) 100212) ((-1078 . -25) T) ((-652 . -484) 100159) ((-536 . -666) T) ((-487 . -666) T) ((-1040 . -21) T) ((-1040 . -25) T) ((-549 . -124) T) ((-548 . -124) T) ((-335 . -427) T) ((-329 . -427) T) ((-321 . -427) T) ((-449 . -284) 100138) ((-289 . -263) 100073) ((-103 . -427) T) ((-77 . -416) T) ((-77 . -371) T) ((-452 . -97) T) ((-1194 . -563) 100055) ((-1194 . -564) 100037) ((-999 . -378) 100016) ((-962 . -462) 99947) ((-523 . -734) T) ((-523 . -731) T) ((-985 . -213) 99893) ((-335 . -378) 99844) ((-329 . -378) 99795) ((-321 . -378) 99746) ((-1181 . -1028) T) ((-1181 . -23) T) ((-1170 . -97) T) ((-160 . -563) 99728) ((-1054 . -980) T) ((-613 . -684) 99712) ((-1089 . -134) 99691) ((-1089 . -136) 99670) ((-1058 . -1016) T) ((-1058 . -992) 99639) ((-67 . -1122) T) ((-951 . -979) 99576) ((-797 . -980) T) ((-218 . -585) 99484) ((-633 . -973) T) ((-330 . -979) 99429) ((-59 . -1122) T) ((-951 . -107) 99345) ((-832 . -563) 99277) ((-633 . -221) T) ((-633 . -211) NIL) ((-779 . -784) 99256) ((-638 . -734) T) ((-638 . -731) T) ((-931 . -387) 99233) ((-330 . -107) 99162) ((-355 . -851) T) ((-383 . -784) 99141) ((-652 . -267) 99052) ((-201 . -666) T) ((-1160 . -464) 99018) ((-1153 . -464) 98984) ((-1132 . -464) 98950) ((-292 . -930) 98929) ((-200 . -1016) 98907) ((-295 . -902) 98869) ((-100 . -97) T) ((-47 . -979) 98834) ((-1190 . -97) T) ((-357 . -97) T) ((-47 . -107) 98790) ((-932 . -585) 98772) ((-1154 . -563) 98754) ((-495 . -97) T) ((-471 . -97) T) ((-1047 . -1048) 98738) ((-141 . -1175) 98722) ((-223 . -1122) T) ((-1083 . -1126) 98701) ((-1039 . -1126) 98680) ((-218 . -21) 98591) ((-218 . -25) 98443) ((-123 . -115) 98427) ((-117 . -115) 98411) ((-43 . -684) 98395) ((-1083 . -515) 98306) ((-1039 . -515) 98237) ((-962 . -263) 98212) ((-755 . -124) T) ((-113 . -734) NIL) ((-113 . -731) NIL) ((-331 . -284) T) ((-328 . -284) T) ((-320 . -284) T) ((-1011 . -1122) T) ((-228 . -1028) 98143) ((-227 . -1028) 98074) ((-951 . -973) T) ((-931 . -980) T) ((-319 . -591) 98019) ((-568 . -37) 98003) ((-1179 . -563) 97965) ((-1179 . -564) 97926) ((-996 . -563) 97908) ((-951 . -221) T) ((-330 . -973) T) ((-754 . -1175) 97878) ((-228 . -23) T) ((-227 . -23) T) ((-916 . -563) 97860) ((-677 . -564) 97821) ((-677 . -563) 97803) ((-738 . -786) 97782) ((-927 . -484) 97694) ((-330 . -211) T) ((-330 . -221) T) ((-1071 . -140) 97641) ((-932 . -25) T) ((-130 . -563) 97623) ((-130 . -564) 97582) ((-841 . -284) T) ((-932 . -21) T) ((-900 . -25) T) ((-845 . -21) T) ((-845 . -25) T) ((-403 . -21) T) ((-403 . -25) T) ((-779 . -387) 97566) ((-47 . -973) T) ((-1188 . -1180) 97550) ((-1186 . -1180) 97534) ((-962 . -556) 97509) ((-292 . -564) 97370) ((-292 . -563) 97352) ((-289 . -564) NIL) ((-289 . -563) 97334) ((-47 . -221) T) ((-47 . -211) T) ((-597 . -263) 97295) ((-509 . -213) 97245) ((-128 . -563) 97227) ((-110 . -563) 97209) ((-452 . -37) 97174) ((-1190 . -1187) 97153) ((-1181 . -124) T) ((-1189 . -980) T) ((-1001 . -97) T) ((-86 . -1122) T) ((-471 . -286) NIL) ((-928 . -102) 97137) ((-820 . -1016) T) ((-816 . -1016) T) ((-1168 . -594) 97121) ((-1168 . -349) 97105) ((-303 . -1122) T) ((-546 . -786) T) ((-1054 . -1016) T) ((-1054 . -976) 97045) ((-98 . -484) 96978) ((-858 . -563) 96960) ((-319 . -666) T) ((-30 . -563) 96942) ((-797 . -1016) T) ((-779 . -980) 96921) ((-39 . -591) 96866) ((-203 . -1126) T) ((-383 . -980) T) ((-1070 . -140) 96848) ((-927 . -267) 96799) ((-203 . -515) T) ((-295 . -1149) 96783) ((-295 . -1146) 96753) ((-1096 . -1099) 96732) ((-994 . -563) 96714) ((-590 . -140) 96698) ((-578 . -140) 96644) ((-1096 . -102) 96594) ((-453 . -1099) 96573) ((-460 . -136) T) ((-460 . -134) NIL) ((-1034 . -564) 96488) ((-414 . -563) 96470) ((-196 . -136) T) ((-196 . -134) NIL) ((-1034 . -563) 96452) ((-51 . -97) T) ((-1132 . -585) 96404) ((-453 . -102) 96354) ((-922 . -23) T) ((-1190 . -37) 96324) ((-1083 . -1028) T) ((-1039 . -1028) T) ((-984 . -1126) T) ((-790 . -1028) T) ((-883 . -1126) 96303) ((-455 . -1126) 96282) ((-671 . -786) 96261) ((-984 . -515) T) ((-883 . -515) 96192) ((-1083 . -23) T) ((-1039 . -23) T) ((-790 . -23) T) ((-455 . -515) 96123) ((-1054 . -657) 96055) ((-1058 . -484) 95988) ((-962 . -564) NIL) ((-962 . -563) 95970) ((-797 . -657) 95940) ((-1117 . -46) 95909) ((-228 . -124) T) ((-227 . -124) T) ((-1020 . -1016) T) ((-931 . -1016) T) ((-60 . -563) 95891) ((-1078 . -786) NIL) ((-951 . -731) T) ((-951 . -734) T) ((-1194 . -979) 95878) ((-1194 . -107) 95863) ((-801 . -591) 95850) ((-1160 . -25) T) ((-1160 . -21) T) ((-1153 . -21) T) ((-1153 . -25) T) ((-1132 . -21) T) ((-1132 . -25) T) ((-954 . -140) 95834) ((-803 . -759) 95813) ((-803 . -851) T) ((-652 . -263) 95740) ((-549 . -21) T) ((-549 . -25) T) ((-548 . -21) T) ((-39 . -666) T) ((-200 . -484) 95673) ((-548 . -25) T) ((-451 . -140) 95657) ((-438 . -140) 95641) ((-852 . -666) T) ((-710 . -732) T) ((-710 . -733) T) ((-473 . -1016) T) ((-710 . -666) T) ((-203 . -339) T) ((-1068 . -1016) 95619) ((-802 . -1126) T) ((-597 . -563) 95601) ((-802 . -515) T) ((-633 . -344) NIL) ((-335 . -1175) 95585) ((-613 . -97) T) ((-329 . -1175) 95569) ((-321 . -1175) 95553) ((-1189 . -1016) T) ((-489 . -786) 95532) ((-756 . -427) 95511) ((-970 . -1016) T) ((-970 . -992) 95440) ((-954 . -905) 95409) ((-758 . -1028) T) ((-931 . -657) 95354) ((-362 . -1028) T) ((-451 . -905) 95323) ((-438 . -905) 95292) ((-106 . -140) 95274) ((-71 . -563) 95256) ((-824 . -563) 95238) ((-999 . -664) 95217) ((-1194 . -973) T) ((-755 . -585) 95165) ((-271 . -980) 95108) ((-155 . -1126) 95013) ((-203 . -1028) T) ((-300 . -23) T) ((-1078 . -921) 94965) ((-779 . -1016) T) ((-1040 . -680) 94944) ((-1154 . -979) 94849) ((-1152 . -851) 94828) ((-801 . -666) T) ((-155 . -515) 94739) ((-1131 . -851) 94718) ((-535 . -591) 94705) ((-383 . -1016) T) ((-523 . -591) 94692) ((-240 . -1016) T) ((-466 . -591) 94657) ((-203 . -23) T) ((-1131 . -759) 94610) ((-1188 . -97) T) ((-330 . -1185) 94587) ((-1186 . -97) T) ((-1154 . -107) 94479) ((-133 . -563) 94461) ((-922 . -124) T) ((-43 . -97) T) ((-218 . -786) 94412) ((-1141 . -1126) 94391) ((-98 . -462) 94375) ((-1189 . -657) 94345) ((-1005 . -46) 94306) ((-984 . -1028) T) ((-883 . -1028) T) ((-123 . -33) T) ((-117 . -33) T) ((-721 . -46) 94283) ((-719 . -46) 94255) ((-1141 . -515) 94166) ((-330 . -344) T) ((-455 . -1028) T) ((-1083 . -124) T) ((-1039 . -124) T) ((-429 . -46) 94145) ((-802 . -339) T) ((-790 . -124) T) ((-141 . -97) T) ((-984 . -23) T) ((-883 . -23) T) ((-530 . -515) T) ((-755 . -25) T) ((-755 . -21) T) ((-1054 . -484) 94078) ((-540 . -964) 94062) ((-455 . -23) T) ((-327 . -980) T) ((-1117 . -831) 94043) ((-613 . -286) 93981) ((-1029 . -1175) 93951) ((-638 . -591) 93916) ((-931 . -158) T) ((-893 . -134) 93895) ((-581 . -1016) T) ((-557 . -1016) T) ((-893 . -136) 93874) ((-932 . -786) T) ((-675 . -136) 93853) ((-675 . -134) 93832) ((-900 . -786) T) ((-449 . -851) 93811) ((-292 . -979) 93721) ((-289 . -979) 93650) ((-927 . -263) 93608) ((-383 . -657) 93560) ((-640 . -784) T) ((-1154 . -973) T) ((-292 . -107) 93456) ((-289 . -107) 93369) ((-894 . -97) T) ((-754 . -97) 93180) ((-652 . -564) NIL) ((-652 . -563) 93162) ((-601 . -964) 93060) ((-1154 . -302) 93004) ((-962 . -265) 92979) ((-535 . -666) T) ((-523 . -733) T) ((-155 . -339) 92930) ((-523 . -730) T) ((-523 . -666) T) ((-466 . -666) T) ((-1058 . -462) 92914) ((-1005 . -817) NIL) ((-802 . -1028) T) ((-113 . -840) NIL) ((-1188 . -1187) 92890) ((-1186 . -1187) 92869) ((-721 . -817) NIL) ((-719 . -817) 92728) ((-1181 . -25) T) ((-1181 . -21) T) ((-1120 . -97) 92706) ((-1022 . -371) T) ((-570 . -591) 92693) ((-429 . -817) NIL) ((-617 . -97) 92671) ((-1005 . -964) 92500) ((-802 . -23) T) ((-721 . -964) 92361) ((-719 . -964) 92220) ((-113 . -591) 92165) ((-429 . -964) 92043) ((-592 . -964) 92027) ((-573 . -97) T) ((-200 . -462) 92011) ((-1168 . -33) T) ((-581 . -657) 91995) ((-557 . -657) 91979) ((-613 . -37) 91939) ((-295 . -97) T) ((-83 . -563) 91921) ((-49 . -964) 91905) ((-1034 . -979) 91892) ((-1005 . -353) 91876) ((-58 . -55) 91838) ((-638 . -733) T) ((-638 . -730) T) ((-536 . -964) 91825) ((-487 . -964) 91802) ((-638 . -666) T) ((-292 . -973) 91693) ((-300 . -124) T) ((-289 . -973) T) ((-155 . -1028) T) ((-721 . -353) 91677) ((-719 . -353) 91661) ((-44 . -140) 91611) ((-932 . -921) 91593) ((-429 . -353) 91577) ((-383 . -158) T) ((-292 . -221) 91556) ((-289 . -221) T) ((-289 . -211) NIL) ((-271 . -1016) 91339) ((-203 . -124) T) ((-1034 . -107) 91324) ((-155 . -23) T) ((-738 . -136) 91303) ((-738 . -134) 91282) ((-228 . -585) 91190) ((-227 . -585) 91098) ((-295 . -261) 91064) ((-1068 . -484) 90997) ((-1047 . -1016) T) ((-203 . -982) T) ((-754 . -286) 90935) ((-1005 . -831) 90870) ((-721 . -831) 90813) ((-719 . -831) 90797) ((-1188 . -37) 90767) ((-1186 . -37) 90737) ((-1141 . -1028) T) ((-791 . -1028) T) ((-429 . -831) 90714) ((-793 . -1016) T) ((-1141 . -23) T) ((-530 . -1028) T) ((-791 . -23) T) ((-570 . -666) T) ((-331 . -851) T) ((-328 . -851) T) ((-266 . -97) T) ((-320 . -851) T) ((-984 . -124) T) ((-883 . -124) T) ((-113 . -733) NIL) ((-113 . -730) NIL) ((-113 . -666) T) ((-633 . -840) NIL) ((-970 . -484) 90615) ((-455 . -124) T) ((-530 . -23) T) ((-617 . -286) 90553) ((-581 . -701) T) ((-557 . -701) T) ((-1132 . -786) NIL) ((-931 . -267) T) ((-228 . -21) T) ((-633 . -591) 90503) ((-327 . -1016) T) ((-228 . -25) T) ((-227 . -21) T) ((-227 . -25) T) ((-141 . -37) 90487) ((-2 . -97) T) ((-841 . -851) T) ((-456 . -1175) 90457) ((-201 . -964) 90434) ((-1034 . -973) T) ((-651 . -284) T) ((-271 . -657) 90376) ((-640 . -980) T) ((-460 . -427) T) ((-383 . -484) 90288) ((-196 . -427) T) ((-1034 . -211) T) ((-272 . -140) 90238) ((-927 . -564) 90199) ((-927 . -563) 90181) ((-918 . -563) 90163) ((-112 . -980) T) ((-597 . -979) 90147) ((-203 . -464) T) ((-375 . -563) 90129) ((-375 . -564) 90106) ((-977 . -1175) 90076) ((-597 . -107) 90055) ((-1054 . -462) 90039) ((-754 . -37) 90009) ((-61 . -416) T) ((-61 . -371) T) ((-1071 . -97) T) ((-802 . -124) T) ((-457 . -97) 89987) ((-1194 . -344) T) ((-999 . -97) T) ((-983 . -97) T) ((-327 . -657) 89932) ((-671 . -136) 89911) ((-671 . -134) 89890) ((-951 . -591) 89827) ((-492 . -1016) 89805) ((-335 . -97) T) ((-329 . -97) T) ((-321 . -97) T) ((-103 . -97) T) ((-475 . -1016) T) ((-330 . -591) 89750) ((-1083 . -585) 89698) ((-1039 . -585) 89646) ((-361 . -479) 89625) ((-772 . -784) 89604) ((-355 . -1126) T) ((-633 . -666) T) ((-315 . -980) T) ((-1132 . -921) 89556) ((-159 . -980) T) ((-98 . -563) 89488) ((-1085 . -134) 89467) ((-1085 . -136) 89446) ((-355 . -515) T) ((-1084 . -136) 89425) ((-1084 . -134) 89404) ((-1078 . -134) 89311) ((-383 . -267) T) ((-1078 . -136) 89218) ((-1040 . -136) 89197) ((-1040 . -134) 89176) ((-295 . -37) 89017) ((-155 . -124) T) ((-289 . -734) NIL) ((-289 . -731) NIL) ((-597 . -973) T) ((-47 . -591) 88982) ((-922 . -21) T) ((-123 . -938) 88966) ((-117 . -938) 88950) ((-922 . -25) T) ((-832 . -115) 88934) ((-1070 . -97) T) ((-755 . -786) 88913) ((-1141 . -124) T) ((-1083 . -25) T) ((-1083 . -21) T) ((-791 . -124) T) ((-1039 . -25) T) ((-1039 . -21) T) ((-790 . -25) T) ((-790 . -21) T) ((-721 . -284) 88892) ((-590 . -97) 88870) ((-578 . -97) T) ((-1071 . -286) 88665) ((-530 . -124) T) ((-568 . -784) 88644) ((-1068 . -462) 88628) ((-1062 . -140) 88578) ((-1058 . -563) 88540) ((-1058 . -564) 88501) ((-951 . -730) T) ((-951 . -733) T) ((-951 . -666) T) ((-457 . -286) 88439) ((-428 . -393) 88409) ((-327 . -158) T) ((-266 . -37) 88396) ((-251 . -97) T) ((-250 . -97) T) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-319 . -964) 88373) ((-192 . -97) T) ((-191 . -97) T) ((-189 . -97) T) ((-188 . -97) T) ((-187 . -97) T) ((-186 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-652 . -979) 88196) ((-181 . -97) T) ((-180 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-330 . -666) T) ((-652 . -107) 88005) ((-613 . -209) 87989) ((-536 . -284) T) ((-487 . -284) T) ((-271 . -484) 87938) ((-103 . -286) NIL) ((-70 . -371) T) ((-1029 . -97) 87749) ((-772 . -387) 87733) ((-1034 . -734) T) ((-1034 . -731) T) ((-640 . -1016) T) ((-355 . -339) T) ((-155 . -464) 87711) ((-200 . -563) 87643) ((-126 . -1016) T) ((-112 . -1016) T) ((-47 . -666) T) ((-970 . -462) 87608) ((-130 . -401) 87590) ((-130 . -344) T) ((-954 . -97) T) ((-482 . -479) 87569) ((-451 . -97) T) ((-438 . -97) T) ((-961 . -1028) T) ((-1085 . -34) 87535) ((-1085 . -91) 87501) ((-1085 . -1111) 87467) ((-1085 . -1108) 87433) ((-1070 . -286) NIL) ((-87 . -372) T) ((-87 . -371) T) ((-999 . -1063) 87412) ((-1084 . -1108) 87378) ((-1084 . -1111) 87344) ((-961 . -23) T) ((-1084 . -91) 87310) ((-530 . -464) T) ((-1084 . -34) 87276) ((-1078 . -1108) 87242) ((-1078 . -1111) 87208) ((-1078 . -91) 87174) ((-337 . -1028) T) ((-335 . -1063) 87153) ((-329 . -1063) 87132) ((-321 . -1063) 87111) ((-1078 . -34) 87077) ((-1040 . -34) 87043) ((-1040 . -91) 87009) ((-103 . -1063) T) ((-1040 . -1111) 86975) ((-772 . -980) 86954) ((-590 . -286) 86892) ((-578 . -286) 86743) ((-1040 . -1108) 86709) ((-652 . -973) T) ((-984 . -585) 86691) ((-999 . -37) 86559) ((-883 . -585) 86507) ((-932 . -136) T) ((-932 . -134) NIL) ((-355 . -1028) T) ((-300 . -25) T) ((-298 . -23) T) ((-874 . -786) 86486) ((-652 . -302) 86463) ((-455 . -585) 86411) ((-39 . -964) 86301) ((-640 . -657) 86288) ((-652 . -211) T) ((-315 . -1016) T) ((-159 . -1016) T) ((-307 . -786) T) ((-394 . -427) 86238) ((-355 . -23) T) ((-335 . -37) 86203) ((-329 . -37) 86168) ((-321 . -37) 86133) ((-78 . -416) T) ((-78 . -371) T) ((-203 . -25) T) ((-203 . -21) T) ((-773 . -1028) T) ((-103 . -37) 86083) ((-766 . -1028) T) ((-713 . -1016) T) ((-112 . -657) 86070) ((-614 . -964) 86054) ((-562 . -97) T) ((-773 . -23) T) ((-766 . -23) T) ((-1068 . -263) 86031) ((-1029 . -286) 85969) ((-1018 . -213) 85953) ((-62 . -372) T) ((-62 . -371) T) ((-106 . -97) T) ((-39 . -353) 85930) ((-596 . -788) 85914) ((-984 . -21) T) ((-984 . -25) T) ((-754 . -209) 85884) ((-883 . -25) T) ((-883 . -21) T) ((-568 . -980) T) ((-455 . -25) T) ((-455 . -21) T) ((-954 . -286) 85822) ((-820 . -563) 85804) ((-816 . -563) 85786) ((-228 . -786) 85737) ((-227 . -786) 85688) ((-492 . -484) 85621) ((-802 . -585) 85598) ((-451 . -286) 85536) ((-438 . -286) 85474) ((-327 . -267) T) ((-1068 . -1156) 85458) ((-1054 . -563) 85420) ((-1054 . -564) 85381) ((-1052 . -97) T) ((-927 . -979) 85277) ((-39 . -831) 85229) ((-1068 . -556) 85206) ((-1194 . -591) 85193) ((-985 . -140) 85139) ((-803 . -1126) T) ((-927 . -107) 85021) ((-315 . -657) 85005) ((-797 . -563) 84987) ((-159 . -657) 84919) ((-383 . -263) 84877) ((-803 . -515) T) ((-103 . -376) 84859) ((-82 . -360) T) ((-82 . -371) T) ((-640 . -158) T) ((-94 . -666) T) ((-456 . -97) 84670) ((-94 . -448) T) ((-112 . -158) T) ((-1029 . -37) 84640) ((-155 . -585) 84588) ((-977 . -97) T) ((-802 . -25) T) ((-754 . -216) 84567) ((-802 . -21) T) ((-757 . -97) T) ((-390 . -97) T) ((-361 . -97) T) ((-106 . -286) NIL) ((-205 . -97) 84545) ((-123 . -1122) T) ((-117 . -1122) T) ((-961 . -124) T) ((-613 . -343) 84529) ((-927 . -973) T) ((-1141 . -585) 84477) ((-1020 . -563) 84459) ((-931 . -563) 84441) ((-485 . -23) T) ((-480 . -23) T) ((-319 . -284) T) ((-478 . -23) T) ((-298 . -124) T) ((-3 . -1016) T) ((-931 . -564) 84425) ((-927 . -221) 84404) ((-927 . -211) 84383) ((-1194 . -666) T) ((-1160 . -134) 84362) ((-772 . -1016) T) ((-1160 . -136) 84341) ((-1153 . -136) 84320) ((-1153 . -134) 84299) ((-1152 . -1126) 84278) ((-1132 . -134) 84185) ((-1132 . -136) 84092) ((-1131 . -1126) 84071) ((-355 . -124) T) ((-523 . -817) 84053) ((0 . -1016) T) ((-159 . -158) T) ((-155 . -21) T) ((-155 . -25) T) ((-48 . -1016) T) ((-1154 . -591) 83958) ((-1152 . -515) 83909) ((-654 . -1028) T) ((-1131 . -515) 83860) ((-523 . -964) 83842) ((-548 . -136) 83821) ((-548 . -134) 83800) ((-466 . -964) 83743) ((-85 . -360) T) ((-85 . -371) T) ((-803 . -339) T) ((-773 . -124) T) ((-766 . -124) T) ((-654 . -23) T) ((-473 . -563) 83725) ((-1190 . -980) T) ((-355 . -982) T) ((-953 . -1016) 83703) ((-832 . -33) T) ((-456 . -286) 83641) ((-1068 . -564) 83602) ((-1068 . -563) 83534) ((-1083 . -786) 83513) ((-44 . -97) T) ((-1039 . -786) 83492) ((-756 . -97) T) ((-1141 . -25) T) ((-1141 . -21) T) ((-791 . -25) T) ((-43 . -343) 83476) ((-791 . -21) T) ((-671 . -427) 83427) ((-1189 . -563) 83409) ((-530 . -25) T) ((-530 . -21) T) ((-366 . -1016) T) ((-977 . -286) 83347) ((-568 . -1016) T) ((-638 . -817) 83329) ((-1168 . -1122) T) ((-205 . -286) 83267) ((-133 . -344) T) ((-970 . -564) 83209) ((-970 . -563) 83152) ((-289 . -840) NIL) ((-638 . -964) 83097) ((-651 . -851) T) ((-449 . -1126) 83076) ((-1084 . -427) 83055) ((-1078 . -427) 83034) ((-306 . -97) T) ((-803 . -1028) T) ((-292 . -591) 82856) ((-289 . -591) 82785) ((-449 . -515) 82736) ((-315 . -484) 82702) ((-509 . -140) 82652) ((-39 . -284) T) ((-779 . -563) 82634) ((-640 . -267) T) ((-803 . -23) T) ((-355 . -464) T) ((-999 . -209) 82604) ((-482 . -97) T) ((-383 . -564) 82412) ((-383 . -563) 82394) ((-240 . -563) 82376) ((-112 . -267) T) ((-1154 . -666) T) ((-1152 . -339) 82355) ((-1131 . -339) 82334) ((-1179 . -33) T) ((-113 . -1122) T) ((-103 . -209) 82316) ((-1089 . -97) T) ((-452 . -1016) T) ((-492 . -462) 82300) ((-677 . -33) T) ((-456 . -37) 82270) ((-130 . -33) T) ((-113 . -815) 82247) ((-113 . -817) NIL) ((-570 . -964) 82132) ((-589 . -786) 82111) ((-1178 . -97) T) ((-272 . -97) T) ((-652 . -344) 82090) ((-113 . -964) 82067) ((-366 . -657) 82051) ((-568 . -657) 82035) ((-44 . -286) 81839) ((-755 . -134) 81818) ((-755 . -136) 81797) ((-1189 . -358) 81776) ((-758 . -786) T) ((-1170 . -1016) T) ((-1071 . -207) 81723) ((-362 . -786) 81702) ((-1160 . -1111) 81668) ((-1160 . -1108) 81634) ((-1153 . -1108) 81600) ((-485 . -124) T) ((-1153 . -1111) 81566) ((-1132 . -1108) 81532) ((-1132 . -1111) 81498) ((-1160 . -34) 81464) ((-1160 . -91) 81430) ((-581 . -563) 81399) ((-557 . -563) 81368) ((-203 . -786) T) ((-1153 . -91) 81334) ((-1153 . -34) 81300) ((-1152 . -1028) T) ((-1034 . -591) 81287) ((-1132 . -91) 81253) ((-1131 . -1028) T) ((-546 . -140) 81235) ((-999 . -325) 81214) ((-113 . -353) 81191) ((-113 . -314) 81168) ((-159 . -267) T) ((-1132 . -34) 81134) ((-801 . -284) T) ((-289 . -733) NIL) ((-289 . -730) NIL) ((-292 . -666) 80984) ((-289 . -666) T) ((-449 . -339) 80963) ((-335 . -325) 80942) ((-329 . -325) 80921) ((-321 . -325) 80900) ((-292 . -448) 80879) ((-1152 . -23) T) ((-1131 . -23) T) ((-658 . -1028) T) ((-654 . -124) T) ((-596 . -97) T) ((-452 . -657) 80844) ((-44 . -259) 80794) ((-100 . -1016) T) ((-66 . -563) 80776) ((-796 . -97) T) ((-570 . -831) 80735) ((-1190 . -1016) T) ((-357 . -1016) T) ((-80 . -1122) T) ((-984 . -786) T) ((-883 . -786) 80714) ((-113 . -831) NIL) ((-721 . -851) 80693) ((-653 . -786) T) ((-495 . -1016) T) ((-471 . -1016) T) ((-331 . -1126) T) ((-328 . -1126) T) ((-320 . -1126) T) ((-241 . -1126) 80672) ((-225 . -1126) 80651) ((-1029 . -209) 80621) ((-455 . -786) 80600) ((-1054 . -979) 80584) ((-366 . -701) T) ((-1070 . -767) T) ((-633 . -1122) T) ((-331 . -515) T) ((-328 . -515) T) ((-320 . -515) T) ((-241 . -515) 80515) ((-225 . -515) 80446) ((-1054 . -107) 80425) ((-428 . -684) 80395) ((-797 . -979) 80365) ((-756 . -37) 80307) ((-633 . -815) 80289) ((-633 . -817) 80271) ((-272 . -286) 80075) ((-841 . -1126) T) ((-613 . -387) 80059) ((-797 . -107) 80024) ((-633 . -964) 79969) ((-932 . -427) T) ((-841 . -515) T) ((-536 . -851) T) ((-449 . -1028) T) ((-487 . -851) T) ((-1068 . -265) 79946) ((-845 . -427) T) ((-63 . -563) 79928) ((-578 . -207) 79874) ((-449 . -23) T) ((-1034 . -733) T) ((-803 . -124) T) ((-1034 . -730) T) ((-1181 . -1183) 79853) ((-1034 . -666) T) ((-597 . -591) 79827) ((-271 . -563) 79569) ((-962 . -33) T) ((-754 . -784) 79548) ((-535 . -284) T) ((-523 . -284) T) ((-466 . -284) T) ((-1190 . -657) 79518) ((-633 . -353) 79500) ((-633 . -314) 79482) ((-452 . -158) T) ((-357 . -657) 79452) ((-802 . -786) NIL) ((-523 . -949) T) ((-466 . -949) T) ((-1047 . -563) 79434) ((-1029 . -216) 79413) ((-193 . -97) T) ((-1062 . -97) T) ((-69 . -563) 79395) ((-1054 . -973) T) ((-1089 . -37) 79292) ((-793 . -563) 79274) ((-523 . -508) T) ((-613 . -980) T) ((-671 . -880) 79227) ((-1054 . -211) 79206) ((-1001 . -1016) T) ((-961 . -25) T) ((-961 . -21) T) ((-931 . -979) 79151) ((-836 . -97) T) ((-797 . -973) T) ((-633 . -831) NIL) ((-331 . -305) 79135) ((-331 . -339) T) ((-328 . -305) 79119) ((-328 . -339) T) ((-320 . -305) 79103) ((-320 . -339) T) ((-460 . -97) T) ((-1178 . -37) 79073) ((-492 . -627) 79023) ((-196 . -97) T) ((-951 . -964) 78905) ((-931 . -107) 78834) ((-1085 . -902) 78803) ((-1084 . -902) 78765) ((-489 . -140) 78749) ((-999 . -346) 78728) ((-327 . -563) 78710) ((-298 . -21) T) ((-330 . -964) 78687) ((-298 . -25) T) ((-1078 . -902) 78656) ((-1040 . -902) 78623) ((-74 . -563) 78605) ((-638 . -284) T) ((-155 . -786) 78584) ((-841 . -339) T) ((-355 . -25) T) ((-355 . -21) T) ((-841 . -305) 78571) ((-84 . -563) 78553) ((-638 . -949) T) ((-618 . -786) T) ((-1152 . -124) T) ((-1131 . -124) T) ((-832 . -938) 78537) ((-773 . -21) T) ((-47 . -964) 78480) ((-773 . -25) T) ((-766 . -25) T) ((-766 . -21) T) ((-1188 . -980) T) ((-1186 . -980) T) ((-597 . -666) T) ((-1189 . -979) 78464) ((-1141 . -786) 78443) ((-754 . -387) 78412) ((-98 . -115) 78396) ((-51 . -1016) T) ((-857 . -563) 78378) ((-802 . -921) 78355) ((-762 . -97) T) ((-1189 . -107) 78334) ((-596 . -37) 78304) ((-530 . -786) T) ((-331 . -1028) T) ((-328 . -1028) T) ((-320 . -1028) T) ((-241 . -1028) T) ((-225 . -1028) T) ((-570 . -284) 78283) ((-1062 . -286) 78087) ((-607 . -23) T) ((-456 . -209) 78057) ((-141 . -980) T) ((-331 . -23) T) ((-328 . -23) T) ((-320 . -23) T) ((-113 . -284) T) ((-241 . -23) T) ((-225 . -23) T) ((-931 . -973) T) ((-652 . -840) 78036) ((-931 . -211) 78008) ((-931 . -221) T) ((-113 . -949) NIL) ((-841 . -1028) T) ((-1153 . -427) 77987) ((-1132 . -427) 77966) ((-492 . -563) 77898) ((-652 . -591) 77823) ((-383 . -979) 77775) ((-475 . -563) 77757) ((-841 . -23) T) ((-460 . -286) NIL) ((-449 . -124) T) ((-196 . -286) NIL) ((-383 . -107) 77695) ((-754 . -980) 77626) ((-677 . -1014) 77610) ((-1152 . -464) 77576) ((-1131 . -464) 77542) ((-130 . -1014) 77524) ((-452 . -267) T) ((-1189 . -973) T) ((-985 . -97) T) ((-471 . -484) NIL) ((-642 . -97) T) ((-456 . -216) 77503) ((-1083 . -134) 77482) ((-1083 . -136) 77461) ((-1039 . -136) 77440) ((-1039 . -134) 77419) ((-581 . -979) 77403) ((-557 . -979) 77387) ((-613 . -1016) T) ((-613 . -976) 77327) ((-1085 . -1159) 77311) ((-1085 . -1146) 77288) ((-460 . -1063) T) ((-1084 . -1151) 77249) ((-1084 . -1146) 77219) ((-1084 . -1149) 77203) ((-196 . -1063) T) ((-319 . -851) T) ((-757 . -243) 77187) ((-581 . -107) 77166) ((-557 . -107) 77145) ((-1078 . -1130) 77106) ((-779 . -973) 77085) ((-1078 . -1146) 77062) ((-485 . -25) T) ((-466 . -279) T) ((-481 . -23) T) ((-480 . -25) T) ((-478 . -25) T) ((-477 . -23) T) ((-1078 . -1128) 77046) ((-383 . -973) T) ((-295 . -980) T) ((-633 . -284) T) ((-103 . -784) T) ((-383 . -221) T) ((-383 . -211) 77025) ((-652 . -666) T) ((-460 . -37) 76975) ((-196 . -37) 76925) ((-449 . -464) 76891) ((-1070 . -1056) T) ((-1017 . -97) T) ((-640 . -563) 76873) ((-640 . -564) 76788) ((-654 . -21) T) ((-654 . -25) T) ((-126 . -563) 76770) ((-112 . -563) 76752) ((-144 . -25) T) ((-1188 . -1016) T) ((-803 . -585) 76700) ((-1186 . -1016) T) ((-893 . -97) T) ((-675 . -97) T) ((-655 . -97) T) ((-428 . -97) T) ((-755 . -427) 76651) ((-43 . -1016) T) ((-1006 . -786) T) ((-607 . -124) T) ((-985 . -286) 76502) ((-613 . -657) 76486) ((-266 . -980) T) ((-331 . -124) T) ((-328 . -124) T) ((-320 . -124) T) ((-241 . -124) T) ((-225 . -124) T) ((-394 . -97) T) ((-141 . -1016) T) ((-44 . -207) 76436) ((-888 . -786) 76415) ((-927 . -591) 76353) ((-218 . -1175) 76323) ((-951 . -284) T) ((-271 . -979) 76245) ((-841 . -124) T) ((-39 . -851) T) ((-460 . -376) 76227) ((-330 . -284) T) ((-196 . -376) 76209) ((-999 . -387) 76193) ((-271 . -107) 76110) ((-803 . -25) T) ((-803 . -21) T) ((-315 . -563) 76092) ((-1154 . -46) 76036) ((-203 . -136) T) ((-159 . -563) 76018) ((-1029 . -784) 75997) ((-713 . -563) 75979) ((-558 . -213) 75926) ((-450 . -213) 75876) ((-1188 . -657) 75846) ((-47 . -284) T) ((-1186 . -657) 75816) ((-894 . -1016) T) ((-754 . -1016) 75627) ((-288 . -97) T) ((-832 . -1122) T) ((-47 . -949) T) ((-1131 . -585) 75535) ((-629 . -97) 75513) ((-43 . -657) 75497) ((-509 . -97) T) ((-65 . -359) T) ((-65 . -371) T) ((-605 . -23) T) ((-613 . -701) T) ((-1120 . -1016) 75475) ((-327 . -979) 75420) ((-617 . -1016) 75398) ((-984 . -136) T) ((-883 . -136) 75377) ((-883 . -134) 75356) ((-738 . -97) T) ((-141 . -657) 75340) ((-455 . -136) 75319) ((-455 . -134) 75298) ((-327 . -107) 75227) ((-999 . -980) T) ((-298 . -786) 75206) ((-1160 . -902) 75175) ((-573 . -1016) T) ((-1153 . -902) 75137) ((-481 . -124) T) ((-477 . -124) T) ((-272 . -207) 75087) ((-335 . -980) T) ((-329 . -980) T) ((-321 . -980) T) ((-271 . -973) 75030) ((-1132 . -902) 74999) ((-355 . -786) T) ((-103 . -980) T) ((-927 . -666) T) ((-801 . -851) T) ((-779 . -734) 74978) ((-779 . -731) 74957) ((-394 . -286) 74896) ((-443 . -97) T) ((-548 . -902) 74865) ((-295 . -1016) T) ((-383 . -734) 74844) ((-383 . -731) 74823) ((-471 . -462) 74805) ((-1154 . -964) 74771) ((-1152 . -21) T) ((-1152 . -25) T) ((-1131 . -21) T) ((-1131 . -25) T) ((-754 . -657) 74713) ((-638 . -380) T) ((-1179 . -1122) T) ((-1029 . -387) 74682) ((-931 . -344) NIL) ((-98 . -33) T) ((-677 . -1122) T) ((-43 . -701) T) ((-546 . -97) T) ((-75 . -372) T) ((-75 . -371) T) ((-596 . -599) 74666) ((-130 . -1122) T) ((-802 . -136) T) ((-802 . -134) NIL) ((-327 . -973) T) ((-68 . -359) T) ((-68 . -371) T) ((-1077 . -97) T) ((-613 . -484) 74599) ((-629 . -286) 74537) ((-893 . -37) 74434) ((-675 . -37) 74404) ((-509 . -286) 74208) ((-292 . -1122) T) ((-327 . -211) T) ((-327 . -221) T) ((-289 . -1122) T) ((-266 . -1016) T) ((-1091 . -563) 74190) ((-651 . -1126) T) ((-1068 . -594) 74174) ((-1117 . -515) 74153) ((-651 . -515) T) ((-292 . -815) 74137) ((-292 . -817) 74062) ((-289 . -815) 74023) ((-289 . -817) NIL) ((-738 . -286) 73988) ((-295 . -657) 73829) ((-300 . -299) 73806) ((-458 . -97) T) ((-449 . -25) T) ((-449 . -21) T) ((-394 . -37) 73780) ((-292 . -964) 73448) ((-203 . -1108) T) ((-203 . -1111) T) ((-3 . -563) 73430) ((-289 . -964) 73360) ((-2 . -1016) T) ((-2 . |RecordCategory|) T) ((-772 . -563) 73342) ((-1029 . -980) 73273) ((-535 . -851) T) ((-523 . -759) T) ((-523 . -851) T) ((-466 . -851) T) ((-128 . -964) 73257) ((-203 . -91) T) ((-155 . -136) 73236) ((-73 . -416) T) ((0 . -563) 73218) ((-73 . -371) T) ((-155 . -134) 73169) ((-203 . -34) T) ((-48 . -563) 73151) ((-452 . -980) T) ((-460 . -209) 73133) ((-457 . -898) 73117) ((-456 . -784) 73096) ((-196 . -209) 73078) ((-79 . -416) T) ((-79 . -371) T) ((-1058 . -33) T) ((-754 . -158) 73057) ((-671 . -97) T) ((-953 . -563) 73024) ((-471 . -263) 72999) ((-292 . -353) 72969) ((-289 . -353) 72930) ((-289 . -314) 72891) ((-1003 . -563) 72873) ((-755 . -880) 72820) ((-605 . -124) T) ((-1141 . -134) 72799) ((-1141 . -136) 72778) ((-1085 . -97) T) ((-1084 . -97) T) ((-1078 . -97) T) ((-1071 . -1016) T) ((-1040 . -97) T) ((-200 . -33) T) ((-266 . -657) 72765) ((-1071 . -560) 72741) ((-546 . -286) NIL) ((-457 . -1016) 72719) ((-366 . -563) 72701) ((-480 . -786) T) ((-1062 . -207) 72651) ((-1160 . -1159) 72635) ((-1160 . -1146) 72612) ((-1153 . -1151) 72573) ((-1153 . -1146) 72543) ((-1153 . -1149) 72527) ((-1132 . -1130) 72488) ((-1132 . -1146) 72465) ((-568 . -563) 72447) ((-1132 . -1128) 72431) ((-638 . -851) T) ((-1085 . -261) 72397) ((-1084 . -261) 72363) ((-1078 . -261) 72329) ((-999 . -1016) T) ((-983 . -1016) T) ((-47 . -279) T) ((-292 . -831) 72296) ((-289 . -831) NIL) ((-983 . -989) 72275) ((-1034 . -817) 72257) ((-738 . -37) 72241) ((-241 . -585) 72189) ((-225 . -585) 72137) ((-640 . -979) 72124) ((-548 . -1146) 72101) ((-1040 . -261) 72067) ((-295 . -158) 71998) ((-335 . -1016) T) ((-329 . -1016) T) ((-321 . -1016) T) ((-471 . -19) 71980) ((-1034 . -964) 71962) ((-1018 . -140) 71946) ((-103 . -1016) T) ((-112 . -979) 71933) ((-651 . -339) T) ((-471 . -556) 71908) ((-640 . -107) 71893) ((-412 . -97) T) ((-44 . -1061) 71843) ((-112 . -107) 71828) ((-581 . -660) T) ((-557 . -660) T) ((-754 . -484) 71761) ((-962 . -1122) T) ((-874 . -140) 71745) ((-489 . -97) 71695) ((-1005 . -1126) 71674) ((-452 . -563) 71626) ((-452 . -564) 71548) ((-60 . -1122) T) ((-721 . -1126) 71527) ((-719 . -1126) 71506) ((-1083 . -427) 71437) ((-1070 . -1016) T) ((-1054 . -591) 71411) ((-1005 . -515) 71342) ((-456 . -387) 71311) ((-570 . -851) 71290) ((-429 . -1126) 71269) ((-1039 . -427) 71220) ((-374 . -563) 71202) ((-617 . -484) 71135) ((-721 . -515) 71046) ((-719 . -515) 70977) ((-671 . -286) 70964) ((-607 . -25) T) ((-607 . -21) T) ((-429 . -515) 70895) ((-113 . -851) T) ((-113 . -759) NIL) ((-331 . -25) T) ((-331 . -21) T) ((-328 . -25) T) ((-328 . -21) T) ((-320 . -25) T) ((-320 . -21) T) ((-241 . -25) T) ((-241 . -21) T) ((-81 . -360) T) ((-81 . -371) T) ((-225 . -25) T) ((-225 . -21) T) ((-1170 . -563) 70877) ((-1117 . -1028) T) ((-1117 . -23) T) ((-1078 . -286) 70762) ((-1040 . -286) 70749) ((-797 . -591) 70709) ((-999 . -657) 70577) ((-874 . -909) 70561) ((-266 . -158) T) ((-841 . -21) T) ((-841 . -25) T) ((-803 . -786) 70512) ((-651 . -1028) T) ((-651 . -23) T) ((-590 . -1016) 70490) ((-578 . -560) 70465) ((-578 . -1016) T) ((-536 . -1126) T) ((-487 . -1126) T) ((-536 . -515) T) ((-487 . -515) T) ((-335 . -657) 70417) ((-329 . -657) 70369) ((-159 . -979) 70301) ((-315 . -979) 70285) ((-103 . -657) 70235) ((-159 . -107) 70146) ((-321 . -657) 70098) ((-315 . -107) 70077) ((-251 . -1016) T) ((-250 . -1016) T) ((-249 . -1016) T) ((-248 . -1016) T) ((-640 . -973) T) ((-247 . -1016) T) ((-246 . -1016) T) ((-245 . -1016) T) ((-192 . -1016) T) ((-191 . -1016) T) ((-189 . -1016) T) ((-155 . -1111) 70055) ((-155 . -1108) 70033) ((-188 . -1016) T) ((-187 . -1016) T) ((-112 . -973) T) ((-186 . -1016) T) ((-183 . -1016) T) ((-640 . -211) T) ((-182 . -1016) T) ((-181 . -1016) T) ((-180 . -1016) T) ((-179 . -1016) T) ((-178 . -1016) T) ((-177 . -1016) T) ((-176 . -1016) T) ((-175 . -1016) T) ((-174 . -1016) T) ((-173 . -1016) T) ((-218 . -97) 69844) ((-155 . -34) 69822) ((-155 . -91) 69800) ((-597 . -964) 69698) ((-456 . -980) 69629) ((-1029 . -1016) 69440) ((-1054 . -33) T) ((-613 . -462) 69424) ((-71 . -1122) T) ((-100 . -563) 69406) ((-1190 . -563) 69388) ((-357 . -563) 69370) ((-530 . -1111) T) ((-530 . -1108) T) ((-671 . -37) 69219) ((-495 . -563) 69201) ((-489 . -286) 69139) ((-471 . -563) 69121) ((-471 . -564) 69103) ((-1078 . -1063) NIL) ((-954 . -992) 69072) ((-954 . -1016) T) ((-932 . -97) T) ((-900 . -97) T) ((-845 . -97) T) ((-824 . -964) 69049) ((-1054 . -666) T) ((-931 . -591) 68994) ((-451 . -1016) T) ((-438 . -1016) T) ((-540 . -23) T) ((-530 . -34) T) ((-530 . -91) T) ((-403 . -97) T) ((-985 . -207) 68940) ((-1085 . -37) 68837) ((-797 . -666) T) ((-633 . -851) T) ((-481 . -25) T) ((-477 . -21) T) ((-477 . -25) T) ((-1084 . -37) 68678) ((-315 . -973) T) ((-1078 . -37) 68474) ((-999 . -158) T) ((-159 . -973) T) ((-1040 . -37) 68371) ((-652 . -46) 68348) ((-335 . -158) T) ((-329 . -158) T) ((-488 . -55) 68322) ((-468 . -55) 68272) ((-327 . -1185) 68249) ((-203 . -427) T) ((-295 . -267) 68200) ((-321 . -158) T) ((-159 . -221) T) ((-1131 . -786) 68099) ((-103 . -158) T) ((-803 . -921) 68083) ((-601 . -1028) T) ((-536 . -339) T) ((-536 . -305) 68070) ((-487 . -305) 68047) ((-487 . -339) T) ((-292 . -284) 68026) ((-289 . -284) T) ((-554 . -786) 68005) ((-1029 . -657) 67947) ((-489 . -259) 67931) ((-601 . -23) T) ((-394 . -209) 67915) ((-289 . -949) NIL) ((-312 . -23) T) ((-98 . -938) 67899) ((-44 . -35) 67878) ((-562 . -1016) T) ((-327 . -344) T) ((-466 . -27) T) ((-218 . -286) 67816) ((-1005 . -1028) T) ((-1189 . -591) 67790) ((-721 . -1028) T) ((-719 . -1028) T) ((-429 . -1028) T) ((-984 . -427) T) ((-883 . -427) 67741) ((-106 . -1016) T) ((-1005 . -23) T) ((-756 . -980) T) ((-721 . -23) T) ((-719 . -23) T) ((-455 . -427) 67692) ((-1071 . -484) 67475) ((-357 . -358) 67454) ((-1089 . -387) 67438) ((-436 . -23) T) ((-429 . -23) T) ((-457 . -484) 67371) ((-266 . -267) T) ((-1001 . -563) 67353) ((-383 . -840) 67332) ((-49 . -1028) T) ((-951 . -851) T) ((-931 . -666) T) ((-652 . -817) NIL) ((-536 . -1028) T) ((-487 . -1028) T) ((-779 . -591) 67305) ((-1117 . -124) T) ((-1078 . -376) 67257) ((-932 . -286) NIL) ((-754 . -462) 67241) ((-330 . -851) T) ((-1068 . -33) T) ((-383 . -591) 67193) ((-49 . -23) T) ((-651 . -124) T) ((-652 . -964) 67075) ((-536 . -23) T) ((-103 . -484) NIL) ((-487 . -23) T) ((-155 . -385) 67046) ((-1052 . -1016) T) ((-1181 . -1180) 67030) ((-640 . -734) T) ((-640 . -731) T) ((-1034 . -284) T) ((-355 . -136) T) ((-257 . -563) 67012) ((-1131 . -921) 66982) ((-47 . -851) T) ((-617 . -462) 66966) ((-228 . -1175) 66936) ((-227 . -1175) 66906) ((-1087 . -786) T) ((-1029 . -158) 66885) ((-1034 . -949) T) ((-970 . -33) T) ((-773 . -136) 66864) ((-773 . -134) 66843) ((-677 . -102) 66827) ((-562 . -125) T) ((-456 . -1016) 66638) ((-1089 . -980) T) ((-802 . -427) T) ((-83 . -1122) T) ((-218 . -37) 66608) ((-130 . -102) 66590) ((-652 . -353) 66574) ((-1034 . -508) T) ((-366 . -979) 66558) ((-1189 . -666) T) ((-1083 . -880) 66527) ((-51 . -563) 66509) ((-1039 . -880) 66476) ((-596 . -387) 66460) ((-1178 . -980) T) ((-568 . -979) 66444) ((-605 . -25) T) ((-605 . -21) T) ((-1070 . -484) NIL) ((-1160 . -97) T) ((-1153 . -97) T) ((-366 . -107) 66423) ((-200 . -231) 66407) ((-1132 . -97) T) ((-977 . -1016) T) ((-932 . -1063) T) ((-977 . -976) 66347) ((-757 . -1016) T) ((-319 . -1126) T) ((-581 . -591) 66331) ((-568 . -107) 66310) ((-557 . -591) 66294) ((-549 . -97) T) ((-540 . -124) T) ((-548 . -97) T) ((-390 . -1016) T) ((-361 . -1016) T) ((-205 . -1016) 66272) ((-590 . -484) 66205) ((-578 . -484) 66049) ((-772 . -973) 66028) ((-589 . -140) 66012) ((-319 . -515) T) ((-652 . -831) 65955) ((-509 . -207) 65905) ((-1160 . -261) 65871) ((-999 . -267) 65822) ((-460 . -784) T) ((-201 . -1028) T) ((-1153 . -261) 65788) ((-1132 . -261) 65754) ((-932 . -37) 65704) ((-196 . -784) T) ((-1117 . -464) 65670) ((-845 . -37) 65622) ((-779 . -733) 65601) ((-779 . -730) 65580) ((-779 . -666) 65559) ((-335 . -267) T) ((-329 . -267) T) ((-321 . -267) T) ((-155 . -427) 65490) ((-403 . -37) 65474) ((-103 . -267) T) ((-201 . -23) T) ((-383 . -733) 65453) ((-383 . -730) 65432) ((-383 . -666) T) ((-471 . -265) 65407) ((-452 . -979) 65372) ((-601 . -124) T) ((-1029 . -484) 65305) ((-312 . -124) T) ((-155 . -378) 65284) ((-456 . -657) 65226) ((-754 . -263) 65203) ((-452 . -107) 65159) ((-596 . -980) T) ((-1141 . -427) 65090) ((-1005 . -124) T) ((-241 . -786) 65069) ((-225 . -786) 65048) ((-721 . -124) T) ((-719 . -124) T) ((-530 . -427) T) ((-977 . -657) 64990) ((-568 . -973) T) ((-954 . -484) 64923) ((-436 . -124) T) ((-429 . -124) T) ((-44 . -1016) T) ((-361 . -657) 64893) ((-756 . -1016) T) ((-451 . -484) 64826) ((-438 . -484) 64759) ((-428 . -343) 64729) ((-44 . -560) 64708) ((-292 . -279) T) ((-613 . -563) 64670) ((-57 . -786) 64649) ((-1132 . -286) 64534) ((-932 . -376) 64516) ((-754 . -556) 64493) ((-486 . -786) 64472) ((-467 . -786) 64451) ((-39 . -1126) T) ((-927 . -964) 64349) ((-49 . -124) T) ((-536 . -124) T) ((-487 . -124) T) ((-271 . -591) 64211) ((-319 . -305) 64188) ((-319 . -339) T) ((-298 . -299) 64165) ((-295 . -263) 64150) ((-39 . -515) T) ((-355 . -1108) T) ((-355 . -1111) T) ((-962 . -1099) 64125) ((-1096 . -213) 64075) ((-1078 . -209) 64027) ((-306 . -1016) T) ((-355 . -91) T) ((-355 . -34) T) ((-962 . -102) 63973) ((-452 . -973) T) ((-453 . -213) 63923) ((-1071 . -462) 63857) ((-1190 . -979) 63841) ((-357 . -979) 63825) ((-452 . -221) T) ((-755 . -97) T) ((-654 . -136) 63804) ((-654 . -134) 63783) ((-457 . -462) 63767) ((-458 . -311) 63736) ((-1190 . -107) 63715) ((-482 . -1016) T) ((-456 . -158) 63694) ((-927 . -353) 63678) ((-389 . -97) T) ((-357 . -107) 63657) ((-927 . -314) 63641) ((-256 . -912) 63625) ((-255 . -912) 63609) ((-1188 . -563) 63591) ((-1186 . -563) 63573) ((-106 . -484) NIL) ((-1083 . -1144) 63557) ((-790 . -788) 63541) ((-1089 . -1016) T) ((-98 . -1122) T) ((-883 . -880) 63502) ((-756 . -657) 63444) ((-1132 . -1063) NIL) ((-455 . -880) 63389) ((-984 . -132) T) ((-58 . -97) 63367) ((-43 . -563) 63349) ((-76 . -563) 63331) ((-327 . -591) 63276) ((-1178 . -1016) T) ((-481 . -786) T) ((-319 . -1028) T) ((-272 . -1016) T) ((-927 . -831) 63235) ((-272 . -560) 63214) ((-1160 . -37) 63111) ((-1153 . -37) 62952) ((-460 . -980) T) ((-1132 . -37) 62748) ((-196 . -980) T) ((-319 . -23) T) ((-141 . -563) 62730) ((-772 . -734) 62709) ((-772 . -731) 62688) ((-549 . -37) 62661) ((-548 . -37) 62558) ((-801 . -515) T) ((-201 . -124) T) ((-295 . -930) 62524) ((-77 . -563) 62506) ((-652 . -284) 62485) ((-271 . -666) 62388) ((-763 . -97) T) ((-796 . -780) T) ((-271 . -448) 62367) ((-1181 . -97) T) ((-39 . -339) T) ((-803 . -136) 62346) ((-803 . -134) 62325) ((-1070 . -462) 62307) ((-1190 . -973) T) ((-456 . -484) 62240) ((-1058 . -1122) T) ((-894 . -563) 62222) ((-590 . -462) 62206) ((-578 . -462) 62137) ((-754 . -563) 61889) ((-47 . -27) T) ((-1089 . -657) 61786) ((-596 . -1016) T) ((-412 . -340) 61760) ((-1018 . -97) T) ((-755 . -286) 61747) ((-796 . -1016) T) ((-1186 . -358) 61719) ((-977 . -484) 61652) ((-1071 . -263) 61628) ((-218 . -209) 61598) ((-1178 . -657) 61568) ((-756 . -158) 61547) ((-205 . -484) 61480) ((-568 . -734) 61459) ((-568 . -731) 61438) ((-1120 . -563) 61350) ((-200 . -1122) T) ((-617 . -563) 61282) ((-1068 . -938) 61266) ((-327 . -666) T) ((-874 . -97) 61216) ((-1132 . -376) 61168) ((-1029 . -462) 61152) ((-58 . -286) 61090) ((-307 . -97) T) ((-1117 . -21) T) ((-1117 . -25) T) ((-39 . -1028) T) ((-651 . -21) T) ((-573 . -563) 61072) ((-485 . -299) 61051) ((-651 . -25) T) ((-103 . -263) NIL) ((-852 . -1028) T) ((-39 . -23) T) ((-710 . -1028) T) ((-523 . -1126) T) ((-466 . -1126) T) ((-295 . -563) 61033) ((-932 . -209) 61015) ((-155 . -152) 60999) ((-535 . -515) T) ((-523 . -515) T) ((-466 . -515) T) ((-710 . -23) T) ((-1152 . -136) 60978) ((-1071 . -556) 60954) ((-1152 . -134) 60933) ((-954 . -462) 60917) ((-1131 . -134) 60842) ((-1131 . -136) 60767) ((-1181 . -1187) 60746) ((-451 . -462) 60730) ((-438 . -462) 60714) ((-492 . -33) T) ((-596 . -657) 60684) ((-108 . -897) T) ((-605 . -786) 60663) ((-1089 . -158) 60614) ((-341 . -97) T) ((-218 . -216) 60593) ((-228 . -97) T) ((-227 . -97) T) ((-1141 . -880) 60562) ((-105 . -97) T) ((-223 . -786) 60541) ((-755 . -37) 60390) ((-44 . -484) 60182) ((-1070 . -263) 60157) ((-193 . -1016) T) ((-1062 . -1016) T) ((-1062 . -560) 60136) ((-540 . -25) T) ((-540 . -21) T) ((-1018 . -286) 60074) ((-893 . -387) 60058) ((-638 . -1126) T) ((-578 . -263) 60033) ((-1005 . -585) 59981) ((-721 . -585) 59929) ((-719 . -585) 59877) ((-319 . -124) T) ((-266 . -563) 59859) ((-638 . -515) T) ((-836 . -1016) T) ((-801 . -1028) T) ((-429 . -585) 59807) ((-836 . -834) 59791) ((-355 . -427) T) ((-460 . -1016) T) ((-640 . -591) 59778) ((-874 . -286) 59716) ((-196 . -1016) T) ((-292 . -851) 59695) ((-289 . -851) T) ((-289 . -759) NIL) ((-366 . -660) T) ((-801 . -23) T) ((-112 . -591) 59682) ((-449 . -134) 59661) ((-394 . -387) 59645) ((-449 . -136) 59624) ((-106 . -462) 59606) ((-2 . -563) 59588) ((-1070 . -19) 59570) ((-1070 . -556) 59545) ((-601 . -21) T) ((-601 . -25) T) ((-546 . -1056) T) ((-1029 . -263) 59522) ((-312 . -25) T) ((-312 . -21) T) ((-466 . -339) T) ((-1181 . -37) 59492) ((-1054 . -1122) T) ((-578 . -556) 59467) ((-1005 . -25) T) ((-1005 . -21) T) ((-495 . -731) T) ((-495 . -734) T) ((-113 . -1126) T) ((-893 . -980) T) ((-570 . -515) T) ((-675 . -980) T) ((-655 . -980) T) ((-721 . -25) T) ((-721 . -21) T) ((-719 . -21) T) ((-719 . -25) T) ((-613 . -979) 59451) ((-436 . -25) T) ((-113 . -515) T) ((-436 . -21) T) ((-429 . -25) T) ((-429 . -21) T) ((-1054 . -964) 59349) ((-756 . -267) 59328) ((-762 . -1016) T) ((-896 . -897) T) ((-613 . -107) 59307) ((-272 . -484) 59099) ((-1188 . -979) 59083) ((-1186 . -979) 59067) ((-228 . -286) 59005) ((-227 . -286) 58943) ((-1135 . -97) 58921) ((-1071 . -564) NIL) ((-1071 . -563) 58903) ((-1152 . -1108) 58869) ((-1152 . -1111) 58835) ((-1132 . -209) 58787) ((-1131 . -1108) 58753) ((-1131 . -1111) 58719) ((-1054 . -353) 58703) ((-1034 . -759) T) ((-1034 . -851) T) ((-1029 . -556) 58680) ((-999 . -564) 58664) ((-457 . -563) 58596) ((-754 . -265) 58573) ((-558 . -140) 58520) ((-394 . -980) T) ((-460 . -657) 58470) ((-456 . -462) 58454) ((-303 . -786) 58433) ((-315 . -591) 58407) ((-49 . -21) T) ((-49 . -25) T) ((-196 . -657) 58357) ((-155 . -664) 58328) ((-159 . -591) 58260) ((-536 . -21) T) ((-536 . -25) T) ((-487 . -25) T) ((-487 . -21) T) ((-450 . -140) 58210) ((-999 . -563) 58192) ((-983 . -563) 58174) ((-922 . -97) T) ((-794 . -97) T) ((-738 . -387) 58138) ((-39 . -124) T) ((-638 . -339) T) ((-192 . -826) T) ((-640 . -733) T) ((-640 . -730) T) ((-535 . -1028) T) ((-523 . -1028) T) ((-466 . -1028) T) ((-640 . -666) T) ((-335 . -563) 58120) ((-329 . -563) 58102) ((-321 . -563) 58084) ((-64 . -372) T) ((-64 . -371) T) ((-103 . -564) 58014) ((-103 . -563) 57996) ((-191 . -826) T) ((-888 . -140) 57980) ((-1152 . -91) 57946) ((-710 . -124) T) ((-126 . -666) T) ((-112 . -666) T) ((-1152 . -34) 57912) ((-977 . -462) 57896) ((-535 . -23) T) ((-523 . -23) T) ((-466 . -23) T) ((-1131 . -91) 57862) ((-1131 . -34) 57828) ((-1083 . -97) T) ((-1039 . -97) T) ((-790 . -97) T) ((-205 . -462) 57812) ((-1188 . -107) 57791) ((-1186 . -107) 57770) ((-43 . -979) 57754) ((-1141 . -1144) 57738) ((-791 . -788) 57722) ((-1089 . -267) 57701) ((-106 . -263) 57676) ((-1054 . -831) 57635) ((-43 . -107) 57614) ((-613 . -973) T) ((-1092 . -1163) T) ((-1070 . -564) NIL) ((-1070 . -563) 57596) ((-985 . -560) 57571) ((-985 . -1016) T) ((-72 . -416) T) ((-72 . -371) T) ((-613 . -211) 57550) ((-141 . -979) 57534) ((-530 . -513) 57518) ((-331 . -136) 57497) ((-331 . -134) 57448) ((-328 . -136) 57427) ((-642 . -1016) T) ((-328 . -134) 57378) ((-320 . -136) 57357) ((-320 . -134) 57308) ((-241 . -134) 57287) ((-241 . -136) 57266) ((-228 . -37) 57236) ((-225 . -136) 57215) ((-113 . -339) T) ((-225 . -134) 57194) ((-227 . -37) 57164) ((-141 . -107) 57143) ((-931 . -964) 57033) ((-1078 . -784) NIL) ((-633 . -1126) T) ((-738 . -980) T) ((-638 . -1028) T) ((-1188 . -973) T) ((-1186 . -973) T) ((-1068 . -1122) T) ((-931 . -353) 57010) ((-841 . -134) T) ((-841 . -136) 56992) ((-801 . -124) T) ((-754 . -979) 56890) ((-633 . -515) T) ((-638 . -23) T) ((-590 . -563) 56822) ((-590 . -564) 56783) ((-578 . -564) NIL) ((-578 . -563) 56765) ((-460 . -158) T) ((-201 . -21) T) ((-196 . -158) T) ((-201 . -25) T) ((-449 . -1111) 56731) ((-449 . -1108) 56697) ((-251 . -563) 56679) ((-250 . -563) 56661) ((-249 . -563) 56643) ((-248 . -563) 56625) ((-247 . -563) 56607) ((-471 . -594) 56589) ((-246 . -563) 56571) ((-315 . -666) T) ((-245 . -563) 56553) ((-106 . -19) 56535) ((-159 . -666) T) ((-471 . -349) 56517) ((-192 . -563) 56499) ((-489 . -1061) 56483) ((-471 . -119) T) ((-106 . -556) 56458) ((-191 . -563) 56440) ((-449 . -34) 56406) ((-449 . -91) 56372) ((-189 . -563) 56354) ((-188 . -563) 56336) ((-187 . -563) 56318) ((-186 . -563) 56300) ((-183 . -563) 56282) ((-182 . -563) 56264) ((-181 . -563) 56246) ((-180 . -563) 56228) ((-179 . -563) 56210) ((-178 . -563) 56192) ((-177 . -563) 56174) ((-499 . -1019) 56126) ((-176 . -563) 56108) ((-175 . -563) 56090) ((-44 . -462) 56027) ((-174 . -563) 56009) ((-173 . -563) 55991) ((-754 . -107) 55882) ((-589 . -97) 55832) ((-456 . -263) 55809) ((-1029 . -563) 55561) ((-1017 . -1016) T) ((-970 . -1122) T) ((-570 . -1028) T) ((-1189 . -964) 55545) ((-1083 . -286) 55532) ((-1039 . -286) 55519) ((-113 . -1028) T) ((-758 . -97) T) ((-570 . -23) T) ((-1062 . -484) 55311) ((-362 . -97) T) ((-300 . -97) T) ((-931 . -831) 55263) ((-893 . -1016) T) ((-141 . -973) T) ((-113 . -23) T) ((-671 . -387) 55247) ((-675 . -1016) T) ((-655 . -1016) T) ((-642 . -125) T) ((-428 . -1016) T) ((-292 . -406) 55231) ((-383 . -1122) T) ((-954 . -564) 55192) ((-951 . -1126) T) ((-203 . -97) T) ((-954 . -563) 55154) ((-755 . -209) 55138) ((-951 . -515) T) ((-772 . -591) 55111) ((-330 . -1126) T) ((-451 . -563) 55073) ((-451 . -564) 55034) ((-438 . -564) 54995) ((-438 . -563) 54957) ((-383 . -815) 54941) ((-295 . -979) 54776) ((-383 . -817) 54701) ((-779 . -964) 54599) ((-460 . -484) NIL) ((-456 . -556) 54576) ((-330 . -515) T) ((-196 . -484) NIL) ((-803 . -427) T) ((-394 . -1016) T) ((-383 . -964) 54443) ((-295 . -107) 54264) ((-633 . -339) T) ((-203 . -261) T) ((-47 . -1126) T) ((-754 . -973) 54195) ((-535 . -124) T) ((-523 . -124) T) ((-466 . -124) T) ((-47 . -515) T) ((-1071 . -265) 54171) ((-1083 . -1063) 54149) ((-292 . -27) 54128) ((-984 . -97) T) ((-754 . -211) 54081) ((-218 . -784) 54060) ((-883 . -97) T) ((-653 . -97) T) ((-272 . -462) 53997) ((-455 . -97) T) ((-671 . -980) T) ((-562 . -563) 53979) ((-562 . -564) 53840) ((-383 . -353) 53824) ((-383 . -314) 53808) ((-1083 . -37) 53637) ((-1039 . -37) 53486) ((-790 . -37) 53456) ((-366 . -591) 53440) ((-589 . -286) 53378) ((-893 . -657) 53275) ((-200 . -102) 53259) ((-44 . -263) 53184) ((-675 . -657) 53154) ((-568 . -591) 53128) ((-288 . -1016) T) ((-266 . -979) 53115) ((-106 . -563) 53097) ((-106 . -564) 53079) ((-428 . -657) 53049) ((-755 . -230) 52988) ((-629 . -1016) 52966) ((-509 . -1016) T) ((-1085 . -980) T) ((-1084 . -980) T) ((-266 . -107) 52951) ((-1078 . -980) T) ((-1040 . -980) T) ((-509 . -560) 52930) ((-932 . -784) T) ((-205 . -627) 52888) ((-633 . -1028) T) ((-1117 . -680) 52864) ((-295 . -973) T) ((-319 . -25) T) ((-319 . -21) T) ((-383 . -831) 52823) ((-66 . -1122) T) ((-772 . -733) 52802) ((-394 . -657) 52776) ((-738 . -1016) T) ((-772 . -730) 52755) ((-638 . -124) T) ((-652 . -851) 52734) ((-633 . -23) T) ((-460 . -267) T) ((-772 . -666) 52713) ((-295 . -211) 52665) ((-295 . -221) 52644) ((-196 . -267) T) ((-951 . -339) T) ((-1152 . -427) 52623) ((-1131 . -427) 52602) ((-330 . -305) 52579) ((-330 . -339) T) ((-1052 . -563) 52561) ((-44 . -1156) 52511) ((-802 . -97) T) ((-589 . -259) 52495) ((-638 . -982) T) ((-452 . -591) 52460) ((-443 . -1016) T) ((-44 . -556) 52385) ((-1070 . -265) 52360) ((-39 . -585) 52299) ((-47 . -339) T) ((-1022 . -563) 52281) ((-1005 . -786) 52260) ((-578 . -265) 52235) ((-721 . -786) 52214) ((-719 . -786) 52193) ((-456 . -563) 51945) ((-218 . -387) 51914) ((-883 . -286) 51901) ((-429 . -786) 51880) ((-63 . -1122) T) ((-570 . -124) T) ((-455 . -286) 51867) ((-985 . -484) 51711) ((-266 . -973) T) ((-113 . -124) T) ((-428 . -701) T) ((-893 . -158) 51662) ((-999 . -979) 51572) ((-568 . -733) 51551) ((-546 . -1016) T) ((-568 . -730) 51530) ((-568 . -666) T) ((-272 . -263) 51509) ((-271 . -1122) T) ((-977 . -563) 51471) ((-977 . -564) 51432) ((-951 . -1028) T) ((-155 . -97) T) ((-252 . -786) T) ((-1077 . -1016) T) ((-757 . -563) 51414) ((-1029 . -265) 51391) ((-1018 . -207) 51375) ((-931 . -284) T) ((-738 . -657) 51359) ((-335 . -979) 51311) ((-330 . -1028) T) ((-329 . -979) 51263) ((-390 . -563) 51245) ((-361 . -563) 51227) ((-321 . -979) 51179) ((-205 . -563) 51111) ((-999 . -107) 51007) ((-951 . -23) T) ((-103 . -979) 50957) ((-829 . -97) T) ((-777 . -97) T) ((-747 . -97) T) ((-708 . -97) T) ((-618 . -97) T) ((-449 . -427) 50936) ((-394 . -158) T) ((-335 . -107) 50874) ((-329 . -107) 50812) ((-321 . -107) 50750) ((-228 . -209) 50720) ((-227 . -209) 50690) ((-330 . -23) T) ((-69 . -1122) T) ((-203 . -37) 50655) ((-103 . -107) 50589) ((-39 . -25) T) ((-39 . -21) T) ((-613 . -660) T) ((-155 . -261) 50567) ((-47 . -1028) T) ((-852 . -25) T) ((-710 . -25) T) ((-1062 . -462) 50504) ((-458 . -1016) T) ((-1190 . -591) 50478) ((-1141 . -97) T) ((-791 . -97) T) ((-218 . -980) 50409) ((-984 . -1063) T) ((-894 . -731) 50362) ((-357 . -591) 50346) ((-47 . -23) T) ((-894 . -734) 50299) ((-754 . -734) 50250) ((-754 . -731) 50201) ((-272 . -556) 50180) ((-452 . -666) T) ((-530 . -97) T) ((-802 . -286) 50137) ((-596 . -263) 50116) ((-108 . -604) T) ((-74 . -1122) T) ((-984 . -37) 50103) ((-607 . -350) 50082) ((-883 . -37) 49931) ((-671 . -1016) T) ((-455 . -37) 49780) ((-84 . -1122) T) ((-530 . -261) T) ((-1132 . -784) NIL) ((-1085 . -1016) T) ((-1084 . -1016) T) ((-1078 . -1016) T) ((-327 . -964) 49757) ((-999 . -973) T) ((-932 . -980) T) ((-44 . -563) 49739) ((-44 . -564) NIL) ((-845 . -980) T) ((-756 . -563) 49721) ((-1059 . -97) 49699) ((-999 . -221) 49650) ((-403 . -980) T) ((-335 . -973) T) ((-329 . -973) T) ((-341 . -340) 49627) ((-321 . -973) T) ((-228 . -216) 49606) ((-227 . -216) 49585) ((-105 . -340) 49559) ((-999 . -211) 49484) ((-1040 . -1016) T) ((-271 . -831) 49443) ((-103 . -973) T) ((-633 . -124) T) ((-394 . -484) 49285) ((-335 . -211) 49264) ((-335 . -221) T) ((-43 . -660) T) ((-329 . -211) 49243) ((-329 . -221) T) ((-321 . -211) 49222) ((-321 . -221) T) ((-155 . -286) 49187) ((-103 . -221) T) ((-103 . -211) T) ((-295 . -731) T) ((-801 . -21) T) ((-801 . -25) T) ((-383 . -284) T) ((-471 . -33) T) ((-106 . -265) 49162) ((-1029 . -979) 49060) ((-802 . -1063) NIL) ((-306 . -563) 49042) ((-383 . -949) 49021) ((-1029 . -107) 48912) ((-412 . -1016) T) ((-1190 . -666) T) ((-61 . -563) 48894) ((-802 . -37) 48839) ((-492 . -1122) T) ((-554 . -140) 48823) ((-482 . -563) 48805) ((-1141 . -286) 48792) ((-671 . -657) 48641) ((-495 . -732) T) ((-495 . -733) T) ((-523 . -585) 48623) ((-466 . -585) 48583) ((-331 . -427) T) ((-328 . -427) T) ((-320 . -427) T) ((-241 . -427) 48534) ((-489 . -1016) 48484) ((-225 . -427) 48435) ((-1062 . -263) 48414) ((-1089 . -563) 48396) ((-629 . -484) 48329) ((-893 . -267) 48308) ((-509 . -484) 48100) ((-1083 . -209) 48084) ((-155 . -1063) 48063) ((-1178 . -563) 48045) ((-1085 . -657) 47942) ((-1084 . -657) 47783) ((-823 . -97) T) ((-1078 . -657) 47579) ((-1040 . -657) 47476) ((-1068 . -616) 47460) ((-331 . -378) 47411) ((-328 . -378) 47362) ((-320 . -378) 47313) ((-951 . -124) T) ((-738 . -484) 47225) ((-272 . -564) NIL) ((-272 . -563) 47207) ((-841 . -427) T) ((-894 . -344) 47160) ((-754 . -344) 47139) ((-480 . -479) 47118) ((-478 . -479) 47097) ((-460 . -263) NIL) ((-456 . -265) 47074) ((-394 . -267) T) ((-330 . -124) T) ((-196 . -263) NIL) ((-633 . -464) NIL) ((-94 . -1028) T) ((-155 . -37) 46902) ((-1152 . -902) 46864) ((-1059 . -286) 46802) ((-1131 . -902) 46771) ((-841 . -378) T) ((-1029 . -973) 46702) ((-1154 . -515) T) ((-1062 . -556) 46681) ((-108 . -786) T) ((-985 . -462) 46612) ((-535 . -21) T) ((-535 . -25) T) ((-523 . -21) T) ((-523 . -25) T) ((-466 . -25) T) ((-466 . -21) T) ((-1141 . -1063) 46590) ((-1029 . -211) 46543) ((-47 . -124) T) ((-1104 . -97) T) ((-218 . -1016) 46354) ((-802 . -376) 46331) ((-1006 . -97) T) ((-995 . -97) T) ((-558 . -97) T) ((-450 . -97) T) ((-1141 . -37) 46160) ((-791 . -37) 46130) ((-671 . -158) 46041) ((-596 . -563) 46023) ((-530 . -37) 46010) ((-888 . -97) 45960) ((-796 . -563) 45942) ((-796 . -564) 45864) ((-546 . -484) NIL) ((-1160 . -980) T) ((-1153 . -980) T) ((-1132 . -980) T) ((-549 . -980) T) ((-548 . -980) T) ((-1194 . -1028) T) ((-1085 . -158) 45815) ((-1084 . -158) 45746) ((-1078 . -158) 45677) ((-1040 . -158) 45628) ((-932 . -1016) T) ((-900 . -1016) T) ((-845 . -1016) T) ((-1117 . -136) 45607) ((-738 . -736) 45591) ((-638 . -25) T) ((-638 . -21) T) ((-113 . -585) 45568) ((-640 . -817) 45550) ((-403 . -1016) T) ((-292 . -1126) 45529) ((-289 . -1126) T) ((-155 . -376) 45513) ((-1117 . -134) 45492) ((-449 . -902) 45454) ((-70 . -563) 45436) ((-103 . -734) T) ((-103 . -731) T) ((-292 . -515) 45415) ((-640 . -964) 45397) ((-289 . -515) T) ((-1194 . -23) T) ((-126 . -964) 45379) ((-456 . -979) 45277) ((-44 . -265) 45202) ((-218 . -657) 45144) ((-456 . -107) 45035) ((-1009 . -97) 45013) ((-961 . -97) T) ((-589 . -767) 44992) ((-671 . -484) 44935) ((-977 . -979) 44919) ((-570 . -21) T) ((-570 . -25) T) ((-985 . -263) 44894) ((-337 . -97) T) ((-298 . -97) T) ((-613 . -591) 44868) ((-361 . -979) 44852) ((-977 . -107) 44831) ((-755 . -387) 44815) ((-113 . -25) T) ((-87 . -563) 44797) ((-113 . -21) T) ((-558 . -286) 44592) ((-450 . -286) 44396) ((-1062 . -564) NIL) ((-361 . -107) 44375) ((-355 . -97) T) ((-193 . -563) 44357) ((-1062 . -563) 44339) ((-932 . -657) 44289) ((-1078 . -484) 44058) ((-845 . -657) 44010) ((-1040 . -484) 43980) ((-327 . -284) T) ((-1096 . -140) 43930) ((-888 . -286) 43868) ((-773 . -97) T) ((-403 . -657) 43852) ((-203 . -767) T) ((-766 . -97) T) ((-764 . -97) T) ((-453 . -140) 43802) ((-1152 . -1151) 43781) ((-1034 . -1126) T) ((-315 . -964) 43748) ((-1152 . -1146) 43718) ((-1152 . -1149) 43702) ((-1131 . -1130) 43681) ((-78 . -563) 43663) ((-836 . -563) 43645) ((-1131 . -1146) 43622) ((-1034 . -515) T) ((-852 . -786) T) ((-460 . -564) 43552) ((-460 . -563) 43534) ((-710 . -786) T) ((-355 . -261) T) ((-614 . -786) T) ((-1131 . -1128) 43518) ((-1154 . -1028) T) ((-196 . -564) 43448) ((-196 . -563) 43430) ((-985 . -556) 43405) ((-57 . -140) 43389) ((-486 . -140) 43373) ((-467 . -140) 43357) ((-335 . -1185) 43341) ((-329 . -1185) 43325) ((-321 . -1185) 43309) ((-292 . -339) 43288) ((-289 . -339) T) ((-456 . -973) 43219) ((-633 . -585) 43201) ((-1188 . -591) 43175) ((-1186 . -591) 43149) ((-1154 . -23) T) ((-629 . -462) 43133) ((-62 . -563) 43115) ((-1029 . -734) 43066) ((-1029 . -731) 43017) ((-509 . -462) 42954) ((-613 . -33) T) ((-456 . -211) 42907) ((-272 . -265) 42886) ((-218 . -158) 42865) ((-755 . -980) T) ((-43 . -591) 42823) ((-999 . -344) 42774) ((-671 . -267) 42705) ((-489 . -484) 42638) ((-756 . -979) 42589) ((-1005 . -134) 42568) ((-335 . -344) 42547) ((-329 . -344) 42526) ((-321 . -344) 42505) ((-1005 . -136) 42484) ((-802 . -209) 42461) ((-756 . -107) 42403) ((-721 . -134) 42382) ((-721 . -136) 42361) ((-241 . -880) 42328) ((-228 . -784) 42307) ((-225 . -880) 42252) ((-227 . -784) 42231) ((-719 . -134) 42210) ((-719 . -136) 42189) ((-141 . -591) 42163) ((-429 . -136) 42142) ((-429 . -134) 42121) ((-613 . -666) T) ((-762 . -563) 42103) ((-1160 . -1016) T) ((-1153 . -1016) T) ((-1132 . -1016) T) ((-1117 . -1111) 42069) ((-1117 . -1108) 42035) ((-1085 . -267) 42014) ((-1084 . -267) 41965) ((-1078 . -267) 41916) ((-1040 . -267) 41895) ((-315 . -831) 41876) ((-932 . -158) T) ((-845 . -158) T) ((-549 . -1016) T) ((-548 . -1016) T) ((-633 . -21) T) ((-633 . -25) T) ((-449 . -1149) 41860) ((-449 . -1146) 41830) ((-394 . -263) 41758) ((-292 . -1028) 41608) ((-289 . -1028) T) ((-1117 . -34) 41574) ((-1117 . -91) 41540) ((-82 . -563) 41522) ((-89 . -97) 41500) ((-1194 . -124) T) ((-536 . -134) T) ((-536 . -136) 41482) ((-487 . -136) 41464) ((-487 . -134) T) ((-292 . -23) 41317) ((-39 . -318) 41291) ((-289 . -23) T) ((-1070 . -594) 41273) ((-754 . -591) 41123) ((-1181 . -980) T) ((-1070 . -349) 41105) ((-155 . -209) 41089) ((-546 . -462) 41071) ((-218 . -484) 41004) ((-1188 . -666) T) ((-1186 . -666) T) ((-1089 . -979) 40887) ((-1089 . -107) 40756) ((-756 . -973) T) ((-485 . -97) T) ((-47 . -585) 40716) ((-480 . -97) T) ((-478 . -97) T) ((-1178 . -979) 40686) ((-961 . -37) 40670) ((-756 . -211) T) ((-756 . -221) 40649) ((-509 . -263) 40628) ((-1178 . -107) 40593) ((-1141 . -209) 40577) ((-1160 . -657) 40474) ((-985 . -564) NIL) ((-985 . -563) 40456) ((-1153 . -657) 40297) ((-1132 . -657) 40093) ((-931 . -851) T) ((-642 . -563) 40062) ((-141 . -666) T) ((-1029 . -344) 40041) ((-932 . -484) NIL) ((-228 . -387) 40010) ((-227 . -387) 39979) ((-951 . -25) T) ((-951 . -21) T) ((-549 . -657) 39952) ((-548 . -657) 39849) ((-738 . -263) 39807) ((-122 . -97) 39785) ((-772 . -964) 39683) ((-155 . -767) 39662) ((-295 . -591) 39559) ((-754 . -33) T) ((-654 . -97) T) ((-1034 . -1028) T) ((-953 . -1122) T) ((-355 . -37) 39524) ((-330 . -25) T) ((-330 . -21) T) ((-148 . -97) T) ((-144 . -97) T) ((-331 . -1175) 39508) ((-328 . -1175) 39492) ((-320 . -1175) 39476) ((-155 . -325) 39455) ((-523 . -786) T) ((-466 . -786) T) ((-1034 . -23) T) ((-85 . -563) 39437) ((-640 . -284) T) ((-773 . -37) 39407) ((-766 . -37) 39377) ((-1154 . -124) T) ((-1062 . -265) 39356) ((-894 . -732) 39309) ((-894 . -733) 39262) ((-754 . -730) 39241) ((-112 . -284) T) ((-89 . -286) 39179) ((-617 . -33) T) ((-509 . -556) 39158) ((-47 . -25) T) ((-47 . -21) T) ((-754 . -733) 39109) ((-754 . -732) 39088) ((-640 . -949) T) ((-596 . -979) 39072) ((-894 . -666) 38971) ((-754 . -666) 38902) ((-894 . -448) 38855) ((-456 . -734) 38806) ((-456 . -731) 38757) ((-841 . -1175) 38744) ((-1089 . -973) T) ((-596 . -107) 38723) ((-1089 . -302) 38700) ((-1109 . -97) 38678) ((-1017 . -563) 38660) ((-640 . -508) T) ((-755 . -1016) T) ((-1178 . -973) T) ((-389 . -1016) T) ((-228 . -980) 38591) ((-227 . -980) 38522) ((-266 . -591) 38509) ((-546 . -263) 38484) ((-629 . -627) 38442) ((-893 . -563) 38424) ((-803 . -97) T) ((-675 . -563) 38406) ((-655 . -563) 38388) ((-1160 . -158) 38339) ((-1153 . -158) 38270) ((-1132 . -158) 38201) ((-638 . -786) T) ((-932 . -267) T) ((-428 . -563) 38183) ((-573 . -666) T) ((-58 . -1016) 38161) ((-223 . -140) 38145) ((-845 . -267) T) ((-951 . -940) T) ((-573 . -448) T) ((-652 . -1126) 38124) ((-549 . -158) 38103) ((-548 . -158) 38054) ((-1168 . -786) 38033) ((-652 . -515) 37944) ((-383 . -851) T) ((-383 . -759) 37923) ((-295 . -733) T) ((-295 . -666) T) ((-394 . -563) 37905) ((-394 . -564) 37813) ((-589 . -1061) 37797) ((-106 . -594) 37779) ((-122 . -286) 37717) ((-106 . -349) 37699) ((-159 . -284) T) ((-374 . -1122) T) ((-292 . -124) 37571) ((-289 . -124) T) ((-67 . -371) T) ((-106 . -119) T) ((-489 . -462) 37555) ((-597 . -1028) T) ((-546 . -19) 37537) ((-59 . -416) T) ((-59 . -371) T) ((-763 . -1016) T) ((-546 . -556) 37512) ((-452 . -964) 37472) ((-596 . -973) T) ((-597 . -23) T) ((-1181 . -1016) T) ((-755 . -657) 37321) ((-113 . -786) NIL) ((-1083 . -387) 37305) ((-1039 . -387) 37289) ((-790 . -387) 37273) ((-804 . -97) 37224) ((-1152 . -97) T) ((-1132 . -484) 36993) ((-1109 . -286) 36931) ((-288 . -563) 36913) ((-1131 . -97) T) ((-1018 . -1016) T) ((-1085 . -263) 36898) ((-1084 . -263) 36883) ((-266 . -666) T) ((-103 . -840) NIL) ((-629 . -563) 36815) ((-629 . -564) 36776) ((-999 . -591) 36686) ((-553 . -563) 36668) ((-509 . -564) NIL) ((-509 . -563) 36650) ((-1078 . -263) 36498) ((-460 . -979) 36448) ((-651 . -427) T) ((-481 . -479) 36427) ((-477 . -479) 36406) ((-196 . -979) 36356) ((-335 . -591) 36308) ((-329 . -591) 36260) ((-203 . -784) T) ((-321 . -591) 36212) ((-554 . -97) 36162) ((-456 . -344) 36141) ((-103 . -591) 36091) ((-460 . -107) 36025) ((-218 . -462) 36009) ((-319 . -136) 35991) ((-319 . -134) T) ((-155 . -346) 35962) ((-874 . -1166) 35946) ((-196 . -107) 35880) ((-803 . -286) 35845) ((-874 . -1016) 35795) ((-738 . -564) 35756) ((-738 . -563) 35738) ((-658 . -97) T) ((-307 . -1016) T) ((-1034 . -124) T) ((-654 . -37) 35708) ((-292 . -464) 35687) ((-471 . -1122) T) ((-1152 . -261) 35653) ((-1131 . -261) 35619) ((-303 . -140) 35603) ((-985 . -265) 35578) ((-1181 . -657) 35548) ((-1071 . -33) T) ((-1190 . -964) 35525) ((-443 . -563) 35507) ((-457 . -33) T) ((-357 . -964) 35491) ((-1083 . -980) T) ((-1039 . -980) T) ((-790 . -980) T) ((-984 . -784) T) ((-755 . -158) 35402) ((-489 . -263) 35379) ((-113 . -921) 35356) ((-1160 . -267) 35335) ((-1104 . -340) 35309) ((-1006 . -243) 35293) ((-449 . -97) T) ((-341 . -1016) T) ((-228 . -1016) T) ((-227 . -1016) T) ((-1153 . -267) 35244) ((-105 . -1016) T) ((-1132 . -267) 35195) ((-803 . -1063) 35173) ((-1085 . -930) 35139) ((-558 . -340) 35079) ((-1084 . -930) 35045) ((-558 . -207) 34992) ((-546 . -563) 34974) ((-546 . -564) NIL) ((-633 . -786) T) ((-450 . -207) 34924) ((-460 . -973) T) ((-1078 . -930) 34890) ((-86 . -415) T) ((-86 . -371) T) ((-196 . -973) T) ((-1040 . -930) 34856) ((-999 . -666) T) ((-652 . -1028) T) ((-549 . -267) 34835) ((-548 . -267) 34814) ((-460 . -221) T) ((-460 . -211) T) ((-196 . -221) T) ((-196 . -211) T) ((-1077 . -563) 34796) ((-803 . -37) 34748) ((-335 . -666) T) ((-329 . -666) T) ((-321 . -666) T) ((-103 . -733) T) ((-103 . -730) T) ((-489 . -1156) 34732) ((-103 . -666) T) ((-652 . -23) T) ((-1194 . -25) T) ((-449 . -261) 34698) ((-1194 . -21) T) ((-1131 . -286) 34637) ((-1087 . -97) T) ((-39 . -134) 34609) ((-39 . -136) 34581) ((-489 . -556) 34558) ((-1029 . -591) 34408) ((-554 . -286) 34346) ((-44 . -594) 34296) ((-44 . -609) 34246) ((-44 . -349) 34196) ((-1070 . -33) T) ((-802 . -784) NIL) ((-597 . -124) T) ((-458 . -563) 34178) ((-218 . -263) 34155) ((-590 . -33) T) ((-578 . -33) T) ((-1005 . -427) 34106) ((-755 . -484) 33980) ((-721 . -427) 33911) ((-719 . -427) 33862) ((-429 . -427) 33813) ((-883 . -387) 33797) ((-671 . -563) 33779) ((-228 . -657) 33721) ((-227 . -657) 33663) ((-671 . -564) 33524) ((-455 . -387) 33508) ((-315 . -279) T) ((-327 . -851) T) ((-928 . -97) 33486) ((-951 . -786) T) ((-58 . -484) 33419) ((-1131 . -1063) 33371) ((-932 . -263) NIL) ((-203 . -980) T) ((-355 . -767) T) ((-1029 . -33) T) ((-536 . -427) T) ((-487 . -427) T) ((-1135 . -1010) 33355) ((-1135 . -1016) 33333) ((-218 . -556) 33310) ((-1135 . -1012) 33267) ((-1085 . -563) 33249) ((-1084 . -563) 33231) ((-1078 . -563) 33213) ((-1078 . -564) NIL) ((-1040 . -563) 33195) ((-803 . -376) 33179) ((-499 . -97) T) ((-1152 . -37) 33020) ((-1131 . -37) 32834) ((-801 . -136) T) ((-536 . -378) T) ((-47 . -786) T) ((-487 . -378) T) ((-1154 . -21) T) ((-1154 . -25) T) ((-1029 . -730) 32813) ((-1029 . -733) 32764) ((-1029 . -732) 32743) ((-922 . -1016) T) ((-954 . -33) T) ((-794 . -1016) T) ((-1164 . -97) T) ((-1029 . -666) 32674) ((-607 . -97) T) ((-509 . -265) 32653) ((-1096 . -97) T) ((-451 . -33) T) ((-438 . -33) T) ((-331 . -97) T) ((-328 . -97) T) ((-320 . -97) T) ((-241 . -97) T) ((-225 . -97) T) ((-452 . -284) T) ((-984 . -980) T) ((-883 . -980) T) ((-292 . -585) 32561) ((-289 . -585) 32522) ((-455 . -980) T) ((-453 . -97) T) ((-412 . -563) 32504) ((-1083 . -1016) T) ((-1039 . -1016) T) ((-790 . -1016) T) ((-1053 . -97) T) ((-755 . -267) 32435) ((-893 . -979) 32318) ((-452 . -949) T) ((-675 . -979) 32288) ((-428 . -979) 32258) ((-1059 . -1035) 32242) ((-1018 . -484) 32175) ((-893 . -107) 32044) ((-841 . -97) T) ((-675 . -107) 32009) ((-57 . -97) 31959) ((-489 . -564) 31920) ((-489 . -563) 31832) ((-488 . -97) 31810) ((-486 . -97) 31760) ((-468 . -97) 31738) ((-467 . -97) 31688) ((-428 . -107) 31651) ((-228 . -158) 31630) ((-227 . -158) 31609) ((-394 . -979) 31583) ((-1117 . -902) 31545) ((-927 . -1028) T) ((-874 . -484) 31478) ((-460 . -734) T) ((-449 . -37) 31319) ((-394 . -107) 31286) ((-460 . -731) T) ((-928 . -286) 31224) ((-196 . -734) T) ((-196 . -731) T) ((-927 . -23) T) ((-652 . -124) T) ((-1131 . -376) 31194) ((-292 . -25) 31047) ((-155 . -387) 31031) ((-292 . -21) 30903) ((-289 . -25) T) ((-289 . -21) T) ((-796 . -344) T) ((-106 . -33) T) ((-456 . -591) 30753) ((-802 . -980) T) ((-546 . -265) 30728) ((-535 . -136) T) ((-523 . -136) T) ((-466 . -136) T) ((-1083 . -657) 30557) ((-1039 . -657) 30406) ((-1034 . -585) 30388) ((-790 . -657) 30358) ((-613 . -1122) T) ((-1 . -97) T) ((-218 . -563) 30110) ((-1141 . -387) 30094) ((-1096 . -286) 29898) ((-893 . -973) T) ((-675 . -973) T) ((-655 . -973) T) ((-589 . -1016) 29848) ((-977 . -591) 29832) ((-791 . -387) 29816) ((-481 . -97) T) ((-477 . -97) T) ((-225 . -286) 29803) ((-241 . -286) 29790) ((-893 . -302) 29769) ((-361 . -591) 29753) ((-453 . -286) 29557) ((-228 . -484) 29490) ((-613 . -964) 29388) ((-227 . -484) 29321) ((-1053 . -286) 29247) ((-758 . -1016) T) ((-738 . -979) 29231) ((-1160 . -263) 29216) ((-1153 . -263) 29201) ((-1132 . -263) 29049) ((-362 . -1016) T) ((-300 . -1016) T) ((-394 . -973) T) ((-155 . -980) T) ((-57 . -286) 28987) ((-738 . -107) 28966) ((-548 . -263) 28951) ((-488 . -286) 28889) ((-486 . -286) 28827) ((-468 . -286) 28765) ((-467 . -286) 28703) ((-394 . -211) 28682) ((-456 . -33) T) ((-932 . -564) 28612) ((-203 . -1016) T) ((-932 . -563) 28594) ((-900 . -563) 28576) ((-900 . -564) 28551) ((-845 . -563) 28533) ((-638 . -136) T) ((-640 . -851) T) ((-640 . -759) T) ((-403 . -563) 28515) ((-1034 . -21) T) ((-1034 . -25) T) ((-613 . -353) 28499) ((-112 . -851) T) ((-803 . -209) 28483) ((-76 . -1122) T) ((-122 . -121) 28467) ((-977 . -33) T) ((-1188 . -964) 28441) ((-1186 . -964) 28398) ((-1141 . -980) T) ((-791 . -980) T) ((-456 . -730) 28377) ((-331 . -1063) 28356) ((-328 . -1063) 28335) ((-320 . -1063) 28314) ((-456 . -733) 28265) ((-456 . -732) 28244) ((-205 . -33) T) ((-456 . -666) 28175) ((-58 . -462) 28159) ((-530 . -980) T) ((-1083 . -158) 28050) ((-1039 . -158) 27961) ((-984 . -1016) T) ((-1005 . -880) 27906) ((-883 . -1016) T) ((-756 . -591) 27857) ((-721 . -880) 27826) ((-653 . -1016) T) ((-719 . -880) 27793) ((-486 . -259) 27777) ((-613 . -831) 27736) ((-455 . -1016) T) ((-429 . -880) 27703) ((-77 . -1122) T) ((-331 . -37) 27668) ((-328 . -37) 27633) ((-320 . -37) 27598) ((-241 . -37) 27447) ((-225 . -37) 27296) ((-841 . -1063) T) ((-570 . -136) 27275) ((-570 . -134) 27254) ((-113 . -136) T) ((-113 . -134) NIL) ((-390 . -666) T) ((-738 . -973) T) ((-319 . -427) T) ((-1160 . -930) 27220) ((-1153 . -930) 27186) ((-1132 . -930) 27152) ((-841 . -37) 27117) ((-203 . -657) 27082) ((-295 . -46) 27052) ((-39 . -385) 27024) ((-129 . -563) 27006) ((-927 . -124) T) ((-754 . -1122) T) ((-159 . -851) T) ((-319 . -378) T) ((-489 . -265) 26983) ((-44 . -33) T) ((-754 . -964) 26812) ((-605 . -97) T) ((-597 . -21) T) ((-597 . -25) T) ((-1018 . -462) 26796) ((-1131 . -209) 26766) ((-617 . -1122) T) ((-223 . -97) 26716) ((-802 . -1016) T) ((-1089 . -591) 26641) ((-984 . -657) 26628) ((-671 . -979) 26471) ((-1083 . -484) 26418) ((-883 . -657) 26267) ((-1039 . -484) 26219) ((-455 . -657) 26068) ((-65 . -563) 26050) ((-671 . -107) 25879) ((-874 . -462) 25863) ((-1178 . -591) 25823) ((-756 . -666) T) ((-1085 . -979) 25706) ((-1084 . -979) 25541) ((-1078 . -979) 25331) ((-1040 . -979) 25214) ((-931 . -1126) T) ((-1011 . -97) 25192) ((-754 . -353) 25162) ((-931 . -515) T) ((-1085 . -107) 25031) ((-1084 . -107) 24852) ((-1078 . -107) 24621) ((-1040 . -107) 24490) ((-1021 . -1019) 24454) ((-355 . -784) T) ((-1160 . -563) 24436) ((-1153 . -563) 24418) ((-1132 . -563) 24400) ((-1132 . -564) NIL) ((-218 . -265) 24377) ((-39 . -427) T) ((-203 . -158) T) ((-155 . -1016) T) ((-633 . -136) T) ((-633 . -134) NIL) ((-549 . -563) 24359) ((-548 . -563) 24341) ((-829 . -1016) T) ((-777 . -1016) T) ((-747 . -1016) T) ((-708 . -1016) T) ((-601 . -788) 24325) ((-618 . -1016) T) ((-754 . -831) 24258) ((-39 . -378) NIL) ((-1034 . -604) T) ((-802 . -657) 24203) ((-228 . -462) 24187) ((-227 . -462) 24171) ((-652 . -585) 24119) ((-596 . -591) 24093) ((-272 . -33) T) ((-671 . -973) T) ((-536 . -1175) 24080) ((-487 . -1175) 24057) ((-1141 . -1016) T) ((-1083 . -267) 23968) ((-1039 . -267) 23899) ((-984 . -158) T) ((-791 . -1016) T) ((-883 . -158) 23810) ((-721 . -1144) 23794) ((-589 . -484) 23727) ((-75 . -563) 23709) ((-671 . -302) 23674) ((-1089 . -666) T) ((-530 . -1016) T) ((-455 . -158) 23585) ((-223 . -286) 23523) ((-1054 . -1028) T) ((-68 . -563) 23505) ((-1178 . -666) T) ((-1085 . -973) T) ((-1084 . -973) T) ((-303 . -97) 23455) ((-1078 . -973) T) ((-1054 . -23) T) ((-1040 . -973) T) ((-89 . -1035) 23439) ((-797 . -1028) T) ((-1085 . -211) 23398) ((-1084 . -221) 23377) ((-1084 . -211) 23329) ((-1078 . -211) 23216) ((-1078 . -221) 23195) ((-295 . -831) 23101) ((-797 . -23) T) ((-155 . -657) 22929) ((-383 . -1126) T) ((-1017 . -344) T) ((-951 . -136) T) ((-931 . -339) T) ((-801 . -427) T) ((-874 . -263) 22906) ((-292 . -786) T) ((-289 . -786) NIL) ((-805 . -97) T) ((-652 . -25) T) ((-383 . -515) T) ((-652 . -21) T) ((-330 . -136) 22888) ((-330 . -134) T) ((-1059 . -1016) 22866) ((-428 . -660) T) ((-73 . -563) 22848) ((-110 . -786) T) ((-223 . -259) 22832) ((-218 . -979) 22730) ((-79 . -563) 22712) ((-675 . -344) 22665) ((-1087 . -767) T) ((-677 . -213) 22649) ((-1071 . -1122) T) ((-130 . -213) 22631) ((-218 . -107) 22522) ((-1141 . -657) 22351) ((-47 . -136) T) ((-802 . -158) T) ((-791 . -657) 22321) ((-457 . -1122) T) ((-883 . -484) 22268) ((-596 . -666) T) ((-530 . -657) 22255) ((-961 . -980) T) ((-455 . -484) 22198) ((-874 . -19) 22182) ((-874 . -556) 22159) ((-755 . -564) NIL) ((-755 . -563) 22141) ((-932 . -979) 22091) ((-389 . -563) 22073) ((-228 . -263) 22050) ((-227 . -263) 22027) ((-460 . -840) NIL) ((-292 . -29) 21997) ((-103 . -1122) T) ((-931 . -1028) T) ((-196 . -840) NIL) ((-845 . -979) 21949) ((-999 . -964) 21847) ((-932 . -107) 21781) ((-241 . -209) 21765) ((-677 . -634) 21749) ((-403 . -979) 21733) ((-355 . -980) T) ((-931 . -23) T) ((-845 . -107) 21671) ((-633 . -1111) NIL) ((-460 . -591) 21621) ((-103 . -815) 21603) ((-103 . -817) 21585) ((-633 . -1108) NIL) ((-196 . -591) 21535) ((-335 . -964) 21519) ((-329 . -964) 21503) ((-303 . -286) 21441) ((-321 . -964) 21425) ((-203 . -267) T) ((-403 . -107) 21404) ((-58 . -563) 21336) ((-155 . -158) T) ((-1034 . -786) T) ((-103 . -964) 21296) ((-823 . -1016) T) ((-773 . -980) T) ((-766 . -980) T) ((-633 . -34) NIL) ((-633 . -91) NIL) ((-289 . -921) 21257) ((-535 . -427) T) ((-523 . -427) T) ((-466 . -427) T) ((-383 . -339) T) ((-218 . -973) 21188) ((-1062 . -33) T) ((-452 . -851) T) ((-927 . -585) 21136) ((-228 . -556) 21113) ((-227 . -556) 21090) ((-999 . -353) 21074) ((-802 . -484) 20982) ((-218 . -211) 20935) ((-1070 . -1122) T) ((-763 . -563) 20917) ((-1189 . -1028) T) ((-1181 . -563) 20899) ((-1141 . -158) 20790) ((-103 . -353) 20772) ((-103 . -314) 20754) ((-984 . -267) T) ((-883 . -267) 20685) ((-738 . -344) 20664) ((-590 . -1122) T) ((-578 . -1122) T) ((-455 . -267) 20595) ((-530 . -158) T) ((-303 . -259) 20579) ((-1189 . -23) T) ((-1117 . -97) T) ((-1104 . -1016) T) ((-1006 . -1016) T) ((-995 . -1016) T) ((-81 . -563) 20561) ((-651 . -97) T) ((-331 . -325) 20540) ((-558 . -1016) T) ((-328 . -325) 20519) ((-320 . -325) 20498) ((-450 . -1016) T) ((-1096 . -207) 20448) ((-241 . -230) 20410) ((-1054 . -124) T) ((-558 . -560) 20386) ((-999 . -831) 20319) ((-932 . -973) T) ((-845 . -973) T) ((-450 . -560) 20298) ((-1078 . -731) NIL) ((-1078 . -734) NIL) ((-1018 . -564) 20259) ((-453 . -207) 20209) ((-1018 . -563) 20191) ((-932 . -221) T) ((-932 . -211) T) ((-403 . -973) T) ((-888 . -1016) 20141) ((-845 . -221) T) ((-797 . -124) T) ((-638 . -427) T) ((-779 . -1028) 20120) ((-103 . -831) NIL) ((-1117 . -261) 20086) ((-803 . -784) 20065) ((-1029 . -1122) T) ((-836 . -666) T) ((-155 . -484) 19977) ((-927 . -25) T) ((-836 . -448) T) ((-383 . -1028) T) ((-460 . -733) T) ((-460 . -730) T) ((-841 . -325) T) ((-460 . -666) T) ((-196 . -733) T) ((-196 . -730) T) ((-927 . -21) T) ((-196 . -666) T) ((-779 . -23) 19929) ((-295 . -284) 19908) ((-962 . -213) 19854) ((-383 . -23) T) ((-874 . -564) 19815) ((-874 . -563) 19727) ((-589 . -462) 19711) ((-44 . -938) 19661) ((-307 . -563) 19643) ((-1029 . -964) 19472) ((-546 . -594) 19454) ((-546 . -349) 19436) ((-319 . -1175) 19413) ((-954 . -1122) T) ((-802 . -267) T) ((-1141 . -484) 19360) ((-451 . -1122) T) ((-438 . -1122) T) ((-540 . -97) T) ((-1083 . -263) 19287) ((-570 . -427) 19266) ((-928 . -923) 19250) ((-1181 . -358) 19222) ((-113 . -427) T) ((-1103 . -97) T) ((-1009 . -1016) 19200) ((-961 . -1016) T) ((-824 . -786) T) ((-327 . -1126) T) ((-1160 . -979) 19083) ((-1029 . -353) 19053) ((-1153 . -979) 18888) ((-1132 . -979) 18678) ((-1160 . -107) 18547) ((-1153 . -107) 18368) ((-1132 . -107) 18137) ((-1117 . -286) 18124) ((-327 . -515) T) ((-341 . -563) 18106) ((-266 . -284) T) ((-549 . -979) 18079) ((-548 . -979) 17962) ((-337 . -1016) T) ((-298 . -1016) T) ((-228 . -563) 17923) ((-227 . -563) 17884) ((-931 . -124) T) ((-105 . -563) 17866) ((-581 . -23) T) ((-633 . -385) 17833) ((-557 . -23) T) ((-601 . -97) T) ((-549 . -107) 17804) ((-548 . -107) 17673) ((-355 . -1016) T) ((-312 . -97) T) ((-155 . -267) 17584) ((-1131 . -784) 17537) ((-654 . -980) T) ((-1059 . -484) 17470) ((-1029 . -831) 17403) ((-773 . -1016) T) ((-766 . -1016) T) ((-764 . -1016) T) ((-92 . -97) T) ((-133 . -786) T) ((-562 . -815) 17387) ((-106 . -1122) T) ((-1005 . -97) T) ((-985 . -33) T) ((-721 . -97) T) ((-719 . -97) T) ((-436 . -97) T) ((-429 . -97) T) ((-218 . -734) 17338) ((-218 . -731) 17289) ((-592 . -97) T) ((-1141 . -267) 17200) ((-607 . -580) 17184) ((-589 . -263) 17161) ((-961 . -657) 17145) ((-530 . -267) T) ((-893 . -591) 17070) ((-1189 . -124) T) ((-675 . -591) 17030) ((-655 . -591) 17017) ((-252 . -97) T) ((-428 . -591) 16947) ((-49 . -97) T) ((-536 . -97) T) ((-487 . -97) T) ((-1160 . -973) T) ((-1153 . -973) T) ((-1132 . -973) T) ((-1160 . -211) 16906) ((-298 . -657) 16888) ((-1153 . -221) 16867) ((-1153 . -211) 16819) ((-1132 . -211) 16706) ((-1132 . -221) 16685) ((-1117 . -37) 16582) ((-932 . -734) T) ((-549 . -973) T) ((-548 . -973) T) ((-932 . -731) T) ((-900 . -734) T) ((-900 . -731) T) ((-803 . -980) T) ((-801 . -800) 16566) ((-104 . -563) 16548) ((-633 . -427) T) ((-355 . -657) 16513) ((-394 . -591) 16487) ((-652 . -786) 16466) ((-651 . -37) 16431) ((-548 . -211) 16390) ((-39 . -664) 16362) ((-327 . -305) 16339) ((-327 . -339) T) ((-999 . -284) 16290) ((-271 . -1028) 16172) ((-1022 . -1122) T) ((-157 . -97) T) ((-1135 . -563) 16139) ((-779 . -124) 16091) ((-589 . -1156) 16075) ((-773 . -657) 16045) ((-766 . -657) 16015) ((-456 . -1122) T) ((-335 . -284) T) ((-329 . -284) T) ((-321 . -284) T) ((-589 . -556) 15992) ((-383 . -124) T) ((-489 . -609) 15976) ((-103 . -284) T) ((-271 . -23) 15860) ((-489 . -594) 15844) ((-633 . -378) NIL) ((-489 . -349) 15828) ((-268 . -563) 15810) ((-89 . -1016) 15788) ((-103 . -949) T) ((-523 . -132) T) ((-1168 . -140) 15772) ((-456 . -964) 15601) ((-1154 . -134) 15562) ((-1154 . -136) 15523) ((-977 . -1122) T) ((-922 . -563) 15505) ((-794 . -563) 15487) ((-755 . -979) 15330) ((-1005 . -286) 15317) ((-205 . -1122) T) ((-721 . -286) 15304) ((-719 . -286) 15291) ((-755 . -107) 15120) ((-429 . -286) 15107) ((-1083 . -564) NIL) ((-1083 . -563) 15089) ((-1039 . -563) 15071) ((-1039 . -564) 14819) ((-961 . -158) T) ((-790 . -563) 14801) ((-874 . -265) 14778) ((-558 . -484) 14561) ((-757 . -964) 14545) ((-450 . -484) 14337) ((-893 . -666) T) ((-675 . -666) T) ((-655 . -666) T) ((-327 . -1028) T) ((-1090 . -563) 14319) ((-201 . -97) T) ((-456 . -353) 14289) ((-485 . -1016) T) ((-480 . -1016) T) ((-478 . -1016) T) ((-738 . -591) 14263) ((-951 . -427) T) ((-888 . -484) 14196) ((-327 . -23) T) ((-581 . -124) T) ((-557 . -124) T) ((-330 . -427) T) ((-218 . -344) 14175) ((-355 . -158) T) ((-1152 . -980) T) ((-1131 . -980) T) ((-203 . -930) T) ((-638 . -363) T) ((-394 . -666) T) ((-640 . -1126) T) ((-1054 . -585) 14123) ((-535 . -800) 14107) ((-1071 . -1099) 14083) ((-640 . -515) T) ((-122 . -1016) 14061) ((-1181 . -979) 14045) ((-654 . -1016) T) ((-456 . -831) 13978) ((-601 . -37) 13948) ((-330 . -378) T) ((-292 . -136) 13927) ((-292 . -134) 13906) ((-112 . -515) T) ((-289 . -136) 13862) ((-289 . -134) 13818) ((-47 . -427) T) ((-148 . -1016) T) ((-144 . -1016) T) ((-1071 . -102) 13765) ((-721 . -1063) 13743) ((-629 . -33) T) ((-1181 . -107) 13722) ((-509 . -33) T) ((-457 . -102) 13706) ((-228 . -265) 13683) ((-227 . -265) 13660) ((-802 . -263) 13611) ((-44 . -1122) T) ((-755 . -973) T) ((-1089 . -46) 13588) ((-755 . -302) 13550) ((-1005 . -37) 13399) ((-755 . -211) 13378) ((-721 . -37) 13207) ((-719 . -37) 13056) ((-429 . -37) 12905) ((-589 . -564) 12866) ((-589 . -563) 12778) ((-536 . -1063) T) ((-487 . -1063) T) ((-1059 . -462) 12762) ((-1109 . -1016) 12740) ((-1054 . -25) T) ((-1054 . -21) T) ((-449 . -980) T) ((-1132 . -731) NIL) ((-1132 . -734) NIL) ((-927 . -786) 12719) ((-758 . -563) 12701) ((-797 . -21) T) ((-797 . -25) T) ((-738 . -666) T) ((-159 . -1126) T) ((-536 . -37) 12666) ((-487 . -37) 12631) ((-362 . -563) 12613) ((-300 . -563) 12595) ((-155 . -263) 12553) ((-61 . -1122) T) ((-108 . -97) T) ((-803 . -1016) T) ((-159 . -515) T) ((-654 . -657) 12523) ((-271 . -124) 12407) ((-203 . -563) 12389) ((-203 . -564) 12319) ((-931 . -585) 12258) ((-1181 . -973) T) ((-1034 . -136) T) ((-578 . -1099) 12233) ((-671 . -840) 12212) ((-546 . -33) T) ((-590 . -102) 12196) ((-578 . -102) 12142) ((-1141 . -263) 12069) ((-671 . -591) 11994) ((-272 . -1122) T) ((-1089 . -964) 11892) ((-1078 . -840) NIL) ((-984 . -564) 11807) ((-984 . -563) 11789) ((-319 . -97) T) ((-228 . -979) 11687) ((-227 . -979) 11585) ((-370 . -97) T) ((-883 . -563) 11567) ((-883 . -564) 11428) ((-653 . -563) 11410) ((-1179 . -1116) 11379) ((-455 . -563) 11361) ((-455 . -564) 11222) ((-225 . -387) 11206) ((-241 . -387) 11190) ((-228 . -107) 11081) ((-227 . -107) 10972) ((-1085 . -591) 10897) ((-1084 . -591) 10794) ((-1078 . -591) 10646) ((-1040 . -591) 10571) ((-327 . -124) T) ((-80 . -416) T) ((-80 . -371) T) ((-931 . -25) T) ((-931 . -21) T) ((-804 . -1016) 10522) ((-803 . -657) 10474) ((-355 . -267) T) ((-155 . -930) 10426) ((-633 . -363) T) ((-927 . -925) 10410) ((-640 . -1028) T) ((-633 . -152) 10392) ((-1152 . -1016) T) ((-1131 . -1016) T) ((-292 . -1108) 10371) ((-292 . -1111) 10350) ((-1076 . -97) T) ((-292 . -889) 10329) ((-126 . -1028) T) ((-112 . -1028) T) ((-554 . -1166) 10313) ((-640 . -23) T) ((-554 . -1016) 10263) ((-89 . -484) 10196) ((-159 . -339) T) ((-292 . -91) 10175) ((-292 . -34) 10154) ((-558 . -462) 10088) ((-126 . -23) T) ((-112 . -23) T) ((-658 . -1016) T) ((-450 . -462) 10025) ((-383 . -585) 9973) ((-596 . -964) 9871) ((-888 . -462) 9855) ((-331 . -980) T) ((-328 . -980) T) ((-320 . -980) T) ((-241 . -980) T) ((-225 . -980) T) ((-802 . -564) NIL) ((-802 . -563) 9837) ((-1189 . -21) T) ((-530 . -930) T) ((-671 . -666) T) ((-1189 . -25) T) ((-228 . -973) 9768) ((-227 . -973) 9699) ((-70 . -1122) T) ((-228 . -211) 9652) ((-227 . -211) 9605) ((-39 . -97) T) ((-841 . -980) T) ((-1092 . -97) T) ((-1085 . -666) T) ((-1084 . -666) T) ((-1078 . -666) T) ((-1078 . -730) NIL) ((-1078 . -733) NIL) ((-852 . -97) T) ((-1040 . -666) T) ((-710 . -97) T) ((-614 . -97) T) ((-449 . -1016) T) ((-315 . -1028) T) ((-159 . -1028) T) ((-295 . -851) 9584) ((-1152 . -657) 9425) ((-803 . -158) T) ((-1131 . -657) 9239) ((-779 . -21) 9191) ((-779 . -25) 9143) ((-223 . -1061) 9127) ((-122 . -484) 9060) ((-383 . -25) T) ((-383 . -21) T) ((-315 . -23) T) ((-155 . -564) 8828) ((-155 . -563) 8810) ((-159 . -23) T) ((-589 . -265) 8787) ((-489 . -33) T) ((-829 . -563) 8769) ((-87 . -1122) T) ((-777 . -563) 8751) ((-747 . -563) 8733) ((-708 . -563) 8715) ((-618 . -563) 8697) ((-218 . -591) 8547) ((-1087 . -1016) T) ((-1083 . -979) 8370) ((-1062 . -1122) T) ((-1039 . -979) 8213) ((-790 . -979) 8197) ((-1083 . -107) 8006) ((-1039 . -107) 7835) ((-790 . -107) 7814) ((-1141 . -564) NIL) ((-1141 . -563) 7796) ((-319 . -1063) T) ((-791 . -563) 7778) ((-995 . -263) 7757) ((-78 . -1122) T) ((-932 . -840) NIL) ((-558 . -263) 7733) ((-1109 . -484) 7666) ((-460 . -1122) T) ((-530 . -563) 7648) ((-450 . -263) 7627) ((-196 . -1122) T) ((-1005 . -209) 7611) ((-266 . -851) T) ((-756 . -284) 7590) ((-801 . -97) T) ((-721 . -209) 7574) ((-932 . -591) 7524) ((-888 . -263) 7501) ((-845 . -591) 7453) ((-581 . -21) T) ((-581 . -25) T) ((-557 . -21) T) ((-319 . -37) 7418) ((-633 . -664) 7385) ((-460 . -815) 7367) ((-460 . -817) 7349) ((-449 . -657) 7190) ((-196 . -815) 7172) ((-62 . -1122) T) ((-196 . -817) 7154) ((-557 . -25) T) ((-403 . -591) 7128) ((-460 . -964) 7088) ((-803 . -484) 7000) ((-196 . -964) 6960) ((-218 . -33) T) ((-928 . -1016) 6938) ((-1152 . -158) 6869) ((-1131 . -158) 6800) ((-652 . -134) 6779) ((-652 . -136) 6758) ((-640 . -124) T) ((-128 . -440) 6735) ((-601 . -599) 6719) ((-1059 . -563) 6651) ((-112 . -124) T) ((-452 . -1126) T) ((-558 . -556) 6627) ((-450 . -556) 6606) ((-312 . -311) 6575) ((-499 . -1016) T) ((-452 . -515) T) ((-1083 . -973) T) ((-1039 . -973) T) ((-790 . -973) T) ((-218 . -730) 6554) ((-218 . -733) 6505) ((-218 . -732) 6484) ((-1083 . -302) 6461) ((-218 . -666) 6392) ((-888 . -19) 6376) ((-460 . -353) 6358) ((-460 . -314) 6340) ((-1039 . -302) 6312) ((-330 . -1175) 6289) ((-196 . -353) 6271) ((-196 . -314) 6253) ((-888 . -556) 6230) ((-1083 . -211) T) ((-607 . -1016) T) ((-1164 . -1016) T) ((-1096 . -1016) T) ((-1005 . -230) 6167) ((-331 . -1016) T) ((-328 . -1016) T) ((-320 . -1016) T) ((-241 . -1016) T) ((-225 . -1016) T) ((-82 . -1122) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-1096 . -560) 6102) ((-453 . -1016) T) ((-1053 . -1016) T) ((-453 . -560) 6081) ((-228 . -734) 6032) ((-228 . -731) 5983) ((-227 . -734) 5934) ((-39 . -1063) NIL) ((-227 . -731) 5885) ((-999 . -851) 5836) ((-932 . -733) T) ((-932 . -730) T) ((-932 . -666) T) ((-900 . -733) T) ((-845 . -666) T) ((-89 . -462) 5820) ((-460 . -831) NIL) ((-841 . -1016) T) ((-203 . -979) 5785) ((-803 . -267) T) ((-196 . -831) NIL) ((-772 . -1028) 5764) ((-57 . -1016) 5714) ((-488 . -1016) 5692) ((-486 . -1016) 5642) ((-468 . -1016) 5620) ((-467 . -1016) 5570) ((-535 . -97) T) ((-523 . -97) T) ((-466 . -97) T) ((-449 . -158) 5501) ((-335 . -851) T) ((-329 . -851) T) ((-321 . -851) T) ((-203 . -107) 5457) ((-772 . -23) 5409) ((-403 . -666) T) ((-103 . -851) T) ((-39 . -37) 5354) ((-103 . -759) T) ((-536 . -325) T) ((-487 . -325) T) ((-1131 . -484) 5214) ((-292 . -427) 5193) ((-289 . -427) T) ((-773 . -263) 5172) ((-315 . -124) T) ((-159 . -124) T) ((-271 . -25) 5037) ((-271 . -21) 4921) ((-44 . -1099) 4900) ((-64 . -563) 4882) ((-823 . -563) 4864) ((-554 . -484) 4797) ((-44 . -102) 4747) ((-1018 . -401) 4731) ((-1018 . -344) 4710) ((-985 . -1122) T) ((-984 . -979) 4697) ((-883 . -979) 4540) ((-455 . -979) 4383) ((-607 . -657) 4367) ((-984 . -107) 4352) ((-883 . -107) 4181) ((-452 . -339) T) ((-331 . -657) 4133) ((-328 . -657) 4085) ((-320 . -657) 4037) ((-241 . -657) 3886) ((-225 . -657) 3735) ((-874 . -594) 3719) ((-455 . -107) 3548) ((-1169 . -97) T) ((-874 . -349) 3532) ((-1132 . -840) NIL) ((-72 . -563) 3514) ((-893 . -46) 3493) ((-568 . -1028) T) ((-1 . -1016) T) ((-650 . -97) T) ((-638 . -97) T) ((-1168 . -97) 3443) ((-1160 . -591) 3368) ((-1153 . -591) 3265) ((-122 . -462) 3249) ((-1104 . -563) 3231) ((-1006 . -563) 3213) ((-366 . -23) T) ((-995 . -563) 3195) ((-85 . -1122) T) ((-1132 . -591) 3047) ((-841 . -657) 3012) ((-568 . -23) T) ((-558 . -563) 2994) ((-558 . -564) NIL) ((-450 . -564) NIL) ((-450 . -563) 2976) ((-481 . -1016) T) ((-477 . -1016) T) ((-327 . -25) T) ((-327 . -21) T) ((-123 . -286) 2914) ((-117 . -286) 2852) ((-549 . -591) 2839) ((-203 . -973) T) ((-548 . -591) 2764) ((-355 . -930) T) ((-203 . -221) T) ((-203 . -211) T) ((-888 . -564) 2725) ((-888 . -563) 2637) ((-801 . -37) 2624) ((-1152 . -267) 2575) ((-1131 . -267) 2526) ((-1034 . -427) T) ((-473 . -786) T) ((-292 . -1051) 2505) ((-927 . -136) 2484) ((-927 . -134) 2463) ((-466 . -286) 2450) ((-272 . -1099) 2429) ((-452 . -1028) T) ((-802 . -979) 2374) ((-570 . -97) T) ((-1109 . -462) 2358) ((-228 . -344) 2337) ((-227 . -344) 2316) ((-272 . -102) 2266) ((-984 . -973) T) ((-113 . -97) T) ((-883 . -973) T) ((-802 . -107) 2195) ((-452 . -23) T) ((-455 . -973) T) ((-984 . -211) T) ((-883 . -302) 2164) ((-455 . -302) 2121) ((-331 . -158) T) ((-328 . -158) T) ((-320 . -158) T) ((-241 . -158) 2032) ((-225 . -158) 1943) ((-893 . -964) 1841) ((-675 . -964) 1812) ((-1021 . -97) T) ((-1009 . -563) 1779) ((-961 . -563) 1761) ((-1160 . -666) T) ((-1153 . -666) T) ((-1132 . -730) NIL) ((-155 . -979) 1671) ((-1132 . -733) NIL) ((-841 . -158) T) ((-1132 . -666) T) ((-1179 . -140) 1655) ((-931 . -318) 1629) ((-928 . -484) 1562) ((-779 . -786) 1541) ((-523 . -1063) T) ((-449 . -267) 1492) ((-549 . -666) T) ((-337 . -563) 1474) ((-298 . -563) 1456) ((-394 . -964) 1354) ((-548 . -666) T) ((-383 . -786) 1305) ((-155 . -107) 1201) ((-772 . -124) 1153) ((-677 . -140) 1137) ((-1168 . -286) 1075) ((-460 . -284) T) ((-355 . -563) 1042) ((-489 . -938) 1026) ((-355 . -564) 940) ((-196 . -284) T) ((-130 . -140) 922) ((-654 . -263) 901) ((-460 . -949) T) ((-535 . -37) 888) ((-523 . -37) 875) ((-466 . -37) 840) ((-196 . -949) T) ((-802 . -973) T) ((-773 . -563) 822) ((-766 . -563) 804) ((-764 . -563) 786) ((-755 . -840) 765) ((-1190 . -1028) T) ((-1141 . -979) 588) ((-791 . -979) 572) ((-802 . -221) T) ((-802 . -211) NIL) ((-629 . -1122) T) ((-1190 . -23) T) ((-755 . -591) 497) ((-509 . -1122) T) ((-394 . -314) 481) ((-530 . -979) 468) ((-1141 . -107) 277) ((-640 . -585) 259) ((-791 . -107) 238) ((-357 . -23) T) ((-1096 . -484) 30))
\ No newline at end of file +(((-605 . -1016) T) ((-241 . -484) 142439) ((-225 . -484) 142382) ((-530 . -107) 142367) ((-495 . -23) T) ((-223 . -1016) 142317) ((-113 . -286) 142274) ((-453 . -484) 142066) ((-633 . -97) T) ((-1053 . -484) 141985) ((-366 . -124) T) ((-1180 . -905) 141954) ((-554 . -462) 141938) ((-568 . -124) T) ((-758 . -782) T) ((-492 . -55) 141888) ((-57 . -484) 141821) ((-488 . -484) 141754) ((-394 . -831) 141713) ((-155 . -973) T) ((-486 . -484) 141646) ((-468 . -484) 141579) ((-467 . -484) 141512) ((-738 . -964) 141299) ((-638 . -37) 141264) ((-319 . -325) T) ((-1011 . -1010) 141248) ((-1011 . -1016) 141226) ((-155 . -221) 141177) ((-155 . -211) 141128) ((-1011 . -1012) 141086) ((-803 . -263) 141044) ((-203 . -734) T) ((-203 . -731) T) ((-633 . -261) NIL) ((-1062 . -1100) 141023) ((-383 . -921) 141007) ((-640 . -21) T) ((-640 . -25) T) ((-1182 . -591) 140981) ((-292 . -147) 140960) ((-292 . -132) 140939) ((-1062 . -102) 140889) ((-126 . -25) T) ((-39 . -209) 140866) ((-112 . -21) T) ((-112 . -25) T) ((-558 . -265) 140842) ((-450 . -265) 140821) ((-1142 . -973) T) ((-791 . -973) T) ((-738 . -314) 140805) ((-113 . -1063) NIL) ((-89 . -563) 140737) ((-452 . -124) T) ((-546 . -1123) T) ((-1142 . -302) 140714) ((-530 . -973) T) ((-1142 . -211) T) ((-605 . -657) 140698) ((-888 . -265) 140675) ((-58 . -33) T) ((-984 . -734) T) ((-984 . -731) T) ((-755 . -666) T) ((-671 . -46) 140640) ((-570 . -37) 140627) ((-331 . -267) T) ((-328 . -267) T) ((-320 . -267) T) ((-241 . -267) 140558) ((-225 . -267) 140489) ((-951 . -97) T) ((-389 . -666) T) ((-113 . -37) 140434) ((-389 . -448) T) ((-330 . -97) T) ((-1118 . -980) T) ((-651 . -980) T) ((-1085 . -46) 140411) ((-1084 . -46) 140381) ((-1078 . -46) 140358) ((-962 . -140) 140304) ((-841 . -267) T) ((-1040 . -46) 140276) ((-633 . -286) NIL) ((-485 . -563) 140258) ((-480 . -563) 140240) ((-478 . -563) 140222) ((-303 . -1016) 140172) ((-652 . -427) 140103) ((-47 . -97) T) ((-1153 . -263) 140088) ((-1132 . -263) 140008) ((-589 . -609) 139992) ((-589 . -594) 139976) ((-315 . -21) T) ((-315 . -25) T) ((-39 . -325) NIL) ((-159 . -21) T) ((-159 . -25) T) ((-589 . -349) 139960) ((-554 . -263) 139937) ((-364 . -97) T) ((-1034 . -132) T) ((-122 . -563) 139869) ((-805 . -1016) T) ((-601 . -387) 139853) ((-654 . -563) 139835) ((-148 . -563) 139817) ((-144 . -563) 139799) ((-1182 . -666) T) ((-1018 . -33) T) ((-802 . -734) NIL) ((-802 . -731) NIL) ((-793 . -786) T) ((-671 . -817) NIL) ((-1191 . -124) T) ((-357 . -124) T) ((-835 . -97) T) ((-671 . -964) 139677) ((-495 . -124) T) ((-1005 . -387) 139661) ((-928 . -462) 139645) ((-113 . -376) 139622) ((-1078 . -1123) 139601) ((-721 . -387) 139585) ((-719 . -387) 139569) ((-874 . -33) T) ((-633 . -1063) NIL) ((-228 . -591) 139406) ((-227 . -591) 139230) ((-756 . -851) 139209) ((-429 . -387) 139193) ((-554 . -19) 139177) ((-1058 . -1117) 139146) ((-1078 . -817) NIL) ((-1078 . -815) 139098) ((-554 . -556) 139075) ((-1110 . -563) 139007) ((-1086 . -563) 138989) ((-60 . -371) T) ((-1084 . -964) 138924) ((-1078 . -964) 138890) ((-633 . -37) 138840) ((-449 . -263) 138825) ((-671 . -353) 138809) ((-601 . -980) T) ((-1153 . -930) 138775) ((-1132 . -930) 138741) ((-985 . -1100) 138716) ((-803 . -564) 138524) ((-803 . -563) 138506) ((-1097 . -462) 138443) ((-394 . -949) 138422) ((-47 . -286) 138409) ((-985 . -102) 138355) ((-453 . -462) 138292) ((-489 . -1123) T) ((-1053 . -462) 138263) ((-1078 . -314) 138215) ((-1078 . -353) 138167) ((-413 . -97) T) ((-1005 . -980) T) ((-228 . -33) T) ((-227 . -33) T) ((-721 . -980) T) ((-719 . -980) T) ((-671 . -831) 138144) ((-429 . -980) T) ((-57 . -462) 138128) ((-961 . -979) 138102) ((-488 . -462) 138086) ((-486 . -462) 138070) ((-468 . -462) 138054) ((-467 . -462) 138038) ((-223 . -484) 137971) ((-961 . -107) 137938) ((-1085 . -831) 137851) ((-613 . -1028) T) ((-1084 . -831) 137757) ((-1078 . -831) 137590) ((-1040 . -831) 137574) ((-330 . -1063) T) ((-298 . -979) 137556) ((-228 . -730) 137535) ((-228 . -733) 137486) ((-228 . -732) 137465) ((-227 . -730) 137444) ((-227 . -733) 137395) ((-227 . -732) 137374) ((-49 . -980) T) ((-228 . -666) 137305) ((-227 . -666) 137236) ((-1118 . -1016) T) ((-613 . -23) T) ((-536 . -980) T) ((-487 . -980) T) ((-355 . -979) 137201) ((-298 . -107) 137176) ((-71 . -359) T) ((-71 . -371) T) ((-951 . -37) 137113) ((-633 . -376) 137095) ((-94 . -97) T) ((-651 . -1016) T) ((-931 . -134) 137067) ((-931 . -136) 137039) ((-355 . -107) 136995) ((-295 . -1127) 136974) ((-449 . -930) 136940) ((-330 . -37) 136905) ((-39 . -346) 136877) ((-804 . -563) 136749) ((-123 . -121) 136733) ((-117 . -121) 136717) ((-773 . -979) 136687) ((-772 . -21) 136639) ((-766 . -979) 136623) ((-772 . -25) 136575) ((-295 . -515) 136526) ((-523 . -767) T) ((-218 . -1123) T) ((-773 . -107) 136491) ((-766 . -107) 136470) ((-1153 . -563) 136452) ((-1132 . -563) 136434) ((-1132 . -564) 136107) ((-1083 . -840) 136086) ((-1039 . -840) 136065) ((-47 . -37) 136030) ((-1189 . -1028) T) ((-554 . -563) 135942) ((-554 . -564) 135903) ((-1187 . -1028) T) ((-218 . -964) 135732) ((-1083 . -591) 135657) ((-1039 . -591) 135582) ((-658 . -563) 135564) ((-790 . -591) 135538) ((-1189 . -23) T) ((-1187 . -23) T) ((-961 . -973) T) ((-1097 . -263) 135517) ((-155 . -344) 135468) ((-932 . -1123) T) ((-43 . -23) T) ((-453 . -263) 135447) ((-540 . -1016) T) ((-1058 . -1025) 135416) ((-1020 . -1019) 135368) ((-366 . -21) T) ((-366 . -25) T) ((-141 . -1028) T) ((-1195 . -97) T) ((-932 . -815) 135350) ((-932 . -817) 135332) ((-1118 . -657) 135229) ((-570 . -209) 135213) ((-568 . -21) T) ((-266 . -515) T) ((-568 . -25) T) ((-1104 . -1016) T) ((-651 . -657) 135178) ((-218 . -353) 135148) ((-932 . -964) 135108) ((-355 . -973) T) ((-201 . -980) T) ((-113 . -209) 135085) ((-57 . -263) 135062) ((-141 . -23) T) ((-486 . -263) 135039) ((-303 . -484) 134972) ((-467 . -263) 134949) ((-355 . -221) T) ((-355 . -211) T) ((-773 . -973) T) ((-766 . -973) T) ((-652 . -880) 134918) ((-640 . -786) T) ((-449 . -563) 134900) ((-766 . -211) 134879) ((-126 . -786) T) ((-601 . -1016) T) ((-1097 . -556) 134858) ((-509 . -1100) 134837) ((-312 . -1016) T) ((-295 . -339) 134816) ((-383 . -136) 134795) ((-383 . -134) 134774) ((-894 . -1028) 134673) ((-218 . -831) 134606) ((-754 . -1028) 134537) ((-597 . -788) 134521) ((-453 . -556) 134500) ((-509 . -102) 134450) ((-932 . -353) 134432) ((-932 . -314) 134414) ((-92 . -1016) T) ((-894 . -23) 134225) ((-452 . -21) T) ((-452 . -25) T) ((-754 . -23) 134096) ((-1087 . -563) 134078) ((-57 . -19) 134062) ((-1087 . -564) 133984) ((-1083 . -666) T) ((-1039 . -666) T) ((-486 . -19) 133968) ((-467 . -19) 133952) ((-57 . -556) 133929) ((-1005 . -1016) T) ((-832 . -97) 133907) ((-790 . -666) T) ((-721 . -1016) T) ((-486 . -556) 133884) ((-467 . -556) 133861) ((-719 . -1016) T) ((-719 . -987) 133828) ((-436 . -1016) T) ((-429 . -1016) T) ((-540 . -657) 133803) ((-592 . -1016) T) ((-932 . -831) NIL) ((-1161 . -46) 133780) ((-573 . -1028) T) ((-613 . -124) T) ((-1155 . -97) T) ((-1154 . -46) 133750) ((-1133 . -46) 133727) ((-1118 . -158) 133678) ((-999 . -1127) 133629) ((-252 . -1016) T) ((-83 . -416) T) ((-83 . -371) T) ((-1084 . -284) 133608) ((-1078 . -284) 133587) ((-49 . -1016) T) ((-999 . -515) 133538) ((-651 . -158) T) ((-548 . -46) 133515) ((-203 . -591) 133480) ((-536 . -1016) T) ((-487 . -1016) T) ((-335 . -1127) T) ((-329 . -1127) T) ((-321 . -1127) T) ((-460 . -759) T) ((-460 . -851) T) ((-295 . -1028) T) ((-103 . -1127) T) ((-315 . -786) T) ((-196 . -851) T) ((-196 . -759) T) ((-654 . -979) 133450) ((-335 . -515) T) ((-329 . -515) T) ((-321 . -515) T) ((-103 . -515) T) ((-601 . -657) 133420) ((-1078 . -949) NIL) ((-295 . -23) T) ((-65 . -1123) T) ((-928 . -563) 133352) ((-633 . -209) 133334) ((-654 . -107) 133299) ((-589 . -33) T) ((-223 . -462) 133283) ((-1018 . -1014) 133267) ((-157 . -1016) T) ((-883 . -840) 133246) ((-455 . -840) 133225) ((-1191 . -21) T) ((-1191 . -25) T) ((-1189 . -124) T) ((-1187 . -124) T) ((-1005 . -657) 133074) ((-984 . -591) 133061) ((-883 . -591) 132986) ((-499 . -563) 132968) ((-499 . -564) 132949) ((-721 . -657) 132778) ((-719 . -657) 132627) ((-1180 . -97) T) ((-996 . -97) T) ((-357 . -25) T) ((-357 . -21) T) ((-455 . -591) 132552) ((-436 . -657) 132523) ((-429 . -657) 132372) ((-916 . -97) T) ((-677 . -97) T) ((-495 . -25) T) ((-1133 . -1123) 132351) ((-1165 . -563) 132317) ((-1133 . -817) NIL) ((-1133 . -815) 132269) ((-130 . -97) T) ((-43 . -124) T) ((-1097 . -564) NIL) ((-1097 . -563) 132251) ((-1054 . -1037) 132196) ((-319 . -980) T) ((-607 . -563) 132178) ((-266 . -1028) T) ((-331 . -563) 132160) ((-328 . -563) 132142) ((-320 . -563) 132124) ((-241 . -564) 131872) ((-241 . -563) 131854) ((-225 . -563) 131836) ((-225 . -564) 131697) ((-970 . -1117) 131626) ((-832 . -286) 131564) ((-1195 . -1063) T) ((-1154 . -964) 131499) ((-1133 . -964) 131465) ((-1118 . -484) 131432) ((-1053 . -563) 131414) ((-758 . -666) T) ((-554 . -265) 131391) ((-536 . -657) 131356) ((-453 . -564) NIL) ((-453 . -563) 131338) ((-487 . -657) 131283) ((-292 . -97) T) ((-289 . -97) T) ((-266 . -23) T) ((-141 . -124) T) ((-362 . -666) T) ((-803 . -979) 131235) ((-841 . -563) 131217) ((-841 . -564) 131199) ((-803 . -107) 131137) ((-128 . -97) T) ((-110 . -97) T) ((-652 . -1145) 131121) ((-654 . -973) T) ((-633 . -325) NIL) ((-488 . -563) 131053) ((-355 . -734) T) ((-201 . -1016) T) ((-355 . -731) T) ((-203 . -733) T) ((-203 . -730) T) ((-57 . -564) 131014) ((-57 . -563) 130926) ((-203 . -666) T) ((-486 . -564) 130887) ((-486 . -563) 130799) ((-468 . -563) 130731) ((-467 . -564) 130692) ((-467 . -563) 130604) ((-999 . -339) 130555) ((-39 . -387) 130532) ((-75 . -1123) T) ((-802 . -840) NIL) ((-335 . -305) 130516) ((-335 . -339) T) ((-329 . -305) 130500) ((-329 . -339) T) ((-321 . -305) 130484) ((-321 . -339) T) ((-292 . -261) 130463) ((-103 . -339) T) ((-68 . -1123) T) ((-1133 . -314) 130415) ((-802 . -591) 130360) ((-1133 . -353) 130312) ((-894 . -124) 130167) ((-754 . -124) 130038) ((-888 . -594) 130022) ((-1005 . -158) 129933) ((-888 . -349) 129917) ((-984 . -733) T) ((-984 . -730) T) ((-721 . -158) 129808) ((-719 . -158) 129719) ((-755 . -46) 129681) ((-984 . -666) T) ((-303 . -462) 129665) ((-883 . -666) T) ((-429 . -158) 129576) ((-223 . -263) 129553) ((-455 . -666) T) ((-1180 . -286) 129491) ((-1161 . -831) 129404) ((-1154 . -831) 129310) ((-1153 . -979) 129145) ((-1133 . -831) 128978) ((-1132 . -979) 128786) ((-1118 . -267) 128765) ((-1058 . -140) 128749) ((-994 . -97) T) ((-858 . -885) T) ((-73 . -1123) T) ((-677 . -286) 128687) ((-155 . -840) 128640) ((-607 . -358) 128612) ((-30 . -885) T) ((-1 . -563) 128594) ((-1034 . -97) T) ((-999 . -23) T) ((-49 . -567) 128578) ((-999 . -1028) T) ((-931 . -385) 128550) ((-548 . -831) 128463) ((-414 . -97) T) ((-130 . -286) NIL) ((-803 . -973) T) ((-772 . -786) 128442) ((-79 . -1123) T) ((-651 . -267) T) ((-39 . -980) T) ((-536 . -158) T) ((-487 . -158) T) ((-481 . -563) 128424) ((-155 . -591) 128334) ((-477 . -563) 128316) ((-327 . -136) 128298) ((-327 . -134) T) ((-335 . -1028) T) ((-329 . -1028) T) ((-321 . -1028) T) ((-932 . -284) T) ((-845 . -284) T) ((-803 . -221) T) ((-103 . -1028) T) ((-803 . -211) 128277) ((-1153 . -107) 128098) ((-1132 . -107) 127887) ((-223 . -1157) 127871) ((-523 . -784) T) ((-335 . -23) T) ((-330 . -325) T) ((-292 . -286) 127858) ((-289 . -286) 127799) ((-329 . -23) T) ((-295 . -124) T) ((-321 . -23) T) ((-932 . -949) T) ((-103 . -23) T) ((-223 . -556) 127776) ((-1155 . -37) 127668) ((-1142 . -840) 127647) ((-108 . -1016) T) ((-962 . -97) T) ((-1142 . -591) 127572) ((-802 . -733) NIL) ((-791 . -591) 127546) ((-802 . -730) NIL) ((-755 . -817) NIL) ((-802 . -666) T) ((-1005 . -484) 127419) ((-721 . -484) 127366) ((-719 . -484) 127318) ((-530 . -591) 127305) ((-755 . -964) 127135) ((-429 . -484) 127078) ((-364 . -365) T) ((-58 . -1123) T) ((-568 . -786) 127057) ((-471 . -604) T) ((-1058 . -905) 127026) ((-931 . -427) T) ((-638 . -784) T) ((-480 . -731) T) ((-449 . -979) 126861) ((-319 . -1016) T) ((-289 . -1063) NIL) ((-266 . -124) T) ((-370 . -1016) T) ((-633 . -346) 126828) ((-801 . -980) T) ((-201 . -567) 126805) ((-303 . -263) 126782) ((-449 . -107) 126603) ((-1153 . -973) T) ((-1132 . -973) T) ((-755 . -353) 126587) ((-155 . -666) T) ((-597 . -97) T) ((-1153 . -221) 126566) ((-1153 . -211) 126518) ((-1132 . -211) 126423) ((-1132 . -221) 126402) ((-931 . -378) NIL) ((-613 . -585) 126350) ((-292 . -37) 126260) ((-289 . -37) 126189) ((-67 . -563) 126171) ((-295 . -464) 126137) ((-1097 . -265) 126116) ((-1029 . -1028) 126047) ((-81 . -1123) T) ((-59 . -563) 126029) ((-453 . -265) 126008) ((-1182 . -964) 125985) ((-1076 . -1016) T) ((-1029 . -23) 125856) ((-755 . -831) 125792) ((-1142 . -666) T) ((-1018 . -1123) T) ((-1005 . -267) 125723) ((-824 . -97) T) ((-721 . -267) 125634) ((-303 . -19) 125618) ((-57 . -265) 125595) ((-719 . -267) 125526) ((-791 . -666) T) ((-113 . -784) NIL) ((-486 . -265) 125503) ((-303 . -556) 125480) ((-467 . -265) 125457) ((-429 . -267) 125388) ((-962 . -286) 125239) ((-530 . -666) T) ((-605 . -563) 125221) ((-223 . -564) 125182) ((-223 . -563) 125094) ((-1059 . -33) T) ((-874 . -1123) T) ((-319 . -657) 125039) ((-613 . -25) T) ((-613 . -21) T) ((-449 . -973) T) ((-581 . -393) 125004) ((-557 . -393) 124969) ((-1034 . -1063) T) ((-536 . -267) T) ((-487 . -267) T) ((-1154 . -284) 124948) ((-449 . -211) 124900) ((-449 . -221) 124879) ((-1133 . -284) 124858) ((-999 . -124) T) ((-803 . -734) 124837) ((-133 . -97) T) ((-39 . -1016) T) ((-803 . -731) 124816) ((-589 . -938) 124800) ((-535 . -980) T) ((-523 . -980) T) ((-466 . -980) T) ((-383 . -427) T) ((-335 . -124) T) ((-292 . -376) 124784) ((-289 . -376) 124745) ((-329 . -124) T) ((-321 . -124) T) ((-1133 . -949) NIL) ((-1092 . -1016) T) ((-1011 . -563) 124712) ((-103 . -124) T) ((-1034 . -37) 124699) ((-852 . -1016) T) ((-710 . -1016) T) ((-614 . -1016) T) ((-640 . -136) T) ((-112 . -136) T) ((-1189 . -21) T) ((-1189 . -25) T) ((-1187 . -21) T) ((-1187 . -25) T) ((-607 . -979) 124683) ((-495 . -786) T) ((-471 . -786) T) ((-331 . -979) 124635) ((-328 . -979) 124587) ((-320 . -979) 124539) ((-228 . -1123) T) ((-227 . -1123) T) ((-241 . -979) 124382) ((-225 . -979) 124225) ((-607 . -107) 124204) ((-331 . -107) 124142) ((-328 . -107) 124080) ((-320 . -107) 124018) ((-241 . -107) 123847) ((-225 . -107) 123676) ((-756 . -1127) 123655) ((-570 . -387) 123639) ((-43 . -21) T) ((-43 . -25) T) ((-754 . -585) 123547) ((-756 . -515) 123526) ((-228 . -964) 123355) ((-227 . -964) 123184) ((-122 . -115) 123168) ((-841 . -979) 123133) ((-638 . -980) T) ((-652 . -97) T) ((-319 . -158) T) ((-141 . -21) T) ((-141 . -25) T) ((-86 . -563) 123115) ((-841 . -107) 123071) ((-39 . -657) 123016) ((-801 . -1016) T) ((-303 . -564) 122977) ((-303 . -563) 122889) ((-1132 . -731) 122842) ((-1132 . -734) 122795) ((-228 . -353) 122765) ((-227 . -353) 122735) ((-597 . -37) 122705) ((-558 . -33) T) ((-456 . -1028) 122636) ((-450 . -33) T) ((-1029 . -124) 122507) ((-894 . -25) 122318) ((-805 . -563) 122300) ((-894 . -21) 122255) ((-754 . -21) 122166) ((-754 . -25) 122018) ((-570 . -980) T) ((-1089 . -515) 121997) ((-1083 . -46) 121974) ((-331 . -973) T) ((-328 . -973) T) ((-456 . -23) 121845) ((-320 . -973) T) ((-241 . -973) T) ((-225 . -973) T) ((-1039 . -46) 121817) ((-113 . -980) T) ((-961 . -591) 121791) ((-888 . -33) T) ((-331 . -211) 121770) ((-331 . -221) T) ((-328 . -211) 121749) ((-225 . -302) 121706) ((-328 . -221) T) ((-320 . -211) 121685) ((-320 . -221) T) ((-241 . -302) 121657) ((-241 . -211) 121636) ((-1068 . -140) 121620) ((-228 . -831) 121553) ((-227 . -831) 121486) ((-1001 . -786) T) ((-1136 . -1123) T) ((-390 . -1028) T) ((-977 . -23) T) ((-841 . -973) T) ((-298 . -591) 121468) ((-951 . -784) T) ((-1118 . -930) 121434) ((-1084 . -851) 121413) ((-1078 . -851) 121392) ((-841 . -221) T) ((-756 . -339) 121371) ((-361 . -23) T) ((-123 . -1016) 121349) ((-117 . -1016) 121327) ((-841 . -211) T) ((-1078 . -759) NIL) ((-355 . -591) 121292) ((-801 . -657) 121279) ((-970 . -140) 121244) ((-39 . -158) T) ((-633 . -387) 121226) ((-652 . -286) 121213) ((-773 . -591) 121173) ((-766 . -591) 121147) ((-295 . -25) T) ((-295 . -21) T) ((-601 . -263) 121126) ((-535 . -1016) T) ((-523 . -1016) T) ((-466 . -1016) T) ((-223 . -265) 121103) ((-289 . -209) 121064) ((-1083 . -817) NIL) ((-1039 . -817) 120923) ((-1083 . -964) 120805) ((-1039 . -964) 120690) ((-167 . -563) 120672) ((-790 . -964) 120570) ((-721 . -263) 120497) ((-756 . -1028) T) ((-961 . -666) T) ((-554 . -594) 120481) ((-970 . -905) 120410) ((-927 . -97) T) ((-756 . -23) T) ((-652 . -1063) 120388) ((-633 . -980) T) ((-554 . -349) 120372) ((-327 . -427) T) ((-319 . -267) T) ((-1170 . -1016) T) ((-375 . -97) T) ((-266 . -21) T) ((-266 . -25) T) ((-337 . -666) T) ((-650 . -1016) T) ((-638 . -1016) T) ((-337 . -448) T) ((-1118 . -563) 120354) ((-1083 . -353) 120338) ((-1039 . -353) 120322) ((-951 . -387) 120284) ((-130 . -207) 120266) ((-355 . -733) T) ((-355 . -730) T) ((-801 . -158) T) ((-355 . -666) T) ((-651 . -563) 120248) ((-652 . -37) 120077) ((-1169 . -1167) 120061) ((-327 . -378) T) ((-1169 . -1016) 120011) ((-535 . -657) 119998) ((-523 . -657) 119985) ((-466 . -657) 119950) ((-292 . -575) 119929) ((-773 . -666) T) ((-766 . -666) T) ((-589 . -1123) T) ((-999 . -585) 119877) ((-1083 . -831) 119820) ((-1039 . -831) 119804) ((-605 . -979) 119788) ((-103 . -585) 119770) ((-456 . -124) 119641) ((-1089 . -1028) T) ((-883 . -46) 119610) ((-570 . -1016) T) ((-605 . -107) 119589) ((-303 . -265) 119566) ((-455 . -46) 119523) ((-1089 . -23) T) ((-113 . -1016) T) ((-98 . -97) 119501) ((-1179 . -1028) T) ((-977 . -124) T) ((-951 . -980) T) ((-758 . -964) 119485) ((-931 . -664) 119457) ((-1179 . -23) T) ((-638 . -657) 119422) ((-540 . -563) 119404) ((-362 . -964) 119388) ((-330 . -980) T) ((-361 . -124) T) ((-300 . -964) 119372) ((-203 . -817) 119354) ((-932 . -851) T) ((-89 . -33) T) ((-932 . -759) T) ((-845 . -851) T) ((-460 . -1127) T) ((-1104 . -563) 119336) ((-1021 . -1016) T) ((-196 . -1127) T) ((-927 . -286) 119301) ((-203 . -964) 119261) ((-39 . -267) T) ((-999 . -21) T) ((-999 . -25) T) ((-1034 . -767) T) ((-460 . -515) T) ((-335 . -25) T) ((-196 . -515) T) ((-335 . -21) T) ((-329 . -25) T) ((-329 . -21) T) ((-654 . -591) 119221) ((-321 . -25) T) ((-321 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -980) T) ((-535 . -158) T) ((-523 . -158) T) ((-466 . -158) T) ((-601 . -563) 119203) ((-677 . -676) 119187) ((-312 . -563) 119169) ((-66 . -359) T) ((-66 . -371) T) ((-1018 . -102) 119153) ((-984 . -817) 119135) ((-883 . -817) 119060) ((-596 . -1028) T) ((-570 . -657) 119047) ((-455 . -817) NIL) ((-1058 . -97) T) ((-984 . -964) 119029) ((-92 . -563) 119011) ((-452 . -136) T) ((-883 . -964) 118893) ((-113 . -657) 118838) ((-596 . -23) T) ((-455 . -964) 118716) ((-1005 . -564) NIL) ((-1005 . -563) 118698) ((-721 . -564) NIL) ((-721 . -563) 118659) ((-719 . -564) 118294) ((-719 . -563) 118208) ((-1029 . -585) 118116) ((-436 . -563) 118098) ((-429 . -563) 118080) ((-429 . -564) 117941) ((-962 . -207) 117887) ((-122 . -33) T) ((-756 . -124) T) ((-803 . -840) 117866) ((-592 . -563) 117848) ((-331 . -1186) 117832) ((-328 . -1186) 117816) ((-320 . -1186) 117800) ((-123 . -484) 117733) ((-117 . -484) 117666) ((-481 . -731) T) ((-481 . -734) T) ((-480 . -733) T) ((-98 . -286) 117604) ((-200 . -97) 117582) ((-633 . -1016) T) ((-638 . -158) T) ((-803 . -591) 117534) ((-63 . -360) T) ((-252 . -563) 117516) ((-63 . -371) T) ((-883 . -353) 117500) ((-801 . -267) T) ((-49 . -563) 117482) ((-927 . -37) 117430) ((-536 . -563) 117412) ((-455 . -353) 117396) ((-536 . -564) 117378) ((-487 . -563) 117360) ((-841 . -1186) 117347) ((-802 . -1123) T) ((-640 . -427) T) ((-466 . -484) 117313) ((-460 . -339) T) ((-331 . -344) 117292) ((-328 . -344) 117271) ((-320 . -344) 117250) ((-196 . -339) T) ((-654 . -666) T) ((-112 . -427) T) ((-1190 . -1181) 117234) ((-802 . -815) 117211) ((-802 . -817) NIL) ((-894 . -786) 117110) ((-754 . -786) 117061) ((-597 . -599) 117045) ((-1110 . -33) T) ((-157 . -563) 117027) ((-1029 . -21) 116938) ((-1029 . -25) 116790) ((-802 . -964) 116767) ((-883 . -831) 116748) ((-1142 . -46) 116725) ((-841 . -344) T) ((-57 . -594) 116709) ((-486 . -594) 116693) ((-455 . -831) 116670) ((-69 . -416) T) ((-69 . -371) T) ((-467 . -594) 116654) ((-57 . -349) 116638) ((-570 . -158) T) ((-486 . -349) 116622) ((-467 . -349) 116606) ((-766 . -648) 116590) ((-1083 . -284) 116569) ((-1089 . -124) T) ((-113 . -158) T) ((-1058 . -286) 116507) ((-155 . -1123) T) ((-581 . -684) 116491) ((-557 . -684) 116475) ((-1179 . -124) T) ((-1154 . -851) 116454) ((-1133 . -851) 116433) ((-1133 . -759) NIL) ((-633 . -657) 116383) ((-1132 . -840) 116336) ((-951 . -1016) T) ((-802 . -353) 116313) ((-802 . -314) 116290) ((-836 . -1028) T) ((-155 . -815) 116274) ((-155 . -817) 116199) ((-460 . -1028) T) ((-330 . -1016) T) ((-196 . -1028) T) ((-74 . -416) T) ((-74 . -371) T) ((-155 . -964) 116097) ((-295 . -786) T) ((-1169 . -484) 116030) ((-1153 . -591) 115927) ((-1132 . -591) 115797) ((-803 . -733) 115776) ((-803 . -730) 115755) ((-803 . -666) T) ((-460 . -23) T) ((-201 . -563) 115737) ((-159 . -427) T) ((-200 . -286) 115675) ((-84 . -416) T) ((-84 . -371) T) ((-196 . -23) T) ((-1191 . -1184) 115654) ((-535 . -267) T) ((-523 . -267) T) ((-618 . -964) 115638) ((-466 . -267) T) ((-128 . -445) 115593) ((-47 . -1016) T) ((-652 . -209) 115577) ((-802 . -831) NIL) ((-1142 . -817) NIL) ((-820 . -97) T) ((-816 . -97) T) ((-364 . -1016) T) ((-155 . -353) 115561) ((-155 . -314) 115545) ((-1142 . -964) 115427) ((-791 . -964) 115325) ((-1054 . -97) T) ((-596 . -124) T) ((-113 . -484) 115233) ((-605 . -731) 115212) ((-605 . -734) 115191) ((-530 . -964) 115173) ((-271 . -1176) 115143) ((-797 . -97) T) ((-893 . -515) 115122) ((-1118 . -979) 115005) ((-456 . -585) 114913) ((-835 . -1016) T) ((-951 . -657) 114850) ((-651 . -979) 114815) ((-554 . -33) T) ((-1059 . -1123) T) ((-1118 . -107) 114684) ((-449 . -591) 114581) ((-330 . -657) 114526) ((-155 . -831) 114485) ((-638 . -267) T) ((-633 . -158) T) ((-651 . -107) 114441) ((-1195 . -980) T) ((-1142 . -353) 114425) ((-394 . -1127) 114403) ((-289 . -784) NIL) ((-394 . -515) T) ((-203 . -284) T) ((-1132 . -730) 114356) ((-1132 . -733) 114309) ((-1153 . -666) T) ((-1132 . -666) T) ((-47 . -657) 114274) ((-203 . -949) T) ((-327 . -1176) 114251) ((-1155 . -387) 114217) ((-658 . -666) T) ((-1142 . -831) 114160) ((-108 . -563) 114142) ((-108 . -564) 114124) ((-658 . -448) T) ((-456 . -21) 114035) ((-123 . -462) 114019) ((-117 . -462) 114003) ((-456 . -25) 113855) ((-570 . -267) T) ((-540 . -979) 113830) ((-413 . -1016) T) ((-984 . -284) T) ((-113 . -267) T) ((-1020 . -97) T) ((-931 . -97) T) ((-540 . -107) 113798) ((-1054 . -286) 113736) ((-1118 . -973) T) ((-984 . -949) T) ((-64 . -1123) T) ((-977 . -25) T) ((-977 . -21) T) ((-651 . -973) T) ((-361 . -21) T) ((-361 . -25) T) ((-633 . -484) NIL) ((-951 . -158) T) ((-651 . -221) T) ((-984 . -508) T) ((-473 . -97) T) ((-330 . -158) T) ((-319 . -563) 113718) ((-370 . -563) 113700) ((-449 . -666) T) ((-1034 . -784) T) ((-823 . -964) 113668) ((-103 . -786) T) ((-601 . -979) 113652) ((-460 . -124) T) ((-1155 . -980) T) ((-196 . -124) T) ((-1068 . -97) 113630) ((-94 . -1016) T) ((-223 . -609) 113614) ((-223 . -594) 113598) ((-601 . -107) 113577) ((-292 . -387) 113561) ((-223 . -349) 113545) ((-1071 . -213) 113492) ((-927 . -209) 113476) ((-72 . -1123) T) ((-47 . -158) T) ((-640 . -363) T) ((-640 . -132) T) ((-1190 . -97) T) ((-1005 . -979) 113319) ((-241 . -840) 113298) ((-225 . -840) 113277) ((-721 . -979) 113100) ((-719 . -979) 112943) ((-558 . -1123) T) ((-1076 . -563) 112925) ((-1005 . -107) 112754) ((-970 . -97) T) ((-450 . -1123) T) ((-436 . -979) 112725) ((-429 . -979) 112568) ((-607 . -591) 112552) ((-802 . -284) T) ((-721 . -107) 112361) ((-719 . -107) 112190) ((-331 . -591) 112142) ((-328 . -591) 112094) ((-320 . -591) 112046) ((-241 . -591) 111971) ((-225 . -591) 111896) ((-1070 . -786) T) ((-1006 . -964) 111880) ((-436 . -107) 111841) ((-429 . -107) 111670) ((-995 . -964) 111647) ((-928 . -33) T) ((-896 . -563) 111608) ((-888 . -1123) T) ((-122 . -938) 111592) ((-893 . -1028) T) ((-802 . -949) NIL) ((-675 . -1028) T) ((-655 . -1028) T) ((-1169 . -462) 111576) ((-1054 . -37) 111536) ((-893 . -23) T) ((-779 . -97) T) ((-756 . -21) T) ((-756 . -25) T) ((-675 . -23) T) ((-655 . -23) T) ((-106 . -604) T) ((-841 . -591) 111501) ((-536 . -979) 111466) ((-487 . -979) 111411) ((-205 . -55) 111369) ((-428 . -23) T) ((-383 . -97) T) ((-240 . -97) T) ((-633 . -267) T) ((-797 . -37) 111339) ((-536 . -107) 111295) ((-487 . -107) 111224) ((-394 . -1028) T) ((-292 . -980) 111115) ((-289 . -980) T) ((-601 . -973) T) ((-1195 . -1016) T) ((-155 . -284) 111046) ((-394 . -23) T) ((-39 . -563) 111028) ((-39 . -564) 111012) ((-103 . -921) 110994) ((-112 . -800) 110978) ((-47 . -484) 110944) ((-1110 . -938) 110928) ((-1092 . -563) 110910) ((-1097 . -33) T) ((-852 . -563) 110892) ((-1029 . -786) 110843) ((-710 . -563) 110825) ((-614 . -563) 110807) ((-1068 . -286) 110745) ((-453 . -33) T) ((-1009 . -1123) T) ((-452 . -427) T) ((-1005 . -973) T) ((-1053 . -33) T) ((-721 . -973) T) ((-719 . -973) T) ((-590 . -213) 110729) ((-578 . -213) 110675) ((-1142 . -284) 110654) ((-1005 . -302) 110615) ((-429 . -973) T) ((-1089 . -21) T) ((-1005 . -211) 110594) ((-721 . -302) 110571) ((-721 . -211) T) ((-719 . -302) 110543) ((-303 . -594) 110527) ((-671 . -1127) 110506) ((-1089 . -25) T) ((-57 . -33) T) ((-488 . -33) T) ((-486 . -33) T) ((-429 . -302) 110485) ((-303 . -349) 110469) ((-468 . -33) T) ((-467 . -33) T) ((-931 . -1063) NIL) ((-581 . -97) T) ((-557 . -97) T) ((-671 . -515) 110400) ((-331 . -666) T) ((-328 . -666) T) ((-320 . -666) T) ((-241 . -666) T) ((-225 . -666) T) ((-970 . -286) 110308) ((-832 . -1016) 110286) ((-49 . -973) T) ((-1179 . -21) T) ((-1179 . -25) T) ((-1085 . -515) 110265) ((-1084 . -1127) 110244) ((-536 . -973) T) ((-487 . -973) T) ((-1078 . -1127) 110223) ((-337 . -964) 110207) ((-298 . -964) 110191) ((-951 . -267) T) ((-355 . -817) 110173) ((-1084 . -515) 110124) ((-1078 . -515) 110075) ((-931 . -37) 110020) ((-738 . -1028) T) ((-841 . -666) T) ((-536 . -221) T) ((-536 . -211) T) ((-487 . -211) T) ((-487 . -221) T) ((-1040 . -515) 109999) ((-330 . -267) T) ((-590 . -634) 109983) ((-355 . -964) 109943) ((-1034 . -980) T) ((-98 . -121) 109927) ((-738 . -23) T) ((-1169 . -263) 109904) ((-383 . -286) 109869) ((-1189 . -1184) 109845) ((-1187 . -1184) 109824) ((-1155 . -1016) T) ((-801 . -563) 109806) ((-773 . -964) 109775) ((-183 . -726) T) ((-182 . -726) T) ((-181 . -726) T) ((-180 . -726) T) ((-179 . -726) T) ((-178 . -726) T) ((-177 . -726) T) ((-176 . -726) T) ((-175 . -726) T) ((-174 . -726) T) ((-466 . -930) T) ((-251 . -775) T) ((-250 . -775) T) ((-249 . -775) T) ((-248 . -775) T) ((-47 . -267) T) ((-247 . -775) T) ((-246 . -775) T) ((-245 . -775) T) ((-173 . -726) T) ((-562 . -786) T) ((-597 . -387) 109759) ((-106 . -786) T) ((-596 . -21) T) ((-596 . -25) T) ((-1190 . -37) 109729) ((-113 . -263) 109680) ((-1169 . -19) 109664) ((-1169 . -556) 109641) ((-1180 . -1016) T) ((-996 . -1016) T) ((-916 . -1016) T) ((-893 . -124) T) ((-677 . -1016) T) ((-675 . -124) T) ((-655 . -124) T) ((-481 . -732) T) ((-383 . -1063) 109619) ((-428 . -124) T) ((-481 . -733) T) ((-201 . -973) T) ((-271 . -97) 109402) ((-130 . -1016) T) ((-638 . -930) T) ((-89 . -1123) T) ((-123 . -563) 109334) ((-117 . -563) 109266) ((-1195 . -158) T) ((-1084 . -339) 109245) ((-1078 . -339) 109224) ((-292 . -1016) T) ((-394 . -124) T) ((-289 . -1016) T) ((-383 . -37) 109176) ((-1047 . -97) T) ((-1155 . -657) 109068) ((-597 . -980) T) ((-295 . -134) 109047) ((-295 . -136) 109026) ((-128 . -1016) T) ((-110 . -1016) T) ((-793 . -97) T) ((-535 . -563) 109008) ((-523 . -564) 108907) ((-523 . -563) 108889) ((-466 . -563) 108871) ((-466 . -564) 108816) ((-458 . -23) T) ((-456 . -786) 108767) ((-460 . -585) 108749) ((-895 . -563) 108731) ((-196 . -585) 108713) ((-203 . -380) T) ((-605 . -591) 108697) ((-1083 . -851) 108676) ((-671 . -1028) T) ((-327 . -97) T) ((-757 . -786) T) ((-671 . -23) T) ((-319 . -979) 108621) ((-1070 . -1069) T) ((-1059 . -102) 108605) ((-1085 . -1028) T) ((-1084 . -1028) T) ((-485 . -964) 108589) ((-1078 . -1028) T) ((-1040 . -1028) T) ((-319 . -107) 108518) ((-932 . -1127) T) ((-122 . -1123) T) ((-845 . -1127) T) ((-633 . -263) NIL) ((-1170 . -563) 108500) ((-1085 . -23) T) ((-1084 . -23) T) ((-1078 . -23) T) ((-932 . -515) T) ((-1054 . -209) 108484) ((-845 . -515) T) ((-1040 . -23) T) ((-226 . -563) 108466) ((-994 . -1016) T) ((-738 . -124) T) ((-650 . -563) 108448) ((-292 . -657) 108358) ((-289 . -657) 108287) ((-638 . -563) 108269) ((-638 . -564) 108214) ((-383 . -376) 108198) ((-414 . -1016) T) ((-460 . -25) T) ((-460 . -21) T) ((-1034 . -1016) T) ((-196 . -25) T) ((-196 . -21) T) ((-652 . -387) 108182) ((-654 . -964) 108151) ((-1169 . -563) 108063) ((-1169 . -564) 108024) ((-1155 . -158) T) ((-223 . -33) T) ((-857 . -903) T) ((-1110 . -1123) T) ((-605 . -730) 108003) ((-605 . -733) 107982) ((-374 . -371) T) ((-492 . -97) 107960) ((-962 . -1016) T) ((-200 . -923) 107944) ((-475 . -97) T) ((-570 . -563) 107926) ((-44 . -786) NIL) ((-570 . -564) 107903) ((-962 . -560) 107878) ((-832 . -484) 107811) ((-319 . -973) T) ((-113 . -564) NIL) ((-113 . -563) 107793) ((-803 . -1123) T) ((-613 . -393) 107777) ((-613 . -1037) 107722) ((-471 . -140) 107704) ((-319 . -211) T) ((-319 . -221) T) ((-39 . -979) 107649) ((-803 . -815) 107633) ((-803 . -817) 107558) ((-652 . -980) T) ((-633 . -930) NIL) ((-3 . |UnionCategory|) T) ((-1153 . -46) 107528) ((-1132 . -46) 107505) ((-1053 . -938) 107476) ((-203 . -851) T) ((-39 . -107) 107405) ((-803 . -964) 107272) ((-1034 . -657) 107259) ((-1021 . -563) 107241) ((-999 . -136) 107220) ((-999 . -134) 107171) ((-932 . -339) T) ((-295 . -1112) 107137) ((-355 . -284) T) ((-295 . -1109) 107103) ((-292 . -158) 107082) ((-289 . -158) T) ((-931 . -209) 107059) ((-845 . -339) T) ((-536 . -1186) 107046) ((-487 . -1186) 107023) ((-335 . -136) 107002) ((-335 . -134) 106953) ((-329 . -136) 106932) ((-329 . -134) 106883) ((-558 . -1100) 106859) ((-321 . -136) 106838) ((-321 . -134) 106789) ((-295 . -34) 106755) ((-450 . -1100) 106734) ((0 . |EnumerationCategory|) T) ((-295 . -91) 106700) ((-355 . -949) T) ((-103 . -136) T) ((-103 . -134) NIL) ((-44 . -213) 106650) ((-597 . -1016) T) ((-558 . -102) 106597) ((-458 . -124) T) ((-450 . -102) 106547) ((-218 . -1028) 106478) ((-803 . -353) 106462) ((-803 . -314) 106446) ((-218 . -23) 106317) ((-984 . -851) T) ((-984 . -759) T) ((-536 . -344) T) ((-487 . -344) T) ((-327 . -1063) T) ((-303 . -33) T) ((-43 . -393) 106301) ((-804 . -1123) T) ((-366 . -684) 106285) ((-1180 . -484) 106218) ((-671 . -124) T) ((-1161 . -515) 106197) ((-1154 . -1127) 106176) ((-1154 . -515) 106127) ((-677 . -484) 106060) ((-1133 . -1127) 106039) ((-1133 . -515) 105990) ((-824 . -1016) T) ((-133 . -780) T) ((-1132 . -1123) 105969) ((-1132 . -817) 105842) ((-1132 . -815) 105812) ((-492 . -286) 105750) ((-1085 . -124) T) ((-130 . -484) NIL) ((-1084 . -124) T) ((-1078 . -124) T) ((-1040 . -124) T) ((-951 . -930) T) ((-327 . -37) 105715) ((-932 . -1028) T) ((-845 . -1028) T) ((-80 . -563) 105697) ((-39 . -973) T) ((-801 . -979) 105684) ((-932 . -23) T) ((-803 . -831) 105643) ((-640 . -97) T) ((-931 . -325) NIL) ((-554 . -1123) T) ((-900 . -23) T) ((-845 . -23) T) ((-801 . -107) 105628) ((-403 . -1028) T) ((-449 . -46) 105598) ((-126 . -97) T) ((-39 . -211) 105570) ((-39 . -221) T) ((-112 . -97) T) ((-549 . -515) 105549) ((-548 . -515) 105528) ((-633 . -563) 105510) ((-633 . -564) 105418) ((-292 . -484) 105384) ((-289 . -484) 105276) ((-1153 . -964) 105260) ((-1132 . -964) 105049) ((-927 . -387) 105033) ((-403 . -23) T) ((-1034 . -158) T) ((-1155 . -267) T) ((-597 . -657) 105003) ((-133 . -1016) T) ((-47 . -930) T) ((-383 . -209) 104987) ((-272 . -213) 104937) ((-802 . -851) T) ((-802 . -759) NIL) ((-796 . -786) T) ((-1132 . -314) 104907) ((-1132 . -353) 104877) ((-200 . -1035) 104861) ((-1169 . -265) 104838) ((-1118 . -591) 104763) ((-893 . -21) T) ((-893 . -25) T) ((-675 . -21) T) ((-675 . -25) T) ((-655 . -21) T) ((-655 . -25) T) ((-651 . -591) 104728) ((-428 . -21) T) ((-428 . -25) T) ((-315 . -97) T) ((-159 . -97) T) ((-927 . -980) T) ((-801 . -973) T) ((-713 . -97) T) ((-1154 . -339) 104707) ((-1153 . -831) 104613) ((-1133 . -339) 104592) ((-1132 . -831) 104443) ((-951 . -563) 104425) ((-383 . -767) 104378) ((-1085 . -464) 104344) ((-155 . -851) 104275) ((-1084 . -464) 104241) ((-1078 . -464) 104207) ((-652 . -1016) T) ((-1040 . -464) 104173) ((-535 . -979) 104160) ((-523 . -979) 104147) ((-466 . -979) 104112) ((-292 . -267) 104091) ((-289 . -267) T) ((-330 . -563) 104073) ((-394 . -25) T) ((-394 . -21) T) ((-94 . -263) 104052) ((-535 . -107) 104037) ((-523 . -107) 104022) ((-466 . -107) 103978) ((-1087 . -817) 103945) ((-832 . -462) 103929) ((-47 . -563) 103911) ((-47 . -564) 103856) ((-218 . -124) 103727) ((-1142 . -851) 103706) ((-755 . -1127) 103685) ((-962 . -484) 103529) ((-364 . -563) 103511) ((-755 . -515) 103442) ((-540 . -591) 103417) ((-241 . -46) 103389) ((-225 . -46) 103346) ((-495 . -479) 103323) ((-928 . -1123) T) ((-638 . -979) 103288) ((-1161 . -1028) T) ((-1154 . -1028) T) ((-1133 . -1028) T) ((-931 . -346) 103260) ((-108 . -344) T) ((-449 . -831) 103166) ((-1161 . -23) T) ((-1154 . -23) T) ((-835 . -563) 103148) ((-89 . -102) 103132) ((-1118 . -666) T) ((-836 . -786) 103083) ((-640 . -1063) T) ((-638 . -107) 103039) ((-1133 . -23) T) ((-549 . -1028) T) ((-548 . -1028) T) ((-652 . -657) 102868) ((-651 . -666) T) ((-1034 . -267) T) ((-932 . -124) T) ((-460 . -786) T) ((-900 . -124) T) ((-845 . -124) T) ((-738 . -25) T) ((-196 . -786) T) ((-535 . -973) T) ((-523 . -973) T) ((-738 . -21) T) ((-466 . -973) T) ((-549 . -23) T) ((-319 . -1186) 102845) ((-295 . -427) 102824) ((-315 . -286) 102811) ((-548 . -23) T) ((-403 . -124) T) ((-601 . -591) 102785) ((-223 . -938) 102769) ((-803 . -284) T) ((-1191 . -1181) 102753) ((-640 . -37) 102740) ((-523 . -211) T) ((-466 . -221) T) ((-466 . -211) T) ((-710 . -731) T) ((-710 . -734) T) ((-1062 . -213) 102690) ((-1005 . -840) 102669) ((-112 . -37) 102656) ((-189 . -739) T) ((-188 . -739) T) ((-187 . -739) T) ((-186 . -739) T) ((-803 . -949) 102635) ((-1180 . -462) 102619) ((-721 . -840) 102598) ((-719 . -840) 102577) ((-1097 . -1123) T) ((-429 . -840) 102556) ((-677 . -462) 102540) ((-1005 . -591) 102465) ((-721 . -591) 102390) ((-570 . -979) 102377) ((-453 . -1123) T) ((-319 . -344) T) ((-130 . -462) 102359) ((-719 . -591) 102284) ((-1053 . -1123) T) ((-436 . -591) 102255) ((-241 . -817) 102114) ((-225 . -817) NIL) ((-113 . -979) 102059) ((-429 . -591) 101984) ((-607 . -964) 101961) ((-570 . -107) 101946) ((-331 . -964) 101930) ((-328 . -964) 101914) ((-320 . -964) 101898) ((-241 . -964) 101744) ((-225 . -964) 101622) ((-113 . -107) 101551) ((-57 . -1123) T) ((-488 . -1123) T) ((-486 . -1123) T) ((-468 . -1123) T) ((-467 . -1123) T) ((-413 . -563) 101533) ((-410 . -563) 101515) ((-3 . -97) T) ((-954 . -1117) 101484) ((-772 . -97) T) ((-629 . -55) 101442) ((-638 . -973) T) ((-49 . -591) 101416) ((-266 . -427) T) ((-451 . -1117) 101385) ((0 . -97) T) ((-536 . -591) 101350) ((-487 . -591) 101295) ((-48 . -97) T) ((-841 . -964) 101282) ((-638 . -221) T) ((-999 . -385) 101261) ((-671 . -585) 101209) ((-927 . -1016) T) ((-652 . -158) 101100) ((-460 . -921) 101082) ((-241 . -353) 101066) ((-225 . -353) 101050) ((-375 . -1016) T) ((-315 . -37) 101034) ((-953 . -97) 101012) ((-196 . -921) 100994) ((-159 . -37) 100926) ((-1153 . -284) 100905) ((-1132 . -284) 100884) ((-601 . -666) T) ((-94 . -563) 100866) ((-1078 . -585) 100818) ((-458 . -25) T) ((-458 . -21) T) ((-1132 . -949) 100771) ((-570 . -973) T) ((-355 . -380) T) ((-366 . -97) T) ((-241 . -831) 100717) ((-225 . -831) 100694) ((-113 . -973) T) ((-755 . -1028) T) ((-1005 . -666) T) ((-570 . -211) 100673) ((-568 . -97) T) ((-721 . -666) T) ((-719 . -666) T) ((-389 . -1028) T) ((-113 . -221) T) ((-39 . -344) NIL) ((-113 . -211) NIL) ((-429 . -666) T) ((-755 . -23) T) ((-671 . -25) T) ((-671 . -21) T) ((-642 . -786) T) ((-996 . -263) 100652) ((-76 . -372) T) ((-76 . -371) T) ((-633 . -979) 100602) ((-1161 . -124) T) ((-1154 . -124) T) ((-1133 . -124) T) ((-1054 . -387) 100586) ((-581 . -343) 100518) ((-557 . -343) 100450) ((-1068 . -1061) 100434) ((-98 . -1016) 100412) ((-1085 . -25) T) ((-1085 . -21) T) ((-1084 . -21) T) ((-927 . -657) 100360) ((-201 . -591) 100327) ((-633 . -107) 100261) ((-49 . -666) T) ((-1084 . -25) T) ((-327 . -325) T) ((-1078 . -21) T) ((-999 . -427) 100212) ((-1078 . -25) T) ((-652 . -484) 100159) ((-536 . -666) T) ((-487 . -666) T) ((-1040 . -21) T) ((-1040 . -25) T) ((-549 . -124) T) ((-548 . -124) T) ((-335 . -427) T) ((-329 . -427) T) ((-321 . -427) T) ((-449 . -284) 100138) ((-289 . -263) 100073) ((-103 . -427) T) ((-77 . -416) T) ((-77 . -371) T) ((-452 . -97) T) ((-1195 . -563) 100055) ((-1195 . -564) 100037) ((-999 . -378) 100016) ((-962 . -462) 99947) ((-523 . -734) T) ((-523 . -731) T) ((-985 . -213) 99893) ((-335 . -378) 99844) ((-329 . -378) 99795) ((-321 . -378) 99746) ((-1182 . -1028) T) ((-1182 . -23) T) ((-1171 . -97) T) ((-160 . -563) 99728) ((-1054 . -980) T) ((-613 . -684) 99712) ((-1089 . -134) 99691) ((-1089 . -136) 99670) ((-1058 . -1016) T) ((-1058 . -992) 99639) ((-67 . -1123) T) ((-951 . -979) 99576) ((-797 . -980) T) ((-218 . -585) 99484) ((-633 . -973) T) ((-330 . -979) 99429) ((-59 . -1123) T) ((-951 . -107) 99345) ((-832 . -563) 99277) ((-633 . -221) T) ((-633 . -211) NIL) ((-779 . -784) 99256) ((-638 . -734) T) ((-638 . -731) T) ((-931 . -387) 99233) ((-330 . -107) 99162) ((-355 . -851) T) ((-383 . -784) 99141) ((-652 . -267) 99052) ((-201 . -666) T) ((-1161 . -464) 99018) ((-1154 . -464) 98984) ((-1133 . -464) 98950) ((-292 . -930) 98929) ((-200 . -1016) 98907) ((-295 . -902) 98869) ((-100 . -97) T) ((-47 . -979) 98834) ((-1191 . -97) T) ((-357 . -97) T) ((-47 . -107) 98790) ((-932 . -585) 98772) ((-1155 . -563) 98754) ((-495 . -97) T) ((-471 . -97) T) ((-1047 . -1048) 98738) ((-141 . -1176) 98722) ((-223 . -1123) T) ((-1083 . -1127) 98701) ((-1039 . -1127) 98680) ((-218 . -21) 98591) ((-218 . -25) 98443) ((-123 . -115) 98427) ((-117 . -115) 98411) ((-43 . -684) 98395) ((-1083 . -515) 98306) ((-1039 . -515) 98237) ((-962 . -263) 98212) ((-755 . -124) T) ((-113 . -734) NIL) ((-113 . -731) NIL) ((-331 . -284) T) ((-328 . -284) T) ((-320 . -284) T) ((-1011 . -1123) T) ((-228 . -1028) 98143) ((-227 . -1028) 98074) ((-951 . -973) T) ((-931 . -980) T) ((-319 . -591) 98019) ((-568 . -37) 98003) ((-1180 . -563) 97965) ((-1180 . -564) 97926) ((-996 . -563) 97908) ((-951 . -221) T) ((-330 . -973) T) ((-754 . -1176) 97878) ((-228 . -23) T) ((-227 . -23) T) ((-916 . -563) 97860) ((-677 . -564) 97821) ((-677 . -563) 97803) ((-738 . -786) 97782) ((-927 . -484) 97694) ((-330 . -211) T) ((-330 . -221) T) ((-1071 . -140) 97641) ((-932 . -25) T) ((-130 . -563) 97623) ((-130 . -564) 97582) ((-841 . -284) T) ((-932 . -21) T) ((-900 . -25) T) ((-845 . -21) T) ((-845 . -25) T) ((-403 . -21) T) ((-403 . -25) T) ((-779 . -387) 97566) ((-47 . -973) T) ((-1189 . -1181) 97550) ((-1187 . -1181) 97534) ((-962 . -556) 97509) ((-292 . -564) 97370) ((-292 . -563) 97352) ((-289 . -564) NIL) ((-289 . -563) 97334) ((-47 . -221) T) ((-47 . -211) T) ((-597 . -263) 97295) ((-509 . -213) 97245) ((-128 . -563) 97227) ((-110 . -563) 97209) ((-452 . -37) 97174) ((-1191 . -1188) 97153) ((-1182 . -124) T) ((-1190 . -980) T) ((-1001 . -97) T) ((-86 . -1123) T) ((-471 . -286) NIL) ((-928 . -102) 97137) ((-820 . -1016) T) ((-816 . -1016) T) ((-1169 . -594) 97121) ((-1169 . -349) 97105) ((-303 . -1123) T) ((-546 . -786) T) ((-1054 . -1016) T) ((-1054 . -976) 97045) ((-98 . -484) 96978) ((-858 . -563) 96960) ((-319 . -666) T) ((-30 . -563) 96942) ((-797 . -1016) T) ((-779 . -980) 96921) ((-39 . -591) 96866) ((-203 . -1127) T) ((-383 . -980) T) ((-1070 . -140) 96848) ((-927 . -267) 96799) ((-203 . -515) T) ((-295 . -1150) 96783) ((-295 . -1147) 96753) ((-1097 . -1100) 96732) ((-994 . -563) 96714) ((-590 . -140) 96698) ((-578 . -140) 96644) ((-1097 . -102) 96594) ((-453 . -1100) 96573) ((-460 . -136) T) ((-460 . -134) NIL) ((-1034 . -564) 96488) ((-414 . -563) 96470) ((-196 . -136) T) ((-196 . -134) NIL) ((-1034 . -563) 96452) ((-51 . -97) T) ((-1133 . -585) 96404) ((-453 . -102) 96354) ((-922 . -23) T) ((-1191 . -37) 96324) ((-1083 . -1028) T) ((-1039 . -1028) T) ((-984 . -1127) T) ((-790 . -1028) T) ((-883 . -1127) 96303) ((-455 . -1127) 96282) ((-671 . -786) 96261) ((-984 . -515) T) ((-883 . -515) 96192) ((-1083 . -23) T) ((-1039 . -23) T) ((-790 . -23) T) ((-455 . -515) 96123) ((-1054 . -657) 96055) ((-1058 . -484) 95988) ((-962 . -564) NIL) ((-962 . -563) 95970) ((-797 . -657) 95940) ((-1118 . -46) 95909) ((-228 . -124) T) ((-227 . -124) T) ((-1020 . -1016) T) ((-931 . -1016) T) ((-60 . -563) 95891) ((-1078 . -786) NIL) ((-951 . -731) T) ((-951 . -734) T) ((-1195 . -979) 95878) ((-1195 . -107) 95863) ((-801 . -591) 95850) ((-1161 . -25) T) ((-1161 . -21) T) ((-1154 . -21) T) ((-1154 . -25) T) ((-1133 . -21) T) ((-1133 . -25) T) ((-954 . -140) 95834) ((-803 . -759) 95813) ((-803 . -851) T) ((-652 . -263) 95740) ((-549 . -21) T) ((-549 . -25) T) ((-548 . -21) T) ((-39 . -666) T) ((-200 . -484) 95673) ((-548 . -25) T) ((-451 . -140) 95657) ((-438 . -140) 95641) ((-852 . -666) T) ((-710 . -732) T) ((-710 . -733) T) ((-473 . -1016) T) ((-710 . -666) T) ((-203 . -339) T) ((-1068 . -1016) 95619) ((-802 . -1127) T) ((-597 . -563) 95601) ((-802 . -515) T) ((-633 . -344) NIL) ((-335 . -1176) 95585) ((-613 . -97) T) ((-329 . -1176) 95569) ((-321 . -1176) 95553) ((-1190 . -1016) T) ((-489 . -786) 95532) ((-756 . -427) 95511) ((-970 . -1016) T) ((-970 . -992) 95440) ((-954 . -905) 95409) ((-758 . -1028) T) ((-931 . -657) 95354) ((-362 . -1028) T) ((-451 . -905) 95323) ((-438 . -905) 95292) ((-106 . -140) 95274) ((-71 . -563) 95256) ((-824 . -563) 95238) ((-999 . -664) 95217) ((-1195 . -973) T) ((-755 . -585) 95165) ((-271 . -980) 95108) ((-155 . -1127) 95013) ((-203 . -1028) T) ((-300 . -23) T) ((-1078 . -921) 94965) ((-779 . -1016) T) ((-1040 . -680) 94944) ((-1155 . -979) 94849) ((-1153 . -851) 94828) ((-801 . -666) T) ((-155 . -515) 94739) ((-1132 . -851) 94718) ((-535 . -591) 94705) ((-383 . -1016) T) ((-523 . -591) 94692) ((-240 . -1016) T) ((-466 . -591) 94657) ((-203 . -23) T) ((-1132 . -759) 94610) ((-1189 . -97) T) ((-330 . -1186) 94587) ((-1187 . -97) T) ((-1155 . -107) 94479) ((-133 . -563) 94461) ((-922 . -124) T) ((-43 . -97) T) ((-218 . -786) 94412) ((-1142 . -1127) 94391) ((-98 . -462) 94375) ((-1190 . -657) 94345) ((-1005 . -46) 94306) ((-984 . -1028) T) ((-883 . -1028) T) ((-123 . -33) T) ((-117 . -33) T) ((-721 . -46) 94283) ((-719 . -46) 94255) ((-1142 . -515) 94166) ((-330 . -344) T) ((-455 . -1028) T) ((-1083 . -124) T) ((-1039 . -124) T) ((-429 . -46) 94145) ((-802 . -339) T) ((-790 . -124) T) ((-141 . -97) T) ((-984 . -23) T) ((-883 . -23) T) ((-530 . -515) T) ((-755 . -25) T) ((-755 . -21) T) ((-1054 . -484) 94078) ((-540 . -964) 94062) ((-455 . -23) T) ((-327 . -980) T) ((-1118 . -831) 94043) ((-613 . -286) 93981) ((-1029 . -1176) 93951) ((-638 . -591) 93916) ((-931 . -158) T) ((-893 . -134) 93895) ((-581 . -1016) T) ((-557 . -1016) T) ((-893 . -136) 93874) ((-932 . -786) T) ((-675 . -136) 93853) ((-675 . -134) 93832) ((-900 . -786) T) ((-449 . -851) 93811) ((-292 . -979) 93721) ((-289 . -979) 93650) ((-927 . -263) 93608) ((-383 . -657) 93560) ((-640 . -784) T) ((-1155 . -973) T) ((-292 . -107) 93456) ((-289 . -107) 93369) ((-894 . -97) T) ((-754 . -97) 93180) ((-652 . -564) NIL) ((-652 . -563) 93162) ((-601 . -964) 93060) ((-1155 . -302) 93004) ((-962 . -265) 92979) ((-535 . -666) T) ((-523 . -733) T) ((-155 . -339) 92930) ((-523 . -730) T) ((-523 . -666) T) ((-466 . -666) T) ((-1058 . -462) 92914) ((-1005 . -817) NIL) ((-802 . -1028) T) ((-113 . -840) NIL) ((-1189 . -1188) 92890) ((-1187 . -1188) 92869) ((-721 . -817) NIL) ((-719 . -817) 92728) ((-1182 . -25) T) ((-1182 . -21) T) ((-1121 . -97) 92706) ((-1022 . -371) T) ((-570 . -591) 92693) ((-429 . -817) NIL) ((-617 . -97) 92671) ((-1005 . -964) 92500) ((-802 . -23) T) ((-721 . -964) 92361) ((-719 . -964) 92220) ((-113 . -591) 92165) ((-429 . -964) 92043) ((-592 . -964) 92027) ((-573 . -97) T) ((-200 . -462) 92011) ((-1169 . -33) T) ((-581 . -657) 91995) ((-557 . -657) 91979) ((-613 . -37) 91939) ((-295 . -97) T) ((-83 . -563) 91921) ((-49 . -964) 91905) ((-1034 . -979) 91892) ((-1005 . -353) 91876) ((-58 . -55) 91838) ((-638 . -733) T) ((-638 . -730) T) ((-536 . -964) 91825) ((-487 . -964) 91802) ((-638 . -666) T) ((-292 . -973) 91693) ((-300 . -124) T) ((-289 . -973) T) ((-155 . -1028) T) ((-721 . -353) 91677) ((-719 . -353) 91661) ((-44 . -140) 91611) ((-932 . -921) 91593) ((-429 . -353) 91577) ((-383 . -158) T) ((-292 . -221) 91556) ((-289 . -221) T) ((-289 . -211) NIL) ((-271 . -1016) 91339) ((-203 . -124) T) ((-1034 . -107) 91324) ((-155 . -23) T) ((-738 . -136) 91303) ((-738 . -134) 91282) ((-228 . -585) 91190) ((-227 . -585) 91098) ((-295 . -261) 91064) ((-1068 . -484) 90997) ((-1047 . -1016) T) ((-203 . -982) T) ((-754 . -286) 90935) ((-1005 . -831) 90870) ((-721 . -831) 90813) ((-719 . -831) 90797) ((-1189 . -37) 90767) ((-1187 . -37) 90737) ((-1142 . -1028) T) ((-791 . -1028) T) ((-429 . -831) 90714) ((-793 . -1016) T) ((-1142 . -23) T) ((-530 . -1028) T) ((-791 . -23) T) ((-570 . -666) T) ((-331 . -851) T) ((-328 . -851) T) ((-266 . -97) T) ((-320 . -851) T) ((-984 . -124) T) ((-883 . -124) T) ((-113 . -733) NIL) ((-113 . -730) NIL) ((-113 . -666) T) ((-633 . -840) NIL) ((-970 . -484) 90615) ((-455 . -124) T) ((-530 . -23) T) ((-617 . -286) 90553) ((-581 . -701) T) ((-557 . -701) T) ((-1133 . -786) NIL) ((-931 . -267) T) ((-228 . -21) T) ((-633 . -591) 90503) ((-327 . -1016) T) ((-228 . -25) T) ((-227 . -21) T) ((-227 . -25) T) ((-141 . -37) 90487) ((-2 . -97) T) ((-841 . -851) T) ((-456 . -1176) 90457) ((-201 . -964) 90434) ((-1034 . -973) T) ((-651 . -284) T) ((-271 . -657) 90376) ((-640 . -980) T) ((-460 . -427) T) ((-383 . -484) 90288) ((-196 . -427) T) ((-1034 . -211) T) ((-272 . -140) 90238) ((-927 . -564) 90199) ((-927 . -563) 90181) ((-918 . -563) 90163) ((-112 . -980) T) ((-597 . -979) 90147) ((-203 . -464) T) ((-375 . -563) 90129) ((-375 . -564) 90106) ((-977 . -1176) 90076) ((-597 . -107) 90055) ((-1054 . -462) 90039) ((-754 . -37) 90009) ((-61 . -416) T) ((-61 . -371) T) ((-1071 . -97) T) ((-802 . -124) T) ((-457 . -97) 89987) ((-1195 . -344) T) ((-999 . -97) T) ((-983 . -97) T) ((-327 . -657) 89932) ((-671 . -136) 89911) ((-671 . -134) 89890) ((-951 . -591) 89827) ((-492 . -1016) 89805) ((-335 . -97) T) ((-329 . -97) T) ((-321 . -97) T) ((-103 . -97) T) ((-475 . -1016) T) ((-330 . -591) 89750) ((-1083 . -585) 89698) ((-1039 . -585) 89646) ((-361 . -479) 89625) ((-772 . -784) 89604) ((-355 . -1127) T) ((-633 . -666) T) ((-315 . -980) T) ((-1133 . -921) 89556) ((-159 . -980) T) ((-98 . -563) 89488) ((-1085 . -134) 89467) ((-1085 . -136) 89446) ((-355 . -515) T) ((-1084 . -136) 89425) ((-1084 . -134) 89404) ((-1078 . -134) 89311) ((-383 . -267) T) ((-1078 . -136) 89218) ((-1040 . -136) 89197) ((-1040 . -134) 89176) ((-295 . -37) 89017) ((-155 . -124) T) ((-289 . -734) NIL) ((-289 . -731) NIL) ((-597 . -973) T) ((-47 . -591) 88982) ((-922 . -21) T) ((-123 . -938) 88966) ((-117 . -938) 88950) ((-922 . -25) T) ((-832 . -115) 88934) ((-1070 . -97) T) ((-755 . -786) 88913) ((-1142 . -124) T) ((-1083 . -25) T) ((-1083 . -21) T) ((-791 . -124) T) ((-1039 . -25) T) ((-1039 . -21) T) ((-790 . -25) T) ((-790 . -21) T) ((-721 . -284) 88892) ((-590 . -97) 88870) ((-578 . -97) T) ((-1071 . -286) 88665) ((-530 . -124) T) ((-568 . -784) 88644) ((-1068 . -462) 88628) ((-1062 . -140) 88578) ((-1058 . -563) 88540) ((-1058 . -564) 88501) ((-951 . -730) T) ((-951 . -733) T) ((-951 . -666) T) ((-457 . -286) 88439) ((-428 . -393) 88409) ((-327 . -158) T) ((-266 . -37) 88396) ((-251 . -97) T) ((-250 . -97) T) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-319 . -964) 88373) ((-192 . -97) T) ((-191 . -97) T) ((-189 . -97) T) ((-188 . -97) T) ((-187 . -97) T) ((-186 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-652 . -979) 88196) ((-181 . -97) T) ((-180 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-330 . -666) T) ((-652 . -107) 88005) ((-613 . -209) 87989) ((-536 . -284) T) ((-487 . -284) T) ((-271 . -484) 87938) ((-103 . -286) NIL) ((-70 . -371) T) ((-1029 . -97) 87749) ((-772 . -387) 87733) ((-1034 . -734) T) ((-1034 . -731) T) ((-640 . -1016) T) ((-355 . -339) T) ((-155 . -464) 87711) ((-200 . -563) 87643) ((-126 . -1016) T) ((-112 . -1016) T) ((-47 . -666) T) ((-970 . -462) 87608) ((-130 . -401) 87590) ((-130 . -344) T) ((-954 . -97) T) ((-482 . -479) 87569) ((-451 . -97) T) ((-438 . -97) T) ((-961 . -1028) T) ((-1085 . -34) 87535) ((-1085 . -91) 87501) ((-1085 . -1112) 87467) ((-1085 . -1109) 87433) ((-1070 . -286) NIL) ((-87 . -372) T) ((-87 . -371) T) ((-999 . -1063) 87412) ((-1084 . -1109) 87378) ((-1084 . -1112) 87344) ((-961 . -23) T) ((-1084 . -91) 87310) ((-530 . -464) T) ((-1084 . -34) 87276) ((-1078 . -1109) 87242) ((-1078 . -1112) 87208) ((-1078 . -91) 87174) ((-337 . -1028) T) ((-335 . -1063) 87153) ((-329 . -1063) 87132) ((-321 . -1063) 87111) ((-1078 . -34) 87077) ((-1040 . -34) 87043) ((-1040 . -91) 87009) ((-103 . -1063) T) ((-1040 . -1112) 86975) ((-772 . -980) 86954) ((-590 . -286) 86892) ((-578 . -286) 86743) ((-1040 . -1109) 86709) ((-652 . -973) T) ((-984 . -585) 86691) ((-999 . -37) 86559) ((-883 . -585) 86507) ((-932 . -136) T) ((-932 . -134) NIL) ((-355 . -1028) T) ((-300 . -25) T) ((-298 . -23) T) ((-874 . -786) 86486) ((-652 . -302) 86463) ((-455 . -585) 86411) ((-39 . -964) 86301) ((-640 . -657) 86288) ((-652 . -211) T) ((-315 . -1016) T) ((-159 . -1016) T) ((-307 . -786) T) ((-394 . -427) 86238) ((-355 . -23) T) ((-335 . -37) 86203) ((-329 . -37) 86168) ((-321 . -37) 86133) ((-78 . -416) T) ((-78 . -371) T) ((-203 . -25) T) ((-203 . -21) T) ((-773 . -1028) T) ((-103 . -37) 86083) ((-766 . -1028) T) ((-713 . -1016) T) ((-112 . -657) 86070) ((-614 . -964) 86054) ((-562 . -97) T) ((-773 . -23) T) ((-766 . -23) T) ((-1068 . -263) 86031) ((-1029 . -286) 85969) ((-1018 . -213) 85953) ((-62 . -372) T) ((-62 . -371) T) ((-106 . -97) T) ((-39 . -353) 85930) ((-596 . -788) 85914) ((-984 . -21) T) ((-984 . -25) T) ((-754 . -209) 85884) ((-883 . -25) T) ((-883 . -21) T) ((-568 . -980) T) ((-455 . -25) T) ((-455 . -21) T) ((-954 . -286) 85822) ((-820 . -563) 85804) ((-816 . -563) 85786) ((-228 . -786) 85737) ((-227 . -786) 85688) ((-492 . -484) 85621) ((-802 . -585) 85598) ((-451 . -286) 85536) ((-438 . -286) 85474) ((-327 . -267) T) ((-1068 . -1157) 85458) ((-1054 . -563) 85420) ((-1054 . -564) 85381) ((-1052 . -97) T) ((-927 . -979) 85277) ((-39 . -831) 85229) ((-1068 . -556) 85206) ((-1195 . -591) 85193) ((-985 . -140) 85139) ((-803 . -1127) T) ((-927 . -107) 85021) ((-315 . -657) 85005) ((-797 . -563) 84987) ((-159 . -657) 84919) ((-383 . -263) 84877) ((-803 . -515) T) ((-103 . -376) 84859) ((-82 . -360) T) ((-82 . -371) T) ((-640 . -158) T) ((-94 . -666) T) ((-456 . -97) 84670) ((-94 . -448) T) ((-112 . -158) T) ((-1029 . -37) 84640) ((-155 . -585) 84588) ((-977 . -97) T) ((-802 . -25) T) ((-754 . -216) 84567) ((-802 . -21) T) ((-757 . -97) T) ((-390 . -97) T) ((-361 . -97) T) ((-106 . -286) NIL) ((-205 . -97) 84545) ((-123 . -1123) T) ((-117 . -1123) T) ((-961 . -124) T) ((-613 . -343) 84529) ((-927 . -973) T) ((-1142 . -585) 84477) ((-1020 . -563) 84459) ((-931 . -563) 84441) ((-485 . -23) T) ((-480 . -23) T) ((-319 . -284) T) ((-478 . -23) T) ((-298 . -124) T) ((-3 . -1016) T) ((-931 . -564) 84425) ((-927 . -221) 84404) ((-927 . -211) 84383) ((-1195 . -666) T) ((-1161 . -134) 84362) ((-772 . -1016) T) ((-1161 . -136) 84341) ((-1154 . -136) 84320) ((-1154 . -134) 84299) ((-1153 . -1127) 84278) ((-1133 . -134) 84185) ((-1133 . -136) 84092) ((-1132 . -1127) 84071) ((-355 . -124) T) ((-523 . -817) 84053) ((0 . -1016) T) ((-159 . -158) T) ((-155 . -21) T) ((-155 . -25) T) ((-48 . -1016) T) ((-1155 . -591) 83958) ((-1153 . -515) 83909) ((-654 . -1028) T) ((-1132 . -515) 83860) ((-523 . -964) 83842) ((-548 . -136) 83821) ((-548 . -134) 83800) ((-466 . -964) 83743) ((-85 . -360) T) ((-85 . -371) T) ((-803 . -339) T) ((-773 . -124) T) ((-766 . -124) T) ((-654 . -23) T) ((-473 . -563) 83725) ((-1191 . -980) T) ((-355 . -982) T) ((-953 . -1016) 83703) ((-832 . -33) T) ((-456 . -286) 83641) ((-1068 . -564) 83602) ((-1068 . -563) 83534) ((-1083 . -786) 83513) ((-44 . -97) T) ((-1039 . -786) 83492) ((-756 . -97) T) ((-1142 . -25) T) ((-1142 . -21) T) ((-791 . -25) T) ((-43 . -343) 83476) ((-791 . -21) T) ((-671 . -427) 83427) ((-1190 . -563) 83409) ((-530 . -25) T) ((-530 . -21) T) ((-366 . -1016) T) ((-977 . -286) 83347) ((-568 . -1016) T) ((-638 . -817) 83329) ((-1169 . -1123) T) ((-205 . -286) 83267) ((-133 . -344) T) ((-970 . -564) 83209) ((-970 . -563) 83152) ((-289 . -840) NIL) ((-638 . -964) 83097) ((-651 . -851) T) ((-449 . -1127) 83076) ((-1084 . -427) 83055) ((-1078 . -427) 83034) ((-306 . -97) T) ((-803 . -1028) T) ((-292 . -591) 82856) ((-289 . -591) 82785) ((-449 . -515) 82736) ((-315 . -484) 82702) ((-509 . -140) 82652) ((-39 . -284) T) ((-779 . -563) 82634) ((-640 . -267) T) ((-803 . -23) T) ((-355 . -464) T) ((-999 . -209) 82604) ((-482 . -97) T) ((-383 . -564) 82412) ((-383 . -563) 82394) ((-240 . -563) 82376) ((-112 . -267) T) ((-1155 . -666) T) ((-1153 . -339) 82355) ((-1132 . -339) 82334) ((-1180 . -33) T) ((-113 . -1123) T) ((-103 . -209) 82316) ((-1089 . -97) T) ((-452 . -1016) T) ((-492 . -462) 82300) ((-677 . -33) T) ((-456 . -37) 82270) ((-130 . -33) T) ((-113 . -815) 82247) ((-113 . -817) NIL) ((-570 . -964) 82132) ((-589 . -786) 82111) ((-1179 . -97) T) ((-272 . -97) T) ((-652 . -344) 82090) ((-113 . -964) 82067) ((-366 . -657) 82051) ((-568 . -657) 82035) ((-44 . -286) 81839) ((-755 . -134) 81818) ((-755 . -136) 81797) ((-1190 . -358) 81776) ((-758 . -786) T) ((-1171 . -1016) T) ((-1071 . -207) 81723) ((-362 . -786) 81702) ((-1161 . -1112) 81668) ((-1161 . -1109) 81634) ((-1154 . -1109) 81600) ((-485 . -124) T) ((-1154 . -1112) 81566) ((-1133 . -1109) 81532) ((-1133 . -1112) 81498) ((-1161 . -34) 81464) ((-1161 . -91) 81430) ((-581 . -563) 81399) ((-557 . -563) 81368) ((-203 . -786) T) ((-1154 . -91) 81334) ((-1154 . -34) 81300) ((-1153 . -1028) T) ((-1034 . -591) 81287) ((-1133 . -91) 81253) ((-1132 . -1028) T) ((-546 . -140) 81235) ((-999 . -325) 81214) ((-113 . -353) 81191) ((-113 . -314) 81168) ((-159 . -267) T) ((-1133 . -34) 81134) ((-801 . -284) T) ((-289 . -733) NIL) ((-289 . -730) NIL) ((-292 . -666) 80984) ((-289 . -666) T) ((-449 . -339) 80963) ((-335 . -325) 80942) ((-329 . -325) 80921) ((-321 . -325) 80900) ((-292 . -448) 80879) ((-1153 . -23) T) ((-1132 . -23) T) ((-658 . -1028) T) ((-654 . -124) T) ((-596 . -97) T) ((-452 . -657) 80844) ((-44 . -259) 80794) ((-100 . -1016) T) ((-66 . -563) 80776) ((-796 . -97) T) ((-570 . -831) 80735) ((-1191 . -1016) T) ((-357 . -1016) T) ((-80 . -1123) T) ((-984 . -786) T) ((-883 . -786) 80714) ((-113 . -831) NIL) ((-721 . -851) 80693) ((-653 . -786) T) ((-495 . -1016) T) ((-471 . -1016) T) ((-331 . -1127) T) ((-328 . -1127) T) ((-320 . -1127) T) ((-241 . -1127) 80672) ((-225 . -1127) 80651) ((-1029 . -209) 80621) ((-455 . -786) 80600) ((-1054 . -979) 80584) ((-366 . -701) T) ((-1070 . -767) T) ((-633 . -1123) T) ((-331 . -515) T) ((-328 . -515) T) ((-320 . -515) T) ((-241 . -515) 80515) ((-225 . -515) 80446) ((-1054 . -107) 80425) ((-428 . -684) 80395) ((-797 . -979) 80365) ((-756 . -37) 80307) ((-633 . -815) 80289) ((-633 . -817) 80271) ((-272 . -286) 80075) ((-841 . -1127) T) ((-613 . -387) 80059) ((-797 . -107) 80024) ((-633 . -964) 79969) ((-932 . -427) T) ((-841 . -515) T) ((-536 . -851) T) ((-449 . -1028) T) ((-487 . -851) T) ((-1068 . -265) 79946) ((-845 . -427) T) ((-63 . -563) 79928) ((-578 . -207) 79874) ((-449 . -23) T) ((-1034 . -733) T) ((-803 . -124) T) ((-1034 . -730) T) ((-1182 . -1184) 79853) ((-1034 . -666) T) ((-597 . -591) 79827) ((-271 . -563) 79569) ((-962 . -33) T) ((-754 . -784) 79548) ((-535 . -284) T) ((-523 . -284) T) ((-466 . -284) T) ((-1191 . -657) 79518) ((-633 . -353) 79500) ((-633 . -314) 79482) ((-452 . -158) T) ((-357 . -657) 79452) ((-802 . -786) NIL) ((-523 . -949) T) ((-466 . -949) T) ((-1047 . -563) 79434) ((-1029 . -216) 79413) ((-193 . -97) T) ((-1062 . -97) T) ((-69 . -563) 79395) ((-1054 . -973) T) ((-1089 . -37) 79292) ((-793 . -563) 79274) ((-523 . -508) T) ((-613 . -980) T) ((-671 . -880) 79227) ((-1054 . -211) 79206) ((-1001 . -1016) T) ((-961 . -25) T) ((-961 . -21) T) ((-931 . -979) 79151) ((-836 . -97) T) ((-797 . -973) T) ((-633 . -831) NIL) ((-331 . -305) 79135) ((-331 . -339) T) ((-328 . -305) 79119) ((-328 . -339) T) ((-320 . -305) 79103) ((-320 . -339) T) ((-460 . -97) T) ((-1179 . -37) 79073) ((-492 . -627) 79023) ((-196 . -97) T) ((-951 . -964) 78905) ((-931 . -107) 78834) ((-1085 . -902) 78803) ((-1084 . -902) 78765) ((-489 . -140) 78749) ((-999 . -346) 78728) ((-327 . -563) 78710) ((-298 . -21) T) ((-330 . -964) 78687) ((-298 . -25) T) ((-1078 . -902) 78656) ((-1040 . -902) 78623) ((-74 . -563) 78605) ((-638 . -284) T) ((-155 . -786) 78584) ((-841 . -339) T) ((-355 . -25) T) ((-355 . -21) T) ((-841 . -305) 78571) ((-84 . -563) 78553) ((-638 . -949) T) ((-618 . -786) T) ((-1153 . -124) T) ((-1132 . -124) T) ((-832 . -938) 78537) ((-773 . -21) T) ((-47 . -964) 78480) ((-773 . -25) T) ((-766 . -25) T) ((-766 . -21) T) ((-1189 . -980) T) ((-1187 . -980) T) ((-597 . -666) T) ((-1190 . -979) 78464) ((-1142 . -786) 78443) ((-754 . -387) 78412) ((-98 . -115) 78396) ((-51 . -1016) T) ((-857 . -563) 78378) ((-802 . -921) 78355) ((-762 . -97) T) ((-1190 . -107) 78334) ((-596 . -37) 78304) ((-530 . -786) T) ((-331 . -1028) T) ((-328 . -1028) T) ((-320 . -1028) T) ((-241 . -1028) T) ((-225 . -1028) T) ((-570 . -284) 78283) ((-1062 . -286) 78087) ((-607 . -23) T) ((-456 . -209) 78057) ((-141 . -980) T) ((-331 . -23) T) ((-328 . -23) T) ((-320 . -23) T) ((-113 . -284) T) ((-241 . -23) T) ((-225 . -23) T) ((-931 . -973) T) ((-652 . -840) 78036) ((-931 . -211) 78008) ((-931 . -221) T) ((-113 . -949) NIL) ((-841 . -1028) T) ((-1154 . -427) 77987) ((-1133 . -427) 77966) ((-492 . -563) 77898) ((-652 . -591) 77823) ((-383 . -979) 77775) ((-475 . -563) 77757) ((-841 . -23) T) ((-460 . -286) NIL) ((-449 . -124) T) ((-196 . -286) NIL) ((-383 . -107) 77695) ((-754 . -980) 77626) ((-677 . -1014) 77610) ((-1153 . -464) 77576) ((-1132 . -464) 77542) ((-130 . -1014) 77524) ((-452 . -267) T) ((-1190 . -973) T) ((-985 . -97) T) ((-471 . -484) NIL) ((-642 . -97) T) ((-456 . -216) 77503) ((-1083 . -134) 77482) ((-1083 . -136) 77461) ((-1039 . -136) 77440) ((-1039 . -134) 77419) ((-581 . -979) 77403) ((-557 . -979) 77387) ((-613 . -1016) T) ((-613 . -976) 77327) ((-1085 . -1160) 77311) ((-1085 . -1147) 77288) ((-460 . -1063) T) ((-1084 . -1152) 77249) ((-1084 . -1147) 77219) ((-1084 . -1150) 77203) ((-196 . -1063) T) ((-319 . -851) T) ((-757 . -243) 77187) ((-581 . -107) 77166) ((-557 . -107) 77145) ((-1078 . -1131) 77106) ((-779 . -973) 77085) ((-1078 . -1147) 77062) ((-485 . -25) T) ((-466 . -279) T) ((-481 . -23) T) ((-480 . -25) T) ((-478 . -25) T) ((-477 . -23) T) ((-1078 . -1129) 77046) ((-383 . -973) T) ((-295 . -980) T) ((-633 . -284) T) ((-103 . -784) T) ((-383 . -221) T) ((-383 . -211) 77025) ((-652 . -666) T) ((-460 . -37) 76975) ((-196 . -37) 76925) ((-449 . -464) 76891) ((-1070 . -1056) T) ((-1017 . -97) T) ((-640 . -563) 76873) ((-640 . -564) 76788) ((-654 . -21) T) ((-654 . -25) T) ((-126 . -563) 76770) ((-112 . -563) 76752) ((-144 . -25) T) ((-1189 . -1016) T) ((-803 . -585) 76700) ((-1187 . -1016) T) ((-893 . -97) T) ((-675 . -97) T) ((-655 . -97) T) ((-428 . -97) T) ((-755 . -427) 76651) ((-43 . -1016) T) ((-1006 . -786) T) ((-607 . -124) T) ((-985 . -286) 76502) ((-613 . -657) 76486) ((-266 . -980) T) ((-331 . -124) T) ((-328 . -124) T) ((-320 . -124) T) ((-241 . -124) T) ((-225 . -124) T) ((-394 . -97) T) ((-141 . -1016) T) ((-44 . -207) 76436) ((-888 . -786) 76415) ((-927 . -591) 76353) ((-218 . -1176) 76323) ((-951 . -284) T) ((-271 . -979) 76245) ((-841 . -124) T) ((-39 . -851) T) ((-460 . -376) 76227) ((-330 . -284) T) ((-196 . -376) 76209) ((-999 . -387) 76193) ((-271 . -107) 76110) ((-803 . -25) T) ((-803 . -21) T) ((-315 . -563) 76092) ((-1155 . -46) 76036) ((-203 . -136) T) ((-159 . -563) 76018) ((-1029 . -784) 75997) ((-713 . -563) 75979) ((-558 . -213) 75926) ((-450 . -213) 75876) ((-1189 . -657) 75846) ((-47 . -284) T) ((-1187 . -657) 75816) ((-894 . -1016) T) ((-754 . -1016) 75627) ((-288 . -97) T) ((-832 . -1123) T) ((-47 . -949) T) ((-1132 . -585) 75535) ((-629 . -97) 75513) ((-43 . -657) 75497) ((-509 . -97) T) ((-65 . -359) T) ((-65 . -371) T) ((-605 . -23) T) ((-613 . -701) T) ((-1121 . -1016) 75475) ((-327 . -979) 75420) ((-617 . -1016) 75398) ((-984 . -136) T) ((-883 . -136) 75377) ((-883 . -134) 75356) ((-738 . -97) T) ((-141 . -657) 75340) ((-455 . -136) 75319) ((-455 . -134) 75298) ((-327 . -107) 75227) ((-999 . -980) T) ((-298 . -786) 75206) ((-1161 . -902) 75175) ((-573 . -1016) T) ((-1154 . -902) 75137) ((-481 . -124) T) ((-477 . -124) T) ((-272 . -207) 75087) ((-335 . -980) T) ((-329 . -980) T) ((-321 . -980) T) ((-271 . -973) 75030) ((-1133 . -902) 74999) ((-355 . -786) T) ((-103 . -980) T) ((-927 . -666) T) ((-801 . -851) T) ((-779 . -734) 74978) ((-779 . -731) 74957) ((-394 . -286) 74896) ((-443 . -97) T) ((-548 . -902) 74865) ((-295 . -1016) T) ((-383 . -734) 74844) ((-383 . -731) 74823) ((-471 . -462) 74805) ((-1155 . -964) 74771) ((-1153 . -21) T) ((-1153 . -25) T) ((-1132 . -21) T) ((-1132 . -25) T) ((-754 . -657) 74713) ((-638 . -380) T) ((-1180 . -1123) T) ((-1029 . -387) 74682) ((-931 . -344) NIL) ((-98 . -33) T) ((-677 . -1123) T) ((-43 . -701) T) ((-546 . -97) T) ((-75 . -372) T) ((-75 . -371) T) ((-596 . -599) 74666) ((-130 . -1123) T) ((-802 . -136) T) ((-802 . -134) NIL) ((-327 . -973) T) ((-68 . -359) T) ((-68 . -371) T) ((-1077 . -97) T) ((-613 . -484) 74599) ((-629 . -286) 74537) ((-893 . -37) 74434) ((-675 . -37) 74404) ((-509 . -286) 74208) ((-292 . -1123) T) ((-327 . -211) T) ((-327 . -221) T) ((-289 . -1123) T) ((-266 . -1016) T) ((-1091 . -563) 74190) ((-651 . -1127) T) ((-1068 . -594) 74174) ((-1118 . -515) 74153) ((-651 . -515) T) ((-292 . -815) 74137) ((-292 . -817) 74062) ((-289 . -815) 74023) ((-289 . -817) NIL) ((-738 . -286) 73988) ((-295 . -657) 73829) ((-300 . -299) 73806) ((-458 . -97) T) ((-449 . -25) T) ((-449 . -21) T) ((-394 . -37) 73780) ((-292 . -964) 73448) ((-203 . -1109) T) ((-203 . -1112) T) ((-3 . -563) 73430) ((-289 . -964) 73360) ((-2 . -1016) T) ((-2 . |RecordCategory|) T) ((-772 . -563) 73342) ((-1029 . -980) 73273) ((-535 . -851) T) ((-523 . -759) T) ((-523 . -851) T) ((-466 . -851) T) ((-128 . -964) 73257) ((-203 . -91) T) ((-155 . -136) 73236) ((-73 . -416) T) ((0 . -563) 73218) ((-73 . -371) T) ((-155 . -134) 73169) ((-203 . -34) T) ((-48 . -563) 73151) ((-452 . -980) T) ((-460 . -209) 73133) ((-457 . -898) 73117) ((-456 . -784) 73096) ((-196 . -209) 73078) ((-79 . -416) T) ((-79 . -371) T) ((-1058 . -33) T) ((-754 . -158) 73057) ((-671 . -97) T) ((-953 . -563) 73024) ((-471 . -263) 72999) ((-292 . -353) 72969) ((-289 . -353) 72930) ((-289 . -314) 72891) ((-1003 . -563) 72873) ((-755 . -880) 72820) ((-605 . -124) T) ((-1142 . -134) 72799) ((-1142 . -136) 72778) ((-1085 . -97) T) ((-1084 . -97) T) ((-1078 . -97) T) ((-1071 . -1016) T) ((-1040 . -97) T) ((-200 . -33) T) ((-266 . -657) 72765) ((-1071 . -560) 72741) ((-546 . -286) NIL) ((-457 . -1016) 72719) ((-366 . -563) 72701) ((-480 . -786) T) ((-1062 . -207) 72651) ((-1161 . -1160) 72635) ((-1161 . -1147) 72612) ((-1154 . -1152) 72573) ((-1154 . -1147) 72543) ((-1154 . -1150) 72527) ((-1133 . -1131) 72488) ((-1133 . -1147) 72465) ((-568 . -563) 72447) ((-1133 . -1129) 72431) ((-638 . -851) T) ((-1085 . -261) 72397) ((-1084 . -261) 72363) ((-1078 . -261) 72329) ((-999 . -1016) T) ((-983 . -1016) T) ((-47 . -279) T) ((-292 . -831) 72296) ((-289 . -831) NIL) ((-983 . -989) 72275) ((-1034 . -817) 72257) ((-738 . -37) 72241) ((-241 . -585) 72189) ((-225 . -585) 72137) ((-640 . -979) 72124) ((-548 . -1147) 72101) ((-1040 . -261) 72067) ((-295 . -158) 71998) ((-335 . -1016) T) ((-329 . -1016) T) ((-321 . -1016) T) ((-471 . -19) 71980) ((-1034 . -964) 71962) ((-1018 . -140) 71946) ((-103 . -1016) T) ((-112 . -979) 71933) ((-651 . -339) T) ((-471 . -556) 71908) ((-640 . -107) 71893) ((-412 . -97) T) ((-44 . -1061) 71843) ((-112 . -107) 71828) ((-581 . -660) T) ((-557 . -660) T) ((-754 . -484) 71761) ((-962 . -1123) T) ((-874 . -140) 71745) ((-489 . -97) 71695) ((-1005 . -1127) 71674) ((-452 . -563) 71626) ((-452 . -564) 71548) ((-60 . -1123) T) ((-721 . -1127) 71527) ((-719 . -1127) 71506) ((-1083 . -427) 71437) ((-1070 . -1016) T) ((-1054 . -591) 71411) ((-1005 . -515) 71342) ((-456 . -387) 71311) ((-570 . -851) 71290) ((-429 . -1127) 71269) ((-1039 . -427) 71220) ((-374 . -563) 71202) ((-617 . -484) 71135) ((-721 . -515) 71046) ((-719 . -515) 70977) ((-671 . -286) 70964) ((-607 . -25) T) ((-607 . -21) T) ((-429 . -515) 70895) ((-113 . -851) T) ((-113 . -759) NIL) ((-331 . -25) T) ((-331 . -21) T) ((-328 . -25) T) ((-328 . -21) T) ((-320 . -25) T) ((-320 . -21) T) ((-241 . -25) T) ((-241 . -21) T) ((-81 . -360) T) ((-81 . -371) T) ((-225 . -25) T) ((-225 . -21) T) ((-1171 . -563) 70877) ((-1118 . -1028) T) ((-1118 . -23) T) ((-1078 . -286) 70762) ((-1040 . -286) 70749) ((-797 . -591) 70709) ((-999 . -657) 70577) ((-874 . -909) 70561) ((-266 . -158) T) ((-841 . -21) T) ((-841 . -25) T) ((-803 . -786) 70512) ((-651 . -1028) T) ((-651 . -23) T) ((-590 . -1016) 70490) ((-578 . -560) 70465) ((-578 . -1016) T) ((-536 . -1127) T) ((-487 . -1127) T) ((-536 . -515) T) ((-487 . -515) T) ((-335 . -657) 70417) ((-329 . -657) 70369) ((-159 . -979) 70301) ((-315 . -979) 70285) ((-103 . -657) 70235) ((-159 . -107) 70146) ((-321 . -657) 70098) ((-315 . -107) 70077) ((-251 . -1016) T) ((-250 . -1016) T) ((-249 . -1016) T) ((-248 . -1016) T) ((-640 . -973) T) ((-247 . -1016) T) ((-246 . -1016) T) ((-245 . -1016) T) ((-192 . -1016) T) ((-191 . -1016) T) ((-189 . -1016) T) ((-155 . -1112) 70055) ((-155 . -1109) 70033) ((-188 . -1016) T) ((-187 . -1016) T) ((-112 . -973) T) ((-186 . -1016) T) ((-183 . -1016) T) ((-640 . -211) T) ((-182 . -1016) T) ((-181 . -1016) T) ((-180 . -1016) T) ((-179 . -1016) T) ((-178 . -1016) T) ((-177 . -1016) T) ((-176 . -1016) T) ((-175 . -1016) T) ((-174 . -1016) T) ((-173 . -1016) T) ((-218 . -97) 69844) ((-155 . -34) 69822) ((-155 . -91) 69800) ((-597 . -964) 69698) ((-456 . -980) 69629) ((-1029 . -1016) 69440) ((-1054 . -33) T) ((-613 . -462) 69424) ((-71 . -1123) T) ((-100 . -563) 69406) ((-1191 . -563) 69388) ((-357 . -563) 69370) ((-530 . -1112) T) ((-530 . -1109) T) ((-671 . -37) 69219) ((-495 . -563) 69201) ((-489 . -286) 69139) ((-471 . -563) 69121) ((-471 . -564) 69103) ((-1078 . -1063) NIL) ((-954 . -992) 69072) ((-954 . -1016) T) ((-932 . -97) T) ((-900 . -97) T) ((-845 . -97) T) ((-824 . -964) 69049) ((-1054 . -666) T) ((-931 . -591) 68994) ((-451 . -1016) T) ((-438 . -1016) T) ((-540 . -23) T) ((-530 . -34) T) ((-530 . -91) T) ((-403 . -97) T) ((-985 . -207) 68940) ((-1085 . -37) 68837) ((-797 . -666) T) ((-633 . -851) T) ((-481 . -25) T) ((-477 . -21) T) ((-477 . -25) T) ((-1084 . -37) 68678) ((-315 . -973) T) ((-1078 . -37) 68474) ((-999 . -158) T) ((-159 . -973) T) ((-1040 . -37) 68371) ((-652 . -46) 68348) ((-335 . -158) T) ((-329 . -158) T) ((-488 . -55) 68322) ((-468 . -55) 68272) ((-327 . -1186) 68249) ((-203 . -427) T) ((-295 . -267) 68200) ((-321 . -158) T) ((-159 . -221) T) ((-1132 . -786) 68099) ((-103 . -158) T) ((-803 . -921) 68083) ((-601 . -1028) T) ((-536 . -339) T) ((-536 . -305) 68070) ((-487 . -305) 68047) ((-487 . -339) T) ((-292 . -284) 68026) ((-289 . -284) T) ((-554 . -786) 68005) ((-1029 . -657) 67947) ((-489 . -259) 67931) ((-601 . -23) T) ((-394 . -209) 67915) ((-289 . -949) NIL) ((-312 . -23) T) ((-98 . -938) 67899) ((-44 . -35) 67878) ((-562 . -1016) T) ((-327 . -344) T) ((-466 . -27) T) ((-218 . -286) 67816) ((-1005 . -1028) T) ((-1190 . -591) 67790) ((-721 . -1028) T) ((-719 . -1028) T) ((-429 . -1028) T) ((-984 . -427) T) ((-883 . -427) 67741) ((-106 . -1016) T) ((-1005 . -23) T) ((-756 . -980) T) ((-721 . -23) T) ((-719 . -23) T) ((-455 . -427) 67692) ((-1071 . -484) 67475) ((-357 . -358) 67454) ((-1089 . -387) 67438) ((-436 . -23) T) ((-429 . -23) T) ((-457 . -484) 67371) ((-266 . -267) T) ((-1001 . -563) 67353) ((-383 . -840) 67332) ((-49 . -1028) T) ((-951 . -851) T) ((-931 . -666) T) ((-652 . -817) NIL) ((-536 . -1028) T) ((-487 . -1028) T) ((-779 . -591) 67305) ((-1118 . -124) T) ((-1078 . -376) 67257) ((-932 . -286) NIL) ((-754 . -462) 67241) ((-330 . -851) T) ((-1068 . -33) T) ((-383 . -591) 67193) ((-49 . -23) T) ((-651 . -124) T) ((-652 . -964) 67075) ((-536 . -23) T) ((-103 . -484) NIL) ((-487 . -23) T) ((-155 . -385) 67046) ((-1052 . -1016) T) ((-1182 . -1181) 67030) ((-640 . -734) T) ((-640 . -731) T) ((-1034 . -284) T) ((-355 . -136) T) ((-257 . -563) 67012) ((-1132 . -921) 66982) ((-47 . -851) T) ((-617 . -462) 66966) ((-228 . -1176) 66936) ((-227 . -1176) 66906) ((-1087 . -786) T) ((-1029 . -158) 66885) ((-1034 . -949) T) ((-970 . -33) T) ((-773 . -136) 66864) ((-773 . -134) 66843) ((-677 . -102) 66827) ((-562 . -125) T) ((-456 . -1016) 66638) ((-1089 . -980) T) ((-802 . -427) T) ((-83 . -1123) T) ((-218 . -37) 66608) ((-130 . -102) 66590) ((-652 . -353) 66574) ((-1034 . -508) T) ((-366 . -979) 66558) ((-1190 . -666) T) ((-1083 . -880) 66527) ((-51 . -563) 66509) ((-1039 . -880) 66476) ((-596 . -387) 66460) ((-1179 . -980) T) ((-568 . -979) 66444) ((-605 . -25) T) ((-605 . -21) T) ((-1070 . -484) NIL) ((-1161 . -97) T) ((-1154 . -97) T) ((-366 . -107) 66423) ((-200 . -231) 66407) ((-1133 . -97) T) ((-977 . -1016) T) ((-932 . -1063) T) ((-977 . -976) 66347) ((-757 . -1016) T) ((-319 . -1127) T) ((-581 . -591) 66331) ((-568 . -107) 66310) ((-557 . -591) 66294) ((-549 . -97) T) ((-540 . -124) T) ((-548 . -97) T) ((-390 . -1016) T) ((-361 . -1016) T) ((-205 . -1016) 66272) ((-590 . -484) 66205) ((-578 . -484) 66049) ((-772 . -973) 66028) ((-589 . -140) 66012) ((-319 . -515) T) ((-652 . -831) 65955) ((-509 . -207) 65905) ((-1161 . -261) 65871) ((-999 . -267) 65822) ((-460 . -784) T) ((-201 . -1028) T) ((-1154 . -261) 65788) ((-1133 . -261) 65754) ((-932 . -37) 65704) ((-196 . -784) T) ((-1118 . -464) 65670) ((-845 . -37) 65622) ((-779 . -733) 65601) ((-779 . -730) 65580) ((-779 . -666) 65559) ((-335 . -267) T) ((-329 . -267) T) ((-321 . -267) T) ((-155 . -427) 65490) ((-403 . -37) 65474) ((-103 . -267) T) ((-201 . -23) T) ((-383 . -733) 65453) ((-383 . -730) 65432) ((-383 . -666) T) ((-471 . -265) 65407) ((-452 . -979) 65372) ((-601 . -124) T) ((-1029 . -484) 65305) ((-312 . -124) T) ((-155 . -378) 65284) ((-456 . -657) 65226) ((-754 . -263) 65203) ((-452 . -107) 65159) ((-596 . -980) T) ((-1142 . -427) 65090) ((-1005 . -124) T) ((-241 . -786) 65069) ((-225 . -786) 65048) ((-721 . -124) T) ((-719 . -124) T) ((-530 . -427) T) ((-977 . -657) 64990) ((-568 . -973) T) ((-954 . -484) 64923) ((-436 . -124) T) ((-429 . -124) T) ((-44 . -1016) T) ((-361 . -657) 64893) ((-756 . -1016) T) ((-451 . -484) 64826) ((-438 . -484) 64759) ((-428 . -343) 64729) ((-44 . -560) 64708) ((-292 . -279) T) ((-613 . -563) 64670) ((-57 . -786) 64649) ((-1133 . -286) 64534) ((-932 . -376) 64516) ((-754 . -556) 64493) ((-486 . -786) 64472) ((-467 . -786) 64451) ((-39 . -1127) T) ((-927 . -964) 64349) ((-49 . -124) T) ((-536 . -124) T) ((-487 . -124) T) ((-271 . -591) 64211) ((-319 . -305) 64188) ((-319 . -339) T) ((-298 . -299) 64165) ((-295 . -263) 64150) ((-39 . -515) T) ((-355 . -1109) T) ((-355 . -1112) T) ((-962 . -1100) 64125) ((-1097 . -213) 64075) ((-1078 . -209) 64027) ((-306 . -1016) T) ((-355 . -91) T) ((-355 . -34) T) ((-962 . -102) 63973) ((-452 . -973) T) ((-453 . -213) 63923) ((-1071 . -462) 63857) ((-1191 . -979) 63841) ((-357 . -979) 63825) ((-452 . -221) T) ((-755 . -97) T) ((-654 . -136) 63804) ((-654 . -134) 63783) ((-457 . -462) 63767) ((-458 . -311) 63736) ((-1191 . -107) 63715) ((-482 . -1016) T) ((-456 . -158) 63694) ((-927 . -353) 63678) ((-389 . -97) T) ((-357 . -107) 63657) ((-927 . -314) 63641) ((-256 . -912) 63625) ((-255 . -912) 63609) ((-1189 . -563) 63591) ((-1187 . -563) 63573) ((-106 . -484) NIL) ((-1083 . -1145) 63557) ((-790 . -788) 63541) ((-1089 . -1016) T) ((-98 . -1123) T) ((-883 . -880) 63502) ((-756 . -657) 63444) ((-1133 . -1063) NIL) ((-455 . -880) 63389) ((-984 . -132) T) ((-58 . -97) 63367) ((-43 . -563) 63349) ((-76 . -563) 63331) ((-327 . -591) 63276) ((-1179 . -1016) T) ((-481 . -786) T) ((-319 . -1028) T) ((-272 . -1016) T) ((-927 . -831) 63235) ((-272 . -560) 63214) ((-1161 . -37) 63111) ((-1154 . -37) 62952) ((-460 . -980) T) ((-1133 . -37) 62748) ((-196 . -980) T) ((-319 . -23) T) ((-141 . -563) 62730) ((-772 . -734) 62709) ((-772 . -731) 62688) ((-549 . -37) 62661) ((-548 . -37) 62558) ((-801 . -515) T) ((-201 . -124) T) ((-295 . -930) 62524) ((-77 . -563) 62506) ((-652 . -284) 62485) ((-271 . -666) 62388) ((-763 . -97) T) ((-796 . -780) T) ((-271 . -448) 62367) ((-1182 . -97) T) ((-39 . -339) T) ((-803 . -136) 62346) ((-803 . -134) 62325) ((-1070 . -462) 62307) ((-1191 . -973) T) ((-456 . -484) 62240) ((-1058 . -1123) T) ((-894 . -563) 62222) ((-590 . -462) 62206) ((-578 . -462) 62137) ((-754 . -563) 61889) ((-47 . -27) T) ((-1089 . -657) 61786) ((-596 . -1016) T) ((-412 . -340) 61760) ((-1018 . -97) T) ((-755 . -286) 61747) ((-796 . -1016) T) ((-1187 . -358) 61719) ((-977 . -484) 61652) ((-1071 . -263) 61628) ((-218 . -209) 61598) ((-1179 . -657) 61568) ((-756 . -158) 61547) ((-205 . -484) 61480) ((-568 . -734) 61459) ((-568 . -731) 61438) ((-1121 . -563) 61350) ((-200 . -1123) T) ((-617 . -563) 61282) ((-1068 . -938) 61266) ((-327 . -666) T) ((-874 . -97) 61216) ((-1133 . -376) 61168) ((-1029 . -462) 61152) ((-58 . -286) 61090) ((-307 . -97) T) ((-1118 . -21) T) ((-1118 . -25) T) ((-39 . -1028) T) ((-651 . -21) T) ((-573 . -563) 61072) ((-485 . -299) 61051) ((-651 . -25) T) ((-103 . -263) NIL) ((-852 . -1028) T) ((-39 . -23) T) ((-710 . -1028) T) ((-523 . -1127) T) ((-466 . -1127) T) ((-295 . -563) 61033) ((-932 . -209) 61015) ((-155 . -152) 60999) ((-535 . -515) T) ((-523 . -515) T) ((-466 . -515) T) ((-710 . -23) T) ((-1153 . -136) 60978) ((-1071 . -556) 60954) ((-1153 . -134) 60933) ((-954 . -462) 60917) ((-1132 . -134) 60842) ((-1132 . -136) 60767) ((-1182 . -1188) 60746) ((-451 . -462) 60730) ((-438 . -462) 60714) ((-492 . -33) T) ((-596 . -657) 60684) ((-108 . -897) T) ((-605 . -786) 60663) ((-1089 . -158) 60614) ((-341 . -97) T) ((-218 . -216) 60593) ((-228 . -97) T) ((-227 . -97) T) ((-1142 . -880) 60562) ((-105 . -97) T) ((-223 . -786) 60541) ((-755 . -37) 60390) ((-44 . -484) 60182) ((-1070 . -263) 60157) ((-193 . -1016) T) ((-1062 . -1016) T) ((-1062 . -560) 60136) ((-540 . -25) T) ((-540 . -21) T) ((-1018 . -286) 60074) ((-893 . -387) 60058) ((-638 . -1127) T) ((-578 . -263) 60033) ((-1005 . -585) 59981) ((-721 . -585) 59929) ((-719 . -585) 59877) ((-319 . -124) T) ((-266 . -563) 59859) ((-638 . -515) T) ((-836 . -1016) T) ((-801 . -1028) T) ((-429 . -585) 59807) ((-836 . -834) 59791) ((-355 . -427) T) ((-460 . -1016) T) ((-640 . -591) 59778) ((-874 . -286) 59716) ((-196 . -1016) T) ((-292 . -851) 59695) ((-289 . -851) T) ((-289 . -759) NIL) ((-366 . -660) T) ((-801 . -23) T) ((-112 . -591) 59682) ((-449 . -134) 59661) ((-394 . -387) 59645) ((-449 . -136) 59624) ((-106 . -462) 59606) ((-2 . -563) 59588) ((-1070 . -19) 59570) ((-1070 . -556) 59545) ((-601 . -21) T) ((-601 . -25) T) ((-546 . -1056) T) ((-1029 . -263) 59522) ((-312 . -25) T) ((-312 . -21) T) ((-466 . -339) T) ((-1182 . -37) 59492) ((-1054 . -1123) T) ((-578 . -556) 59467) ((-1005 . -25) T) ((-1005 . -21) T) ((-495 . -731) T) ((-495 . -734) T) ((-113 . -1127) T) ((-893 . -980) T) ((-570 . -515) T) ((-675 . -980) T) ((-655 . -980) T) ((-721 . -25) T) ((-721 . -21) T) ((-719 . -21) T) ((-719 . -25) T) ((-613 . -979) 59451) ((-436 . -25) T) ((-113 . -515) T) ((-436 . -21) T) ((-429 . -25) T) ((-429 . -21) T) ((-1054 . -964) 59349) ((-756 . -267) 59328) ((-762 . -1016) T) ((-896 . -897) T) ((-613 . -107) 59307) ((-272 . -484) 59099) ((-1189 . -979) 59083) ((-1187 . -979) 59067) ((-228 . -286) 59005) ((-227 . -286) 58943) ((-1136 . -97) 58921) ((-1071 . -564) NIL) ((-1071 . -563) 58903) ((-1153 . -1109) 58869) ((-1153 . -1112) 58835) ((-1133 . -209) 58787) ((-1132 . -1109) 58753) ((-1132 . -1112) 58719) ((-1054 . -353) 58703) ((-1034 . -759) T) ((-1034 . -851) T) ((-1029 . -556) 58680) ((-999 . -564) 58664) ((-457 . -563) 58596) ((-754 . -265) 58573) ((-558 . -140) 58520) ((-394 . -980) T) ((-460 . -657) 58470) ((-456 . -462) 58454) ((-303 . -786) 58433) ((-315 . -591) 58407) ((-49 . -21) T) ((-49 . -25) T) ((-196 . -657) 58357) ((-155 . -664) 58328) ((-159 . -591) 58260) ((-536 . -21) T) ((-536 . -25) T) ((-487 . -25) T) ((-487 . -21) T) ((-450 . -140) 58210) ((-999 . -563) 58192) ((-983 . -563) 58174) ((-922 . -97) T) ((-794 . -97) T) ((-738 . -387) 58138) ((-39 . -124) T) ((-638 . -339) T) ((-192 . -826) T) ((-640 . -733) T) ((-640 . -730) T) ((-535 . -1028) T) ((-523 . -1028) T) ((-466 . -1028) T) ((-640 . -666) T) ((-335 . -563) 58120) ((-329 . -563) 58102) ((-321 . -563) 58084) ((-64 . -372) T) ((-64 . -371) T) ((-103 . -564) 58014) ((-103 . -563) 57996) ((-191 . -826) T) ((-888 . -140) 57980) ((-1153 . -91) 57946) ((-710 . -124) T) ((-126 . -666) T) ((-112 . -666) T) ((-1153 . -34) 57912) ((-977 . -462) 57896) ((-535 . -23) T) ((-523 . -23) T) ((-466 . -23) T) ((-1132 . -91) 57862) ((-1132 . -34) 57828) ((-1083 . -97) T) ((-1039 . -97) T) ((-790 . -97) T) ((-205 . -462) 57812) ((-1189 . -107) 57791) ((-1187 . -107) 57770) ((-43 . -979) 57754) ((-1142 . -1145) 57738) ((-791 . -788) 57722) ((-1089 . -267) 57701) ((-106 . -263) 57676) ((-1054 . -831) 57635) ((-43 . -107) 57614) ((-613 . -973) T) ((-1092 . -1164) T) ((-1070 . -564) NIL) ((-1070 . -563) 57596) ((-985 . -560) 57571) ((-985 . -1016) T) ((-72 . -416) T) ((-72 . -371) T) ((-613 . -211) 57550) ((-141 . -979) 57534) ((-530 . -513) 57518) ((-331 . -136) 57497) ((-331 . -134) 57448) ((-328 . -136) 57427) ((-642 . -1016) T) ((-328 . -134) 57378) ((-320 . -136) 57357) ((-320 . -134) 57308) ((-241 . -134) 57287) ((-241 . -136) 57266) ((-228 . -37) 57236) ((-225 . -136) 57215) ((-113 . -339) T) ((-225 . -134) 57194) ((-227 . -37) 57164) ((-141 . -107) 57143) ((-931 . -964) 57033) ((-1078 . -784) NIL) ((-633 . -1127) T) ((-738 . -980) T) ((-638 . -1028) T) ((-1189 . -973) T) ((-1187 . -973) T) ((-1068 . -1123) T) ((-931 . -353) 57010) ((-841 . -134) T) ((-841 . -136) 56992) ((-801 . -124) T) ((-754 . -979) 56890) ((-633 . -515) T) ((-638 . -23) T) ((-590 . -563) 56822) ((-590 . -564) 56783) ((-578 . -564) NIL) ((-578 . -563) 56765) ((-460 . -158) T) ((-201 . -21) T) ((-196 . -158) T) ((-201 . -25) T) ((-449 . -1112) 56731) ((-449 . -1109) 56697) ((-251 . -563) 56679) ((-250 . -563) 56661) ((-249 . -563) 56643) ((-248 . -563) 56625) ((-247 . -563) 56607) ((-471 . -594) 56589) ((-246 . -563) 56571) ((-315 . -666) T) ((-245 . -563) 56553) ((-106 . -19) 56535) ((-159 . -666) T) ((-471 . -349) 56517) ((-192 . -563) 56499) ((-489 . -1061) 56483) ((-471 . -119) T) ((-106 . -556) 56458) ((-191 . -563) 56440) ((-449 . -34) 56406) ((-449 . -91) 56372) ((-189 . -563) 56354) ((-188 . -563) 56336) ((-187 . -563) 56318) ((-186 . -563) 56300) ((-183 . -563) 56282) ((-182 . -563) 56264) ((-181 . -563) 56246) ((-180 . -563) 56228) ((-179 . -563) 56210) ((-178 . -563) 56192) ((-177 . -563) 56174) ((-499 . -1019) 56126) ((-176 . -563) 56108) ((-175 . -563) 56090) ((-44 . -462) 56027) ((-174 . -563) 56009) ((-173 . -563) 55991) ((-754 . -107) 55882) ((-589 . -97) 55832) ((-456 . -263) 55809) ((-1029 . -563) 55561) ((-1017 . -1016) T) ((-970 . -1123) T) ((-570 . -1028) T) ((-1190 . -964) 55545) ((-1083 . -286) 55532) ((-1039 . -286) 55519) ((-113 . -1028) T) ((-758 . -97) T) ((-570 . -23) T) ((-1062 . -484) 55311) ((-362 . -97) T) ((-300 . -97) T) ((-931 . -831) 55263) ((-893 . -1016) T) ((-141 . -973) T) ((-113 . -23) T) ((-671 . -387) 55247) ((-675 . -1016) T) ((-655 . -1016) T) ((-642 . -125) T) ((-428 . -1016) T) ((-292 . -406) 55231) ((-383 . -1123) T) ((-954 . -564) 55192) ((-951 . -1127) T) ((-203 . -97) T) ((-954 . -563) 55154) ((-755 . -209) 55138) ((-951 . -515) T) ((-772 . -591) 55111) ((-330 . -1127) T) ((-451 . -563) 55073) ((-451 . -564) 55034) ((-438 . -564) 54995) ((-438 . -563) 54957) ((-383 . -815) 54941) ((-295 . -979) 54776) ((-383 . -817) 54701) ((-779 . -964) 54599) ((-460 . -484) NIL) ((-456 . -556) 54576) ((-330 . -515) T) ((-196 . -484) NIL) ((-803 . -427) T) ((-394 . -1016) T) ((-383 . -964) 54443) ((-295 . -107) 54264) ((-633 . -339) T) ((-203 . -261) T) ((-47 . -1127) T) ((-754 . -973) 54195) ((-535 . -124) T) ((-523 . -124) T) ((-466 . -124) T) ((-47 . -515) T) ((-1071 . -265) 54171) ((-1083 . -1063) 54149) ((-292 . -27) 54128) ((-984 . -97) T) ((-754 . -211) 54081) ((-218 . -784) 54060) ((-883 . -97) T) ((-653 . -97) T) ((-272 . -462) 53997) ((-455 . -97) T) ((-671 . -980) T) ((-562 . -563) 53979) ((-562 . -564) 53840) ((-383 . -353) 53824) ((-383 . -314) 53808) ((-1083 . -37) 53637) ((-1039 . -37) 53486) ((-790 . -37) 53456) ((-366 . -591) 53440) ((-589 . -286) 53378) ((-893 . -657) 53275) ((-200 . -102) 53259) ((-44 . -263) 53184) ((-675 . -657) 53154) ((-568 . -591) 53128) ((-288 . -1016) T) ((-266 . -979) 53115) ((-106 . -563) 53097) ((-106 . -564) 53079) ((-428 . -657) 53049) ((-755 . -230) 52988) ((-629 . -1016) 52966) ((-509 . -1016) T) ((-1085 . -980) T) ((-1084 . -980) T) ((-266 . -107) 52951) ((-1078 . -980) T) ((-1040 . -980) T) ((-509 . -560) 52930) ((-932 . -784) T) ((-205 . -627) 52888) ((-633 . -1028) T) ((-1118 . -680) 52864) ((-295 . -973) T) ((-319 . -25) T) ((-319 . -21) T) ((-383 . -831) 52823) ((-66 . -1123) T) ((-772 . -733) 52802) ((-394 . -657) 52776) ((-738 . -1016) T) ((-772 . -730) 52755) ((-638 . -124) T) ((-652 . -851) 52734) ((-633 . -23) T) ((-460 . -267) T) ((-772 . -666) 52713) ((-295 . -211) 52665) ((-295 . -221) 52644) ((-196 . -267) T) ((-951 . -339) T) ((-1153 . -427) 52623) ((-1132 . -427) 52602) ((-330 . -305) 52579) ((-330 . -339) T) ((-1052 . -563) 52561) ((-44 . -1157) 52511) ((-802 . -97) T) ((-589 . -259) 52495) ((-638 . -982) T) ((-452 . -591) 52460) ((-443 . -1016) T) ((-44 . -556) 52385) ((-1070 . -265) 52360) ((-39 . -585) 52299) ((-47 . -339) T) ((-1022 . -563) 52281) ((-1005 . -786) 52260) ((-578 . -265) 52235) ((-721 . -786) 52214) ((-719 . -786) 52193) ((-456 . -563) 51945) ((-218 . -387) 51914) ((-883 . -286) 51901) ((-429 . -786) 51880) ((-63 . -1123) T) ((-570 . -124) T) ((-455 . -286) 51867) ((-985 . -484) 51711) ((-266 . -973) T) ((-113 . -124) T) ((-428 . -701) T) ((-893 . -158) 51662) ((-999 . -979) 51572) ((-568 . -733) 51551) ((-546 . -1016) T) ((-568 . -730) 51530) ((-568 . -666) T) ((-272 . -263) 51509) ((-271 . -1123) T) ((-977 . -563) 51471) ((-977 . -564) 51432) ((-951 . -1028) T) ((-155 . -97) T) ((-252 . -786) T) ((-1077 . -1016) T) ((-757 . -563) 51414) ((-1029 . -265) 51391) ((-1018 . -207) 51375) ((-931 . -284) T) ((-738 . -657) 51359) ((-335 . -979) 51311) ((-330 . -1028) T) ((-329 . -979) 51263) ((-390 . -563) 51245) ((-361 . -563) 51227) ((-321 . -979) 51179) ((-205 . -563) 51111) ((-999 . -107) 51007) ((-951 . -23) T) ((-103 . -979) 50957) ((-829 . -97) T) ((-777 . -97) T) ((-747 . -97) T) ((-708 . -97) T) ((-618 . -97) T) ((-449 . -427) 50936) ((-394 . -158) T) ((-335 . -107) 50874) ((-329 . -107) 50812) ((-321 . -107) 50750) ((-228 . -209) 50720) ((-227 . -209) 50690) ((-330 . -23) T) ((-69 . -1123) T) ((-203 . -37) 50655) ((-103 . -107) 50589) ((-39 . -25) T) ((-39 . -21) T) ((-613 . -660) T) ((-155 . -261) 50567) ((-47 . -1028) T) ((-852 . -25) T) ((-710 . -25) T) ((-1062 . -462) 50504) ((-458 . -1016) T) ((-1191 . -591) 50478) ((-1142 . -97) T) ((-791 . -97) T) ((-218 . -980) 50409) ((-984 . -1063) T) ((-894 . -731) 50362) ((-357 . -591) 50346) ((-47 . -23) T) ((-894 . -734) 50299) ((-754 . -734) 50250) ((-754 . -731) 50201) ((-272 . -556) 50180) ((-452 . -666) T) ((-530 . -97) T) ((-802 . -286) 50137) ((-596 . -263) 50116) ((-108 . -604) T) ((-74 . -1123) T) ((-984 . -37) 50103) ((-607 . -350) 50082) ((-883 . -37) 49931) ((-671 . -1016) T) ((-455 . -37) 49780) ((-84 . -1123) T) ((-530 . -261) T) ((-1133 . -784) NIL) ((-1085 . -1016) T) ((-1084 . -1016) T) ((-1078 . -1016) T) ((-327 . -964) 49757) ((-999 . -973) T) ((-932 . -980) T) ((-44 . -563) 49739) ((-44 . -564) NIL) ((-845 . -980) T) ((-756 . -563) 49721) ((-1059 . -97) 49699) ((-999 . -221) 49650) ((-403 . -980) T) ((-335 . -973) T) ((-329 . -973) T) ((-341 . -340) 49627) ((-321 . -973) T) ((-228 . -216) 49606) ((-227 . -216) 49585) ((-105 . -340) 49559) ((-999 . -211) 49484) ((-1040 . -1016) T) ((-271 . -831) 49443) ((-103 . -973) T) ((-633 . -124) T) ((-394 . -484) 49285) ((-335 . -211) 49264) ((-335 . -221) T) ((-43 . -660) T) ((-329 . -211) 49243) ((-329 . -221) T) ((-321 . -211) 49222) ((-321 . -221) T) ((-155 . -286) 49187) ((-103 . -221) T) ((-103 . -211) T) ((-295 . -731) T) ((-801 . -21) T) ((-801 . -25) T) ((-383 . -284) T) ((-471 . -33) T) ((-106 . -265) 49162) ((-1029 . -979) 49060) ((-802 . -1063) NIL) ((-306 . -563) 49042) ((-383 . -949) 49021) ((-1029 . -107) 48912) ((-412 . -1016) T) ((-1191 . -666) T) ((-61 . -563) 48894) ((-802 . -37) 48839) ((-492 . -1123) T) ((-554 . -140) 48823) ((-482 . -563) 48805) ((-1142 . -286) 48792) ((-671 . -657) 48641) ((-495 . -732) T) ((-495 . -733) T) ((-523 . -585) 48623) ((-466 . -585) 48583) ((-331 . -427) T) ((-328 . -427) T) ((-320 . -427) T) ((-241 . -427) 48534) ((-489 . -1016) 48484) ((-225 . -427) 48435) ((-1062 . -263) 48414) ((-1089 . -563) 48396) ((-629 . -484) 48329) ((-893 . -267) 48308) ((-509 . -484) 48100) ((-1083 . -209) 48084) ((-155 . -1063) 48063) ((-1179 . -563) 48045) ((-1085 . -657) 47942) ((-1084 . -657) 47783) ((-823 . -97) T) ((-1078 . -657) 47579) ((-1040 . -657) 47476) ((-1068 . -616) 47460) ((-331 . -378) 47411) ((-328 . -378) 47362) ((-320 . -378) 47313) ((-951 . -124) T) ((-738 . -484) 47225) ((-272 . -564) NIL) ((-272 . -563) 47207) ((-841 . -427) T) ((-894 . -344) 47160) ((-754 . -344) 47139) ((-480 . -479) 47118) ((-478 . -479) 47097) ((-460 . -263) NIL) ((-456 . -265) 47074) ((-394 . -267) T) ((-330 . -124) T) ((-196 . -263) NIL) ((-633 . -464) NIL) ((-94 . -1028) T) ((-155 . -37) 46902) ((-1153 . -902) 46864) ((-1059 . -286) 46802) ((-1132 . -902) 46771) ((-841 . -378) T) ((-1029 . -973) 46702) ((-1155 . -515) T) ((-1062 . -556) 46681) ((-108 . -786) T) ((-985 . -462) 46612) ((-535 . -21) T) ((-535 . -25) T) ((-523 . -21) T) ((-523 . -25) T) ((-466 . -25) T) ((-466 . -21) T) ((-1142 . -1063) 46590) ((-1029 . -211) 46543) ((-47 . -124) T) ((-1105 . -97) T) ((-218 . -1016) 46354) ((-802 . -376) 46331) ((-1006 . -97) T) ((-995 . -97) T) ((-558 . -97) T) ((-450 . -97) T) ((-1142 . -37) 46160) ((-791 . -37) 46130) ((-671 . -158) 46041) ((-596 . -563) 46023) ((-530 . -37) 46010) ((-888 . -97) 45960) ((-796 . -563) 45942) ((-796 . -564) 45864) ((-546 . -484) NIL) ((-1161 . -980) T) ((-1154 . -980) T) ((-1133 . -980) T) ((-549 . -980) T) ((-548 . -980) T) ((-1195 . -1028) T) ((-1085 . -158) 45815) ((-1084 . -158) 45746) ((-1078 . -158) 45677) ((-1040 . -158) 45628) ((-932 . -1016) T) ((-900 . -1016) T) ((-845 . -1016) T) ((-1118 . -136) 45607) ((-738 . -736) 45591) ((-638 . -25) T) ((-638 . -21) T) ((-113 . -585) 45568) ((-640 . -817) 45550) ((-403 . -1016) T) ((-292 . -1127) 45529) ((-289 . -1127) T) ((-155 . -376) 45513) ((-1118 . -134) 45492) ((-449 . -902) 45454) ((-70 . -563) 45436) ((-103 . -734) T) ((-103 . -731) T) ((-292 . -515) 45415) ((-640 . -964) 45397) ((-289 . -515) T) ((-1195 . -23) T) ((-126 . -964) 45379) ((-456 . -979) 45277) ((-44 . -265) 45202) ((-218 . -657) 45144) ((-456 . -107) 45035) ((-1009 . -97) 45013) ((-961 . -97) T) ((-589 . -767) 44992) ((-671 . -484) 44935) ((-977 . -979) 44919) ((-570 . -21) T) ((-570 . -25) T) ((-985 . -263) 44894) ((-337 . -97) T) ((-298 . -97) T) ((-613 . -591) 44868) ((-361 . -979) 44852) ((-977 . -107) 44831) ((-755 . -387) 44815) ((-113 . -25) T) ((-87 . -563) 44797) ((-113 . -21) T) ((-558 . -286) 44592) ((-450 . -286) 44396) ((-1062 . -564) NIL) ((-361 . -107) 44375) ((-355 . -97) T) ((-193 . -563) 44357) ((-1062 . -563) 44339) ((-932 . -657) 44289) ((-1078 . -484) 44058) ((-845 . -657) 44010) ((-1040 . -484) 43980) ((-327 . -284) T) ((-1097 . -140) 43930) ((-888 . -286) 43868) ((-773 . -97) T) ((-403 . -657) 43852) ((-203 . -767) T) ((-766 . -97) T) ((-764 . -97) T) ((-453 . -140) 43802) ((-1153 . -1152) 43781) ((-1034 . -1127) T) ((-315 . -964) 43748) ((-1153 . -1147) 43718) ((-1153 . -1150) 43702) ((-1132 . -1131) 43681) ((-78 . -563) 43663) ((-836 . -563) 43645) ((-1132 . -1147) 43622) ((-1034 . -515) T) ((-852 . -786) T) ((-460 . -564) 43552) ((-460 . -563) 43534) ((-710 . -786) T) ((-355 . -261) T) ((-614 . -786) T) ((-1132 . -1129) 43518) ((-1155 . -1028) T) ((-196 . -564) 43448) ((-196 . -563) 43430) ((-985 . -556) 43405) ((-57 . -140) 43389) ((-486 . -140) 43373) ((-467 . -140) 43357) ((-335 . -1186) 43341) ((-329 . -1186) 43325) ((-321 . -1186) 43309) ((-292 . -339) 43288) ((-289 . -339) T) ((-456 . -973) 43219) ((-633 . -585) 43201) ((-1189 . -591) 43175) ((-1187 . -591) 43149) ((-1155 . -23) T) ((-629 . -462) 43133) ((-62 . -563) 43115) ((-1029 . -734) 43066) ((-1029 . -731) 43017) ((-509 . -462) 42954) ((-613 . -33) T) ((-456 . -211) 42907) ((-272 . -265) 42886) ((-218 . -158) 42865) ((-755 . -980) T) ((-43 . -591) 42823) ((-999 . -344) 42774) ((-671 . -267) 42705) ((-489 . -484) 42638) ((-756 . -979) 42589) ((-1005 . -134) 42568) ((-335 . -344) 42547) ((-329 . -344) 42526) ((-321 . -344) 42505) ((-1005 . -136) 42484) ((-802 . -209) 42461) ((-756 . -107) 42403) ((-721 . -134) 42382) ((-721 . -136) 42361) ((-241 . -880) 42328) ((-228 . -784) 42307) ((-225 . -880) 42252) ((-227 . -784) 42231) ((-719 . -134) 42210) ((-719 . -136) 42189) ((-141 . -591) 42163) ((-429 . -136) 42142) ((-429 . -134) 42121) ((-613 . -666) T) ((-762 . -563) 42103) ((-1161 . -1016) T) ((-1154 . -1016) T) ((-1133 . -1016) T) ((-1118 . -1112) 42069) ((-1118 . -1109) 42035) ((-1085 . -267) 42014) ((-1084 . -267) 41965) ((-1078 . -267) 41916) ((-1040 . -267) 41895) ((-315 . -831) 41876) ((-932 . -158) T) ((-845 . -158) T) ((-549 . -1016) T) ((-548 . -1016) T) ((-633 . -21) T) ((-633 . -25) T) ((-449 . -1150) 41860) ((-449 . -1147) 41830) ((-394 . -263) 41758) ((-292 . -1028) 41608) ((-289 . -1028) T) ((-1118 . -34) 41574) ((-1118 . -91) 41540) ((-82 . -563) 41522) ((-89 . -97) 41500) ((-1195 . -124) T) ((-536 . -134) T) ((-536 . -136) 41482) ((-487 . -136) 41464) ((-487 . -134) T) ((-292 . -23) 41317) ((-39 . -318) 41291) ((-289 . -23) T) ((-1070 . -594) 41273) ((-754 . -591) 41123) ((-1182 . -980) T) ((-1070 . -349) 41105) ((-155 . -209) 41089) ((-546 . -462) 41071) ((-218 . -484) 41004) ((-1189 . -666) T) ((-1187 . -666) T) ((-1089 . -979) 40887) ((-1089 . -107) 40756) ((-756 . -973) T) ((-485 . -97) T) ((-47 . -585) 40716) ((-480 . -97) T) ((-478 . -97) T) ((-1179 . -979) 40686) ((-961 . -37) 40670) ((-756 . -211) T) ((-756 . -221) 40649) ((-509 . -263) 40628) ((-1179 . -107) 40593) ((-1142 . -209) 40577) ((-1161 . -657) 40474) ((-985 . -564) NIL) ((-985 . -563) 40456) ((-1154 . -657) 40297) ((-1133 . -657) 40093) ((-931 . -851) T) ((-642 . -563) 40062) ((-141 . -666) T) ((-1029 . -344) 40041) ((-932 . -484) NIL) ((-228 . -387) 40010) ((-227 . -387) 39979) ((-951 . -25) T) ((-951 . -21) T) ((-549 . -657) 39952) ((-548 . -657) 39849) ((-738 . -263) 39807) ((-122 . -97) 39785) ((-772 . -964) 39683) ((-155 . -767) 39662) ((-295 . -591) 39559) ((-754 . -33) T) ((-654 . -97) T) ((-1034 . -1028) T) ((-953 . -1123) T) ((-355 . -37) 39524) ((-330 . -25) T) ((-330 . -21) T) ((-148 . -97) T) ((-144 . -97) T) ((-331 . -1176) 39508) ((-328 . -1176) 39492) ((-320 . -1176) 39476) ((-155 . -325) 39455) ((-523 . -786) T) ((-466 . -786) T) ((-1034 . -23) T) ((-85 . -563) 39437) ((-640 . -284) T) ((-773 . -37) 39407) ((-766 . -37) 39377) ((-1155 . -124) T) ((-1062 . -265) 39356) ((-894 . -732) 39309) ((-894 . -733) 39262) ((-754 . -730) 39241) ((-112 . -284) T) ((-89 . -286) 39179) ((-617 . -33) T) ((-509 . -556) 39158) ((-47 . -25) T) ((-47 . -21) T) ((-754 . -733) 39109) ((-754 . -732) 39088) ((-640 . -949) T) ((-596 . -979) 39072) ((-894 . -666) 38971) ((-754 . -666) 38902) ((-894 . -448) 38855) ((-456 . -734) 38806) ((-456 . -731) 38757) ((-841 . -1176) 38744) ((-1089 . -973) T) ((-596 . -107) 38723) ((-1089 . -302) 38700) ((-1110 . -97) 38678) ((-1017 . -563) 38660) ((-640 . -508) T) ((-755 . -1016) T) ((-1179 . -973) T) ((-389 . -1016) T) ((-228 . -980) 38591) ((-227 . -980) 38522) ((-266 . -591) 38509) ((-546 . -263) 38484) ((-629 . -627) 38442) ((-893 . -563) 38424) ((-803 . -97) T) ((-675 . -563) 38406) ((-655 . -563) 38388) ((-1161 . -158) 38339) ((-1154 . -158) 38270) ((-1133 . -158) 38201) ((-638 . -786) T) ((-932 . -267) T) ((-428 . -563) 38183) ((-573 . -666) T) ((-58 . -1016) 38161) ((-223 . -140) 38145) ((-845 . -267) T) ((-951 . -940) T) ((-573 . -448) T) ((-652 . -1127) 38124) ((-549 . -158) 38103) ((-548 . -158) 38054) ((-1169 . -786) 38033) ((-652 . -515) 37944) ((-383 . -851) T) ((-383 . -759) 37923) ((-295 . -733) T) ((-295 . -666) T) ((-394 . -563) 37905) ((-394 . -564) 37813) ((-589 . -1061) 37797) ((-106 . -594) 37779) ((-122 . -286) 37717) ((-106 . -349) 37699) ((-159 . -284) T) ((-374 . -1123) T) ((-292 . -124) 37571) ((-289 . -124) T) ((-67 . -371) T) ((-106 . -119) T) ((-489 . -462) 37555) ((-597 . -1028) T) ((-546 . -19) 37537) ((-59 . -416) T) ((-59 . -371) T) ((-763 . -1016) T) ((-546 . -556) 37512) ((-452 . -964) 37472) ((-596 . -973) T) ((-597 . -23) T) ((-1182 . -1016) T) ((-755 . -657) 37321) ((-113 . -786) NIL) ((-1083 . -387) 37305) ((-1039 . -387) 37289) ((-790 . -387) 37273) ((-804 . -97) 37224) ((-1153 . -97) T) ((-1133 . -484) 36993) ((-1110 . -286) 36931) ((-288 . -563) 36913) ((-1132 . -97) T) ((-1018 . -1016) T) ((-1085 . -263) 36898) ((-1084 . -263) 36883) ((-266 . -666) T) ((-103 . -840) NIL) ((-629 . -563) 36815) ((-629 . -564) 36776) ((-999 . -591) 36686) ((-553 . -563) 36668) ((-509 . -564) NIL) ((-509 . -563) 36650) ((-1078 . -263) 36498) ((-460 . -979) 36448) ((-651 . -427) T) ((-481 . -479) 36427) ((-477 . -479) 36406) ((-196 . -979) 36356) ((-335 . -591) 36308) ((-329 . -591) 36260) ((-203 . -784) T) ((-321 . -591) 36212) ((-554 . -97) 36162) ((-456 . -344) 36141) ((-103 . -591) 36091) ((-460 . -107) 36025) ((-218 . -462) 36009) ((-319 . -136) 35991) ((-319 . -134) T) ((-155 . -346) 35962) ((-874 . -1167) 35946) ((-196 . -107) 35880) ((-803 . -286) 35845) ((-874 . -1016) 35795) ((-738 . -564) 35756) ((-738 . -563) 35738) ((-658 . -97) T) ((-307 . -1016) T) ((-1034 . -124) T) ((-654 . -37) 35708) ((-292 . -464) 35687) ((-471 . -1123) T) ((-1153 . -261) 35653) ((-1132 . -261) 35619) ((-303 . -140) 35603) ((-985 . -265) 35578) ((-1182 . -657) 35548) ((-1071 . -33) T) ((-1191 . -964) 35525) ((-443 . -563) 35507) ((-457 . -33) T) ((-357 . -964) 35491) ((-1083 . -980) T) ((-1039 . -980) T) ((-790 . -980) T) ((-984 . -784) T) ((-755 . -158) 35402) ((-489 . -263) 35379) ((-113 . -921) 35356) ((-1161 . -267) 35335) ((-1105 . -340) 35309) ((-1006 . -243) 35293) ((-449 . -97) T) ((-341 . -1016) T) ((-228 . -1016) T) ((-227 . -1016) T) ((-1154 . -267) 35244) ((-105 . -1016) T) ((-1133 . -267) 35195) ((-803 . -1063) 35173) ((-1085 . -930) 35139) ((-558 . -340) 35079) ((-1084 . -930) 35045) ((-558 . -207) 34992) ((-546 . -563) 34974) ((-546 . -564) NIL) ((-633 . -786) T) ((-450 . -207) 34924) ((-460 . -973) T) ((-1078 . -930) 34890) ((-86 . -415) T) ((-86 . -371) T) ((-196 . -973) T) ((-1040 . -930) 34856) ((-999 . -666) T) ((-652 . -1028) T) ((-549 . -267) 34835) ((-548 . -267) 34814) ((-460 . -221) T) ((-460 . -211) T) ((-196 . -221) T) ((-196 . -211) T) ((-1077 . -563) 34796) ((-803 . -37) 34748) ((-335 . -666) T) ((-329 . -666) T) ((-321 . -666) T) ((-103 . -733) T) ((-103 . -730) T) ((-489 . -1157) 34732) ((-103 . -666) T) ((-652 . -23) T) ((-1195 . -25) T) ((-449 . -261) 34698) ((-1195 . -21) T) ((-1132 . -286) 34637) ((-1087 . -97) T) ((-39 . -134) 34609) ((-39 . -136) 34581) ((-489 . -556) 34558) ((-1029 . -591) 34408) ((-554 . -286) 34346) ((-44 . -594) 34296) ((-44 . -609) 34246) ((-44 . -349) 34196) ((-1070 . -33) T) ((-802 . -784) NIL) ((-597 . -124) T) ((-458 . -563) 34178) ((-218 . -263) 34155) ((-590 . -33) T) ((-578 . -33) T) ((-1005 . -427) 34106) ((-755 . -484) 33980) ((-721 . -427) 33911) ((-719 . -427) 33862) ((-429 . -427) 33813) ((-883 . -387) 33797) ((-671 . -563) 33779) ((-228 . -657) 33721) ((-227 . -657) 33663) ((-671 . -564) 33524) ((-455 . -387) 33508) ((-315 . -279) T) ((-327 . -851) T) ((-928 . -97) 33486) ((-951 . -786) T) ((-58 . -484) 33419) ((-1132 . -1063) 33371) ((-932 . -263) NIL) ((-203 . -980) T) ((-355 . -767) T) ((-1029 . -33) T) ((-536 . -427) T) ((-487 . -427) T) ((-1136 . -1010) 33355) ((-1136 . -1016) 33333) ((-218 . -556) 33310) ((-1136 . -1012) 33267) ((-1085 . -563) 33249) ((-1084 . -563) 33231) ((-1078 . -563) 33213) ((-1078 . -564) NIL) ((-1040 . -563) 33195) ((-803 . -376) 33179) ((-499 . -97) T) ((-1153 . -37) 33020) ((-1132 . -37) 32834) ((-801 . -136) T) ((-536 . -378) T) ((-47 . -786) T) ((-487 . -378) T) ((-1155 . -21) T) ((-1155 . -25) T) ((-1029 . -730) 32813) ((-1029 . -733) 32764) ((-1029 . -732) 32743) ((-922 . -1016) T) ((-954 . -33) T) ((-794 . -1016) T) ((-1165 . -97) T) ((-1029 . -666) 32674) ((-607 . -97) T) ((-509 . -265) 32653) ((-1097 . -97) T) ((-451 . -33) T) ((-438 . -33) T) ((-331 . -97) T) ((-328 . -97) T) ((-320 . -97) T) ((-241 . -97) T) ((-225 . -97) T) ((-452 . -284) T) ((-984 . -980) T) ((-883 . -980) T) ((-292 . -585) 32561) ((-289 . -585) 32522) ((-455 . -980) T) ((-453 . -97) T) ((-412 . -563) 32504) ((-1083 . -1016) T) ((-1039 . -1016) T) ((-790 . -1016) T) ((-1053 . -97) T) ((-755 . -267) 32435) ((-893 . -979) 32318) ((-452 . -949) T) ((-675 . -979) 32288) ((-428 . -979) 32258) ((-1059 . -1035) 32242) ((-1018 . -484) 32175) ((-893 . -107) 32044) ((-841 . -97) T) ((-675 . -107) 32009) ((-57 . -97) 31959) ((-489 . -564) 31920) ((-489 . -563) 31832) ((-488 . -97) 31810) ((-486 . -97) 31760) ((-468 . -97) 31738) ((-467 . -97) 31688) ((-428 . -107) 31651) ((-228 . -158) 31630) ((-227 . -158) 31609) ((-394 . -979) 31583) ((-1118 . -902) 31545) ((-927 . -1028) T) ((-874 . -484) 31478) ((-460 . -734) T) ((-449 . -37) 31319) ((-394 . -107) 31286) ((-460 . -731) T) ((-928 . -286) 31224) ((-196 . -734) T) ((-196 . -731) T) ((-927 . -23) T) ((-652 . -124) T) ((-1132 . -376) 31194) ((-292 . -25) 31047) ((-155 . -387) 31031) ((-292 . -21) 30903) ((-289 . -25) T) ((-289 . -21) T) ((-796 . -344) T) ((-106 . -33) T) ((-456 . -591) 30753) ((-802 . -980) T) ((-546 . -265) 30728) ((-535 . -136) T) ((-523 . -136) T) ((-466 . -136) T) ((-1083 . -657) 30557) ((-1039 . -657) 30406) ((-1034 . -585) 30388) ((-790 . -657) 30358) ((-613 . -1123) T) ((-1 . -97) T) ((-218 . -563) 30110) ((-1142 . -387) 30094) ((-1097 . -286) 29898) ((-893 . -973) T) ((-675 . -973) T) ((-655 . -973) T) ((-589 . -1016) 29848) ((-977 . -591) 29832) ((-791 . -387) 29816) ((-481 . -97) T) ((-477 . -97) T) ((-225 . -286) 29803) ((-241 . -286) 29790) ((-893 . -302) 29769) ((-361 . -591) 29753) ((-453 . -286) 29557) ((-228 . -484) 29490) ((-613 . -964) 29388) ((-227 . -484) 29321) ((-1053 . -286) 29247) ((-758 . -1016) T) ((-738 . -979) 29231) ((-1161 . -263) 29216) ((-1154 . -263) 29201) ((-1133 . -263) 29049) ((-362 . -1016) T) ((-300 . -1016) T) ((-394 . -973) T) ((-155 . -980) T) ((-57 . -286) 28987) ((-738 . -107) 28966) ((-548 . -263) 28951) ((-488 . -286) 28889) ((-486 . -286) 28827) ((-468 . -286) 28765) ((-467 . -286) 28703) ((-394 . -211) 28682) ((-456 . -33) T) ((-932 . -564) 28612) ((-203 . -1016) T) ((-932 . -563) 28594) ((-900 . -563) 28576) ((-900 . -564) 28551) ((-845 . -563) 28533) ((-638 . -136) T) ((-640 . -851) T) ((-640 . -759) T) ((-403 . -563) 28515) ((-1034 . -21) T) ((-1034 . -25) T) ((-613 . -353) 28499) ((-112 . -851) T) ((-803 . -209) 28483) ((-76 . -1123) T) ((-122 . -121) 28467) ((-977 . -33) T) ((-1189 . -964) 28441) ((-1187 . -964) 28398) ((-1142 . -980) T) ((-791 . -980) T) ((-456 . -730) 28377) ((-331 . -1063) 28356) ((-328 . -1063) 28335) ((-320 . -1063) 28314) ((-456 . -733) 28265) ((-456 . -732) 28244) ((-205 . -33) T) ((-456 . -666) 28175) ((-58 . -462) 28159) ((-530 . -980) T) ((-1083 . -158) 28050) ((-1039 . -158) 27961) ((-984 . -1016) T) ((-1005 . -880) 27906) ((-883 . -1016) T) ((-756 . -591) 27857) ((-721 . -880) 27826) ((-653 . -1016) T) ((-719 . -880) 27793) ((-486 . -259) 27777) ((-613 . -831) 27736) ((-455 . -1016) T) ((-429 . -880) 27703) ((-77 . -1123) T) ((-331 . -37) 27668) ((-328 . -37) 27633) ((-320 . -37) 27598) ((-241 . -37) 27447) ((-225 . -37) 27296) ((-841 . -1063) T) ((-570 . -136) 27275) ((-570 . -134) 27254) ((-113 . -136) T) ((-113 . -134) NIL) ((-390 . -666) T) ((-738 . -973) T) ((-319 . -427) T) ((-1161 . -930) 27220) ((-1154 . -930) 27186) ((-1133 . -930) 27152) ((-841 . -37) 27117) ((-203 . -657) 27082) ((-295 . -46) 27052) ((-39 . -385) 27024) ((-129 . -563) 27006) ((-927 . -124) T) ((-754 . -1123) T) ((-159 . -851) T) ((-319 . -378) T) ((-489 . -265) 26983) ((-44 . -33) T) ((-754 . -964) 26812) ((-605 . -97) T) ((-597 . -21) T) ((-597 . -25) T) ((-1018 . -462) 26796) ((-1132 . -209) 26766) ((-617 . -1123) T) ((-223 . -97) 26716) ((-802 . -1016) T) ((-1089 . -591) 26641) ((-984 . -657) 26628) ((-671 . -979) 26471) ((-1083 . -484) 26418) ((-883 . -657) 26267) ((-1039 . -484) 26219) ((-455 . -657) 26068) ((-65 . -563) 26050) ((-671 . -107) 25879) ((-874 . -462) 25863) ((-1179 . -591) 25823) ((-756 . -666) T) ((-1085 . -979) 25706) ((-1084 . -979) 25541) ((-1078 . -979) 25331) ((-1040 . -979) 25214) ((-931 . -1127) T) ((-1011 . -97) 25192) ((-754 . -353) 25162) ((-931 . -515) T) ((-1085 . -107) 25031) ((-1084 . -107) 24852) ((-1078 . -107) 24621) ((-1040 . -107) 24490) ((-1021 . -1019) 24454) ((-355 . -784) T) ((-1161 . -563) 24436) ((-1154 . -563) 24418) ((-1133 . -563) 24400) ((-1133 . -564) NIL) ((-218 . -265) 24377) ((-39 . -427) T) ((-203 . -158) T) ((-155 . -1016) T) ((-633 . -136) T) ((-633 . -134) NIL) ((-549 . -563) 24359) ((-548 . -563) 24341) ((-829 . -1016) T) ((-777 . -1016) T) ((-747 . -1016) T) ((-708 . -1016) T) ((-601 . -788) 24325) ((-618 . -1016) T) ((-754 . -831) 24258) ((-39 . -378) NIL) ((-1034 . -604) T) ((-802 . -657) 24203) ((-228 . -462) 24187) ((-227 . -462) 24171) ((-652 . -585) 24119) ((-596 . -591) 24093) ((-272 . -33) T) ((-671 . -973) T) ((-536 . -1176) 24080) ((-487 . -1176) 24057) ((-1142 . -1016) T) ((-1083 . -267) 23968) ((-1039 . -267) 23899) ((-984 . -158) T) ((-791 . -1016) T) ((-883 . -158) 23810) ((-721 . -1145) 23794) ((-589 . -484) 23727) ((-75 . -563) 23709) ((-671 . -302) 23674) ((-1089 . -666) T) ((-530 . -1016) T) ((-455 . -158) 23585) ((-223 . -286) 23523) ((-1054 . -1028) T) ((-68 . -563) 23505) ((-1179 . -666) T) ((-1085 . -973) T) ((-1084 . -973) T) ((-303 . -97) 23455) ((-1078 . -973) T) ((-1054 . -23) T) ((-1040 . -973) T) ((-89 . -1035) 23439) ((-797 . -1028) T) ((-1085 . -211) 23398) ((-1084 . -221) 23377) ((-1084 . -211) 23329) ((-1078 . -211) 23216) ((-1078 . -221) 23195) ((-295 . -831) 23101) ((-797 . -23) T) ((-155 . -657) 22929) ((-383 . -1127) T) ((-1017 . -344) T) ((-951 . -136) T) ((-931 . -339) T) ((-801 . -427) T) ((-874 . -263) 22906) ((-292 . -786) T) ((-289 . -786) NIL) ((-805 . -97) T) ((-652 . -25) T) ((-383 . -515) T) ((-652 . -21) T) ((-330 . -136) 22888) ((-330 . -134) T) ((-1059 . -1016) 22866) ((-428 . -660) T) ((-73 . -563) 22848) ((-110 . -786) T) ((-223 . -259) 22832) ((-218 . -979) 22730) ((-79 . -563) 22712) ((-675 . -344) 22665) ((-1087 . -767) T) ((-677 . -213) 22649) ((-1071 . -1123) T) ((-130 . -213) 22631) ((-218 . -107) 22522) ((-1142 . -657) 22351) ((-47 . -136) T) ((-802 . -158) T) ((-791 . -657) 22321) ((-457 . -1123) T) ((-883 . -484) 22268) ((-596 . -666) T) ((-530 . -657) 22255) ((-961 . -980) T) ((-455 . -484) 22198) ((-874 . -19) 22182) ((-874 . -556) 22159) ((-755 . -564) NIL) ((-755 . -563) 22141) ((-932 . -979) 22091) ((-389 . -563) 22073) ((-228 . -263) 22050) ((-227 . -263) 22027) ((-460 . -840) NIL) ((-292 . -29) 21997) ((-103 . -1123) T) ((-931 . -1028) T) ((-196 . -840) NIL) ((-845 . -979) 21949) ((-999 . -964) 21847) ((-932 . -107) 21781) ((-241 . -209) 21765) ((-677 . -634) 21749) ((-403 . -979) 21733) ((-355 . -980) T) ((-931 . -23) T) ((-845 . -107) 21671) ((-633 . -1112) NIL) ((-460 . -591) 21621) ((-103 . -815) 21603) ((-103 . -817) 21585) ((-633 . -1109) NIL) ((-196 . -591) 21535) ((-335 . -964) 21519) ((-329 . -964) 21503) ((-303 . -286) 21441) ((-321 . -964) 21425) ((-203 . -267) T) ((-403 . -107) 21404) ((-58 . -563) 21336) ((-155 . -158) T) ((-1034 . -786) T) ((-103 . -964) 21296) ((-823 . -1016) T) ((-773 . -980) T) ((-766 . -980) T) ((-633 . -34) NIL) ((-633 . -91) NIL) ((-289 . -921) 21257) ((-535 . -427) T) ((-523 . -427) T) ((-466 . -427) T) ((-383 . -339) T) ((-218 . -973) 21188) ((-1062 . -33) T) ((-452 . -851) T) ((-927 . -585) 21136) ((-228 . -556) 21113) ((-227 . -556) 21090) ((-999 . -353) 21074) ((-802 . -484) 20982) ((-218 . -211) 20935) ((-1070 . -1123) T) ((-763 . -563) 20917) ((-1190 . -1028) T) ((-1182 . -563) 20899) ((-1142 . -158) 20790) ((-103 . -353) 20772) ((-103 . -314) 20754) ((-984 . -267) T) ((-883 . -267) 20685) ((-738 . -344) 20664) ((-590 . -1123) T) ((-578 . -1123) T) ((-455 . -267) 20595) ((-530 . -158) T) ((-303 . -259) 20579) ((-1190 . -23) T) ((-1118 . -97) T) ((-1105 . -1016) T) ((-1006 . -1016) T) ((-995 . -1016) T) ((-81 . -563) 20561) ((-651 . -97) T) ((-331 . -325) 20540) ((-558 . -1016) T) ((-328 . -325) 20519) ((-320 . -325) 20498) ((-450 . -1016) T) ((-1097 . -207) 20448) ((-241 . -230) 20410) ((-1054 . -124) T) ((-558 . -560) 20386) ((-999 . -831) 20319) ((-932 . -973) T) ((-845 . -973) T) ((-450 . -560) 20298) ((-1078 . -731) NIL) ((-1078 . -734) NIL) ((-1018 . -564) 20259) ((-453 . -207) 20209) ((-1018 . -563) 20191) ((-932 . -221) T) ((-932 . -211) T) ((-403 . -973) T) ((-888 . -1016) 20141) ((-845 . -221) T) ((-797 . -124) T) ((-638 . -427) T) ((-779 . -1028) 20120) ((-103 . -831) NIL) ((-1118 . -261) 20086) ((-803 . -784) 20065) ((-1029 . -1123) T) ((-836 . -666) T) ((-155 . -484) 19977) ((-927 . -25) T) ((-836 . -448) T) ((-383 . -1028) T) ((-460 . -733) T) ((-460 . -730) T) ((-841 . -325) T) ((-460 . -666) T) ((-196 . -733) T) ((-196 . -730) T) ((-927 . -21) T) ((-196 . -666) T) ((-779 . -23) 19929) ((-295 . -284) 19908) ((-962 . -213) 19854) ((-383 . -23) T) ((-874 . -564) 19815) ((-874 . -563) 19727) ((-589 . -462) 19711) ((-44 . -938) 19661) ((-307 . -563) 19643) ((-1029 . -964) 19472) ((-546 . -594) 19454) ((-546 . -349) 19436) ((-319 . -1176) 19413) ((-954 . -1123) T) ((-802 . -267) T) ((-1142 . -484) 19360) ((-451 . -1123) T) ((-438 . -1123) T) ((-540 . -97) T) ((-1083 . -263) 19287) ((-570 . -427) 19266) ((-928 . -923) 19250) ((-1182 . -358) 19222) ((-113 . -427) T) ((-1104 . -97) T) ((-1009 . -1016) 19200) ((-961 . -1016) T) ((-824 . -786) T) ((-327 . -1127) T) ((-1161 . -979) 19083) ((-1029 . -353) 19053) ((-1154 . -979) 18888) ((-1133 . -979) 18678) ((-1161 . -107) 18547) ((-1154 . -107) 18368) ((-1133 . -107) 18137) ((-1118 . -286) 18124) ((-327 . -515) T) ((-341 . -563) 18106) ((-266 . -284) T) ((-549 . -979) 18079) ((-548 . -979) 17962) ((-337 . -1016) T) ((-298 . -1016) T) ((-228 . -563) 17923) ((-227 . -563) 17884) ((-931 . -124) T) ((-105 . -563) 17866) ((-581 . -23) T) ((-633 . -385) 17833) ((-557 . -23) T) ((-601 . -97) T) ((-549 . -107) 17804) ((-548 . -107) 17673) ((-355 . -1016) T) ((-312 . -97) T) ((-155 . -267) 17584) ((-1132 . -784) 17537) ((-654 . -980) T) ((-1059 . -484) 17470) ((-1029 . -831) 17403) ((-773 . -1016) T) ((-766 . -1016) T) ((-764 . -1016) T) ((-92 . -97) T) ((-133 . -786) T) ((-562 . -815) 17387) ((-106 . -1123) T) ((-1005 . -97) T) ((-985 . -33) T) ((-721 . -97) T) ((-719 . -97) T) ((-436 . -97) T) ((-429 . -97) T) ((-218 . -734) 17338) ((-218 . -731) 17289) ((-592 . -97) T) ((-1142 . -267) 17200) ((-607 . -580) 17184) ((-589 . -263) 17161) ((-961 . -657) 17145) ((-530 . -267) T) ((-893 . -591) 17070) ((-1190 . -124) T) ((-675 . -591) 17030) ((-655 . -591) 17017) ((-252 . -97) T) ((-428 . -591) 16947) ((-49 . -97) T) ((-536 . -97) T) ((-487 . -97) T) ((-1161 . -973) T) ((-1154 . -973) T) ((-1133 . -973) T) ((-1161 . -211) 16906) ((-298 . -657) 16888) ((-1154 . -221) 16867) ((-1154 . -211) 16819) ((-1133 . -211) 16706) ((-1133 . -221) 16685) ((-1118 . -37) 16582) ((-932 . -734) T) ((-549 . -973) T) ((-548 . -973) T) ((-932 . -731) T) ((-900 . -734) T) ((-900 . -731) T) ((-803 . -980) T) ((-801 . -800) 16566) ((-104 . -563) 16548) ((-633 . -427) T) ((-355 . -657) 16513) ((-394 . -591) 16487) ((-652 . -786) 16466) ((-651 . -37) 16431) ((-548 . -211) 16390) ((-39 . -664) 16362) ((-327 . -305) 16339) ((-327 . -339) T) ((-999 . -284) 16290) ((-271 . -1028) 16172) ((-1022 . -1123) T) ((-157 . -97) T) ((-1136 . -563) 16139) ((-779 . -124) 16091) ((-589 . -1157) 16075) ((-773 . -657) 16045) ((-766 . -657) 16015) ((-456 . -1123) T) ((-335 . -284) T) ((-329 . -284) T) ((-321 . -284) T) ((-589 . -556) 15992) ((-383 . -124) T) ((-489 . -609) 15976) ((-103 . -284) T) ((-271 . -23) 15860) ((-489 . -594) 15844) ((-633 . -378) NIL) ((-489 . -349) 15828) ((-268 . -563) 15810) ((-89 . -1016) 15788) ((-103 . -949) T) ((-523 . -132) T) ((-1169 . -140) 15772) ((-456 . -964) 15601) ((-1155 . -134) 15562) ((-1155 . -136) 15523) ((-977 . -1123) T) ((-922 . -563) 15505) ((-794 . -563) 15487) ((-755 . -979) 15330) ((-1005 . -286) 15317) ((-205 . -1123) T) ((-721 . -286) 15304) ((-719 . -286) 15291) ((-755 . -107) 15120) ((-429 . -286) 15107) ((-1083 . -564) NIL) ((-1083 . -563) 15089) ((-1039 . -563) 15071) ((-1039 . -564) 14819) ((-961 . -158) T) ((-790 . -563) 14801) ((-874 . -265) 14778) ((-558 . -484) 14561) ((-757 . -964) 14545) ((-450 . -484) 14337) ((-893 . -666) T) ((-675 . -666) T) ((-655 . -666) T) ((-327 . -1028) T) ((-1090 . -563) 14319) ((-201 . -97) T) ((-456 . -353) 14289) ((-485 . -1016) T) ((-480 . -1016) T) ((-478 . -1016) T) ((-738 . -591) 14263) ((-951 . -427) T) ((-888 . -484) 14196) ((-327 . -23) T) ((-581 . -124) T) ((-557 . -124) T) ((-330 . -427) T) ((-218 . -344) 14175) ((-355 . -158) T) ((-1153 . -980) T) ((-1132 . -980) T) ((-203 . -930) T) ((-638 . -363) T) ((-394 . -666) T) ((-640 . -1127) T) ((-1054 . -585) 14123) ((-535 . -800) 14107) ((-1071 . -1100) 14083) ((-640 . -515) T) ((-122 . -1016) 14061) ((-1182 . -979) 14045) ((-654 . -1016) T) ((-456 . -831) 13978) ((-601 . -37) 13948) ((-330 . -378) T) ((-292 . -136) 13927) ((-292 . -134) 13906) ((-112 . -515) T) ((-289 . -136) 13862) ((-289 . -134) 13818) ((-47 . -427) T) ((-148 . -1016) T) ((-144 . -1016) T) ((-1071 . -102) 13765) ((-721 . -1063) 13743) ((-629 . -33) T) ((-1182 . -107) 13722) ((-509 . -33) T) ((-457 . -102) 13706) ((-228 . -265) 13683) ((-227 . -265) 13660) ((-802 . -263) 13611) ((-44 . -1123) T) ((-755 . -973) T) ((-1089 . -46) 13588) ((-755 . -302) 13550) ((-1005 . -37) 13399) ((-755 . -211) 13378) ((-721 . -37) 13207) ((-719 . -37) 13056) ((-429 . -37) 12905) ((-589 . -564) 12866) ((-589 . -563) 12778) ((-536 . -1063) T) ((-487 . -1063) T) ((-1059 . -462) 12762) ((-1110 . -1016) 12740) ((-1054 . -25) T) ((-1054 . -21) T) ((-449 . -980) T) ((-1133 . -731) NIL) ((-1133 . -734) NIL) ((-927 . -786) 12719) ((-758 . -563) 12701) ((-797 . -21) T) ((-797 . -25) T) ((-738 . -666) T) ((-159 . -1127) T) ((-536 . -37) 12666) ((-487 . -37) 12631) ((-362 . -563) 12613) ((-300 . -563) 12595) ((-155 . -263) 12553) ((-61 . -1123) T) ((-108 . -97) T) ((-803 . -1016) T) ((-159 . -515) T) ((-654 . -657) 12523) ((-271 . -124) 12407) ((-203 . -563) 12389) ((-203 . -564) 12319) ((-931 . -585) 12258) ((-1182 . -973) T) ((-1034 . -136) T) ((-578 . -1100) 12233) ((-671 . -840) 12212) ((-546 . -33) T) ((-590 . -102) 12196) ((-578 . -102) 12142) ((-1142 . -263) 12069) ((-671 . -591) 11994) ((-272 . -1123) T) ((-1089 . -964) 11892) ((-1078 . -840) NIL) ((-984 . -564) 11807) ((-984 . -563) 11789) ((-319 . -97) T) ((-228 . -979) 11687) ((-227 . -979) 11585) ((-370 . -97) T) ((-883 . -563) 11567) ((-883 . -564) 11428) ((-653 . -563) 11410) ((-1180 . -1117) 11379) ((-455 . -563) 11361) ((-455 . -564) 11222) ((-225 . -387) 11206) ((-241 . -387) 11190) ((-228 . -107) 11081) ((-227 . -107) 10972) ((-1085 . -591) 10897) ((-1084 . -591) 10794) ((-1078 . -591) 10646) ((-1040 . -591) 10571) ((-327 . -124) T) ((-80 . -416) T) ((-80 . -371) T) ((-931 . -25) T) ((-931 . -21) T) ((-804 . -1016) 10522) ((-803 . -657) 10474) ((-355 . -267) T) ((-155 . -930) 10426) ((-633 . -363) T) ((-927 . -925) 10410) ((-640 . -1028) T) ((-633 . -152) 10392) ((-1153 . -1016) T) ((-1132 . -1016) T) ((-292 . -1109) 10371) ((-292 . -1112) 10350) ((-1076 . -97) T) ((-292 . -889) 10329) ((-126 . -1028) T) ((-112 . -1028) T) ((-554 . -1167) 10313) ((-640 . -23) T) ((-554 . -1016) 10263) ((-89 . -484) 10196) ((-159 . -339) T) ((-292 . -91) 10175) ((-292 . -34) 10154) ((-558 . -462) 10088) ((-126 . -23) T) ((-112 . -23) T) ((-658 . -1016) T) ((-450 . -462) 10025) ((-383 . -585) 9973) ((-596 . -964) 9871) ((-888 . -462) 9855) ((-331 . -980) T) ((-328 . -980) T) ((-320 . -980) T) ((-241 . -980) T) ((-225 . -980) T) ((-802 . -564) NIL) ((-802 . -563) 9837) ((-1190 . -21) T) ((-530 . -930) T) ((-671 . -666) T) ((-1190 . -25) T) ((-228 . -973) 9768) ((-227 . -973) 9699) ((-70 . -1123) T) ((-228 . -211) 9652) ((-227 . -211) 9605) ((-39 . -97) T) ((-841 . -980) T) ((-1092 . -97) T) ((-1085 . -666) T) ((-1084 . -666) T) ((-1078 . -666) T) ((-1078 . -730) NIL) ((-1078 . -733) NIL) ((-852 . -97) T) ((-1040 . -666) T) ((-710 . -97) T) ((-614 . -97) T) ((-449 . -1016) T) ((-315 . -1028) T) ((-159 . -1028) T) ((-295 . -851) 9584) ((-1153 . -657) 9425) ((-803 . -158) T) ((-1132 . -657) 9239) ((-779 . -21) 9191) ((-779 . -25) 9143) ((-223 . -1061) 9127) ((-122 . -484) 9060) ((-383 . -25) T) ((-383 . -21) T) ((-315 . -23) T) ((-155 . -564) 8828) ((-155 . -563) 8810) ((-159 . -23) T) ((-589 . -265) 8787) ((-489 . -33) T) ((-829 . -563) 8769) ((-87 . -1123) T) ((-777 . -563) 8751) ((-747 . -563) 8733) ((-708 . -563) 8715) ((-618 . -563) 8697) ((-218 . -591) 8547) ((-1087 . -1016) T) ((-1083 . -979) 8370) ((-1062 . -1123) T) ((-1039 . -979) 8213) ((-790 . -979) 8197) ((-1083 . -107) 8006) ((-1039 . -107) 7835) ((-790 . -107) 7814) ((-1142 . -564) NIL) ((-1142 . -563) 7796) ((-319 . -1063) T) ((-791 . -563) 7778) ((-995 . -263) 7757) ((-78 . -1123) T) ((-932 . -840) NIL) ((-558 . -263) 7733) ((-1110 . -484) 7666) ((-460 . -1123) T) ((-530 . -563) 7648) ((-450 . -263) 7627) ((-196 . -1123) T) ((-1005 . -209) 7611) ((-266 . -851) T) ((-756 . -284) 7590) ((-801 . -97) T) ((-721 . -209) 7574) ((-932 . -591) 7524) ((-888 . -263) 7501) ((-845 . -591) 7453) ((-581 . -21) T) ((-581 . -25) T) ((-557 . -21) T) ((-319 . -37) 7418) ((-633 . -664) 7385) ((-460 . -815) 7367) ((-460 . -817) 7349) ((-449 . -657) 7190) ((-196 . -815) 7172) ((-62 . -1123) T) ((-196 . -817) 7154) ((-557 . -25) T) ((-403 . -591) 7128) ((-460 . -964) 7088) ((-803 . -484) 7000) ((-196 . -964) 6960) ((-218 . -33) T) ((-928 . -1016) 6938) ((-1153 . -158) 6869) ((-1132 . -158) 6800) ((-652 . -134) 6779) ((-652 . -136) 6758) ((-640 . -124) T) ((-128 . -440) 6735) ((-601 . -599) 6719) ((-1059 . -563) 6651) ((-112 . -124) T) ((-452 . -1127) T) ((-558 . -556) 6627) ((-450 . -556) 6606) ((-312 . -311) 6575) ((-499 . -1016) T) ((-452 . -515) T) ((-1083 . -973) T) ((-1039 . -973) T) ((-790 . -973) T) ((-218 . -730) 6554) ((-218 . -733) 6505) ((-218 . -732) 6484) ((-1083 . -302) 6461) ((-218 . -666) 6392) ((-888 . -19) 6376) ((-460 . -353) 6358) ((-460 . -314) 6340) ((-1039 . -302) 6312) ((-330 . -1176) 6289) ((-196 . -353) 6271) ((-196 . -314) 6253) ((-888 . -556) 6230) ((-1083 . -211) T) ((-607 . -1016) T) ((-1165 . -1016) T) ((-1097 . -1016) T) ((-1005 . -230) 6167) ((-331 . -1016) T) ((-328 . -1016) T) ((-320 . -1016) T) ((-241 . -1016) T) ((-225 . -1016) T) ((-82 . -1123) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-1097 . -560) 6102) ((-453 . -1016) T) ((-1053 . -1016) T) ((-453 . -560) 6081) ((-228 . -734) 6032) ((-228 . -731) 5983) ((-227 . -734) 5934) ((-39 . -1063) NIL) ((-227 . -731) 5885) ((-999 . -851) 5836) ((-932 . -733) T) ((-932 . -730) T) ((-932 . -666) T) ((-900 . -733) T) ((-845 . -666) T) ((-89 . -462) 5820) ((-460 . -831) NIL) ((-841 . -1016) T) ((-203 . -979) 5785) ((-803 . -267) T) ((-196 . -831) NIL) ((-772 . -1028) 5764) ((-57 . -1016) 5714) ((-488 . -1016) 5692) ((-486 . -1016) 5642) ((-468 . -1016) 5620) ((-467 . -1016) 5570) ((-535 . -97) T) ((-523 . -97) T) ((-466 . -97) T) ((-449 . -158) 5501) ((-335 . -851) T) ((-329 . -851) T) ((-321 . -851) T) ((-203 . -107) 5457) ((-772 . -23) 5409) ((-403 . -666) T) ((-103 . -851) T) ((-39 . -37) 5354) ((-103 . -759) T) ((-536 . -325) T) ((-487 . -325) T) ((-1132 . -484) 5214) ((-292 . -427) 5193) ((-289 . -427) T) ((-773 . -263) 5172) ((-315 . -124) T) ((-159 . -124) T) ((-271 . -25) 5037) ((-271 . -21) 4921) ((-44 . -1100) 4900) ((-64 . -563) 4882) ((-823 . -563) 4864) ((-554 . -484) 4797) ((-44 . -102) 4747) ((-1018 . -401) 4731) ((-1018 . -344) 4710) ((-985 . -1123) T) ((-984 . -979) 4697) ((-883 . -979) 4540) ((-455 . -979) 4383) ((-607 . -657) 4367) ((-984 . -107) 4352) ((-883 . -107) 4181) ((-452 . -339) T) ((-331 . -657) 4133) ((-328 . -657) 4085) ((-320 . -657) 4037) ((-241 . -657) 3886) ((-225 . -657) 3735) ((-874 . -594) 3719) ((-455 . -107) 3548) ((-1170 . -97) T) ((-874 . -349) 3532) ((-1133 . -840) NIL) ((-72 . -563) 3514) ((-893 . -46) 3493) ((-568 . -1028) T) ((-1 . -1016) T) ((-650 . -97) T) ((-638 . -97) T) ((-1169 . -97) 3443) ((-1161 . -591) 3368) ((-1154 . -591) 3265) ((-122 . -462) 3249) ((-1105 . -563) 3231) ((-1006 . -563) 3213) ((-366 . -23) T) ((-995 . -563) 3195) ((-85 . -1123) T) ((-1133 . -591) 3047) ((-841 . -657) 3012) ((-568 . -23) T) ((-558 . -563) 2994) ((-558 . -564) NIL) ((-450 . -564) NIL) ((-450 . -563) 2976) ((-481 . -1016) T) ((-477 . -1016) T) ((-327 . -25) T) ((-327 . -21) T) ((-123 . -286) 2914) ((-117 . -286) 2852) ((-549 . -591) 2839) ((-203 . -973) T) ((-548 . -591) 2764) ((-355 . -930) T) ((-203 . -221) T) ((-203 . -211) T) ((-888 . -564) 2725) ((-888 . -563) 2637) ((-801 . -37) 2624) ((-1153 . -267) 2575) ((-1132 . -267) 2526) ((-1034 . -427) T) ((-473 . -786) T) ((-292 . -1051) 2505) ((-927 . -136) 2484) ((-927 . -134) 2463) ((-466 . -286) 2450) ((-272 . -1100) 2429) ((-452 . -1028) T) ((-802 . -979) 2374) ((-570 . -97) T) ((-1110 . -462) 2358) ((-228 . -344) 2337) ((-227 . -344) 2316) ((-272 . -102) 2266) ((-984 . -973) T) ((-113 . -97) T) ((-883 . -973) T) ((-802 . -107) 2195) ((-452 . -23) T) ((-455 . -973) T) ((-984 . -211) T) ((-883 . -302) 2164) ((-455 . -302) 2121) ((-331 . -158) T) ((-328 . -158) T) ((-320 . -158) T) ((-241 . -158) 2032) ((-225 . -158) 1943) ((-893 . -964) 1841) ((-675 . -964) 1812) ((-1021 . -97) T) ((-1009 . -563) 1779) ((-961 . -563) 1761) ((-1161 . -666) T) ((-1154 . -666) T) ((-1133 . -730) NIL) ((-155 . -979) 1671) ((-1133 . -733) NIL) ((-841 . -158) T) ((-1133 . -666) T) ((-1180 . -140) 1655) ((-931 . -318) 1629) ((-928 . -484) 1562) ((-779 . -786) 1541) ((-523 . -1063) T) ((-449 . -267) 1492) ((-549 . -666) T) ((-337 . -563) 1474) ((-298 . -563) 1456) ((-394 . -964) 1354) ((-548 . -666) T) ((-383 . -786) 1305) ((-155 . -107) 1201) ((-772 . -124) 1153) ((-677 . -140) 1137) ((-1169 . -286) 1075) ((-460 . -284) T) ((-355 . -563) 1042) ((-489 . -938) 1026) ((-355 . -564) 940) ((-196 . -284) T) ((-130 . -140) 922) ((-654 . -263) 901) ((-460 . -949) T) ((-535 . -37) 888) ((-523 . -37) 875) ((-466 . -37) 840) ((-196 . -949) T) ((-802 . -973) T) ((-773 . -563) 822) ((-766 . -563) 804) ((-764 . -563) 786) ((-755 . -840) 765) ((-1191 . -1028) T) ((-1142 . -979) 588) ((-791 . -979) 572) ((-802 . -221) T) ((-802 . -211) NIL) ((-629 . -1123) T) ((-1191 . -23) T) ((-755 . -591) 497) ((-509 . -1123) T) ((-394 . -314) 481) ((-530 . -979) 468) ((-1142 . -107) 277) ((-640 . -585) 259) ((-791 . -107) 238) ((-357 . -23) T) ((-1097 . -484) 30))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index bc4d7013..3ec04b2a 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3415311727) -(4247 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3416411995) +(4251 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -413,7 +413,7 @@ |SupFractionFactorizer| |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| - |TheSymbolTable| |SymbolTable| |Syntax| |SystemSolvePackage| + |TheSymbolTable| |SymbolTable| |Syntax| |SystemSolvePackage| |System| |TableauxBumpers| |Tableau| |Table| |TangentExpansions| |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign| @@ -460,650 +460,649 @@ |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |splitDenominator| |badValues| |interpolate| - |innerint| |symbolTableOf| |fortranDoubleComplex| - |subscriptedVariables| |reducedQPowers| |yCoordinates| - |tubePointsDefault| |green| |iiasec| |restorePrecision| |fibonacci| - |exprToUPS| |screenResolution| |normalizeAtInfinity| - |leftAlternative?| |palgint| |goodPoint| |factorSquareFreePolynomial| - |legendre| |lowerPolynomial| |f01maf| |wrregime| |zCoord| |notelem| - |bat1| |pow| |measure| |f04axf| |showTheSymbolTable| |deepExpand| - |possiblyInfinite?| |OMgetAtp| |dequeue!| |changeMeasure| - |lazyPremWithDefault| |cAtan| |node?| |pquo| |midpoints| |accuracyIF| - |goto| |nextPrimitivePoly| |constantKernel| |iiacoth| - |mainSquareFreePart| |matrixDimensions| |divergence| |d01gbf| - |linearMatrix| |coefficients| |basisOfCentroid| |meshPar1Var| - |genericRightMinimalPolynomial| |stopTable!| |elliptic?| |opeval| - |round| |getButtonValue| |composite| |ipow| |radicalEigenvector| - |poisson| |entries| |setLabelValue| |cCsch| |factorSFBRlcUnit| - |OMputFloat| |outlineRender| |wordInStrongGenerators| |lazyVariations| - |df2fi| |ksec| |heap| |d03faf| |pToDmp| |removeCosSq| |inrootof| - |rubiksGroup| |const| |exptMod| |updatF| |fixPredicate| |pomopo!| - |aLinear| |coercePreimagesImages| |e02ddf| |center| |csubst| - |inGroundField?| |separateDegrees| |rational?| |backOldPos| Y - |isPower| |complexEigenvalues| |quoted?| |mainMonomial| |cylindrical| - |critB| |commutativeEquality| |lastSubResultantEuclidean| |upperCase| - |startTable!| |polyred| |ratPoly| |createGenericMatrix| |atom?| - |intersect| |semiResultantReduitEuclidean| |quatern| - |internalDecompose| |sincos| |FormatArabic| |solveLinear| |position!| - |safetyMargin| |cExp| |rank| |SturmHabichtSequence| |taylorQuoByVar| - |check| |absolutelyIrreducible?| |d02ejf| |besselI| |setTex!| |every?| - |redmat| |bits| |keys| |writeLine!| |showTypeInOutput| - |generalInfiniteProduct| |singRicDE| |delay| |legendreP| - |squareFreeFactors| |leftFactor| |setMinPoints3D| |mathieu11| |d02gaf| - |showIntensityFunctions| |tanAn| |knownInfBasis| |clipParametric| - |dim| |ravel| |back| |multiplyExponents| |nextNormalPoly| |prem| - |extractTop!| |complete| |rightLcm| |viewSizeDefault| |tanQ| - |mainVariable?| |power!| |reshape| |createZechTable| |c06gcf| |middle| - |mainKernel| |prefixRagits| |getZechTable| |lfextendedint| - |sizeMultiplication| |factorset| |mantissa| |entry?| - |rightExactQuotient| |rspace| |integral| |rationalPoint?| - |eyeDistance| |e04ucf| |reduceLODE| |cscIfCan| |infiniteProduct| - |bivariate?| |biRank| |computeInt| |inconsistent?| |lists| |resetNew| - |leftUnit| |sizeLess?| |adaptive?| |iilog| |mpsode| |f2st| |dflist| - |nthFractionalTerm| |slex| |coHeight| |makeFR| |minimalPolynomial| - |headReduce| |reducedContinuedFraction| |cSec| |imagK| |printingInfo?| - |operator| |setStatus| |outputArgs| |retractable?| |expintfldpoly| - |nextPrime| |allRootsOf| |enterPointData| |putColorInfo| |update| - |separant| |computeBasis| |d02bhf| |setFieldInfo| |KrullNumber| - |decrease| |mirror| |nthRoot| |scalarMatrix| |findBinding| - |ScanFloatIgnoreSpaces| |iisqrt3| |evenInfiniteProduct| |e04fdf| - |bright| |overset?| |frobenius| |OMgetEndApp| |rightTraceMatrix| - |internalIntegrate0| |bfEntry| |tanIfCan| |lowerCase?| |e02gaf| - |drawCurves| |pToHdmp| |identity| |solveRetract| |eigenvector| - |idealiserMatrix| |messagePrint| |operators| |iiGamma| - |processTemplate| |insertMatch| |leftPower| |binaryFunction| - |removeIrreducibleRedundantFactors| |algSplitSimple| |eigenMatrix| - |isobaric?| |d02raf| |denomLODE| |triangularSystems| - |createIrreduciblePoly| |coerce| |debug| |tracePowMod| - |functionIsContinuousAtEndPoints| |antiCommutative?| - |generalizedInverse| |int| |s21baf| |mr| - |inverseIntegralMatrixAtInfinity| |checkRur| |delete| |rightGcd| - |polyRicDE| |construct| |satisfy?| |factorsOfDegree| - |internalSubQuasiComponent?| |basisOfRightNucloid| |iibinom| - |boundOfCauchy| |position| |pol| |OMputEndBVar| - |unprotectedRemoveRedundantFactors| |minPoly| |LiePoly| |ideal| - |copy!| |powerAssociative?| |prinb| |failed?| |selectsecond| |lintgcd| - |revert| |critBonD| |setsubMatrix!| |repeatUntilLoop| |coerceImages| - |leftOne| |cyclicCopy| |arg1| |radicalSolve| |toseLastSubResultant| - |selectNonFiniteRoutines| |components| |leftTraceMatrix| |cos2sec| - |sort!| |sturmSequence| |choosemon| |removeSinSq| |jordanAdmissible?| - |arg2| |orbit| |elementary| |optpair| |startTableInvSet!| |bitCoef| - |iipow| |closedCurve| |homogeneous?| |clip| |substring?| - |removeRoughlyRedundantFactorsInContents| |stoseInvertibleSet| - |reducedDiscriminant| |bumptab| |iicot| |Ci| |tanintegrate| - |createRandomElement| |probablyZeroDim?| |point?| |second| - |complexIntegrate| |conditions| |integralMatrixAtInfinity| - |leftScalarTimes!| |surface| |integer?| |optAttributes| - |subresultantVector| |getCode| |sechIfCan| |fullPartialFraction| - |null| |suffix?| |third| |match| |isList| |distance| |minPoints3D| - |semiLastSubResultantEuclidean| |OMputVariable| |closed?| |exprToXXP| - |polCase| |halfExtendedResultant1| |odd?| |lSpaceBasis| |iiacsch| - |ScanArabic| |selectPDERoutines| |useEisensteinCriterion?| |true| - |s19aaf| |linGenPos| |s14baf| |getOrder| |linearlyDependentOverZ?| - |prefix?| |ScanRoman| |mightHaveRoots| |representationType| |root?| - |log10| |minimumDegree| |roman| |groebnerIdeal| |OMputEndAttr| - |leftRecip| |getGoodPrime| |crest| |nextsousResultant2| |depth| - |outputFixed| |OMputBind| |seriesSolve| |iiabs| |acoshIfCan| - |subTriSet?| |principalIdeal| |cosIfCan| |front| |cCot| |lifting| - |column| |rk4| |getStream| |insertTop!| |iiasin| |binaryTree| |f02axf| - |invmultisect| |divisorCascade| |completeEval| |imagI| - |subresultantSequence| |rootProduct| |primes| |toseSquareFreePart| - |exteriorDifferential| |lastSubResultant| |contours| |cAsinh| |e02ahf| - |infinite?| |subHeight| |digits| |laplacian| |nil?| |mapCoef| - |characteristic| |commaSeparate| |d01asf| |setAdaptive| |cyclotomic| - |rewriteSetByReducingWithParticularGenerators| |cdr| |Not| - |generalizedEigenvectors| |f04atf| |irreducibleFactors| |hermite| - |zeroSetSplitIntoTriangularSystems| |infix?| |dn| |clipBoolean| - |btwFact| |setDifference| |e01saf| |order| |setelt| |algebraicSort| - |ListOfTerms| |headRemainder| |f02fjf| |getPickedPoints| |mask| - |asinhIfCan| |noncommutativeJordanAlgebra?| |computeCycleEntry| - |enqueue!| |innerSolve1| |setIntersection| |linSolve| |overlap| - |product| |setRealSteps| |makeCrit| |associatedEquations| |f02ajf| - |setUnion| |aspFilename| |numberOfFractionalTerms| |copy| |var2Steps| - |parts| |univariatePolynomialsGcds| |addPoint2| |unitNormal| - |iCompose| |powerSum| |say| |commutative?| |slash| |meatAxe| - |stoseInvertible?| |apply| |elRow1!| |inRadical?| |Hausdorff| - |element?| |splitNodeOf!| |extension| |brace| |close!| - |generalPosition| |leftExactQuotient| |uniform| |flatten| ^= - |repeating?| |functionIsOscillatory| |OMgetEndObject| |rootsOf| |vark| - |e01bff| |rules| |outputGeneral| |showArrayValues| |f01rdf| - |symmetricTensors| |autoCoerce| |size| |associates?| |normalizeIfCan| - |UnVectorise| |deepCopy| |exponential| |symmetricSquare| |eq| - |addMatch| |euler| |janko2| |commutator| |spherical| |acothIfCan| - |rischDEsys| |supDimElseRittWu?| |asec| |numerators| |iter| |myDegree| - |s17dlf| |OMputAtp| |expt| |rightMinimalPolynomial| |coerceP| - |zerosOf| |df2st| |solveLinearPolynomialEquationByFractions| |acsc| - |sortConstraints| |value| |hdmpToDmp| |froot| |externalList| - |sylvesterMatrix| |first| |next| |halfExtendedSubResultantGcd1| - |dimensionOfIrreducibleRepresentation| |sinhIfCan| |parent| |sinh| - |laurentIfCan| |concat!| |complexNumeric| |differentialVariables| - |list?| |getSyntaxFormsFromFile| |rest| |usingTable?| |s17dgf| - |OMgetEndAtp| |incrementKthElement| - |rewriteIdealWithQuasiMonicGenerators| |cosh| |minColIndex| |mapSolve| - |extendedEuclidean| |cot2tan| |HermiteIntegrate| |substitute| - |simplifyPower| |computeCycleLength| |getProperty| |numberOfFactors| - |rk4qc| |tanh| |internalAugment| |kernels| |extractPoint| - |removeDuplicates| |wreath| |style| |factorSquareFreeByRecursion| - |outerProduct| |rightCharacteristicPolynomial| - |tryFunctionalDecomposition?| |f01ref| |rk4a| |coth| |subscript| - |iisec| |zeroMatrix| |univariate| |lhs| |character?| |predicates| - |minPoints| |pushdown| |cyclicGroup| |sech| |generalSqFr| |solve1| - |colorFunction| |rhs| |setErrorBound| |indiceSubResultantEuclidean| - |loopPoints| |lfunc| |ef2edf| |rangePascalTriangle| |hue| |csch| - |superscript| |characteristicPolynomial| |submod| |cAcosh| |frst| - |exp| |qqq| |rowEch| |setleaves!| |summation| |iisech| - |withPredicates| |asinh| |removeZeroes| |factor| |inverseColeman| - |c06ebf| |setvalue!| |collectQuasiMonic| |stoseInvertibleSetsqfreg| - |option?| |algebraicDecompose| |swap| |baseRDE| |acosh| |comparison| - |sqrt| |OMread| |or?| |rightRank| |Nul| |atanhIfCan| |getIdentifier| - |atanh| |generalLambert| |explogs2trigs| |real| |mesh| |f04adf| - |tanSum| |bitTruth| |addMatchRestricted| |particularSolution| - |clearTable!| |f04jgf| |standardBasisOfCyclicSubmodule| |acoth| |key| - |weights| |digit| |imag| |leviCivitaSymbol| |palgint0| |s17dhf| - |mkPrim| |splitConstant| |wholeRadix| |ldf2lst| |PDESolve| |asech| - |options| |nullity| |directProduct| |constant?| |fortranCharacter| - |mainMonomials| |printStatement| |genericRightDiscriminant| - |argumentList!| |generalTwoFactor| |exponents| |s18aef| - |exprHasWeightCosWXorSinWX| |resultantEuclideannaif| |insertRoot!| - |normalElement| |totalfract| |create| |kovacic| - |squareFreeLexTriangular| |ceiling| |destruct| |null?| |bracket| - |unitVector| |plusInfinity| |presub| |cPower| |principal?| - |closedCurve?| |groebner| |monicDecomposeIfCan| |unvectorise| - |OMencodingSGML| |compactFraction| |complexElementary| |push| - |minusInfinity| |d01alf| |deleteRoutine!| |quasiMonic?| - |rightScalarTimes!| |asinIfCan| |s17acf| |combineFeatureCompatibility| - |vertConcat| |expandTrigProducts| |infinityNorm| |rdHack1| |equation| - |addPoint| |elColumn2!| |OMgetBVar| |orthonormalBasis| |makeUnit| - |perspective| |symmetricDifference| |sum| |f02agf| |minordet| |mapdiv| - |localReal?| |rename!| |oblateSpheroidal| |OMlistSymbols| - |resetVariableOrder| |listOfMonoms| |monomial| |inspect| - |OMgetVariable| |logical?| |factorFraction| |blue| |pushup| |solve| - |bernoulliB| |startStats!| |expPot| |purelyAlgebraic?| |multivariate| - |univcase| |atanIfCan| |brillhartIrreducible?| |antisymmetricTensors| - |belong?| |pointLists| |baseRDEsys| |leadingSupport| |palgRDE0| - |acosIfCan| |quoByVar| |variables| |primintfldpoly| |chiSquare| - |cAcot| |tanh2coth| |systemSizeIF| |setprevious!| |sorted?| - |quadratic?| |degreePartition| |d01gaf| |lfinfieldint| |printStats!| - |rightPower| |implies| |euclideanSize| |member?| |leftMult| |sdf2lst| - |derivationCoordinates| |selectPolynomials| |primitivePart!| |factors| - |positiveRemainder| |bit?| |SturmHabichtCoefficients| |xor| - |infieldint| |userOrdered?| |complexRoots| |d01amf| |listexp| - |compiledFunction| |f04maf| |primeFrobenius| |prod| |cycleElt| - |gradient| |antiCommutator| |primitiveElement| |finite?| |iomode| - |prindINFO| |OMUnknownCD?| |headReduced?| |harmonic| |pole?| - |interReduce| |purelyTranscendental?| |BasicMethod| |plot| |iiacosh| - |quadraticForm| |stoseLastSubResultant| |doubleResultant| - |radicalRoots| |coord| |localUnquote| |taylor| |s14aaf| |OMgetEndAttr| - |normalize| |mathieu22| |groebSolve| |s17dcf| |associator| |one?| - |monicLeftDivide| |iifact| |errorInfo| |tubePoints| |laurent| |dec| - |tanNa| |row| |cyclicParents| |Gamma| |conical| |leftLcm| |d01ajf| - |triangulate| |evaluate| |ellipticCylindrical| |central?| |shift| - |rightDivide| |fortranInteger| |hasTopPredicate?| |linearPart| - |createNormalPrimitivePoly| |roughBasicSet| |hasSolution?| - |fixedPoints| |iitan| |expenseOfEvaluationIF| |intermediateResultsIF| - |univariatePolynomial| |nthRootIfCan| |monicModulo| |fractRadix| - |showAll?| |stripCommentsAndBlanks| |complement| |coerceL| |varList| - |max| |split| |rootSplit| |times!| |initializeGroupForWordProblem| - |constDsolve| UP2UTS |getRef| |partialQuotients| |alternative?| - |lookup| |radicalSimplify| |getlo| |selectODEIVPRoutines| |normalise| - |lazyPquo| |rotatey| |squareMatrix| |f2df| |interval| |groebgen| - |multinomial| |polygon?| |pop!| |s17adf| |rootKerSimp| |mix| - |stirling1| |supRittWu?| |idealiser| |expextendedint| - |characteristicSet| |exp1| |readable?| |any?| |ode1| |OMlistCDs| - |monicRightFactorIfCan| |trivialIdeal?| |viewPosDefault| |prinpolINFO| - |linears| |shuffle| |primintegrate| |weighted| |acscIfCan| |addmod| - |upperCase!| |setrest!| |c06gsf| |initiallyReduced?| |defineProperty| - |find| |optional?| |iisqrt2| |rightAlternative?| |setPosition| - |aCubic| |mapMatrixIfCan| |recip| |linearAssociatedLog| - |viewPhiDefault| |logpart| |OMgetError| |vspace| - |radicalOfLeftTraceForm| |physicalLength| |replace| |patternMatch| - |padicallyExpand| |monic?| |terms| |complexExpand| |argument| - |members| |derivative| |complexZeros| |leftRegularRepresentation| - |jacobian| |iisinh| |shanksDiscLogAlgorithm| |paraboloidal| |ran| - |cTan| |rational| |result| |sts2stst| |computePowers| - |karatsubaDivide| |fortranLinkerArgs| |fixedDivisor| |algebraic?| - |symbolIfCan| |primitive?| |integerIfCan| |s13adf| |merge!| - |explimitedint| |changeName| |closeComponent| |alphanumeric| |atoms| - |curryLeft| |limit| |copies| |trailingCoefficient| |algebraicOf| - |isAbsolutelyIrreducible?| |FormatRoman| |iiacos| |nonQsign| - |noLinearFactor?| |c02aff| |antisymmetric?| |basisOfMiddleNucleus| - |romberg| |merge| |dioSolve| |makeSUP| |OMgetApp| - |useSingleFactorBound?| |semiResultantEuclideannaif| - |numberOfIrreduciblePoly| |critpOrder| |axesColorDefault| |hdmpToP| - |cap| |recolor| |lepol| |semiDegreeSubResultantEuclidean| |outputList| - |nsqfree| |qinterval| |quasiAlgebraicSet| |primaryDecomp| |cLog| - |associatedSystem| |oddintegers| |applyRules| |e02akf| |csc2sin| - |viewWriteDefault| |constantLeft| |numberOfNormalPoly| |fractionPart| - |sin?| |outputFloating| |plus| |setEpilogue!| |cTanh| |f02aef| - |cosh2sech| |trigs2explogs| |hasoln| |lprop| |mergeFactors| - |semicolonSeparate| |localAbs| |certainlySubVariety?| |symmetricPower| - |univariatePolynomials| |callForm?| |subNodeOf?| |monicRightDivide| - |abelianGroup| |reduction| |e02bbf| |removeSquaresIfCan| - |lflimitedint| |hasHi| |selectIntegrationRoutines| |tableau| - |UpTriBddDenomInv| |medialSet| |mainContent| |makeViewport3D| - |rdregime| |makeSeries| |cross| |mapUp!| |groebnerFactorize| |search| - |nullary| |patternMatchTimes| |unparse| |f07fef| - |resetAttributeButtons| |remove!| |balancedFactorisation| - |splitLinear| |univariateSolve| |rightFactorCandidate| |makingStats?| - |times| |largest| |rroot| |expenseOfEvaluation| |hcrf| |distFact| - |s13aaf| |init| |edf2fi| |Aleph| |OMgetAttr| |clearTheSymbolTable| - |simplify| |getExplanations| |basisOfCenter| |multiEuclidean| |lazy?| - |setMaxPoints| |label| |decompose| |constantOpIfCan| |binomThmExpt| - |physicalLength!| |patternVariable| |low| |prepareDecompose| |e01bef| - |anticoord| |stFunc1| |rightDiscriminant| |fixedPoint| |mindeg| - |generateIrredPoly| |duplicates?| |listOfLists| |rationalPower| - |squareFreePart| |top!| |integerBound| |tValues| |zero?| |children| - |reindex| |relerror| |degree| |fortranLiteralLine| - |wordsForStrongGenerators| |monom| |s19adf| |matrixConcat3D| - |bitLength| |OMputApp| |normal?| |stronglyReduce| |bivariateSLPEBR| - |determinant| |create3Space| |symmetricRemainder| |coshIfCan| - |nextNormalPrimitivePoly| F |cycleLength| |musserTrials| - |transcendent?| |drawToScale| |airyAi| |edf2efi| |besselY| - |subPolSet?| |rightQuotient| |powers| |concat| |iisin| |safeCeiling| - |moduloP| |compound?| |title| |c02agf| |alphanumeric?| |nonLinearPart| - |numberOfDivisors| |eulerE| |common| |OMconnOutDevice| |f02wef| - |fintegrate| |unaryFunction| |thetaCoord| |euclideanGroebner| - |OMcloseConn| |jordanAlgebra?| |more?| |maxColIndex| |cycle| - |pseudoQuotient| |superHeight| |stirling2| |coerceListOfPairs| - |branchIfCan| |presuper| |asechIfCan| |droot| |parabolicCylindrical| - |s18dcf| |lazyIrreducibleFactors| |dfRange| |paren| |leftUnits| - |cycleSplit!| ^ |coefficient| |e02baf| |polyRDE| |mapBivariate| - |corrPoly| |comp| |irreducibleFactor| |fractRagits| - |createMultiplicationMatrix| |laguerreL| |expint| |triangular?| - |modifyPoint| |nthFactor| |rk4f| |limitedint| |reducedSystem| - |compBound| |rightRemainder| |log| |option| |adaptive| - |currentCategoryFrame| |point| |controlPanel| |level| |infRittWu?| - |deriv| |curveColor| |createMultiplicationTable| |extractBottom!| - |totalLex| |term| |shade| |shallowCopy| |drawComplex| |bag| - |explicitlyFinite?| |validExponential| |initials| |powern| |cSech| - |subResultantGcd| |nary?| |sinIfCan| |imagi| |padecf| |indices| - |color| |tan2trig| |repSq| |OMreadFile| |series| |leadingBasisTerm| - |rur| |polynomialZeros| |perfectNthPower?| |leftRank| - |branchPointAtInfinity?| |makeMulti| |OMsupportsSymbol?| - |lazyGintegrate| |reducedForm| |lift| |flagFactor| - |tableForDiscreteLogarithm| |reverseLex| |internal?| |entry| |double?| - |sh| |f04faf| |reduce| |content| |relationsIdeal| |Ei| |factor1| - |contains?| |double| |OMUnknownSymbol?| |rowEchelon| |lexGroebner| - |expintegrate| |phiCoord| |sequences| |definingEquations| |modTree| - |basisOfRightAnnihilator| |useEisensteinCriterion| |min| |arguments| - |d01aqf| |mdeg| |selectAndPolynomials| |setMinPoints| |sech2cosh| - |cyclotomicDecomposition| |ratpart| |isQuotient| |pdct| |cCsc| - |firstSubsetGray| |d02kef| |quasiRegular| |identitySquareMatrix| - |subResultantGcdEuclidean| |equiv| |endSubProgram| |cyclic| |polygon| - |createPrimitivePoly| |simpson| |exactQuotient!| |denomRicDE| - |basisOfLeftNucleus| |mainValue| |tanh2trigh| |shiftLeft| |psolve| - |minimize| |intPatternMatch| |cRationalPower| |critMTonD1| |zeroOf| - |countable?| |extendedSubResultantGcd| |lieAdmissible?| |isMult| - |shallowExpand| |failed| |tRange| |var2StepsDefault| |toroidal| - |rightFactorIfCan| |unrankImproperPartitions1| |leftGcd| |tube| - |lifting1| |s18adf| |pr2dmp| |chebyshevT| |reset| - |irreducibleRepresentation| |laurentRep| |declare!| |height| |lambert| - |ridHack1| |palgRDE| |c06frf| |multiple| |stoseInvertibleSetreg| - |prevPrime| |sample| |nthFlag| |mainVariable| |trueEqual| |infLex?| - |applyQuote| |cyclic?| |leftRankPolynomial| |getGraph| - |OMencodingUnknown| |primitivePart| |write| |indicialEquation| - |numerator| |rightRecip| |simplifyExp| |createNormalPoly| - |weierstrass| |checkPrecision| |tab| |diagonals| |ramified?| |e02adf| - |setright!| |pastel| |fixedPointExquo| |insertBottom!| - |leastAffineMultiple| |packageCall| |call| |lagrange| |iiasech| - |henselFact| |rootOfIrreduciblePoly| |lyndon?| |leftMinimalPolynomial| - |createPrimitiveNormalPoly| |vconcat| |explicitEntries?| |remove| - |s17aff| |quadraticNorm| |sturmVariationsOf| |diagonal| |approximate| - |lineColorDefault| |beauzamyBound| |leftCharacteristicPolynomial| - |high| |pdf2ef| |randnum| |splitSquarefree| |whatInfinity| |complex| - |scaleRoots| ~ |binomial| |integers| |trace2PowMod| |monomRDEsys| - |OMgetEndBVar| |last| |recoverAfterFail| ** |singularitiesOf| - |positiveSolve| |llprop| |freeOf?| |rowEchelonLocal| GF2FG |f04mcf| - |assoc| |toseInvertible?| |fracPart| |sqfrFactor| |f01brf| |delta| - |f02abf| |matrixGcd| |GospersMethod| |ReduceOrder| |match?| |prologue| - |cschIfCan| |setref| |OMputError| |positive?| |graphCurves| - |symmetric?| |doubleComplex?| EQ |asecIfCan| |enterInCache| - |primPartElseUnitCanonical!| |hconcat| |realEigenvalues| |graphState| - |toseInvertibleSet| |cyclicEntries| |f04qaf| |LyndonCoordinates| |abs| - |monomial?| |collectUpper| |red| |s17ahf| |collectUnder| |open| - |realRoots| |bezoutDiscriminant| |OMgetBind| |changeThreshhold| - |isExpt| |f01qdf| |variationOfParameters| |findCycle| - |nextPrimitiveNormalPoly| |root| |reduceByQuasiMonic| |swapRows!| - |updateStatus!| |listConjugateBases| |unitNormalize| - |oneDimensionalArray| |eulerPhi| |LyndonBasis| |segment| |nodes| |hex| - |reopen!| |initiallyReduce| |xCoord| |numberOfHues| |square?| |lex| - |trigs| |transcendenceDegree| |triangSolve| |weight| |prime?| - |multiple?| |expr| |hexDigit?| |lambda| |numFunEvals| |reduced?| - |notOperand| |pade| |leadingCoefficientRicDE| |gcdPolynomial| - |invertibleSet| |primlimitedint| |OMgetString| |schwerpunkt| |open?| - |oddlambert| |lowerCase| |tan2cot| |#| |redPo| |jacobi| |eval| - |sin2csc| |removeSinhSq| |mapExpon| |subQuasiComponent?| |s17akf| - |precision| |setPoly| |e01sef| |status| |e01bgf| |changeVar| - |branchPoint?| |shiftRight| |semiSubResultantGcdEuclidean2| - |stronglyReduced?| |numFunEvals3D| |OMputEndObject| |weakBiRank| - |ratDsolve| |numericalOptimization| |variable| |lquo| |graphImage| - |optimize| |doublyTransitive?| |child| |minset| |leastPower| |adjoint| - |moreAlgebraic?| |digamma| |interpret| |algintegrate| |doubleDisc| - |f01rcf| |linear?| |binary| |areEquivalent?| |acotIfCan| - |argumentListOf| |tab1| |OMsend| |OMgetSymbol| - |stiffnessAndStabilityOfODEIF| |internalInfRittWu?| |shellSort| - |leaves| |unary?| |gethi| |maxint| |viewport3D| |symmetricProduct| - |cycleTail| |rootRadius| |selectOptimizationRoutines| |exponent| - |endOfFile?| |internalIntegrate| |someBasis| |f07fdf| |dmpToHdmp| - |subResultantsChain| |palgextint0| |isOp| |startTableGcd!| |iidprod| - |changeNameToObjf| |cCosh| |mainCoefficients| |createNormalElement| - |scopes| |flexible?| |deepestInitial| |delete!| |nextSubsetGray| - |recur| |Zero| |s15aef| |integralLastSubResultant| |formula| |s21bcf| - |att2Result| |f04arf| |bumprow| |integralRepresents| - |modularGcdPrimitive| |duplicates| |One| |irreducible?| |signAround| - |numberOfVariables| |rewriteIdealWithHeadRemainder| |prinshINFO| - |generators| |inf| |hypergeometric0F1| |maxrank| |key?| |bsolve| - |hyperelliptic| |pushdterm| |quadratic| |getMeasure| |hash| - |printHeader| |numer| |countRealRootsMultiple| |minrank| - |rightRegularRepresentation| |polygamma| |df2ef| |testDim| |count| - |repeating| |listLoops| |qelt| |noKaratsuba| |denom| |karatsuba| - |realEigenvectors| |iteratedInitials| |printInfo!| |e02bef| |nrows| - |stopTableInvSet!| |radPoly| |f04mbf| |cAcos| |constantIfCan| - |external?| |testModulus| |lllp| |divisors| |ncols| |ocf2ocdf| - |pseudoDivide| |quotientByP| |xRange| |any| |powmod| |pi| |zero| - |edf2df| |fullDisplay| |cfirst| |ptree| |insertionSort!| |rootBound| - |rootPower| |scripted?| |gramschmidt| |yRange| |OMconnectTCP| - |infinity| |nextIrreduciblePoly| |vedf2vef| |leadingIndex| |scan| - |cotIfCan| |composites| |newTypeLists| |readLineIfCan!| |zRange| - |ode2| |And| |mathieu24| |updatD| |insert| |compdegd| |equiv?| - |pureLex| |reduceBasisAtInfinity| |map!| |octon| |vectorise| |cAsec| - |Or| |c05pbf| |lowerCase!| |uncouplingMatrices| - |inverseIntegralMatrix| |constantOperator| D |qsetelt!| |movedPoints| - |typeLists| |less?| |reverse!| |kernel| |selectfirst| |invertible?| - |jacobiIdentity?| |outputSpacing| |dom| |trim| |newReduc| - |atrapezoidal| |extractIndex| |iroot| |draw| |drawComplexVectorField| - |append| |c06fpf| |lexTriangular| |andOperands| |exponentialOrder| - |removeRoughlyRedundantFactorsInPols| |factorByRecursion| |argscript| - |logGamma| |extendIfCan| |countRealRoots| |zeroDimPrimary?| - |showScalarValues| |rightMult| |f02awf| |firstDenom| |realSolve| - |singular?| |e02agf| |plus!| |stoseInvertible?sqfreg| - |complexNormalize| |deleteProperty!| |yellow| |pointColor| - |divideIfCan!| |mvar| |fortranLiteral| |escape| |maxdeg| |mkcomm| - |viewDeltaYDefault| |schema| |acsch| |cAcsch| |makeObject| |e02aef| - |pack!| |universe| |sPol| |s20adf| |arity| |leftZero| - |changeWeightLevel| |fortran| |firstUncouplingMatrix| |intChoose| - |f02bjf| |lazyResidueClass| |e| LODO2FUN |complexNumericIfCan| - |dihedralGroup| |subMatrix| |coef| |getOperands| |ord| - |factorGroebnerBasis| |characteristicSerie| |increase| |makeResult| - |genericLeftTraceForm| |save| |transcendentalDecompose| - |totalDifferential| |leadingIdeal| |continuedFraction| |print| - |sylvesterSequence| |rootPoly| |graphs| |cn| |pushucoef| - |extendedResultant| |subst| |lieAlgebra?| |singularAtInfinity?| - |exprex| |rightOne| |heapSort| |split!| |shiftRoots| |extractClosed| - |lexico| |meshPar2Var| |coordinates| |gcdcofact| |s17agf| |fTable| - |setClosed| |setleft!| |basisOfCommutingElements| |innerEigenvectors| - |discreteLog| |ParCondList| |initTable!| |tanhIfCan| |rischDE| - |normDeriv2| |fortranTypeOf| |monicDivide| |directory| - |removeSuperfluousQuasiComponents| |lazyPseudoQuotient| - |viewZoomDefault| |goodnessOfFit| |separateFactors| |factorials| - |outputMeasure| |move| |conjugates| |space| |shufflein| - |setMaxPoints3D| |c06gqf| |length| |objects| |subCase?| |subSet| - |setVariableOrder| |writable?| |leftDiscriminant| |implies?| |mapmult| - |scripts| |gderiv| |base| |polar| |lfintegrate| |laplace| - |showFortranOutputStack| |currentSubProgram| |op| |getCurve| - |multiEuclideanTree| |generalizedContinuumHypothesisAssumed?| - |equivOperands| |parametersOf| |addPointLast| - |internalLastSubResultant| |pair?| |e01sbf| |indiceSubResultant| |id| - |dmpToP| |tubeRadius| |coerceS| |setButtonValue| |s20acf| - |bipolarCylindrical| |script| FG2F |ode| |makeViewport2D| - |constructorName| |anfactor| |OMputInteger| |coordinate| LT - |ricDsolve| |viewWriteAvailable| |f07adf| |table| - |factorsOfCyclicGroupSize| |badNum| - |generalizedContinuumHypothesisAssumed| |dequeue| - |genericLeftMinimalPolynomial| |removeRedundantFactorsInContents| - |normalizedAssociate| |iiexp| |new| |makeEq| |mainCharacterization| - |lazyPrem| |maxIndex| |lyndon| |primPartElseUnitCanonical| |constant| - |specialTrigs| |tex| |polyPart| |OMputSymbol| |torsionIfCan| UTS2UP - |quartic| |f01bsf| |matrix| |completeHermite| - |genericLeftDiscriminant| |adaptive3D?| |tower| |OMconnInDevice| - |c06ekf| |twoFactor| |collect| |leftRemainder| |resultant| |size?| - |scanOneDimSubspaces| |bivariatePolynomials| |leftQuotient| RF2UTS - |erf| |internalZeroSetSplit| |iflist2Result| |viewpoint| |dihedral| - |palglimint| |LazardQuotient2| |leftDivide| |impliesOperands| - |reciprocalPolynomial| |systemCommand| |setPredicates| - |exprHasLogarithmicWeights| |subspace| |ODESolve| |rotatex| - |setchildren!| |basisOfRightNucleus| |genericPosition| - |leftFactorIfCan| |alphabetic| |previous| |mapUnivariate| |iExquo| - |property| |mainDefiningPolynomial| |setImagSteps| |unexpand| - |hessian| |stoseSquareFreePart| |read!| |structuralConstants| - |primeFactor| |diagonal?| |eigenvectors| |makeGraphImage| - |associative?| |function| |assign| |createThreeSpace| - |internalSubPolSet?| |top| |resultantEuclidean| |normal| |perfectSqrt| - |symbol?| |condition| |unmakeSUP| |debug3D| |possiblyNewVariety?| - |decreasePrecision| |seed| |continue| |curry| |rightRankPolynomial| - |morphism| |neglist| |e04jaf| |units| |cothIfCan| |getVariableOrder| - |partialNumerators| |s15adf| |generic| |f02bbf| |left| - |stoseIntegralLastSubResultant| |graphStates| |rotate!| - |zeroDimPrime?| |s18acf| |xn| |squareFreePolynomial| |multiset| - |OMgetInteger| |right| |copyInto!| |linearlyDependent?| |makeCos| - |monomialIntegrate| |wordInGenerators| |e01daf| |direction| - |palgintegrate| |f07aef| |chineseRemainder| |acschIfCan| F2FG - |rombergo| |oddInfiniteProduct| |simpleBounds?| |super| |c06fuf| - |pointData| |makeVariable| |sncndn| |cyclotomicFactorization| |d01bbf| - |inR?| |genericLeftNorm| |clipSurface| |resize| |viewport2D| |c05adf| - |e04naf| |code| |deepestTail| |mainForm| |stFuncN| - |rationalApproximation| |cSin| |predicate| |numberOfPrimitivePoly| - |initial| |makeSin| |ScanFloatIgnoreSpacesIfCan| |setEmpty!| |inc| - |basisOfNucleus| |dimension| |genus| |randomLC| |hclf| |string| - |conjugate| |cAcoth| |UP2ifCan| |makeprod| |subtractIfCan| - |intcompBasis| |expIfCan| |s14abf| |OMputString| |factorial| - |transform| |divisor| |subNode?| |currentEnv| |safeFloor| |elt| |in?| - |roughEqualIdeals?| |isTimes| |dominantTerm| |denominators| - |maxPoints| |simpsono| |currentScope| |numeric| |twist| |se2rfi| - |multisect| |ratDenom| |leftTrace| |solid?| |basisOfLeftNucloid| |lp| - |extendedint| |OMreadStr| |radical| |lcm| |sec2cos| - |lastSubResultantElseSplit| |modifyPointData| |rotatez| - |zeroDimensional?| |convergents| |fi2df| NOT |youngGroup| |besselJ| - |divideExponents| |mapDown!| |lazyPseudoRemainder| |dark| |is?| - |topFortranOutputStack| |normInvertible?| OR |LyndonWordsList1| - |float?| |parametric?| |measure2Result| |Is| |showTheIFTable| |dot| - |multMonom| |npcoef| AND |iicsc| |viewDefaults| |palgLODE| - |swapColumns!| |redpps| |gcd| |screenResolution3D| |stFunc2| - |monomialIntPoly| |remainder| |tree| |linearDependence| - |indicialEquations| |eisensteinIrreducible?| |prime| |union| - |rationalFunction| |newLine| |cAsech| |parameters| |solveInField| - |radicalEigenvectors| |quote| |trunc| |makeSketch| |false| - |unitsColorDefault| |raisePolynomial| |subResultantChain| |HenselLift| - |declare| |permutationRepresentation| |invmod| |critT| |crushedSet| - |elliptic| |clipWithRanges| |resultantnaif| |e02dff| - |expressIdealMember| |rootOf| |error| |virtualDegree| |upperCase?| - |bubbleSort!| |df2mf| |categoryFrame| |invertibleElseSplit?| |edf2ef| - |partitions| |rischNormalize| |output| |setTopPredicate| |assert| - |genericRightNorm| |varselect| |Vectorise| |numberOfOperations| - |unit?| |directSum| |orbits| |Si| |symbol| |divideIfCan| - |clearTheIFTable| |maxRowIndex| |dimensionsOf| |OMgetEndError| - |listRepresentation| |getProperties| |e04gcf| |LyndonWordsList| - |unitCanonical| |rationalIfCan| |typeList| |rootSimp| |curve| |s18aff| - |OMputEndBind| |finiteBasis| |symbolTable| |setelt!| |clearCache| - |integer| |getMatch| |OMputObject| |interpretString| - |chainSubResultants| |minGbasis| |imagE| |minus!| - |quasiMonicPolynomials| |tablePow| |antiAssociative?| * |nor| - |lazyPseudoDivide| |nand| |pushFortranOutputStack| - |complexEigenvectors| |printTypes| |fractionFreeGauss!| - |rewriteSetWithReduction| |pushuconst| |approxNthRoot| |increment| - |nextSublist| |var1Steps| |minPol| |expandPower| |drawStyle| - |popFortranOutputStack| |mindegTerm| |permutationGroup| |select!| - |e02zaf| |addiag| |finiteBound| |conditionP| |mat| |roughBase?| - |outputAsFortran| |setlast!| |lazyIntegrate| |e02def| |cardinality| - |coleman| |term?| |fortranDouble| |nextColeman| |errorKind| - |pointColorDefault| |pleskenSplit| |numberOfCycles| |resetBadValues| - |SturmHabicht| |represents| SEGMENT |hexDigit| |iicos| |OMReadError?| - |denominator| |leader| |univariate?| |integrate| |genericLeftTrace| - |BumInSepFFE| |zeroVector| |s13acf| |calcRanges| |returns| - |OMunhandledSymbol| |createPrimitiveElement| |pushNewContour| - |pointColorPalette| |solveid| |s21bdf| |lighting| |printInfo| - |companionBlocks| |dictionary| |addBadValue| |hermiteH| - |totalGroebner| |approxSqrt| |sinhcosh| |kroneckerDelta| |cSinh| - |generator| |LiePolyIfCan| |secIfCan| |separate| |quotient| |cCos| - |exponential1| |chebyshevU| |cons| |insert!| |curveColorPalette| - |setScreenResolution| |cAsin| |Frobenius| |d01akf| |setfirst!| - |postfix| |wholePart| |topPredicate| |c06fqf| |OMclose| |divide| - |coth2tanh| |operation| |d02gbf| |PollardSmallFactor| |SFunction| - |queue| |mathieu23| |OMserve| |subset?| |perfectSquare?| - |semiIndiceSubResultantEuclidean| |retract| |LowTriBddDenomInv| - |plotPolar| |graeffe| |returnTypeOf| |resultantReduitEuclidean| - |bombieriNorm| |tubeRadiusDefault| |e01sff| |radix| |s18def| - |linkToFortran| |rightUnits| |ptFunc| |decimal| |quickSort| - |bernoulli| |ffactor| |changeBase| |parabolic| - |getMultiplicationMatrix| |scale| |integralBasisAtInfinity| - |clipPointsDefault| |nullSpace| |range| |Lazard2| |makeFloatFunction| - |rootNormalize| |contract| |s17def| |bandedHessian| |e01bhf| |modulus| - |prepareSubResAlgo| |zag| |vector| |removeConstantTerm| - |evaluateInverse| |clikeUniv| |ruleset| |untab| |extendedIntegrate| - |retractIfCan| |idealSimplify| |lo| |OMputEndAtp| |nlde| |enumerate| - |differentiate| |viewThetaDefault| |traverse| |rangeIsFinite| - |normalizedDivide| |pmintegrate| |e02dcf| |incr| |pile| |setValue!| - |wholeRagits| |SturmHabichtMultiple| |semiSubResultantGcdEuclidean1| - |radicalEigenvalues| |zeroDim?| |bfKeys| |hi| |stoseInvertible?reg| - |iiacsc| |d03eef| |aQuadratic| |alternating| |rightUnit| |moebiusMu| - |suchThat| |linear| |discriminant| |pdf2df| |wronskianMatrix| - |numberOfComponents| |outputForm| |numberOfMonomials| |leaf?| |qroot| - |tensorProduct| |regime| |c06eaf| |bat| |monomRDE| |cycleEntry| - |semiResultantEuclidean2| |stoseInternalLastSubResultant| - |completeSmith| |polynomial| |stack| |lllip| |limitedIntegrate| - |f02akf| |genericRightTraceForm| - |solveLinearPolynomialEquationByRecursion| |light| - |definingInequation| |primlimintfrac| |cot2trig| |partialDenominators| - |rectangularMatrix| |selectFiniteRoutines| |palglimint0| |s21bbf| - |points| |cartesian| |setAttributeButtonStep| |singleFactorBound| - |ParCond| |lfextlimint| |f01qcf| |uniform01| |pointSizeDefault| - |preprocess| |e02bdf| |problemPoints| |hasPredicate?| - |roughUnitIdeal?| |sup| |overlabel| |extractSplittingLeaf| |Beta| - |OMencodingBinary| |completeEchelonBasis| |sub| |integralMatrix| - |clearDenominator| |trapezoidalo| |degreeSubResultant| - |solveLinearlyOverQ| |diag| |primextendedint| |curve?| |unravel| |map| - |integralAtInfinity?| |squareFree| |imagj| |commonDenominator| - |setColumn!| |cyclicSubmodule| |eigenvalues| |exQuo| - |removeRedundantFactorsInPols| |f01mcf| |real?| |factorList| |randomR| - |realElementary| |iitanh| |stop| |saturate| - |halfExtendedSubResultantGcd2| |reverse| |and?| - |exprHasAlgebraicWeight| |hspace| |removeCoshSq| |normFactors| - |charClass| |yCoord| |useNagFunctions| |/\\| |complexLimit| |dmp2rfi| - |f02aaf| |mathieu12| |leftExtendedGcd| |pascalTriangle| |meshFun2Var| - |selectSumOfSquaresRoutines| |cond| |plenaryPower| |\\/| - |solveLinearPolynomialEquation| |child?| |permutation| |generate| - |nil| |numberOfComposites| |mkAnswer| |f04asf| |omError| - |mainPrimitivePart| |maxrow| |convert| |aromberg| |OMreceive| - |pseudoRemainder| |credPol| |setProperties| |sizePascalTriangle| - |critMonD1| |sign| |birth| |viewDeltaXDefault| |incrementBy| - |quotedOperators| |extractIfCan| |variable?| |totolex| |monomials| - |filename| |appendPoint| |difference| |newSubProgram| |limitPlus| - |OMsupportsCD?| |expand| |reify| |sparsityIF| |case| |whileLoop| - |bandedJacobian| |properties| |getConstant| |dilog| |trapezoidal| - |OMgetEndBind| |buildSyntax| |inverse| |filterWhile| |nilFactor| - |permutations| |inHallBasis?| |cyclePartition| |OMputAttr| |not?| - |translate| |smith| |string?| |setAdaptive3D| |nodeOf?| |sin| - |filterUntil| |ldf2vmf| |coefChoose| |write!| |symFunc| |puiseux| - |has?| |startPolynomial| |LazardQuotient| |sumOfKthPowerDivisors| - |floor| |parse| |select| |algDsolve| |complexForm| - |definingPolynomial| |airyBi| |head| |mergeDifference| |nthExpon| - |infieldIntegrate| |semiDiscriminantEuclidean| |cup| - |multiplyCoefficients| |iFTable| |quasiComponent| |inv| - |diagonalMatrix| |redPol| |evenlambert| |nthExponent| |nextPartition| - |rightTrace| |domainOf| |exquo| |refine| |makeYoungTableau| |ground?| - |traceMatrix| |associatorDependence| |identification| |iprint| - |RittWuCompare| |invertIfCan| |cAtanh| |div| |iicoth| |module| - |ground| |extract!| |explicitlyEmpty?| BY |supersub| - |numericalIntegration| |cycleRagits| |cos| - |degreeSubResultantEuclidean| |quo| |cycles| |contractSolve| - |monicCompleteDecompose| |type| |leadingMonomial| |factorAndSplit| - |c05nbf| |euclideanNormalForm| |algint| |latex| |tan| |pattern| - |mapExponents| |createLowComplexityNormalBasis| |primextintfrac| - |purelyAlgebraicLeadingMonomial?| |leadingCoefficient| |setRow!| - |lyndonIfCan| |colorDef| |OMwrite| |selectMultiDimensionalRoutines| - |makeRecord| |cot| |generalizedEigenvector| |makeTerm| |rem| - |skewSFunction| |magnitude| |primitiveMonomials| |complex?| |laguerre| - |selectOrPolynomials| |linearPolynomials| |diagonalProduct| |sec| - |reorder| |integralDerivationMatrix| |stiffnessAndStabilityFactor| - |clearTheFTable| |reductum| |eq?| |routines| |forLoop| |setFormula!| - |over| |csc| |printCode| |setCondition!| |unit| |scalarTypeOf| - |binaryTournament| |box| |seriesToOutputForm| |showTheRoutinesTable| - |li| |outputAsScript| |bipolar| |asin| |power| |symmetricGroup| - |number?| |e02ajf| |bezoutResultant| |createLowComplexityTable| - |palginfieldint| |removeRoughlyRedundantFactorsInPol| |flexibleArray| - |acos| |tryFunctionalDecomposition| |setOfMinN| |curryRight| - |OMopenString| |prolateSpheroidal| |nonSingularModel| |push!| - |zeroSetSplit| |atan| |hitherPlane| |simplifyLog| |groebner?| - |exprToGenUPS| |rightExtendedGcd| |void| |basisOfLeftAnnihilator| - |extractProperty| |iicsch| |fprindINFO| |squareTop| |acot| - |useSingleFactorBound| |rule| |algebraicVariables| - |conditionsForIdempotents| |removeRedundantFactors| - |linearAssociatedExp| |critM| |mapUnivariateIfCan| - |fortranCompilerName| |basicSet| |nextsubResultant2| |minRowIndex| - |factorOfDegree| |OMgetFloat| |alphabetic?| |stopMusserTrials| - |charpol| |relativeApprox| |index| |RemainderList| |bringDown| - |stosePrepareSubResAlgo| |overbar| |empty?| |modularGcd| - |setProperties!| |lazyEvaluate| |highCommonTerms| - |numberOfImproperPartitions| |showTheFTable| |block| |leadingExponent| - |norm| |totalDegree| |gcdprim| |outputAsTex| |doubleRank| - |padicFraction| |rst| |generic?| |not| |charthRoot| |rCoord| - |bindings| |f01qef| |functionIsFracPolynomial?| |factorSquareFree| - |c06gbf| |pair| |f02adf| |augment| |approximants| |gcdcofactprim| - |body| |component| |s17ajf| |gcdPrimitive| |imaginary| |OMgetObject| - |width| |putGraph| |intensity| |pmComplexintegrate| |cubic| ~= - |brillhartTrials| |iiperm| |replaceKthElement| |zeroSquareMatrix| - |ddFact| |maximumExponent| |binding| |asimpson| |OMParseError?| - |socf2socdf| |toScale| |dAndcExp| |iicosh| |imagk| |tubePlot| - |cosSinInfo| |removeDuplicates!| |blankSeparate| - |linearAssociatedOrder| |palgLODE0| |horizConcat| |setProperty!| - |identityMatrix| |s19abf| |s17aef| |OMputEndError| |taylorRep| |close| - |comment| |gbasis| |perfectNthRoot| |rewriteIdealWithRemainder| - |distribute| |discriminantEuclidean| |setScreenResolution3D| - |genericRightTrace| |nthr| |deref| |moduleSum| - |setLegalFortranSourceExtensions| |listYoungTableaus| |sn| - |factorPolynomial| |fortranCarriageReturn| |optional| |sumSquares| - |sumOfDivisors| |imagJ| |display| |sort| |s19acf| |sqfree| |prefix| - |linearDependenceOverZ| |c06ecf| |upDateBranches| |d02cjf| - |getBadValues| = |truncate| |showRegion| |increasePrecision| - |epilogue| |empty| |taylorIfCan| |inverseLaplace| |message| |list| - |OMencodingXML| |test| |d01fcf| |chvar| |halfExtendedResultant2| - |elem?| |region| |showClipRegion| |numberOfChildren| |expandLog| |car| - |sayLength| |setClipValue| |isPlus| < |removeSuperfluousCases| |obj| - |cAcsc| |elRow2!| |moebius| |aQuartic| |removeZero| |normal01| - |distdfact| |roughSubIdeal?| |rightZero| > |cache| |permanent| - |checkForZero| |strongGenerators| |fillPascalTriangle| |htrigs| - |input| |doubleFloatFormat| |e04mbf| |localIntegralBasis| <= - |autoReduced?| |random| |objectOf| |fmecg| |setProperty| |e02bcf| - |ignore?| |name| |tail| |bottom!| |basis| |library| >= |orOperands| - |bumptab1| |OMmakeConn| |OMputBVar| |Lazard| |getMultiplicationTable| - |leftNorm| |ranges| |digit?| |reseed| |B1solve| |mainVariables| - |conjug| |iidsum| |nextItem| |normalDenom| |s01eaf| |quasiRegular?| - |algebraicCoefficients?| |balancedBinaryTree| |iiatan| |char| |d03edf| - |solid| |listBranches| |bezoutMatrix| |returnType!| |po| - |rationalPoints| |numericIfCan| |qPot| + |iiacot| - |integralCoordinates| |normalForm| |regularRepresentation| |cCoth| |t| - |palgextint| |partialFraction| |minIndex| |OMputEndApp| |set| - - |fortranReal| |LagrangeInterpolation| |or| |innerSolve| |float| - |mapGen| |OMgetType| |fglmIfCan| |readIfCan!| |extend| / |and| - |compose| |minimumExponent| |besselK| |modularFactor| |even?| - |figureUnits| |completeHensel| |polarCoordinates| |sumOfSquares| - |reflect| |complementaryBasis| |rquo| |torsion?| |realZeros| - |negative?| |mesh?| |maxPoints3D| |resultantReduit| |OMsetEncoding| - |exactQuotient| |coth2trigh| |log2| |numberOfComputedEntries| - |rightTrim| |extensionDegree| |e04dgf| |nthCoef| |d01apf| - |normalDeriv| |setOrder| |nullary?| |exists?| |iiatanh| |leftTrim| - |connect| |index?| |var1StepsDefault| |geometric| |chiSquare1| - |getOperator| |binarySearchTree| |f02aff| |nextLatticePermutation| - |datalist| |cyclicEqual?| |arrayStack| |semiResultantEuclidean1| |ref| - |e04ycf| |rotate| |An| |OMopenFile| |getDatabase| |karatsubaOnce| - |iiasinh| |setPrologue!| |readLine!| |indicialEquationAtInfinity| - |integralBasis| |shrinkable| |dimensions| |unrankImproperPartitions0| - |consnewpol| |e01baf| |show| |node| |axes| |constantToUnaryFunction| - |diff| GE |f02xef| |sinh2csch| |normalized?| |mkIntegral| |build| - |stopTableGcd!| |compile| |e02daf| |complexSolve| |diophantineSystem| - GT |integral?| |firstNumer| |mulmod| |leadingTerm| |equality| - |fortranComplex| |trace| |alternatingGroup| |ramifiedAtInfinity?| - |transpose| LE |clearFortranOutputStack| |decomposeFunc| |rarrow| - |hMonic| |OMbindTCP| |zoom| |showSummary| |partition| |d02bbf| - |showAllElements| |elements| |fill!| |qfactor| - |constantCoefficientRicDE| |rename| |swap!| |csch2sinh| |makeop| - |midpoint| |squareFreePrim| |rightNorm| |kmax| |logIfCan| - |showAttributes| |rowEchLocal| |constantRight| |d01anf| |infix| - |leastMonomial| |setnext!| |setStatus!| |fortranLogical| |pointPlot| - |nil| |infinite| |arbitraryExponent| |approximate| |complex| - |shallowMutable| |canonical| |noetherian| |central| - |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| - |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| - |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| - |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |cosIfCan| |elliptic| |mergeFactors| |identityMatrix| + |readLineIfCan!| |aLinear| |mapdiv| |imagj| |infLex?| |squareFreePrim| + |direction| |clipWithRanges| |front| |semicolonSeparate| |close| + |s19abf| |ode2| |localReal?| |coercePreimagesImages| |t| + |retractIfCan| |cyclic?| |commonDenominator| |rightNorm| + |palgintegrate| |cCot| |localAbs| |resultantnaif| |s17aef| |mathieu24| + |e02ddf| |rename!| |setColumn!| |leftRankPolynomial| |kmax| |f07aef| + |lifting| |e02dff| |certainlySubVariety?| |display| |updatD| + |OMputEndError| |csubst| |oblateSpheroidal| |chineseRemainder| + |cyclicSubmodule| |getGraph| |dilog| |logIfCan| |column| + |symmetricPower| |expressIdealMember| |compdegd| |taylorRep| + |eigenvalues| |keys| |OMlistSymbols| |/\\| |rowEchLocal| + |OMencodingUnknown| |sin| |acschIfCan| |rk4| |univariatePolynomials| + |rootOf| |gbasis| |equiv?| |monomial| F2FG |\\/| |resetVariableOrder| + |exQuo| |primitivePart| |constantRight| |cos| |getStream| |callForm?| + |virtualDegree| |perfectNthRoot| |pureLex| |multivariate| + |listOfMonoms| |d01anf| |indicialEquation| + |removeRedundantFactorsInPols| |tan| |rombergo| |insertTop!| + |upperCase?| |subNodeOf?| |reduceBasisAtInfinity| + |rewriteIdealWithRemainder| |variables| |inspect| |f01mcf| |cot| + |numerator| |infix| |oddInfiniteProduct| |input| |rightTrim| + |monicRightDivide| |bubbleSort!| |distribute| |octon| |simpleBounds?| + |OMgetVariable| |rightRecip| |real?| |sec| |leastMonomial| |satisfy?| + |df2mf| |leftTrim| |library| |abelianGroup| |discriminantEuclidean| + |vectorise| |setnext!| |logical?| |factorList| |simplifyExp| |csc| + |super| |option| |factorsOfDegree| |categoryFrame| |reduction| |cAsec| + |setScreenResolution3D| |createNormalPoly| |factorFraction| |c06fuf| + |randomR| |asin| |setStatus!| |internalSubQuasiComponent?| |e02bbf| + |invertibleElseSplit?| |genericRightTrace| |c05pbf| |realElementary| + |fortranLogical| Y |weierstrass| |map| |acos| |pointData| + |basisOfRightNucloid| |subst| |edf2ef| |removeSquaresIfCan| |nthr| + |lowerCase!| |properties| |taylor| |characteristicPolynomial| |nrows| + |iitanh| |tab| |makeVariable| |pointPlot| |iibinom| |lflimitedint| + |partitions| |set| |uncouplingMatrices| |deref| |submod| |laurent| + |ncols| |translate| |saturate| |diagonals| |sncndn| |boundOfCauchy| + |rischNormalize| |hasHi| |inverseIntegralMatrix| |moduleSum| |puiseux| + |cAcosh| |ramified?| |halfExtendedSubResultantGcd2| + |cyclotomicFactorization| |pol| |constantOperator| + |setLegalFortranSourceExtensions| |frst| |e02adf| |and?| |d01bbf| + |OMputEndBVar| |iisqrt2| |movedPoints| |listYoungTableaus| |inv| |qqq| + |setright!| |exprHasAlgebraicWeight| |convert| |atan| |inR?| + |unprotectedRemoveRedundantFactors| |rightAlternative?| |objects| |sn| + |typeLists| |ground?| |rowEch| |hspace| |pastel| |genericLeftNorm| + |acot| |minPoly| |setPosition| |base| |factorPolynomial| |less?| + |ground| |setleaves!| |asec| |clipSurface| |LiePoly| |aCubic| + |fortranCarriageReturn| |reverse!| |leadingMonomial| |summation| + |repSq| |zag| |acsc| |resize| |ideal| |mapMatrixIfCan| |sumSquares| + |selectfirst| |leadingCoefficient| |iisech| |removeConstantTerm| + |OMreadFile| |sinh| |viewport2D| |copy!| |recip| |sumOfDivisors| + |invertible?| |primitiveMonomials| |withPredicates| |leadingBasisTerm| + |evaluateInverse| |li| |c05adf| |cosh| |powerAssociative?| + |linearAssociatedLog| |show| |reductum| |removeZeroes| |rur| + |clikeUniv| |e04naf| |tanh| |prinb| |bright| |viewPhiDefault| + |selectOptimizationRoutines| |hitherPlane| |inverseColeman| + |polynomialZeros| |untab| |coth| |deepestTail| |failed?| |logpart| + |exponent| |simplifyLog| |trace| |c06ebf| |extendedIntegrate| + |perfectNthPower?| |sech| |mainForm| |selectsecond| |OMgetError| + |groebner?| |endOfFile?| |setvalue!| |leftRank| |idealSimplify| + |lintgcd| |vspace| |exprToGenUPS| |internalIntegrate| + |collectQuasiMonic| |void| |branchPointAtInfinity?| |OMputEndAtp| + UTS2UP |delete| |revert| |radicalOfLeftTraceForm| |someBasis| + |rightExtendedGcd| |showSummary| |splitDenominator| + |stoseInvertibleSetsqfreg| |makeMulti| |nlde| |quartic| |critBonD| + |physicalLength| |mantissa| |rule| |basisOfLeftAnnihilator| |f07fdf| + |operation| |badValues| |option?| |OMsupportsSymbol?| |enumerate| + |f01bsf| |setsubMatrix!| |previous| |patternMatch| |dmpToHdmp| + |extractProperty| |showAttributes| |interpolate| |algebraicDecompose| + |lazyGintegrate| |viewThetaDefault| |completeHermite| + |repeatUntilLoop| |padicallyExpand| |iicsch| |subResultantsChain| + |innerint| |swap| |reducedForm| |traverse| |genericLeftDiscriminant| + |coerceImages| |monic?| |fprindINFO| |palgextint0| |symbolTableOf| + |baseRDE| |rangeIsFinite| |flagFactor| |adaptive3D?| |leftOne| |terms| + |squareTop| |isOp| |fortranDoubleComplex| |comparison| + |tableForDiscreteLogarithm| |normalizedDivide| |OMconnInDevice| + |cyclicCopy| |complexExpand| |useSingleFactorBound| |startTableGcd!| + |subscriptedVariables| |OMread| |delta| |pmintegrate| |reverseLex| + |c06ekf| |radicalSolve| |ravel| |argument| |iidprod| + |algebraicVariables| |reducedQPowers| |depth| |or?| |e02dcf| + |internal?| |twoFactor| |sort| |toseLastSubResultant| |reshape| + |members| |changeNameToObjf| |conditionsForIdempotents| |yCoordinates| + |rightRank| |double?| |pile| |collect| |selectNonFiniteRoutines| + |derivative| |cCosh| |removeRedundantFactors| |tubePointsDefault| + |Nul| |setValue!| |sh| |prefix| |leftRemainder| |log10| |components| + |complexZeros| |linearAssociatedExp| |mainCoefficients| |green| + |atanhIfCan| |f04faf| |wholeRagits| |resultant| |leftTraceMatrix| + |leftRegularRepresentation| |createNormalElement| |critM| |iiasec| + |getIdentifier| |content| |SturmHabichtMultiple| |size?| |generator| + |cos2sec| |jacobian| |scopes| |mapUnivariateIfCan| |restorePrecision| + |generalLambert| |relationsIdeal| |semiSubResultantGcdEuclidean1| + |scanOneDimSubspaces| |random| |sort!| |iisinh| |flexible?| + |fortranCompilerName| |fibonacci| |explogs2trigs| |Ei| + |radicalEigenvalues| |bivariatePolynomials| |sturmSequence| + |shanksDiscLogAlgorithm| |mr| |deepestInitial| |basicSet| |exprToUPS| + |debug| |mesh| |zeroDim?| |factor1| |leftQuotient| |choosemon| + |digit?| |paraboloidal| |delete!| |nextsubResultant2| + |screenResolution| |f04adf| |bfKeys| |contains?| RF2UTS |removeSinSq| + |ran| |nextSubsetGray| |minRowIndex| |normalizeAtInfinity| |tanSum| + |OMUnknownSymbol?| |stoseInvertible?reg| |internalZeroSetSplit| + |jordanAdmissible?| |cTan| |factorOfDegree| |recur| |leftAlternative?| + |bitTruth| |iiacsc| |rowEchelon| |iflist2Result| ~= |orbit| |rational| + |s15aef| |OMgetFloat| |palgint| |addMatchRestricted| |d03eef| + |lexGroebner| |viewpoint| |elementary| |coerce| |alphabetic?| + |sts2stst| |replace| |integralLastSubResultant| |goodPoint| |dihedral| + |particularSolution| |expintegrate| |aQuadratic| |leaves| |lo| + |optpair| |construct| |computePowers| |stopMusserTrials| |s21bcf| + |factorSquareFreePolynomial| |zero| |clearTable!| |alternating| + |phiCoord| |palglimint| |incr| |startTableInvSet!| |karatsubaDivide| + |att2Result| |charpol| |true| |legendre| |f04jgf| |rightUnit| + |sequences| |LazardQuotient2| |hi| |bitCoef| |fortranLinkerArgs| + |f04arf| |relativeApprox| |lowerPolynomial| |And| + |standardBasisOfCyclicSubmodule| |moebiusMu| |definingEquations| + |leftDivide| |iipow| |fixedDivisor| |bumprow| |RemainderList| |f01maf| + |weights| |Or| |modTree| |discriminant| |impliesOperands| + |closedCurve| |algebraic?| |integralRepresents| |bringDown| |wrregime| + |digit| |Not| |basisOfRightAnnihilator| |pdf2df| + |reciprocalPolynomial| |homogeneous?| |symbolIfCan| + |modularGcdPrimitive| |stosePrepareSubResAlgo| |zCoord| + |leviCivitaSymbol| |useEisensteinCriterion| |wronskianMatrix| + |setPredicates| |clip| |primitive?| |duplicates| |overbar| |notelem| + |palgint0| |d01aqf| |numberOfComponents| |exprHasLogarithmicWeights| + |removeRoughlyRedundantFactorsInContents| |integerIfCan| + |irreducible?| |empty?| |bat1| |s17dhf| |mdeg| |outputForm| |subspace| + |stoseInvertibleSet| |s13adf| |modularGcd| |signAround| |pow| |mkPrim| + |numberOfMonomials| |selectAndPolynomials| |ODESolve| + |reducedDiscriminant| |merge!| |setProperties!| |numberOfVariables| + |measure| |splitConstant| |setMinPoints| |leaf?| |rotatex| |bumptab| + |explimitedint| |lazyEvaluate| |rewriteIdealWithHeadRemainder| + |f04axf| |wholeRadix| |qroot| |sech2cosh| |setchildren!| |iicot| + |changeName| |highCommonTerms| |prinshINFO| |showTheSymbolTable| + |ldf2lst| |cyclotomicDecomposition| |tensorProduct| + |basisOfRightNucleus| |Ci| |closeComponent| |generators| + |numberOfImproperPartitions| |deepExpand| |PDESolve| |ratpart| + |regime| |genericPosition| |tanintegrate| |alphanumeric| |inf| + |showTheFTable| |next| |possiblyInfinite?| |stop| |nullity| |c06eaf| + |pdct| |generate| |leftFactorIfCan| |createRandomElement| |atoms| + |hypergeometric0F1| |block| |constant?| |cCsc| |bat| |alphabetic| + |probablyZeroDim?| |setelt| |curryLeft| |leadingExponent| |maxrank| + |append| |fortranCharacter| |firstSubsetGray| |null| |monomRDE| + |mapUnivariate| |incrementBy| |point?| |limit| |key?| |norm| |node| + |d02kef| |mainMonomials| |cycleEntry| |case| |iExquo| |expand| |parts| + |complexIntegrate| |plusInfinity| |copy| |copies| |bsolve| + |totalDegree| |printStatement| |Zero| |semiResultantEuclidean2| + |quasiRegular| |mainDefiningPolynomial| |filterWhile| + |trailingCoefficient| |hyperelliptic| |gcdprim| |isQuotient| + |identitySquareMatrix| |genericRightDiscriminant| |dec| |One| + |stoseInternalLastSubResultant| |setImagSteps| |filterUntil| + |enterPointData| |algebraicOf| |pushdterm| |outputAsTex| |lhs| + |argumentList!| |subResultantGcdEuclidean| |completeSmith| |select| + |unexpand| |putColorInfo| |isAbsolutelyIrreducible?| |doubleRank| + |quadratic| |rhs| |generalTwoFactor| |equiv| |lllip| |hessian| + |separant| |FormatRoman| |padicFraction| |getMeasure| + |limitedIntegrate| |endSubProgram| |stoseSquareFreePart| + |computeBasis| |iiacos| |rst| |printHeader| |hdmpToDmp| |cyclic| + |f02akf| |read!| |d02bhf| |nonQsign| |generic?| + |countRealRootsMultiple| |height| |e| |froot| |genericRightTraceForm| + |elt| |polygon| |structuralConstants| |setFieldInfo| |noLinearFactor?| + |charthRoot| |minrank| |externalList| |createPrimitivePoly| + |solveLinearPolynomialEquationByRecursion| |primeFactor| |equation| + |KrullNumber| |rightRegularRepresentation| |rCoord| |sylvesterMatrix| + |simpson| |light| |makeRecord| |diagonal?| |decrease| + |stripCommentsAndBlanks| |bindings| |polygamma| + |halfExtendedSubResultantGcd1| |definingInequation| |exactQuotient!| + |eigenvectors| |mirror| |complement| |df2ef| |f01qef| + |dimensionOfIrreducibleRepresentation| |primlimintfrac| |denomRicDE| + |makeGraphImage| |nthRoot| |coerceL| |functionIsFracPolynomial?| + |testDim| |sinhIfCan| |associative?| |scalarMatrix| |split| + |repeating| |factorSquareFree| |parent| |curveColorPalette| + |branchIfCan| |assign| |findBinding| |rootSplit| |c06gbf| |listLoops| + |laurentIfCan| |presuper| |setScreenResolution| |createThreeSpace| + |ScanFloatIgnoreSpaces| |dim| |times!| |f02adf| |noKaratsuba| |qelt| + |concat!| |cAsin| |asechIfCan| |internalSubPolSet?| |iisqrt3| + |initializeGroupForWordProblem| |differentialVariables| |droot| + |Frobenius| |resultantEuclidean| |evenInfiniteProduct| |constDsolve| + |euclideanNormalForm| |OMgetString| |xRange| |list?| + |parabolicCylindrical| |d01akf| |perfectSqrt| |e04fdf| UP2UTS + |schwerpunkt| |algint| |getSyntaxFormsFromFile| |yRange| |s18dcf| + |setfirst!| |symbol?| |overset?| |getRef| |property| |latex| |open?| + |postfix| |zRange| |usingTable?| |lazyIrreducibleFactors| |fortran| + |frobenius| |partialQuotients| |mapExponents| |oddlambert| |map!| + |s17dgf| |dfRange| |wholePart| |realZeros| |subCase?| |OMgetEndApp| + |alternative?| |createLowComplexityNormalBasis| |lowerCase| |qsetelt!| + |OMgetEndAtp| |paren| |topPredicate| |negative?| |subSet| + |rightTraceMatrix| |lookup| |units| |primextintfrac| |tan2cot| + |incrementKthElement| |leftUnits| |c06fqf| |mesh?| |setVariableOrder| + |internalIntegrate0| |radicalSimplify| |redPo| + |purelyAlgebraicLeadingMonomial?| + |rewriteIdealWithQuasiMonicGenerators| |OMclose| |cycleSplit!| + |writable?| |maxPoints3D| |bfEntry| |getlo| |setRow!| |jacobi| + |minColIndex| |divide| |coefficient| |leftDiscriminant| + |resultantReduit| |tanIfCan| |selectODEIVPRoutines| |lyndonIfCan| + |sin2csc| |mapSolve| |e02baf| |coth2tanh| |OMsetEncoding| |implies?| + |lowerCase?| |normalise| |removeSinhSq| |colorDef| |extendedEuclidean| + |d02gbf| |acsch| |polyRDE| |lift| |exactQuotient| |mapmult| |e02gaf| + |code| |lazyPquo| |mapExpon| |OMwrite| |comment| |mapBivariate| + |cot2tan| |PollardSmallFactor| |reduce| |gderiv| |coth2trigh| + |substring?| |drawCurves| |rotatey| |selectMultiDimensionalRoutines| + |subQuasiComponent?| |HermiteIntegrate| |SFunction| |corrPoly| |polar| + |log2| |pToHdmp| |arg1| |squareMatrix| |generalizedEigenvector| + |s17akf| |arguments| |simplifyPower| |irreducibleFactor| |queue| + |lfintegrate| |numberOfComputedEntries| |identity| |suffix?| |f2df| + |arg2| |makeTerm| |setPoly| |computeCycleLength| |laplace| |mathieu23| + |fractRagits| |predicate| |extensionDegree| |solveRetract| |interval| + |skewSFunction| |e01sef| |shift| |getProperty| + |createMultiplicationMatrix| |OMserve| |script| + |showFortranOutputStack| |e04dgf| |eigenvector| |prefix?| |second| + |groebgen| |conditions| |e01bgf| |magnitude| |numberOfFactors| + |laguerreL| |subset?| |nthCoef| |currentSubProgram| |idealiserMatrix| + |third| |multinomial| |match| |complex?| |changeVar| |rk4qc| + |perfectSquare?| |expint| |d01apf| |getCurve| |messagePrint| + |polygon?| |branchPoint?| |laguerre| |internalAugment| + |semiIndiceSubResultantEuclidean| |triangular?| |tex| + |multiEuclideanTree| |normalDeriv| |operators| |pop!| + |selectOrPolynomials| |shiftRight| |numeric| |extractPoint| + |modifyPoint| |LowTriBddDenomInv| + |generalizedContinuumHypothesisAssumed?| |setOrder| |iiGamma| |s17adf| + |semiSubResultantGcdEuclidean2| |linearPolynomials| |radical| |wreath| + |nthFactor| |plotPolar| |nullary?| |equivOperands| |processTemplate| + |rootKerSimp| |diagonalProduct| |stronglyReduced?| |style| |graeffe| + |rk4f| |exists?| |parametersOf| |infix?| |insertMatch| |tail| |mix| + |reorder| |numFunEvals3D| |factorSquareFreeByRecursion| |limitedint| + |returnTypeOf| |iiatanh| |addPointLast| |mask| |leftPower| |stirling1| + |integralDerivationMatrix| |OMputEndObject| |parameters| + |rightCharacteristicPolynomial| |reducedSystem| + |resultantReduitEuclidean| |internalLastSubResultant| |connect| + |binaryFunction| |supRittWu?| |weakBiRank| + |stiffnessAndStabilityFactor| |tryFunctionalDecomposition?| + |bombieriNorm| |compBound| |index?| |pair?| + |removeIrreducibleRedundantFactors| |idealiser| |clearTheFTable| + |ratDsolve| |f01ref| |rightRemainder| |tubeRadiusDefault| |e01sbf| + |var1StepsDefault| |algSplitSimple| |expextendedint| |eq?| + |numericalOptimization| |say| |rk4a| |adaptive| |e01sff| + |indiceSubResultant| |geometric| |eigenMatrix| |characteristicSet| + |routines| |lquo| |flatten| |subscript| |radix| |currentCategoryFrame| + |dmpToP| |chiSquare1| |precision| |isobaric?| |exp1| |forLoop| + |graphImage| |formula| |iisec| |s18def| |controlPanel| |tubeRadius| + |getOperator| |d02raf| |readable?| |doublyTransitive?| |setFormula!| + |zeroMatrix| |list| |linkToFortran| |infRittWu?| |binarySearchTree| + |coerceS| |csch| |denomLODE| |any?| |over| |child| |character?| |car| + |log| |rightUnits| |deriv| |setButtonValue| |f02aff| |asinh| |rules| + |triangularSystems| |ode1| |printCode| |minset| |predicates| |cdr| + |curveColor| |ptFunc| |s20acf| |nextLatticePermutation| |acosh| + |createIrreduciblePoly| |OMlistCDs| |leastPower| |setCondition!| + |setDifference| |minPoints| |decimal| |createMultiplicationTable| + |bipolarCylindrical| |cyclicEqual?| |atanh| |tracePowMod| |label| + |monicRightFactorIfCan| |unit| |adjoint| |setIntersection| |pushdown| + |extractBottom!| |quickSort| |arrayStack| FG2F |acoth| + |functionIsContinuousAtEndPoints| |complexNumeric| |trivialIdeal?| + |scalarTypeOf| |moreAlgebraic?| |outerProduct| |setUnion| + |cyclicGroup| |totalLex| |bernoulli| |semiResultantEuclidean1| |ode| + |asech| |antiCommutative?| |viewPosDefault| |binaryTournament| + |digamma| |generalSqFr| |apply| |ffactor| |term| |ref| + |makeViewport2D| |generalizedInverse| |kernels| |prinpolINFO| + |algintegrate| |seriesToOutputForm| |solve1| |changeBase| |shade| + |anfactor| |e04ycf| |int| |linears| |univariate| |doubleDisc| + |showTheRoutinesTable| |parabolic| |colorFunction| |concat| |size| + |printInfo| |comp| |shallowCopy| |OMputInteger| |rotate| |s21baf| + |title| |shuffle| |f01rcf| |outputAsScript| |setErrorBound| + |drawComplex| |getMultiplicationMatrix| |An| |coordinate| + |inverseIntegralMatrixAtInfinity| |bipolar| |primintegrate| |symbol| + |linear?| |indiceSubResultantEuclidean| |bag| |scale| |ricDsolve| + |OMopenFile| |checkRur| |weighted| ^ |factor| |binary| |power| + |loopPoints| |first| |integralBasisAtInfinity| |explicitlyFinite?| + |getDatabase| |viewWriteAvailable| |any| |integer| |rightGcd| + |acscIfCan| |sqrt| |symmetricGroup| |areEquivalent?| |lfunc| |rest| + |validExponential| |clipPointsDefault| |f07adf| |karatsubaOnce| + |polyRicDE| |addmod| |real| |number?| |acotIfCan| |ef2edf| + |substitute| |failed| |nullSpace| |initials| |iiasinh| + |factorsOfCyclicGroupSize| |upperCase!| |imag| |e02ajf| + |argumentListOf| |removeDuplicates| |rangePascalTriangle| |range| + |powern| |badNum| |setPrologue!| |prem| |directProduct| |setrest!| + |bezoutResultant| |tab1| |hue| |cSech| |Lazard2| + |generalizedContinuumHypothesisAssumed| |readLine!| |extractTop!| + |c06gsf| |createLowComplexityTable| |OMsend| |entry| |superscript| + |makeFloatFunction| |subResultantGcd| |dequeue| + |indicialEquationAtInfinity| |complete| |destruct| |initiallyReduced?| + |palginfieldint| |OMgetSymbol| |nary?| |rootNormalize| + |genericLeftMinimalPolynomial| |integralBasis| |rightLcm| + |defineProperty| |stiffnessAndStabilityOfODEIF| + |removeRoughlyRedundantFactorsInPol| |constant| + |numberOfFractionalTerms| |contract| |sinIfCan| ** |shrinkable| + |removeRedundantFactorsInContents| |viewSizeDefault| |find| + |flexibleArray| |internalInfRittWu?| |var2Steps| |autoCoerce| |remove| + |s17def| |imagi| |normalizedAssociate| |dimensions| |tanQ| |optional?| + |shellSort| |tryFunctionalDecomposition| |univariatePolynomialsGcds| + |bandedHessian| |padecf| |iiexp| |unrankImproperPartitions0| + |mainVariable?| |unary?| |implies| EQ |setOfMinN| |erf| |addPoint2| + |last| |indices| |e01bhf| |makeEq| |consnewpol| |power!| |iomode| + |gethi| |curryRight| |xor| |unitNormal| |assoc| |modulus| |color| + |e01baf| |mainCharacterization| |createZechTable| |prindINFO| |maxint| + |OMopenString| |iCompose| |prepareSubResAlgo| |tan2trig| |lazyPrem| + |axes| |c06gcf| |OMUnknownCD?| |prolateSpheroidal| |reset| + |viewport3D| |powerSum| |constantToUnaryFunction| |maxIndex| |middle| + |headReduced?| |nonSingularModel| |symmetricProduct| |commutative?| + |top!| |addiag| |lyndon| |diff| |mainKernel| |harmonic| |condition| + |write| |push!| |cycleTail| |slash| |integerBound| |finiteBound| + |f02xef| |primPartElseUnitCanonical| |prefixRagits| |pole?| + |rootRadius| |zeroSetSplit| |meatAxe| |conditionP| |tValues| + |specialTrigs| |sinh2csch| |getZechTable| |interReduce| |call| |mat| + |stoseInvertible?| ~ |zero?| |polyPart| |normalized?| |lfextendedint| + |purelyTranscendental?| |OMputAttr| |enterInCache| |elRow1!| + |roughBase?| |children| |mkIntegral| |OMputSymbol| + |sizeMultiplication| |length| |BasicMethod| + |primPartElseUnitCanonical!| |smith| |inRadical?| |reindex| |setlast!| + |build| |torsionIfCan| |scripts| |factorset| |plot| |hconcat| + |string?| |Hausdorff| |relerror| |lazyIntegrate| |entry?| |varList| + |iiacosh| |realEigenvalues| |setAdaptive3D| |element?| |e02def| + |degree| |subMatrix| |OMputBVar| |rightExactQuotient| |quadraticForm| + |nodeOf?| |graphState| |open| |splitNodeOf!| |cardinality| + |fortranLiteralLine| |Lazard| |getOperands| |rspace| + |stoseLastSubResultant| |ldf2vmf| |toseInvertibleSet| |extension| + |result| |wordsForStrongGenerators| |coleman| |ord| + |getMultiplicationTable| |integral| |doubleResultant| |coefChoose| + |cyclicEntries| |close!| |s19adf| |term?| |leftNorm| + |factorGroebnerBasis| |rationalPoint?| |radicalRoots| |write!| + |f04qaf| |match?| |generalPosition| |fortranDouble| |matrixConcat3D| + |ranges| |characteristicSerie| |eyeDistance| |LyndonCoordinates| + |coord| |expr| |symFunc| |leftExactQuotient| |bitLength| |nextColeman| + |increase| |reseed| |e04ucf| |localUnquote| |has?| |abs| |uniform| + |OMputApp| |errorKind| |makeResult| |B1solve| |reduceLODE| |s14aaf| + |startPolynomial| |monomial?| |repeating?| |normal?| + |pointColorDefault| |genericLeftTraceForm| |mainVariables| |cscIfCan| + |OMgetEndAttr| |collectUpper| |LazardQuotient| |functionIsOscillatory| + |outputList| |pleskenSplit| |stronglyReduce| |conjug| + |transcendentalDecompose| |infiniteProduct| |red| |normalize| + |sumOfKthPowerDivisors| |variable| |OMgetEndObject| |numberOfCycles| + |bivariateSLPEBR| |iidsum| |totalDifferential| |bivariate?| + |mathieu22| |s17ahf| |floor| |rootsOf| |resetBadValues| |determinant| + |leadingIdeal| |nextItem| |biRank| |groebSolve| |algDsolve| + |collectUnder| |optimize| |vark| |SturmHabicht| |create3Space| + |normalDenom| |continuedFraction| |computeInt| |s17dcf| |realRoots| + |complexForm| |e01bff| |represents| |symmetricRemainder| |s01eaf| + |sylvesterSequence| |plus| |inconsistent?| |associator| + |bezoutDiscriminant| |definingPolynomial| |outputGeneral| |hexDigit| + |coshIfCan| |rootPoly| |quasiRegular?| |resetNew| |one?| |OMgetBind| + |airyBi| |showArrayValues| |init| |iicos| |nextNormalPrimitivePoly| + |algebraicCoefficients?| |graphs| |leftUnit| |monicLeftDivide| + |changeThreshhold| |head| |f01rdf| |OMReadError?| |cycleLength| + |balancedBinaryTree| |pushucoef| |sizeLess?| |iifact| + |mergeDifference| |isExpt| |symmetricTensors| |musserTrials| + |denominator| |iiatan| |extendedResultant| |times| |adaptive?| + |errorInfo| |f01qdf| |nthExpon| |associates?| |univariate?| + |transcendent?| |lieAlgebra?| |d03edf| |iilog| |tubePoints| + |infieldIntegrate| |variationOfParameters| |#| |normalizeIfCan| |eval| + |drawToScale| |integrate| |solid| |singularAtInfinity?| |mpsode| + |tanNa| |semiDiscriminantEuclidean| |findCycle| |UnVectorise| + |genericLeftTrace| |airyAi| |exprex| |listBranches| |f2st| |row| |cup| + |nextPrimitiveNormalPoly| |deepCopy| |edf2efi| |BumInSepFFE| + |bezoutMatrix| |rightOne| |dflist| |monom| |cyclicParents| |root| + |multiplyCoefficients| |exponential| |zeroVector| |besselY| |heapSort| + |returnType!| |nthFractionalTerm| |Gamma| |iFTable| + |reduceByQuasiMonic| |eq| |box| |lambda| |symmetricSquare| |s13acf| + |subPolSet?| |po| |split!| |slex| |conical| |swapRows!| + |quasiComponent| |iter| |addMatch| |rightQuotient| |calcRanges| + |rationalPoints| |shiftRoots| |common| |coHeight| |leftLcm| + |diagonalMatrix| |updateStatus!| |width| |euler| |returns| |powers| + |numericIfCan| |extractClosed| |makeFR| |d01ajf| |redPol| + |listConjugateBases| |janko2| |iisin| |OMunhandledSymbol| |qPot| + |lexico| |minimalPolynomial| |op| |triangulate| |unitNormalize| + |evenlambert| |commutator| |createPrimitiveElement| |safeCeiling| + |iiacot| |meshPar2Var| |headReduce| |evaluate| |oneDimensionalArray| + |nthExponent| |level| |spherical| |moduloP| |pushNewContour| + |integralCoordinates| |coordinates| |reducedContinuedFraction| + |ellipticCylindrical| D |eulerPhi| |nextPartition| |insert| + |acothIfCan| |pointColorPalette| |compound?| |gcdcofact| |normalForm| + |cSec| |central?| |rightTrace| |LyndonBasis| |exp| |optional| + |rischDEsys| |solveid| |c02agf| |regularRepresentation| |s17agf| + |imagK| |rightDivide| |domainOf| |nodes| |supDimElseRittWu?| + |alphanumeric?| |s21bdf| |fTable| |cCoth| |printingInfo?| + |fortranInteger| |hex| |refine| |numerators| |nonLinearPart| + |lighting| |palgextint| |setClosed| |operator| |hasTopPredicate?| + |reopen!| |makeYoungTableau| |double| |myDegree| |numberOfDivisors| + |companionBlocks| |setleft!| |partialFraction| |setStatus| + |linearPart| |traceMatrix| |initiallyReduce| + |basisOfCommutingElements| |s17dlf| |dictionary| |eulerE| |minIndex| + |multiple| |outputArgs| |createNormalPrimitivePoly| + |associatorDependence| |xCoord| |applyQuote| |OMputAtp| + |OMconnOutDevice| |addBadValue| |innerEigenvectors| |OMputEndApp| + |retractable?| |roughBasicSet| |numberOfHues| |identification| |expt| + |f02wef| |hermiteH| |discreteLog| |fortranReal| |expintfldpoly| + |iprint| |hasSolution?| |square?| |sum| |dom| |rightMinimalPolynomial| + |totalGroebner| |fintegrate| |LagrangeInterpolation| |ParCondList| + |nextPrime| |fixedPoints| |print| |RittWuCompare| |lex| |coerceP| + |innerSolve| |approxSqrt| |unaryFunction| |ruleset| |initTable!| + |allRootsOf| |iitan| |invertIfCan| |trigs| |zerosOf| |thetaCoord| + |sinhcosh| |mapGen| |tanhIfCan| |expenseOfEvaluationIF| |cAtanh| + |transcendenceDegree| |declare!| |df2st| |kroneckerDelta| + |euclideanGroebner| |OMgetType| |rischDE| |inGroundField?| + |intermediateResultsIF| |iicoth| |triangSolve| |cSinh| + |solveLinearPolynomialEquationByFractions| |fglmIfCan| |OMcloseConn| + |normDeriv2| |suchThat| |separateDegrees| |univariatePolynomial| + |weight| |module| |sortConstraints| |jordanAlgebra?| |LiePolyIfCan| + |fortranTypeOf| |readIfCan!| |rational?| GE |nthRootIfCan| |extract!| + |prime?| |secIfCan| |more?| |monicDivide| |extend| |backOldPos| GT + |monicModulo| |explicitlyEmpty?| |multiple?| |iiasin| |maxColIndex| + |separate| |removeSuperfluousQuasiComponents| |compose| |isPower| LE + |fractRadix| |hexDigit?| |supersub| |binaryTree| |quotient| |cycle| + |minimumExponent| |lazyPseudoQuotient| |complexEigenvalues| LT + |showAll?| |numericalIntegration| |numFunEvals| |constructorName| + |f02axf| |cCos| |pseudoQuotient| |besselK| |viewZoomDefault| |quoted?| + |cycleRagits| |reduced?| |invmultisect| |superHeight| |exponential1| + |modularFactor| |goodnessOfFit| |mainMonomial| |blue| |notOperand| + |degreeSubResultantEuclidean| |divisorCascade| |stirling2| + |chebyshevU| |separateFactors| |even?| |cylindrical| |pushup| |pade| + |cycles| |completeEval| |coerceListOfPairs| |insert!| |factorials| + |figureUnits| |critB| |solve| |leadingCoefficientRicDE| + |contractSolve| |imagI| |outputMeasure| |completeHensel| + |commutativeEquality| |bernoulliB| |gcdPolynomial| + |monicCompleteDecompose| |subresultantSequence| |setTopPredicate| + |selectIntegrationRoutines| |polarCoordinates| |move| + |lastSubResultantEuclidean| |startStats!| |factorAndSplit| + |invertibleSet| |rootProduct| |genericRightNorm| |tableau| + |sumOfSquares| |or| |conjugates| |upperCase| |expPot| |primlimitedint| + |c05nbf| |segment| |primes| |varselect| |UpTriBddDenomInv| |reflect| + |space| |and| |startTable!| |purelyAlgebraic?| |toseSquareFreePart| + |Vectorise| |medialSet| |complementaryBasis| |shufflein| |function| + |polyred| |univcase| |max| |removeCoshSq| |fixedPointExquo| NOT + |exteriorDifferential| |numberOfOperations| |mainContent| + |setMaxPoints3D| |rquo| |ratPoly| |insertBottom!| |atanIfCan| + |normFactors| |point| OR |lastSubResultant| |unit?| |makeViewport3D| + |c06gqf| |torsion?| |createGenericMatrix| |brillhartIrreducible?| + |charClass| |leastAffineMultiple| AND |contours| |directSum| + |rdregime| |status| |atom?| |antisymmetricTensors| |packageCall| + |yCoord| |cAsinh| |makeSeries| |orbits| |jacobiIdentity?| |imagJ| + |intersect| |useNagFunctions| |belong?| |series| |lagrange| |e02ahf| + |Si| |cross| |outputSpacing| |s19acf| |semiResultantReduitEuclidean| + |pointLists| |iiasech| |complexLimit| |infinite?| |mapUp!| + |divideIfCan| |sqfree| |trim| |quatern| |baseRDEsys| |dmp2rfi| + |henselFact| |subHeight| |groebnerFactorize| |clearTheIFTable| + |newReduc| |linearDependenceOverZ| |internalDecompose| + |leadingSupport| |rootOfIrreduciblePoly| |f02aaf| |stFuncN| |digits| + |nullary| |maxRowIndex| |c06ecf| |atrapezoidal| |interpret| |sincos| + |palgRDE0| |lyndon?| |mathieu12| |min| |rationalApproximation| + |laplacian| |dimensionsOf| |patternMatchTimes| |upDateBranches| + |extractIndex| |FormatArabic| |acosIfCan| |leftMinimalPolynomial| + |leftExtendedGcd| |cSin| |nil?| |unparse| |OMgetEndError| |iroot| + |d02cjf| |solveLinear| |quoByVar| |createPrimitiveNormalPoly| + |pascalTriangle| |numberOfPrimitivePoly| |mapCoef| |f07fef| + |listRepresentation| |drawComplexVectorField| |getBadValues| + |position!| |primintfldpoly| |meshFun2Var| |vconcat| |makeSin| * + |characteristic| |resetAttributeButtons| |getProperties| |c06fpf| + |truncate| |safetyMargin| |lcm| |string| |chiSquare| + |explicitEntries?| |selectSumOfSquaresRoutines| + |ScanFloatIgnoreSpacesIfCan| |commaSeparate| |e04gcf| |remove!| + |lexTriangular| |showRegion| |cExp| |cAcot| |plenaryPower| |s17aff| + |setEmpty!| |d01asf| |balancedFactorisation| |LyndonWordsList| + |increasePrecision| |andOperands| |SturmHabichtSequence| |tanh2coth| + |quadraticNorm| |solveLinearPolynomialEquation| |basisOfNucleus| + |setAdaptive| |splitLinear| |unitCanonical| |exponentialOrder| + |epilogue| |taylorQuoByVar| |gcd| |systemSizeIF| |sturmVariationsOf| + |child?| |dimension| |cyclotomic| |numer| |rationalIfCan| + |univariateSolve| |removeRoughlyRedundantFactorsInPols| |empty| + |union| |check| |setprevious!| |brace| |permutation| |diagonal| + |genus| |rewriteSetByReducingWithParticularGenerators| |denom| + |rightFactorCandidate| |typeList| |factorByRecursion| |taylorIfCan| + |ptree| |false| |absolutelyIrreducible?| |sorted?| + |numberOfComposites| |lineColorDefault| |randomLC| + |generalizedEigenvectors| |rootSimp| |makingStats?| |inverseLaplace| + |argscript| |d02ejf| |quadratic?| |beauzamyBound| |mkAnswer| |hclf| + |f04atf| |pi| |curve| |largest| |logGamma| |OMencodingXML| |besselI| + |degreePartition| |leftCharacteristicPolynomial| |f04asf| |conjugate| + |infinity| |irreducibleFactors| |s18aff| |rroot| |d01fcf| + |extendIfCan| |setTex!| |d01gaf| |value| |omError| |high| |cAcoth| + |hermite| |expenseOfEvaluation| |OMputEndBind| |chvar| + |countRealRoots| |every?| |lfinfieldint| |pdf2ef| |mainPrimitivePart| + |UP2ifCan| |update| |zeroSetSplitIntoTriangularSystems| |finiteBasis| + |hcrf| |zeroDimPrimary?| |halfExtendedResultant2| |redmat| + |printStats!| |randnum| |maxrow| |makeprod| |dn| |kernel| |distFact| + |setelt!| |elem?| |showScalarValues| |bits| |rightPower| + |splitSquarefree| |aromberg| |subtractIfCan| |draw| |clipBoolean| + |s13aaf| |getMatch| |rightMult| |region| |writeLine!| |euclideanSize| + |OMreceive| |whatInfinity| |intcompBasis| |btwFact| |edf2fi| + |OMputObject| |f02awf| |showClipRegion| |showTypeInOutput| |member?| + |scaleRoots| |pseudoRemainder| |expIfCan| |e01saf| |Aleph| + |interpretString| |firstDenom| |numberOfChildren| + |generalInfiniteProduct| |leftMult| |credPol| |binomial| |s14abf| + |order| |OMgetAttr| |chainSubResultants| |expandLog| |realSolve| + |singRicDE| |sdf2lst| |setProperties| |integers| |OMputString| SEGMENT + |makeObject| |position| |algebraicSort| |minGbasis| + |clearTheSymbolTable| |sayLength| |singular?| |delay| + |derivationCoordinates| |trace2PowMod| |sizePascalTriangle| + |factorial| |error| |ListOfTerms| |imagE| |simplify| |setClipValue| + |e02agf| |legendreP| |selectPolynomials| |critMonD1| |monomRDEsys| + |transform| |cn| |assert| |headRemainder| |coef| |minus!| + |getExplanations| |plus!| |isPlus| |squareFreeFactors| + |primitivePart!| |OMgetEndBVar| |sign| |divisor| |directory| |f02fjf| + |basisOfCenter| |quasiMonicPolynomials| |removeSuperfluousCases| + |stoseInvertible?sqfreg| |leftFactor| |factors| |recoverAfterFail| + |birth| |subNode?| |getPickedPoints| |multiEuclidean| |tablePow| + |cAcsc| |complexNormalize| |setMinPoints3D| |positiveRemainder| + |singularitiesOf| |viewDeltaXDefault| |safeFloor| |antiAssociative?| + |asinhIfCan| |lazy?| |retract| |deleteProperty!| |elRow2!| |mathieu11| + |bit?| |rootDirectory| |quotedOperators| |positiveSolve| |in?| + |noncommutativeJordanAlgebra?| |nor| |setMaxPoints| |yellow| |moebius| + |d02gaf| |SturmHabichtCoefficients| |nativeModuleExtension| |llprop| + |extractIfCan| |roughEqualIdeals?| |computeCycleEntry| + |lazyPseudoDivide| |decompose| |pointColor| |aQuartic| + |showIntensityFunctions| |infieldint| |hostPlatform| |freeOf?| + |variable?| |isTimes| F |cons| |constantOpIfCan| |enqueue!| |nand| + |save| |divideIfCan!| |removeZero| |tanAn| |userOrdered?| |totolex| + |rowEchelonLocal| |dominantTerm| |innerSolve1| |binomThmExpt| + |complexEigenvectors| |normal01| |mvar| |knownInfBasis| |complexRoots| + GF2FG |monomials| |denominators| |linSolve| |physicalLength!| + |printTypes| |distdfact| |fortranLiteral| |clipParametric| |d01amf| + |rank| |appendPoint| |f04mcf| |maxPoints| |escape| |overlap| + |fractionFreeGauss!| |patternVariable| |roughSubIdeal?| + |loadNativeModule| |back| |listexp| |toseInvertible?| |difference| + |simpsono| |product| |low| |rewriteSetWithReduction| |rightZero| + |maxdeg| |datalist| |multiplyExponents| |compiledFunction| |fracPart| + |newSubProgram| |currentScope| |setRealSteps| |pushuconst| + |prepareDecompose| |mkcomm| |permanent| |nextNormalPoly| |f04maf| + |sqfrFactor| |limitPlus| |twist| |makeCrit| |approxNthRoot| |e01bef| + |checkForZero| |viewDeltaYDefault| |primeFrobenius| |f01brf| + |OMsupportsCD?| |se2rfi| |associatedEquations| |increment| |anticoord| + |strongGenerators| |schema| |OMgetAtp| |prod| |reify| |f02abf| + |multisect| |f02ajf| |nextSublist| |stFunc1| |fillPascalTriangle| + |cAcsch| |dequeue!| |cycleElt| |lists| |sparsityIF| |matrixGcd| + |ratDenom| |var1Steps| |aspFilename| |rightDiscriminant| + |systemCommand| |e02aef| |htrigs| |checkPrecision| |changeMeasure| + |tower| |gradient| |whileLoop| |GospersMethod| |leftTrace| |matrix| + |minPol| |fixedPoint| |doubleFloatFormat| |pack!| + |lazyPremWithDefault| |antiCommutator| |bandedJacobian| |ReduceOrder| + |solid?| |integralMatrixAtInfinity| |minusInfinity| |expandPower| + |mindeg| |universe| |e04mbf| |cAtan| |primitiveElement| |getConstant| + |prologue| |basisOfLeftNucloid| |leftScalarTimes!| |generateIrredPoly| + |normal| |drawStyle| |sPol| |localIntegralBasis| |node?| |finite?| + |trapezoidal| |cschIfCan| |extendedint| |surface| |duplicates?| + |mindegTerm| |s20adf| |autoReduced?| |pquo| |OMgetEndBind| |setref| + |linear| |OMreadStr| |integer?| |permutationGroup| |listOfLists| + |objectOf| |arity| |midpoints| |exponents| |id| |OMputError| + |buildSyntax| |reverse| |sec2cos| |optAttributes| |select!| BY + |rationalPower| |leftZero| |fmecg| |accuracyIF| |s18aef| |center| + |cond| |positive?| |inverse| |polynomial| |lastSubResultantElseSplit| + |subresultantVector| |e02zaf| |squareFreePart| |setProperty| + |changeWeightLevel| |goto| |exprHasWeightCosWXorSinWX| |table| + |nilFactor| |graphCurves| |modifyPointData| |type| |getCode| |e02bcf| + |firstUncouplingMatrix| |nextPrimitivePoly| |resultantEuclideannaif| + |new| |permutations| |symmetric?| |rotatez| |sechIfCan| |c02aff| |is?| + |ignore?| |intChoose| |constantKernel| |insertRoot!| |doubleComplex?| + |inHallBasis?| |zeroDimensional?| |fullPartialFraction| + |topFortranOutputStack| |antisymmetric?| |bottom!| |f02bjf| |iiacoth| + |normalElement| |cyclePartition| |asecIfCan| |convergents| |isList| + |basisOfMiddleNucleus| |normInvertible?| |basis| |lazyResidueClass| + |inc| |mainSquareFreePart| |totalfract| |fi2df| |distance| + |LyndonWordsList1| |romberg| |orOperands| LODO2FUN |matrixDimensions| + |key| |create| |basisOfLeftNucleus| |cot2trig| |youngGroup| + |minPoints3D| |symbolTable| |float?| |merge| |top| + |complexNumericIfCan| |bumptab1| |divergence| |options| |kovacic| + |partialDenominators| |mainValue| |besselJ| + |semiLastSubResultantEuclidean| |dioSolve| |parametric?| |continue| + |lp| |OMmakeConn| |dihedralGroup| |d01gbf| |squareFreeLexTriangular| + |rectangularMatrix| |tanh2trigh| |divideExponents| |measure2Result| + |OMputVariable| |pushFortranOutputStack| |makeSUP| |linearMatrix| + |filename| |currentEnv| |ceiling| |selectFiniteRoutines| |shiftLeft| + |mapDown!| |popFortranOutputStack| |closed?| |OMgetApp| |Is| |augment| + |karatsuba| |coefficients| |null?| |palglimint0| |psolve| + |lazyPseudoRemainder| |exprToXXP| |useSingleFactorBound?| + |outputAsFortran| |showTheIFTable| |approximants| |realEigenvectors| + |basisOfCentroid| |not?| |bracket| |minimize| |s21bbf| |declare| + |dark| |polCase| |semiResultantEuclideannaif| |dot| |gcdcofactprim| + |iteratedInitials| |meshPar1Var| |parse| |left| |unitVector| + |intPatternMatch| |points| |halfExtendedResultant1| + |numberOfIrreduciblePoly| |multMonom| |component| |printInfo!| + |genericRightMinimalPolynomial| |presub| |right| |cartesian| + |cRationalPower| |stopTableGcd!| |unmakeSUP| |odd?| |critpOrder| + |npcoef| |e02bef| |s17ajf| |initial| |stopTable!| |cPower| + |setAttributeButtonStep| |critMTonD1| |e02daf| |debug3D| |lSpaceBasis| + |iicsc| |axesColorDefault| |gcdPrimitive| |stopTableInvSet!| + |elliptic?| |principal?| |zeroOf| |singleFactorBound| |complexSolve| + |possiblyNewVariety?| |iiacsch| |hdmpToP| |viewDefaults| |radPoly| + |imaginary| |opeval| |closedCurve?| |countable?| |ParCond| + |decreasePrecision| |diophantineSystem| |test| |ScanArabic| |cap| + |palgLODE| |f04mbf| |OMgetObject| |round| |groebner| |pattern| + |lfextlimint| |extendedSubResultantGcd| |integral?| |seed| + |selectPDERoutines| |recolor| |swapColumns!| |cAcos| |putGraph| + |getButtonValue| |monicDecomposeIfCan| |lieAdmissible?| |f01qcf| + |curry| |firstNumer| |useEisensteinCriterion?| |lepol| |redpps| + |constantIfCan| |intensity| |composite| |unvectorise| |isMult| + |uniform01| |rightRankPolynomial| |mulmod| |s19aaf| |output| + |screenResolution3D| |semiDegreeSubResultantEuclidean| |external?| + |pmComplexintegrate| |ipow| |OMencodingSGML| |shallowExpand| + |pointSizeDefault| |morphism| |leadingTerm| = |linGenPos| |nsqfree| + |stFunc2| |testModulus| |cubic| |radicalEigenvector| |compactFraction| + |tRange| |preprocess| |hash| |equality| |neglist| |s14baf| |qinterval| + |monomialIntPoly| |brillhartTrials| |lllp| |tree| |poisson| + |complexElementary| |e02bdf| |var2StepsDefault| |fortranComplex| + |e04jaf| < |vector| |getOrder| |remainder| |quasiAlgebraicSet| + |iiperm| |divisors| |entries| |push| |toroidal| |problemPoints| + |count| |alternatingGroup| |cothIfCan| > |primaryDecomp| + |linearlyDependentOverZ?| |linearDependence| |differentiate| + |ocf2ocdf| |replaceKthElement| |setLabelValue| |d01alf| + |hasPredicate?| |rightFactorIfCan| |ramifiedAtInfinity?| + |getVariableOrder| <= |leader| |ScanRoman| |cLog| |indicialEquations| + |zeroSquareMatrix| |pseudoDivide| |cCsch| |deleteRoutine!| + |roughUnitIdeal?| |unrankImproperPartitions1| |partialNumerators| + |transpose| >= |exquo| |mightHaveRoots| |associatedSystem| + |eisensteinIrreducible?| |ddFact| |quotientByP| |index| + |factorSFBRlcUnit| |quasiMonic?| |sup| |leftGcd| + |clearFortranOutputStack| |s15adf| |div| |representationType| |prime| + |oddintegers| |powmod| |maximumExponent| |OMputFloat| + |rightScalarTimes!| |overlabel| |tube| |generic| |decomposeFunc| |quo| + |root?| |applyRules| |rationalFunction| |binding| |edf2df| + |outlineRender| |body| |asinIfCan| |lifting1| |extractSplittingLeaf| + |f02bbf| |rarrow| + |newLine| |minimumDegree| |fullDisplay| |e02akf| + |asimpson| |clearCache| |pair| |wordInStrongGenerators| |s17acf| + |s18adf| |Beta| |hMonic| |stoseIntegralLastSubResultant| |rem| - + |roman| |cAsech| |csc2sin| |OMParseError?| |cfirst| + |combineFeatureCompatibility| |lazyVariations| |compile| |nil| + |OMencodingBinary| |pr2dmp| |OMbindTCP| |graphStates| / + |groebnerIdeal| |solveInField| |viewWriteDefault| |socf2socdf| + |insertionSort!| |df2fi| |vertConcat| |chebyshevT| + |completeEchelonBasis| |rotate!| |zoom| |OMputEndAttr| |constantLeft| + |radicalEigenvectors| |toScale| |rootBound| |ksec| + |expandTrigProducts| |irreducibleRepresentation| |sub| |zeroDimPrime?| + |partition| |leftRecip| |numberOfNormalPoly| |quote| |rootPower| + |dAndcExp| |heap| |integralMatrix| |infinityNorm| |d02bbf| + |laurentRep| |s18acf| |approximate| |getGoodPrime| |fractionPart| + |trunc| |iicosh| |scripted?| |d03faf| |complex| |rdHack1| + |clearDenominator| |lambert| |xn| |showAllElements| |crest| + |makeSketch| |sin?| |imagk| |gramschmidt| |pToDmp| |addPoint| + |trapezoidalo| |ridHack1| |squareFreePolynomial| |elements| + |nextsousResultant2| |outputFloating| |unitsColorDefault| |tubePlot| + |OMconnectTCP| |removeCosSq| |elColumn2!| |palgRDE| + |degreeSubResultant| |fill!| |multiset| |outputFixed| + |raisePolynomial| |setEpilogue!| |nextIrreduciblePoly| |cosSinInfo| + |inrootof| |message| |obj| |OMgetBVar| |c06frf| |solveLinearlyOverQ| + |qfactor| |OMgetInteger| |OMputBind| |cTanh| |subResultantChain| + |vedf2vef| |removeDuplicates!| |rubiksGroup| |orthonormalBasis| + |cache| |diag| |stoseInvertibleSetreg| |copyInto!| + |constantCoefficientRicDE| |seriesSolve| |HenselLift| |f02aef| + |leadingIndex| |blankSeparate| |const| |makeUnit| |primextendedint| + |prevPrime| |linearlyDependent?| |rename| |not| |iiabs| + |permutationRepresentation| |cosh2sech| |linearAssociatedOrder| |scan| + |char| |exptMod| |perspective| |curve?| |sample| |makeCos| |swap!| + |acoshIfCan| |invmod| |trigs2explogs| |palgLODE0| |cotIfCan| |updatF| + |name| |symmetricDifference| |unravel| |nthFlag| |monomialIntegrate| + |csch2sinh| |subTriSet?| |critT| |hasoln| |horizConcat| |composites| + |fixPredicate| |float| |f02agf| |integralAtInfinity?| |mainVariable| + |makeop| |wordInGenerators| |search| |principalIdeal| |crushedSet| + |lprop| |setProperty!| |newTypeLists| |pomopo!| |stack| |minordet| + |trueEqual| |squareFree| |e01daf| |midpoint| |nil| |infinite| + |arbitraryExponent| |approximate| |complex| |shallowMutable| + |canonical| |noetherian| |central| |partiallyOrderedSet| + |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| + |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| + |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| + |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 8fee8a1b..f0555991 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4896 +1,4900 @@ -(3139326 . 3415311749) -((-1964 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-1506 (($ (-1 (-108) |#2| |#2|) $) 17) (($ $) NIL)) (-1641 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-1135 (-523)) |#2|) 34)) (-2867 (($ $) 59)) (-2437 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 41) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1479 (((-523) (-1 (-108) |#2|) $) 22) (((-523) |#2| $) NIL) (((-523) |#2| $ (-523)) 71)) (-1666 (((-589 |#2|) $) 13)) (-2178 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2852 (($ (-1 |#2| |#2|) $) 29)) (-3612 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 45)) (-2847 (($ |#2| $ (-523)) NIL) (($ $ $ (-523)) 50)) (-2114 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-1327 (((-108) (-1 (-108) |#2|) $) 21)) (-3223 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-523)) NIL) (($ $ (-1135 (-523))) 49)) (-1469 (($ $ (-523)) 56) (($ $ (-1135 (-523))) 55)) (-2792 (((-710) (-1 (-108) |#2|) $) 26) (((-710) |#2| $) NIL)) (-3160 (($ $ $ (-523)) 52)) (-1664 (($ $) 51)) (-1472 (($ (-589 |#2|)) 53)) (-2326 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-589 $)) 62)) (-1458 (((-794) $) 69)) (-2096 (((-108) (-1 (-108) |#2|) $) 20)) (-3983 (((-108) $ $) 70)) (-4007 (((-108) $ $) 73))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3983 ((-108) |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -1506 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2867 (|#1| |#1|)) (-15 -3160 (|#1| |#1| |#1| (-523))) (-15 -1964 ((-108) |#1|)) (-15 -2178 (|#1| |#1| |#1|)) (-15 -1479 ((-523) |#2| |#1| (-523))) (-15 -1479 ((-523) |#2| |#1|)) (-15 -1479 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -1964 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -2178 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1641 (|#2| |#1| (-1135 (-523)) |#2|)) (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -1469 (|#1| |#1| (-1135 (-523)))) (-15 -1469 (|#1| |#1| (-523))) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2326 (|#1| (-589 |#1|))) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -2114 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3223 (|#2| |#1| (-523))) (-15 -3223 (|#2| |#1| (-523) |#2|)) (-15 -1641 (|#2| |#1| (-523) |#2|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -1666 ((-589 |#2|) |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1664 (|#1| |#1|))) (-19 |#2|) (-1122)) (T -18)) +(3139898 . 3416412029) +((-3337 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-1632 (($ (-1 (-108) |#2| |#2|) $) 17) (($ $) NIL)) (-1849 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-1136 (-523)) |#2|) 34)) (-1426 (($ $) 59)) (-2116 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3449 (((-523) (-1 (-108) |#2|) $) 22) (((-523) |#2| $) NIL) (((-523) |#2| $ (-523)) 73)) (-1871 (((-589 |#2|) $) 13)) (-3780 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2043 (($ (-1 |#2| |#2|) $) 29)) (-1345 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2912 (($ |#2| $ (-523)) NIL) (($ $ $ (-523)) 50)) (-2509 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-3379 (((-108) (-1 (-108) |#2|) $) 21)) (-1937 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-523)) NIL) (($ $ (-1136 (-523))) 49)) (-1499 (($ $ (-523)) 56) (($ $ (-1136 (-523))) 55)) (-3977 (((-710) (-1 (-108) |#2|) $) 26) (((-710) |#2| $) NIL)) (-4166 (($ $ $ (-523)) 52)) (-1874 (($ $) 51)) (-1704 (($ (-589 |#2|)) 53)) (-2394 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-589 $)) 62)) (-1691 (((-794) $) 69)) (-2308 (((-108) (-1 (-108) |#2|) $) 20)) (-3941 (((-108) $ $) 72)) (-3966 (((-108) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -3941 ((-108) |#1| |#1|)) (-15 -1691 ((-794) |#1|)) (-15 -3966 ((-108) |#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1632 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1426 (|#1| |#1|)) (-15 -4166 (|#1| |#1| |#1| (-523))) (-15 -3337 ((-108) |#1|)) (-15 -3780 (|#1| |#1| |#1|)) (-15 -3449 ((-523) |#2| |#1| (-523))) (-15 -3449 ((-523) |#2| |#1|)) (-15 -3449 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -3337 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3780 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1849 (|#2| |#1| (-1136 (-523)) |#2|)) (-15 -2912 (|#1| |#1| |#1| (-523))) (-15 -2912 (|#1| |#2| |#1| (-523))) (-15 -1499 (|#1| |#1| (-1136 (-523)))) (-15 -1499 (|#1| |#1| (-523))) (-15 -1937 (|#1| |#1| (-1136 (-523)))) (-15 -1345 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2394 (|#1| (-589 |#1|))) (-15 -2394 (|#1| |#1| |#1|)) (-15 -2394 (|#1| |#2| |#1|)) (-15 -2394 (|#1| |#1| |#2|)) (-15 -1704 (|#1| (-589 |#2|))) (-15 -2509 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1937 (|#2| |#1| (-523))) (-15 -1937 (|#2| |#1| (-523) |#2|)) (-15 -1849 (|#2| |#1| (-523) |#2|)) (-15 -3977 ((-710) |#2| |#1|)) (-15 -1871 ((-589 |#2|) |#1|)) (-15 -3977 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -3379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2308 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2043 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1874 (|#1| |#1|))) (-19 |#2|) (-1123)) (T -18)) NIL -(-10 -8 (-15 -3983 ((-108) |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -1506 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2867 (|#1| |#1|)) (-15 -3160 (|#1| |#1| |#1| (-523))) (-15 -1964 ((-108) |#1|)) (-15 -2178 (|#1| |#1| |#1|)) (-15 -1479 ((-523) |#2| |#1| (-523))) (-15 -1479 ((-523) |#2| |#1|)) (-15 -1479 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -1964 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -2178 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1641 (|#2| |#1| (-1135 (-523)) |#2|)) (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -1469 (|#1| |#1| (-1135 (-523)))) (-15 -1469 (|#1| |#1| (-523))) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2326 (|#1| (-589 |#1|))) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -2114 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3223 (|#2| |#1| (-523))) (-15 -3223 (|#2| |#1| (-523) |#2|)) (-15 -1641 (|#2| |#1| (-523) |#2|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -1666 ((-589 |#2|) |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1664 (|#1| |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4245))) (($ $) 88 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-2867 (($ $) 90 (|has| $ (-6 -4245)))) (-3631 (($ $) 100)) (-1773 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 51)) (-1479 (((-523) (-1 (-108) |#1|) $) 97) (((-523) |#1| $) 96 (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) 95 (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 87 (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 86 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 42 (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4203 (($ $ |#1|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1135 (-523))) 63)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 91 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 70)) (-2326 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 84 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 83 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4030 (((-108) $ $) 85 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 82 (|has| |#1| (-786)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-19 |#1|) (-129) (-1122)) (T -19)) +(-10 -8 (-15 -3941 ((-108) |#1| |#1|)) (-15 -1691 ((-794) |#1|)) (-15 -3966 ((-108) |#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1632 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1426 (|#1| |#1|)) (-15 -4166 (|#1| |#1| |#1| (-523))) (-15 -3337 ((-108) |#1|)) (-15 -3780 (|#1| |#1| |#1|)) (-15 -3449 ((-523) |#2| |#1| (-523))) (-15 -3449 ((-523) |#2| |#1|)) (-15 -3449 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -3337 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3780 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1849 (|#2| |#1| (-1136 (-523)) |#2|)) (-15 -2912 (|#1| |#1| |#1| (-523))) (-15 -2912 (|#1| |#2| |#1| (-523))) (-15 -1499 (|#1| |#1| (-1136 (-523)))) (-15 -1499 (|#1| |#1| (-523))) (-15 -1937 (|#1| |#1| (-1136 (-523)))) (-15 -1345 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2394 (|#1| (-589 |#1|))) (-15 -2394 (|#1| |#1| |#1|)) (-15 -2394 (|#1| |#2| |#1|)) (-15 -2394 (|#1| |#1| |#2|)) (-15 -1704 (|#1| (-589 |#2|))) (-15 -2509 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1937 (|#2| |#1| (-523))) (-15 -1937 (|#2| |#1| (-523) |#2|)) (-15 -1849 (|#2| |#1| (-523) |#2|)) (-15 -3977 ((-710) |#2| |#1|)) (-15 -1871 ((-589 |#2|) |#1|)) (-15 -3977 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -3379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2308 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2043 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1874 (|#1| |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-4191 (((-1174) $ (-523) (-523)) 40 (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-786)))) (-1632 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4249))) (($ $) 88 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4249))))) (-1581 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-786)))) (-1620 (((-108) $ (-710)) 8)) (-1849 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) 58 (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-1426 (($ $) 90 (|has| $ (-6 -4249)))) (-3700 (($ $) 100)) (-2462 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) 51)) (-3449 (((-523) (-1 (-108) |#1|) $) 97) (((-523) |#1| $) 96 (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) 95 (|has| |#1| (-1016)))) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3733 (($ (-710) |#1|) 69)) (-3051 (((-108) $ (-710)) 9)) (-2965 (((-523) $) 43 (|has| (-523) (-786)))) (-3239 (($ $ $) 87 (|has| |#1| (-786)))) (-3780 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 44 (|has| (-523) (-786)))) (-3158 (($ $ $) 86 (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2912 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2536 (((-589 (-523)) $) 46)) (-2254 (((-108) (-523) $) 47)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2428 ((|#1| $) 42 (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4141 (($ $ |#1|) 41 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) 48)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1136 (-523))) 63)) (-1499 (($ $ (-523)) 62) (($ $ (-1136 (-523))) 61)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-4166 (($ $ $ (-523)) 91 (|has| $ (-6 -4249)))) (-1874 (($ $) 13)) (-1400 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 70)) (-2394 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) 84 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 83 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-3993 (((-108) $ $) 85 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 82 (|has| |#1| (-786)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-19 |#1|) (-129) (-1123)) (T -19)) NIL -(-13 (-349 |t#1|) (-10 -7 (-6 -4245))) -(((-33) . T) ((-97) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-349 |#1|) . T) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-786) |has| |#1| (-786)) ((-1016) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1122) . T)) -((-3212 (((-3 $ "failed") $ $) 12)) (-4087 (($ $) NIL) (($ $ $) 9)) (* (($ (-852) $) NIL) (($ (-710) $) 16) (($ (-523) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -3212 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-21)) (T -20)) +(-13 (-349 |t#1|) (-10 -7 (-6 -4249))) +(((-33) . T) ((-97) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-349 |#1|) . T) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-786) |has| |#1| (-786)) ((-1016) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1123) . T)) +((-3405 (((-3 $ "failed") $ $) 12)) (-4060 (($ $) NIL) (($ $ $) 9)) (* (($ (-852) $) NIL) (($ (-710) $) 16) (($ (-523) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-523) |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -3405 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -3212 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20))) +(-10 -8 (-15 * (|#1| (-523) |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -3405 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20))) (((-21) (-129)) (T -21)) -((-4087 (*1 *1 *1) (-4 *1 (-21))) (-4087 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-523))))) -(-13 (-124) (-10 -8 (-15 -4087 ($ $)) (-15 -4087 ($ $ $)) (-15 * ($ (-523) $)))) +((-4060 (*1 *1 *1) (-4 *1 (-21))) (-4060 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-523))))) +(-13 (-124) (-10 -8 (-15 -4060 ($ $)) (-15 -4060 ($ $ $)) (-15 * ($ (-523) $)))) (((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-2295 (((-108) $) 10)) (-2518 (($) 15)) (* (($ (-852) $) 14) (($ (-710) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-710) |#1|)) (-15 -2295 ((-108) |#1|)) (-15 -2518 (|#1|)) (-15 * (|#1| (-852) |#1|))) (-23)) (T -22)) +((-2603 (((-108) $) 10)) (-4189 (($) 15)) (* (($ (-852) $) 14) (($ (-710) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-710) |#1|)) (-15 -2603 ((-108) |#1|)) (-15 -4189 (|#1|)) (-15 * (|#1| (-852) |#1|))) (-23)) (T -22)) NIL -(-10 -8 (-15 * (|#1| (-710) |#1|)) (-15 -2295 ((-108) |#1|)) (-15 -2518 (|#1|)) (-15 * (|#1| (-852) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15))) +(-10 -8 (-15 * (|#1| (-710) |#1|)) (-15 -2603 ((-108) |#1|)) (-15 -4189 (|#1|)) (-15 * (|#1| (-852) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-4189 (($) 17 T CONST)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15))) (((-23) (-129)) (T -23)) -((-2756 (*1 *1) (-4 *1 (-23))) (-2518 (*1 *1) (-4 *1 (-23))) (-2295 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-710))))) -(-13 (-25) (-10 -8 (-15 (-2756) ($) -3059) (-15 -2518 ($) -3059) (-15 -2295 ((-108) $)) (-15 * ($ (-710) $)))) +((-1879 (*1 *1) (-4 *1 (-23))) (-4189 (*1 *1) (-4 *1 (-23))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-710))))) +(-13 (-25) (-10 -8 (-15 (-1879) ($) -2501) (-15 -4189 ($) -2501) (-15 -2603 ((-108) $)) (-15 * ($ (-710) $)))) (((-25) . T) ((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) ((* (($ (-852) $) 10))) (((-24 |#1|) (-10 -8 (-15 * (|#1| (-852) |#1|))) (-25)) (T -24)) NIL (-10 -8 (-15 * (|#1| (-852) |#1|))) -((-3924 (((-108) $ $) 7)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13))) +((-1680 (((-108) $ $) 7)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-3941 (((-108) $ $) 6)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13))) (((-25) (-129)) (T -25)) -((-4075 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-852))))) -(-13 (-1016) (-10 -8 (-15 -4075 ($ $ $)) (-15 * ($ (-852) $)))) +((-4045 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-852))))) +(-13 (-1016) (-10 -8 (-15 -4045 ($ $ $)) (-15 * ($ (-852) $)))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-1728 (((-589 $) (-883 $)) 29) (((-589 $) (-1083 $)) 16) (((-589 $) (-1083 $) (-1087)) 20)) (-2488 (($ (-883 $)) 27) (($ (-1083 $)) 11) (($ (-1083 $) (-1087)) 54)) (-1694 (((-589 $) (-883 $)) 30) (((-589 $) (-1083 $)) 18) (((-589 $) (-1083 $) (-1087)) 19)) (-3313 (($ (-883 $)) 28) (($ (-1083 $)) 13) (($ (-1083 $) (-1087)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1728 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1728 ((-589 |#1|) (-1083 |#1|))) (-15 -1728 ((-589 |#1|) (-883 |#1|))) (-15 -2488 (|#1| (-1083 |#1|) (-1087))) (-15 -2488 (|#1| (-1083 |#1|))) (-15 -2488 (|#1| (-883 |#1|))) (-15 -1694 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1694 ((-589 |#1|) (-1083 |#1|))) (-15 -1694 ((-589 |#1|) (-883 |#1|))) (-15 -3313 (|#1| (-1083 |#1|) (-1087))) (-15 -3313 (|#1| (-1083 |#1|))) (-15 -3313 (|#1| (-883 |#1|)))) (-27)) (T -26)) +((-3012 (((-589 $) (-883 $)) 29) (((-589 $) (-1083 $)) 16) (((-589 $) (-1083 $) (-1087)) 20)) (-3879 (($ (-883 $)) 27) (($ (-1083 $)) 11) (($ (-1083 $) (-1087)) 54)) (-2734 (((-589 $) (-883 $)) 30) (((-589 $) (-1083 $)) 18) (((-589 $) (-1083 $) (-1087)) 19)) (-1264 (($ (-883 $)) 28) (($ (-1083 $)) 13) (($ (-1083 $) (-1087)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -3012 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -3012 ((-589 |#1|) (-1083 |#1|))) (-15 -3012 ((-589 |#1|) (-883 |#1|))) (-15 -3879 (|#1| (-1083 |#1|) (-1087))) (-15 -3879 (|#1| (-1083 |#1|))) (-15 -3879 (|#1| (-883 |#1|))) (-15 -2734 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -2734 ((-589 |#1|) (-1083 |#1|))) (-15 -2734 ((-589 |#1|) (-883 |#1|))) (-15 -1264 (|#1| (-1083 |#1|) (-1087))) (-15 -1264 (|#1| (-1083 |#1|))) (-15 -1264 (|#1| (-883 |#1|)))) (-27)) (T -26)) NIL -(-10 -8 (-15 -1728 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1728 ((-589 |#1|) (-1083 |#1|))) (-15 -1728 ((-589 |#1|) (-883 |#1|))) (-15 -2488 (|#1| (-1083 |#1|) (-1087))) (-15 -2488 (|#1| (-1083 |#1|))) (-15 -2488 (|#1| (-883 |#1|))) (-15 -1694 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1694 ((-589 |#1|) (-1083 |#1|))) (-15 -1694 ((-589 |#1|) (-883 |#1|))) (-15 -3313 (|#1| (-1083 |#1|) (-1087))) (-15 -3313 (|#1| (-1083 |#1|))) (-15 -3313 (|#1| (-883 |#1|)))) -((-3924 (((-108) $ $) 7)) (-1728 (((-589 $) (-883 $)) 80) (((-589 $) (-1083 $)) 79) (((-589 $) (-1083 $) (-1087)) 78)) (-2488 (($ (-883 $)) 83) (($ (-1083 $)) 82) (($ (-1083 $) (-1087)) 81)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1832 (($ $) 92)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-1694 (((-589 $) (-883 $)) 86) (((-589 $) (-1083 $)) 85) (((-589 $) (-1083 $) (-1087)) 84)) (-3313 (($ (-883 $)) 89) (($ (-1083 $)) 88) (($ (-1083 $) (-1087)) 87)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2657 (((-108) $) 71)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 91)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 64)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68) (($ $ (-383 (-523))) 90)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) +(-10 -8 (-15 -3012 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -3012 ((-589 |#1|) (-1083 |#1|))) (-15 -3012 ((-589 |#1|) (-883 |#1|))) (-15 -3879 (|#1| (-1083 |#1|) (-1087))) (-15 -3879 (|#1| (-1083 |#1|))) (-15 -3879 (|#1| (-883 |#1|))) (-15 -2734 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -2734 ((-589 |#1|) (-1083 |#1|))) (-15 -2734 ((-589 |#1|) (-883 |#1|))) (-15 -1264 (|#1| (-1083 |#1|) (-1087))) (-15 -1264 (|#1| (-1083 |#1|))) (-15 -1264 (|#1| (-883 |#1|)))) +((-1680 (((-108) $ $) 7)) (-3012 (((-589 $) (-883 $)) 80) (((-589 $) (-1083 $)) 79) (((-589 $) (-1083 $) (-1087)) 78)) (-3879 (($ (-883 $)) 83) (($ (-1083 $)) 82) (($ (-1083 $) (-1087)) 81)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 73)) (-4226 (((-394 $) $) 72)) (-2437 (($ $) 92)) (-2787 (((-108) $ $) 59)) (-4189 (($) 17 T CONST)) (-2734 (((-589 $) (-883 $)) 86) (((-589 $) (-1083 $)) 85) (((-589 $) (-1083 $) (-1087)) 84)) (-1264 (($ (-883 $)) 89) (($ (-1083 $)) 88) (($ (-1083 $) (-1087)) 87)) (-4059 (($ $ $) 55)) (-1444 (((-3 $ "failed") $) 34)) (-4032 (($ $ $) 56)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-3049 (((-108) $) 71)) (-2769 (((-108) $) 31)) (-1973 (($ $ (-523)) 91)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 70)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-2424 (((-394 $) $) 74)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-3413 (((-710) $) 58)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ $) 64)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68) (($ $ (-383 (-523))) 90)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) (((-27) (-129)) (T -27)) -((-3313 (*1 *1 *2) (-12 (-5 *2 (-883 *1)) (-4 *1 (-27)))) (-3313 (*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) (-3313 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1087)) (-4 *1 (-27)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-1694 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1087)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-883 *1)) (-4 *1 (-27)))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) (-2488 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1087)) (-4 *1 (-27)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1087)) (-4 *1 (-27)) (-5 *2 (-589 *1))))) -(-13 (-339) (-930) (-10 -8 (-15 -3313 ($ (-883 $))) (-15 -3313 ($ (-1083 $))) (-15 -3313 ($ (-1083 $) (-1087))) (-15 -1694 ((-589 $) (-883 $))) (-15 -1694 ((-589 $) (-1083 $))) (-15 -1694 ((-589 $) (-1083 $) (-1087))) (-15 -2488 ($ (-883 $))) (-15 -2488 ($ (-1083 $))) (-15 -2488 ($ (-1083 $) (-1087))) (-15 -1728 ((-589 $) (-883 $))) (-15 -1728 ((-589 $) (-1083 $))) (-15 -1728 ((-589 $) (-1083 $) (-1087))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-930) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) -((-1728 (((-589 $) (-883 $)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-1083 $) (-1087)) 50) (((-589 $) $) 19) (((-589 $) $ (-1087)) 41)) (-2488 (($ (-883 $)) NIL) (($ (-1083 $)) NIL) (($ (-1083 $) (-1087)) 52) (($ $) 17) (($ $ (-1087)) 37)) (-1694 (((-589 $) (-883 $)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-1083 $) (-1087)) 48) (((-589 $) $) 15) (((-589 $) $ (-1087)) 43)) (-3313 (($ (-883 $)) NIL) (($ (-1083 $)) NIL) (($ (-1083 $) (-1087)) NIL) (($ $) 12) (($ $ (-1087)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1728 ((-589 |#1|) |#1| (-1087))) (-15 -2488 (|#1| |#1| (-1087))) (-15 -1728 ((-589 |#1|) |#1|)) (-15 -2488 (|#1| |#1|)) (-15 -1694 ((-589 |#1|) |#1| (-1087))) (-15 -3313 (|#1| |#1| (-1087))) (-15 -1694 ((-589 |#1|) |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -1728 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1728 ((-589 |#1|) (-1083 |#1|))) (-15 -1728 ((-589 |#1|) (-883 |#1|))) (-15 -2488 (|#1| (-1083 |#1|) (-1087))) (-15 -2488 (|#1| (-1083 |#1|))) (-15 -2488 (|#1| (-883 |#1|))) (-15 -1694 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1694 ((-589 |#1|) (-1083 |#1|))) (-15 -1694 ((-589 |#1|) (-883 |#1|))) (-15 -3313 (|#1| (-1083 |#1|) (-1087))) (-15 -3313 (|#1| (-1083 |#1|))) (-15 -3313 (|#1| (-883 |#1|)))) (-29 |#2|) (-13 (-786) (-515))) (T -28)) -NIL -(-10 -8 (-15 -1728 ((-589 |#1|) |#1| (-1087))) (-15 -2488 (|#1| |#1| (-1087))) (-15 -1728 ((-589 |#1|) |#1|)) (-15 -2488 (|#1| |#1|)) (-15 -1694 ((-589 |#1|) |#1| (-1087))) (-15 -3313 (|#1| |#1| (-1087))) (-15 -1694 ((-589 |#1|) |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -1728 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1728 ((-589 |#1|) (-1083 |#1|))) (-15 -1728 ((-589 |#1|) (-883 |#1|))) (-15 -2488 (|#1| (-1083 |#1|) (-1087))) (-15 -2488 (|#1| (-1083 |#1|))) (-15 -2488 (|#1| (-883 |#1|))) (-15 -1694 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1694 ((-589 |#1|) (-1083 |#1|))) (-15 -1694 ((-589 |#1|) (-883 |#1|))) (-15 -3313 (|#1| (-1083 |#1|) (-1087))) (-15 -3313 (|#1| (-1083 |#1|))) (-15 -3313 (|#1| (-883 |#1|)))) -((-3924 (((-108) $ $) 7)) (-1728 (((-589 $) (-883 $)) 80) (((-589 $) (-1083 $)) 79) (((-589 $) (-1083 $) (-1087)) 78) (((-589 $) $) 126) (((-589 $) $ (-1087)) 124)) (-2488 (($ (-883 $)) 83) (($ (-1083 $)) 82) (($ (-1083 $) (-1087)) 81) (($ $) 127) (($ $ (-1087)) 125)) (-2295 (((-108) $) 16)) (-1957 (((-589 (-1087)) $) 201)) (-1786 (((-383 (-1083 $)) $ (-562 $)) 233 (|has| |#1| (-515)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3072 (((-589 (-562 $)) $) 164)) (-3212 (((-3 $ "failed") $ $) 19)) (-2955 (($ $ (-589 (-562 $)) (-589 $)) 154) (($ $ (-589 (-271 $))) 153) (($ $ (-271 $)) 152)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1832 (($ $) 92)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-1694 (((-589 $) (-883 $)) 86) (((-589 $) (-1083 $)) 85) (((-589 $) (-1083 $) (-1087)) 84) (((-589 $) $) 130) (((-589 $) $ (-1087)) 128)) (-3313 (($ (-883 $)) 89) (($ (-1083 $)) 88) (($ (-1083 $) (-1087)) 87) (($ $) 131) (($ $ (-1087)) 129)) (-3517 (((-3 (-883 |#1|) "failed") $) 251 (|has| |#1| (-973))) (((-3 (-383 (-883 |#1|)) "failed") $) 235 (|has| |#1| (-515))) (((-3 |#1| "failed") $) 197) (((-3 (-523) "failed") $) 195 (|has| |#1| (-964 (-523)))) (((-3 (-1087) "failed") $) 188) (((-3 (-562 $) "failed") $) 139) (((-3 (-383 (-523)) "failed") $) 123 (-3262 (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523))))))) (-3474 (((-883 |#1|) $) 252 (|has| |#1| (-973))) (((-383 (-883 |#1|)) $) 236 (|has| |#1| (-515))) ((|#1| $) 198) (((-523) $) 194 (|has| |#1| (-964 (-523)))) (((-1087) $) 189) (((-562 $) $) 140) (((-383 (-523)) $) 122 (-3262 (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523))))))) (-3796 (($ $ $) 55)) (-2381 (((-629 |#1|) (-629 $)) 241 (|has| |#1| (-973))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 240 (|has| |#1| (-973))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 121 (-3262 (-4099 (|has| |#1| (-973)) (|has| |#1| (-585 (-523)))) (-4099 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (((-629 (-523)) (-629 $)) 120 (-3262 (-4099 (|has| |#1| (-973)) (|has| |#1| (-585 (-523)))) (-4099 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2657 (((-108) $) 71)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 193 (|has| |#1| (-817 (-355)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 192 (|has| |#1| (-817 (-523))))) (-2361 (($ (-589 $)) 158) (($ $) 157)) (-1444 (((-589 (-110)) $) 165)) (-1403 (((-110) (-110)) 166)) (-2023 (((-108) $) 31)) (-1557 (((-108) $) 186 (|has| $ (-964 (-523))))) (-2531 (($ $) 218 (|has| |#1| (-973)))) (-2785 (((-1039 |#1| (-562 $)) $) 217 (|has| |#1| (-973)))) (-1420 (($ $ (-523)) 91)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-1483 (((-1083 $) (-562 $)) 183 (|has| $ (-973)))) (-2454 (($ $ $) 137)) (-2062 (($ $ $) 136)) (-3612 (($ (-1 $ $) (-562 $)) 172)) (-1363 (((-3 (-562 $) "failed") $) 162)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-1771 (((-589 (-562 $)) $) 163)) (-2868 (($ (-110) (-589 $)) 171) (($ (-110) $) 170)) (-3226 (((-3 (-589 $) "failed") $) 212 (|has| |#1| (-1028)))) (-1295 (((-3 (-2 (|:| |val| $) (|:| -2735 (-523))) "failed") $) 221 (|has| |#1| (-973)))) (-4006 (((-3 (-589 $) "failed") $) 214 (|has| |#1| (-25)))) (-2492 (((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 $))) "failed") $) 215 (|has| |#1| (-25)))) (-2630 (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-1087)) 220 (|has| |#1| (-973))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-110)) 219 (|has| |#1| (-973))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $) 213 (|has| |#1| (-1028)))) (-3259 (((-108) $ (-1087)) 169) (((-108) $ (-110)) 168)) (-3738 (($ $) 70)) (-2510 (((-710) $) 161)) (-2783 (((-1034) $) 10)) (-3749 (((-108) $) 199)) (-3760 ((|#1| $) 200)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-2585 (((-108) $ (-1087)) 174) (((-108) $ $) 173)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-4104 (((-108) $) 185 (|has| $ (-964 (-523))))) (-2679 (($ $ (-1087) (-710) (-1 $ $)) 225 (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ (-589 $))) 224 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $)))) 223 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $))) 222 (|has| |#1| (-973))) (($ $ (-589 (-110)) (-589 $) (-1087)) 211 (|has| |#1| (-564 (-499)))) (($ $ (-110) $ (-1087)) 210 (|has| |#1| (-564 (-499)))) (($ $) 209 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087))) 208 (|has| |#1| (-564 (-499)))) (($ $ (-1087)) 207 (|has| |#1| (-564 (-499)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-589 $))) 181) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) 180) (($ $ (-589 (-110)) (-589 (-1 $ $))) 179) (($ $ (-1087) (-1 $ $)) 178) (($ $ (-1087) (-1 $ (-589 $))) 177) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) 176) (($ $ (-589 (-1087)) (-589 (-1 $ $))) 175) (($ $ (-589 $) (-589 $)) 146) (($ $ $ $) 145) (($ $ (-271 $)) 144) (($ $ (-589 (-271 $))) 143) (($ $ (-589 (-562 $)) (-589 $)) 142) (($ $ (-562 $) $) 141)) (-1972 (((-710) $) 58)) (-3223 (($ (-110) (-589 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-3957 (($ $ $) 160) (($ $) 159)) (-3523 (($ $ (-1087)) 249 (|has| |#1| (-973))) (($ $ (-589 (-1087))) 248 (|has| |#1| (-973))) (($ $ (-1087) (-710)) 247 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) 246 (|has| |#1| (-973)))) (-3414 (($ $) 228 (|has| |#1| (-515)))) (-2797 (((-1039 |#1| (-562 $)) $) 227 (|has| |#1| (-515)))) (-3727 (($ $) 184 (|has| $ (-973)))) (-3663 (((-499) $) 255 (|has| |#1| (-564 (-499)))) (($ (-394 $)) 226 (|has| |#1| (-515))) (((-823 (-355)) $) 191 (|has| |#1| (-564 (-823 (-355))))) (((-823 (-523)) $) 190 (|has| |#1| (-564 (-823 (-523)))))) (-3208 (($ $ $) 254 (|has| |#1| (-448)))) (-1714 (($ $ $) 253 (|has| |#1| (-448)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ (-883 |#1|)) 250 (|has| |#1| (-973))) (($ (-383 (-883 |#1|))) 234 (|has| |#1| (-515))) (($ (-383 (-883 (-383 |#1|)))) 232 (|has| |#1| (-515))) (($ (-883 (-383 |#1|))) 231 (|has| |#1| (-515))) (($ (-383 |#1|)) 230 (|has| |#1| (-515))) (($ (-1039 |#1| (-562 $))) 216 (|has| |#1| (-973))) (($ |#1|) 196) (($ (-1087)) 187) (($ (-562 $)) 138)) (-3901 (((-3 $ "failed") $) 239 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-3822 (($ (-589 $)) 156) (($ $) 155)) (-1950 (((-108) (-110)) 167)) (-1704 (((-108) $ $) 39)) (-2523 (($ (-1087) (-589 $)) 206) (($ (-1087) $ $ $ $) 205) (($ (-1087) $ $ $) 204) (($ (-1087) $ $) 203) (($ (-1087) $) 202)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1087)) 245 (|has| |#1| (-973))) (($ $ (-589 (-1087))) 244 (|has| |#1| (-973))) (($ $ (-1087) (-710)) 243 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) 242 (|has| |#1| (-973)))) (-4043 (((-108) $ $) 134)) (-4019 (((-108) $ $) 133)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 135)) (-4007 (((-108) $ $) 132)) (-4098 (($ $ $) 64) (($ (-1039 |#1| (-562 $)) (-1039 |#1| (-562 $))) 229 (|has| |#1| (-515)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68) (($ $ (-383 (-523))) 90)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-158))) (($ |#1| $) 237 (|has| |#1| (-158))))) +((-1264 (*1 *1 *2) (-12 (-5 *2 (-883 *1)) (-4 *1 (-27)))) (-1264 (*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) (-1264 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1087)) (-4 *1 (-27)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-2734 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1087)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-883 *1)) (-4 *1 (-27)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) (-3879 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1087)) (-4 *1 (-27)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-3012 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1087)) (-4 *1 (-27)) (-5 *2 (-589 *1))))) +(-13 (-339) (-930) (-10 -8 (-15 -1264 ($ (-883 $))) (-15 -1264 ($ (-1083 $))) (-15 -1264 ($ (-1083 $) (-1087))) (-15 -2734 ((-589 $) (-883 $))) (-15 -2734 ((-589 $) (-1083 $))) (-15 -2734 ((-589 $) (-1083 $) (-1087))) (-15 -3879 ($ (-883 $))) (-15 -3879 ($ (-1083 $))) (-15 -3879 ($ (-1083 $) (-1087))) (-15 -3012 ((-589 $) (-883 $))) (-15 -3012 ((-589 $) (-1083 $))) (-15 -3012 ((-589 $) (-1083 $) (-1087))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-930) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1127) . T)) +((-3012 (((-589 $) (-883 $)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-1083 $) (-1087)) 50) (((-589 $) $) 19) (((-589 $) $ (-1087)) 41)) (-3879 (($ (-883 $)) NIL) (($ (-1083 $)) NIL) (($ (-1083 $) (-1087)) 52) (($ $) 17) (($ $ (-1087)) 37)) (-2734 (((-589 $) (-883 $)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-1083 $) (-1087)) 48) (((-589 $) $) 15) (((-589 $) $ (-1087)) 43)) (-1264 (($ (-883 $)) NIL) (($ (-1083 $)) NIL) (($ (-1083 $) (-1087)) NIL) (($ $) 12) (($ $ (-1087)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -3012 ((-589 |#1|) |#1| (-1087))) (-15 -3879 (|#1| |#1| (-1087))) (-15 -3012 ((-589 |#1|) |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -2734 ((-589 |#1|) |#1| (-1087))) (-15 -1264 (|#1| |#1| (-1087))) (-15 -2734 ((-589 |#1|) |#1|)) (-15 -1264 (|#1| |#1|)) (-15 -3012 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -3012 ((-589 |#1|) (-1083 |#1|))) (-15 -3012 ((-589 |#1|) (-883 |#1|))) (-15 -3879 (|#1| (-1083 |#1|) (-1087))) (-15 -3879 (|#1| (-1083 |#1|))) (-15 -3879 (|#1| (-883 |#1|))) (-15 -2734 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -2734 ((-589 |#1|) (-1083 |#1|))) (-15 -2734 ((-589 |#1|) (-883 |#1|))) (-15 -1264 (|#1| (-1083 |#1|) (-1087))) (-15 -1264 (|#1| (-1083 |#1|))) (-15 -1264 (|#1| (-883 |#1|)))) (-29 |#2|) (-13 (-786) (-515))) (T -28)) +NIL +(-10 -8 (-15 -3012 ((-589 |#1|) |#1| (-1087))) (-15 -3879 (|#1| |#1| (-1087))) (-15 -3012 ((-589 |#1|) |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -2734 ((-589 |#1|) |#1| (-1087))) (-15 -1264 (|#1| |#1| (-1087))) (-15 -2734 ((-589 |#1|) |#1|)) (-15 -1264 (|#1| |#1|)) (-15 -3012 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -3012 ((-589 |#1|) (-1083 |#1|))) (-15 -3012 ((-589 |#1|) (-883 |#1|))) (-15 -3879 (|#1| (-1083 |#1|) (-1087))) (-15 -3879 (|#1| (-1083 |#1|))) (-15 -3879 (|#1| (-883 |#1|))) (-15 -2734 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -2734 ((-589 |#1|) (-1083 |#1|))) (-15 -2734 ((-589 |#1|) (-883 |#1|))) (-15 -1264 (|#1| (-1083 |#1|) (-1087))) (-15 -1264 (|#1| (-1083 |#1|))) (-15 -1264 (|#1| (-883 |#1|)))) +((-1680 (((-108) $ $) 7)) (-3012 (((-589 $) (-883 $)) 80) (((-589 $) (-1083 $)) 79) (((-589 $) (-1083 $) (-1087)) 78) (((-589 $) $) 126) (((-589 $) $ (-1087)) 124)) (-3879 (($ (-883 $)) 83) (($ (-1083 $)) 82) (($ (-1083 $) (-1087)) 81) (($ $) 127) (($ $ (-1087)) 125)) (-2603 (((-108) $) 16)) (-1292 (((-589 (-1087)) $) 201)) (-2389 (((-383 (-1083 $)) $ (-562 $)) 233 (|has| |#1| (-515)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3643 (((-589 (-562 $)) $) 164)) (-3405 (((-3 $ "failed") $ $) 19)) (-1349 (($ $ (-589 (-562 $)) (-589 $)) 154) (($ $ (-589 (-271 $))) 153) (($ $ (-271 $)) 152)) (-3718 (($ $) 73)) (-4226 (((-394 $) $) 72)) (-2437 (($ $) 92)) (-2787 (((-108) $ $) 59)) (-4189 (($) 17 T CONST)) (-2734 (((-589 $) (-883 $)) 86) (((-589 $) (-1083 $)) 85) (((-589 $) (-1083 $) (-1087)) 84) (((-589 $) $) 130) (((-589 $) $ (-1087)) 128)) (-1264 (($ (-883 $)) 89) (($ (-1083 $)) 88) (($ (-1083 $) (-1087)) 87) (($ $) 131) (($ $ (-1087)) 129)) (-1220 (((-3 (-883 |#1|) "failed") $) 251 (|has| |#1| (-973))) (((-3 (-383 (-883 |#1|)) "failed") $) 235 (|has| |#1| (-515))) (((-3 |#1| "failed") $) 197) (((-3 (-523) "failed") $) 195 (|has| |#1| (-964 (-523)))) (((-3 (-1087) "failed") $) 188) (((-3 (-562 $) "failed") $) 139) (((-3 (-383 (-523)) "failed") $) 123 (-3172 (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523))))))) (-3508 (((-883 |#1|) $) 252 (|has| |#1| (-973))) (((-383 (-883 |#1|)) $) 236 (|has| |#1| (-515))) ((|#1| $) 198) (((-523) $) 194 (|has| |#1| (-964 (-523)))) (((-1087) $) 189) (((-562 $) $) 140) (((-383 (-523)) $) 122 (-3172 (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523))))))) (-4059 (($ $ $) 55)) (-2243 (((-629 |#1|) (-629 $)) 241 (|has| |#1| (-973))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 240 (|has| |#1| (-973))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 121 (-3172 (-3147 (|has| |#1| (-973)) (|has| |#1| (-585 (-523)))) (-3147 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (((-629 (-523)) (-629 $)) 120 (-3172 (-3147 (|has| |#1| (-973)) (|has| |#1| (-585 (-523)))) (-3147 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (-1444 (((-3 $ "failed") $) 34)) (-4032 (($ $ $) 56)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-3049 (((-108) $) 71)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 193 (|has| |#1| (-817 (-355)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 192 (|has| |#1| (-817 (-523))))) (-2055 (($ (-589 $)) 158) (($ $) 157)) (-2196 (((-589 (-110)) $) 165)) (-2947 (((-110) (-110)) 166)) (-2769 (((-108) $) 31)) (-3860 (((-108) $) 186 (|has| $ (-964 (-523))))) (-1296 (($ $) 218 (|has| |#1| (-973)))) (-3316 (((-1039 |#1| (-562 $)) $) 217 (|has| |#1| (-973)))) (-1973 (($ $ (-523)) 91)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-1414 (((-1083 $) (-562 $)) 183 (|has| $ (-973)))) (-3239 (($ $ $) 137)) (-3158 (($ $ $) 136)) (-1345 (($ (-1 $ $) (-562 $)) 172)) (-2577 (((-3 (-562 $) "failed") $) 162)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-2378 (((-589 (-562 $)) $) 163)) (-3396 (($ (-110) (-589 $)) 171) (($ (-110) $) 170)) (-3538 (((-3 (-589 $) "failed") $) 212 (|has| |#1| (-1028)))) (-3064 (((-3 (-2 (|:| |val| $) (|:| -1475 (-523))) "failed") $) 221 (|has| |#1| (-973)))) (-3478 (((-3 (-589 $) "failed") $) 214 (|has| |#1| (-25)))) (-3925 (((-3 (-2 (|:| -3474 (-523)) (|:| |var| (-562 $))) "failed") $) 215 (|has| |#1| (-25)))) (-2790 (((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $ (-1087)) 220 (|has| |#1| (-973))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $ (-110)) 219 (|has| |#1| (-973))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $) 213 (|has| |#1| (-1028)))) (-3739 (((-108) $ (-1087)) 169) (((-108) $ (-110)) 168)) (-1396 (($ $) 70)) (-1933 (((-710) $) 161)) (-3951 (((-1034) $) 10)) (-1408 (((-108) $) 199)) (-1419 ((|#1| $) 200)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-3536 (((-108) $ (-1087)) 174) (((-108) $ $) 173)) (-2424 (((-394 $) $) 74)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-3101 (((-108) $) 185 (|has| $ (-964 (-523))))) (-2812 (($ $ (-1087) (-710) (-1 $ $)) 225 (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ (-589 $))) 224 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $)))) 223 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $))) 222 (|has| |#1| (-973))) (($ $ (-589 (-110)) (-589 $) (-1087)) 211 (|has| |#1| (-564 (-499)))) (($ $ (-110) $ (-1087)) 210 (|has| |#1| (-564 (-499)))) (($ $) 209 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087))) 208 (|has| |#1| (-564 (-499)))) (($ $ (-1087)) 207 (|has| |#1| (-564 (-499)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-589 $))) 181) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) 180) (($ $ (-589 (-110)) (-589 (-1 $ $))) 179) (($ $ (-1087) (-1 $ $)) 178) (($ $ (-1087) (-1 $ (-589 $))) 177) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) 176) (($ $ (-589 (-1087)) (-589 (-1 $ $))) 175) (($ $ (-589 $) (-589 $)) 146) (($ $ $ $) 145) (($ $ (-271 $)) 144) (($ $ (-589 (-271 $))) 143) (($ $ (-589 (-562 $)) (-589 $)) 142) (($ $ (-562 $) $) 141)) (-3413 (((-710) $) 58)) (-1937 (($ (-110) (-589 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57)) (-1303 (($ $ $) 160) (($ $) 159)) (-3984 (($ $ (-1087)) 249 (|has| |#1| (-973))) (($ $ (-589 (-1087))) 248 (|has| |#1| (-973))) (($ $ (-1087) (-710)) 247 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) 246 (|has| |#1| (-973)))) (-2793 (($ $) 228 (|has| |#1| (-515)))) (-3329 (((-1039 |#1| (-562 $)) $) 227 (|has| |#1| (-515)))) (-2762 (($ $) 184 (|has| $ (-973)))) (-1400 (((-499) $) 255 (|has| |#1| (-564 (-499)))) (($ (-394 $)) 226 (|has| |#1| (-515))) (((-823 (-355)) $) 191 (|has| |#1| (-564 (-823 (-355))))) (((-823 (-523)) $) 190 (|has| |#1| (-564 (-823 (-523)))))) (-3361 (($ $ $) 254 (|has| |#1| (-448)))) (-2892 (($ $ $) 253 (|has| |#1| (-448)))) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ (-883 |#1|)) 250 (|has| |#1| (-973))) (($ (-383 (-883 |#1|))) 234 (|has| |#1| (-515))) (($ (-383 (-883 (-383 |#1|)))) 232 (|has| |#1| (-515))) (($ (-883 (-383 |#1|))) 231 (|has| |#1| (-515))) (($ (-383 |#1|)) 230 (|has| |#1| (-515))) (($ (-1039 |#1| (-562 $))) 216 (|has| |#1| (-973))) (($ |#1|) 196) (($ (-1087)) 187) (($ (-562 $)) 138)) (-1942 (((-3 $ "failed") $) 239 (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-2850 (($ (-589 $)) 156) (($ $) 155)) (-3198 (((-108) (-110)) 167)) (-2801 (((-108) $ $) 39)) (-2971 (($ (-1087) (-589 $)) 206) (($ (-1087) $ $ $ $) 205) (($ (-1087) $ $ $) 204) (($ (-1087) $ $) 203) (($ (-1087) $) 202)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-1087)) 245 (|has| |#1| (-973))) (($ $ (-589 (-1087))) 244 (|has| |#1| (-973))) (($ $ (-1087) (-710)) 243 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) 242 (|has| |#1| (-973)))) (-4006 (((-108) $ $) 134)) (-3980 (((-108) $ $) 133)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 135)) (-3966 (((-108) $ $) 132)) (-4074 (($ $ $) 64) (($ (-1039 |#1| (-562 $)) (-1039 |#1| (-562 $))) 229 (|has| |#1| (-515)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68) (($ $ (-383 (-523))) 90)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-158))) (($ |#1| $) 237 (|has| |#1| (-158))))) (((-29 |#1|) (-129) (-13 (-786) (-515))) (T -29)) -((-3313 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-786) (-515))))) (-1694 (*1 *2 *1) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *3)))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-786) (-515))))) (-1694 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *4)))) (-2488 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-786) (-515))))) (-1728 (*1 *2 *1) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *3)))) (-2488 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-786) (-515))))) (-1728 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-406 |t#1|) (-10 -8 (-15 -3313 ($ $)) (-15 -1694 ((-589 $) $)) (-15 -3313 ($ $ (-1087))) (-15 -1694 ((-589 $) $ (-1087))) (-15 -2488 ($ $)) (-15 -1728 ((-589 $) $)) (-15 -2488 ($ $ (-1087))) (-15 -1728 ((-589 $) $ (-1087))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-158)) ((-107 $ $) . T) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523)))) ((-221) . T) ((-267) . T) ((-284) . T) ((-286 $) . T) ((-279) . T) ((-339) . T) ((-353 |#1|) |has| |#1| (-973)) ((-376 |#1|) . T) ((-387 |#1|) . T) ((-406 |#1|) . T) ((-427) . T) ((-448) |has| |#1| (-448)) ((-484 (-562 $) $) . T) ((-484 $ $) . T) ((-515) . T) ((-591 #0#) . T) ((-591 |#1|) |has| |#1| (-158)) ((-591 $) . T) ((-585 (-523)) -12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) ((-585 |#1|) |has| |#1| (-973)) ((-657 #0#) . T) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) . T) ((-666) . T) ((-786) . T) ((-831 (-1087)) |has| |#1| (-973)) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-815 |#1|) . T) ((-851) . T) ((-930) . T) ((-964 (-383 (-523))) -3262 (|has| |#1| (-964 (-383 (-523)))) (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) ((-964 (-383 (-883 |#1|))) |has| |#1| (-515)) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 (-562 $)) . T) ((-964 (-883 |#1|)) |has| |#1| (-973)) ((-964 (-1087)) . T) ((-964 |#1|) . T) ((-979 #0#) . T) ((-979 |#1|) |has| |#1| (-158)) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1122) . T) ((-1126) . T)) -((-2831 (((-1011 (-203)) $) NIL)) (-2817 (((-1011 (-203)) $) NIL)) (-3747 (($ $ (-203)) 123)) (-3297 (($ (-883 (-523)) (-1087) (-1087) (-1011 (-383 (-523))) (-1011 (-383 (-523)))) 85)) (-4068 (((-589 (-589 (-874 (-203)))) $) 135)) (-1458 (((-794) $) 147))) -(((-30) (-13 (-885) (-10 -8 (-15 -3297 ($ (-883 (-523)) (-1087) (-1087) (-1011 (-383 (-523))) (-1011 (-383 (-523))))) (-15 -3747 ($ $ (-203)))))) (T -30)) -((-3297 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-883 (-523))) (-5 *3 (-1087)) (-5 *4 (-1011 (-383 (-523)))) (-5 *1 (-30)))) (-3747 (*1 *1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-30))))) -(-13 (-885) (-10 -8 (-15 -3297 ($ (-883 (-523)) (-1087) (-1087) (-1011 (-383 (-523))) (-1011 (-383 (-523))))) (-15 -3747 ($ $ (-203))))) -((-3313 ((|#2| (-1083 |#2|) (-1087)) 42)) (-1403 (((-110) (-110)) 55)) (-1483 (((-1083 |#2|) (-562 |#2|)) 131 (|has| |#1| (-964 (-523))))) (-2878 ((|#2| |#1| (-523)) 110 (|has| |#1| (-964 (-523))))) (-1278 ((|#2| (-1083 |#2|) |#2|) 30)) (-2356 (((-794) (-589 |#2|)) 86)) (-3727 ((|#2| |#2|) 127 (|has| |#1| (-964 (-523))))) (-1950 (((-108) (-110)) 18)) (** ((|#2| |#2| (-383 (-523))) 91 (|has| |#1| (-964 (-523)))))) -(((-31 |#1| |#2|) (-10 -7 (-15 -3313 (|#2| (-1083 |#2|) (-1087))) (-15 -1403 ((-110) (-110))) (-15 -1950 ((-108) (-110))) (-15 -1278 (|#2| (-1083 |#2|) |#2|)) (-15 -2356 ((-794) (-589 |#2|))) (IF (|has| |#1| (-964 (-523))) (PROGN (-15 ** (|#2| |#2| (-383 (-523)))) (-15 -1483 ((-1083 |#2|) (-562 |#2|))) (-15 -3727 (|#2| |#2|)) (-15 -2878 (|#2| |#1| (-523)))) |%noBranch|)) (-13 (-786) (-515)) (-406 |#1|)) (T -31)) -((-2878 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-4 *2 (-406 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-964 *4)) (-4 *3 (-13 (-786) (-515))))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-964 (-523))) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-31 *3 *2)) (-4 *2 (-406 *3)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-562 *5)) (-4 *5 (-406 *4)) (-4 *4 (-964 (-523))) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-1083 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-383 (-523))) (-4 *4 (-964 (-523))) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-31 *4 *2)) (-4 *2 (-406 *4)))) (-2356 (*1 *2 *3) (-12 (-5 *3 (-589 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-794)) (-5 *1 (-31 *4 *5)))) (-1278 (*1 *2 *3 *2) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-31 *4 *2)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-406 *4)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-31 *3 *4)) (-4 *4 (-406 *3)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *2)) (-5 *4 (-1087)) (-4 *2 (-406 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-786) (-515)))))) -(-10 -7 (-15 -3313 (|#2| (-1083 |#2|) (-1087))) (-15 -1403 ((-110) (-110))) (-15 -1950 ((-108) (-110))) (-15 -1278 (|#2| (-1083 |#2|) |#2|)) (-15 -2356 ((-794) (-589 |#2|))) (IF (|has| |#1| (-964 (-523))) (PROGN (-15 ** (|#2| |#2| (-383 (-523)))) (-15 -1483 ((-1083 |#2|) (-562 |#2|))) (-15 -3727 (|#2| |#2|)) (-15 -2878 (|#2| |#1| (-523)))) |%noBranch|)) -((-3079 (((-108) $ (-710)) 16)) (-2518 (($) 10)) (-2346 (((-108) $ (-710)) 15)) (-2866 (((-108) $ (-710)) 14)) (-3811 (((-108) $ $) 8)) (-3883 (((-108) $) 13))) -(((-32 |#1|) (-10 -8 (-15 -2518 (|#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710))) (-15 -3883 ((-108) |#1|)) (-15 -3811 ((-108) |#1| |#1|))) (-33)) (T -32)) -NIL -(-10 -8 (-15 -2518 (|#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710))) (-15 -3883 ((-108) |#1|)) (-15 -3811 ((-108) |#1| |#1|))) -((-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-2346 (((-108) $ (-710)) 9)) (-2866 (((-108) $ (-710)) 10)) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-1664 (($ $) 13)) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-1264 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-786) (-515))))) (-2734 (*1 *2 *1) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *3)))) (-1264 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-786) (-515))))) (-2734 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *4)))) (-3879 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-786) (-515))))) (-3012 (*1 *2 *1) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *3)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-786) (-515))))) (-3012 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-406 |t#1|) (-10 -8 (-15 -1264 ($ $)) (-15 -2734 ((-589 $) $)) (-15 -1264 ($ $ (-1087))) (-15 -2734 ((-589 $) $ (-1087))) (-15 -3879 ($ $)) (-15 -3012 ((-589 $) $)) (-15 -3879 ($ $ (-1087))) (-15 -3012 ((-589 $) $ (-1087))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-158)) ((-107 $ $) . T) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523)))) ((-221) . T) ((-267) . T) ((-284) . T) ((-286 $) . T) ((-279) . T) ((-339) . T) ((-353 |#1|) |has| |#1| (-973)) ((-376 |#1|) . T) ((-387 |#1|) . T) ((-406 |#1|) . T) ((-427) . T) ((-448) |has| |#1| (-448)) ((-484 (-562 $) $) . T) ((-484 $ $) . T) ((-515) . T) ((-591 #0#) . T) ((-591 |#1|) |has| |#1| (-158)) ((-591 $) . T) ((-585 (-523)) -12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) ((-585 |#1|) |has| |#1| (-973)) ((-657 #0#) . T) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) . T) ((-666) . T) ((-786) . T) ((-831 (-1087)) |has| |#1| (-973)) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-815 |#1|) . T) ((-851) . T) ((-930) . T) ((-964 (-383 (-523))) -3172 (|has| |#1| (-964 (-383 (-523)))) (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) ((-964 (-383 (-883 |#1|))) |has| |#1| (-515)) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 (-562 $)) . T) ((-964 (-883 |#1|)) |has| |#1| (-973)) ((-964 (-1087)) . T) ((-964 |#1|) . T) ((-979 #0#) . T) ((-979 |#1|) |has| |#1| (-158)) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1123) . T) ((-1127) . T)) +((-2025 (((-1011 (-203)) $) NIL)) (-2015 (((-1011 (-203)) $) NIL)) (-2941 (($ $ (-203)) 123)) (-4122 (($ (-883 (-523)) (-1087) (-1087) (-1011 (-383 (-523))) (-1011 (-383 (-523)))) 85)) (-2825 (((-589 (-589 (-874 (-203)))) $) 135)) (-1691 (((-794) $) 147))) +(((-30) (-13 (-885) (-10 -8 (-15 -4122 ($ (-883 (-523)) (-1087) (-1087) (-1011 (-383 (-523))) (-1011 (-383 (-523))))) (-15 -2941 ($ $ (-203)))))) (T -30)) +((-4122 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-883 (-523))) (-5 *3 (-1087)) (-5 *4 (-1011 (-383 (-523)))) (-5 *1 (-30)))) (-2941 (*1 *1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-30))))) +(-13 (-885) (-10 -8 (-15 -4122 ($ (-883 (-523)) (-1087) (-1087) (-1011 (-383 (-523))) (-1011 (-383 (-523))))) (-15 -2941 ($ $ (-203))))) +((-1264 ((|#2| (-1083 |#2|) (-1087)) 42)) (-2947 (((-110) (-110)) 55)) (-1414 (((-1083 |#2|) (-562 |#2|)) 130 (|has| |#1| (-964 (-523))))) (-3254 ((|#2| |#1| (-523)) 109 (|has| |#1| (-964 (-523))))) (-4148 ((|#2| (-1083 |#2|) |#2|) 30)) (-2008 (((-794) (-589 |#2|)) 85)) (-2762 ((|#2| |#2|) 126 (|has| |#1| (-964 (-523))))) (-3198 (((-108) (-110)) 18)) (** ((|#2| |#2| (-383 (-523))) 90 (|has| |#1| (-964 (-523)))))) +(((-31 |#1| |#2|) (-10 -7 (-15 -1264 (|#2| (-1083 |#2|) (-1087))) (-15 -2947 ((-110) (-110))) (-15 -3198 ((-108) (-110))) (-15 -4148 (|#2| (-1083 |#2|) |#2|)) (-15 -2008 ((-794) (-589 |#2|))) (IF (|has| |#1| (-964 (-523))) (PROGN (-15 ** (|#2| |#2| (-383 (-523)))) (-15 -1414 ((-1083 |#2|) (-562 |#2|))) (-15 -2762 (|#2| |#2|)) (-15 -3254 (|#2| |#1| (-523)))) |%noBranch|)) (-13 (-786) (-515)) (-406 |#1|)) (T -31)) +((-3254 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-4 *2 (-406 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-964 *4)) (-4 *3 (-13 (-786) (-515))))) (-2762 (*1 *2 *2) (-12 (-4 *3 (-964 (-523))) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-31 *3 *2)) (-4 *2 (-406 *3)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-562 *5)) (-4 *5 (-406 *4)) (-4 *4 (-964 (-523))) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-1083 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-383 (-523))) (-4 *4 (-964 (-523))) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-31 *4 *2)) (-4 *2 (-406 *4)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-589 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-794)) (-5 *1 (-31 *4 *5)))) (-4148 (*1 *2 *3 *2) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-31 *4 *2)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-406 *4)))) (-2947 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-31 *3 *4)) (-4 *4 (-406 *3)))) (-1264 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *2)) (-5 *4 (-1087)) (-4 *2 (-406 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-786) (-515)))))) +(-10 -7 (-15 -1264 (|#2| (-1083 |#2|) (-1087))) (-15 -2947 ((-110) (-110))) (-15 -3198 ((-108) (-110))) (-15 -4148 (|#2| (-1083 |#2|) |#2|)) (-15 -2008 ((-794) (-589 |#2|))) (IF (|has| |#1| (-964 (-523))) (PROGN (-15 ** (|#2| |#2| (-383 (-523)))) (-15 -1414 ((-1083 |#2|) (-562 |#2|))) (-15 -2762 (|#2| |#2|)) (-15 -3254 (|#2| |#1| (-523)))) |%noBranch|)) +((-1620 (((-108) $ (-710)) 16)) (-4189 (($) 10)) (-3051 (((-108) $ (-710)) 15)) (-1418 (((-108) $ (-710)) 14)) (-2267 (((-108) $ $) 8)) (-1777 (((-108) $) 13))) +(((-32 |#1|) (-10 -8 (-15 -4189 (|#1|)) (-15 -1620 ((-108) |#1| (-710))) (-15 -3051 ((-108) |#1| (-710))) (-15 -1418 ((-108) |#1| (-710))) (-15 -1777 ((-108) |#1|)) (-15 -2267 ((-108) |#1| |#1|))) (-33)) (T -32)) +NIL +(-10 -8 (-15 -4189 (|#1|)) (-15 -1620 ((-108) |#1| (-710))) (-15 -3051 ((-108) |#1| (-710))) (-15 -1418 ((-108) |#1| (-710))) (-15 -1777 ((-108) |#1|)) (-15 -2267 ((-108) |#1| |#1|))) +((-1620 (((-108) $ (-710)) 8)) (-4189 (($) 7 T CONST)) (-3051 (((-108) $ (-710)) 9)) (-1418 (((-108) $ (-710)) 10)) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1874 (($ $) 13)) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-33) (-129)) (T -33)) -((-3811 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-1664 (*1 *1 *1) (-4 *1 (-33))) (-3988 (*1 *1) (-4 *1 (-33))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2866 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) (-2346 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) (-3079 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) (-2518 (*1 *1) (-4 *1 (-33))) (-2676 (*1 *2 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-33)) (-5 *2 (-710))))) -(-13 (-1122) (-10 -8 (-15 -3811 ((-108) $ $)) (-15 -1664 ($ $)) (-15 -3988 ($)) (-15 -3883 ((-108) $)) (-15 -2866 ((-108) $ (-710))) (-15 -2346 ((-108) $ (-710))) (-15 -3079 ((-108) $ (-710))) (-15 -2518 ($) -3059) (IF (|has| $ (-6 -4244)) (-15 -2676 ((-710) $)) |%noBranch|))) -(((-1122) . T)) -((-1839 (($ $) 11)) (-1818 (($ $) 10)) (-1865 (($ $) 9)) (-2914 (($ $) 8)) (-1852 (($ $) 7)) (-1830 (($ $) 6))) +((-2267 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-1874 (*1 *1 *1) (-4 *1 (-33))) (-3320 (*1 *1) (-4 *1 (-33))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-1418 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) (-3051 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) (-1620 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) (-4189 (*1 *1) (-4 *1 (-33))) (-2810 (*1 *2 *1) (-12 (|has| *1 (-6 -4248)) (-4 *1 (-33)) (-5 *2 (-710))))) +(-13 (-1123) (-10 -8 (-15 -2267 ((-108) $ $)) (-15 -1874 ($ $)) (-15 -3320 ($)) (-15 -1777 ((-108) $)) (-15 -1418 ((-108) $ (-710))) (-15 -3051 ((-108) $ (-710))) (-15 -1620 ((-108) $ (-710))) (-15 -4189 ($) -2501) (IF (|has| $ (-6 -4248)) (-15 -2810 ((-710) $)) |%noBranch|))) +(((-1123) . T)) +((-2341 (($ $) 11)) (-2318 (($ $) 10)) (-2366 (($ $) 9)) (-2102 (($ $) 8)) (-2353 (($ $) 7)) (-2330 (($ $) 6))) (((-34) (-129)) (T -34)) -((-1839 (*1 *1 *1) (-4 *1 (-34))) (-1818 (*1 *1 *1) (-4 *1 (-34))) (-1865 (*1 *1 *1) (-4 *1 (-34))) (-2914 (*1 *1 *1) (-4 *1 (-34))) (-1852 (*1 *1 *1) (-4 *1 (-34))) (-1830 (*1 *1 *1) (-4 *1 (-34)))) -(-13 (-10 -8 (-15 -1830 ($ $)) (-15 -1852 ($ $)) (-15 -2914 ($ $)) (-15 -1865 ($ $)) (-15 -1818 ($ $)) (-15 -1839 ($ $)))) -((-3924 (((-108) $ $) 19 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-1733 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 125)) (-1546 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 148)) (-4039 (($ $) 146)) (-3043 (($) 72) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 71)) (-4207 (((-1173) $ |#1| |#1|) 99 (|has| $ (-6 -4245))) (((-1173) $ (-523) (-523)) 178 (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) 159 (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-1506 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 200 (|has| $ (-6 -4245))) (($ $) 199 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1823 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 134 (|has| $ (-6 -4245)))) (-2110 (($ $ $) 155 (|has| $ (-6 -4245)))) (-3395 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 157 (|has| $ (-6 -4245)))) (-3456 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 153 (|has| $ (-6 -4245)))) (-1641 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 189 (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-1135 (-523)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 160 (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "last" (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 158 (|has| $ (-6 -4245))) (($ $ "rest" $) 156 (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "first" (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 154 (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "value" (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 133 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 132 (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 45 (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 216)) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 55 (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 175 (|has| $ (-6 -4244)))) (-1532 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 147)) (-2243 (((-3 |#2| "failed") |#1| $) 61)) (-2518 (($) 7 T CONST)) (-2867 (($ $) 201 (|has| $ (-6 -4245)))) (-3631 (($ $) 211)) (-1751 (($ $ (-710)) 142) (($ $) 140)) (-3941 (($ $) 214 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-1773 (($ $) 58 (-3262 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244))) (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 46 (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 220) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 215 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 54 (|has| $ (-6 -4244))) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 177 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 174 (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 56 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 53 (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 52 (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 176 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 173 (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 172 (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 190 (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) 88) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) 188)) (-1232 (((-108) $) 192)) (-1479 (((-523) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 208) (((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 207 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) (((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) 206 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 30 (|has| $ (-6 -4244))) (((-589 |#2|) $) 79 (|has| $ (-6 -4244))) (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 114 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 123)) (-1238 (((-108) $ $) 131 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-3052 (($ (-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 169)) (-2346 (((-108) $ (-710)) 9)) (-4084 ((|#1| $) 96 (|has| |#1| (-786))) (((-523) $) 180 (|has| (-523) (-786)))) (-2454 (($ $ $) 198 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2158 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2178 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 29 (|has| $ (-6 -4244))) (((-589 |#2|) $) 80 (|has| $ (-6 -4244))) (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 115 (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244)))) (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244))))) (-3056 ((|#1| $) 95 (|has| |#1| (-786))) (((-523) $) 181 (|has| (-523) (-786)))) (-2062 (($ $ $) 197 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 34 (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4245))) (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 110 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 109)) (-3992 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 225)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 128)) (-3555 (((-108) $) 124)) (-3779 (((-1070) $) 22 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2579 (($ $ (-710)) 145) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 143)) (-1330 (((-589 |#1|) $) 63)) (-2777 (((-108) |#1| $) 64)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 39)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 40) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) 219) (($ $ $ (-523)) 218)) (-2847 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) 162) (($ $ $ (-523)) 161)) (-2412 (((-589 |#1|) $) 93) (((-589 (-523)) $) 183)) (-4135 (((-108) |#1| $) 92) (((-108) (-523) $) 184)) (-2783 (((-1034) $) 21 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-1738 ((|#2| $) 97 (|has| |#1| (-786))) (($ $ (-710)) 139) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 137)) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 51) (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 171)) (-4203 (($ $ |#2|) 98 (|has| $ (-6 -4245))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 179 (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 41)) (-2402 (((-108) $) 191)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 32 (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 112 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) 26 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 25 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 24 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 23 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 86 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 84 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) 83 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 121 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 120 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 119 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) 118 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 182 (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-1264 (((-589 |#2|) $) 91) (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 185)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 187) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) 186) (($ $ (-1135 (-523))) 165) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "first") 138) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "value") 126)) (-1549 (((-523) $ $) 129)) (-3433 (($) 49) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 48)) (-2753 (($ $ (-523)) 222) (($ $ (-1135 (-523))) 221)) (-1469 (($ $ (-523)) 164) (($ $ (-1135 (-523))) 163)) (-2524 (((-108) $) 127)) (-2732 (($ $) 151)) (-2363 (($ $) 152 (|has| $ (-6 -4245)))) (-2316 (((-710) $) 150)) (-3562 (($ $) 149)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 31 (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-710) |#2| $) 81 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 116 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 113 (|has| $ (-6 -4244)))) (-3160 (($ $ $ (-523)) 202 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499)))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 50) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 170)) (-1746 (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 224) (($ $ $) 223)) (-2326 (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 168) (($ (-589 $)) 167) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 136) (($ $ $) 135)) (-1458 (((-794) $) 18 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794)))))) (-2296 (((-589 $) $) 122)) (-3653 (((-108) $ $) 130 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 42)) (-2589 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") |#1| $) 108)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 33 (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 111 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 195 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-4019 (((-108) $ $) 194 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-3983 (((-108) $ $) 20 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-4030 (((-108) $ $) 196 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-4007 (((-108) $ $) 193 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-2341 (*1 *1 *1) (-4 *1 (-34))) (-2318 (*1 *1 *1) (-4 *1 (-34))) (-2366 (*1 *1 *1) (-4 *1 (-34))) (-2102 (*1 *1 *1) (-4 *1 (-34))) (-2353 (*1 *1 *1) (-4 *1 (-34))) (-2330 (*1 *1 *1) (-4 *1 (-34)))) +(-13 (-10 -8 (-15 -2330 ($ $)) (-15 -2353 ($ $)) (-15 -2102 ($ $)) (-15 -2366 ($ $)) (-15 -2318 ($ $)) (-15 -2341 ($ $)))) +((-1680 (((-108) $ $) 19 (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-3370 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 125)) (-2176 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 148)) (-2227 (($ $) 146)) (-3723 (($) 72) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 71)) (-4191 (((-1174) $ |#1| |#1|) 99 (|has| $ (-6 -4249))) (((-1174) $ (-523) (-523)) 178 (|has| $ (-6 -4249)))) (-2856 (($ $ (-523)) 159 (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-1632 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 200 (|has| $ (-6 -4249))) (($ $) 199 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)) (|has| $ (-6 -4249))))) (-1581 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-1620 (((-108) $ (-710)) 8)) (-1487 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 134 (|has| $ (-6 -4249)))) (-2470 (($ $ $) 155 (|has| $ (-6 -4249)))) (-2622 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 157 (|has| $ (-6 -4249)))) (-2027 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 153 (|has| $ (-6 -4249)))) (-1849 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 189 (|has| $ (-6 -4249))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-1136 (-523)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 160 (|has| $ (-6 -4249))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ "last" (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 158 (|has| $ (-6 -4249))) (($ $ "rest" $) 156 (|has| $ (-6 -4249))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ "first" (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 154 (|has| $ (-6 -4249))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ "value" (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 133 (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) 132 (|has| $ (-6 -4249)))) (-3703 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 45 (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 216)) (-1903 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 55 (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 175 (|has| $ (-6 -4248)))) (-2165 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 147)) (-4216 (((-3 |#2| "failed") |#1| $) 61)) (-4189 (($) 7 T CONST)) (-1426 (($ $) 201 (|has| $ (-6 -4249)))) (-3700 (($ $) 211)) (-2441 (($ $ (-710)) 142) (($ $) 140)) (-4160 (($ $) 214 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-2462 (($ $) 58 (-3172 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248))) (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))))) (-3286 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 47 (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 46 (|has| $ (-6 -4248))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 220) (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 215 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-2514 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 54 (|has| $ (-6 -4248))) (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 174 (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 56 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 53 (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 52 (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 176 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 173 (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 172 (|has| $ (-6 -4248)))) (-2053 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4249))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 190 (|has| $ (-6 -4249)))) (-2000 ((|#2| $ |#1|) 88) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523)) 188)) (-1833 (((-108) $) 192)) (-3449 (((-523) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 208) (((-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 207 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))) (((-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523)) 206 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-1871 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 30 (|has| $ (-6 -4248))) (((-589 |#2|) $) 79 (|has| $ (-6 -4248))) (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 114 (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) 123)) (-3675 (((-108) $ $) 131 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-3733 (($ (-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 169)) (-3051 (((-108) $ (-710)) 9)) (-2965 ((|#1| $) 96 (|has| |#1| (-786))) (((-523) $) 180 (|has| (-523) (-786)))) (-3239 (($ $ $) 198 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-1793 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-3780 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-1584 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 29 (|has| $ (-6 -4248))) (((-589 |#2|) $) 80 (|has| $ (-6 -4248))) (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 115 (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4248)))) (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248))))) (-2567 ((|#1| $) 95 (|has| |#1| (-786))) (((-523) $) 181 (|has| (-523) (-786)))) (-3158 (($ $ $) 197 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 34 (|has| $ (-6 -4249))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4249))) (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 110 (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 109)) (-2301 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 225)) (-1418 (((-108) $ (-710)) 10)) (-1701 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 128)) (-1799 (((-108) $) 124)) (-2032 (((-1070) $) 22 (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-2535 (($ $ (-710)) 145) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 143)) (-1255 (((-589 |#1|) $) 63)) (-1862 (((-108) |#1| $) 64)) (-1293 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 39)) (-3108 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 40) (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523)) 219) (($ $ $ (-523)) 218)) (-2912 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523)) 162) (($ $ $ (-523)) 161)) (-2536 (((-589 |#1|) $) 93) (((-589 (-523)) $) 183)) (-2254 (((-108) |#1| $) 92) (((-108) (-523) $) 184)) (-3951 (((-1034) $) 21 (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-2428 ((|#2| $) 97 (|has| |#1| (-786))) (($ $ (-710)) 139) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 137)) (-2509 (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 51) (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 171)) (-4141 (($ $ |#2|) 98 (|has| $ (-6 -4249))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 179 (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 41)) (-2430 (((-108) $) 191)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 32 (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 112 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) 26 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 25 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 24 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 23 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 86 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 84 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) 83 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 121 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 120 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 119 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) 118 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016)))) (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 182 (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-3973 (((-589 |#2|) $) 91) (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 185)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 187) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523)) 186) (($ $ (-1136 (-523))) 165) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ "first") 138) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ "value") 126)) (-3766 (((-523) $ $) 129)) (-2963 (($) 49) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 48)) (-1655 (($ $ (-523)) 222) (($ $ (-1136 (-523))) 221)) (-1499 (($ $ (-523)) 164) (($ $ (-1136 (-523))) 163)) (-1221 (((-108) $) 127)) (-2582 (($ $) 151)) (-2075 (($ $) 152 (|has| $ (-6 -4249)))) (-2784 (((-710) $) 150)) (-1867 (($ $) 149)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 31 (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (((-710) |#2| $) 81 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4248)))) (((-710) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (((-710) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 113 (|has| $ (-6 -4248)))) (-4166 (($ $ $ (-523)) 202 (|has| $ (-6 -4249)))) (-1874 (($ $) 13)) (-1400 (((-499) $) 59 (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499)))))) (-1704 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 50) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 170)) (-2001 (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 224) (($ $ $) 223)) (-2394 (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 168) (($ (-589 $)) 167) (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 136) (($ $ $) 135)) (-1691 (((-794) $) 18 (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794)))))) (-2612 (((-589 $) $) 122)) (-3313 (((-108) $ $) 130 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-2417 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 42)) (-2546 (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") |#1| $) 108)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 33 (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 111 (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) 195 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-3980 (((-108) $ $) 194 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-3941 (((-108) $ $) 20 (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-3993 (((-108) $ $) 196 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-3966 (((-108) $ $) 193 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-35 |#1| |#2|) (-129) (-1016) (-1016)) (T -35)) -((-2589 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| -1853 *3) (|:| -2433 *4)))))) -(-13 (-1099 |t#1| |t#2|) (-609 (-2 (|:| -1853 |t#1|) (|:| -2433 |t#2|))) (-10 -8 (-15 -2589 ((-3 (-2 (|:| -1853 |t#1|) (|:| -2433 |t#2|)) "failed") |t#1| $)))) -(((-33) . T) ((-102 #0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((-97) -3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786))) ((-563 (-794)) -3262 (|has| |#2| (-1016)) (|has| |#2| (-563 (-794))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794)))) ((-140 #1=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((-564 (-499)) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))) ((-207 #0#) . T) ((-213 #0#) . T) ((-263 #2=(-523) #1#) . T) ((-263 |#1| |#2|) . T) ((-265 #2# #1#) . T) ((-265 |#1| |#2|) . T) ((-286 #1#) -12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-259 #1#) . T) ((-349 #1#) . T) ((-462 #1#) . T) ((-462 |#2|) . T) ((-556 #2# #1#) . T) ((-556 |#1| |#2|) . T) ((-484 #1# #1#) -12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-560 |#1| |#2|) . T) ((-594 #1#) . T) ((-609 #1#) . T) ((-786) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)) ((-938 #1#) . T) ((-1016) -3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786))) ((-1061 #1#) . T) ((-1099 |#1| |#2|) . T) ((-1122) . T) ((-1156 #1#) . T)) -((-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) 10))) -(((-36 |#1| |#2|) (-10 -8 (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-37 |#2|) (-158)) (T -36)) -NIL -(-10 -8 (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +((-2546 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| -3772 *3) (|:| -2482 *4)))))) +(-13 (-1100 |t#1| |t#2|) (-609 (-2 (|:| -3772 |t#1|) (|:| -2482 |t#2|))) (-10 -8 (-15 -2546 ((-3 (-2 (|:| -3772 |t#1|) (|:| -2482 |t#2|)) "failed") |t#1| $)))) +(((-33) . T) ((-102 #0=(-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T) ((-97) -3172 (|has| |#2| (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786))) ((-563 (-794)) -3172 (|has| |#2| (-1016)) (|has| |#2| (-563 (-794))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794)))) ((-140 #1=(-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T) ((-564 (-499)) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))) ((-207 #0#) . T) ((-213 #0#) . T) ((-263 #2=(-523) #1#) . T) ((-263 |#1| |#2|) . T) ((-265 #2# #1#) . T) ((-265 |#1| |#2|) . T) ((-286 #1#) -12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-259 #1#) . T) ((-349 #1#) . T) ((-462 #1#) . T) ((-462 |#2|) . T) ((-556 #2# #1#) . T) ((-556 |#1| |#2|) . T) ((-484 #1# #1#) -12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-560 |#1| |#2|) . T) ((-594 #1#) . T) ((-609 #1#) . T) ((-786) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)) ((-938 #1#) . T) ((-1016) -3172 (|has| |#2| (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786))) ((-1061 #1#) . T) ((-1100 |#1| |#2|) . T) ((-1123) . T) ((-1157 #1#) . T)) +((-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) 10))) +(((-36 |#1| |#2|) (-10 -8 (-15 -1691 (|#1| |#2|)) (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) (-37 |#2|) (-158)) (T -36)) +NIL +(-10 -8 (-15 -1691 (|#1| |#2|)) (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) (((-37 |#1|) (-129) (-158)) (T -37)) -((-1458 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-158))))) -(-13 (-973) (-657 |t#1|) (-10 -8 (-15 -1458 ($ |t#1|)))) +((-1691 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-158))))) +(-13 (-973) (-657 |t#1|) (-10 -8 (-15 -1691 ($ |t#1|)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) . T) ((-666) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-2063 (((-394 |#1|) |#1|) 38)) (-1820 (((-394 |#1|) |#1|) 27) (((-394 |#1|) |#1| (-589 (-47))) 30)) (-2704 (((-108) |#1|) 54))) -(((-38 |#1|) (-10 -7 (-15 -1820 ((-394 |#1|) |#1| (-589 (-47)))) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -2063 ((-394 |#1|) |#1|)) (-15 -2704 ((-108) |#1|))) (-1144 (-47))) (T -38)) -((-2704 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47))))) (-2063 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47))))) (-1820 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47))))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-47))) (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47)))))) -(-10 -7 (-15 -1820 ((-394 |#1|) |#1| (-589 (-47)))) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -2063 ((-394 |#1|) |#1|)) (-15 -2704 ((-108) |#1|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1207 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| (-383 |#2|) (-339)))) (-3345 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3331 (((-108) $) NIL (|has| (-383 |#2|) (-339)))) (-3750 (((-629 (-383 |#2|)) (-1168 $)) NIL) (((-629 (-383 |#2|))) NIL)) (-4187 (((-383 |#2|) $) NIL)) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-383 |#2|) (-325)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3614 (((-394 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1387 (((-108) $ $) NIL (|has| (-383 |#2|) (-339)))) (-1703 (((-710)) NIL (|has| (-383 |#2|) (-344)))) (-2957 (((-108)) NIL)) (-2898 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| (-383 |#2|) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-3 (-383 |#2|) "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| (-383 |#2|) (-964 (-523)))) (((-383 (-523)) $) NIL (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-383 |#2|) $) NIL)) (-3409 (($ (-1168 (-383 |#2|)) (-1168 $)) NIL) (($ (-1168 (-383 |#2|))) 57) (($ (-1168 |#2|) |#2|) 124)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-383 |#2|) (-325)))) (-3796 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-4079 (((-629 (-383 |#2|)) $ (-1168 $)) NIL) (((-629 (-383 |#2|)) $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-383 |#2|))) (|:| |vec| (-1168 (-383 |#2|)))) (-629 $) (-1168 $)) NIL) (((-629 (-383 |#2|)) (-629 $)) NIL)) (-2851 (((-1168 $) (-1168 $)) NIL)) (-2437 (($ |#3|) NIL) (((-3 $ "failed") (-383 |#3|)) NIL (|has| (-383 |#2|) (-339)))) (-2121 (((-3 $ "failed") $) NIL)) (-4072 (((-589 (-589 |#1|))) NIL (|has| |#1| (-344)))) (-1374 (((-108) |#1| |#1|) NIL)) (-1319 (((-852)) NIL)) (-4032 (($) NIL (|has| (-383 |#2|) (-344)))) (-4189 (((-108)) NIL)) (-2539 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-3769 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| (-383 |#2|) (-339)))) (-2528 (($ $) NIL)) (-1996 (($) NIL (|has| (-383 |#2|) (-325)))) (-2155 (((-108) $) NIL (|has| (-383 |#2|) (-325)))) (-1991 (($ $ (-710)) NIL (|has| (-383 |#2|) (-325))) (($ $) NIL (|has| (-383 |#2|) (-325)))) (-2657 (((-108) $) NIL (|has| (-383 |#2|) (-339)))) (-1640 (((-852) $) NIL (|has| (-383 |#2|) (-325))) (((-772 (-852)) $) NIL (|has| (-383 |#2|) (-325)))) (-2023 (((-108) $) NIL)) (-3552 (((-710)) NIL)) (-1215 (((-1168 $) (-1168 $)) 100)) (-3892 (((-383 |#2|) $) NIL)) (-3844 (((-589 (-883 |#1|)) (-1087)) NIL (|has| |#1| (-339)))) (-4058 (((-3 $ "failed") $) NIL (|has| (-383 |#2|) (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1397 ((|#3| $) NIL (|has| (-383 |#2|) (-339)))) (-2072 (((-852) $) NIL (|has| (-383 |#2|) (-344)))) (-2428 ((|#3| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| (-383 |#2|) (-339))) (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-3779 (((-1070) $) NIL)) (-1344 (((-1173) (-710)) 78)) (-1467 (((-629 (-383 |#2|))) 51)) (-2860 (((-629 (-383 |#2|))) 44)) (-3738 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-2764 (($ (-1168 |#2|) |#2|) 125)) (-1535 (((-629 (-383 |#2|))) 45)) (-3603 (((-629 (-383 |#2|))) 43)) (-3807 (((-2 (|:| |num| (-629 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-4077 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) 63)) (-3496 (((-1168 $)) 42)) (-4158 (((-1168 $)) 41)) (-3613 (((-108) $) NIL)) (-4181 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2262 (($) NIL (|has| (-383 |#2|) (-325)) CONST)) (-3878 (($ (-852)) NIL (|has| (-383 |#2|) (-344)))) (-2779 (((-3 |#2| "failed")) NIL)) (-2783 (((-1034) $) NIL)) (-3204 (((-710)) NIL)) (-3441 (($) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-383 |#2|) (-339)))) (-3278 (($ (-589 $)) NIL (|has| (-383 |#2|) (-339))) (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-383 |#2|) (-325)))) (-1820 (((-394 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-383 |#2|) (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| (-383 |#2|) (-339)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| (-383 |#2|) (-339)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1972 (((-710) $) NIL (|has| (-383 |#2|) (-339)))) (-3223 ((|#1| $ |#1| |#1|) NIL)) (-3308 (((-3 |#2| "failed")) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| (-383 |#2|) (-339)))) (-3549 (((-383 |#2|) (-1168 $)) NIL) (((-383 |#2|)) 39)) (-2974 (((-710) $) NIL (|has| (-383 |#2|) (-325))) (((-3 (-710) "failed") $ $) NIL (|has| (-383 |#2|) (-325)))) (-3523 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-710)) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-1976 (((-629 (-383 |#2|)) (-1168 $) (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339)))) (-3727 ((|#3|) 50)) (-3425 (($) NIL (|has| (-383 |#2|) (-325)))) (-2966 (((-1168 (-383 |#2|)) $ (-1168 $)) NIL) (((-629 (-383 |#2|)) (-1168 $) (-1168 $)) NIL) (((-1168 (-383 |#2|)) $) 58) (((-629 (-383 |#2|)) (-1168 $)) 101)) (-3663 (((-1168 (-383 |#2|)) $) NIL) (($ (-1168 (-383 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| (-383 |#2|) (-325)))) (-4110 (((-1168 $) (-1168 $)) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 |#2|)) NIL) (($ (-383 (-523))) NIL (-3262 (|has| (-383 |#2|) (-964 (-383 (-523)))) (|has| (-383 |#2|) (-339)))) (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3901 (($ $) NIL (|has| (-383 |#2|) (-325))) (((-3 $ "failed") $) NIL (|has| (-383 |#2|) (-134)))) (-1807 ((|#3| $) NIL)) (-1621 (((-710)) NIL)) (-2423 (((-108)) 37)) (-2691 (((-108) |#1|) 49) (((-108) |#2|) 131)) (-4041 (((-1168 $)) 91)) (-1704 (((-108) $ $) NIL (|has| (-383 |#2|) (-339)))) (-1451 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1323 (((-108)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-383 |#2|) (-339)))) (-2756 (($) 16 T CONST)) (-2767 (($) 26 T CONST)) (-2862 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-710)) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-383 |#2|) (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 |#2|)) NIL) (($ (-383 |#2|) $) NIL) (($ (-383 (-523)) $) NIL (|has| (-383 |#2|) (-339))) (($ $ (-383 (-523))) NIL (|has| (-383 |#2|) (-339))))) -(((-39 |#1| |#2| |#3| |#4|) (-13 (-318 |#1| |#2| |#3|) (-10 -7 (-15 -1344 ((-1173) (-710))))) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) |#3|) (T -39)) -((-1344 (*1 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-339)) (-4 *5 (-1144 *4)) (-5 *2 (-1173)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1144 (-383 *5))) (-14 *7 *6)))) -(-13 (-318 |#1| |#2| |#3|) (-10 -7 (-15 -1344 ((-1173) (-710))))) -((-2064 ((|#2| |#2|) 47)) (-3348 ((|#2| |#2|) 117 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-427)) (|has| |#1| (-786)) (|has| |#1| (-964 (-523)))))) (-1607 ((|#2| |#2|) 86 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-427)) (|has| |#1| (-786)) (|has| |#1| (-964 (-523)))))) (-2828 ((|#2| |#2|) 87 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-427)) (|has| |#1| (-786)) (|has| |#1| (-964 (-523)))))) (-2087 ((|#2| (-110) |#2| (-710)) 74 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-427)) (|has| |#1| (-786)) (|has| |#1| (-964 (-523)))))) (-1306 (((-1083 |#2|) |#2|) 44)) (-3236 ((|#2| |#2| (-589 (-562 |#2|))) 17) ((|#2| |#2| (-589 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15))) -(((-40 |#1| |#2|) (-10 -7 (-15 -2064 (|#2| |#2|)) (-15 -3236 (|#2| |#2|)) (-15 -3236 (|#2| |#2| |#2|)) (-15 -3236 (|#2| |#2| (-589 |#2|))) (-15 -3236 (|#2| |#2| (-589 (-562 |#2|)))) (-15 -1306 ((-1083 |#2|) |#2|)) (IF (|has| |#1| (-786)) (IF (|has| |#1| (-427)) (IF (|has| |#1| (-964 (-523))) (IF (|has| |#2| (-406 |#1|)) (PROGN (-15 -2828 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -2087 (|#2| (-110) |#2| (-710)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-515) (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 |#1| (-562 $)) $)) (-15 -2797 ((-1039 |#1| (-562 $)) $)) (-15 -1458 ($ (-1039 |#1| (-562 $))))))) (T -40)) -((-2087 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-710)) (-4 *5 (-427)) (-4 *5 (-786)) (-4 *5 (-964 (-523))) (-4 *5 (-515)) (-5 *1 (-40 *5 *2)) (-4 *2 (-406 *5)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *5 (-562 $)) $)) (-15 -2797 ((-1039 *5 (-562 $)) $)) (-15 -1458 ($ (-1039 *5 (-562 $))))))))) (-3348 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) (-15 -2797 ((-1039 *3 (-562 $)) $)) (-15 -1458 ($ (-1039 *3 (-562 $))))))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) (-15 -2797 ((-1039 *3 (-562 $)) $)) (-15 -1458 ($ (-1039 *3 (-562 $))))))))) (-2828 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) (-15 -2797 ((-1039 *3 (-562 $)) $)) (-15 -1458 ($ (-1039 *3 (-562 $))))))))) (-1306 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-1083 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *4 (-562 $)) $)) (-15 -2797 ((-1039 *4 (-562 $)) $)) (-15 -1458 ($ (-1039 *4 (-562 $))))))))) (-3236 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-562 *2))) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *4 (-562 $)) $)) (-15 -2797 ((-1039 *4 (-562 $)) $)) (-15 -1458 ($ (-1039 *4 (-562 $))))))) (-4 *4 (-515)) (-5 *1 (-40 *4 *2)))) (-3236 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *4 (-562 $)) $)) (-15 -2797 ((-1039 *4 (-562 $)) $)) (-15 -1458 ($ (-1039 *4 (-562 $))))))) (-4 *4 (-515)) (-5 *1 (-40 *4 *2)))) (-3236 (*1 *2 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) (-15 -2797 ((-1039 *3 (-562 $)) $)) (-15 -1458 ($ (-1039 *3 (-562 $))))))))) (-3236 (*1 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) (-15 -2797 ((-1039 *3 (-562 $)) $)) (-15 -1458 ($ (-1039 *3 (-562 $))))))))) (-2064 (*1 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) (-15 -2797 ((-1039 *3 (-562 $)) $)) (-15 -1458 ($ (-1039 *3 (-562 $)))))))))) -(-10 -7 (-15 -2064 (|#2| |#2|)) (-15 -3236 (|#2| |#2|)) (-15 -3236 (|#2| |#2| |#2|)) (-15 -3236 (|#2| |#2| (-589 |#2|))) (-15 -3236 (|#2| |#2| (-589 (-562 |#2|)))) (-15 -1306 ((-1083 |#2|) |#2|)) (IF (|has| |#1| (-786)) (IF (|has| |#1| (-427)) (IF (|has| |#1| (-964 (-523))) (IF (|has| |#2| (-406 |#1|)) (PROGN (-15 -2828 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -2087 (|#2| (-110) |#2| (-710)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1820 (((-394 (-1083 |#3|)) (-1083 |#3|) (-589 (-47))) 22) (((-394 |#3|) |#3| (-589 (-47))) 18))) -(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -1820 ((-394 |#3|) |#3| (-589 (-47)))) (-15 -1820 ((-394 (-1083 |#3|)) (-1083 |#3|) (-589 (-47))))) (-786) (-732) (-880 (-47) |#2| |#1|)) (T -41)) -((-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-47))) (-4 *5 (-786)) (-4 *6 (-732)) (-4 *7 (-880 (-47) *6 *5)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-47))) (-4 *5 (-786)) (-4 *6 (-732)) (-5 *2 (-394 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-880 (-47) *6 *5))))) -(-10 -7 (-15 -1820 ((-394 |#3|) |#3| (-589 (-47)))) (-15 -1820 ((-394 (-1083 |#3|)) (-1083 |#3|) (-589 (-47))))) -((-2697 (((-710) |#2|) 65)) (-1835 (((-710) |#2|) 68)) (-2127 (((-589 |#2|)) 33)) (-2422 (((-710) |#2|) 67)) (-3896 (((-710) |#2|) 64)) (-1381 (((-710) |#2|) 66)) (-1476 (((-589 (-629 |#1|))) 60)) (-3101 (((-589 |#2|)) 55)) (-2452 (((-589 |#2|) |#2|) 43)) (-3202 (((-589 |#2|)) 57)) (-2176 (((-589 |#2|)) 56)) (-3239 (((-589 (-629 |#1|))) 48)) (-2479 (((-589 |#2|)) 54)) (-3854 (((-589 |#2|) |#2|) 42)) (-2972 (((-589 |#2|)) 50)) (-1252 (((-589 (-629 |#1|))) 61)) (-2269 (((-589 |#2|)) 59)) (-4041 (((-1168 |#2|) (-1168 |#2|)) 84 (|has| |#1| (-284))))) -(((-42 |#1| |#2|) (-10 -7 (-15 -2422 ((-710) |#2|)) (-15 -1835 ((-710) |#2|)) (-15 -3896 ((-710) |#2|)) (-15 -2697 ((-710) |#2|)) (-15 -1381 ((-710) |#2|)) (-15 -2972 ((-589 |#2|))) (-15 -3854 ((-589 |#2|) |#2|)) (-15 -2452 ((-589 |#2|) |#2|)) (-15 -2479 ((-589 |#2|))) (-15 -3101 ((-589 |#2|))) (-15 -2176 ((-589 |#2|))) (-15 -3202 ((-589 |#2|))) (-15 -2269 ((-589 |#2|))) (-15 -3239 ((-589 (-629 |#1|)))) (-15 -1476 ((-589 (-629 |#1|)))) (-15 -1252 ((-589 (-629 |#1|)))) (-15 -2127 ((-589 |#2|))) (IF (|has| |#1| (-284)) (-15 -4041 ((-1168 |#2|) (-1168 |#2|))) |%noBranch|)) (-515) (-393 |#1|)) (T -42)) -((-4041 (*1 *2 *2) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-393 *3)) (-4 *3 (-284)) (-4 *3 (-515)) (-5 *1 (-42 *3 *4)))) (-2127 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-1252 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-1476 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-3239 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-2269 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-3202 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-2176 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-3101 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-2479 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-2452 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-3854 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-2972 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-1381 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-2697 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-1835 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-2422 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4))))) -(-10 -7 (-15 -2422 ((-710) |#2|)) (-15 -1835 ((-710) |#2|)) (-15 -3896 ((-710) |#2|)) (-15 -2697 ((-710) |#2|)) (-15 -1381 ((-710) |#2|)) (-15 -2972 ((-589 |#2|))) (-15 -3854 ((-589 |#2|) |#2|)) (-15 -2452 ((-589 |#2|) |#2|)) (-15 -2479 ((-589 |#2|))) (-15 -3101 ((-589 |#2|))) (-15 -2176 ((-589 |#2|))) (-15 -3202 ((-589 |#2|))) (-15 -2269 ((-589 |#2|))) (-15 -3239 ((-589 (-629 |#1|)))) (-15 -1476 ((-589 (-629 |#1|)))) (-15 -1252 ((-589 (-629 |#1|)))) (-15 -2127 ((-589 |#2|))) (IF (|has| |#1| (-284)) (-15 -4041 ((-1168 |#2|) (-1168 |#2|))) |%noBranch|)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3819 (((-3 $ "failed")) NIL (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3115 (((-1168 (-629 |#1|)) (-1168 $)) NIL) (((-1168 (-629 |#1|))) 24)) (-2738 (((-1168 $)) 50)) (-2518 (($) NIL T CONST)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (|has| |#1| (-515)))) (-3545 (((-3 $ "failed")) NIL (|has| |#1| (-515)))) (-1431 (((-629 |#1|) (-1168 $)) NIL) (((-629 |#1|)) NIL)) (-3744 ((|#1| $) NIL)) (-2788 (((-629 |#1|) $ (-1168 $)) NIL) (((-629 |#1|) $) NIL)) (-2532 (((-3 $ "failed") $) NIL (|has| |#1| (-515)))) (-3138 (((-1083 (-883 |#1|))) NIL (|has| |#1| (-339)))) (-1970 (($ $ (-852)) NIL)) (-4212 ((|#1| $) NIL)) (-1726 (((-1083 |#1|) $) NIL (|has| |#1| (-515)))) (-2284 ((|#1| (-1168 $)) NIL) ((|#1|) NIL)) (-1778 (((-1083 |#1|) $) NIL)) (-2117 (((-108)) 86)) (-3409 (($ (-1168 |#1|) (-1168 $)) NIL) (($ (-1168 |#1|)) NIL)) (-2121 (((-3 $ "failed") $) 14 (|has| |#1| (-515)))) (-1319 (((-852)) 51)) (-1487 (((-108)) NIL)) (-3650 (($ $ (-852)) NIL)) (-1649 (((-108)) NIL)) (-2956 (((-108)) NIL)) (-2491 (((-108)) 88)) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (|has| |#1| (-515)))) (-1386 (((-3 $ "failed")) NIL (|has| |#1| (-515)))) (-1504 (((-629 |#1|) (-1168 $)) NIL) (((-629 |#1|)) NIL)) (-3237 ((|#1| $) NIL)) (-2139 (((-629 |#1|) $ (-1168 $)) NIL) (((-629 |#1|) $) NIL)) (-1579 (((-3 $ "failed") $) NIL (|has| |#1| (-515)))) (-2525 (((-1083 (-883 |#1|))) NIL (|has| |#1| (-339)))) (-1448 (($ $ (-852)) NIL)) (-4050 ((|#1| $) NIL)) (-2553 (((-1083 |#1|) $) NIL (|has| |#1| (-515)))) (-3002 ((|#1| (-1168 $)) NIL) ((|#1|) NIL)) (-2565 (((-1083 |#1|) $) NIL)) (-1216 (((-108)) 85)) (-3779 (((-1070) $) NIL)) (-2345 (((-108)) 92)) (-1510 (((-108)) 91)) (-2871 (((-108)) 93)) (-2783 (((-1034) $) NIL)) (-2751 (((-108)) 87)) (-3223 ((|#1| $ (-523)) 53)) (-2966 (((-1168 |#1|) $ (-1168 $)) 47) (((-629 |#1|) (-1168 $) (-1168 $)) NIL) (((-1168 |#1|) $) 28) (((-629 |#1|) (-1168 $)) NIL)) (-3663 (((-1168 |#1|) $) NIL) (($ (-1168 |#1|)) NIL)) (-3863 (((-589 (-883 |#1|)) (-1168 $)) NIL) (((-589 (-883 |#1|))) NIL)) (-1714 (($ $ $) NIL)) (-1673 (((-108)) 83)) (-1458 (((-794) $) 68) (($ (-1168 |#1|)) 22)) (-4041 (((-1168 $)) 44)) (-3751 (((-589 (-1168 |#1|))) NIL (|has| |#1| (-515)))) (-2022 (($ $ $ $) NIL)) (-3120 (((-108)) 81)) (-1677 (($ (-629 |#1|) $) 18)) (-1995 (($ $ $) NIL)) (-1462 (((-108)) 84)) (-3366 (((-108)) 82)) (-2071 (((-108)) 80)) (-2756 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1054 |#2| |#1|) $) 19))) -(((-43 |#1| |#2| |#3| |#4|) (-13 (-393 |#1|) (-591 (-1054 |#2| |#1|)) (-10 -8 (-15 -1458 ($ (-1168 |#1|))))) (-339) (-852) (-589 (-1087)) (-1168 (-629 |#1|))) (T -43)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-339)) (-14 *6 (-1168 (-629 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-852)) (-14 *5 (-589 (-1087)))))) -(-13 (-393 |#1|) (-591 (-1054 |#2| |#1|)) (-10 -8 (-15 -1458 ($ (-1168 |#1|))))) -((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1733 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1546 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-4039 (($ $) NIL)) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245))) (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-1506 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786))))) (-3974 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1823 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245)))) (-2110 (($ $ $) 27 (|has| $ (-6 -4245)))) (-3395 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245)))) (-3456 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 29 (|has| $ (-6 -4245)))) (-1641 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-1135 (-523)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "last" (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245))) (($ $ "rest" $) NIL (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "first" (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "value" (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-1532 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2243 (((-3 |#2| "failed") |#1| $) 37)) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1751 (($ $ (-710)) NIL) (($ $) 24)) (-3941 (($ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) NIL)) (-1232 (((-108) $) NIL)) (-1479 (((-523) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) (((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 18 (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244))) (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 18 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-3052 (($ (-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786))) (((-523) $) 32 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2158 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2178 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244))) (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786))) (((-523) $) 34 (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245))) (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-3992 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2726 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-3555 (((-108) $) NIL)) (-3779 (((-1070) $) 42 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2579 (($ $ (-710)) NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1330 (((-589 |#1|) $) 20)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2847 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 |#1|) $) NIL) (((-589 (-523)) $) NIL)) (-4135 (((-108) |#1| $) NIL) (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786))) (($ $ (-710)) NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 23)) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2402 (((-108) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-1264 (((-589 |#2|) $) NIL) (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 17)) (-3883 (((-108) $) 16)) (-3988 (($) 13)) (-3223 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) NIL) (($ $ (-1135 (-523))) NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "first") NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "value") NIL)) (-1549 (((-523) $ $) NIL)) (-3433 (($) 12) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2753 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2524 (((-108) $) NIL)) (-2732 (($ $) NIL)) (-2363 (($ $) NIL (|has| $ (-6 -4245)))) (-2316 (((-710) $) NIL)) (-3562 (($ $) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1746 (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL) (($ $ $) NIL)) (-2326 (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL) (($ (-589 $)) NIL) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 25) (($ $ $) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2589 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") |#1| $) 44)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-4030 (((-108) $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2676 (((-710) $) 22 (|has| $ (-6 -4244))))) +((-1980 (((-394 |#1|) |#1|) 38)) (-2424 (((-394 |#1|) |#1|) 27) (((-394 |#1|) |#1| (-589 (-47))) 30)) (-2298 (((-108) |#1|) 54))) +(((-38 |#1|) (-10 -7 (-15 -2424 ((-394 |#1|) |#1| (-589 (-47)))) (-15 -2424 ((-394 |#1|) |#1|)) (-15 -1980 ((-394 |#1|) |#1|)) (-15 -2298 ((-108) |#1|))) (-1145 (-47))) (T -38)) +((-2298 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1145 (-47))))) (-1980 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1145 (-47))))) (-2424 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1145 (-47))))) (-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-47))) (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1145 (-47)))))) +(-10 -7 (-15 -2424 ((-394 |#1|) |#1| (-589 (-47)))) (-15 -2424 ((-394 |#1|) |#1|)) (-15 -1980 ((-394 |#1|) |#1|)) (-15 -2298 ((-108) |#1|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1587 (((-2 (|:| |num| (-1169 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| (-383 |#2|) (-339)))) (-3306 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3174 (((-108) $) NIL (|has| (-383 |#2|) (-339)))) (-2959 (((-629 (-383 |#2|)) (-1169 $)) NIL) (((-629 (-383 |#2|))) NIL)) (-1477 (((-383 |#2|) $) NIL)) (-1557 (((-1097 (-852) (-710)) (-523)) NIL (|has| (-383 |#2|) (-325)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-4226 (((-394 $) $) NIL (|has| (-383 |#2|) (-339)))) (-2787 (((-108) $ $) NIL (|has| (-383 |#2|) (-339)))) (-2395 (((-710)) NIL (|has| (-383 |#2|) (-344)))) (-2816 (((-108)) NIL)) (-3454 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (|has| (-383 |#2|) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-3 (-383 |#2|) "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| (-383 |#2|) (-964 (-523)))) (((-383 (-523)) $) NIL (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-383 |#2|) $) NIL)) (-2754 (($ (-1169 (-383 |#2|)) (-1169 $)) NIL) (($ (-1169 (-383 |#2|))) 57) (($ (-1169 |#2|) |#2|) 125)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-383 |#2|) (-325)))) (-4059 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-2927 (((-629 (-383 |#2|)) $ (-1169 $)) NIL) (((-629 (-383 |#2|)) $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-383 |#2|))) (|:| |vec| (-1169 (-383 |#2|)))) (-629 $) (-1169 $)) NIL) (((-629 (-383 |#2|)) (-629 $)) NIL)) (-1290 (((-1169 $) (-1169 $)) NIL)) (-2116 (($ |#3|) NIL) (((-3 $ "failed") (-383 |#3|)) NIL (|has| (-383 |#2|) (-339)))) (-1444 (((-3 $ "failed") $) NIL)) (-2865 (((-589 (-589 |#1|))) NIL (|has| |#1| (-344)))) (-2672 (((-108) |#1| |#1|) NIL)) (-3569 (((-852)) NIL)) (-1631 (($) NIL (|has| (-383 |#2|) (-344)))) (-3991 (((-108)) NIL)) (-1382 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-4032 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| (-383 |#2|) (-339)))) (-1272 (($ $) NIL)) (-3665 (($) NIL (|has| (-383 |#2|) (-325)))) (-1766 (((-108) $) NIL (|has| (-383 |#2|) (-325)))) (-3610 (($ $ (-710)) NIL (|has| (-383 |#2|) (-325))) (($ $) NIL (|has| (-383 |#2|) (-325)))) (-3049 (((-108) $) NIL (|has| (-383 |#2|) (-339)))) (-3437 (((-852) $) NIL (|has| (-383 |#2|) (-325))) (((-772 (-852)) $) NIL (|has| (-383 |#2|) (-325)))) (-2769 (((-108) $) NIL)) (-1772 (((-710)) NIL)) (-1666 (((-1169 $) (-1169 $)) 101)) (-1863 (((-383 |#2|) $) NIL)) (-2570 (((-589 (-883 |#1|)) (-1087)) NIL (|has| |#1| (-339)))) (-2738 (((-3 $ "failed") $) NIL (|has| (-383 |#2|) (-325)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-383 |#2|) (-339)))) (-2887 ((|#3| $) NIL (|has| (-383 |#2|) (-339)))) (-2060 (((-852) $) NIL (|has| (-383 |#2|) (-344)))) (-2104 ((|#3| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| (-383 |#2|) (-339))) (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-2032 (((-1070) $) NIL)) (-3557 (((-1174) (-710)) 78)) (-2411 (((-629 (-383 |#2|))) 51)) (-1378 (((-629 (-383 |#2|))) 44)) (-1396 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-1748 (($ (-1169 |#2|) |#2|) 126)) (-3658 (((-629 (-383 |#2|))) 45)) (-4103 (((-629 (-383 |#2|))) 43)) (-2239 (((-2 (|:| |num| (-629 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 123)) (-2905 (((-2 (|:| |num| (-1169 |#2|)) (|:| |den| |#2|)) $) 63)) (-2429 (((-1169 $)) 42)) (-2496 (((-1169 $)) 41)) (-4212 (((-108) $) NIL)) (-3905 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2773 (($) NIL (|has| (-383 |#2|) (-325)) CONST)) (-4013 (($ (-852)) NIL (|has| (-383 |#2|) (-344)))) (-1885 (((-3 |#2| "failed")) NIL)) (-3951 (((-1034) $) NIL)) (-3327 (((-710)) NIL)) (-1621 (($) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-383 |#2|) (-339)))) (-3310 (($ (-589 $)) NIL (|has| (-383 |#2|) (-339))) (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL (|has| (-383 |#2|) (-325)))) (-2424 (((-394 $) $) NIL (|has| (-383 |#2|) (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-383 |#2|) (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| (-383 |#2|) (-339)))) (-4007 (((-3 $ "failed") $ $) NIL (|has| (-383 |#2|) (-339)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-383 |#2|) (-339)))) (-3413 (((-710) $) NIL (|has| (-383 |#2|) (-339)))) (-1937 ((|#1| $ |#1| |#1|) NIL)) (-1201 (((-3 |#2| "failed")) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| (-383 |#2|) (-339)))) (-1744 (((-383 |#2|) (-1169 $)) NIL) (((-383 |#2|)) 39)) (-2984 (((-710) $) NIL (|has| (-383 |#2|) (-325))) (((-3 (-710) "failed") $ $) NIL (|has| (-383 |#2|) (-325)))) (-3984 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-710)) NIL (-3172 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) NIL (-3172 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-3456 (((-629 (-383 |#2|)) (-1169 $) (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339)))) (-2762 ((|#3|) 50)) (-2893 (($) NIL (|has| (-383 |#2|) (-325)))) (-2906 (((-1169 (-383 |#2|)) $ (-1169 $)) NIL) (((-629 (-383 |#2|)) (-1169 $) (-1169 $)) NIL) (((-1169 (-383 |#2|)) $) 58) (((-629 (-383 |#2|)) (-1169 $)) 102)) (-1400 (((-1169 (-383 |#2|)) $) NIL) (($ (-1169 (-383 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| (-383 |#2|) (-325)))) (-3153 (((-1169 $) (-1169 $)) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 |#2|)) NIL) (($ (-383 (-523))) NIL (-3172 (|has| (-383 |#2|) (-964 (-383 (-523)))) (|has| (-383 |#2|) (-339)))) (($ $) NIL (|has| (-383 |#2|) (-339)))) (-1942 (($ $) NIL (|has| (-383 |#2|) (-325))) (((-3 $ "failed") $) NIL (|has| (-383 |#2|) (-134)))) (-1356 ((|#3| $) NIL)) (-3272 (((-710)) NIL)) (-1496 (((-108)) 37)) (-2188 (((-108) |#1|) 49) (((-108) |#2|) 132)) (-3760 (((-1169 $)) 92)) (-2801 (((-108) $ $) NIL (|has| (-383 |#2|) (-339)))) (-2265 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3336 (((-108)) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-383 |#2|) (-339)))) (-1879 (($) 16 T CONST)) (-1891 (($) 26 T CONST)) (-2909 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-710)) NIL (-3172 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) NIL (-3172 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-383 |#2|) (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 |#2|)) NIL) (($ (-383 |#2|) $) NIL) (($ (-383 (-523)) $) NIL (|has| (-383 |#2|) (-339))) (($ $ (-383 (-523))) NIL (|has| (-383 |#2|) (-339))))) +(((-39 |#1| |#2| |#3| |#4|) (-13 (-318 |#1| |#2| |#3|) (-10 -7 (-15 -3557 ((-1174) (-710))))) (-339) (-1145 |#1|) (-1145 (-383 |#2|)) |#3|) (T -39)) +((-3557 (*1 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-339)) (-4 *5 (-1145 *4)) (-5 *2 (-1174)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1145 (-383 *5))) (-14 *7 *6)))) +(-13 (-318 |#1| |#2| |#3|) (-10 -7 (-15 -3557 ((-1174) (-710))))) +((-1988 ((|#2| |#2|) 47)) (-3342 ((|#2| |#2|) 118 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-427)) (|has| |#1| (-786)) (|has| |#1| (-964 (-523)))))) (-3131 ((|#2| |#2|) 86 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-427)) (|has| |#1| (-786)) (|has| |#1| (-964 (-523)))))) (-4100 ((|#2| |#2|) 87 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-427)) (|has| |#1| (-786)) (|has| |#1| (-964 (-523)))))) (-2217 ((|#2| (-110) |#2| (-710)) 74 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-427)) (|has| |#1| (-786)) (|has| |#1| (-964 (-523)))))) (-3167 (((-1083 |#2|) |#2|) 44)) (-3634 ((|#2| |#2| (-589 (-562 |#2|))) 17) ((|#2| |#2| (-589 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15))) +(((-40 |#1| |#2|) (-10 -7 (-15 -1988 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3634 (|#2| |#2| |#2|)) (-15 -3634 (|#2| |#2| (-589 |#2|))) (-15 -3634 (|#2| |#2| (-589 (-562 |#2|)))) (-15 -3167 ((-1083 |#2|) |#2|)) (IF (|has| |#1| (-786)) (IF (|has| |#1| (-427)) (IF (|has| |#1| (-964 (-523))) (IF (|has| |#2| (-406 |#1|)) (PROGN (-15 -4100 (|#2| |#2|)) (-15 -3131 (|#2| |#2|)) (-15 -3342 (|#2| |#2|)) (-15 -2217 (|#2| (-110) |#2| (-710)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-515) (-13 (-339) (-279) (-10 -8 (-15 -3316 ((-1039 |#1| (-562 $)) $)) (-15 -3329 ((-1039 |#1| (-562 $)) $)) (-15 -1691 ($ (-1039 |#1| (-562 $))))))) (T -40)) +((-2217 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-710)) (-4 *5 (-427)) (-4 *5 (-786)) (-4 *5 (-964 (-523))) (-4 *5 (-515)) (-5 *1 (-40 *5 *2)) (-4 *2 (-406 *5)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -3316 ((-1039 *5 (-562 $)) $)) (-15 -3329 ((-1039 *5 (-562 $)) $)) (-15 -1691 ($ (-1039 *5 (-562 $))))))))) (-3342 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -3316 ((-1039 *3 (-562 $)) $)) (-15 -3329 ((-1039 *3 (-562 $)) $)) (-15 -1691 ($ (-1039 *3 (-562 $))))))))) (-3131 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -3316 ((-1039 *3 (-562 $)) $)) (-15 -3329 ((-1039 *3 (-562 $)) $)) (-15 -1691 ($ (-1039 *3 (-562 $))))))))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -3316 ((-1039 *3 (-562 $)) $)) (-15 -3329 ((-1039 *3 (-562 $)) $)) (-15 -1691 ($ (-1039 *3 (-562 $))))))))) (-3167 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-1083 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-339) (-279) (-10 -8 (-15 -3316 ((-1039 *4 (-562 $)) $)) (-15 -3329 ((-1039 *4 (-562 $)) $)) (-15 -1691 ($ (-1039 *4 (-562 $))))))))) (-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-562 *2))) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -3316 ((-1039 *4 (-562 $)) $)) (-15 -3329 ((-1039 *4 (-562 $)) $)) (-15 -1691 ($ (-1039 *4 (-562 $))))))) (-4 *4 (-515)) (-5 *1 (-40 *4 *2)))) (-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -3316 ((-1039 *4 (-562 $)) $)) (-15 -3329 ((-1039 *4 (-562 $)) $)) (-15 -1691 ($ (-1039 *4 (-562 $))))))) (-4 *4 (-515)) (-5 *1 (-40 *4 *2)))) (-3634 (*1 *2 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -3316 ((-1039 *3 (-562 $)) $)) (-15 -3329 ((-1039 *3 (-562 $)) $)) (-15 -1691 ($ (-1039 *3 (-562 $))))))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -3316 ((-1039 *3 (-562 $)) $)) (-15 -3329 ((-1039 *3 (-562 $)) $)) (-15 -1691 ($ (-1039 *3 (-562 $))))))))) (-1988 (*1 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -3316 ((-1039 *3 (-562 $)) $)) (-15 -3329 ((-1039 *3 (-562 $)) $)) (-15 -1691 ($ (-1039 *3 (-562 $)))))))))) +(-10 -7 (-15 -1988 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3634 (|#2| |#2| |#2|)) (-15 -3634 (|#2| |#2| (-589 |#2|))) (-15 -3634 (|#2| |#2| (-589 (-562 |#2|)))) (-15 -3167 ((-1083 |#2|) |#2|)) (IF (|has| |#1| (-786)) (IF (|has| |#1| (-427)) (IF (|has| |#1| (-964 (-523))) (IF (|has| |#2| (-406 |#1|)) (PROGN (-15 -4100 (|#2| |#2|)) (-15 -3131 (|#2| |#2|)) (-15 -3342 (|#2| |#2|)) (-15 -2217 (|#2| (-110) |#2| (-710)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2424 (((-394 (-1083 |#3|)) (-1083 |#3|) (-589 (-47))) 22) (((-394 |#3|) |#3| (-589 (-47))) 18))) +(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -2424 ((-394 |#3|) |#3| (-589 (-47)))) (-15 -2424 ((-394 (-1083 |#3|)) (-1083 |#3|) (-589 (-47))))) (-786) (-732) (-880 (-47) |#2| |#1|)) (T -41)) +((-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-47))) (-4 *5 (-786)) (-4 *6 (-732)) (-4 *7 (-880 (-47) *6 *5)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-47))) (-4 *5 (-786)) (-4 *6 (-732)) (-5 *2 (-394 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-880 (-47) *6 *5))))) +(-10 -7 (-15 -2424 ((-394 |#3|) |#3| (-589 (-47)))) (-15 -2424 ((-394 (-1083 |#3|)) (-1083 |#3|) (-589 (-47))))) +((-2249 (((-710) |#2|) 65)) (-1588 (((-710) |#2|) 68)) (-1501 (((-589 |#2|)) 33)) (-1488 (((-710) |#2|) 67)) (-1907 (((-710) |#2|) 64)) (-2739 (((-710) |#2|) 66)) (-1348 (((-589 (-629 |#1|))) 60)) (-1818 (((-589 |#2|)) 55)) (-1753 (((-589 |#2|) |#2|) 43)) (-3303 (((-589 |#2|)) 57)) (-3758 (((-589 |#2|)) 56)) (-3668 (((-589 (-629 |#1|))) 48)) (-3774 (((-589 |#2|)) 54)) (-1514 (((-589 |#2|) |#2|) 42)) (-2961 (((-589 |#2|)) 50)) (-3830 (((-589 (-629 |#1|))) 61)) (-3486 (((-589 |#2|)) 59)) (-3760 (((-1169 |#2|) (-1169 |#2|)) 84 (|has| |#1| (-284))))) +(((-42 |#1| |#2|) (-10 -7 (-15 -1488 ((-710) |#2|)) (-15 -1588 ((-710) |#2|)) (-15 -1907 ((-710) |#2|)) (-15 -2249 ((-710) |#2|)) (-15 -2739 ((-710) |#2|)) (-15 -2961 ((-589 |#2|))) (-15 -1514 ((-589 |#2|) |#2|)) (-15 -1753 ((-589 |#2|) |#2|)) (-15 -3774 ((-589 |#2|))) (-15 -1818 ((-589 |#2|))) (-15 -3758 ((-589 |#2|))) (-15 -3303 ((-589 |#2|))) (-15 -3486 ((-589 |#2|))) (-15 -3668 ((-589 (-629 |#1|)))) (-15 -1348 ((-589 (-629 |#1|)))) (-15 -3830 ((-589 (-629 |#1|)))) (-15 -1501 ((-589 |#2|))) (IF (|has| |#1| (-284)) (-15 -3760 ((-1169 |#2|) (-1169 |#2|))) |%noBranch|)) (-515) (-393 |#1|)) (T -42)) +((-3760 (*1 *2 *2) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-393 *3)) (-4 *3 (-284)) (-4 *3 (-515)) (-5 *1 (-42 *3 *4)))) (-1501 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-3830 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-1348 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-3668 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-3486 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-3303 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-3758 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-1818 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-3774 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-1753 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-1514 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-2961 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-2739 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-2249 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-1907 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-1588 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-1488 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4))))) +(-10 -7 (-15 -1488 ((-710) |#2|)) (-15 -1588 ((-710) |#2|)) (-15 -1907 ((-710) |#2|)) (-15 -2249 ((-710) |#2|)) (-15 -2739 ((-710) |#2|)) (-15 -2961 ((-589 |#2|))) (-15 -1514 ((-589 |#2|) |#2|)) (-15 -1753 ((-589 |#2|) |#2|)) (-15 -3774 ((-589 |#2|))) (-15 -1818 ((-589 |#2|))) (-15 -3758 ((-589 |#2|))) (-15 -3303 ((-589 |#2|))) (-15 -3486 ((-589 |#2|))) (-15 -3668 ((-589 (-629 |#1|)))) (-15 -1348 ((-589 (-629 |#1|)))) (-15 -3830 ((-589 (-629 |#1|)))) (-15 -1501 ((-589 |#2|))) (IF (|has| |#1| (-284)) (-15 -3760 ((-1169 |#2|) (-1169 |#2|))) |%noBranch|)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2345 (((-3 $ "failed")) NIL (|has| |#1| (-515)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-1939 (((-1169 (-629 |#1|)) (-1169 $)) NIL) (((-1169 (-629 |#1|))) 24)) (-1502 (((-1169 $)) 50)) (-4189 (($) NIL T CONST)) (-2314 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) NIL (|has| |#1| (-515)))) (-1722 (((-3 $ "failed")) NIL (|has| |#1| (-515)))) (-2059 (((-629 |#1|) (-1169 $)) NIL) (((-629 |#1|)) NIL)) (-2920 ((|#1| $) NIL)) (-1950 (((-629 |#1|) $ (-1169 $)) NIL) (((-629 |#1|) $) NIL)) (-1307 (((-3 $ "failed") $) NIL (|has| |#1| (-515)))) (-3927 (((-1083 (-883 |#1|))) NIL (|has| |#1| (-339)))) (-3402 (($ $ (-852)) NIL)) (-1223 ((|#1| $) NIL)) (-2992 (((-1083 |#1|) $) NIL (|has| |#1| (-515)))) (-3637 ((|#1| (-1169 $)) NIL) ((|#1|) NIL)) (-2242 (((-1083 |#1|) $) NIL)) (-1404 (((-108)) 86)) (-2754 (($ (-1169 |#1|) (-1169 $)) NIL) (($ (-1169 |#1|)) NIL)) (-1444 (((-3 $ "failed") $) 14 (|has| |#1| (-515)))) (-3569 (((-852)) 51)) (-1454 (((-108)) NIL)) (-3291 (($ $ (-852)) NIL)) (-3517 (((-108)) NIL)) (-2804 (((-108)) NIL)) (-3914 (((-108)) 88)) (-2065 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) NIL (|has| |#1| (-515)))) (-2778 (((-3 $ "failed")) NIL (|has| |#1| (-515)))) (-1612 (((-629 |#1|) (-1169 $)) NIL) (((-629 |#1|)) NIL)) (-3647 ((|#1| $) NIL)) (-1613 (((-629 |#1|) $ (-1169 $)) NIL) (((-629 |#1|) $) NIL)) (-4097 (((-3 $ "failed") $) NIL (|has| |#1| (-515)))) (-1233 (((-1083 (-883 |#1|))) NIL (|has| |#1| (-339)))) (-2237 (($ $ (-852)) NIL)) (-2670 ((|#1| $) NIL)) (-3248 (((-1083 |#1|) $) NIL (|has| |#1| (-515)))) (-2085 ((|#1| (-1169 $)) NIL) ((|#1|) NIL)) (-3359 (((-1083 |#1|) $) NIL)) (-1675 (((-108)) 85)) (-2032 (((-1070) $) NIL)) (-3041 (((-108)) 92)) (-1671 (((-108)) 91)) (-3194 (((-108)) 93)) (-3951 (((-1034) $) NIL)) (-1634 (((-108)) 87)) (-1937 ((|#1| $ (-523)) 53)) (-2906 (((-1169 |#1|) $ (-1169 $)) 47) (((-629 |#1|) (-1169 $) (-1169 $)) NIL) (((-1169 |#1|) $) 28) (((-629 |#1|) (-1169 $)) NIL)) (-1400 (((-1169 |#1|) $) NIL) (($ (-1169 |#1|)) NIL)) (-1586 (((-589 (-883 |#1|)) (-1169 $)) NIL) (((-589 (-883 |#1|))) NIL)) (-2892 (($ $ $) NIL)) (-2572 (((-108)) 83)) (-1691 (((-794) $) 68) (($ (-1169 |#1|)) 22)) (-3760 (((-1169 $)) 44)) (-2969 (((-589 (-1169 |#1|))) NIL (|has| |#1| (-515)))) (-2760 (($ $ $ $) NIL)) (-1978 (((-108)) 81)) (-2372 (($ (-629 |#1|) $) 18)) (-3654 (($ $ $) NIL)) (-2367 (((-108)) 84)) (-3505 (((-108)) 82)) (-2050 (((-108)) 80)) (-1879 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1054 |#2| |#1|) $) 19))) +(((-43 |#1| |#2| |#3| |#4|) (-13 (-393 |#1|) (-591 (-1054 |#2| |#1|)) (-10 -8 (-15 -1691 ($ (-1169 |#1|))))) (-339) (-852) (-589 (-1087)) (-1169 (-629 |#1|))) (T -43)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-339)) (-14 *6 (-1169 (-629 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-852)) (-14 *5 (-589 (-1087)))))) +(-13 (-393 |#1|) (-591 (-1054 |#2| |#1|)) (-10 -8 (-15 -1691 ($ (-1169 |#1|))))) +((-1680 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3370 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-2176 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-2227 (($ $) NIL)) (-3723 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-4191 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -4249))) (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-2856 (($ $ (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-1632 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4249))) (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786))))) (-1581 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-1620 (((-108) $ (-710)) NIL)) (-1487 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4249)))) (-2470 (($ $ $) 27 (|has| $ (-6 -4249)))) (-2622 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4249)))) (-2027 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 29 (|has| $ (-6 -4249)))) (-1849 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4249))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-1136 (-523)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4249))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ "last" (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4249))) (($ $ "rest" $) NIL (|has| $ (-6 -4249))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ "first" (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4249))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ "value" (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) NIL (|has| $ (-6 -4249)))) (-3703 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL)) (-1903 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2165 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-4216 (((-3 |#2| "failed") |#1| $) 37)) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-2441 (($ $ (-710)) NIL) (($ $) 24)) (-4160 (($ $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-3286 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL) (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-2514 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4249))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4249)))) (-2000 ((|#2| $ |#1|) NIL) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523)) NIL)) (-1833 (((-108) $) NIL)) (-3449 (((-523) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL) (((-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))) (((-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523)) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-1871 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 18 (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248))) (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 18 (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) NIL)) (-3675 (((-108) $ $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-3733 (($ (-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-2965 ((|#1| $) NIL (|has| |#1| (-786))) (((-523) $) 32 (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-1793 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-3780 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-1584 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248))) (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016)))) (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-2567 ((|#1| $) NIL (|has| |#1| (-786))) (((-523) $) 34 (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4249))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4249))) (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL)) (-2301 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-1701 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL)) (-1799 (((-108) $) NIL)) (-2032 (((-1070) $) 42 (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2535 (($ $ (-710)) NIL) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-1255 (((-589 |#1|) $) 20)) (-1862 (((-108) |#1| $) NIL)) (-1293 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3108 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL) (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2912 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2536 (((-589 |#1|) $) NIL) (((-589 (-523)) $) NIL)) (-2254 (((-108) |#1| $) NIL) (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2428 ((|#2| $) NIL (|has| |#1| (-786))) (($ $ (-710)) NIL) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 23)) (-2509 (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL) (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL)) (-4141 (($ $ |#2|) NIL (|has| $ (-6 -4249))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-2430 (((-108) $) NIL)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016)))) (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-3973 (((-589 |#2|) $) NIL) (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 17)) (-1777 (((-108) $) 16)) (-3320 (($) 13)) (-1937 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ (-523)) NIL) (($ $ (-1136 (-523))) NIL) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ "first") NIL) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $ "value") NIL)) (-3766 (((-523) $ $) NIL)) (-2963 (($) 12) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-1655 (($ $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-1499 (($ $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-1221 (((-108) $) NIL)) (-2582 (($ $) NIL)) (-2075 (($ $) NIL (|has| $ (-6 -4249)))) (-2784 (((-710) $) NIL)) (-1867 (($ $) NIL)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-710) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-2001 (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL) (($ $ $) NIL)) (-2394 (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL) (($ (-589 $)) NIL) (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 25) (($ $ $) NIL)) (-1691 (((-794) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2612 (((-589 $) $) NIL)) (-3313 (((-108) $ $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-2417 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-2546 (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") |#1| $) 44)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-3980 (((-108) $ $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-3941 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3993 (((-108) $ $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-3966 (((-108) $ $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-786)))) (-2810 (((-710) $) 22 (|has| $ (-6 -4248))))) (((-44 |#1| |#2|) (-35 |#1| |#2|) (-1016) (-1016)) (T -44)) NIL (-35 |#1| |#2|) -((-2620 (((-108) $) 12)) (-3612 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-383 (-523)) $) 24) (($ $ (-383 (-523))) NIL))) -(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -2620 ((-108) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-46 |#2| |#3|) (-973) (-731)) (T -45)) +((-2704 (((-108) $) 12)) (-1345 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-383 (-523)) $) 24) (($ $ (-383 (-523))) NIL))) +(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -2704 ((-108) |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-46 |#2| |#3|) (-973) (-731)) (T -45)) NIL -(-10 -8 (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -2620 ((-108) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-2620 (((-108) $) 62)) (-1933 (($ |#1| |#2|) 61)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-2299 ((|#2| $) 64)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47 (|has| |#1| (-158)))) (-2365 ((|#1| $ |#2|) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(-10 -8 (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -2704 ((-108) |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3306 (($ $) 52 (|has| |#1| (-515)))) (-3174 (((-108) $) 54 (|has| |#1| (-515)))) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1457 (($ $) 60)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2704 (((-108) $) 62)) (-1267 (($ |#1| |#2|) 61)) (-1345 (($ (-1 |#1| |#1|) $) 63)) (-1427 (($ $) 65)) (-1437 ((|#1| $) 66)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-4007 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-2640 ((|#2| $) 64)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47 (|has| |#1| (-158)))) (-2084 ((|#1| $ |#2|) 59)) (-1942 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) (((-46 |#1| |#2|) (-129) (-973) (-731)) (T -46)) -((-3786 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-3774 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-108)))) (-1933 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) (-2365 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-4098 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *2 (-339))))) -(-13 (-973) (-107 |t#1| |t#1|) (-10 -8 (-15 -3786 (|t#1| $)) (-15 -3774 ($ $)) (-15 -2299 (|t#2| $)) (-15 -3612 ($ (-1 |t#1| |t#1|) $)) (-15 -2620 ((-108) $)) (-15 -1933 ($ |t#1| |t#2|)) (-15 -3810 ($ $)) (-15 -2365 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-339)) (-15 -4098 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-158)) (PROGN (-6 (-158)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-515)) (-6 (-515)) |%noBranch|) (IF (|has| |t#1| (-37 (-383 (-523)))) (-6 (-37 (-383 (-523)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-267) |has| |#1| (-515)) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-1728 (((-589 $) (-1083 $) (-1087)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-883 $)) NIL)) (-2488 (($ (-1083 $) (-1087)) NIL) (($ (-1083 $)) NIL) (($ (-883 $)) NIL)) (-2295 (((-108) $) 11)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3072 (((-589 (-562 $)) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2955 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1832 (($ $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-1694 (((-589 $) (-1083 $) (-1087)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-883 $)) NIL)) (-3313 (($ (-1083 $) (-1087)) NIL) (($ (-1083 $)) NIL) (($ (-883 $)) NIL)) (-3517 (((-3 (-562 $) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL)) (-3474 (((-562 $) $) NIL) (((-523) $) NIL) (((-383 (-523)) $) NIL)) (-3796 (($ $ $) NIL)) (-2381 (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-383 (-523)))) (|:| |vec| (-1168 (-383 (-523))))) (-629 $) (-1168 $)) NIL) (((-629 (-383 (-523))) (-629 $)) NIL)) (-2437 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2361 (($ $) NIL) (($ (-589 $)) NIL)) (-1444 (((-589 (-110)) $) NIL)) (-1403 (((-110) (-110)) NIL)) (-2023 (((-108) $) 14)) (-1557 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2785 (((-1039 (-523) (-562 $)) $) NIL)) (-1420 (($ $ (-523)) NIL)) (-3892 (((-1083 $) (-1083 $) (-562 $)) NIL) (((-1083 $) (-1083 $) (-589 (-562 $))) NIL) (($ $ (-562 $)) NIL) (($ $ (-589 (-562 $))) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1483 (((-1083 $) (-562 $)) NIL (|has| $ (-973)))) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 $ $) (-562 $)) NIL)) (-1363 (((-3 (-562 $) "failed") $) NIL)) (-3244 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-1771 (((-589 (-562 $)) $) NIL)) (-2868 (($ (-110) $) NIL) (($ (-110) (-589 $)) NIL)) (-3259 (((-108) $ (-110)) NIL) (((-108) $ (-1087)) NIL)) (-3738 (($ $) NIL)) (-2510 (((-710) $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-2585 (((-108) $ $) NIL) (((-108) $ (-1087)) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4104 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2679 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-1972 (((-710) $) NIL)) (-3223 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3957 (($ $) NIL) (($ $ $) NIL)) (-3523 (($ $ (-710)) NIL) (($ $) NIL)) (-2797 (((-1039 (-523) (-562 $)) $) NIL)) (-3727 (($ $) NIL (|has| $ (-973)))) (-3663 (((-355) $) NIL) (((-203) $) NIL) (((-155 (-355)) $) NIL)) (-1458 (((-794) $) NIL) (($ (-562 $)) NIL) (($ (-383 (-523))) NIL) (($ $) NIL) (($ (-523)) NIL) (($ (-1039 (-523) (-562 $))) NIL)) (-1621 (((-710)) NIL)) (-3822 (($ $) NIL) (($ (-589 $)) NIL)) (-1950 (((-108) (-110)) NIL)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-523)) NIL) (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2756 (($) 7 T CONST)) (-2767 (($) 12 T CONST)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 16)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL)) (-4087 (($ $ $) 15) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-383 (-523))) NIL) (($ $ (-523)) NIL) (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ $ $) NIL) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL))) -(((-47) (-13 (-279) (-27) (-964 (-523)) (-964 (-383 (-523))) (-585 (-523)) (-949) (-585 (-383 (-523))) (-136) (-564 (-155 (-355))) (-211) (-10 -8 (-15 -1458 ($ (-1039 (-523) (-562 $)))) (-15 -2785 ((-1039 (-523) (-562 $)) $)) (-15 -2797 ((-1039 (-523) (-562 $)) $)) (-15 -2437 ($ $)) (-15 -3892 ((-1083 $) (-1083 $) (-562 $))) (-15 -3892 ((-1083 $) (-1083 $) (-589 (-562 $)))) (-15 -3892 ($ $ (-562 $))) (-15 -3892 ($ $ (-589 (-562 $))))))) (T -47)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) (-2437 (*1 *1 *1) (-5 *1 (-47))) (-3892 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-47))) (-5 *3 (-562 (-47))) (-5 *1 (-47)))) (-3892 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-47))) (-5 *3 (-589 (-562 (-47)))) (-5 *1 (-47)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-562 (-47))) (-5 *1 (-47)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-562 (-47)))) (-5 *1 (-47))))) -(-13 (-279) (-27) (-964 (-523)) (-964 (-383 (-523))) (-585 (-523)) (-949) (-585 (-383 (-523))) (-136) (-564 (-155 (-355))) (-211) (-10 -8 (-15 -1458 ($ (-1039 (-523) (-562 $)))) (-15 -2785 ((-1039 (-523) (-562 $)) $)) (-15 -2797 ((-1039 (-523) (-562 $)) $)) (-15 -2437 ($ $)) (-15 -3892 ((-1083 $) (-1083 $) (-562 $))) (-15 -3892 ((-1083 $) (-1083 $) (-589 (-562 $)))) (-15 -3892 ($ $ (-562 $))) (-15 -3892 ($ $ (-589 (-562 $)))))) -((-3924 (((-108) $ $) NIL)) (-3292 (((-589 (-1087)) $) 17)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 7)) (-3913 (((-1092) $) 18)) (-3983 (((-108) $ $) NIL))) -(((-48) (-13 (-1016) (-10 -8 (-15 -3292 ((-589 (-1087)) $)) (-15 -3913 ((-1092) $))))) (T -48)) -((-3292 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-48)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-48))))) -(-13 (-1016) (-10 -8 (-15 -3292 ((-589 (-1087)) $)) (-15 -3913 ((-1092) $)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 60)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-1406 (((-108) $) 20)) (-3517 (((-3 |#1| "failed") $) 23)) (-3474 ((|#1| $) 24)) (-3810 (($ $) 27)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3786 ((|#1| $) 21)) (-2418 (($ $) 49)) (-3779 (((-1070) $) NIL)) (-1519 (((-108) $) 28)) (-2783 (((-1034) $) NIL)) (-3441 (($ (-710)) 47)) (-1811 (($ (-589 (-523))) 48)) (-2299 (((-710) $) 29)) (-1458 (((-794) $) 63) (($ (-523)) 44) (($ |#1|) 42)) (-2365 ((|#1| $ $) 19)) (-1621 (((-710)) 46)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 30 T CONST)) (-2767 (($) 14 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 40)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-49 |#1| |#2|) (-13 (-567 |#1|) (-964 |#1|) (-10 -8 (-15 -3786 (|#1| $)) (-15 -2418 ($ $)) (-15 -3810 ($ $)) (-15 -2365 (|#1| $ $)) (-15 -3441 ($ (-710))) (-15 -1811 ($ (-589 (-523)))) (-15 -1519 ((-108) $)) (-15 -1406 ((-108) $)) (-15 -2299 ((-710) $)) (-15 -3612 ($ (-1 |#1| |#1|) $)))) (-973) (-589 (-1087))) (T -49)) -((-3786 (*1 *2 *1) (-12 (-4 *2 (-973)) (-5 *1 (-49 *2 *3)) (-14 *3 (-589 (-1087))))) (-2418 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))))) (-2365 (*1 *2 *1 *1) (-12 (-4 *2 (-973)) (-5 *1 (-49 *2 *3)) (-14 *3 (-589 (-1087))))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-1811 (*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-49 *3 *4)) (-14 *4 (-589 (-1087)))))) -(-13 (-567 |#1|) (-964 |#1|) (-10 -8 (-15 -3786 (|#1| $)) (-15 -2418 ($ $)) (-15 -3810 ($ $)) (-15 -2365 (|#1| $ $)) (-15 -3441 ($ (-710))) (-15 -1811 ($ (-589 (-523)))) (-15 -1519 ((-108) $)) (-15 -1406 ((-108) $)) (-15 -2299 ((-710) $)) (-15 -3612 ($ (-1 |#1| |#1|) $)))) -((-1406 (((-108) (-51)) 13)) (-3517 (((-3 |#1| "failed") (-51)) 21)) (-3474 ((|#1| (-51)) 22)) (-1458 (((-51) |#1|) 18))) -(((-50 |#1|) (-10 -7 (-15 -1458 ((-51) |#1|)) (-15 -3517 ((-3 |#1| "failed") (-51))) (-15 -1406 ((-108) (-51))) (-15 -3474 (|#1| (-51)))) (-1122)) (T -50)) -((-3474 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1122)))) (-1406 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1122)))) (-3517 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1122)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1122))))) -(-10 -7 (-15 -1458 ((-51) |#1|)) (-15 -3517 ((-3 |#1| "failed") (-51))) (-15 -1406 ((-108) (-51))) (-15 -3474 (|#1| (-51)))) -((-3924 (((-108) $ $) NIL)) (-1332 (((-1070) (-108)) 25)) (-4033 (((-794) $) 24)) (-4009 (((-713) $) 12)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3745 (((-794) $) 16)) (-2873 (((-1020) $) 14)) (-1458 (((-794) $) 32)) (-2818 (($ (-1020) (-713)) 33)) (-3983 (((-108) $ $) 18))) -(((-51) (-13 (-1016) (-10 -8 (-15 -2818 ($ (-1020) (-713))) (-15 -3745 ((-794) $)) (-15 -4033 ((-794) $)) (-15 -2873 ((-1020) $)) (-15 -4009 ((-713) $)) (-15 -1332 ((-1070) (-108)))))) (T -51)) -((-2818 (*1 *1 *2 *3) (-12 (-5 *2 (-1020)) (-5 *3 (-713)) (-5 *1 (-51)))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-51)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-51)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-51)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-51)))) (-1332 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1070)) (-5 *1 (-51))))) -(-13 (-1016) (-10 -8 (-15 -2818 ($ (-1020) (-713))) (-15 -3745 ((-794) $)) (-15 -4033 ((-794) $)) (-15 -2873 ((-1020) $)) (-15 -4009 ((-713) $)) (-15 -1332 ((-1070) (-108))))) -((-1677 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1677 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-973) (-591 |#1|) (-788 |#1|)) (T -52)) -((-1677 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-973)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-788 *5))))) -(-10 -7 (-15 -1677 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2014 ((|#3| |#3| (-589 (-1087))) 35)) (-2200 ((|#3| (-589 (-995 |#1| |#2| |#3|)) |#3| (-852)) 22) ((|#3| (-589 (-995 |#1| |#2| |#3|)) |#3|) 20))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2200 (|#3| (-589 (-995 |#1| |#2| |#3|)) |#3|)) (-15 -2200 (|#3| (-589 (-995 |#1| |#2| |#3|)) |#3| (-852))) (-15 -2014 (|#3| |#3| (-589 (-1087))))) (-1016) (-13 (-973) (-817 |#1|) (-786) (-564 (-823 |#1|))) (-13 (-406 |#2|) (-817 |#1|) (-564 (-823 |#1|)))) (T -53)) -((-2014 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) (-2200 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-589 (-995 *5 *6 *2))) (-5 *4 (-852)) (-4 *5 (-1016)) (-4 *6 (-13 (-973) (-817 *5) (-786) (-564 (-823 *5)))) (-4 *2 (-13 (-406 *6) (-817 *5) (-564 (-823 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-2200 (*1 *2 *3 *2) (-12 (-5 *3 (-589 (-995 *4 *5 *2))) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))) (-5 *1 (-53 *4 *5 *2))))) -(-10 -7 (-15 -2200 (|#3| (-589 (-995 |#1| |#2| |#3|)) |#3|)) (-15 -2200 (|#3| (-589 (-995 |#1| |#2| |#3|)) |#3| (-852))) (-15 -2014 (|#3| |#3| (-589 (-1087))))) -((-3079 (((-108) $ (-710)) 23)) (-3787 (($ $ (-523) |#3|) 45)) (-3617 (($ $ (-523) |#4|) 49)) (-2031 ((|#3| $ (-523)) 58)) (-1666 (((-589 |#2|) $) 30)) (-2346 (((-108) $ (-710)) 25)) (-1973 (((-108) |#2| $) 53)) (-2852 (($ (-1 |#2| |#2|) $) 37)) (-3612 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-2866 (((-108) $ (-710)) 24)) (-4203 (($ $ |#2|) 34)) (-1327 (((-108) (-1 (-108) |#2|) $) 19)) (-3223 ((|#2| $ (-523) (-523)) NIL) ((|#2| $ (-523) (-523) |#2|) 27)) (-2792 (((-710) (-1 (-108) |#2|) $) 28) (((-710) |#2| $) 55)) (-1664 (($ $) 33)) (-1595 ((|#4| $ (-523)) 61)) (-1458 (((-794) $) 66)) (-2096 (((-108) (-1 (-108) |#2|) $) 18)) (-3983 (((-108) $ $) 52)) (-2676 (((-710) $) 26))) -(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3617 (|#1| |#1| (-523) |#4|)) (-15 -3787 (|#1| |#1| (-523) |#3|)) (-15 -1666 ((-589 |#2|) |#1|)) (-15 -1595 (|#4| |#1| (-523))) (-15 -2031 (|#3| |#1| (-523))) (-15 -3223 (|#2| |#1| (-523) (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) (-523))) (-15 -4203 (|#1| |#1| |#2|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1973 ((-108) |#2| |#1|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710))) (-15 -1664 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1122) (-349 |#2|) (-349 |#2|)) (T -54)) -NIL -(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3617 (|#1| |#1| (-523) |#4|)) (-15 -3787 (|#1| |#1| (-523) |#3|)) (-15 -1666 ((-589 |#2|) |#1|)) (-15 -1595 (|#4| |#1| (-523))) (-15 -2031 (|#3| |#1| (-523))) (-15 -3223 (|#2| |#1| (-523) (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) (-523))) (-15 -4203 (|#1| |#1| |#2|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1973 ((-108) |#2| |#1|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710))) (-15 -1664 (|#1| |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) (-523) |#1|) 44)) (-3787 (($ $ (-523) |#2|) 42)) (-3617 (($ $ (-523) |#3|) 41)) (-2518 (($) 7 T CONST)) (-2031 ((|#2| $ (-523)) 46)) (-2863 ((|#1| $ (-523) (-523) |#1|) 43)) (-2795 ((|#1| $ (-523) (-523)) 48)) (-1666 (((-589 |#1|) $) 30)) (-2803 (((-710) $) 51)) (-3052 (($ (-710) (-710) |#1|) 57)) (-2813 (((-710) $) 50)) (-2346 (((-108) $ (-710)) 9)) (-3871 (((-523) $) 55)) (-1758 (((-523) $) 53)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3338 (((-523) $) 54)) (-2347 (((-523) $) 52)) (-2852 (($ (-1 |#1| |#1|) $) 34)) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) 56)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) (-523)) 49) ((|#1| $ (-523) (-523) |#1|) 47)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1595 ((|#3| $ (-523)) 45)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-55 |#1| |#2| |#3|) (-129) (-1122) (-349 |t#1|) (-349 |t#1|)) (T -55)) -((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3052 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-710)) (-4 *3 (-1122)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-4203 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-710)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-710)))) (-3223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-1122)))) (-2795 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-1122)))) (-3223 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1122)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) (-2031 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1122)) (-4 *5 (-349 *4)) (-4 *2 (-349 *4)))) (-1595 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1122)) (-4 *5 (-349 *4)) (-4 *2 (-349 *4)))) (-1666 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-589 *3)))) (-1641 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1122)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) (-2863 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1122)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-523)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1122)) (-4 *3 (-349 *4)) (-4 *5 (-349 *4)))) (-3617 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-523)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1122)) (-4 *5 (-349 *4)) (-4 *3 (-349 *4)))) (-2852 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3612 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) -(-13 (-462 |t#1|) (-10 -8 (-6 -4245) (-6 -4244) (-15 -3052 ($ (-710) (-710) |t#1|)) (-15 -4203 ($ $ |t#1|)) (-15 -3871 ((-523) $)) (-15 -3338 ((-523) $)) (-15 -1758 ((-523) $)) (-15 -2347 ((-523) $)) (-15 -2803 ((-710) $)) (-15 -2813 ((-710) $)) (-15 -3223 (|t#1| $ (-523) (-523))) (-15 -2795 (|t#1| $ (-523) (-523))) (-15 -3223 (|t#1| $ (-523) (-523) |t#1|)) (-15 -2031 (|t#2| $ (-523))) (-15 -1595 (|t#3| $ (-523))) (-15 -1666 ((-589 |t#1|) $)) (-15 -1641 (|t#1| $ (-523) (-523) |t#1|)) (-15 -2863 (|t#1| $ (-523) (-523) |t#1|)) (-15 -3787 ($ $ (-523) |t#2|)) (-15 -3617 ($ $ (-523) |t#3|)) (-15 -3612 ($ (-1 |t#1| |t#1|) $)) (-15 -2852 ($ (-1 |t#1| |t#1|) $)) (-15 -3612 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3612 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-2837 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-2437 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3612 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) -(((-56 |#1| |#2|) (-10 -7 (-15 -2837 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3612 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1122) (-1122)) (T -56)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-56 *5 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))) -(-10 -7 (-15 -2837 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3612 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) |#1|) 11 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2641 (($ (-589 |#1|)) 13) (($ (-710) |#1|) 14)) (-3052 (($ (-710) |#1|) 9)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 7)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2641 ($ (-589 |#1|))) (-15 -2641 ($ (-710) |#1|)))) (-1122)) (T -57)) -((-2641 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-57 *3)))) (-2641 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-57 *3)) (-4 *3 (-1122))))) -(-13 (-19 |#1|) (-10 -8 (-15 -2641 ($ (-589 |#1|))) (-15 -2641 ($ (-710) |#1|)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) (-523) |#1|) NIL)) (-3787 (($ $ (-523) (-57 |#1|)) NIL)) (-3617 (($ $ (-523) (-57 |#1|)) NIL)) (-2518 (($) NIL T CONST)) (-2031 (((-57 |#1|) $ (-523)) NIL)) (-2863 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2795 ((|#1| $ (-523) (-523)) NIL)) (-1666 (((-589 |#1|) $) NIL)) (-2803 (((-710) $) NIL)) (-3052 (($ (-710) (-710) |#1|) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-3871 (((-523) $) NIL)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3338 (((-523) $) NIL)) (-2347 (((-523) $) NIL)) (-2852 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1595 (((-57 |#1|) $ (-523)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4245))) (-1122)) (T -58)) -NIL -(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4245))) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 69) (((-3 $ "failed") (-1168 (-292 (-523)))) 58) (((-3 $ "failed") (-1168 (-883 (-355)))) 91) (((-3 $ "failed") (-1168 (-883 (-523)))) 80) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 47) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 36)) (-3474 (($ (-1168 (-292 (-355)))) 65) (($ (-1168 (-292 (-523)))) 54) (($ (-1168 (-883 (-355)))) 87) (($ (-1168 (-883 (-523)))) 76) (($ (-1168 (-383 (-883 (-355))))) 43) (($ (-1168 (-383 (-883 (-523))))) 29)) (-3394 (((-1173) $) 118)) (-1458 (((-794) $) 111) (($ (-589 (-306))) 100) (($ (-306)) 94) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 97) (($ (-1168 (-315 (-1472 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1472) (-638)))) 28))) -(((-59 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1472) (-638))))))) (-1087)) (T -59)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1472) (-638)))) (-5 *1 (-59 *3)) (-14 *3 (-1087))))) -(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1472) (-638))))))) -((-3394 (((-1173) $) 48) (((-1173)) 49)) (-1458 (((-794) $) 45))) -(((-60 |#1|) (-13 (-371) (-10 -7 (-15 -3394 ((-1173))))) (-1087)) (T -60)) -((-3394 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-60 *3)) (-14 *3 (-1087))))) -(-13 (-371) (-10 -7 (-15 -3394 ((-1173))))) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 142) (((-3 $ "failed") (-1168 (-292 (-523)))) 132) (((-3 $ "failed") (-1168 (-883 (-355)))) 163) (((-3 $ "failed") (-1168 (-883 (-523)))) 152) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 121) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 110)) (-3474 (($ (-1168 (-292 (-355)))) 138) (($ (-1168 (-292 (-523)))) 128) (($ (-1168 (-883 (-355)))) 159) (($ (-1168 (-883 (-523)))) 148) (($ (-1168 (-383 (-883 (-355))))) 117) (($ (-1168 (-383 (-883 (-523))))) 103)) (-3394 (((-1173) $) 96)) (-1458 (((-794) $) 90) (($ (-589 (-306))) 28) (($ (-306)) 34) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 31) (($ (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638)))) 88))) -(((-61 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638))))))) (-1087)) (T -61)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638)))) (-5 *1 (-61 *3)) (-14 *3 (-1087))))) -(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638))))))) -((-3517 (((-3 $ "failed") (-292 (-355))) 36) (((-3 $ "failed") (-292 (-523))) 41) (((-3 $ "failed") (-883 (-355))) 46) (((-3 $ "failed") (-883 (-523))) 51) (((-3 $ "failed") (-383 (-883 (-355)))) 31) (((-3 $ "failed") (-383 (-883 (-523)))) 26)) (-3474 (($ (-292 (-355))) 34) (($ (-292 (-523))) 39) (($ (-883 (-355))) 44) (($ (-883 (-523))) 49) (($ (-383 (-883 (-355)))) 29) (($ (-383 (-883 (-523)))) 23)) (-3394 (((-1173) $) 73)) (-1458 (((-794) $) 66) (($ (-589 (-306))) 57) (($ (-306)) 63) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 60) (($ (-315 (-1472 (QUOTE X)) (-1472) (-638))) 22))) -(((-62 |#1|) (-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472 (QUOTE X)) (-1472) (-638)))))) (-1087)) (T -62)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-315 (-1472 (QUOTE X)) (-1472) (-638))) (-5 *1 (-62 *3)) (-14 *3 (-1087))))) -(-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472 (QUOTE X)) (-1472) (-638)))))) -((-3517 (((-3 $ "failed") (-629 (-292 (-355)))) 100) (((-3 $ "failed") (-629 (-292 (-523)))) 89) (((-3 $ "failed") (-629 (-883 (-355)))) 122) (((-3 $ "failed") (-629 (-883 (-523)))) 111) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 78) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 67)) (-3474 (($ (-629 (-292 (-355)))) 96) (($ (-629 (-292 (-523)))) 85) (($ (-629 (-883 (-355)))) 118) (($ (-629 (-883 (-523)))) 107) (($ (-629 (-383 (-883 (-355))))) 74) (($ (-629 (-383 (-883 (-523))))) 60)) (-3394 (((-1173) $) 130)) (-1458 (((-794) $) 124) (($ (-589 (-306))) 27) (($ (-306)) 33) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 30) (($ (-629 (-315 (-1472) (-1472 (QUOTE X) (QUOTE HESS)) (-638)))) 53))) -(((-63 |#1|) (-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472) (-1472 (QUOTE X) (QUOTE HESS)) (-638))))))) (-1087)) (T -63)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-629 (-315 (-1472) (-1472 (QUOTE X) (QUOTE HESS)) (-638)))) (-5 *1 (-63 *3)) (-14 *3 (-1087))))) -(-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472) (-1472 (QUOTE X) (QUOTE HESS)) (-638))))))) -((-3517 (((-3 $ "failed") (-292 (-355))) 54) (((-3 $ "failed") (-292 (-523))) 59) (((-3 $ "failed") (-883 (-355))) 64) (((-3 $ "failed") (-883 (-523))) 69) (((-3 $ "failed") (-383 (-883 (-355)))) 49) (((-3 $ "failed") (-383 (-883 (-523)))) 44)) (-3474 (($ (-292 (-355))) 52) (($ (-292 (-523))) 57) (($ (-883 (-355))) 62) (($ (-883 (-523))) 67) (($ (-383 (-883 (-355)))) 47) (($ (-383 (-883 (-523)))) 41)) (-3394 (((-1173) $) 78)) (-1458 (((-794) $) 72) (($ (-589 (-306))) 27) (($ (-306)) 33) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 30) (($ (-315 (-1472) (-1472 (QUOTE XC)) (-638))) 38))) -(((-64 |#1|) (-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472) (-1472 (QUOTE XC)) (-638)))))) (-1087)) (T -64)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-315 (-1472) (-1472 (QUOTE XC)) (-638))) (-5 *1 (-64 *3)) (-14 *3 (-1087))))) -(-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472) (-1472 (QUOTE XC)) (-638)))))) -((-3394 (((-1173) $) 63)) (-1458 (((-794) $) 57) (($ (-629 (-638))) 49) (($ (-589 (-306))) 48) (($ (-306)) 55) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 53))) +((-1437 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-1427 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)))) (-2704 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-108)))) (-1267 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) (-1457 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) (-2084 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-4074 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *2 (-339))))) +(-13 (-973) (-107 |t#1| |t#1|) (-10 -8 (-15 -1437 (|t#1| $)) (-15 -1427 ($ $)) (-15 -2640 (|t#2| $)) (-15 -1345 ($ (-1 |t#1| |t#1|) $)) (-15 -2704 ((-108) $)) (-15 -1267 ($ |t#1| |t#2|)) (-15 -1457 ($ $)) (-15 -2084 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-339)) (-15 -4074 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-158)) (PROGN (-6 (-158)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-515)) (-6 (-515)) |%noBranch|) (IF (|has| |t#1| (-37 (-383 (-523)))) (-6 (-37 (-383 (-523)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-267) |has| |#1| (-515)) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-1680 (((-108) $ $) NIL)) (-3012 (((-589 $) (-1083 $) (-1087)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-883 $)) NIL)) (-3879 (($ (-1083 $) (-1087)) NIL) (($ (-1083 $)) NIL) (($ (-883 $)) NIL)) (-2603 (((-108) $) 11)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3643 (((-589 (-562 $)) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1349 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2437 (($ $) NIL)) (-2787 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-2734 (((-589 $) (-1083 $) (-1087)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-883 $)) NIL)) (-1264 (($ (-1083 $) (-1087)) NIL) (($ (-1083 $)) NIL) (($ (-883 $)) NIL)) (-1220 (((-3 (-562 $) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL)) (-3508 (((-562 $) $) NIL) (((-523) $) NIL) (((-383 (-523)) $) NIL)) (-4059 (($ $ $) NIL)) (-2243 (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL) (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -2600 (-629 (-383 (-523)))) (|:| |vec| (-1169 (-383 (-523))))) (-629 $) (-1169 $)) NIL) (((-629 (-383 (-523))) (-629 $)) NIL)) (-2116 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-2055 (($ $) NIL) (($ (-589 $)) NIL)) (-2196 (((-589 (-110)) $) NIL)) (-2947 (((-110) (-110)) NIL)) (-2769 (((-108) $) 14)) (-3860 (((-108) $) NIL (|has| $ (-964 (-523))))) (-3316 (((-1039 (-523) (-562 $)) $) NIL)) (-1973 (($ $ (-523)) NIL)) (-1863 (((-1083 $) (-1083 $) (-562 $)) NIL) (((-1083 $) (-1083 $) (-589 (-562 $))) NIL) (($ $ (-562 $)) NIL) (($ $ (-589 (-562 $))) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1414 (((-1083 $) (-562 $)) NIL (|has| $ (-973)))) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-1345 (($ (-1 $ $) (-562 $)) NIL)) (-2577 (((-3 (-562 $) "failed") $) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-2378 (((-589 (-562 $)) $) NIL)) (-3396 (($ (-110) $) NIL) (($ (-110) (-589 $)) NIL)) (-3739 (((-108) $ (-110)) NIL) (((-108) $ (-1087)) NIL)) (-1396 (($ $) NIL)) (-1933 (((-710) $) NIL)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3536 (((-108) $ $) NIL) (((-108) $ (-1087)) NIL)) (-2424 (((-394 $) $) NIL)) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3101 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2812 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3413 (((-710) $) NIL)) (-1937 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-1303 (($ $) NIL) (($ $ $) NIL)) (-3984 (($ $ (-710)) NIL) (($ $) NIL)) (-3329 (((-1039 (-523) (-562 $)) $) NIL)) (-2762 (($ $) NIL (|has| $ (-973)))) (-1400 (((-355) $) NIL) (((-203) $) NIL) (((-155 (-355)) $) NIL)) (-1691 (((-794) $) NIL) (($ (-562 $)) NIL) (($ (-383 (-523))) NIL) (($ $) NIL) (($ (-523)) NIL) (($ (-1039 (-523) (-562 $))) NIL)) (-3272 (((-710)) NIL)) (-2850 (($ $) NIL) (($ (-589 $)) NIL)) (-3198 (((-108) (-110)) NIL)) (-2801 (((-108) $ $) NIL)) (-2423 (($ $ (-523)) NIL) (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-1879 (($) 7 T CONST)) (-1891 (($) 12 T CONST)) (-2909 (($ $ (-710)) NIL) (($ $) NIL)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 16)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL)) (-4060 (($ $ $) 15) (($ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-383 (-523))) NIL) (($ $ (-523)) NIL) (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ $ $) NIL) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL))) +(((-47) (-13 (-279) (-27) (-964 (-523)) (-964 (-383 (-523))) (-585 (-523)) (-949) (-585 (-383 (-523))) (-136) (-564 (-155 (-355))) (-211) (-10 -8 (-15 -1691 ($ (-1039 (-523) (-562 $)))) (-15 -3316 ((-1039 (-523) (-562 $)) $)) (-15 -3329 ((-1039 (-523) (-562 $)) $)) (-15 -2116 ($ $)) (-15 -1863 ((-1083 $) (-1083 $) (-562 $))) (-15 -1863 ((-1083 $) (-1083 $) (-589 (-562 $)))) (-15 -1863 ($ $ (-562 $))) (-15 -1863 ($ $ (-589 (-562 $))))))) (T -47)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) (-3329 (*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) (-2116 (*1 *1 *1) (-5 *1 (-47))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-47))) (-5 *3 (-562 (-47))) (-5 *1 (-47)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-47))) (-5 *3 (-589 (-562 (-47)))) (-5 *1 (-47)))) (-1863 (*1 *1 *1 *2) (-12 (-5 *2 (-562 (-47))) (-5 *1 (-47)))) (-1863 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-562 (-47)))) (-5 *1 (-47))))) +(-13 (-279) (-27) (-964 (-523)) (-964 (-383 (-523))) (-585 (-523)) (-949) (-585 (-383 (-523))) (-136) (-564 (-155 (-355))) (-211) (-10 -8 (-15 -1691 ($ (-1039 (-523) (-562 $)))) (-15 -3316 ((-1039 (-523) (-562 $)) $)) (-15 -3329 ((-1039 (-523) (-562 $)) $)) (-15 -2116 ($ $)) (-15 -1863 ((-1083 $) (-1083 $) (-562 $))) (-15 -1863 ((-1083 $) (-1083 $) (-589 (-562 $)))) (-15 -1863 ($ $ (-562 $))) (-15 -1863 ($ $ (-589 (-562 $)))))) +((-1680 (((-108) $ $) NIL)) (-2241 (((-589 (-1087)) $) 17)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 7)) (-4039 (((-1092) $) 18)) (-3941 (((-108) $ $) NIL))) +(((-48) (-13 (-1016) (-10 -8 (-15 -2241 ((-589 (-1087)) $)) (-15 -4039 ((-1092) $))))) (T -48)) +((-2241 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-48)))) (-4039 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-48))))) +(-13 (-1016) (-10 -8 (-15 -2241 ((-589 (-1087)) $)) (-15 -4039 ((-1092) $)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 62)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-2977 (((-108) $) 20)) (-1220 (((-3 |#1| "failed") $) 23)) (-3508 ((|#1| $) 24)) (-1457 (($ $) 27)) (-1444 (((-3 $ "failed") $) NIL)) (-2769 (((-108) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1437 ((|#1| $) 21)) (-1449 (($ $) 51)) (-2032 (((-1070) $) NIL)) (-1756 (((-108) $) 30)) (-3951 (((-1034) $) NIL)) (-1621 (($ (-710)) 49)) (-2922 (($ (-589 (-523))) 50)) (-2640 (((-710) $) 31)) (-1691 (((-794) $) 65) (($ (-523)) 46) (($ |#1|) 44)) (-2084 ((|#1| $ $) 19)) (-3272 (((-710)) 48)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 32 T CONST)) (-1891 (($) 14 T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 41)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 42) (($ |#1| $) 36))) +(((-49 |#1| |#2|) (-13 (-567 |#1|) (-964 |#1|) (-10 -8 (-15 -1437 (|#1| $)) (-15 -1449 ($ $)) (-15 -1457 ($ $)) (-15 -2084 (|#1| $ $)) (-15 -1621 ($ (-710))) (-15 -2922 ($ (-589 (-523)))) (-15 -1756 ((-108) $)) (-15 -2977 ((-108) $)) (-15 -2640 ((-710) $)) (-15 -1345 ($ (-1 |#1| |#1|) $)))) (-973) (-589 (-1087))) (T -49)) +((-1437 (*1 *2 *1) (-12 (-4 *2 (-973)) (-5 *1 (-49 *2 *3)) (-14 *3 (-589 (-1087))))) (-1449 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))))) (-1457 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))))) (-2084 (*1 *2 *1 *1) (-12 (-4 *2 (-973)) (-5 *1 (-49 *2 *3)) (-14 *3 (-589 (-1087))))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-2922 (*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-49 *3 *4)) (-14 *4 (-589 (-1087)))))) +(-13 (-567 |#1|) (-964 |#1|) (-10 -8 (-15 -1437 (|#1| $)) (-15 -1449 ($ $)) (-15 -1457 ($ $)) (-15 -2084 (|#1| $ $)) (-15 -1621 ($ (-710))) (-15 -2922 ($ (-589 (-523)))) (-15 -1756 ((-108) $)) (-15 -2977 ((-108) $)) (-15 -2640 ((-710) $)) (-15 -1345 ($ (-1 |#1| |#1|) $)))) +((-2977 (((-108) (-51)) 13)) (-1220 (((-3 |#1| "failed") (-51)) 21)) (-3508 ((|#1| (-51)) 22)) (-1691 (((-51) |#1|) 18))) +(((-50 |#1|) (-10 -7 (-15 -1691 ((-51) |#1|)) (-15 -1220 ((-3 |#1| "failed") (-51))) (-15 -2977 ((-108) (-51))) (-15 -3508 (|#1| (-51)))) (-1123)) (T -50)) +((-3508 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1123)))) (-2977 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1123)))) (-1220 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1123)))) (-1691 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1123))))) +(-10 -7 (-15 -1691 ((-51) |#1|)) (-15 -1220 ((-3 |#1| "failed") (-51))) (-15 -2977 ((-108) (-51))) (-15 -3508 (|#1| (-51)))) +((-1680 (((-108) $ $) NIL)) (-3422 (((-1070) (-108)) 25)) (-3693 (((-794) $) 24)) (-4150 (((-713) $) 12)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2931 (((-794) $) 16)) (-2991 (((-1020) $) 14)) (-1691 (((-794) $) 32)) (-2433 (($ (-1020) (-713)) 33)) (-3941 (((-108) $ $) 18))) +(((-51) (-13 (-1016) (-10 -8 (-15 -2433 ($ (-1020) (-713))) (-15 -2931 ((-794) $)) (-15 -3693 ((-794) $)) (-15 -2991 ((-1020) $)) (-15 -4150 ((-713) $)) (-15 -3422 ((-1070) (-108)))))) (T -51)) +((-2433 (*1 *1 *2 *3) (-12 (-5 *2 (-1020)) (-5 *3 (-713)) (-5 *1 (-51)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-51)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-51)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-51)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-51)))) (-3422 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1070)) (-5 *1 (-51))))) +(-13 (-1016) (-10 -8 (-15 -2433 ($ (-1020) (-713))) (-15 -2931 ((-794) $)) (-15 -3693 ((-794) $)) (-15 -2991 ((-1020) $)) (-15 -4150 ((-713) $)) (-15 -3422 ((-1070) (-108))))) +((-2372 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2372 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-973) (-591 |#1|) (-788 |#1|)) (T -52)) +((-2372 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-973)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-788 *5))))) +(-10 -7 (-15 -2372 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-2693 ((|#3| |#3| (-589 (-1087))) 35)) (-4034 ((|#3| (-589 (-995 |#1| |#2| |#3|)) |#3| (-852)) 22) ((|#3| (-589 (-995 |#1| |#2| |#3|)) |#3|) 20))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -4034 (|#3| (-589 (-995 |#1| |#2| |#3|)) |#3|)) (-15 -4034 (|#3| (-589 (-995 |#1| |#2| |#3|)) |#3| (-852))) (-15 -2693 (|#3| |#3| (-589 (-1087))))) (-1016) (-13 (-973) (-817 |#1|) (-786) (-564 (-823 |#1|))) (-13 (-406 |#2|) (-817 |#1|) (-564 (-823 |#1|)))) (T -53)) +((-2693 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) (-4034 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-589 (-995 *5 *6 *2))) (-5 *4 (-852)) (-4 *5 (-1016)) (-4 *6 (-13 (-973) (-817 *5) (-786) (-564 (-823 *5)))) (-4 *2 (-13 (-406 *6) (-817 *5) (-564 (-823 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-4034 (*1 *2 *3 *2) (-12 (-5 *3 (-589 (-995 *4 *5 *2))) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))) (-5 *1 (-53 *4 *5 *2))))) +(-10 -7 (-15 -4034 (|#3| (-589 (-995 |#1| |#2| |#3|)) |#3|)) (-15 -4034 (|#3| (-589 (-995 |#1| |#2| |#3|)) |#3| (-852))) (-15 -2693 (|#3| |#3| (-589 (-1087))))) +((-1620 (((-108) $ (-710)) 23)) (-2080 (($ $ (-523) |#3|) 46)) (-1232 (($ $ (-523) |#4|) 50)) (-2827 ((|#3| $ (-523)) 59)) (-1871 (((-589 |#2|) $) 30)) (-3051 (((-108) $ (-710)) 25)) (-3423 (((-108) |#2| $) 54)) (-2043 (($ (-1 |#2| |#2|) $) 37)) (-1345 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-1418 (((-108) $ (-710)) 24)) (-4141 (($ $ |#2|) 34)) (-3379 (((-108) (-1 (-108) |#2|) $) 19)) (-1937 ((|#2| $ (-523) (-523)) NIL) ((|#2| $ (-523) (-523) |#2|) 27)) (-3977 (((-710) (-1 (-108) |#2|) $) 28) (((-710) |#2| $) 56)) (-1874 (($ $) 33)) (-1249 ((|#4| $ (-523)) 62)) (-1691 (((-794) $) 67)) (-2308 (((-108) (-1 (-108) |#2|) $) 18)) (-3941 (((-108) $ $) 53)) (-2810 (((-710) $) 26))) +(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1691 ((-794) |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1345 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2043 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1232 (|#1| |#1| (-523) |#4|)) (-15 -2080 (|#1| |#1| (-523) |#3|)) (-15 -1871 ((-589 |#2|) |#1|)) (-15 -1249 (|#4| |#1| (-523))) (-15 -2827 (|#3| |#1| (-523))) (-15 -1937 (|#2| |#1| (-523) (-523) |#2|)) (-15 -1937 (|#2| |#1| (-523) (-523))) (-15 -4141 (|#1| |#1| |#2|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -3423 ((-108) |#2| |#1|)) (-15 -3977 ((-710) |#2| |#1|)) (-15 -3977 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -3379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2308 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2810 ((-710) |#1|)) (-15 -1620 ((-108) |#1| (-710))) (-15 -3051 ((-108) |#1| (-710))) (-15 -1418 ((-108) |#1| (-710))) (-15 -1874 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1123) (-349 |#2|) (-349 |#2|)) (T -54)) +NIL +(-10 -8 (-15 -1691 ((-794) |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1345 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2043 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1232 (|#1| |#1| (-523) |#4|)) (-15 -2080 (|#1| |#1| (-523) |#3|)) (-15 -1871 ((-589 |#2|) |#1|)) (-15 -1249 (|#4| |#1| (-523))) (-15 -2827 (|#3| |#1| (-523))) (-15 -1937 (|#2| |#1| (-523) (-523) |#2|)) (-15 -1937 (|#2| |#1| (-523) (-523))) (-15 -4141 (|#1| |#1| |#2|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -3423 ((-108) |#2| |#1|)) (-15 -3977 ((-710) |#2| |#1|)) (-15 -3977 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -3379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2308 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2810 ((-710) |#1|)) (-15 -1620 ((-108) |#1| (-710))) (-15 -3051 ((-108) |#1| (-710))) (-15 -1418 ((-108) |#1| (-710))) (-15 -1874 (|#1| |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) 8)) (-1849 ((|#1| $ (-523) (-523) |#1|) 44)) (-2080 (($ $ (-523) |#2|) 42)) (-1232 (($ $ (-523) |#3|) 41)) (-4189 (($) 7 T CONST)) (-2827 ((|#2| $ (-523)) 46)) (-2053 ((|#1| $ (-523) (-523) |#1|) 43)) (-2000 ((|#1| $ (-523) (-523)) 48)) (-1871 (((-589 |#1|) $) 30)) (-1357 (((-710) $) 51)) (-3733 (($ (-710) (-710) |#1|) 57)) (-1370 (((-710) $) 50)) (-3051 (((-108) $ (-710)) 9)) (-1665 (((-523) $) 55)) (-2082 (((-523) $) 53)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3231 (((-523) $) 54)) (-3060 (((-523) $) 52)) (-2043 (($ (-1 |#1| |#1|) $) 34)) (-1345 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-4141 (($ $ |#1|) 56)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ (-523) (-523)) 49) ((|#1| $ (-523) (-523) |#1|) 47)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1249 ((|#3| $ (-523)) 45)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-55 |#1| |#2| |#3|) (-129) (-1123) (-349 |t#1|) (-349 |t#1|)) (T -55)) +((-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3733 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-710)) (-4 *3 (-1123)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-4141 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-710)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-710)))) (-1937 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-1123)))) (-2000 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-1123)))) (-1937 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1123)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1123)) (-4 *5 (-349 *4)) (-4 *2 (-349 *4)))) (-1249 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1123)) (-4 *5 (-349 *4)) (-4 *2 (-349 *4)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-589 *3)))) (-1849 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1123)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) (-2053 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1123)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) (-2080 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-523)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-349 *4)) (-4 *5 (-349 *4)))) (-1232 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-523)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1123)) (-4 *5 (-349 *4)) (-4 *3 (-349 *4)))) (-2043 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1345 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1345 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) +(-13 (-462 |t#1|) (-10 -8 (-6 -4249) (-6 -4248) (-15 -3733 ($ (-710) (-710) |t#1|)) (-15 -4141 ($ $ |t#1|)) (-15 -1665 ((-523) $)) (-15 -3231 ((-523) $)) (-15 -2082 ((-523) $)) (-15 -3060 ((-523) $)) (-15 -1357 ((-710) $)) (-15 -1370 ((-710) $)) (-15 -1937 (|t#1| $ (-523) (-523))) (-15 -2000 (|t#1| $ (-523) (-523))) (-15 -1937 (|t#1| $ (-523) (-523) |t#1|)) (-15 -2827 (|t#2| $ (-523))) (-15 -1249 (|t#3| $ (-523))) (-15 -1871 ((-589 |t#1|) $)) (-15 -1849 (|t#1| $ (-523) (-523) |t#1|)) (-15 -2053 (|t#1| $ (-523) (-523) |t#1|)) (-15 -2080 ($ $ (-523) |t#2|)) (-15 -1232 ($ $ (-523) |t#3|)) (-15 -1345 ($ (-1 |t#1| |t#1|) $)) (-15 -2043 ($ (-1 |t#1| |t#1|) $)) (-15 -1345 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1345 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-4184 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-2116 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1345 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) +(((-56 |#1| |#2|) (-10 -7 (-15 -4184 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2116 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1345 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1123) (-1123)) (T -56)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-2116 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1123)) (-4 *2 (-1123)) (-5 *1 (-56 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1123)) (-4 *5 (-1123)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))) +(-10 -7 (-15 -4184 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2116 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1345 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1632 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4249))) (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| |#1| (-786))))) (-1581 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#1| $ (-523) |#1|) 11 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) NIL (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) NIL)) (-3449 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-2899 (($ (-589 |#1|)) 13) (($ (-710) |#1|) 14)) (-3733 (($ (-710) |#1|) 9)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3780 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2912 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2428 ((|#1| $) NIL (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4141 (($ $ |#1|) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) 7)) (-1937 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-1499 (($ $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) NIL)) (-2394 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2899 ($ (-589 |#1|))) (-15 -2899 ($ (-710) |#1|)))) (-1123)) (T -57)) +((-2899 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-57 *3)))) (-2899 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-57 *3)) (-4 *3 (-1123))))) +(-13 (-19 |#1|) (-10 -8 (-15 -2899 ($ (-589 |#1|))) (-15 -2899 ($ (-710) |#1|)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2080 (($ $ (-523) (-57 |#1|)) NIL)) (-1232 (($ $ (-523) (-57 |#1|)) NIL)) (-4189 (($) NIL T CONST)) (-2827 (((-57 |#1|) $ (-523)) NIL)) (-2053 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2000 ((|#1| $ (-523) (-523)) NIL)) (-1871 (((-589 |#1|) $) NIL)) (-1357 (((-710) $) NIL)) (-3733 (($ (-710) (-710) |#1|) NIL)) (-1370 (((-710) $) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-1665 (((-523) $) NIL)) (-2082 (((-523) $) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3231 (((-523) $) NIL)) (-3060 (((-523) $) NIL)) (-2043 (($ (-1 |#1| |#1|) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4141 (($ $ |#1|) NIL)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1249 (((-57 |#1|) $ (-523)) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4249))) (-1123)) (T -58)) +NIL +(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4249))) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 69) (((-3 $ "failed") (-1169 (-292 (-523)))) 58) (((-3 $ "failed") (-1169 (-883 (-355)))) 91) (((-3 $ "failed") (-1169 (-883 (-523)))) 80) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 47) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 36)) (-3508 (($ (-1169 (-292 (-355)))) 65) (($ (-1169 (-292 (-523)))) 54) (($ (-1169 (-883 (-355)))) 87) (($ (-1169 (-883 (-523)))) 76) (($ (-1169 (-383 (-883 (-355))))) 43) (($ (-1169 (-383 (-883 (-523))))) 29)) (-3826 (((-1174) $) 118)) (-1691 (((-794) $) 111) (($ (-589 (-306))) 100) (($ (-306)) 94) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 97) (($ (-1169 (-315 (-1704 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1704) (-638)))) 28))) +(((-59 |#1|) (-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1704) (-638))))))) (-1087)) (T -59)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-315 (-1704 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1704) (-638)))) (-5 *1 (-59 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1704) (-638))))))) +((-3826 (((-1174) $) 48) (((-1174)) 49)) (-1691 (((-794) $) 45))) +(((-60 |#1|) (-13 (-371) (-10 -7 (-15 -3826 ((-1174))))) (-1087)) (T -60)) +((-3826 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-60 *3)) (-14 *3 (-1087))))) +(-13 (-371) (-10 -7 (-15 -3826 ((-1174))))) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 142) (((-3 $ "failed") (-1169 (-292 (-523)))) 132) (((-3 $ "failed") (-1169 (-883 (-355)))) 163) (((-3 $ "failed") (-1169 (-883 (-523)))) 152) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 121) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 110)) (-3508 (($ (-1169 (-292 (-355)))) 138) (($ (-1169 (-292 (-523)))) 128) (($ (-1169 (-883 (-355)))) 159) (($ (-1169 (-883 (-523)))) 148) (($ (-1169 (-383 (-883 (-355))))) 117) (($ (-1169 (-383 (-883 (-523))))) 103)) (-3826 (((-1174) $) 96)) (-1691 (((-794) $) 90) (($ (-589 (-306))) 28) (($ (-306)) 34) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 31) (($ (-1169 (-315 (-1704) (-1704 (QUOTE XC)) (-638)))) 88))) +(((-61 |#1|) (-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704) (-1704 (QUOTE XC)) (-638))))))) (-1087)) (T -61)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-315 (-1704) (-1704 (QUOTE XC)) (-638)))) (-5 *1 (-61 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704) (-1704 (QUOTE XC)) (-638))))))) +((-1220 (((-3 $ "failed") (-292 (-355))) 36) (((-3 $ "failed") (-292 (-523))) 41) (((-3 $ "failed") (-883 (-355))) 46) (((-3 $ "failed") (-883 (-523))) 51) (((-3 $ "failed") (-383 (-883 (-355)))) 31) (((-3 $ "failed") (-383 (-883 (-523)))) 26)) (-3508 (($ (-292 (-355))) 34) (($ (-292 (-523))) 39) (($ (-883 (-355))) 44) (($ (-883 (-523))) 49) (($ (-383 (-883 (-355)))) 29) (($ (-383 (-883 (-523)))) 23)) (-3826 (((-1174) $) 73)) (-1691 (((-794) $) 66) (($ (-589 (-306))) 57) (($ (-306)) 63) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 60) (($ (-315 (-1704 (QUOTE X)) (-1704) (-638))) 22))) +(((-62 |#1|) (-13 (-372) (-10 -8 (-15 -1691 ($ (-315 (-1704 (QUOTE X)) (-1704) (-638)))))) (-1087)) (T -62)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-315 (-1704 (QUOTE X)) (-1704) (-638))) (-5 *1 (-62 *3)) (-14 *3 (-1087))))) +(-13 (-372) (-10 -8 (-15 -1691 ($ (-315 (-1704 (QUOTE X)) (-1704) (-638)))))) +((-1220 (((-3 $ "failed") (-629 (-292 (-355)))) 100) (((-3 $ "failed") (-629 (-292 (-523)))) 89) (((-3 $ "failed") (-629 (-883 (-355)))) 122) (((-3 $ "failed") (-629 (-883 (-523)))) 111) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 78) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 67)) (-3508 (($ (-629 (-292 (-355)))) 96) (($ (-629 (-292 (-523)))) 85) (($ (-629 (-883 (-355)))) 118) (($ (-629 (-883 (-523)))) 107) (($ (-629 (-383 (-883 (-355))))) 74) (($ (-629 (-383 (-883 (-523))))) 60)) (-3826 (((-1174) $) 130)) (-1691 (((-794) $) 124) (($ (-589 (-306))) 27) (($ (-306)) 33) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 30) (($ (-629 (-315 (-1704) (-1704 (QUOTE X) (QUOTE HESS)) (-638)))) 53))) +(((-63 |#1|) (-13 (-360) (-10 -8 (-15 -1691 ($ (-629 (-315 (-1704) (-1704 (QUOTE X) (QUOTE HESS)) (-638))))))) (-1087)) (T -63)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-629 (-315 (-1704) (-1704 (QUOTE X) (QUOTE HESS)) (-638)))) (-5 *1 (-63 *3)) (-14 *3 (-1087))))) +(-13 (-360) (-10 -8 (-15 -1691 ($ (-629 (-315 (-1704) (-1704 (QUOTE X) (QUOTE HESS)) (-638))))))) +((-1220 (((-3 $ "failed") (-292 (-355))) 54) (((-3 $ "failed") (-292 (-523))) 59) (((-3 $ "failed") (-883 (-355))) 64) (((-3 $ "failed") (-883 (-523))) 69) (((-3 $ "failed") (-383 (-883 (-355)))) 49) (((-3 $ "failed") (-383 (-883 (-523)))) 44)) (-3508 (($ (-292 (-355))) 52) (($ (-292 (-523))) 57) (($ (-883 (-355))) 62) (($ (-883 (-523))) 67) (($ (-383 (-883 (-355)))) 47) (($ (-383 (-883 (-523)))) 41)) (-3826 (((-1174) $) 78)) (-1691 (((-794) $) 72) (($ (-589 (-306))) 27) (($ (-306)) 33) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 30) (($ (-315 (-1704) (-1704 (QUOTE XC)) (-638))) 38))) +(((-64 |#1|) (-13 (-372) (-10 -8 (-15 -1691 ($ (-315 (-1704) (-1704 (QUOTE XC)) (-638)))))) (-1087)) (T -64)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-315 (-1704) (-1704 (QUOTE XC)) (-638))) (-5 *1 (-64 *3)) (-14 *3 (-1087))))) +(-13 (-372) (-10 -8 (-15 -1691 ($ (-315 (-1704) (-1704 (QUOTE XC)) (-638)))))) +((-3826 (((-1174) $) 63)) (-1691 (((-794) $) 57) (($ (-629 (-638))) 49) (($ (-589 (-306))) 48) (($ (-306)) 55) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 53))) (((-65 |#1|) (-359) (-1087)) (T -65)) NIL (-359) -((-3394 (((-1173) $) 64)) (-1458 (((-794) $) 58) (($ (-629 (-638))) 50) (($ (-589 (-306))) 49) (($ (-306)) 52) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 55))) +((-3826 (((-1174) $) 64)) (-1691 (((-794) $) 58) (($ (-629 (-638))) 50) (($ (-589 (-306))) 49) (($ (-306)) 52) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 55))) (((-66 |#1|) (-359) (-1087)) (T -66)) NIL (-359) -((-3394 (((-1173) $) NIL) (((-1173)) 32)) (-1458 (((-794) $) NIL))) -(((-67 |#1|) (-13 (-371) (-10 -7 (-15 -3394 ((-1173))))) (-1087)) (T -67)) -((-3394 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-67 *3)) (-14 *3 (-1087))))) -(-13 (-371) (-10 -7 (-15 -3394 ((-1173))))) -((-3394 (((-1173) $) 68)) (-1458 (((-794) $) 62) (($ (-629 (-638))) 53) (($ (-589 (-306))) 56) (($ (-306)) 59) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 52))) +((-3826 (((-1174) $) NIL) (((-1174)) 32)) (-1691 (((-794) $) NIL))) +(((-67 |#1|) (-13 (-371) (-10 -7 (-15 -3826 ((-1174))))) (-1087)) (T -67)) +((-3826 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-67 *3)) (-14 *3 (-1087))))) +(-13 (-371) (-10 -7 (-15 -3826 ((-1174))))) +((-3826 (((-1174) $) 68)) (-1691 (((-794) $) 62) (($ (-629 (-638))) 53) (($ (-589 (-306))) 56) (($ (-306)) 59) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 52))) (((-68 |#1|) (-359) (-1087)) (T -68)) NIL (-359) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 98) (((-3 $ "failed") (-1168 (-292 (-523)))) 87) (((-3 $ "failed") (-1168 (-883 (-355)))) 119) (((-3 $ "failed") (-1168 (-883 (-523)))) 108) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 76) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 65)) (-3474 (($ (-1168 (-292 (-355)))) 94) (($ (-1168 (-292 (-523)))) 83) (($ (-1168 (-883 (-355)))) 115) (($ (-1168 (-883 (-523)))) 104) (($ (-1168 (-383 (-883 (-355))))) 72) (($ (-1168 (-383 (-883 (-523))))) 58)) (-3394 (((-1173) $) 133)) (-1458 (((-794) $) 127) (($ (-589 (-306))) 122) (($ (-306)) 125) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 50) (($ (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638)))) 51))) -(((-69 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638))))))) (-1087)) (T -69)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638)))) (-5 *1 (-69 *3)) (-14 *3 (-1087))))) -(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638))))))) -((-3394 (((-1173) $) 32) (((-1173)) 31)) (-1458 (((-794) $) 35))) -(((-70 |#1|) (-13 (-371) (-10 -7 (-15 -3394 ((-1173))))) (-1087)) (T -70)) -((-3394 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-70 *3)) (-14 *3 (-1087))))) -(-13 (-371) (-10 -7 (-15 -3394 ((-1173))))) -((-3394 (((-1173) $) 62)) (-1458 (((-794) $) 56) (($ (-629 (-638))) 47) (($ (-589 (-306))) 50) (($ (-306)) 53) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 46))) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 98) (((-3 $ "failed") (-1169 (-292 (-523)))) 87) (((-3 $ "failed") (-1169 (-883 (-355)))) 119) (((-3 $ "failed") (-1169 (-883 (-523)))) 108) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 76) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 65)) (-3508 (($ (-1169 (-292 (-355)))) 94) (($ (-1169 (-292 (-523)))) 83) (($ (-1169 (-883 (-355)))) 115) (($ (-1169 (-883 (-523)))) 104) (($ (-1169 (-383 (-883 (-355))))) 72) (($ (-1169 (-383 (-883 (-523))))) 58)) (-3826 (((-1174) $) 133)) (-1691 (((-794) $) 127) (($ (-589 (-306))) 122) (($ (-306)) 125) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 50) (($ (-1169 (-315 (-1704 (QUOTE X)) (-1704 (QUOTE -1343)) (-638)))) 51))) +(((-69 |#1|) (-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE X)) (-1704 (QUOTE -1343)) (-638))))))) (-1087)) (T -69)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-315 (-1704 (QUOTE X)) (-1704 (QUOTE -1343)) (-638)))) (-5 *1 (-69 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE X)) (-1704 (QUOTE -1343)) (-638))))))) +((-3826 (((-1174) $) 32) (((-1174)) 31)) (-1691 (((-794) $) 35))) +(((-70 |#1|) (-13 (-371) (-10 -7 (-15 -3826 ((-1174))))) (-1087)) (T -70)) +((-3826 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-70 *3)) (-14 *3 (-1087))))) +(-13 (-371) (-10 -7 (-15 -3826 ((-1174))))) +((-3826 (((-1174) $) 62)) (-1691 (((-794) $) 56) (($ (-629 (-638))) 47) (($ (-589 (-306))) 50) (($ (-306)) 53) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 46))) (((-71 |#1|) (-359) (-1087)) (T -71)) NIL (-359) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 119) (((-3 $ "failed") (-1168 (-292 (-523)))) 108) (((-3 $ "failed") (-1168 (-883 (-355)))) 141) (((-3 $ "failed") (-1168 (-883 (-523)))) 130) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 98) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 87)) (-3474 (($ (-1168 (-292 (-355)))) 115) (($ (-1168 (-292 (-523)))) 104) (($ (-1168 (-883 (-355)))) 137) (($ (-1168 (-883 (-523)))) 126) (($ (-1168 (-383 (-883 (-355))))) 94) (($ (-1168 (-383 (-883 (-523))))) 80)) (-3394 (((-1173) $) 73)) (-1458 (((-794) $) 27) (($ (-589 (-306))) 63) (($ (-306)) 59) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 66) (($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638)))) 60))) -(((-72 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638))))))) (-1087)) (T -72)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638)))) (-5 *1 (-72 *3)) (-14 *3 (-1087))))) -(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638))))))) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 125) (((-3 $ "failed") (-1168 (-292 (-523)))) 114) (((-3 $ "failed") (-1168 (-883 (-355)))) 147) (((-3 $ "failed") (-1168 (-883 (-523)))) 136) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 103) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 92)) (-3474 (($ (-1168 (-292 (-355)))) 121) (($ (-1168 (-292 (-523)))) 110) (($ (-1168 (-883 (-355)))) 143) (($ (-1168 (-883 (-523)))) 132) (($ (-1168 (-383 (-883 (-355))))) 99) (($ (-1168 (-383 (-883 (-523))))) 85)) (-3394 (((-1173) $) 78)) (-1458 (((-794) $) 70) (($ (-589 (-306))) NIL) (($ (-306)) NIL) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) NIL) (($ (-1168 (-315 (-1472 (QUOTE X) (QUOTE EPS)) (-1472 (QUOTE -1294)) (-638)))) 65))) -(((-73 |#1| |#2| |#3|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X) (QUOTE EPS)) (-1472 (QUOTE -1294)) (-638))))))) (-1087) (-1087) (-1087)) (T -73)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE X) (QUOTE EPS)) (-1472 (QUOTE -1294)) (-638)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1087)) (-14 *4 (-1087)) (-14 *5 (-1087))))) -(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X) (QUOTE EPS)) (-1472 (QUOTE -1294)) (-638))))))) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 129) (((-3 $ "failed") (-1168 (-292 (-523)))) 118) (((-3 $ "failed") (-1168 (-883 (-355)))) 151) (((-3 $ "failed") (-1168 (-883 (-523)))) 140) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 107) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 96)) (-3474 (($ (-1168 (-292 (-355)))) 125) (($ (-1168 (-292 (-523)))) 114) (($ (-1168 (-883 (-355)))) 147) (($ (-1168 (-883 (-523)))) 136) (($ (-1168 (-383 (-883 (-355))))) 103) (($ (-1168 (-383 (-883 (-523))))) 89)) (-3394 (((-1173) $) 82)) (-1458 (((-794) $) 74) (($ (-589 (-306))) NIL) (($ (-306)) NIL) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) NIL) (($ (-1168 (-315 (-1472 (QUOTE EPS)) (-1472 (QUOTE YA) (QUOTE YB)) (-638)))) 69))) -(((-74 |#1| |#2| |#3|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE EPS)) (-1472 (QUOTE YA) (QUOTE YB)) (-638))))))) (-1087) (-1087) (-1087)) (T -74)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE EPS)) (-1472 (QUOTE YA) (QUOTE YB)) (-638)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1087)) (-14 *4 (-1087)) (-14 *5 (-1087))))) -(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE EPS)) (-1472 (QUOTE YA) (QUOTE YB)) (-638))))))) -((-3517 (((-3 $ "failed") (-292 (-355))) 77) (((-3 $ "failed") (-292 (-523))) 82) (((-3 $ "failed") (-883 (-355))) 87) (((-3 $ "failed") (-883 (-523))) 92) (((-3 $ "failed") (-383 (-883 (-355)))) 72) (((-3 $ "failed") (-383 (-883 (-523)))) 67)) (-3474 (($ (-292 (-355))) 75) (($ (-292 (-523))) 80) (($ (-883 (-355))) 85) (($ (-883 (-523))) 90) (($ (-383 (-883 (-355)))) 70) (($ (-383 (-883 (-523)))) 64)) (-3394 (((-1173) $) 61)) (-1458 (((-794) $) 49) (($ (-589 (-306))) 45) (($ (-306)) 55) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 53) (($ (-315 (-1472) (-1472 (QUOTE X)) (-638))) 46))) -(((-75 |#1|) (-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472) (-1472 (QUOTE X)) (-638)))))) (-1087)) (T -75)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-315 (-1472) (-1472 (QUOTE X)) (-638))) (-5 *1 (-75 *3)) (-14 *3 (-1087))))) -(-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472) (-1472 (QUOTE X)) (-638)))))) -((-3517 (((-3 $ "failed") (-292 (-355))) 41) (((-3 $ "failed") (-292 (-523))) 46) (((-3 $ "failed") (-883 (-355))) 51) (((-3 $ "failed") (-883 (-523))) 56) (((-3 $ "failed") (-383 (-883 (-355)))) 36) (((-3 $ "failed") (-383 (-883 (-523)))) 31)) (-3474 (($ (-292 (-355))) 39) (($ (-292 (-523))) 44) (($ (-883 (-355))) 49) (($ (-883 (-523))) 54) (($ (-383 (-883 (-355)))) 34) (($ (-383 (-883 (-523)))) 28)) (-3394 (((-1173) $) 77)) (-1458 (((-794) $) 71) (($ (-589 (-306))) 62) (($ (-306)) 68) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 65) (($ (-315 (-1472) (-1472 (QUOTE X)) (-638))) 27))) -(((-76 |#1|) (-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472) (-1472 (QUOTE X)) (-638)))))) (-1087)) (T -76)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-315 (-1472) (-1472 (QUOTE X)) (-638))) (-5 *1 (-76 *3)) (-14 *3 (-1087))))) -(-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472) (-1472 (QUOTE X)) (-638)))))) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 84) (((-3 $ "failed") (-1168 (-292 (-523)))) 73) (((-3 $ "failed") (-1168 (-883 (-355)))) 106) (((-3 $ "failed") (-1168 (-883 (-523)))) 95) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 62) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 51)) (-3474 (($ (-1168 (-292 (-355)))) 80) (($ (-1168 (-292 (-523)))) 69) (($ (-1168 (-883 (-355)))) 102) (($ (-1168 (-883 (-523)))) 91) (($ (-1168 (-383 (-883 (-355))))) 58) (($ (-1168 (-383 (-883 (-523))))) 44)) (-3394 (((-1173) $) 122)) (-1458 (((-794) $) 116) (($ (-589 (-306))) 109) (($ (-306)) 36) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 112) (($ (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638)))) 37))) -(((-77 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638))))))) (-1087)) (T -77)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638)))) (-5 *1 (-77 *3)) (-14 *3 (-1087))))) -(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638))))))) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 137) (((-3 $ "failed") (-1168 (-292 (-523)))) 126) (((-3 $ "failed") (-1168 (-883 (-355)))) 158) (((-3 $ "failed") (-1168 (-883 (-523)))) 147) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 116) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 105)) (-3474 (($ (-1168 (-292 (-355)))) 133) (($ (-1168 (-292 (-523)))) 122) (($ (-1168 (-883 (-355)))) 154) (($ (-1168 (-883 (-523)))) 143) (($ (-1168 (-383 (-883 (-355))))) 112) (($ (-1168 (-383 (-883 (-523))))) 98)) (-3394 (((-1173) $) 91)) (-1458 (((-794) $) 85) (($ (-589 (-306))) 76) (($ (-306)) 83) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 81) (($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638)))) 77))) -(((-78 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638))))))) (-1087)) (T -78)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638)))) (-5 *1 (-78 *3)) (-14 *3 (-1087))))) -(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638))))))) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 73) (((-3 $ "failed") (-1168 (-292 (-523)))) 62) (((-3 $ "failed") (-1168 (-883 (-355)))) 95) (((-3 $ "failed") (-1168 (-883 (-523)))) 84) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 51) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 40)) (-3474 (($ (-1168 (-292 (-355)))) 69) (($ (-1168 (-292 (-523)))) 58) (($ (-1168 (-883 (-355)))) 91) (($ (-1168 (-883 (-523)))) 80) (($ (-1168 (-383 (-883 (-355))))) 47) (($ (-1168 (-383 (-883 (-523))))) 33)) (-3394 (((-1173) $) 121)) (-1458 (((-794) $) 115) (($ (-589 (-306))) 106) (($ (-306)) 112) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 110) (($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638)))) 32))) -(((-79 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638))))))) (-1087)) (T -79)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638)))) (-5 *1 (-79 *3)) (-14 *3 (-1087))))) -(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638))))))) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 90) (((-3 $ "failed") (-1168 (-292 (-523)))) 79) (((-3 $ "failed") (-1168 (-883 (-355)))) 112) (((-3 $ "failed") (-1168 (-883 (-523)))) 101) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 68) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 57)) (-3474 (($ (-1168 (-292 (-355)))) 86) (($ (-1168 (-292 (-523)))) 75) (($ (-1168 (-883 (-355)))) 108) (($ (-1168 (-883 (-523)))) 97) (($ (-1168 (-383 (-883 (-355))))) 64) (($ (-1168 (-383 (-883 (-523))))) 50)) (-3394 (((-1173) $) 43)) (-1458 (((-794) $) 36) (($ (-589 (-306))) 26) (($ (-306)) 29) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 32) (($ (-1168 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638)))) 27))) -(((-80 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638))))))) (-1087)) (T -80)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638)))) (-5 *1 (-80 *3)) (-14 *3 (-1087))))) -(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638))))))) -((-3517 (((-3 $ "failed") (-629 (-292 (-355)))) 103) (((-3 $ "failed") (-629 (-292 (-523)))) 92) (((-3 $ "failed") (-629 (-883 (-355)))) 125) (((-3 $ "failed") (-629 (-883 (-523)))) 114) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 82) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 71)) (-3474 (($ (-629 (-292 (-355)))) 99) (($ (-629 (-292 (-523)))) 88) (($ (-629 (-883 (-355)))) 121) (($ (-629 (-883 (-523)))) 110) (($ (-629 (-383 (-883 (-355))))) 78) (($ (-629 (-383 (-883 (-523))))) 64)) (-3394 (((-1173) $) 57)) (-1458 (((-794) $) 43) (($ (-589 (-306))) 50) (($ (-306)) 39) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 47) (($ (-629 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638)))) 40))) -(((-81 |#1|) (-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638))))))) (-1087)) (T -81)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-629 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638)))) (-5 *1 (-81 *3)) (-14 *3 (-1087))))) -(-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638))))))) -((-3517 (((-3 $ "failed") (-629 (-292 (-355)))) 103) (((-3 $ "failed") (-629 (-292 (-523)))) 92) (((-3 $ "failed") (-629 (-883 (-355)))) 124) (((-3 $ "failed") (-629 (-883 (-523)))) 113) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 81) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 70)) (-3474 (($ (-629 (-292 (-355)))) 99) (($ (-629 (-292 (-523)))) 88) (($ (-629 (-883 (-355)))) 120) (($ (-629 (-883 (-523)))) 109) (($ (-629 (-383 (-883 (-355))))) 77) (($ (-629 (-383 (-883 (-523))))) 63)) (-3394 (((-1173) $) 56)) (-1458 (((-794) $) 50) (($ (-589 (-306))) 44) (($ (-306)) 47) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 40) (($ (-629 (-315 (-1472 (QUOTE X)) (-1472) (-638)))) 41))) -(((-82 |#1|) (-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472 (QUOTE X)) (-1472) (-638))))))) (-1087)) (T -82)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-629 (-315 (-1472 (QUOTE X)) (-1472) (-638)))) (-5 *1 (-82 *3)) (-14 *3 (-1087))))) -(-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472 (QUOTE X)) (-1472) (-638))))))) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 99) (((-3 $ "failed") (-1168 (-292 (-523)))) 88) (((-3 $ "failed") (-1168 (-883 (-355)))) 121) (((-3 $ "failed") (-1168 (-883 (-523)))) 110) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 77) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 66)) (-3474 (($ (-1168 (-292 (-355)))) 95) (($ (-1168 (-292 (-523)))) 84) (($ (-1168 (-883 (-355)))) 117) (($ (-1168 (-883 (-523)))) 106) (($ (-1168 (-383 (-883 (-355))))) 73) (($ (-1168 (-383 (-883 (-523))))) 59)) (-3394 (((-1173) $) 45)) (-1458 (((-794) $) 39) (($ (-589 (-306))) 48) (($ (-306)) 35) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 51) (($ (-1168 (-315 (-1472 (QUOTE X)) (-1472) (-638)))) 36))) -(((-83 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X)) (-1472) (-638))))))) (-1087)) (T -83)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE X)) (-1472) (-638)))) (-5 *1 (-83 *3)) (-14 *3 (-1087))))) -(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X)) (-1472) (-638))))))) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 74) (((-3 $ "failed") (-1168 (-292 (-523)))) 63) (((-3 $ "failed") (-1168 (-883 (-355)))) 96) (((-3 $ "failed") (-1168 (-883 (-523)))) 85) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 52) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 41)) (-3474 (($ (-1168 (-292 (-355)))) 70) (($ (-1168 (-292 (-523)))) 59) (($ (-1168 (-883 (-355)))) 92) (($ (-1168 (-883 (-523)))) 81) (($ (-1168 (-383 (-883 (-355))))) 48) (($ (-1168 (-383 (-883 (-523))))) 34)) (-3394 (((-1173) $) 122)) (-1458 (((-794) $) 116) (($ (-589 (-306))) 107) (($ (-306)) 113) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 111) (($ (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638)))) 33))) -(((-84 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638))))))) (-1087)) (T -84)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638)))) (-5 *1 (-84 *3)) (-14 *3 (-1087))))) -(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638))))))) -((-3517 (((-3 $ "failed") (-629 (-292 (-355)))) 105) (((-3 $ "failed") (-629 (-292 (-523)))) 94) (((-3 $ "failed") (-629 (-883 (-355)))) 127) (((-3 $ "failed") (-629 (-883 (-523)))) 116) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 83) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 72)) (-3474 (($ (-629 (-292 (-355)))) 101) (($ (-629 (-292 (-523)))) 90) (($ (-629 (-883 (-355)))) 123) (($ (-629 (-883 (-523)))) 112) (($ (-629 (-383 (-883 (-355))))) 79) (($ (-629 (-383 (-883 (-523))))) 65)) (-3394 (((-1173) $) 58)) (-1458 (((-794) $) 52) (($ (-589 (-306))) 42) (($ (-306)) 49) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 47) (($ (-629 (-315 (-1472 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1472) (-638)))) 43))) -(((-85 |#1|) (-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1472) (-638))))))) (-1087)) (T -85)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-629 (-315 (-1472 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1472) (-638)))) (-5 *1 (-85 *3)) (-14 *3 (-1087))))) -(-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1472) (-638))))))) -((-3394 (((-1173) $) 44)) (-1458 (((-794) $) 38) (($ (-1168 (-638))) 88) (($ (-589 (-306))) 29) (($ (-306)) 35) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 32))) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 119) (((-3 $ "failed") (-1169 (-292 (-523)))) 108) (((-3 $ "failed") (-1169 (-883 (-355)))) 141) (((-3 $ "failed") (-1169 (-883 (-523)))) 130) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 98) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 87)) (-3508 (($ (-1169 (-292 (-355)))) 115) (($ (-1169 (-292 (-523)))) 104) (($ (-1169 (-883 (-355)))) 137) (($ (-1169 (-883 (-523)))) 126) (($ (-1169 (-383 (-883 (-355))))) 94) (($ (-1169 (-383 (-883 (-523))))) 80)) (-3826 (((-1174) $) 73)) (-1691 (((-794) $) 27) (($ (-589 (-306))) 63) (($ (-306)) 59) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 66) (($ (-1169 (-315 (-1704) (-1704 (QUOTE X)) (-638)))) 60))) +(((-72 |#1|) (-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704) (-1704 (QUOTE X)) (-638))))))) (-1087)) (T -72)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-315 (-1704) (-1704 (QUOTE X)) (-638)))) (-5 *1 (-72 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704) (-1704 (QUOTE X)) (-638))))))) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 125) (((-3 $ "failed") (-1169 (-292 (-523)))) 114) (((-3 $ "failed") (-1169 (-883 (-355)))) 147) (((-3 $ "failed") (-1169 (-883 (-523)))) 136) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 103) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 92)) (-3508 (($ (-1169 (-292 (-355)))) 121) (($ (-1169 (-292 (-523)))) 110) (($ (-1169 (-883 (-355)))) 143) (($ (-1169 (-883 (-523)))) 132) (($ (-1169 (-383 (-883 (-355))))) 99) (($ (-1169 (-383 (-883 (-523))))) 85)) (-3826 (((-1174) $) 78)) (-1691 (((-794) $) 70) (($ (-589 (-306))) NIL) (($ (-306)) NIL) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) NIL) (($ (-1169 (-315 (-1704 (QUOTE X) (QUOTE EPS)) (-1704 (QUOTE -1343)) (-638)))) 65))) +(((-73 |#1| |#2| |#3|) (-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE X) (QUOTE EPS)) (-1704 (QUOTE -1343)) (-638))))))) (-1087) (-1087) (-1087)) (T -73)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-315 (-1704 (QUOTE X) (QUOTE EPS)) (-1704 (QUOTE -1343)) (-638)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1087)) (-14 *4 (-1087)) (-14 *5 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE X) (QUOTE EPS)) (-1704 (QUOTE -1343)) (-638))))))) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 129) (((-3 $ "failed") (-1169 (-292 (-523)))) 118) (((-3 $ "failed") (-1169 (-883 (-355)))) 151) (((-3 $ "failed") (-1169 (-883 (-523)))) 140) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 107) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 96)) (-3508 (($ (-1169 (-292 (-355)))) 125) (($ (-1169 (-292 (-523)))) 114) (($ (-1169 (-883 (-355)))) 147) (($ (-1169 (-883 (-523)))) 136) (($ (-1169 (-383 (-883 (-355))))) 103) (($ (-1169 (-383 (-883 (-523))))) 89)) (-3826 (((-1174) $) 82)) (-1691 (((-794) $) 74) (($ (-589 (-306))) NIL) (($ (-306)) NIL) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) NIL) (($ (-1169 (-315 (-1704 (QUOTE EPS)) (-1704 (QUOTE YA) (QUOTE YB)) (-638)))) 69))) +(((-74 |#1| |#2| |#3|) (-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE EPS)) (-1704 (QUOTE YA) (QUOTE YB)) (-638))))))) (-1087) (-1087) (-1087)) (T -74)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-315 (-1704 (QUOTE EPS)) (-1704 (QUOTE YA) (QUOTE YB)) (-638)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1087)) (-14 *4 (-1087)) (-14 *5 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE EPS)) (-1704 (QUOTE YA) (QUOTE YB)) (-638))))))) +((-1220 (((-3 $ "failed") (-292 (-355))) 77) (((-3 $ "failed") (-292 (-523))) 82) (((-3 $ "failed") (-883 (-355))) 87) (((-3 $ "failed") (-883 (-523))) 92) (((-3 $ "failed") (-383 (-883 (-355)))) 72) (((-3 $ "failed") (-383 (-883 (-523)))) 67)) (-3508 (($ (-292 (-355))) 75) (($ (-292 (-523))) 80) (($ (-883 (-355))) 85) (($ (-883 (-523))) 90) (($ (-383 (-883 (-355)))) 70) (($ (-383 (-883 (-523)))) 64)) (-3826 (((-1174) $) 61)) (-1691 (((-794) $) 49) (($ (-589 (-306))) 45) (($ (-306)) 55) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 53) (($ (-315 (-1704) (-1704 (QUOTE X)) (-638))) 46))) +(((-75 |#1|) (-13 (-372) (-10 -8 (-15 -1691 ($ (-315 (-1704) (-1704 (QUOTE X)) (-638)))))) (-1087)) (T -75)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-315 (-1704) (-1704 (QUOTE X)) (-638))) (-5 *1 (-75 *3)) (-14 *3 (-1087))))) +(-13 (-372) (-10 -8 (-15 -1691 ($ (-315 (-1704) (-1704 (QUOTE X)) (-638)))))) +((-1220 (((-3 $ "failed") (-292 (-355))) 41) (((-3 $ "failed") (-292 (-523))) 46) (((-3 $ "failed") (-883 (-355))) 51) (((-3 $ "failed") (-883 (-523))) 56) (((-3 $ "failed") (-383 (-883 (-355)))) 36) (((-3 $ "failed") (-383 (-883 (-523)))) 31)) (-3508 (($ (-292 (-355))) 39) (($ (-292 (-523))) 44) (($ (-883 (-355))) 49) (($ (-883 (-523))) 54) (($ (-383 (-883 (-355)))) 34) (($ (-383 (-883 (-523)))) 28)) (-3826 (((-1174) $) 77)) (-1691 (((-794) $) 71) (($ (-589 (-306))) 62) (($ (-306)) 68) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 65) (($ (-315 (-1704) (-1704 (QUOTE X)) (-638))) 27))) +(((-76 |#1|) (-13 (-372) (-10 -8 (-15 -1691 ($ (-315 (-1704) (-1704 (QUOTE X)) (-638)))))) (-1087)) (T -76)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-315 (-1704) (-1704 (QUOTE X)) (-638))) (-5 *1 (-76 *3)) (-14 *3 (-1087))))) +(-13 (-372) (-10 -8 (-15 -1691 ($ (-315 (-1704) (-1704 (QUOTE X)) (-638)))))) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 84) (((-3 $ "failed") (-1169 (-292 (-523)))) 73) (((-3 $ "failed") (-1169 (-883 (-355)))) 106) (((-3 $ "failed") (-1169 (-883 (-523)))) 95) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 62) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 51)) (-3508 (($ (-1169 (-292 (-355)))) 80) (($ (-1169 (-292 (-523)))) 69) (($ (-1169 (-883 (-355)))) 102) (($ (-1169 (-883 (-523)))) 91) (($ (-1169 (-383 (-883 (-355))))) 58) (($ (-1169 (-383 (-883 (-523))))) 44)) (-3826 (((-1174) $) 122)) (-1691 (((-794) $) 116) (($ (-589 (-306))) 109) (($ (-306)) 36) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 112) (($ (-1169 (-315 (-1704) (-1704 (QUOTE XC)) (-638)))) 37))) +(((-77 |#1|) (-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704) (-1704 (QUOTE XC)) (-638))))))) (-1087)) (T -77)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-315 (-1704) (-1704 (QUOTE XC)) (-638)))) (-5 *1 (-77 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704) (-1704 (QUOTE XC)) (-638))))))) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 137) (((-3 $ "failed") (-1169 (-292 (-523)))) 126) (((-3 $ "failed") (-1169 (-883 (-355)))) 158) (((-3 $ "failed") (-1169 (-883 (-523)))) 147) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 116) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 105)) (-3508 (($ (-1169 (-292 (-355)))) 133) (($ (-1169 (-292 (-523)))) 122) (($ (-1169 (-883 (-355)))) 154) (($ (-1169 (-883 (-523)))) 143) (($ (-1169 (-383 (-883 (-355))))) 112) (($ (-1169 (-383 (-883 (-523))))) 98)) (-3826 (((-1174) $) 91)) (-1691 (((-794) $) 85) (($ (-589 (-306))) 76) (($ (-306)) 83) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 81) (($ (-1169 (-315 (-1704) (-1704 (QUOTE X)) (-638)))) 77))) +(((-78 |#1|) (-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704) (-1704 (QUOTE X)) (-638))))))) (-1087)) (T -78)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-315 (-1704) (-1704 (QUOTE X)) (-638)))) (-5 *1 (-78 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704) (-1704 (QUOTE X)) (-638))))))) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 73) (((-3 $ "failed") (-1169 (-292 (-523)))) 62) (((-3 $ "failed") (-1169 (-883 (-355)))) 95) (((-3 $ "failed") (-1169 (-883 (-523)))) 84) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 51) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 40)) (-3508 (($ (-1169 (-292 (-355)))) 69) (($ (-1169 (-292 (-523)))) 58) (($ (-1169 (-883 (-355)))) 91) (($ (-1169 (-883 (-523)))) 80) (($ (-1169 (-383 (-883 (-355))))) 47) (($ (-1169 (-383 (-883 (-523))))) 33)) (-3826 (((-1174) $) 121)) (-1691 (((-794) $) 115) (($ (-589 (-306))) 106) (($ (-306)) 112) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 110) (($ (-1169 (-315 (-1704) (-1704 (QUOTE X)) (-638)))) 32))) +(((-79 |#1|) (-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704) (-1704 (QUOTE X)) (-638))))))) (-1087)) (T -79)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-315 (-1704) (-1704 (QUOTE X)) (-638)))) (-5 *1 (-79 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704) (-1704 (QUOTE X)) (-638))))))) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 91) (((-3 $ "failed") (-1169 (-292 (-523)))) 80) (((-3 $ "failed") (-1169 (-883 (-355)))) 113) (((-3 $ "failed") (-1169 (-883 (-523)))) 102) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 69) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 58)) (-3508 (($ (-1169 (-292 (-355)))) 87) (($ (-1169 (-292 (-523)))) 76) (($ (-1169 (-883 (-355)))) 109) (($ (-1169 (-883 (-523)))) 98) (($ (-1169 (-383 (-883 (-355))))) 65) (($ (-1169 (-383 (-883 (-523))))) 51)) (-3826 (((-1174) $) 44)) (-1691 (((-794) $) 38) (($ (-589 (-306))) 28) (($ (-306)) 31) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 34) (($ (-1169 (-315 (-1704 (QUOTE X) (QUOTE -1343)) (-1704) (-638)))) 29))) +(((-80 |#1|) (-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE X) (QUOTE -1343)) (-1704) (-638))))))) (-1087)) (T -80)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-315 (-1704 (QUOTE X) (QUOTE -1343)) (-1704) (-638)))) (-5 *1 (-80 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE X) (QUOTE -1343)) (-1704) (-638))))))) +((-1220 (((-3 $ "failed") (-629 (-292 (-355)))) 104) (((-3 $ "failed") (-629 (-292 (-523)))) 93) (((-3 $ "failed") (-629 (-883 (-355)))) 126) (((-3 $ "failed") (-629 (-883 (-523)))) 115) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 83) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 72)) (-3508 (($ (-629 (-292 (-355)))) 100) (($ (-629 (-292 (-523)))) 89) (($ (-629 (-883 (-355)))) 122) (($ (-629 (-883 (-523)))) 111) (($ (-629 (-383 (-883 (-355))))) 79) (($ (-629 (-383 (-883 (-523))))) 65)) (-3826 (((-1174) $) 58)) (-1691 (((-794) $) 45) (($ (-589 (-306))) 52) (($ (-306)) 41) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 49) (($ (-629 (-315 (-1704 (QUOTE X) (QUOTE -1343)) (-1704) (-638)))) 42))) +(((-81 |#1|) (-13 (-360) (-10 -8 (-15 -1691 ($ (-629 (-315 (-1704 (QUOTE X) (QUOTE -1343)) (-1704) (-638))))))) (-1087)) (T -81)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-629 (-315 (-1704 (QUOTE X) (QUOTE -1343)) (-1704) (-638)))) (-5 *1 (-81 *3)) (-14 *3 (-1087))))) +(-13 (-360) (-10 -8 (-15 -1691 ($ (-629 (-315 (-1704 (QUOTE X) (QUOTE -1343)) (-1704) (-638))))))) +((-1220 (((-3 $ "failed") (-629 (-292 (-355)))) 103) (((-3 $ "failed") (-629 (-292 (-523)))) 92) (((-3 $ "failed") (-629 (-883 (-355)))) 124) (((-3 $ "failed") (-629 (-883 (-523)))) 113) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 81) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 70)) (-3508 (($ (-629 (-292 (-355)))) 99) (($ (-629 (-292 (-523)))) 88) (($ (-629 (-883 (-355)))) 120) (($ (-629 (-883 (-523)))) 109) (($ (-629 (-383 (-883 (-355))))) 77) (($ (-629 (-383 (-883 (-523))))) 63)) (-3826 (((-1174) $) 56)) (-1691 (((-794) $) 50) (($ (-589 (-306))) 44) (($ (-306)) 47) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 40) (($ (-629 (-315 (-1704 (QUOTE X)) (-1704) (-638)))) 41))) +(((-82 |#1|) (-13 (-360) (-10 -8 (-15 -1691 ($ (-629 (-315 (-1704 (QUOTE X)) (-1704) (-638))))))) (-1087)) (T -82)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-629 (-315 (-1704 (QUOTE X)) (-1704) (-638)))) (-5 *1 (-82 *3)) (-14 *3 (-1087))))) +(-13 (-360) (-10 -8 (-15 -1691 ($ (-629 (-315 (-1704 (QUOTE X)) (-1704) (-638))))))) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 99) (((-3 $ "failed") (-1169 (-292 (-523)))) 88) (((-3 $ "failed") (-1169 (-883 (-355)))) 121) (((-3 $ "failed") (-1169 (-883 (-523)))) 110) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 77) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 66)) (-3508 (($ (-1169 (-292 (-355)))) 95) (($ (-1169 (-292 (-523)))) 84) (($ (-1169 (-883 (-355)))) 117) (($ (-1169 (-883 (-523)))) 106) (($ (-1169 (-383 (-883 (-355))))) 73) (($ (-1169 (-383 (-883 (-523))))) 59)) (-3826 (((-1174) $) 45)) (-1691 (((-794) $) 39) (($ (-589 (-306))) 48) (($ (-306)) 35) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 51) (($ (-1169 (-315 (-1704 (QUOTE X)) (-1704) (-638)))) 36))) +(((-83 |#1|) (-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE X)) (-1704) (-638))))))) (-1087)) (T -83)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-315 (-1704 (QUOTE X)) (-1704) (-638)))) (-5 *1 (-83 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE X)) (-1704) (-638))))))) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 74) (((-3 $ "failed") (-1169 (-292 (-523)))) 63) (((-3 $ "failed") (-1169 (-883 (-355)))) 96) (((-3 $ "failed") (-1169 (-883 (-523)))) 85) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 52) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 41)) (-3508 (($ (-1169 (-292 (-355)))) 70) (($ (-1169 (-292 (-523)))) 59) (($ (-1169 (-883 (-355)))) 92) (($ (-1169 (-883 (-523)))) 81) (($ (-1169 (-383 (-883 (-355))))) 48) (($ (-1169 (-383 (-883 (-523))))) 34)) (-3826 (((-1174) $) 122)) (-1691 (((-794) $) 116) (($ (-589 (-306))) 107) (($ (-306)) 113) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 111) (($ (-1169 (-315 (-1704 (QUOTE X)) (-1704 (QUOTE -1343)) (-638)))) 33))) +(((-84 |#1|) (-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE X)) (-1704 (QUOTE -1343)) (-638))))))) (-1087)) (T -84)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-315 (-1704 (QUOTE X)) (-1704 (QUOTE -1343)) (-638)))) (-5 *1 (-84 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1691 ($ (-1169 (-315 (-1704 (QUOTE X)) (-1704 (QUOTE -1343)) (-638))))))) +((-1220 (((-3 $ "failed") (-629 (-292 (-355)))) 105) (((-3 $ "failed") (-629 (-292 (-523)))) 94) (((-3 $ "failed") (-629 (-883 (-355)))) 127) (((-3 $ "failed") (-629 (-883 (-523)))) 116) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 83) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 72)) (-3508 (($ (-629 (-292 (-355)))) 101) (($ (-629 (-292 (-523)))) 90) (($ (-629 (-883 (-355)))) 123) (($ (-629 (-883 (-523)))) 112) (($ (-629 (-383 (-883 (-355))))) 79) (($ (-629 (-383 (-883 (-523))))) 65)) (-3826 (((-1174) $) 58)) (-1691 (((-794) $) 52) (($ (-589 (-306))) 42) (($ (-306)) 49) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 47) (($ (-629 (-315 (-1704 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1704) (-638)))) 43))) +(((-85 |#1|) (-13 (-360) (-10 -8 (-15 -1691 ($ (-629 (-315 (-1704 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1704) (-638))))))) (-1087)) (T -85)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-629 (-315 (-1704 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1704) (-638)))) (-5 *1 (-85 *3)) (-14 *3 (-1087))))) +(-13 (-360) (-10 -8 (-15 -1691 ($ (-629 (-315 (-1704 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1704) (-638))))))) +((-3826 (((-1174) $) 44)) (-1691 (((-794) $) 38) (($ (-1169 (-638))) 88) (($ (-589 (-306))) 29) (($ (-306)) 35) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 32))) (((-86 |#1|) (-415) (-1087)) (T -86)) NIL (-415) -((-3517 (((-3 $ "failed") (-292 (-355))) 42) (((-3 $ "failed") (-292 (-523))) 47) (((-3 $ "failed") (-883 (-355))) 52) (((-3 $ "failed") (-883 (-523))) 57) (((-3 $ "failed") (-383 (-883 (-355)))) 37) (((-3 $ "failed") (-383 (-883 (-523)))) 32)) (-3474 (($ (-292 (-355))) 40) (($ (-292 (-523))) 45) (($ (-883 (-355))) 50) (($ (-883 (-523))) 55) (($ (-383 (-883 (-355)))) 35) (($ (-383 (-883 (-523)))) 29)) (-3394 (((-1173) $) 88)) (-1458 (((-794) $) 82) (($ (-589 (-306))) 76) (($ (-306)) 79) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 73) (($ (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638))) 28))) -(((-87 |#1|) (-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638)))))) (-1087)) (T -87)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638))) (-5 *1 (-87 *3)) (-14 *3 (-1087))))) -(-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638)))))) -((-2859 (((-1168 (-629 |#1|)) (-629 |#1|)) 55)) (-2198 (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 (-589 (-852))))) |#2| (-852)) 45)) (-1659 (((-2 (|:| |minor| (-589 (-852))) (|:| -1710 |#2|) (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 |#2|))) |#2| (-852)) 63 (|has| |#1| (-339))))) -(((-88 |#1| |#2|) (-10 -7 (-15 -2198 ((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 (-589 (-852))))) |#2| (-852))) (-15 -2859 ((-1168 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-339)) (-15 -1659 ((-2 (|:| |minor| (-589 (-852))) (|:| -1710 |#2|) (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 |#2|))) |#2| (-852))) |%noBranch|)) (-515) (-599 |#1|)) (T -88)) -((-1659 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |minor| (-589 (-852))) (|:| -1710 *3) (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-852)) (-4 *3 (-599 *5)))) (-2859 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-1168 (-629 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-629 *4)) (-4 *5 (-599 *4)))) (-2198 (*1 *2 *3 *4) (-12 (-4 *5 (-515)) (-5 *2 (-2 (|:| -3392 (-629 *5)) (|:| |vec| (-1168 (-589 (-852)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-852)) (-4 *3 (-599 *5))))) -(-10 -7 (-15 -2198 ((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 (-589 (-852))))) |#2| (-852))) (-15 -2859 ((-1168 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-339)) (-15 -1659 ((-2 (|:| |minor| (-589 (-852))) (|:| -1710 |#2|) (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 |#2|))) |#2| (-852))) |%noBranch|)) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3125 ((|#1| $) 35)) (-3079 (((-108) $ (-710)) NIL)) (-2518 (($) NIL T CONST)) (-3845 ((|#1| |#1| $) 30)) (-2085 ((|#1| $) 28)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1934 ((|#1| $) NIL)) (-3450 (($ |#1| $) 31)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3761 ((|#1| $) 29)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 16)) (-3988 (($) 39)) (-1583 (((-710) $) 26)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 15)) (-1458 (((-794) $) 25 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) NIL)) (-4145 (($ (-589 |#1|)) 37)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 13 (|has| |#1| (-1016)))) (-2676 (((-710) $) 10 (|has| $ (-6 -4244))))) -(((-89 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -4145 ($ (-589 |#1|))))) (-1016)) (T -89)) -((-4145 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-89 *3))))) -(-13 (-1035 |#1|) (-10 -8 (-15 -4145 ($ (-589 |#1|))))) -((-1719 (($ $) 10)) (-1731 (($ $) 12))) -(((-90 |#1|) (-10 -8 (-15 -1731 (|#1| |#1|)) (-15 -1719 (|#1| |#1|))) (-91)) (T -90)) -NIL -(-10 -8 (-15 -1731 (|#1| |#1|)) (-15 -1719 (|#1| |#1|))) -((-3847 (($ $) 11)) (-3828 (($ $) 10)) (-1719 (($ $) 9)) (-1731 (($ $) 8)) (-3859 (($ $) 7)) (-3838 (($ $) 6))) +((-1220 (((-3 $ "failed") (-292 (-355))) 42) (((-3 $ "failed") (-292 (-523))) 47) (((-3 $ "failed") (-883 (-355))) 52) (((-3 $ "failed") (-883 (-523))) 57) (((-3 $ "failed") (-383 (-883 (-355)))) 37) (((-3 $ "failed") (-383 (-883 (-523)))) 32)) (-3508 (($ (-292 (-355))) 40) (($ (-292 (-523))) 45) (($ (-883 (-355))) 50) (($ (-883 (-523))) 55) (($ (-383 (-883 (-355)))) 35) (($ (-383 (-883 (-523)))) 29)) (-3826 (((-1174) $) 88)) (-1691 (((-794) $) 82) (($ (-589 (-306))) 76) (($ (-306)) 79) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 73) (($ (-315 (-1704 (QUOTE X)) (-1704 (QUOTE -1343)) (-638))) 28))) +(((-87 |#1|) (-13 (-372) (-10 -8 (-15 -1691 ($ (-315 (-1704 (QUOTE X)) (-1704 (QUOTE -1343)) (-638)))))) (-1087)) (T -87)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-315 (-1704 (QUOTE X)) (-1704 (QUOTE -1343)) (-638))) (-5 *1 (-87 *3)) (-14 *3 (-1087))))) +(-13 (-372) (-10 -8 (-15 -1691 ($ (-315 (-1704 (QUOTE X)) (-1704 (QUOTE -1343)) (-638)))))) +((-1366 (((-1169 (-629 |#1|)) (-629 |#1|)) 54)) (-4009 (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 (-589 (-852))))) |#2| (-852)) 44)) (-3614 (((-2 (|:| |minor| (-589 (-852))) (|:| -2849 |#2|) (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 |#2|))) |#2| (-852)) 63 (|has| |#1| (-339))))) +(((-88 |#1| |#2|) (-10 -7 (-15 -4009 ((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 (-589 (-852))))) |#2| (-852))) (-15 -1366 ((-1169 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-339)) (-15 -3614 ((-2 (|:| |minor| (-589 (-852))) (|:| -2849 |#2|) (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 |#2|))) |#2| (-852))) |%noBranch|)) (-515) (-599 |#1|)) (T -88)) +((-3614 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |minor| (-589 (-852))) (|:| -2849 *3) (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-852)) (-4 *3 (-599 *5)))) (-1366 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-1169 (-629 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-629 *4)) (-4 *5 (-599 *4)))) (-4009 (*1 *2 *3 *4) (-12 (-4 *5 (-515)) (-5 *2 (-2 (|:| -2600 (-629 *5)) (|:| |vec| (-1169 (-589 (-852)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-852)) (-4 *3 (-599 *5))))) +(-10 -7 (-15 -4009 ((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 (-589 (-852))))) |#2| (-852))) (-15 -1366 ((-1169 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-339)) (-15 -3614 ((-2 (|:| |minor| (-589 (-852))) (|:| -2849 |#2|) (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 |#2|))) |#2| (-852))) |%noBranch|)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3781 ((|#1| $) 35)) (-1620 (((-108) $ (-710)) NIL)) (-4189 (($) NIL T CONST)) (-2581 ((|#1| |#1| $) 30)) (-2197 ((|#1| $) 28)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1293 ((|#1| $) NIL)) (-3108 (($ |#1| $) 31)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3048 ((|#1| $) 29)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 16)) (-3320 (($) 39)) (-1576 (((-710) $) 26)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) 15)) (-1691 (((-794) $) 25 (|has| |#1| (-563 (-794))))) (-2417 (($ (-589 |#1|)) NIL)) (-2351 (($ (-589 |#1|)) 37)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 13 (|has| |#1| (-1016)))) (-2810 (((-710) $) 10 (|has| $ (-6 -4248))))) +(((-89 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -2351 ($ (-589 |#1|))))) (-1016)) (T -89)) +((-2351 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-89 *3))))) +(-13 (-1035 |#1|) (-10 -8 (-15 -2351 ($ (-589 |#1|))))) +((-1421 (($ $) 10)) (-1431 (($ $) 12))) +(((-90 |#1|) (-10 -8 (-15 -1431 (|#1| |#1|)) (-15 -1421 (|#1| |#1|))) (-91)) (T -90)) +NIL +(-10 -8 (-15 -1431 (|#1| |#1|)) (-15 -1421 (|#1| |#1|))) +((-1401 (($ $) 11)) (-1334 (($ $) 10)) (-1421 (($ $) 9)) (-1431 (($ $) 8)) (-1413 (($ $) 7)) (-1346 (($ $) 6))) (((-91) (-129)) (T -91)) -((-3847 (*1 *1 *1) (-4 *1 (-91))) (-3828 (*1 *1 *1) (-4 *1 (-91))) (-1719 (*1 *1 *1) (-4 *1 (-91))) (-1731 (*1 *1 *1) (-4 *1 (-91))) (-3859 (*1 *1 *1) (-4 *1 (-91))) (-3838 (*1 *1 *1) (-4 *1 (-91)))) -(-13 (-10 -8 (-15 -3838 ($ $)) (-15 -3859 ($ $)) (-15 -1731 ($ $)) (-15 -1719 ($ $)) (-15 -3828 ($ $)) (-15 -3847 ($ $)))) -((-3924 (((-108) $ $) NIL)) (-3028 (((-355) (-1070) (-355)) 42) (((-355) (-1070) (-1070) (-355)) 41)) (-3584 (((-355) (-355)) 33)) (-2248 (((-1173)) 36)) (-3779 (((-1070) $) NIL)) (-2940 (((-355) (-1070) (-1070)) 46) (((-355) (-1070)) 48)) (-2783 (((-1034) $) NIL)) (-1259 (((-355) (-1070) (-1070)) 47)) (-1418 (((-355) (-1070) (-1070)) 49) (((-355) (-1070)) 50)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) -(((-92) (-13 (-1016) (-10 -7 (-15 -2940 ((-355) (-1070) (-1070))) (-15 -2940 ((-355) (-1070))) (-15 -1418 ((-355) (-1070) (-1070))) (-15 -1418 ((-355) (-1070))) (-15 -1259 ((-355) (-1070) (-1070))) (-15 -2248 ((-1173))) (-15 -3584 ((-355) (-355))) (-15 -3028 ((-355) (-1070) (-355))) (-15 -3028 ((-355) (-1070) (-1070) (-355))) (-6 -4244)))) (T -92)) -((-2940 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-1418 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-1418 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-1259 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-2248 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-92)))) (-3584 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-92)))) (-3028 (*1 *2 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-1070)) (-5 *1 (-92)))) (-3028 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-1070)) (-5 *1 (-92))))) -(-13 (-1016) (-10 -7 (-15 -2940 ((-355) (-1070) (-1070))) (-15 -2940 ((-355) (-1070))) (-15 -1418 ((-355) (-1070) (-1070))) (-15 -1418 ((-355) (-1070))) (-15 -1259 ((-355) (-1070) (-1070))) (-15 -2248 ((-1173))) (-15 -3584 ((-355) (-355))) (-15 -3028 ((-355) (-1070) (-355))) (-15 -3028 ((-355) (-1070) (-1070) (-355))) (-6 -4244))) +((-1401 (*1 *1 *1) (-4 *1 (-91))) (-1334 (*1 *1 *1) (-4 *1 (-91))) (-1421 (*1 *1 *1) (-4 *1 (-91))) (-1431 (*1 *1 *1) (-4 *1 (-91))) (-1413 (*1 *1 *1) (-4 *1 (-91))) (-1346 (*1 *1 *1) (-4 *1 (-91)))) +(-13 (-10 -8 (-15 -1346 ($ $)) (-15 -1413 ($ $)) (-15 -1431 ($ $)) (-15 -1421 ($ $)) (-15 -1334 ($ $)) (-15 -1401 ($ $)))) +((-1680 (((-108) $ $) NIL)) (-2316 (((-355) (-1070) (-355)) 42) (((-355) (-1070) (-1070) (-355)) 41)) (-3868 (((-355) (-355)) 33)) (-3273 (((-1174)) 36)) (-2032 (((-1070) $) NIL)) (-2690 (((-355) (-1070) (-1070)) 46) (((-355) (-1070)) 48)) (-3951 (((-1034) $) NIL)) (-3912 (((-355) (-1070) (-1070)) 47)) (-1957 (((-355) (-1070) (-1070)) 49) (((-355) (-1070)) 50)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) +(((-92) (-13 (-1016) (-10 -7 (-15 -2690 ((-355) (-1070) (-1070))) (-15 -2690 ((-355) (-1070))) (-15 -1957 ((-355) (-1070) (-1070))) (-15 -1957 ((-355) (-1070))) (-15 -3912 ((-355) (-1070) (-1070))) (-15 -3273 ((-1174))) (-15 -3868 ((-355) (-355))) (-15 -2316 ((-355) (-1070) (-355))) (-15 -2316 ((-355) (-1070) (-1070) (-355))) (-6 -4248)))) (T -92)) +((-2690 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-1957 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-3912 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-3273 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-92)))) (-3868 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-92)))) (-2316 (*1 *2 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-1070)) (-5 *1 (-92)))) (-2316 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-1070)) (-5 *1 (-92))))) +(-13 (-1016) (-10 -7 (-15 -2690 ((-355) (-1070) (-1070))) (-15 -2690 ((-355) (-1070))) (-15 -1957 ((-355) (-1070) (-1070))) (-15 -1957 ((-355) (-1070))) (-15 -3912 ((-355) (-1070) (-1070))) (-15 -3273 ((-1174))) (-15 -3868 ((-355) (-355))) (-15 -2316 ((-355) (-1070) (-355))) (-15 -2316 ((-355) (-1070) (-1070) (-355))) (-6 -4248))) NIL (((-93) (-129)) (T -93)) NIL -(-13 (-10 -7 (-6 -4244) (-6 (-4246 "*")) (-6 -4245) (-6 -4241) (-6 -4239) (-6 -4238) (-6 -4237) (-6 -4242) (-6 -4236) (-6 -4235) (-6 -4234) (-6 -4233) (-6 -4232) (-6 -4240) (-6 -4243) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4231))) -((-3924 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3139 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-523))) 22)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 14)) (-2783 (((-1034) $) NIL)) (-3223 ((|#1| $ |#1|) 11)) (-3208 (($ $ $) NIL)) (-1714 (($ $ $) NIL)) (-1458 (((-794) $) 20)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2767 (($) 8 T CONST)) (-3983 (((-108) $ $) 10)) (-4098 (($ $ $) NIL)) (** (($ $ (-852)) 28) (($ $ (-710)) NIL) (($ $ (-523)) 16)) (* (($ $ $) 29))) -(((-94 |#1|) (-13 (-448) (-263 |#1| |#1|) (-10 -8 (-15 -3139 ($ (-1 |#1| |#1|))) (-15 -3139 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3139 ($ (-1 |#1| |#1| (-523)))))) (-973)) (T -94)) -((-3139 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-94 *3)))) (-3139 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-94 *3)))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-523))) (-4 *3 (-973)) (-5 *1 (-94 *3))))) -(-13 (-448) (-263 |#1| |#1|) (-10 -8 (-15 -3139 ($ (-1 |#1| |#1|))) (-15 -3139 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3139 ($ (-1 |#1| |#1| (-523)))))) -((-2250 (((-394 |#2|) |#2| (-589 |#2|)) 10) (((-394 |#2|) |#2| |#2|) 11))) -(((-95 |#1| |#2|) (-10 -7 (-15 -2250 ((-394 |#2|) |#2| |#2|)) (-15 -2250 ((-394 |#2|) |#2| (-589 |#2|)))) (-13 (-427) (-136)) (-1144 |#1|)) (T -95)) -((-2250 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-13 (-427) (-136))) (-5 *2 (-394 *3)) (-5 *1 (-95 *5 *3)))) (-2250 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-427) (-136))) (-5 *2 (-394 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1144 *4))))) -(-10 -7 (-15 -2250 ((-394 |#2|) |#2| |#2|)) (-15 -2250 ((-394 |#2|) |#2| (-589 |#2|)))) -((-3924 (((-108) $ $) 10))) -(((-96 |#1|) (-10 -8 (-15 -3924 ((-108) |#1| |#1|))) (-97)) (T -96)) -NIL -(-10 -8 (-15 -3924 ((-108) |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-3983 (((-108) $ $) 6))) +(-13 (-10 -7 (-6 -4248) (-6 (-4250 "*")) (-6 -4249) (-6 -4245) (-6 -4243) (-6 -4242) (-6 -4241) (-6 -4246) (-6 -4240) (-6 -4239) (-6 -4238) (-6 -4237) (-6 -4236) (-6 -4244) (-6 -4247) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4235))) +((-1680 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) NIL)) (-2769 (((-108) $) NIL)) (-3939 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-523))) 22)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 14)) (-3951 (((-1034) $) NIL)) (-1937 ((|#1| $ |#1|) 11)) (-3361 (($ $ $) NIL)) (-2892 (($ $ $) NIL)) (-1691 (((-794) $) 20)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1891 (($) 8 T CONST)) (-3941 (((-108) $ $) 10)) (-4074 (($ $ $) NIL)) (** (($ $ (-852)) 28) (($ $ (-710)) NIL) (($ $ (-523)) 16)) (* (($ $ $) 29))) +(((-94 |#1|) (-13 (-448) (-263 |#1| |#1|) (-10 -8 (-15 -3939 ($ (-1 |#1| |#1|))) (-15 -3939 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3939 ($ (-1 |#1| |#1| (-523)))))) (-973)) (T -94)) +((-3939 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-94 *3)))) (-3939 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-94 *3)))) (-3939 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-523))) (-4 *3 (-973)) (-5 *1 (-94 *3))))) +(-13 (-448) (-263 |#1| |#1|) (-10 -8 (-15 -3939 ($ (-1 |#1| |#1|))) (-15 -3939 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3939 ($ (-1 |#1| |#1| (-523)))))) +((-3295 (((-394 |#2|) |#2| (-589 |#2|)) 10) (((-394 |#2|) |#2| |#2|) 11))) +(((-95 |#1| |#2|) (-10 -7 (-15 -3295 ((-394 |#2|) |#2| |#2|)) (-15 -3295 ((-394 |#2|) |#2| (-589 |#2|)))) (-13 (-427) (-136)) (-1145 |#1|)) (T -95)) +((-3295 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-13 (-427) (-136))) (-5 *2 (-394 *3)) (-5 *1 (-95 *5 *3)))) (-3295 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-427) (-136))) (-5 *2 (-394 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1145 *4))))) +(-10 -7 (-15 -3295 ((-394 |#2|) |#2| |#2|)) (-15 -3295 ((-394 |#2|) |#2| (-589 |#2|)))) +((-1680 (((-108) $ $) 10))) +(((-96 |#1|) (-10 -8 (-15 -1680 ((-108) |#1| |#1|))) (-97)) (T -96)) +NIL +(-10 -8 (-15 -1680 ((-108) |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-3941 (((-108) $ $) 6))) (((-97) (-129)) (T -97)) -((-3924 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-3983 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))) -(-13 (-10 -8 (-15 -3983 ((-108) $ $)) (-15 -3924 ((-108) $ $)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) 13 (|has| $ (-6 -4245)))) (-2541 (($ $ $) NIL (|has| $ (-6 -4245)))) (-2971 (($ $ $) NIL (|has| $ (-6 -4245)))) (-1814 (($ $ (-589 |#1|)) 15)) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "left" $) NIL (|has| $ (-6 -4245))) (($ $ "right" $) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3159 (($ $) 11)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4165 (($ $ |#1| $) 17)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2241 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3256 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-589 |#1|) |#1| |#1| |#1|)) 35)) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3149 (($ $) 10)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) 12)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 9)) (-3988 (($) 16)) (-3223 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1549 (((-523) $ $) NIL)) (-2524 (((-108) $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4063 (($ (-710) |#1|) 19)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -4063 ($ (-710) |#1|)) (-15 -1814 ($ $ (-589 |#1|))) (-15 -2241 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2241 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3256 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3256 ($ $ |#1| (-1 (-589 |#1|) |#1| |#1| |#1|))))) (-1016)) (T -98)) -((-4063 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-98 *3)) (-4 *3 (-1016)))) (-1814 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-2241 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1016)))) (-2241 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-3256 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-98 *2)))) (-3256 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-589 *2) *2 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-98 *2))))) -(-13 (-121 |#1|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -4063 ($ (-710) |#1|)) (-15 -1814 ($ $ (-589 |#1|))) (-15 -2241 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2241 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3256 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3256 ($ $ |#1| (-1 (-589 |#1|) |#1| |#1| |#1|))))) -((-1737 ((|#3| |#2| |#2|) 29)) (-3833 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4246 "*"))))) (-4069 ((|#3| |#2| |#2|) 30)) (-2627 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4246 "*")))))) -(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1737 (|#3| |#2| |#2|)) (-15 -4069 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4246 "*"))) (PROGN (-15 -3833 (|#1| |#2| |#2|)) (-15 -2627 (|#1| |#2|))) |%noBranch|)) (-973) (-1144 |#1|) (-627 |#1| |#4| |#5|) (-349 |#1|) (-349 |#1|)) (T -99)) -((-2627 (*1 *2 *3) (-12 (|has| *2 (-6 (-4246 "*"))) (-4 *5 (-349 *2)) (-4 *6 (-349 *2)) (-4 *2 (-973)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1144 *2)) (-4 *4 (-627 *2 *5 *6)))) (-3833 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4246 "*"))) (-4 *5 (-349 *2)) (-4 *6 (-349 *2)) (-4 *2 (-973)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1144 *2)) (-4 *4 (-627 *2 *5 *6)))) (-4069 (*1 *2 *3 *3) (-12 (-4 *4 (-973)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1144 *4)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)))) (-1737 (*1 *2 *3 *3) (-12 (-4 *4 (-973)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1144 *4)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4))))) -(-10 -7 (-15 -1737 (|#3| |#2| |#2|)) (-15 -4069 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4246 "*"))) (PROGN (-15 -3833 (|#1| |#2| |#2|)) (-15 -2627 (|#1| |#2|))) |%noBranch|)) -((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3538 (((-589 (-1087))) 32)) (-1433 (((-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) (|:| |singularities| (-1068 (-203)))) (-1087)) 35)) (-3983 (((-108) $ $) NIL))) -(((-100) (-13 (-1016) (-10 -7 (-15 -3538 ((-589 (-1087)))) (-15 -1433 ((-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) (|:| |singularities| (-1068 (-203)))) (-1087))) (-6 -4244)))) (T -100)) -((-3538 (*1 *2) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-100)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) (|:| |singularities| (-1068 (-203))))) (-5 *1 (-100))))) -(-13 (-1016) (-10 -7 (-15 -3538 ((-589 (-1087)))) (-15 -1433 ((-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) (|:| |singularities| (-1068 (-203)))) (-1087))) (-6 -4244))) -((-2401 (($ (-589 |#2|)) 11))) -(((-101 |#1| |#2|) (-10 -8 (-15 -2401 (|#1| (-589 |#2|)))) (-102 |#2|) (-1122)) (T -101)) -NIL -(-10 -8 (-15 -2401 (|#1| (-589 |#2|)))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-102 |#1|) (-129) (-1122)) (T -102)) -((-2401 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-4 *1 (-102 *3)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1122)))) (-3450 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1122)))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1122))))) -(-13 (-462 |t#1|) (-10 -8 (-6 -4245) (-15 -2401 ($ (-589 |t#1|))) (-15 -3761 (|t#1| $)) (-15 -3450 ($ |t#1| $)) (-15 -1934 (|t#1| $)))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-523) $) NIL (|has| (-523) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-523) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-523) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-523) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-523) (-964 (-523))))) (-3474 (((-523) $) NIL) (((-1087) $) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-523) (-964 (-523)))) (((-523) $) NIL (|has| (-523) (-964 (-523))))) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-523) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| (-523) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-523) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-523) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-523) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| (-523) (-1063)))) (-4114 (((-108) $) NIL (|has| (-523) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-523) (-786)))) (-3612 (($ (-1 (-523) (-523)) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-523) (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-523) (-284))) (((-383 (-523)) $) NIL)) (-3722 (((-523) $) NIL (|has| (-523) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-523)) (-589 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-523) (-523)) NIL (|has| (-523) (-286 (-523)))) (($ $ (-271 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-271 (-523)))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-1087)) (-589 (-523))) NIL (|has| (-523) (-484 (-1087) (-523)))) (($ $ (-1087) (-523)) NIL (|has| (-523) (-484 (-1087) (-523))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-523)) NIL (|has| (-523) (-263 (-523) (-523))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-523) $) NIL)) (-3663 (((-823 (-523)) $) NIL (|has| (-523) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-523) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-523) (-564 (-499)))) (((-355) $) NIL (|has| (-523) (-949))) (((-203) $) NIL (|has| (-523) (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-523) (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 7) (($ (-523)) NIL) (($ (-1087)) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL) (((-932 2) $) 9)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-523) (-840))) (|has| (-523) (-134))))) (-1621 (((-710)) NIL)) (-1886 (((-523) $) NIL (|has| (-523) (-508)))) (-2716 (($ (-383 (-523))) 8)) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL (|has| (-523) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4098 (($ $ $) NIL) (($ (-523) (-523)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-523) $) NIL) (($ $ (-523)) NIL))) -(((-103) (-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -1458 ((-932 2) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -2716 ($ (-383 (-523))))))) (T -103)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-932 2)) (-5 *1 (-103)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) (-2716 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103))))) -(-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -1458 ((-932 2) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -2716 ($ (-383 (-523)))))) -((-3692 (((-589 (-895)) $) 13)) (-4038 (((-1087) $) 10)) (-1458 (((-794) $) 22)) (-3931 (($ (-1087) (-589 (-895))) 14))) -(((-104) (-13 (-563 (-794)) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -3692 ((-589 (-895)) $)) (-15 -3931 ($ (-1087) (-589 (-895))))))) (T -104)) -((-4038 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-104)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-589 (-895))) (-5 *1 (-104)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-895))) (-5 *1 (-104))))) -(-13 (-563 (-794)) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -3692 ((-589 (-895)) $)) (-15 -3931 ($ (-1087) (-589 (-895)))))) -((-3924 (((-108) $ $) NIL)) (-3715 (((-1034) $ (-1034)) 23)) (-2647 (($ $ (-1070)) 17)) (-4096 (((-3 (-1034) "failed") $) 22)) (-3114 (((-1034) $) 20)) (-1316 (((-1034) $ (-1034)) 25)) (-1479 (((-1034) $) 24)) (-2625 (($ (-364)) NIL) (($ (-364) (-1070)) 16)) (-4038 (((-364) $) NIL)) (-3779 (((-1070) $) NIL)) (-1998 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-1685 (($ $) 18)) (-3983 (((-108) $ $) NIL))) -(((-105) (-13 (-340 (-364) (-1034)) (-10 -8 (-15 -4096 ((-3 (-1034) "failed") $)) (-15 -1479 ((-1034) $)) (-15 -1316 ((-1034) $ (-1034)))))) (T -105)) -((-4096 (*1 *2 *1) (|partial| -12 (-5 *2 (-1034)) (-5 *1 (-105)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-105)))) (-1316 (*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-105))))) -(-13 (-340 (-364) (-1034)) (-10 -8 (-15 -4096 ((-3 (-1034) "failed") $)) (-15 -1479 ((-1034) $)) (-15 -1316 ((-1034) $ (-1034))))) -((-3924 (((-108) $ $) NIL)) (-2573 (($ $) NIL)) (-1983 (($ $ $) NIL)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) $) NIL (|has| (-108) (-786))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1506 (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| (-108) (-786)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4245)))) (-3974 (($ $) NIL (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1641 (((-108) $ (-1135 (-523)) (-108)) NIL (|has| $ (-6 -4245))) (((-108) $ (-523) (-108)) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-2557 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-2437 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-2863 (((-108) $ (-523) (-108)) NIL (|has| $ (-6 -4245)))) (-2795 (((-108) $ (-523)) NIL)) (-1479 (((-523) (-108) $ (-523)) NIL (|has| (-108) (-1016))) (((-523) (-108) $) NIL (|has| (-108) (-1016))) (((-523) (-1 (-108) (-108)) $) NIL)) (-1666 (((-589 (-108)) $) NIL (|has| $ (-6 -4244)))) (-4090 (($ $ $) NIL)) (-3900 (($ $) NIL)) (-3368 (($ $ $) NIL)) (-3052 (($ (-710) (-108)) 8)) (-3370 (($ $ $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL)) (-2178 (($ $ $) NIL (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-2136 (((-589 (-108)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL)) (-2852 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2847 (($ $ $ (-523)) NIL) (($ (-108) $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-108) $) NIL (|has| (-523) (-786)))) (-2114 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-4203 (($ $ (-108)) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-108)) (-589 (-108))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-271 (-108))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-589 (-271 (-108)))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-1264 (((-589 (-108)) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 (($ $ (-1135 (-523))) NIL) (((-108) $ (-523)) NIL) (((-108) $ (-523) (-108)) NIL)) (-1469 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-2792 (((-710) (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016)))) (((-710) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-108) (-564 (-499))))) (-1472 (($ (-589 (-108))) NIL)) (-2326 (($ (-589 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-1458 (((-794) $) NIL)) (-1329 (($ (-710) (-108)) 9)) (-2096 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-4099 (($ $ $) NIL)) (-2364 (($ $) NIL)) (-3651 (($ $ $) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-3640 (($ $ $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-106) (-13 (-119) (-10 -8 (-15 -1329 ($ (-710) (-108)))))) (T -106)) -((-1329 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-108)) (-5 *1 (-106))))) -(-13 (-119) (-10 -8 (-15 -1329 ($ (-710) (-108))))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +((-1680 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-3941 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))) +(-13 (-10 -8 (-15 -3941 ((-108) $ $)) (-15 -1680 ((-108) $ $)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3370 ((|#1| $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1487 ((|#1| $ |#1|) 13 (|has| $ (-6 -4249)))) (-1398 (($ $ $) NIL (|has| $ (-6 -4249)))) (-2955 (($ $ $) NIL (|has| $ (-6 -4249)))) (-1420 (($ $ (-589 |#1|)) 15)) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4249))) (($ $ "left" $) NIL (|has| $ (-6 -4249))) (($ $ "right" $) NIL (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) NIL (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-3855 (($ $) 11)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) NIL)) (-3675 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1864 (($ $ |#1| $) 17)) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3211 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3812 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-589 |#1|) |#1| |#1| |#1|)) 35)) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-3844 (($ $) 10)) (-1701 (((-589 |#1|) $) NIL)) (-1799 (((-108) $) 12)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 9)) (-3320 (($) 16)) (-1937 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3766 (((-523) $ $) NIL)) (-1221 (((-108) $) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) NIL)) (-3313 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2785 (($ (-710) |#1|) 19)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4248) (-6 -4249) (-15 -2785 ($ (-710) |#1|)) (-15 -1420 ($ $ (-589 |#1|))) (-15 -3211 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3211 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3812 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3812 ($ $ |#1| (-1 (-589 |#1|) |#1| |#1| |#1|))))) (-1016)) (T -98)) +((-2785 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-98 *3)) (-4 *3 (-1016)))) (-1420 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-3211 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1016)))) (-3211 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-3812 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-98 *2)))) (-3812 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-589 *2) *2 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-98 *2))))) +(-13 (-121 |#1|) (-10 -8 (-6 -4248) (-6 -4249) (-15 -2785 ($ (-710) |#1|)) (-15 -1420 ($ $ (-589 |#1|))) (-15 -3211 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3211 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3812 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3812 ($ $ |#1| (-1 (-589 |#1|) |#1| |#1| |#1|))))) +((-1952 ((|#3| |#2| |#2|) 29)) (-2471 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4250 "*"))))) (-2833 ((|#3| |#2| |#2|) 30)) (-2761 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4250 "*")))))) +(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1952 (|#3| |#2| |#2|)) (-15 -2833 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4250 "*"))) (PROGN (-15 -2471 (|#1| |#2| |#2|)) (-15 -2761 (|#1| |#2|))) |%noBranch|)) (-973) (-1145 |#1|) (-627 |#1| |#4| |#5|) (-349 |#1|) (-349 |#1|)) (T -99)) +((-2761 (*1 *2 *3) (-12 (|has| *2 (-6 (-4250 "*"))) (-4 *5 (-349 *2)) (-4 *6 (-349 *2)) (-4 *2 (-973)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1145 *2)) (-4 *4 (-627 *2 *5 *6)))) (-2471 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4250 "*"))) (-4 *5 (-349 *2)) (-4 *6 (-349 *2)) (-4 *2 (-973)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1145 *2)) (-4 *4 (-627 *2 *5 *6)))) (-2833 (*1 *2 *3 *3) (-12 (-4 *4 (-973)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1145 *4)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)))) (-1952 (*1 *2 *3 *3) (-12 (-4 *4 (-973)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1145 *4)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4))))) +(-10 -7 (-15 -1952 (|#3| |#2| |#2|)) (-15 -2833 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4250 "*"))) (PROGN (-15 -2471 (|#1| |#2| |#2|)) (-15 -2761 (|#1| |#2|))) |%noBranch|)) +((-1680 (((-108) $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-1659 (((-589 (-1087))) 32)) (-2078 (((-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) (|:| |singularities| (-1068 (-203)))) (-1087)) 35)) (-3941 (((-108) $ $) NIL))) +(((-100) (-13 (-1016) (-10 -7 (-15 -1659 ((-589 (-1087)))) (-15 -2078 ((-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) (|:| |singularities| (-1068 (-203)))) (-1087))) (-6 -4248)))) (T -100)) +((-1659 (*1 *2) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-100)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) (|:| |singularities| (-1068 (-203))))) (-5 *1 (-100))))) +(-13 (-1016) (-10 -7 (-15 -1659 ((-589 (-1087)))) (-15 -2078 ((-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) (|:| |singularities| (-1068 (-203)))) (-1087))) (-6 -4248))) +((-2417 (($ (-589 |#2|)) 11))) +(((-101 |#1| |#2|) (-10 -8 (-15 -2417 (|#1| (-589 |#2|)))) (-102 |#2|) (-1123)) (T -101)) +NIL +(-10 -8 (-15 -2417 (|#1| (-589 |#2|)))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) 8)) (-4189 (($) 7 T CONST)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1293 ((|#1| $) 39)) (-3108 (($ |#1| $) 40)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3048 ((|#1| $) 41)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2417 (($ (-589 |#1|)) 42)) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-102 |#1|) (-129) (-1123)) (T -102)) +((-2417 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-4 *1 (-102 *3)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1123)))) (-3108 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1123)))) (-1293 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1123))))) +(-13 (-462 |t#1|) (-10 -8 (-6 -4249) (-15 -2417 ($ (-589 |t#1|))) (-15 -3048 (|t#1| $)) (-15 -3108 ($ |t#1| $)) (-15 -1293 (|t#1| $)))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2046 (((-523) $) NIL (|has| (-523) (-284)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL (|has| (-523) (-759)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-523) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-523) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-523) (-964 (-523))))) (-3508 (((-523) $) NIL) (((-1087) $) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-523) (-964 (-523)))) (((-523) $) NIL (|has| (-523) (-964 (-523))))) (-4059 (($ $ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| (-523) (-508)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-3712 (((-108) $) NIL (|has| (-523) (-759)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-523) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-523) (-817 (-355))))) (-2769 (((-108) $) NIL)) (-1296 (($ $) NIL)) (-3316 (((-523) $) NIL)) (-2738 (((-3 $ "failed") $) NIL (|has| (-523) (-1063)))) (-2057 (((-108) $) NIL (|has| (-523) (-759)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3239 (($ $ $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| (-523) (-786)))) (-1345 (($ (-1 (-523) (-523)) $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| (-523) (-1063)) CONST)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4110 (($ $) NIL (|has| (-523) (-284))) (((-383 (-523)) $) NIL)) (-2733 (((-523) $) NIL (|has| (-523) (-508)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2812 (($ $ (-589 (-523)) (-589 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-523) (-523)) NIL (|has| (-523) (-286 (-523)))) (($ $ (-271 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-271 (-523)))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-1087)) (-589 (-523))) NIL (|has| (-523) (-484 (-1087) (-523)))) (($ $ (-1087) (-523)) NIL (|has| (-523) (-484 (-1087) (-523))))) (-3413 (((-710) $) NIL)) (-1937 (($ $ (-523)) NIL (|has| (-523) (-263 (-523) (-523))))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3984 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-2793 (($ $) NIL)) (-3329 (((-523) $) NIL)) (-1400 (((-823 (-523)) $) NIL (|has| (-523) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-523) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-523) (-564 (-499)))) (((-355) $) NIL (|has| (-523) (-949))) (((-203) $) NIL (|has| (-523) (-949)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-523) (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 7) (($ (-523)) NIL) (($ (-1087)) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL) (((-932 2) $) 9)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| (-523) (-840))) (|has| (-523) (-134))))) (-3272 (((-710)) NIL)) (-3809 (((-523) $) NIL (|has| (-523) (-508)))) (-2425 (($ (-383 (-523))) 8)) (-2801 (((-108) $ $) NIL)) (-2695 (($ $) NIL (|has| (-523) (-759)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-4006 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3980 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3966 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4074 (($ $ $) NIL) (($ (-523) (-523)) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-523) $) NIL) (($ $ (-523)) NIL))) +(((-103) (-13 (-921 (-523)) (-10 -8 (-15 -1691 ((-383 (-523)) $)) (-15 -1691 ((-932 2) $)) (-15 -4110 ((-383 (-523)) $)) (-15 -2425 ($ (-383 (-523))))))) (T -103)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-932 2)) (-5 *1 (-103)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) (-2425 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103))))) +(-13 (-921 (-523)) (-10 -8 (-15 -1691 ((-383 (-523)) $)) (-15 -1691 ((-932 2) $)) (-15 -4110 ((-383 (-523)) $)) (-15 -2425 ($ (-383 (-523)))))) +((-1354 (((-589 (-895)) $) 13)) (-4198 (((-1087) $) 10)) (-1691 (((-794) $) 22)) (-4036 (($ (-1087) (-589 (-895))) 14))) +(((-104) (-13 (-563 (-794)) (-10 -8 (-15 -4198 ((-1087) $)) (-15 -1354 ((-589 (-895)) $)) (-15 -4036 ($ (-1087) (-589 (-895))))))) (T -104)) +((-4198 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-104)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-589 (-895))) (-5 *1 (-104)))) (-4036 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-895))) (-5 *1 (-104))))) +(-13 (-563 (-794)) (-10 -8 (-15 -4198 ((-1087) $)) (-15 -1354 ((-589 (-895)) $)) (-15 -4036 ($ (-1087) (-589 (-895)))))) +((-1680 (((-108) $ $) NIL)) (-2674 (((-1034) $ (-1034)) 24)) (-2949 (($ $ (-1070)) 17)) (-3044 (((-3 (-1034) "failed") $) 23)) (-1928 (((-1034) $) 21)) (-3266 (((-1034) $ (-1034)) 26)) (-3449 (((-1034) $) 25)) (-2647 (($ (-364)) NIL) (($ (-364) (-1070)) 16)) (-4198 (((-364) $) NIL)) (-2032 (((-1070) $) NIL)) (-2541 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-2667 (($ $) 18)) (-3941 (((-108) $ $) NIL))) +(((-105) (-13 (-340 (-364) (-1034)) (-10 -8 (-15 -3044 ((-3 (-1034) "failed") $)) (-15 -3449 ((-1034) $)) (-15 -3266 ((-1034) $ (-1034)))))) (T -105)) +((-3044 (*1 *2 *1) (|partial| -12 (-5 *2 (-1034)) (-5 *1 (-105)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-105)))) (-3266 (*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-105))))) +(-13 (-340 (-364) (-1034)) (-10 -8 (-15 -3044 ((-3 (-1034) "failed") $)) (-15 -3449 ((-1034) $)) (-15 -3266 ((-1034) $ (-1034))))) +((-1680 (((-108) $ $) NIL)) (-2602 (($ $) NIL)) (-2544 (($ $ $) NIL)) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) $) NIL (|has| (-108) (-786))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1632 (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| (-108) (-786)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4249)))) (-1581 (($ $) NIL (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1849 (((-108) $ (-1136 (-523)) (-108)) NIL (|has| $ (-6 -4249))) (((-108) $ (-523) (-108)) NIL (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016))))) (-2514 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4248))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016))))) (-2116 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016))))) (-2053 (((-108) $ (-523) (-108)) NIL (|has| $ (-6 -4249)))) (-2000 (((-108) $ (-523)) NIL)) (-3449 (((-523) (-108) $ (-523)) NIL (|has| (-108) (-1016))) (((-523) (-108) $) NIL (|has| (-108) (-1016))) (((-523) (-1 (-108) (-108)) $) NIL)) (-1871 (((-589 (-108)) $) NIL (|has| $ (-6 -4248)))) (-3135 (($ $ $) NIL)) (-4179 (($ $) NIL)) (-3518 (($ $ $) NIL)) (-3733 (($ (-710) (-108)) 8)) (-3543 (($ $ $) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL)) (-3780 (($ $ $) NIL (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-1584 (((-589 (-108)) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL)) (-2043 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-2912 (($ $ $ (-523)) NIL) (($ (-108) $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL)) (-2428 (((-108) $) NIL (|has| (-523) (-786)))) (-2509 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-4141 (($ $ (-108)) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-108)) (-589 (-108))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-271 (-108))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-589 (-271 (-108)))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016))))) (-3973 (((-589 (-108)) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 (($ $ (-1136 (-523))) NIL) (((-108) $ (-523)) NIL) (((-108) $ (-523) (-108)) NIL)) (-1499 (($ $ (-1136 (-523))) NIL) (($ $ (-523)) NIL)) (-3977 (((-710) (-108) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016)))) (((-710) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4248)))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-108) (-564 (-499))))) (-1704 (($ (-589 (-108))) NIL)) (-2394 (($ (-589 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-1691 (((-794) $) NIL)) (-3401 (($ (-710) (-108)) 9)) (-2308 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4248)))) (-3147 (($ $ $) NIL)) (-2423 (($ $) NIL)) (-1269 (($ $ $) NIL)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) NIL)) (-1257 (($ $ $) NIL)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-106) (-13 (-119) (-10 -8 (-15 -3401 ($ (-710) (-108)))))) (T -106)) +((-3401 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-108)) (-5 *1 (-106))))) +(-13 (-119) (-10 -8 (-15 -3401 ($ (-710) (-108))))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) (((-107 |#1| |#2|) (-129) (-973) (-973)) (T -107)) NIL -(-13 (-591 |t#1|) (-979 |t#2|) (-10 -7 (-6 -4239) (-6 -4238))) +(-13 (-591 |t#1|) (-979 |t#2|) (-10 -7 (-6 -4243) (-6 -4242))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-979 |#2|) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2573 (($ $) 12)) (-1983 (($ $ $) 17)) (-1563 (($) 8 T CONST)) (-3994 (((-108) $) 7)) (-1703 (((-710)) 25)) (-4032 (($) 31)) (-4090 (($ $ $) 15)) (-3900 (($ $) 10)) (-3368 (($ $ $) 18)) (-3370 (($ $ $) 19)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2072 (((-852) $) 30)) (-3779 (((-1070) $) NIL)) (-3878 (($ (-852)) 29)) (-1971 (($ $ $) 21)) (-2783 (((-1034) $) NIL)) (-3298 (($) 9 T CONST)) (-2471 (($ $ $) 22)) (-3663 (((-499) $) 37)) (-1458 (((-794) $) 40)) (-4099 (($ $ $) 13)) (-2364 (($ $) 11)) (-3651 (($ $ $) 16)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 20)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 23)) (-3640 (($ $ $) 14))) -(((-108) (-13 (-786) (-344) (-604) (-897) (-564 (-499)) (-10 -8 (-15 -1563 ($) -3059) (-15 -3298 ($) -3059) (-15 -2364 ($ $)) (-15 -1983 ($ $ $)) (-15 -3370 ($ $ $)) (-15 -3368 ($ $ $)) (-15 -3994 ((-108) $))))) (T -108)) -((-1563 (*1 *1) (-5 *1 (-108))) (-3298 (*1 *1) (-5 *1 (-108))) (-2364 (*1 *1 *1) (-5 *1 (-108))) (-1983 (*1 *1 *1 *1) (-5 *1 (-108))) (-3370 (*1 *1 *1 *1) (-5 *1 (-108))) (-3368 (*1 *1 *1 *1) (-5 *1 (-108))) (-3994 (*1 *1 *1) (-5 *1 (-108)))) -(-13 (-786) (-344) (-604) (-897) (-564 (-499)) (-10 -8 (-15 -1563 ($) -3059) (-15 -3298 ($) -3059) (-15 -2364 ($ $)) (-15 -1983 ($ $ $)) (-15 -3370 ($ $ $)) (-15 -3368 ($ $ $)) (-15 -3994 ((-108) $)))) -((-2038 (((-3 (-1 |#1| (-589 |#1|)) "failed") (-110)) 18) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-589 |#1|))) 11) (((-3 |#1| "failed") (-110) (-589 |#1|)) 20)) (-2137 (((-3 (-589 (-1 |#1| (-589 |#1|))) "failed") (-110)) 24) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-589 (-1 |#1| (-589 |#1|)))) 26)) (-2861 (((-110) |#1|) 54 (|has| |#1| (-786)))) (-2275 (((-3 |#1| "failed") (-110)) 49 (|has| |#1| (-786))))) -(((-109 |#1|) (-10 -7 (-15 -2038 ((-3 |#1| "failed") (-110) (-589 |#1|))) (-15 -2038 ((-110) (-110) (-1 |#1| (-589 |#1|)))) (-15 -2038 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2038 ((-3 (-1 |#1| (-589 |#1|)) "failed") (-110))) (-15 -2137 ((-110) (-110) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2137 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2137 ((-3 (-589 (-1 |#1| (-589 |#1|))) "failed") (-110))) (IF (|has| |#1| (-786)) (PROGN (-15 -2861 ((-110) |#1|)) (-15 -2275 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1016)) (T -109)) -((-2275 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1016)) (-4 *2 (-786)) (-5 *1 (-109 *2)))) (-2861 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-786)) (-4 *3 (-1016)))) (-2137 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-589 (-1 *4 (-589 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1016)))) (-2137 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1016)) (-5 *1 (-109 *4)))) (-2137 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 (-1 *4 (-589 *4)))) (-4 *4 (-1016)) (-5 *1 (-109 *4)))) (-2038 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-589 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1016)))) (-2038 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1016)) (-5 *1 (-109 *4)))) (-2038 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-589 *4))) (-4 *4 (-1016)) (-5 *1 (-109 *4)))) (-2038 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-589 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1016))))) -(-10 -7 (-15 -2038 ((-3 |#1| "failed") (-110) (-589 |#1|))) (-15 -2038 ((-110) (-110) (-1 |#1| (-589 |#1|)))) (-15 -2038 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2038 ((-3 (-1 |#1| (-589 |#1|)) "failed") (-110))) (-15 -2137 ((-110) (-110) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2137 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2137 ((-3 (-589 (-1 |#1| (-589 |#1|))) "failed") (-110))) (IF (|has| |#1| (-786)) (PROGN (-15 -2861 ((-110) |#1|)) (-15 -2275 ((-3 |#1| "failed") (-110)))) |%noBranch|)) -((-3924 (((-108) $ $) NIL)) (-2656 (((-710) $) 68) (($ $ (-710)) 30)) (-2727 (((-108) $) 32)) (-4035 (($ $ (-1070) (-713)) 26)) (-3668 (($ $ (-44 (-1070) (-713))) 13)) (-3108 (((-3 (-713) "failed") $ (-1070)) 24)) (-3692 (((-44 (-1070) (-713)) $) 12)) (-1403 (($ (-1087)) 15) (($ (-1087) (-710)) 20)) (-4130 (((-108) $) 31)) (-2408 (((-108) $) 33)) (-4038 (((-1087) $) 8)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-3259 (((-108) $ (-1087)) 10)) (-4026 (($ $ (-1 (-499) (-589 (-499)))) 50) (((-3 (-1 (-499) (-589 (-499))) "failed") $) 54)) (-2783 (((-1034) $) NIL)) (-3718 (((-108) $ (-1070)) 29)) (-4185 (($ $ (-1 (-108) $ $)) 35)) (-3973 (((-3 (-1 (-794) (-589 (-794))) "failed") $) 52) (($ $ (-1 (-794) (-589 (-794)))) 41) (($ $ (-1 (-794) (-794))) 43)) (-2903 (($ $ (-1070)) 45)) (-1664 (($ $) 61)) (-1831 (($ $ (-1 (-108) $ $)) 36)) (-1458 (((-794) $) 48)) (-3326 (($ $ (-1070)) 27)) (-2922 (((-3 (-710) "failed") $) 56)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 67)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 73))) -(((-110) (-13 (-786) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -3692 ((-44 (-1070) (-713)) $)) (-15 -1664 ($ $)) (-15 -1403 ($ (-1087))) (-15 -1403 ($ (-1087) (-710))) (-15 -2922 ((-3 (-710) "failed") $)) (-15 -4130 ((-108) $)) (-15 -2727 ((-108) $)) (-15 -2408 ((-108) $)) (-15 -2656 ((-710) $)) (-15 -2656 ($ $ (-710))) (-15 -4185 ($ $ (-1 (-108) $ $))) (-15 -1831 ($ $ (-1 (-108) $ $))) (-15 -3973 ((-3 (-1 (-794) (-589 (-794))) "failed") $)) (-15 -3973 ($ $ (-1 (-794) (-589 (-794))))) (-15 -3973 ($ $ (-1 (-794) (-794)))) (-15 -4026 ($ $ (-1 (-499) (-589 (-499))))) (-15 -4026 ((-3 (-1 (-499) (-589 (-499))) "failed") $)) (-15 -3259 ((-108) $ (-1087))) (-15 -3718 ((-108) $ (-1070))) (-15 -3326 ($ $ (-1070))) (-15 -2903 ($ $ (-1070))) (-15 -3108 ((-3 (-713) "failed") $ (-1070))) (-15 -4035 ($ $ (-1070) (-713))) (-15 -3668 ($ $ (-44 (-1070) (-713))))))) (T -110)) -((-4038 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-110)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-44 (-1070) (-713))) (-5 *1 (-110)))) (-1664 (*1 *1 *1) (-5 *1 (-110))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-110)))) (-1403 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *1 (-110)))) (-2922 (*1 *2 *1) (|partial| -12 (-5 *2 (-710)) (-5 *1 (-110)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-110)))) (-2656 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-110)))) (-4185 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1831 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-3973 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-794) (-589 (-794)))) (-5 *1 (-110)))) (-3973 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-794) (-589 (-794)))) (-5 *1 (-110)))) (-3973 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-794) (-794))) (-5 *1 (-110)))) (-4026 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-499) (-589 (-499)))) (-5 *1 (-110)))) (-4026 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-499) (-589 (-499)))) (-5 *1 (-110)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-108)) (-5 *1 (-110)))) (-3718 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-110)))) (-3326 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-110)))) (-2903 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-110)))) (-3108 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1070)) (-5 *2 (-713)) (-5 *1 (-110)))) (-4035 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-713)) (-5 *1 (-110)))) (-3668 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1070) (-713))) (-5 *1 (-110))))) -(-13 (-786) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -3692 ((-44 (-1070) (-713)) $)) (-15 -1664 ($ $)) (-15 -1403 ($ (-1087))) (-15 -1403 ($ (-1087) (-710))) (-15 -2922 ((-3 (-710) "failed") $)) (-15 -4130 ((-108) $)) (-15 -2727 ((-108) $)) (-15 -2408 ((-108) $)) (-15 -2656 ((-710) $)) (-15 -2656 ($ $ (-710))) (-15 -4185 ($ $ (-1 (-108) $ $))) (-15 -1831 ($ $ (-1 (-108) $ $))) (-15 -3973 ((-3 (-1 (-794) (-589 (-794))) "failed") $)) (-15 -3973 ($ $ (-1 (-794) (-589 (-794))))) (-15 -3973 ($ $ (-1 (-794) (-794)))) (-15 -4026 ($ $ (-1 (-499) (-589 (-499))))) (-15 -4026 ((-3 (-1 (-499) (-589 (-499))) "failed") $)) (-15 -3259 ((-108) $ (-1087))) (-15 -3718 ((-108) $ (-1070))) (-15 -3326 ($ $ (-1070))) (-15 -2903 ($ $ (-1070))) (-15 -3108 ((-3 (-713) "failed") $ (-1070))) (-15 -4035 ($ $ (-1070) (-713))) (-15 -3668 ($ $ (-44 (-1070) (-713)))))) -((-2293 (((-523) |#2|) 36))) -(((-111 |#1| |#2|) (-10 -7 (-15 -2293 ((-523) |#2|))) (-13 (-339) (-964 (-383 (-523)))) (-1144 |#1|)) (T -111)) -((-2293 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-964 (-383 *2)))) (-5 *2 (-523)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1144 *4))))) -(-10 -7 (-15 -2293 ((-523) |#2|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $ (-523)) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2635 (($ (-1083 (-523)) (-523)) NIL)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2816 (($ $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1640 (((-710) $) NIL)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3507 (((-523)) NIL)) (-2329 (((-523) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4097 (($ $ (-523)) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1617 (((-1068 (-523)) $) NIL)) (-1353 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL)) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL)) (-2562 (((-523) $ (-523)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2602 (($ $) 12)) (-2544 (($ $ $) 17)) (-1719 (($) 8 T CONST)) (-3894 (((-108) $) 7)) (-2395 (((-710)) 25)) (-1631 (($) 31)) (-3135 (($ $ $) 15)) (-4179 (($ $) 10)) (-3518 (($ $ $) 18)) (-3543 (($ $ $) 19)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2060 (((-852) $) 30)) (-2032 (((-1070) $) NIL)) (-4013 (($ (-852)) 29)) (-2530 (($ $ $) 21)) (-3951 (((-1034) $) NIL)) (-3335 (($) 9 T CONST)) (-1911 (($ $ $) 22)) (-1400 (((-499) $) 37)) (-1691 (((-794) $) 40)) (-3147 (($ $ $) 13)) (-2423 (($ $) 11)) (-1269 (($ $ $) 16)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 20)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 23)) (-1257 (($ $ $) 14))) +(((-108) (-13 (-786) (-344) (-604) (-897) (-564 (-499)) (-10 -8 (-15 -1719 ($) -2501) (-15 -3335 ($) -2501) (-15 -2423 ($ $)) (-15 -2544 ($ $ $)) (-15 -3543 ($ $ $)) (-15 -3518 ($ $ $)) (-15 -3894 ((-108) $))))) (T -108)) +((-1719 (*1 *1) (-5 *1 (-108))) (-3335 (*1 *1) (-5 *1 (-108))) (-2423 (*1 *1 *1) (-5 *1 (-108))) (-2544 (*1 *1 *1 *1) (-5 *1 (-108))) (-3543 (*1 *1 *1 *1) (-5 *1 (-108))) (-3518 (*1 *1 *1 *1) (-5 *1 (-108))) (-3894 (*1 *1 *1) (-5 *1 (-108)))) +(-13 (-786) (-344) (-604) (-897) (-564 (-499)) (-10 -8 (-15 -1719 ($) -2501) (-15 -3335 ($) -2501) (-15 -2423 ($ $)) (-15 -2544 ($ $ $)) (-15 -3543 ($ $ $)) (-15 -3518 ($ $ $)) (-15 -3894 ((-108) $)))) +((-2898 (((-3 (-1 |#1| (-589 |#1|)) "failed") (-110)) 18) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-589 |#1|))) 11) (((-3 |#1| "failed") (-110) (-589 |#1|)) 20)) (-1593 (((-3 (-589 (-1 |#1| (-589 |#1|))) "failed") (-110)) 24) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-589 (-1 |#1| (-589 |#1|)))) 26)) (-1386 (((-110) |#1|) 54 (|has| |#1| (-786)))) (-3541 (((-3 |#1| "failed") (-110)) 49 (|has| |#1| (-786))))) +(((-109 |#1|) (-10 -7 (-15 -2898 ((-3 |#1| "failed") (-110) (-589 |#1|))) (-15 -2898 ((-110) (-110) (-1 |#1| (-589 |#1|)))) (-15 -2898 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2898 ((-3 (-1 |#1| (-589 |#1|)) "failed") (-110))) (-15 -1593 ((-110) (-110) (-589 (-1 |#1| (-589 |#1|))))) (-15 -1593 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1593 ((-3 (-589 (-1 |#1| (-589 |#1|))) "failed") (-110))) (IF (|has| |#1| (-786)) (PROGN (-15 -1386 ((-110) |#1|)) (-15 -3541 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1016)) (T -109)) +((-3541 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1016)) (-4 *2 (-786)) (-5 *1 (-109 *2)))) (-1386 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-786)) (-4 *3 (-1016)))) (-1593 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-589 (-1 *4 (-589 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1016)))) (-1593 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1016)) (-5 *1 (-109 *4)))) (-1593 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 (-1 *4 (-589 *4)))) (-4 *4 (-1016)) (-5 *1 (-109 *4)))) (-2898 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-589 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1016)))) (-2898 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1016)) (-5 *1 (-109 *4)))) (-2898 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-589 *4))) (-4 *4 (-1016)) (-5 *1 (-109 *4)))) (-2898 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-589 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1016))))) +(-10 -7 (-15 -2898 ((-3 |#1| "failed") (-110) (-589 |#1|))) (-15 -2898 ((-110) (-110) (-1 |#1| (-589 |#1|)))) (-15 -2898 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2898 ((-3 (-1 |#1| (-589 |#1|)) "failed") (-110))) (-15 -1593 ((-110) (-110) (-589 (-1 |#1| (-589 |#1|))))) (-15 -1593 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1593 ((-3 (-589 (-1 |#1| (-589 |#1|))) "failed") (-110))) (IF (|has| |#1| (-786)) (PROGN (-15 -1386 ((-110) |#1|)) (-15 -3541 ((-3 |#1| "failed") (-110)))) |%noBranch|)) +((-1680 (((-108) $ $) NIL)) (-3038 (((-710) $) 70) (($ $ (-710)) 30)) (-2529 (((-108) $) 32)) (-3719 (($ $ (-1070) (-713)) 26)) (-3444 (($ $ (-44 (-1070) (-713))) 13)) (-2031 (((-3 (-713) "failed") $ (-1070)) 24)) (-1354 (((-44 (-1070) (-713)) $) 12)) (-2947 (($ (-1087)) 15) (($ (-1087) (-710)) 20)) (-2214 (((-108) $) 31)) (-2493 (((-108) $) 33)) (-4198 (((-1087) $) 8)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3739 (((-108) $ (-1087)) 10)) (-1299 (($ $ (-1 (-499) (-589 (-499)))) 50) (((-3 (-1 (-499) (-589 (-499))) "failed") $) 54)) (-3951 (((-1034) $) NIL)) (-2694 (((-108) $ (-1070)) 29)) (-3952 (($ $ (-1 (-108) $ $)) 35)) (-1239 (((-3 (-1 (-794) (-589 (-794))) "failed") $) 52) (($ $ (-1 (-794) (-589 (-794)))) 41) (($ $ (-1 (-794) (-794))) 43)) (-3509 (($ $ (-1070)) 45)) (-1874 (($ $) 61)) (-1556 (($ $ (-1 (-108) $ $)) 36)) (-1691 (((-794) $) 48)) (-3472 (($ $ (-1070)) 27)) (-3694 (((-3 (-710) "failed") $) 56)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 69)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 77))) +(((-110) (-13 (-786) (-10 -8 (-15 -4198 ((-1087) $)) (-15 -1354 ((-44 (-1070) (-713)) $)) (-15 -1874 ($ $)) (-15 -2947 ($ (-1087))) (-15 -2947 ($ (-1087) (-710))) (-15 -3694 ((-3 (-710) "failed") $)) (-15 -2214 ((-108) $)) (-15 -2529 ((-108) $)) (-15 -2493 ((-108) $)) (-15 -3038 ((-710) $)) (-15 -3038 ($ $ (-710))) (-15 -3952 ($ $ (-1 (-108) $ $))) (-15 -1556 ($ $ (-1 (-108) $ $))) (-15 -1239 ((-3 (-1 (-794) (-589 (-794))) "failed") $)) (-15 -1239 ($ $ (-1 (-794) (-589 (-794))))) (-15 -1239 ($ $ (-1 (-794) (-794)))) (-15 -1299 ($ $ (-1 (-499) (-589 (-499))))) (-15 -1299 ((-3 (-1 (-499) (-589 (-499))) "failed") $)) (-15 -3739 ((-108) $ (-1087))) (-15 -2694 ((-108) $ (-1070))) (-15 -3472 ($ $ (-1070))) (-15 -3509 ($ $ (-1070))) (-15 -2031 ((-3 (-713) "failed") $ (-1070))) (-15 -3719 ($ $ (-1070) (-713))) (-15 -3444 ($ $ (-44 (-1070) (-713))))))) (T -110)) +((-4198 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-110)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-44 (-1070) (-713))) (-5 *1 (-110)))) (-1874 (*1 *1 *1) (-5 *1 (-110))) (-2947 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-110)))) (-2947 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *1 (-110)))) (-3694 (*1 *2 *1) (|partial| -12 (-5 *2 (-710)) (-5 *1 (-110)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-110)))) (-3038 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-110)))) (-3952 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1556 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1239 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-794) (-589 (-794)))) (-5 *1 (-110)))) (-1239 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-794) (-589 (-794)))) (-5 *1 (-110)))) (-1239 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-794) (-794))) (-5 *1 (-110)))) (-1299 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-499) (-589 (-499)))) (-5 *1 (-110)))) (-1299 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-499) (-589 (-499)))) (-5 *1 (-110)))) (-3739 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2694 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-110)))) (-3472 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-110)))) (-3509 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-110)))) (-2031 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1070)) (-5 *2 (-713)) (-5 *1 (-110)))) (-3719 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-713)) (-5 *1 (-110)))) (-3444 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1070) (-713))) (-5 *1 (-110))))) +(-13 (-786) (-10 -8 (-15 -4198 ((-1087) $)) (-15 -1354 ((-44 (-1070) (-713)) $)) (-15 -1874 ($ $)) (-15 -2947 ($ (-1087))) (-15 -2947 ($ (-1087) (-710))) (-15 -3694 ((-3 (-710) "failed") $)) (-15 -2214 ((-108) $)) (-15 -2529 ((-108) $)) (-15 -2493 ((-108) $)) (-15 -3038 ((-710) $)) (-15 -3038 ($ $ (-710))) (-15 -3952 ($ $ (-1 (-108) $ $))) (-15 -1556 ($ $ (-1 (-108) $ $))) (-15 -1239 ((-3 (-1 (-794) (-589 (-794))) "failed") $)) (-15 -1239 ($ $ (-1 (-794) (-589 (-794))))) (-15 -1239 ($ $ (-1 (-794) (-794)))) (-15 -1299 ($ $ (-1 (-499) (-589 (-499))))) (-15 -1299 ((-3 (-1 (-499) (-589 (-499))) "failed") $)) (-15 -3739 ((-108) $ (-1087))) (-15 -2694 ((-108) $ (-1070))) (-15 -3472 ($ $ (-1070))) (-15 -3509 ($ $ (-1070))) (-15 -2031 ((-3 (-713) "failed") $ (-1070))) (-15 -3719 ($ $ (-1070) (-713))) (-15 -3444 ($ $ (-44 (-1070) (-713)))))) +((-2584 (((-523) |#2|) 36))) +(((-111 |#1| |#2|) (-10 -7 (-15 -2584 ((-523) |#2|))) (-13 (-339) (-964 (-383 (-523)))) (-1145 |#1|)) (T -111)) +((-2584 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-964 (-383 *2)))) (-5 *2 (-523)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1145 *4))))) +(-10 -7 (-15 -2584 ((-523) |#2|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2437 (($ $ (-523)) NIL)) (-2787 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-2838 (($ (-1083 (-523)) (-523)) NIL)) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-4012 (($ $) NIL)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3437 (((-710) $) NIL)) (-2769 (((-108) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2547 (((-523)) NIL)) (-2903 (((-523) $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3053 (($ $ (-523)) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3229 (((-1068 (-523)) $) NIL)) (-2488 (($ $) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL)) (-3272 (((-710)) NIL)) (-2801 (((-108) $ $) NIL)) (-4108 (((-523) $ (-523)) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL))) (((-112 |#1|) (-800 |#1|) (-523)) (T -112)) NIL (-800 |#1|) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-112 |#1|) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-112 |#1|) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-112 |#1|) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-112 |#1|) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-112 |#1|) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-112 |#1|) (-964 (-523))))) (-3474 (((-112 |#1|) $) NIL) (((-1087) $) NIL (|has| (-112 |#1|) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-112 |#1|) (-964 (-523)))) (((-523) $) NIL (|has| (-112 |#1|) (-964 (-523))))) (-1819 (($ $) NIL) (($ (-523) $) NIL)) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-112 |#1|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-112 |#1|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-112 |#1|))) (|:| |vec| (-1168 (-112 |#1|)))) (-629 $) (-1168 $)) NIL) (((-629 (-112 |#1|)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-112 |#1|) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| (-112 |#1|) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-112 |#1|) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-112 |#1|) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-112 |#1|) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1063)))) (-4114 (((-108) $) NIL (|has| (-112 |#1|) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-112 |#1|) (-786)))) (-2062 (($ $ $) NIL (|has| (-112 |#1|) (-786)))) (-3612 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-112 |#1|) (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-112 |#1|) (-284)))) (-3722 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-112 |#1|) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-112 |#1|) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-112 |#1|)) (-589 (-112 |#1|))) NIL (|has| (-112 |#1|) (-286 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-286 (-112 |#1|)))) (($ $ (-271 (-112 |#1|))) NIL (|has| (-112 |#1|) (-286 (-112 |#1|)))) (($ $ (-589 (-271 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-286 (-112 |#1|)))) (($ $ (-589 (-1087)) (-589 (-112 |#1|))) NIL (|has| (-112 |#1|) (-484 (-1087) (-112 |#1|)))) (($ $ (-1087) (-112 |#1|)) NIL (|has| (-112 |#1|) (-484 (-1087) (-112 |#1|))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-263 (-112 |#1|) (-112 |#1|))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| (-112 |#1|) (-211))) (($ $ (-710)) NIL (|has| (-112 |#1|) (-211))) (($ $ (-1087)) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-710)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-112 |#1|) $) NIL)) (-3663 (((-823 (-523)) $) NIL (|has| (-112 |#1|) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-112 |#1|) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-112 |#1|) (-564 (-499)))) (((-355) $) NIL (|has| (-112 |#1|) (-949))) (((-203) $) NIL (|has| (-112 |#1|) (-949)))) (-2947 (((-159 (-383 (-523))) $) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-112 |#1|) (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-112 |#1|)) NIL) (($ (-1087)) NIL (|has| (-112 |#1|) (-964 (-1087))))) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-112 |#1|) (-840))) (|has| (-112 |#1|) (-134))))) (-1621 (((-710)) NIL)) (-1886 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-508)))) (-1704 (((-108) $ $) NIL)) (-2562 (((-383 (-523)) $ (-523)) NIL)) (-2619 (($ $) NIL (|has| (-112 |#1|) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL (|has| (-112 |#1|) (-211))) (($ $ (-710)) NIL (|has| (-112 |#1|) (-211))) (($ $ (-1087)) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-710)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-112 |#1|) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-112 |#1|) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-112 |#1|) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-112 |#1|) (-786)))) (-4098 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL))) -(((-113 |#1|) (-13 (-921 (-112 |#1|)) (-10 -8 (-15 -2562 ((-383 (-523)) $ (-523))) (-15 -2947 ((-159 (-383 (-523))) $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)))) (-523)) (T -113)) -((-2562 (*1 *2 *1 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-523)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-113 *3)) (-14 *3 (-523)))) (-1819 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-523)))) (-1819 (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-113 *3)) (-14 *3 *2)))) -(-13 (-921 (-112 |#1|)) (-10 -8 (-15 -2562 ((-383 (-523)) $ (-523))) (-15 -2947 ((-159 (-383 (-523))) $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)))) -((-1641 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2645 (((-589 $) $) 27)) (-1238 (((-108) $ $) 32)) (-1973 (((-108) |#2| $) 36)) (-2726 (((-589 |#2|) $) 22)) (-3555 (((-108) $) 16)) (-3223 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2524 (((-108) $) 45)) (-1458 (((-794) $) 41)) (-2296 (((-589 $) $) 28)) (-3983 (((-108) $ $) 34)) (-2676 (((-710) $) 43))) -(((-114 |#1| |#2|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -1641 (|#1| |#1| "right" |#1|)) (-15 -1641 (|#1| |#1| "left" |#1|)) (-15 -3223 (|#1| |#1| "right")) (-15 -3223 (|#1| |#1| "left")) (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -1238 ((-108) |#1| |#1|)) (-15 -2726 ((-589 |#2|) |#1|)) (-15 -2524 ((-108) |#1|)) (-15 -3223 (|#2| |#1| "value")) (-15 -3555 ((-108) |#1|)) (-15 -2645 ((-589 |#1|) |#1|)) (-15 -2296 ((-589 |#1|) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1973 ((-108) |#2| |#1|)) (-15 -2676 ((-710) |#1|))) (-115 |#2|) (-1122)) (T -114)) -NIL -(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -1641 (|#1| |#1| "right" |#1|)) (-15 -1641 (|#1| |#1| "left" |#1|)) (-15 -3223 (|#1| |#1| "right")) (-15 -3223 (|#1| |#1| "left")) (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -1238 ((-108) |#1| |#1|)) (-15 -2726 ((-589 |#2|) |#1|)) (-15 -2524 ((-108) |#1|)) (-15 -3223 (|#2| |#1| "value")) (-15 -3555 ((-108) |#1|)) (-15 -2645 ((-589 |#1|) |#1|)) (-15 -2296 ((-589 |#1|) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1973 ((-108) |#2| |#1|)) (-15 -2676 ((-710) |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-2541 (($ $ $) 52 (|has| $ (-6 -4245)))) (-2971 (($ $ $) 54 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245))) (($ $ "left" $) 55 (|has| $ (-6 -4245))) (($ $ "right" $) 53 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-2518 (($) 7 T CONST)) (-3159 (($ $) 57)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3149 (($ $) 59)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1549 (((-523) $ $) 44)) (-2524 (((-108) $) 46)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-115 |#1|) (-129) (-1122)) (T -115)) -((-3149 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1122)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1122)))) (-3159 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1122)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1122)))) (-1641 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4245)) (-4 *1 (-115 *3)) (-4 *3 (-1122)))) (-2971 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-115 *2)) (-4 *2 (-1122)))) (-1641 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4245)) (-4 *1 (-115 *3)) (-4 *3 (-1122)))) (-2541 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-115 *2)) (-4 *2 (-1122))))) -(-13 (-938 |t#1|) (-10 -8 (-15 -3149 ($ $)) (-15 -3223 ($ $ "left")) (-15 -3159 ($ $)) (-15 -3223 ($ $ "right")) (IF (|has| $ (-6 -4245)) (PROGN (-15 -1641 ($ $ "left" $)) (-15 -2971 ($ $ $)) (-15 -1641 ($ $ "right" $)) (-15 -2541 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-2173 (((-108) |#1|) 24)) (-3925 (((-710) (-710)) 23) (((-710)) 22)) (-1948 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26))) -(((-116 |#1|) (-10 -7 (-15 -1948 ((-108) |#1|)) (-15 -1948 ((-108) |#1| (-108))) (-15 -3925 ((-710))) (-15 -3925 ((-710) (-710))) (-15 -2173 ((-108) |#1|))) (-1144 (-523))) (T -116)) -((-2173 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523))))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523))))) (-3925 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523))))) (-1948 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523))))) (-1948 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523)))))) -(-10 -7 (-15 -1948 ((-108) |#1|)) (-15 -1948 ((-108) |#1| (-108))) (-15 -3925 ((-710))) (-15 -3925 ((-710) (-710))) (-15 -2173 ((-108) |#1|))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) 15)) (-2063 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-2541 (($ $ $) 18 (|has| $ (-6 -4245)))) (-2971 (($ $ $) 20 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "left" $) NIL (|has| $ (-6 -4245))) (($ $ "right" $) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3159 (($ $) 17)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4165 (($ $ |#1| $) 23)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3149 (($ $) 19)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1880 (($ |#1| $) 24)) (-3450 (($ |#1| $) 10)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 14)) (-3988 (($) 8)) (-3223 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1549 (((-523) $ $) NIL)) (-2524 (((-108) $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4140 (($ (-589 |#1|)) 12)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4245) (-6 -4244) (-15 -4140 ($ (-589 |#1|))) (-15 -3450 ($ |#1| $)) (-15 -1880 ($ |#1| $)) (-15 -2063 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-786)) (T -117)) -((-4140 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-117 *3)))) (-3450 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-786)))) (-1880 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-786)))) (-2063 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-786))))) -(-13 (-121 |#1|) (-10 -8 (-6 -4245) (-6 -4244) (-15 -4140 ($ (-589 |#1|))) (-15 -3450 ($ |#1| $)) (-15 -1880 ($ |#1| $)) (-15 -2063 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2573 (($ $) 14)) (-3900 (($ $) 11)) (-3368 (($ $ $) 24)) (-3370 (($ $ $) 22)) (-2364 (($ $) 12)) (-3651 (($ $ $) 20)) (-3640 (($ $ $) 18))) -(((-118 |#1|) (-10 -8 (-15 -3368 (|#1| |#1| |#1|)) (-15 -3370 (|#1| |#1| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -3640 (|#1| |#1| |#1|)) (-15 -3651 (|#1| |#1| |#1|))) (-119)) (T -118)) -NIL -(-10 -8 (-15 -3368 (|#1| |#1| |#1|)) (-15 -3370 (|#1| |#1| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -3640 (|#1| |#1| |#1|)) (-15 -3651 (|#1| |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2573 (($ $) 104)) (-1983 (($ $ $) 25)) (-4207 (((-1173) $ (-523) (-523)) 67 (|has| $ (-6 -4245)))) (-1964 (((-108) $) 99 (|has| (-108) (-786))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-1506 (($ $) 103 (-12 (|has| (-108) (-786)) (|has| $ (-6 -4245)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4245)))) (-3974 (($ $) 98 (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-3079 (((-108) $ (-710)) 38)) (-1641 (((-108) $ (-1135 (-523)) (-108)) 89 (|has| $ (-6 -4245))) (((-108) $ (-523) (-108)) 55 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4244)))) (-2518 (($) 39 T CONST)) (-2867 (($ $) 101 (|has| $ (-6 -4245)))) (-3631 (($ $) 91)) (-1773 (($ $) 69 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4244))) (($ (-108) $) 70 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4244))))) (-2437 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4244))))) (-2863 (((-108) $ (-523) (-108)) 54 (|has| $ (-6 -4245)))) (-2795 (((-108) $ (-523)) 56)) (-1479 (((-523) (-108) $ (-523)) 96 (|has| (-108) (-1016))) (((-523) (-108) $) 95 (|has| (-108) (-1016))) (((-523) (-1 (-108) (-108)) $) 94)) (-1666 (((-589 (-108)) $) 46 (|has| $ (-6 -4244)))) (-4090 (($ $ $) 26)) (-3900 (($ $) 31)) (-3368 (($ $ $) 28)) (-3052 (($ (-710) (-108)) 78)) (-3370 (($ $ $) 29)) (-2346 (((-108) $ (-710)) 37)) (-4084 (((-523) $) 64 (|has| (-523) (-786)))) (-2454 (($ $ $) 13)) (-2178 (($ $ $) 97 (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-2136 (((-589 (-108)) $) 47 (|has| $ (-6 -4244)))) (-1973 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 63 (|has| (-523) (-786)))) (-2062 (($ $ $) 14)) (-2852 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-2866 (((-108) $ (-710)) 36)) (-3779 (((-1070) $) 9)) (-2847 (($ $ $ (-523)) 88) (($ (-108) $ (-523)) 87)) (-2412 (((-589 (-523)) $) 61)) (-4135 (((-108) (-523) $) 60)) (-2783 (((-1034) $) 10)) (-1738 (((-108) $) 65 (|has| (-523) (-786)))) (-2114 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-4203 (($ $ (-108)) 66 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-108)) (-589 (-108))) 53 (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-271 (-108))) 51 (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-589 (-271 (-108)))) 50 (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))))) (-3811 (((-108) $ $) 32)) (-1370 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-1264 (((-589 (-108)) $) 59)) (-3883 (((-108) $) 35)) (-3988 (($) 34)) (-3223 (($ $ (-1135 (-523))) 84) (((-108) $ (-523)) 58) (((-108) $ (-523) (-108)) 57)) (-1469 (($ $ (-1135 (-523))) 86) (($ $ (-523)) 85)) (-2792 (((-710) (-108) $) 48 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4244)))) (-3160 (($ $ $ (-523)) 100 (|has| $ (-6 -4245)))) (-1664 (($ $) 33)) (-3663 (((-499) $) 68 (|has| (-108) (-564 (-499))))) (-1472 (($ (-589 (-108))) 77)) (-2326 (($ (-589 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-1458 (((-794) $) 11)) (-2096 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4244)))) (-4099 (($ $ $) 27)) (-2364 (($ $) 30)) (-3651 (($ $ $) 106)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-3640 (($ $ $) 105)) (-2676 (((-710) $) 40 (|has| $ (-6 -4244))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2046 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-284)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-112 |#1|) (-840)))) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-112 |#1|) (-840)))) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL (|has| (-112 |#1|) (-759)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-112 |#1|) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-112 |#1|) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-112 |#1|) (-964 (-523))))) (-3508 (((-112 |#1|) $) NIL) (((-1087) $) NIL (|has| (-112 |#1|) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-112 |#1|) (-964 (-523)))) (((-523) $) NIL (|has| (-112 |#1|) (-964 (-523))))) (-1458 (($ $) NIL) (($ (-523) $) NIL)) (-4059 (($ $ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| (-112 |#1|) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| (-112 |#1|) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-112 |#1|))) (|:| |vec| (-1169 (-112 |#1|)))) (-629 $) (-1169 $)) NIL) (((-629 (-112 |#1|)) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| (-112 |#1|) (-508)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-3712 (((-108) $) NIL (|has| (-112 |#1|) (-759)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-112 |#1|) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-112 |#1|) (-817 (-355))))) (-2769 (((-108) $) NIL)) (-1296 (($ $) NIL)) (-3316 (((-112 |#1|) $) NIL)) (-2738 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1063)))) (-2057 (((-108) $) NIL (|has| (-112 |#1|) (-759)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3239 (($ $ $) NIL (|has| (-112 |#1|) (-786)))) (-3158 (($ $ $) NIL (|has| (-112 |#1|) (-786)))) (-1345 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| (-112 |#1|) (-1063)) CONST)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4110 (($ $) NIL (|has| (-112 |#1|) (-284)))) (-2733 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-508)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-112 |#1|) (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-112 |#1|) (-840)))) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2812 (($ $ (-589 (-112 |#1|)) (-589 (-112 |#1|))) NIL (|has| (-112 |#1|) (-286 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-286 (-112 |#1|)))) (($ $ (-271 (-112 |#1|))) NIL (|has| (-112 |#1|) (-286 (-112 |#1|)))) (($ $ (-589 (-271 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-286 (-112 |#1|)))) (($ $ (-589 (-1087)) (-589 (-112 |#1|))) NIL (|has| (-112 |#1|) (-484 (-1087) (-112 |#1|)))) (($ $ (-1087) (-112 |#1|)) NIL (|has| (-112 |#1|) (-484 (-1087) (-112 |#1|))))) (-3413 (((-710) $) NIL)) (-1937 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-263 (-112 |#1|) (-112 |#1|))))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3984 (($ $) NIL (|has| (-112 |#1|) (-211))) (($ $ (-710)) NIL (|has| (-112 |#1|) (-211))) (($ $ (-1087)) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-710)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-2793 (($ $) NIL)) (-3329 (((-112 |#1|) $) NIL)) (-1400 (((-823 (-523)) $) NIL (|has| (-112 |#1|) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-112 |#1|) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-112 |#1|) (-564 (-499)))) (((-355) $) NIL (|has| (-112 |#1|) (-949))) (((-203) $) NIL (|has| (-112 |#1|) (-949)))) (-2748 (((-159 (-383 (-523))) $) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-112 |#1|) (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-112 |#1|)) NIL) (($ (-1087)) NIL (|has| (-112 |#1|) (-964 (-1087))))) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| (-112 |#1|) (-840))) (|has| (-112 |#1|) (-134))))) (-3272 (((-710)) NIL)) (-3809 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-508)))) (-2801 (((-108) $ $) NIL)) (-4108 (((-383 (-523)) $ (-523)) NIL)) (-2695 (($ $) NIL (|has| (-112 |#1|) (-759)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $) NIL (|has| (-112 |#1|) (-211))) (($ $ (-710)) NIL (|has| (-112 |#1|) (-211))) (($ $ (-1087)) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-710)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-4006 (((-108) $ $) NIL (|has| (-112 |#1|) (-786)))) (-3980 (((-108) $ $) NIL (|has| (-112 |#1|) (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| (-112 |#1|) (-786)))) (-3966 (((-108) $ $) NIL (|has| (-112 |#1|) (-786)))) (-4074 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL))) +(((-113 |#1|) (-13 (-921 (-112 |#1|)) (-10 -8 (-15 -4108 ((-383 (-523)) $ (-523))) (-15 -2748 ((-159 (-383 (-523))) $)) (-15 -1458 ($ $)) (-15 -1458 ($ (-523) $)))) (-523)) (T -113)) +((-4108 (*1 *2 *1 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-523)))) (-2748 (*1 *2 *1) (-12 (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-113 *3)) (-14 *3 (-523)))) (-1458 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-523)))) (-1458 (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-113 *3)) (-14 *3 *2)))) +(-13 (-921 (-112 |#1|)) (-10 -8 (-15 -4108 ((-383 (-523)) $ (-523))) (-15 -2748 ((-159 (-383 (-523))) $)) (-15 -1458 ($ $)) (-15 -1458 ($ (-523) $)))) +((-1849 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2932 (((-589 $) $) 27)) (-3675 (((-108) $ $) 32)) (-3423 (((-108) |#2| $) 36)) (-1701 (((-589 |#2|) $) 22)) (-1799 (((-108) $) 16)) (-1937 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1221 (((-108) $) 45)) (-1691 (((-794) $) 41)) (-2612 (((-589 $) $) 28)) (-3941 (((-108) $ $) 34)) (-2810 (((-710) $) 43))) +(((-114 |#1| |#2|) (-10 -8 (-15 -1691 ((-794) |#1|)) (-15 -1849 (|#1| |#1| "right" |#1|)) (-15 -1849 (|#1| |#1| "left" |#1|)) (-15 -1937 (|#1| |#1| "right")) (-15 -1937 (|#1| |#1| "left")) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -3675 ((-108) |#1| |#1|)) (-15 -1701 ((-589 |#2|) |#1|)) (-15 -1221 ((-108) |#1|)) (-15 -1937 (|#2| |#1| "value")) (-15 -1799 ((-108) |#1|)) (-15 -2932 ((-589 |#1|) |#1|)) (-15 -2612 ((-589 |#1|) |#1|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -3423 ((-108) |#2| |#1|)) (-15 -2810 ((-710) |#1|))) (-115 |#2|) (-1123)) (T -114)) +NIL +(-10 -8 (-15 -1691 ((-794) |#1|)) (-15 -1849 (|#1| |#1| "right" |#1|)) (-15 -1849 (|#1| |#1| "left" |#1|)) (-15 -1937 (|#1| |#1| "right")) (-15 -1937 (|#1| |#1| "left")) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -3675 ((-108) |#1| |#1|)) (-15 -1701 ((-589 |#2|) |#1|)) (-15 -1221 ((-108) |#1|)) (-15 -1937 (|#2| |#1| "value")) (-15 -1799 ((-108) |#1|)) (-15 -2932 ((-589 |#1|) |#1|)) (-15 -2612 ((-589 |#1|) |#1|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -3423 ((-108) |#2| |#1|)) (-15 -2810 ((-710) |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3370 ((|#1| $) 48)) (-1620 (((-108) $ (-710)) 8)) (-1487 ((|#1| $ |#1|) 39 (|has| $ (-6 -4249)))) (-1398 (($ $ $) 52 (|has| $ (-6 -4249)))) (-2955 (($ $ $) 54 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4249))) (($ $ "left" $) 55 (|has| $ (-6 -4249))) (($ $ "right" $) 53 (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) 41 (|has| $ (-6 -4249)))) (-4189 (($) 7 T CONST)) (-3855 (($ $) 57)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) 50)) (-3675 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-3844 (($ $) 59)) (-1701 (((-589 |#1|) $) 45)) (-1799 (((-108) $) 49)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3766 (((-523) $ $) 44)) (-1221 (((-108) $) 46)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) 51)) (-3313 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-115 |#1|) (-129) (-1123)) (T -115)) +((-3844 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1123)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1123)))) (-3855 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1123)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1123)))) (-1849 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4249)) (-4 *1 (-115 *3)) (-4 *3 (-1123)))) (-2955 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-115 *2)) (-4 *2 (-1123)))) (-1849 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4249)) (-4 *1 (-115 *3)) (-4 *3 (-1123)))) (-1398 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-115 *2)) (-4 *2 (-1123))))) +(-13 (-938 |t#1|) (-10 -8 (-15 -3844 ($ $)) (-15 -1937 ($ $ "left")) (-15 -3855 ($ $)) (-15 -1937 ($ $ "right")) (IF (|has| $ (-6 -4249)) (PROGN (-15 -1849 ($ $ "left" $)) (-15 -2955 ($ $ $)) (-15 -1849 ($ $ "right" $)) (-15 -1398 ($ $ $))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-1941 (((-108) |#1|) 24)) (-3957 (((-710) (-710)) 23) (((-710)) 22)) (-3179 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26))) +(((-116 |#1|) (-10 -7 (-15 -3179 ((-108) |#1|)) (-15 -3179 ((-108) |#1| (-108))) (-15 -3957 ((-710))) (-15 -3957 ((-710) (-710))) (-15 -1941 ((-108) |#1|))) (-1145 (-523))) (T -116)) +((-1941 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1145 (-523))))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-116 *3)) (-4 *3 (-1145 (-523))))) (-3957 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-116 *3)) (-4 *3 (-1145 (-523))))) (-3179 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1145 (-523))))) (-3179 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1145 (-523)))))) +(-10 -7 (-15 -3179 ((-108) |#1|)) (-15 -3179 ((-108) |#1| (-108))) (-15 -3957 ((-710))) (-15 -3957 ((-710) (-710))) (-15 -1941 ((-108) |#1|))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3370 ((|#1| $) 15)) (-1980 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1620 (((-108) $ (-710)) NIL)) (-1487 ((|#1| $ |#1|) NIL (|has| $ (-6 -4249)))) (-1398 (($ $ $) 18 (|has| $ (-6 -4249)))) (-2955 (($ $ $) 20 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4249))) (($ $ "left" $) NIL (|has| $ (-6 -4249))) (($ $ "right" $) NIL (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) NIL (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-3855 (($ $) 17)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) NIL)) (-3675 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1864 (($ $ |#1| $) 23)) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-3844 (($ $) 19)) (-1701 (((-589 |#1|) $) NIL)) (-1799 (((-108) $) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3743 (($ |#1| $) 24)) (-3108 (($ |#1| $) 10)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 14)) (-3320 (($) 8)) (-1937 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3766 (((-523) $ $) NIL)) (-1221 (((-108) $) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) NIL)) (-3313 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2304 (($ (-589 |#1|)) 12)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4249) (-6 -4248) (-15 -2304 ($ (-589 |#1|))) (-15 -3108 ($ |#1| $)) (-15 -3743 ($ |#1| $)) (-15 -1980 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-786)) (T -117)) +((-2304 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-117 *3)))) (-3108 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-786)))) (-3743 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-786)))) (-1980 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-786))))) +(-13 (-121 |#1|) (-10 -8 (-6 -4249) (-6 -4248) (-15 -2304 ($ (-589 |#1|))) (-15 -3108 ($ |#1| $)) (-15 -3743 ($ |#1| $)) (-15 -1980 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-2602 (($ $) 14)) (-4179 (($ $) 11)) (-3518 (($ $ $) 24)) (-3543 (($ $ $) 22)) (-2423 (($ $) 12)) (-1269 (($ $ $) 20)) (-1257 (($ $ $) 18))) +(((-118 |#1|) (-10 -8 (-15 -3518 (|#1| |#1| |#1|)) (-15 -3543 (|#1| |#1| |#1|)) (-15 -2423 (|#1| |#1|)) (-15 -4179 (|#1| |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -1257 (|#1| |#1| |#1|)) (-15 -1269 (|#1| |#1| |#1|))) (-119)) (T -118)) +NIL +(-10 -8 (-15 -3518 (|#1| |#1| |#1|)) (-15 -3543 (|#1| |#1| |#1|)) (-15 -2423 (|#1| |#1|)) (-15 -4179 (|#1| |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -1257 (|#1| |#1| |#1|)) (-15 -1269 (|#1| |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2602 (($ $) 104)) (-2544 (($ $ $) 25)) (-4191 (((-1174) $ (-523) (-523)) 67 (|has| $ (-6 -4249)))) (-3337 (((-108) $) 99 (|has| (-108) (-786))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-1632 (($ $) 103 (-12 (|has| (-108) (-786)) (|has| $ (-6 -4249)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4249)))) (-1581 (($ $) 98 (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-1620 (((-108) $ (-710)) 38)) (-1849 (((-108) $ (-1136 (-523)) (-108)) 89 (|has| $ (-6 -4249))) (((-108) $ (-523) (-108)) 55 (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4248)))) (-4189 (($) 39 T CONST)) (-1426 (($ $) 101 (|has| $ (-6 -4249)))) (-3700 (($ $) 91)) (-2462 (($ $) 69 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4248))) (($ (-108) $) 70 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4248))))) (-2116 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4248))))) (-2053 (((-108) $ (-523) (-108)) 54 (|has| $ (-6 -4249)))) (-2000 (((-108) $ (-523)) 56)) (-3449 (((-523) (-108) $ (-523)) 96 (|has| (-108) (-1016))) (((-523) (-108) $) 95 (|has| (-108) (-1016))) (((-523) (-1 (-108) (-108)) $) 94)) (-1871 (((-589 (-108)) $) 46 (|has| $ (-6 -4248)))) (-3135 (($ $ $) 26)) (-4179 (($ $) 31)) (-3518 (($ $ $) 28)) (-3733 (($ (-710) (-108)) 78)) (-3543 (($ $ $) 29)) (-3051 (((-108) $ (-710)) 37)) (-2965 (((-523) $) 64 (|has| (-523) (-786)))) (-3239 (($ $ $) 13)) (-3780 (($ $ $) 97 (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-1584 (((-589 (-108)) $) 47 (|has| $ (-6 -4248)))) (-3423 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 63 (|has| (-523) (-786)))) (-3158 (($ $ $) 14)) (-2043 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-1418 (((-108) $ (-710)) 36)) (-2032 (((-1070) $) 9)) (-2912 (($ $ $ (-523)) 88) (($ (-108) $ (-523)) 87)) (-2536 (((-589 (-523)) $) 61)) (-2254 (((-108) (-523) $) 60)) (-3951 (((-1034) $) 10)) (-2428 (((-108) $) 65 (|has| (-523) (-786)))) (-2509 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-4141 (($ $ (-108)) 66 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-108)) (-589 (-108))) 53 (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-271 (-108))) 51 (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-589 (-271 (-108)))) 50 (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))))) (-2267 (((-108) $ $) 32)) (-2633 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016))))) (-3973 (((-589 (-108)) $) 59)) (-1777 (((-108) $) 35)) (-3320 (($) 34)) (-1937 (($ $ (-1136 (-523))) 84) (((-108) $ (-523)) 58) (((-108) $ (-523) (-108)) 57)) (-1499 (($ $ (-1136 (-523))) 86) (($ $ (-523)) 85)) (-3977 (((-710) (-108) $) 48 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4248)))) (((-710) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4248)))) (-4166 (($ $ $ (-523)) 100 (|has| $ (-6 -4249)))) (-1874 (($ $) 33)) (-1400 (((-499) $) 68 (|has| (-108) (-564 (-499))))) (-1704 (($ (-589 (-108))) 77)) (-2394 (($ (-589 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-1691 (((-794) $) 11)) (-2308 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4248)))) (-3147 (($ $ $) 27)) (-2423 (($ $) 30)) (-1269 (($ $ $) 106)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18)) (-1257 (($ $ $) 105)) (-2810 (((-710) $) 40 (|has| $ (-6 -4248))))) (((-119) (-129)) (T -119)) -((-3900 (*1 *1 *1) (-4 *1 (-119))) (-2364 (*1 *1 *1) (-4 *1 (-119))) (-3370 (*1 *1 *1 *1) (-4 *1 (-119))) (-3368 (*1 *1 *1 *1) (-4 *1 (-119))) (-4099 (*1 *1 *1 *1) (-4 *1 (-119))) (-4090 (*1 *1 *1 *1) (-4 *1 (-119))) (-1983 (*1 *1 *1 *1) (-4 *1 (-119)))) -(-13 (-786) (-604) (-19 (-108)) (-10 -8 (-15 -3900 ($ $)) (-15 -2364 ($ $)) (-15 -3370 ($ $ $)) (-15 -3368 ($ $ $)) (-15 -4099 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -1983 ($ $ $)))) -(((-33) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 #0=(-108)) . T) ((-564 (-499)) |has| (-108) (-564 (-499))) ((-263 #1=(-523) #0#) . T) ((-265 #1# #0#) . T) ((-286 #0#) -12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))) ((-349 #0#) . T) ((-462 #0#) . T) ((-556 #1# #0#) . T) ((-484 #0# #0#) -12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))) ((-594 #0#) . T) ((-604) . T) ((-19 #0#) . T) ((-786) . T) ((-1016) . T) ((-1122) . T)) -((-2852 (($ (-1 |#2| |#2|) $) 22)) (-1664 (($ $) 16)) (-2676 (((-710) $) 24))) -(((-120 |#1| |#2|) (-10 -8 (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -1664 (|#1| |#1|))) (-121 |#2|) (-1016)) (T -120)) -NIL -(-10 -8 (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -1664 (|#1| |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-2541 (($ $ $) 52 (|has| $ (-6 -4245)))) (-2971 (($ $ $) 54 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245))) (($ $ "left" $) 55 (|has| $ (-6 -4245))) (($ $ "right" $) 53 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-2518 (($) 7 T CONST)) (-3159 (($ $) 57)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-4165 (($ $ |#1| $) 60)) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3149 (($ $) 59)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1549 (((-523) $ $) 44)) (-2524 (((-108) $) 46)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-4179 (*1 *1 *1) (-4 *1 (-119))) (-2423 (*1 *1 *1) (-4 *1 (-119))) (-3543 (*1 *1 *1 *1) (-4 *1 (-119))) (-3518 (*1 *1 *1 *1) (-4 *1 (-119))) (-3147 (*1 *1 *1 *1) (-4 *1 (-119))) (-3135 (*1 *1 *1 *1) (-4 *1 (-119))) (-2544 (*1 *1 *1 *1) (-4 *1 (-119)))) +(-13 (-786) (-604) (-19 (-108)) (-10 -8 (-15 -4179 ($ $)) (-15 -2423 ($ $)) (-15 -3543 ($ $ $)) (-15 -3518 ($ $ $)) (-15 -3147 ($ $ $)) (-15 -3135 ($ $ $)) (-15 -2544 ($ $ $)))) +(((-33) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 #0=(-108)) . T) ((-564 (-499)) |has| (-108) (-564 (-499))) ((-263 #1=(-523) #0#) . T) ((-265 #1# #0#) . T) ((-286 #0#) -12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))) ((-349 #0#) . T) ((-462 #0#) . T) ((-556 #1# #0#) . T) ((-484 #0# #0#) -12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))) ((-594 #0#) . T) ((-604) . T) ((-19 #0#) . T) ((-786) . T) ((-1016) . T) ((-1123) . T)) +((-2043 (($ (-1 |#2| |#2|) $) 22)) (-1874 (($ $) 16)) (-2810 (((-710) $) 24))) +(((-120 |#1| |#2|) (-10 -8 (-15 -2043 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2810 ((-710) |#1|)) (-15 -1874 (|#1| |#1|))) (-121 |#2|) (-1016)) (T -120)) +NIL +(-10 -8 (-15 -2043 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2810 ((-710) |#1|)) (-15 -1874 (|#1| |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3370 ((|#1| $) 48)) (-1620 (((-108) $ (-710)) 8)) (-1487 ((|#1| $ |#1|) 39 (|has| $ (-6 -4249)))) (-1398 (($ $ $) 52 (|has| $ (-6 -4249)))) (-2955 (($ $ $) 54 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4249))) (($ $ "left" $) 55 (|has| $ (-6 -4249))) (($ $ "right" $) 53 (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) 41 (|has| $ (-6 -4249)))) (-4189 (($) 7 T CONST)) (-3855 (($ $) 57)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) 50)) (-3675 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-1864 (($ $ |#1| $) 60)) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-3844 (($ $) 59)) (-1701 (((-589 |#1|) $) 45)) (-1799 (((-108) $) 49)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3766 (((-523) $ $) 44)) (-1221 (((-108) $) 46)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) 51)) (-3313 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-121 |#1|) (-129) (-1016)) (T -121)) -((-4165 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1016))))) -(-13 (-115 |t#1|) (-10 -8 (-6 -4245) (-6 -4244) (-15 -4165 ($ $ |t#1| $)))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-115 |#1|) . T) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) 15)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) 19 (|has| $ (-6 -4245)))) (-2541 (($ $ $) 20 (|has| $ (-6 -4245)))) (-2971 (($ $ $) 18 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "left" $) NIL (|has| $ (-6 -4245))) (($ $ "right" $) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3159 (($ $) 21)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4165 (($ $ |#1| $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3149 (($ $) NIL)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3450 (($ |#1| $) 10)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 14)) (-3988 (($) 8)) (-3223 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1549 (((-523) $ $) NIL)) (-2524 (((-108) $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 17)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3821 (($ (-589 |#1|)) 12)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4245) (-15 -3821 ($ (-589 |#1|))) (-15 -3450 ($ |#1| $)))) (-786)) (T -122)) -((-3821 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-122 *3)))) (-3450 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-786))))) -(-13 (-121 |#1|) (-10 -8 (-6 -4245) (-15 -3821 ($ (-589 |#1|))) (-15 -3450 ($ |#1| $)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) 24)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) 26 (|has| $ (-6 -4245)))) (-2541 (($ $ $) 30 (|has| $ (-6 -4245)))) (-2971 (($ $ $) 28 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "left" $) NIL (|has| $ (-6 -4245))) (($ $ "right" $) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3159 (($ $) 20)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4165 (($ $ |#1| $) 15)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3149 (($ $) 19)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) 21)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 18)) (-3988 (($) 11)) (-3223 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1549 (((-523) $ $) NIL)) (-2524 (((-108) $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1600 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 10 (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -1600 ($ |#1|)) (-15 -1600 ($ $ |#1| $)))) (-1016)) (T -123)) -((-1600 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1016)))) (-1600 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1016))))) -(-13 (-121 |#1|) (-10 -8 (-15 -1600 ($ |#1|)) (-15 -1600 ($ $ |#1| $)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15))) +((-1864 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1016))))) +(-13 (-115 |t#1|) (-10 -8 (-6 -4249) (-6 -4248) (-15 -1864 ($ $ |t#1| $)))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-115 |#1|) . T) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3370 ((|#1| $) 15)) (-1620 (((-108) $ (-710)) NIL)) (-1487 ((|#1| $ |#1|) 19 (|has| $ (-6 -4249)))) (-1398 (($ $ $) 20 (|has| $ (-6 -4249)))) (-2955 (($ $ $) 18 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4249))) (($ $ "left" $) NIL (|has| $ (-6 -4249))) (($ $ "right" $) NIL (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) NIL (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-3855 (($ $) 21)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) NIL)) (-3675 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1864 (($ $ |#1| $) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-3844 (($ $) NIL)) (-1701 (((-589 |#1|) $) NIL)) (-1799 (((-108) $) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3108 (($ |#1| $) 10)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 14)) (-3320 (($) 8)) (-1937 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3766 (((-523) $ $) NIL)) (-1221 (((-108) $) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) 17)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) NIL)) (-3313 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2369 (($ (-589 |#1|)) 12)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4249) (-15 -2369 ($ (-589 |#1|))) (-15 -3108 ($ |#1| $)))) (-786)) (T -122)) +((-2369 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-122 *3)))) (-3108 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-786))))) +(-13 (-121 |#1|) (-10 -8 (-6 -4249) (-15 -2369 ($ (-589 |#1|))) (-15 -3108 ($ |#1| $)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3370 ((|#1| $) 24)) (-1620 (((-108) $ (-710)) NIL)) (-1487 ((|#1| $ |#1|) 26 (|has| $ (-6 -4249)))) (-1398 (($ $ $) 30 (|has| $ (-6 -4249)))) (-2955 (($ $ $) 28 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4249))) (($ $ "left" $) NIL (|has| $ (-6 -4249))) (($ $ "right" $) NIL (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) NIL (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-3855 (($ $) 20)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) NIL)) (-3675 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1864 (($ $ |#1| $) 15)) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-3844 (($ $) 19)) (-1701 (((-589 |#1|) $) NIL)) (-1799 (((-108) $) 21)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 18)) (-3320 (($) 11)) (-1937 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3766 (((-523) $ $) NIL)) (-1221 (((-108) $) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) NIL)) (-3313 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3069 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 10 (|has| |#1| (-1016)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -3069 ($ |#1|)) (-15 -3069 ($ $ |#1| $)))) (-1016)) (T -123)) +((-3069 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1016)))) (-3069 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1016))))) +(-13 (-121 |#1|) (-10 -8 (-15 -3069 ($ |#1|)) (-15 -3069 ($ $ |#1| $)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15))) (((-124) (-129)) (T -124)) -((-3212 (*1 *1 *1 *1) (|partial| -4 *1 (-124)))) -(-13 (-23) (-10 -8 (-15 -3212 ((-3 $ "failed") $ $)))) +((-3405 (*1 *1 *1 *1) (|partial| -4 *1 (-124)))) +(-13 (-23) (-10 -8 (-15 -3405 ((-3 $ "failed") $ $)))) (((-23) . T) ((-25) . T) ((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3924 (((-108) $ $) 7)) (-2118 (((-1173) $ (-710)) 19)) (-1479 (((-710) $) 20)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18))) +((-1680 (((-108) $ $) 7)) (-1415 (((-1174) $ (-710)) 19)) (-3449 (((-710) $) 20)) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18))) (((-125) (-129)) (T -125)) -((-1479 (*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-710)))) (-2118 (*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-710)) (-5 *2 (-1173))))) -(-13 (-786) (-10 -8 (-15 -1479 ((-710) $)) (-15 -2118 ((-1173) $ (-710))))) +((-3449 (*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-710)))) (-1415 (*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-710)) (-5 *2 (-1174))))) +(-13 (-786) (-10 -8 (-15 -3449 ((-710) $)) (-15 -1415 ((-1174) $ (-710))))) (((-97) . T) ((-563 (-794)) . T) ((-786) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-710) "failed") $) 38)) (-3474 (((-710) $) 36)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) 26)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3016 (((-108)) 39)) (-3046 (((-108) (-108)) 41)) (-1997 (((-108) $) 23)) (-2489 (((-108) $) 35)) (-1458 (((-794) $) 22) (($ (-710)) 14)) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2756 (($) 12 T CONST)) (-2767 (($) 11 T CONST)) (-2264 (($ (-710)) 15)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 24)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 25)) (-4087 (((-3 $ "failed") $ $) 29)) (-4075 (($ $ $) 27)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL) (($ $ $) 34)) (* (($ (-710) $) 32) (($ (-852) $) NIL) (($ $ $) 30))) -(((-126) (-13 (-786) (-23) (-666) (-964 (-710)) (-10 -8 (-6 (-4246 "*")) (-15 -4087 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2264 ($ (-710))) (-15 -1997 ((-108) $)) (-15 -2489 ((-108) $)) (-15 -3016 ((-108))) (-15 -3046 ((-108) (-108)))))) (T -126)) -((-4087 (*1 *1 *1 *1) (|partial| -5 *1 (-126))) (** (*1 *1 *1 *1) (-5 *1 (-126))) (-2264 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-126)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-3016 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-3046 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) -(-13 (-786) (-23) (-666) (-964 (-710)) (-10 -8 (-6 (-4246 "*")) (-15 -4087 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2264 ($ (-710))) (-15 -1997 ((-108) $)) (-15 -2489 ((-108) $)) (-15 -3016 ((-108))) (-15 -3046 ((-108) (-108))))) -((-1359 (((-128 |#1| |#2| |#4|) (-589 |#4|) (-128 |#1| |#2| |#3|)) 14)) (-3612 (((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)) 18))) -(((-127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1359 ((-128 |#1| |#2| |#4|) (-589 |#4|) (-128 |#1| |#2| |#3|))) (-15 -3612 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) (-523) (-710) (-158) (-158)) (T -127)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-523)) (-14 *6 (-710)) (-4 *7 (-158)) (-4 *8 (-158)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) (-1359 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-523)) (-14 *6 (-710)) (-4 *7 (-158)) (-4 *8 (-158)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8))))) -(-10 -7 (-15 -1359 ((-128 |#1| |#2| |#4|) (-589 |#4|) (-128 |#1| |#2| |#3|))) (-15 -3612 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) -((-3924 (((-108) $ $) NIL)) (-3611 (($ (-589 |#3|)) 39)) (-4190 (($ $) 98) (($ $ (-523) (-523)) 97)) (-2518 (($) 17)) (-3517 (((-3 |#3| "failed") $) 59)) (-3474 ((|#3| $) NIL)) (-2297 (($ $ (-589 (-523))) 99)) (-1347 (((-589 |#3|) $) 35)) (-1319 (((-710) $) 43)) (-1656 (($ $ $) 92)) (-1857 (($) 42)) (-3779 (((-1070) $) NIL)) (-3439 (($) 16)) (-2783 (((-1034) $) NIL)) (-3223 ((|#3| $) 45) ((|#3| $ (-523)) 46) ((|#3| $ (-523) (-523)) 47) ((|#3| $ (-523) (-523) (-523)) 48) ((|#3| $ (-523) (-523) (-523) (-523)) 49) ((|#3| $ (-589 (-523))) 51)) (-2299 (((-710) $) 44)) (-3503 (($ $ (-523) $ (-523)) 93) (($ $ (-523) (-523)) 95)) (-1458 (((-794) $) 66) (($ |#3|) 67) (($ (-218 |#2| |#3|)) 74) (($ (-1054 |#2| |#3|)) 77) (($ (-589 |#3|)) 52) (($ (-589 $)) 57)) (-2756 (($) 68 T CONST)) (-2767 (($) 69 T CONST)) (-3983 (((-108) $ $) 79)) (-4087 (($ $) 85) (($ $ $) 83)) (-4075 (($ $ $) 81)) (* (($ |#3| $) 90) (($ $ |#3|) 91) (($ $ (-523)) 88) (($ (-523) $) 87) (($ $ $) 94))) -(((-128 |#1| |#2| |#3|) (-13 (-440 |#3| (-710)) (-445 (-523) (-710)) (-10 -8 (-15 -1458 ($ (-218 |#2| |#3|))) (-15 -1458 ($ (-1054 |#2| |#3|))) (-15 -1458 ($ (-589 |#3|))) (-15 -1458 ($ (-589 $))) (-15 -1319 ((-710) $)) (-15 -3223 (|#3| $)) (-15 -3223 (|#3| $ (-523))) (-15 -3223 (|#3| $ (-523) (-523))) (-15 -3223 (|#3| $ (-523) (-523) (-523))) (-15 -3223 (|#3| $ (-523) (-523) (-523) (-523))) (-15 -3223 (|#3| $ (-589 (-523)))) (-15 -1656 ($ $ $)) (-15 * ($ $ $)) (-15 -3503 ($ $ (-523) $ (-523))) (-15 -3503 ($ $ (-523) (-523))) (-15 -4190 ($ $)) (-15 -4190 ($ $ (-523) (-523))) (-15 -2297 ($ $ (-589 (-523)))) (-15 -3439 ($)) (-15 -1857 ($)) (-15 -1347 ((-589 |#3|) $)) (-15 -3611 ($ (-589 |#3|))) (-15 -2518 ($)))) (-523) (-710) (-158)) (T -128)) -((-1656 (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-218 *4 *5)) (-14 *4 (-710)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1054 *4 *5)) (-14 *4 (-710)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 *5)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)) (-4 *5 (-158)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 *2) (-4 *5 (-158)))) (-3223 (*1 *2 *1) (-12 (-4 *2 (-158)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-523)) (-14 *4 (-710)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-710)))) (-3223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-710)))) (-3223 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-710)))) (-3223 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-710)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-589 (-523))) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 (-523)) (-14 *5 (-710)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-3503 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-710)) (-4 *5 (-158)))) (-3503 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-710)) (-4 *5 (-158)))) (-4190 (*1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-4190 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-710)) (-4 *5 (-158)))) (-2297 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)) (-4 *5 (-158)))) (-3439 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-1857 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-589 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)) (-4 *5 (-158)))) (-3611 (*1 *1 *2) (-12 (-5 *2 (-589 *5)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)))) (-2518 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158))))) -(-13 (-440 |#3| (-710)) (-445 (-523) (-710)) (-10 -8 (-15 -1458 ($ (-218 |#2| |#3|))) (-15 -1458 ($ (-1054 |#2| |#3|))) (-15 -1458 ($ (-589 |#3|))) (-15 -1458 ($ (-589 $))) (-15 -1319 ((-710) $)) (-15 -3223 (|#3| $)) (-15 -3223 (|#3| $ (-523))) (-15 -3223 (|#3| $ (-523) (-523))) (-15 -3223 (|#3| $ (-523) (-523) (-523))) (-15 -3223 (|#3| $ (-523) (-523) (-523) (-523))) (-15 -3223 (|#3| $ (-589 (-523)))) (-15 -1656 ($ $ $)) (-15 * ($ $ $)) (-15 -3503 ($ $ (-523) $ (-523))) (-15 -3503 ($ $ (-523) (-523))) (-15 -4190 ($ $)) (-15 -4190 ($ $ (-523) (-523))) (-15 -2297 ($ $ (-589 (-523)))) (-15 -3439 ($)) (-15 -1857 ($)) (-15 -1347 ((-589 |#3|) $)) (-15 -3611 ($ (-589 |#3|))) (-15 -2518 ($)))) -((-1458 (((-794) $) 7))) +((-1680 (((-108) $ $) 34)) (-2603 (((-108) $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-710) "failed") $) 40)) (-3508 (((-710) $) 38)) (-1444 (((-3 $ "failed") $) NIL)) (-2769 (((-108) $) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) 27)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2204 (((-108)) 41)) (-2476 (((-108) (-108)) 43)) (-3676 (((-108) $) 24)) (-3890 (((-108) $) 37)) (-1691 (((-794) $) 22) (($ (-710)) 14)) (-2423 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-1879 (($) 12 T CONST)) (-1891 (($) 11 T CONST)) (-3428 (($ (-710)) 15)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 25)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 26)) (-4060 (((-3 $ "failed") $ $) 30)) (-4045 (($ $ $) 28)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL) (($ $ $) 36)) (* (($ (-710) $) 33) (($ (-852) $) NIL) (($ $ $) 31))) +(((-126) (-13 (-786) (-23) (-666) (-964 (-710)) (-10 -8 (-6 (-4250 "*")) (-15 -4060 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3428 ($ (-710))) (-15 -3676 ((-108) $)) (-15 -3890 ((-108) $)) (-15 -2204 ((-108))) (-15 -2476 ((-108) (-108)))))) (T -126)) +((-4060 (*1 *1 *1 *1) (|partial| -5 *1 (-126))) (** (*1 *1 *1 *1) (-5 *1 (-126))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-126)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-2204 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-2476 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) +(-13 (-786) (-23) (-666) (-964 (-710)) (-10 -8 (-6 (-4250 "*")) (-15 -4060 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3428 ($ (-710))) (-15 -3676 ((-108) $)) (-15 -3890 ((-108) $)) (-15 -2204 ((-108))) (-15 -2476 ((-108) (-108))))) +((-1583 (((-128 |#1| |#2| |#4|) (-589 |#4|) (-128 |#1| |#2| |#3|)) 14)) (-1345 (((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)) 18))) +(((-127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1583 ((-128 |#1| |#2| |#4|) (-589 |#4|) (-128 |#1| |#2| |#3|))) (-15 -1345 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) (-523) (-710) (-158) (-158)) (T -127)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-523)) (-14 *6 (-710)) (-4 *7 (-158)) (-4 *8 (-158)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-523)) (-14 *6 (-710)) (-4 *7 (-158)) (-4 *8 (-158)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8))))) +(-10 -7 (-15 -1583 ((-128 |#1| |#2| |#4|) (-589 |#4|) (-128 |#1| |#2| |#3|))) (-15 -1345 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) +((-1680 (((-108) $ $) NIL)) (-4200 (($ (-589 |#3|)) 40)) (-4005 (($ $) 99) (($ $ (-523) (-523)) 98)) (-4189 (($) 17)) (-1220 (((-3 |#3| "failed") $) 60)) (-3508 ((|#3| $) NIL)) (-2621 (($ $ (-589 (-523))) 100)) (-1571 (((-589 |#3|) $) 36)) (-3569 (((-710) $) 44)) (-3584 (($ $ $) 93)) (-1761 (($) 43)) (-2032 (((-1070) $) NIL)) (-3022 (($) 16)) (-3951 (((-1034) $) NIL)) (-1937 ((|#3| $) 46) ((|#3| $ (-523)) 47) ((|#3| $ (-523) (-523)) 48) ((|#3| $ (-523) (-523) (-523)) 49) ((|#3| $ (-523) (-523) (-523) (-523)) 50) ((|#3| $ (-589 (-523))) 52)) (-2640 (((-710) $) 45)) (-2503 (($ $ (-523) $ (-523)) 94) (($ $ (-523) (-523)) 96)) (-1691 (((-794) $) 67) (($ |#3|) 68) (($ (-218 |#2| |#3|)) 75) (($ (-1054 |#2| |#3|)) 78) (($ (-589 |#3|)) 53) (($ (-589 $)) 58)) (-1879 (($) 69 T CONST)) (-1891 (($) 70 T CONST)) (-3941 (((-108) $ $) 80)) (-4060 (($ $) 86) (($ $ $) 84)) (-4045 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-523)) 89) (($ (-523) $) 88) (($ $ $) 95))) +(((-128 |#1| |#2| |#3|) (-13 (-440 |#3| (-710)) (-445 (-523) (-710)) (-10 -8 (-15 -1691 ($ (-218 |#2| |#3|))) (-15 -1691 ($ (-1054 |#2| |#3|))) (-15 -1691 ($ (-589 |#3|))) (-15 -1691 ($ (-589 $))) (-15 -3569 ((-710) $)) (-15 -1937 (|#3| $)) (-15 -1937 (|#3| $ (-523))) (-15 -1937 (|#3| $ (-523) (-523))) (-15 -1937 (|#3| $ (-523) (-523) (-523))) (-15 -1937 (|#3| $ (-523) (-523) (-523) (-523))) (-15 -1937 (|#3| $ (-589 (-523)))) (-15 -3584 ($ $ $)) (-15 * ($ $ $)) (-15 -2503 ($ $ (-523) $ (-523))) (-15 -2503 ($ $ (-523) (-523))) (-15 -4005 ($ $)) (-15 -4005 ($ $ (-523) (-523))) (-15 -2621 ($ $ (-589 (-523)))) (-15 -3022 ($)) (-15 -1761 ($)) (-15 -1571 ((-589 |#3|) $)) (-15 -4200 ($ (-589 |#3|))) (-15 -4189 ($)))) (-523) (-710) (-158)) (T -128)) +((-3584 (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-218 *4 *5)) (-14 *4 (-710)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1054 *4 *5)) (-14 *4 (-710)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-589 *5)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-589 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)) (-4 *5 (-158)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 *2) (-4 *5 (-158)))) (-1937 (*1 *2 *1) (-12 (-4 *2 (-158)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-523)) (-14 *4 (-710)))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-710)))) (-1937 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-710)))) (-1937 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-710)))) (-1937 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-710)))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 (-589 (-523))) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 (-523)) (-14 *5 (-710)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-2503 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-710)) (-4 *5 (-158)))) (-2503 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-710)) (-4 *5 (-158)))) (-4005 (*1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-4005 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-710)) (-4 *5 (-158)))) (-2621 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)) (-4 *5 (-158)))) (-3022 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-1761 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-1571 (*1 *2 *1) (-12 (-5 *2 (-589 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)) (-4 *5 (-158)))) (-4200 (*1 *1 *2) (-12 (-5 *2 (-589 *5)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)))) (-4189 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158))))) +(-13 (-440 |#3| (-710)) (-445 (-523) (-710)) (-10 -8 (-15 -1691 ($ (-218 |#2| |#3|))) (-15 -1691 ($ (-1054 |#2| |#3|))) (-15 -1691 ($ (-589 |#3|))) (-15 -1691 ($ (-589 $))) (-15 -3569 ((-710) $)) (-15 -1937 (|#3| $)) (-15 -1937 (|#3| $ (-523))) (-15 -1937 (|#3| $ (-523) (-523))) (-15 -1937 (|#3| $ (-523) (-523) (-523))) (-15 -1937 (|#3| $ (-523) (-523) (-523) (-523))) (-15 -1937 (|#3| $ (-589 (-523)))) (-15 -3584 ($ $ $)) (-15 * ($ $ $)) (-15 -2503 ($ $ (-523) $ (-523))) (-15 -2503 ($ $ (-523) (-523))) (-15 -4005 ($ $)) (-15 -4005 ($ $ (-523) (-523))) (-15 -2621 ($ $ (-589 (-523)))) (-15 -3022 ($)) (-15 -1761 ($)) (-15 -1571 ((-589 |#3|) $)) (-15 -4200 ($ (-589 |#3|))) (-15 -4189 ($)))) +((-1691 (((-794) $) 7))) (((-129) (-563 (-794))) (T -129)) NIL (-563 (-794)) -((-3924 (((-108) $ $) NIL)) (-1303 (($) 15 T CONST)) (-2919 (($) NIL (|has| (-133) (-344)))) (-3288 (($ $ $) 17) (($ $ (-133)) NIL) (($ (-133) $) NIL)) (-1922 (($ $ $) NIL)) (-3471 (((-108) $ $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| (-133) (-344)))) (-4086 (($) NIL) (($ (-589 (-133))) NIL)) (-3387 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-2249 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244))) (($ (-133) $) 51 (|has| $ (-6 -4244)))) (-2557 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244))) (($ (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-2437 (((-133) (-1 (-133) (-133) (-133)) $) NIL (|has| $ (-6 -4244))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) NIL (|has| $ (-6 -4244))) (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-4032 (($) NIL (|has| (-133) (-344)))) (-1666 (((-589 (-133)) $) 60 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2454 (((-133) $) NIL (|has| (-133) (-786)))) (-2136 (((-589 (-133)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-133) $) 26 (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-2062 (((-133) $) NIL (|has| (-133) (-786)))) (-2852 (($ (-1 (-133) (-133)) $) 59 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-133) (-133)) $) 55)) (-2674 (($) 16 T CONST)) (-2072 (((-852) $) NIL (|has| (-133) (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-1309 (($ $ $) 29)) (-1934 (((-133) $) 52)) (-3450 (($ (-133) $) 50)) (-3878 (($ (-852)) NIL (|has| (-133) (-344)))) (-3411 (($) 14 T CONST)) (-2783 (((-1034) $) NIL)) (-2114 (((-3 (-133) "failed") (-1 (-108) (-133)) $) NIL)) (-3761 (((-133) $) 53)) (-1327 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-133)) (-589 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-271 (-133)))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 48)) (-1855 (($) 13 T CONST)) (-3682 (($ $ $) 31) (($ $ (-133)) NIL)) (-3433 (($ (-589 (-133))) NIL) (($) NIL)) (-2792 (((-710) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016)))) (((-710) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-1070) $) 36) (((-499) $) NIL (|has| (-133) (-564 (-499)))) (((-589 (-133)) $) 34)) (-1472 (($ (-589 (-133))) NIL)) (-2059 (($ $) 32 (|has| (-133) (-344)))) (-1458 (((-794) $) 46)) (-3637 (($ (-1070)) 12) (($ (-589 (-133))) 43)) (-3398 (((-710) $) NIL)) (-1684 (($) 49) (($ (-589 (-133))) NIL)) (-2401 (($ (-589 (-133))) NIL)) (-2096 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2162 (($) 19 T CONST)) (-3104 (($) 18 T CONST)) (-3983 (((-108) $ $) 22)) (-4007 (((-108) $ $) NIL)) (-2676 (((-710) $) 47 (|has| $ (-6 -4244))))) -(((-130) (-13 (-1016) (-564 (-1070)) (-401 (-133)) (-564 (-589 (-133))) (-10 -8 (-15 -3637 ($ (-1070))) (-15 -3637 ($ (-589 (-133)))) (-15 -1855 ($) -3059) (-15 -3411 ($) -3059) (-15 -1303 ($) -3059) (-15 -2674 ($) -3059) (-15 -3104 ($) -3059) (-15 -2162 ($) -3059)))) (T -130)) -((-3637 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-130)))) (-3637 (*1 *1 *2) (-12 (-5 *2 (-589 (-133))) (-5 *1 (-130)))) (-1855 (*1 *1) (-5 *1 (-130))) (-3411 (*1 *1) (-5 *1 (-130))) (-1303 (*1 *1) (-5 *1 (-130))) (-2674 (*1 *1) (-5 *1 (-130))) (-3104 (*1 *1) (-5 *1 (-130))) (-2162 (*1 *1) (-5 *1 (-130)))) -(-13 (-1016) (-564 (-1070)) (-401 (-133)) (-564 (-589 (-133))) (-10 -8 (-15 -3637 ($ (-1070))) (-15 -3637 ($ (-589 (-133)))) (-15 -1855 ($) -3059) (-15 -3411 ($) -3059) (-15 -1303 ($) -3059) (-15 -2674 ($) -3059) (-15 -3104 ($) -3059) (-15 -2162 ($) -3059))) -((-1199 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3616 ((|#1| |#3|) 9)) (-3604 ((|#3| |#3|) 15))) -(((-131 |#1| |#2| |#3|) (-10 -7 (-15 -3616 (|#1| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -1199 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-515) (-921 |#1|) (-349 |#2|)) (T -131)) -((-1199 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-131 *4 *5 *3)) (-4 *3 (-349 *5)))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-515)) (-4 *4 (-921 *3)) (-5 *1 (-131 *3 *4 *2)) (-4 *2 (-349 *4)))) (-3616 (*1 *2 *3) (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-131 *2 *4 *3)) (-4 *3 (-349 *4))))) -(-10 -7 (-15 -3616 (|#1| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -1199 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3654 (($ $ $) 8)) (-3217 (($ $) 7)) (-2574 (($ $ $) 6))) +((-1680 (((-108) $ $) NIL)) (-3137 (($) 15 T CONST)) (-3662 (($) NIL (|has| (-133) (-344)))) (-3321 (($ $ $) 17) (($ $ (-133)) NIL) (($ (-133) $) NIL)) (-4199 (($ $ $) NIL)) (-2172 (((-108) $ $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-2395 (((-710)) NIL (|has| (-133) (-344)))) (-1365 (($) NIL) (($ (-589 (-133))) NIL)) (-3703 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-3286 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248))) (($ (-133) $) 51 (|has| $ (-6 -4248)))) (-2514 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248))) (($ (-133) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-2116 (((-133) (-1 (-133) (-133) (-133)) $) NIL (|has| $ (-6 -4248))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) NIL (|has| $ (-6 -4248))) (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-1631 (($) NIL (|has| (-133) (-344)))) (-1871 (((-589 (-133)) $) 60 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-3239 (((-133) $) NIL (|has| (-133) (-786)))) (-1584 (((-589 (-133)) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-133) $) 26 (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-3158 (((-133) $) NIL (|has| (-133) (-786)))) (-2043 (($ (-1 (-133) (-133)) $) 59 (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-133) (-133)) $) 55)) (-2052 (($) 16 T CONST)) (-2060 (((-852) $) NIL (|has| (-133) (-344)))) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-3196 (($ $ $) 29)) (-1293 (((-133) $) 52)) (-3108 (($ (-133) $) 50)) (-4013 (($ (-852)) NIL (|has| (-133) (-344)))) (-2764 (($) 14 T CONST)) (-3951 (((-1034) $) NIL)) (-2509 (((-3 (-133) "failed") (-1 (-108) (-133)) $) NIL)) (-3048 (((-133) $) 53)) (-3379 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-133)) (-589 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-271 (-133)))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) 48)) (-1751 (($) 13 T CONST)) (-3582 (($ $ $) 31) (($ $ (-133)) NIL)) (-2963 (($ (-589 (-133))) NIL) (($) NIL)) (-3977 (((-710) (-133) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016)))) (((-710) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-1070) $) 36) (((-499) $) NIL (|has| (-133) (-564 (-499)))) (((-589 (-133)) $) 34)) (-1704 (($ (-589 (-133))) NIL)) (-1966 (($ $) 32 (|has| (-133) (-344)))) (-1691 (((-794) $) 46)) (-3180 (($ (-1070)) 12) (($ (-589 (-133))) 43)) (-2649 (((-710) $) NIL)) (-3324 (($) 49) (($ (-589 (-133))) NIL)) (-2417 (($ (-589 (-133))) NIL)) (-2308 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-1829 (($) 19 T CONST)) (-1847 (($) 18 T CONST)) (-3941 (((-108) $ $) 22)) (-3966 (((-108) $ $) NIL)) (-2810 (((-710) $) 47 (|has| $ (-6 -4248))))) +(((-130) (-13 (-1016) (-564 (-1070)) (-401 (-133)) (-564 (-589 (-133))) (-10 -8 (-15 -3180 ($ (-1070))) (-15 -3180 ($ (-589 (-133)))) (-15 -1751 ($) -2501) (-15 -2764 ($) -2501) (-15 -3137 ($) -2501) (-15 -2052 ($) -2501) (-15 -1847 ($) -2501) (-15 -1829 ($) -2501)))) (T -130)) +((-3180 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-130)))) (-3180 (*1 *1 *2) (-12 (-5 *2 (-589 (-133))) (-5 *1 (-130)))) (-1751 (*1 *1) (-5 *1 (-130))) (-2764 (*1 *1) (-5 *1 (-130))) (-3137 (*1 *1) (-5 *1 (-130))) (-2052 (*1 *1) (-5 *1 (-130))) (-1847 (*1 *1) (-5 *1 (-130))) (-1829 (*1 *1) (-5 *1 (-130)))) +(-13 (-1016) (-564 (-1070)) (-401 (-133)) (-564 (-589 (-133))) (-10 -8 (-15 -3180 ($ (-1070))) (-15 -3180 ($ (-589 (-133)))) (-15 -1751 ($) -2501) (-15 -2764 ($) -2501) (-15 -3137 ($) -2501) (-15 -2052 ($) -2501) (-15 -1847 ($) -2501) (-15 -1829 ($) -2501))) +((-1505 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1222 ((|#1| |#3|) 9)) (-4117 ((|#3| |#3|) 15))) +(((-131 |#1| |#2| |#3|) (-10 -7 (-15 -1222 (|#1| |#3|)) (-15 -4117 (|#3| |#3|)) (-15 -1505 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-515) (-921 |#1|) (-349 |#2|)) (T -131)) +((-1505 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-131 *4 *5 *3)) (-4 *3 (-349 *5)))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-515)) (-4 *4 (-921 *3)) (-5 *1 (-131 *3 *4 *2)) (-4 *2 (-349 *4)))) (-1222 (*1 *2 *3) (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-131 *2 *4 *3)) (-4 *3 (-349 *4))))) +(-10 -7 (-15 -1222 (|#1| |#3|)) (-15 -4117 (|#3| |#3|)) (-15 -1505 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3325 (($ $ $) 8)) (-3459 (($ $) 7)) (-3435 (($ $ $) 6))) (((-132) (-129)) (T -132)) -((-3654 (*1 *1 *1 *1) (-4 *1 (-132))) (-3217 (*1 *1 *1) (-4 *1 (-132))) (-2574 (*1 *1 *1 *1) (-4 *1 (-132)))) -(-13 (-10 -8 (-15 -2574 ($ $ $)) (-15 -3217 ($ $)) (-15 -3654 ($ $ $)))) -((-3924 (((-108) $ $) NIL)) (-3316 (((-108) $) 30)) (-1303 (($ $) 43)) (-2992 (($) 17)) (-1703 (((-710)) 10)) (-4032 (($) 16)) (-3295 (($) 18)) (-2937 (((-710) $) 14)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-1435 (((-108) $) 32)) (-2674 (($ $) 44)) (-2072 (((-852) $) 15)) (-3779 (((-1070) $) 38)) (-3878 (($ (-852)) 13)) (-2660 (((-108) $) 28)) (-2783 (((-1034) $) NIL)) (-2909 (($) 19)) (-4052 (((-108) $) 26)) (-1458 (((-794) $) 21)) (-4065 (($ (-710)) 11) (($ (-1070)) 42)) (-2333 (((-108) $) 36)) (-3874 (((-108) $) 34)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 7)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 8))) -(((-133) (-13 (-780) (-10 -8 (-15 -2937 ((-710) $)) (-15 -4065 ($ (-710))) (-15 -4065 ($ (-1070))) (-15 -2992 ($)) (-15 -3295 ($)) (-15 -2909 ($)) (-15 -1303 ($ $)) (-15 -2674 ($ $)) (-15 -4052 ((-108) $)) (-15 -2660 ((-108) $)) (-15 -3874 ((-108) $)) (-15 -3316 ((-108) $)) (-15 -1435 ((-108) $)) (-15 -2333 ((-108) $))))) (T -133)) -((-2937 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-133)))) (-4065 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-133)))) (-4065 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-133)))) (-2992 (*1 *1) (-5 *1 (-133))) (-3295 (*1 *1) (-5 *1 (-133))) (-2909 (*1 *1) (-5 *1 (-133))) (-1303 (*1 *1 *1) (-5 *1 (-133))) (-2674 (*1 *1 *1) (-5 *1 (-133))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-1435 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) -(-13 (-780) (-10 -8 (-15 -2937 ((-710) $)) (-15 -4065 ($ (-710))) (-15 -4065 ($ (-1070))) (-15 -2992 ($)) (-15 -3295 ($)) (-15 -2909 ($)) (-15 -1303 ($ $)) (-15 -2674 ($ $)) (-15 -4052 ((-108) $)) (-15 -2660 ((-108) $)) (-15 -3874 ((-108) $)) (-15 -3316 ((-108) $)) (-15 -1435 ((-108) $)) (-15 -2333 ((-108) $)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-3901 (((-3 $ "failed") $) 35)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-3325 (*1 *1 *1 *1) (-4 *1 (-132))) (-3459 (*1 *1 *1) (-4 *1 (-132))) (-3435 (*1 *1 *1 *1) (-4 *1 (-132)))) +(-13 (-10 -8 (-15 -3435 ($ $ $)) (-15 -3459 ($ $)) (-15 -3325 ($ $ $)))) +((-1680 (((-108) $ $) NIL)) (-1288 (((-108) $) 30)) (-3137 (($ $) 43)) (-3146 (($) 17)) (-2395 (((-710)) 10)) (-1631 (($) 16)) (-4099 (($) 18)) (-2661 (((-710) $) 14)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2096 (((-108) $) 32)) (-2052 (($ $) 44)) (-2060 (((-852) $) 15)) (-2032 (((-1070) $) 38)) (-4013 (($ (-852)) 13)) (-3067 (((-108) $) 28)) (-3951 (((-1034) $) NIL)) (-3573 (($) 19)) (-1653 (((-108) $) 26)) (-1691 (((-794) $) 21)) (-4185 (($ (-710)) 11) (($ (-1070)) 42)) (-2934 (((-108) $) 36)) (-1692 (((-108) $) 34)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 7)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 8))) +(((-133) (-13 (-780) (-10 -8 (-15 -2661 ((-710) $)) (-15 -4185 ($ (-710))) (-15 -4185 ($ (-1070))) (-15 -3146 ($)) (-15 -4099 ($)) (-15 -3573 ($)) (-15 -3137 ($ $)) (-15 -2052 ($ $)) (-15 -1653 ((-108) $)) (-15 -3067 ((-108) $)) (-15 -1692 ((-108) $)) (-15 -1288 ((-108) $)) (-15 -2096 ((-108) $)) (-15 -2934 ((-108) $))))) (T -133)) +((-2661 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-133)))) (-4185 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-133)))) (-4185 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-133)))) (-3146 (*1 *1) (-5 *1 (-133))) (-4099 (*1 *1) (-5 *1 (-133))) (-3573 (*1 *1) (-5 *1 (-133))) (-3137 (*1 *1 *1) (-5 *1 (-133))) (-2052 (*1 *1 *1) (-5 *1 (-133))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(-13 (-780) (-10 -8 (-15 -2661 ((-710) $)) (-15 -4185 ($ (-710))) (-15 -4185 ($ (-1070))) (-15 -3146 ($)) (-15 -4099 ($)) (-15 -3573 ($)) (-15 -3137 ($ $)) (-15 -2052 ($ $)) (-15 -1653 ((-108) $)) (-15 -3067 ((-108) $)) (-15 -1692 ((-108) $)) (-15 -1288 ((-108) $)) (-15 -2096 ((-108) $)) (-15 -2934 ((-108) $)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ (-523)) 28)) (-1942 (((-3 $ "failed") $) 35)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-134) (-129)) (T -134)) -((-3901 (*1 *1 *1) (|partial| -4 *1 (-134)))) -(-13 (-973) (-10 -8 (-15 -3901 ((-3 $ "failed") $)))) +((-1942 (*1 *1 *1) (|partial| -4 *1 (-134)))) +(-13 (-973) (-10 -8 (-15 -1942 ((-3 $ "failed") $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-1807 ((|#1| (-629 |#1|) |#1|) 17))) -(((-135 |#1|) (-10 -7 (-15 -1807 (|#1| (-629 |#1|) |#1|))) (-158)) (T -135)) -((-1807 (*1 *2 *3 *2) (-12 (-5 *3 (-629 *2)) (-4 *2 (-158)) (-5 *1 (-135 *2))))) -(-10 -7 (-15 -1807 (|#1| (-629 |#1|) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-1356 ((|#1| (-629 |#1|) |#1|) 19))) +(((-135 |#1|) (-10 -7 (-15 -1356 (|#1| (-629 |#1|) |#1|))) (-158)) (T -135)) +((-1356 (*1 *2 *3 *2) (-12 (-5 *3 (-629 *2)) (-4 *2 (-158)) (-5 *1 (-135 *2))))) +(-10 -7 (-15 -1356 (|#1| (-629 |#1|) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ (-523)) 28)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-136) (-129)) (T -136)) NIL (-13 (-973)) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-2950 (((-2 (|:| -2735 (-710)) (|:| -2935 (-383 |#2|)) (|:| |radicand| |#2|)) (-383 |#2|) (-710)) 70)) (-2805 (((-3 (-2 (|:| |radicand| (-383 |#2|)) (|:| |deg| (-710))) "failed") |#3|) 52)) (-4173 (((-2 (|:| -2935 (-383 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1218 ((|#1| |#3| |#3|) 40)) (-2679 ((|#3| |#3| (-383 |#2|) (-383 |#2|)) 19)) (-3996 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| |deg| (-710))) |#3| |#3|) 49))) -(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -4173 ((-2 (|:| -2935 (-383 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2805 ((-3 (-2 (|:| |radicand| (-383 |#2|)) (|:| |deg| (-710))) "failed") |#3|)) (-15 -2950 ((-2 (|:| -2735 (-710)) (|:| -2935 (-383 |#2|)) (|:| |radicand| |#2|)) (-383 |#2|) (-710))) (-15 -1218 (|#1| |#3| |#3|)) (-15 -2679 (|#3| |#3| (-383 |#2|) (-383 |#2|))) (-15 -3996 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| |deg| (-710))) |#3| |#3|))) (-1126) (-1144 |#1|) (-1144 (-383 |#2|))) (T -137)) -((-3996 (*1 *2 *3 *3) (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-383 *5)) (|:| |c2| (-383 *5)) (|:| |deg| (-710)))) (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1144 (-383 *5))))) (-2679 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-383 *5)) (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-5 *1 (-137 *4 *5 *2)) (-4 *2 (-1144 *3)))) (-1218 (*1 *2 *3 *3) (-12 (-4 *4 (-1144 *2)) (-4 *2 (-1126)) (-5 *1 (-137 *2 *4 *3)) (-4 *3 (-1144 (-383 *4))))) (-2950 (*1 *2 *3 *4) (-12 (-5 *3 (-383 *6)) (-4 *5 (-1126)) (-4 *6 (-1144 *5)) (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *3) (|:| |radicand| *6))) (-5 *1 (-137 *5 *6 *7)) (-5 *4 (-710)) (-4 *7 (-1144 *3)))) (-2805 (*1 *2 *3) (|partial| -12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| |radicand| (-383 *5)) (|:| |deg| (-710)))) (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1144 (-383 *5))))) (-4173 (*1 *2 *3) (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -2935 (-383 *5)) (|:| |poly| *3))) (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1144 (-383 *5)))))) -(-10 -7 (-15 -4173 ((-2 (|:| -2935 (-383 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2805 ((-3 (-2 (|:| |radicand| (-383 |#2|)) (|:| |deg| (-710))) "failed") |#3|)) (-15 -2950 ((-2 (|:| -2735 (-710)) (|:| -2935 (-383 |#2|)) (|:| |radicand| |#2|)) (-383 |#2|) (-710))) (-15 -1218 (|#1| |#3| |#3|)) (-15 -2679 (|#3| |#3| (-383 |#2|) (-383 |#2|))) (-15 -3996 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| |deg| (-710))) |#3| |#3|))) -((-3652 (((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|)) 32))) -(((-138 |#1| |#2|) (-10 -7 (-15 -3652 ((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|)))) (-508) (-152 |#1|)) (T -138)) -((-3652 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-152 *4)) (-4 *4 (-508)) (-5 *1 (-138 *4 *5))))) -(-10 -7 (-15 -3652 ((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|)))) -((-3724 (($ (-1 (-108) |#2|) $) 29)) (-1773 (($ $) 36)) (-2557 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-2437 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2114 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-1327 (((-108) (-1 (-108) |#2|) $) 16)) (-2792 (((-710) (-1 (-108) |#2|) $) 13) (((-710) |#2| $) NIL)) (-2096 (((-108) (-1 (-108) |#2|) $) 15)) (-2676 (((-710) $) 11))) -(((-139 |#1| |#2|) (-10 -8 (-15 -1773 (|#1| |#1|)) (-15 -2557 (|#1| |#2| |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3724 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2557 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2114 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2676 ((-710) |#1|))) (-140 |#2|) (-1122)) (T -139)) -NIL -(-10 -8 (-15 -1773 (|#1| |#1|)) (-15 -2557 (|#1| |#2| |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3724 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2557 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2114 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2676 ((-710) |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-3724 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-1773 (($ $) 41 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244))) (($ |#1| $) 42 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 40 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 49)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-140 |#1|) (-129) (-1122)) (T -140)) -((-1472 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-4 *1 (-140 *3)))) (-2114 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-140 *2)) (-4 *2 (-1122)))) (-2437 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)))) (-2437 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)))) (-2557 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *3)) (-4 *3 (-1122)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *3)) (-4 *3 (-1122)))) (-2437 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1016)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)))) (-2557 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)) (-4 *2 (-1016)))) (-1773 (*1 *1 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)) (-4 *2 (-1016))))) -(-13 (-462 |t#1|) (-10 -8 (-15 -1472 ($ (-589 |t#1|))) (-15 -2114 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4244)) (PROGN (-15 -2437 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2437 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2557 ($ (-1 (-108) |t#1|) $)) (-15 -3724 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -2437 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2557 ($ |t#1| $)) (-15 -1773 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) 86)) (-2023 (((-108) $) NIL)) (-1933 (($ |#2| (-589 (-852))) 57)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2930 (($ (-852)) 48)) (-3203 (((-126)) 23)) (-1458 (((-794) $) 69) (($ (-523)) 46) (($ |#2|) 47)) (-2365 ((|#2| $ (-589 (-852))) 59)) (-1621 (((-710)) 20)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 40 T CONST)) (-2767 (($) 44 T CONST)) (-3983 (((-108) $ $) 26)) (-4098 (($ $ |#2|) NIL)) (-4087 (($ $) 34) (($ $ $) 32)) (-4075 (($ $ $) 30)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-141 |#1| |#2| |#3|) (-13 (-973) (-37 |#2|) (-1175 |#2|) (-10 -8 (-15 -2930 ($ (-852))) (-15 -1933 ($ |#2| (-589 (-852)))) (-15 -2365 (|#2| $ (-589 (-852)))) (-15 -2121 ((-3 $ "failed") $)))) (-852) (-339) (-922 |#1| |#2|)) (T -141)) -((-2121 (*1 *1 *1) (|partial| -12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-852)) (-4 *3 (-339)) (-14 *4 (-922 *2 *3)))) (-2930 (*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-339)) (-14 *5 (-922 *3 *4)))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-589 (-852))) (-5 *1 (-141 *4 *2 *5)) (-14 *4 (-852)) (-4 *2 (-339)) (-14 *5 (-922 *4 *2)))) (-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-589 (-852))) (-4 *2 (-339)) (-5 *1 (-141 *4 *2 *5)) (-14 *4 (-852)) (-14 *5 (-922 *4 *2))))) -(-13 (-973) (-37 |#2|) (-1175 |#2|) (-10 -8 (-15 -2930 ($ (-852))) (-15 -1933 ($ |#2| (-589 (-852)))) (-15 -2365 (|#2| $ (-589 (-852)))) (-15 -2121 ((-3 $ "failed") $)))) -((-3309 (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203)))) (-203) (-203) (-203) (-203)) 38)) (-1345 (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523))) 63) (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858)) 64)) (-1520 (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203))))) 67) (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-874 (-203)))) 66) (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523))) 58) (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858)) 59))) -(((-142) (-10 -7 (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858))) (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523)))) (-15 -1345 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858))) (-15 -1345 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523)))) (-15 -3309 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203)))) (-203) (-203) (-203) (-203))) (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-874 (-203))))) (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203)))))))) (T -142)) -((-1520 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)) (-5 *3 (-589 (-589 (-874 (-203))))))) (-1520 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)) (-5 *3 (-589 (-874 (-203)))))) (-3309 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-203)) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 *4)))) (|:| |xValues| (-1011 *4)) (|:| |yValues| (-1011 *4)))) (-5 *1 (-142)) (-5 *3 (-589 (-589 (-874 *4)))))) (-1345 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858)) (-5 *4 (-383 (-523))) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)))) (-1520 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858)) (-5 *4 (-383 (-523))) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142))))) -(-10 -7 (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858))) (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523)))) (-15 -1345 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858))) (-15 -1345 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523)))) (-15 -3309 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203)))) (-203) (-203) (-203) (-203))) (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-874 (-203))))) (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203))))))) -((-2138 (((-589 (-155 |#2|)) |#1| |#2|) 45))) -(((-143 |#1| |#2|) (-10 -7 (-15 -2138 ((-589 (-155 |#2|)) |#1| |#2|))) (-1144 (-155 (-523))) (-13 (-339) (-784))) (T -143)) -((-2138 (*1 *2 *3 *4) (-12 (-5 *2 (-589 (-155 *4))) (-5 *1 (-143 *3 *4)) (-4 *3 (-1144 (-155 (-523)))) (-4 *4 (-13 (-339) (-784)))))) -(-10 -7 (-15 -2138 ((-589 (-155 |#2|)) |#1| |#2|))) -((-3924 (((-108) $ $) NIL)) (-2904 (($) 16)) (-2622 (($) 15)) (-2650 (((-852)) 23)) (-3779 (((-1070) $) NIL)) (-1804 (((-523) $) 20)) (-2783 (((-1034) $) NIL)) (-1209 (($) 17)) (-2413 (($ (-523)) 24)) (-1458 (((-794) $) 30)) (-1938 (($) 18)) (-3983 (((-108) $ $) 14)) (-4075 (($ $ $) 13)) (* (($ (-852) $) 22) (($ (-203) $) 8))) -(((-144) (-13 (-25) (-10 -8 (-15 * ($ (-852) $)) (-15 * ($ (-203) $)) (-15 -4075 ($ $ $)) (-15 -2622 ($)) (-15 -2904 ($)) (-15 -1209 ($)) (-15 -1938 ($)) (-15 -1804 ((-523) $)) (-15 -2650 ((-852))) (-15 -2413 ($ (-523)))))) (T -144)) -((-4075 (*1 *1 *1 *1) (-5 *1 (-144))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-144)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-144)))) (-2622 (*1 *1) (-5 *1 (-144))) (-2904 (*1 *1) (-5 *1 (-144))) (-1209 (*1 *1) (-5 *1 (-144))) (-1938 (*1 *1) (-5 *1 (-144))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-144)))) (-2650 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-144)))) (-2413 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-144))))) -(-13 (-25) (-10 -8 (-15 * ($ (-852) $)) (-15 * ($ (-203) $)) (-15 -4075 ($ $ $)) (-15 -2622 ($)) (-15 -2904 ($)) (-15 -1209 ($)) (-15 -1938 ($)) (-15 -1804 ((-523) $)) (-15 -2650 ((-852))) (-15 -2413 ($ (-523))))) -((-1815 ((|#2| |#2| (-1009 |#2|)) 87) ((|#2| |#2| (-1087)) 67)) (-1656 ((|#2| |#2| (-1009 |#2|)) 86) ((|#2| |#2| (-1087)) 66)) (-3654 ((|#2| |#2| |#2|) 27)) (-1403 (((-110) (-110)) 97)) (-1261 ((|#2| (-589 |#2|)) 116)) (-1517 ((|#2| (-589 |#2|)) 134)) (-3926 ((|#2| (-589 |#2|)) 124)) (-2025 ((|#2| |#2|) 122)) (-4057 ((|#2| (-589 |#2|)) 109)) (-2745 ((|#2| (-589 |#2|)) 110)) (-1477 ((|#2| (-589 |#2|)) 132)) (-2988 ((|#2| |#2| (-1087)) 54) ((|#2| |#2|) 53)) (-3217 ((|#2| |#2|) 23)) (-2574 ((|#2| |#2| |#2|) 26)) (-1950 (((-108) (-110)) 47)) (** ((|#2| |#2| |#2|) 38))) -(((-145 |#1| |#2|) (-10 -7 (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -2574 (|#2| |#2| |#2|)) (-15 -3654 (|#2| |#2| |#2|)) (-15 -3217 (|#2| |#2|)) (-15 -2988 (|#2| |#2|)) (-15 -2988 (|#2| |#2| (-1087))) (-15 -1815 (|#2| |#2| (-1087))) (-15 -1815 (|#2| |#2| (-1009 |#2|))) (-15 -1656 (|#2| |#2| (-1087))) (-15 -1656 (|#2| |#2| (-1009 |#2|))) (-15 -2025 (|#2| |#2|)) (-15 -1477 (|#2| (-589 |#2|))) (-15 -3926 (|#2| (-589 |#2|))) (-15 -1517 (|#2| (-589 |#2|))) (-15 -4057 (|#2| (-589 |#2|))) (-15 -2745 (|#2| (-589 |#2|))) (-15 -1261 (|#2| (-589 |#2|)))) (-13 (-786) (-515)) (-406 |#1|)) (T -145)) -((-1261 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-2025 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-1656 (*1 *2 *2 *3) (-12 (-5 *3 (-1009 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)))) (-1656 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) (-4 *2 (-406 *4)))) (-1815 (*1 *2 *2 *3) (-12 (-5 *3 (-1009 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)))) (-1815 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) (-4 *2 (-406 *4)))) (-2988 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) (-4 *2 (-406 *4)))) (-2988 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-3217 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-3654 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-2574 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *4)) (-4 *4 (-406 *3)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-145 *4 *5)) (-4 *5 (-406 *4))))) -(-10 -7 (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -2574 (|#2| |#2| |#2|)) (-15 -3654 (|#2| |#2| |#2|)) (-15 -3217 (|#2| |#2|)) (-15 -2988 (|#2| |#2|)) (-15 -2988 (|#2| |#2| (-1087))) (-15 -1815 (|#2| |#2| (-1087))) (-15 -1815 (|#2| |#2| (-1009 |#2|))) (-15 -1656 (|#2| |#2| (-1087))) (-15 -1656 (|#2| |#2| (-1009 |#2|))) (-15 -2025 (|#2| |#2|)) (-15 -1477 (|#2| (-589 |#2|))) (-15 -3926 (|#2| (-589 |#2|))) (-15 -1517 (|#2| (-589 |#2|))) (-15 -4057 (|#2| (-589 |#2|))) (-15 -2745 (|#2| (-589 |#2|))) (-15 -1261 (|#2| (-589 |#2|)))) -((-2351 ((|#1| |#1| |#1|) 52)) (-2089 ((|#1| |#1| |#1|) 49)) (-3654 ((|#1| |#1| |#1|) 43)) (-4199 ((|#1| |#1|) 34)) (-2083 ((|#1| |#1| (-589 |#1|)) 42)) (-3217 ((|#1| |#1|) 36)) (-2574 ((|#1| |#1| |#1|) 39))) -(((-146 |#1|) (-10 -7 (-15 -2574 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -2083 (|#1| |#1| (-589 |#1|))) (-15 -4199 (|#1| |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|))) (-508)) (T -146)) -((-2351 (*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-2089 (*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-3654 (*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-4199 (*1 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-2083 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-508)) (-5 *1 (-146 *2)))) (-3217 (*1 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-2574 (*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) -(-10 -7 (-15 -2574 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -2083 (|#1| |#1| (-589 |#1|))) (-15 -4199 (|#1| |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|))) -((-1815 (($ $ (-1087)) 12) (($ $ (-1009 $)) 11)) (-1656 (($ $ (-1087)) 10) (($ $ (-1009 $)) 9)) (-3654 (($ $ $) 8)) (-2988 (($ $) 14) (($ $ (-1087)) 13)) (-3217 (($ $) 7)) (-2574 (($ $ $) 6))) +((-2766 (((-2 (|:| -1475 (-710)) (|:| -3474 (-383 |#2|)) (|:| |radicand| |#2|)) (-383 |#2|) (-710)) 70)) (-3886 (((-3 (-2 (|:| |radicand| (-383 |#2|)) (|:| |deg| (-710))) "failed") |#3|) 52)) (-2613 (((-2 (|:| -3474 (-383 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1696 ((|#1| |#3| |#3|) 40)) (-2812 ((|#3| |#3| (-383 |#2|) (-383 |#2|)) 19)) (-3377 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| |deg| (-710))) |#3| |#3|) 49))) +(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -2613 ((-2 (|:| -3474 (-383 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3886 ((-3 (-2 (|:| |radicand| (-383 |#2|)) (|:| |deg| (-710))) "failed") |#3|)) (-15 -2766 ((-2 (|:| -1475 (-710)) (|:| -3474 (-383 |#2|)) (|:| |radicand| |#2|)) (-383 |#2|) (-710))) (-15 -1696 (|#1| |#3| |#3|)) (-15 -2812 (|#3| |#3| (-383 |#2|) (-383 |#2|))) (-15 -3377 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| |deg| (-710))) |#3| |#3|))) (-1127) (-1145 |#1|) (-1145 (-383 |#2|))) (T -137)) +((-3377 (*1 *2 *3 *3) (-12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-383 *5)) (|:| |c2| (-383 *5)) (|:| |deg| (-710)))) (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1145 (-383 *5))))) (-2812 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-383 *5)) (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-5 *1 (-137 *4 *5 *2)) (-4 *2 (-1145 *3)))) (-1696 (*1 *2 *3 *3) (-12 (-4 *4 (-1145 *2)) (-4 *2 (-1127)) (-5 *1 (-137 *2 *4 *3)) (-4 *3 (-1145 (-383 *4))))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-383 *6)) (-4 *5 (-1127)) (-4 *6 (-1145 *5)) (-5 *2 (-2 (|:| -1475 (-710)) (|:| -3474 *3) (|:| |radicand| *6))) (-5 *1 (-137 *5 *6 *7)) (-5 *4 (-710)) (-4 *7 (-1145 *3)))) (-3886 (*1 *2 *3) (|partial| -12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| |radicand| (-383 *5)) (|:| |deg| (-710)))) (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1145 (-383 *5))))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| -3474 (-383 *5)) (|:| |poly| *3))) (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1145 (-383 *5)))))) +(-10 -7 (-15 -2613 ((-2 (|:| -3474 (-383 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3886 ((-3 (-2 (|:| |radicand| (-383 |#2|)) (|:| |deg| (-710))) "failed") |#3|)) (-15 -2766 ((-2 (|:| -1475 (-710)) (|:| -3474 (-383 |#2|)) (|:| |radicand| |#2|)) (-383 |#2|) (-710))) (-15 -1696 (|#1| |#3| |#3|)) (-15 -2812 (|#3| |#3| (-383 |#2|) (-383 |#2|))) (-15 -3377 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| |deg| (-710))) |#3| |#3|))) +((-3302 (((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|)) 32))) +(((-138 |#1| |#2|) (-10 -7 (-15 -3302 ((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|)))) (-508) (-152 |#1|)) (T -138)) +((-3302 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-152 *4)) (-4 *4 (-508)) (-5 *1 (-138 *4 *5))))) +(-10 -7 (-15 -3302 ((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|)))) +((-1903 (($ (-1 (-108) |#2|) $) 29)) (-2462 (($ $) 36)) (-2514 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-2116 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2509 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-3379 (((-108) (-1 (-108) |#2|) $) 16)) (-3977 (((-710) (-1 (-108) |#2|) $) 13) (((-710) |#2| $) NIL)) (-2308 (((-108) (-1 (-108) |#2|) $) 15)) (-2810 (((-710) $) 11))) +(((-139 |#1| |#2|) (-10 -8 (-15 -2462 (|#1| |#1|)) (-15 -2514 (|#1| |#2| |#1|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1903 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2514 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2509 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3977 ((-710) |#2| |#1|)) (-15 -3977 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -3379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2308 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2810 ((-710) |#1|))) (-140 |#2|) (-1123)) (T -139)) +NIL +(-10 -8 (-15 -2462 (|#1| |#1|)) (-15 -2514 (|#1| |#2| |#1|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1903 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2514 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2509 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3977 ((-710) |#2| |#1|)) (-15 -3977 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -3379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2308 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2810 ((-710) |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) 8)) (-1903 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-2462 (($ $) 41 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4248))) (($ |#1| $) 42 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1400 (((-499) $) 40 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 49)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-140 |#1|) (-129) (-1123)) (T -140)) +((-1704 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-4 *1 (-140 *3)))) (-2509 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-140 *2)) (-4 *2 (-1123)))) (-2116 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4248)) (-4 *1 (-140 *2)) (-4 *2 (-1123)))) (-2116 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4248)) (-4 *1 (-140 *2)) (-4 *2 (-1123)))) (-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4248)) (-4 *1 (-140 *3)) (-4 *3 (-1123)))) (-1903 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4248)) (-4 *1 (-140 *3)) (-4 *3 (-1123)))) (-2116 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1016)) (|has| *1 (-6 -4248)) (-4 *1 (-140 *2)) (-4 *2 (-1123)))) (-2514 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4248)) (-4 *1 (-140 *2)) (-4 *2 (-1123)) (-4 *2 (-1016)))) (-2462 (*1 *1 *1) (-12 (|has| *1 (-6 -4248)) (-4 *1 (-140 *2)) (-4 *2 (-1123)) (-4 *2 (-1016))))) +(-13 (-462 |t#1|) (-10 -8 (-15 -1704 ($ (-589 |t#1|))) (-15 -2509 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4248)) (PROGN (-15 -2116 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2116 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2514 ($ (-1 (-108) |t#1|) $)) (-15 -1903 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -2116 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2514 ($ |t#1| $)) (-15 -2462 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) 87)) (-2769 (((-108) $) NIL)) (-1267 (($ |#2| (-589 (-852))) 57)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1934 (($ (-852)) 48)) (-3314 (((-126)) 23)) (-1691 (((-794) $) 70) (($ (-523)) 46) (($ |#2|) 47)) (-2084 ((|#2| $ (-589 (-852))) 60)) (-3272 (((-710)) 20)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 40 T CONST)) (-1891 (($) 44 T CONST)) (-3941 (((-108) $ $) 26)) (-4074 (($ $ |#2|) NIL)) (-4060 (($ $) 34) (($ $ $) 32)) (-4045 (($ $ $) 30)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-141 |#1| |#2| |#3|) (-13 (-973) (-37 |#2|) (-1176 |#2|) (-10 -8 (-15 -1934 ($ (-852))) (-15 -1267 ($ |#2| (-589 (-852)))) (-15 -2084 (|#2| $ (-589 (-852)))) (-15 -1444 ((-3 $ "failed") $)))) (-852) (-339) (-922 |#1| |#2|)) (T -141)) +((-1444 (*1 *1 *1) (|partial| -12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-852)) (-4 *3 (-339)) (-14 *4 (-922 *2 *3)))) (-1934 (*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-339)) (-14 *5 (-922 *3 *4)))) (-1267 (*1 *1 *2 *3) (-12 (-5 *3 (-589 (-852))) (-5 *1 (-141 *4 *2 *5)) (-14 *4 (-852)) (-4 *2 (-339)) (-14 *5 (-922 *4 *2)))) (-2084 (*1 *2 *1 *3) (-12 (-5 *3 (-589 (-852))) (-4 *2 (-339)) (-5 *1 (-141 *4 *2 *5)) (-14 *4 (-852)) (-14 *5 (-922 *4 *2))))) +(-13 (-973) (-37 |#2|) (-1176 |#2|) (-10 -8 (-15 -1934 ($ (-852))) (-15 -1267 ($ |#2| (-589 (-852)))) (-15 -2084 (|#2| $ (-589 (-852)))) (-15 -1444 ((-3 $ "failed") $)))) +((-1211 (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203)))) (-203) (-203) (-203) (-203)) 38)) (-3567 (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523))) 63) (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858)) 64)) (-1765 (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203))))) 67) (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-874 (-203)))) 66) (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523))) 58) (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858)) 59))) +(((-142) (-10 -7 (-15 -1765 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858))) (-15 -1765 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523)))) (-15 -3567 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858))) (-15 -3567 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523)))) (-15 -1211 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203)))) (-203) (-203) (-203) (-203))) (-15 -1765 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-874 (-203))))) (-15 -1765 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203)))))))) (T -142)) +((-1765 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)) (-5 *3 (-589 (-589 (-874 (-203))))))) (-1765 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)) (-5 *3 (-589 (-874 (-203)))))) (-1211 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-203)) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 *4)))) (|:| |xValues| (-1011 *4)) (|:| |yValues| (-1011 *4)))) (-5 *1 (-142)) (-5 *3 (-589 (-589 (-874 *4)))))) (-3567 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858)) (-5 *4 (-383 (-523))) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)))) (-1765 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858)) (-5 *4 (-383 (-523))) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142))))) +(-10 -7 (-15 -1765 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858))) (-15 -1765 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523)))) (-15 -3567 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858))) (-15 -3567 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523)))) (-15 -1211 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203)))) (-203) (-203) (-203) (-203))) (-15 -1765 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-874 (-203))))) (-15 -1765 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203))))))) +((-1604 (((-589 (-155 |#2|)) |#1| |#2|) 45))) +(((-143 |#1| |#2|) (-10 -7 (-15 -1604 ((-589 (-155 |#2|)) |#1| |#2|))) (-1145 (-155 (-523))) (-13 (-339) (-784))) (T -143)) +((-1604 (*1 *2 *3 *4) (-12 (-5 *2 (-589 (-155 *4))) (-5 *1 (-143 *3 *4)) (-4 *3 (-1145 (-155 (-523)))) (-4 *4 (-13 (-339) (-784)))))) +(-10 -7 (-15 -1604 ((-589 (-155 |#2|)) |#1| |#2|))) +((-1680 (((-108) $ $) NIL)) (-3520 (($) 16)) (-2721 (($) 15)) (-2979 (((-852)) 23)) (-2032 (((-1070) $) NIL)) (-2473 (((-523) $) 20)) (-3951 (((-1034) $) NIL)) (-1607 (($) 17)) (-2548 (($ (-523)) 24)) (-1691 (((-794) $) 30)) (-3094 (($) 18)) (-3941 (((-108) $ $) 14)) (-4045 (($ $ $) 13)) (* (($ (-852) $) 22) (($ (-203) $) 8))) +(((-144) (-13 (-25) (-10 -8 (-15 * ($ (-852) $)) (-15 * ($ (-203) $)) (-15 -4045 ($ $ $)) (-15 -2721 ($)) (-15 -3520 ($)) (-15 -1607 ($)) (-15 -3094 ($)) (-15 -2473 ((-523) $)) (-15 -2979 ((-852))) (-15 -2548 ($ (-523)))))) (T -144)) +((-4045 (*1 *1 *1 *1) (-5 *1 (-144))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-144)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-144)))) (-2721 (*1 *1) (-5 *1 (-144))) (-3520 (*1 *1) (-5 *1 (-144))) (-1607 (*1 *1) (-5 *1 (-144))) (-3094 (*1 *1) (-5 *1 (-144))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-144)))) (-2979 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-144)))) (-2548 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-144))))) +(-13 (-25) (-10 -8 (-15 * ($ (-852) $)) (-15 * ($ (-203) $)) (-15 -4045 ($ $ $)) (-15 -2721 ($)) (-15 -3520 ($)) (-15 -1607 ($)) (-15 -3094 ($)) (-15 -2473 ((-523) $)) (-15 -2979 ((-852))) (-15 -2548 ($ (-523))))) +((-1428 ((|#2| |#2| (-1009 |#2|)) 87) ((|#2| |#2| (-1087)) 67)) (-3584 ((|#2| |#2| (-1009 |#2|)) 86) ((|#2| |#2| (-1087)) 66)) (-3325 ((|#2| |#2| |#2|) 27)) (-2947 (((-110) (-110)) 97)) (-3935 ((|#2| (-589 |#2|)) 116)) (-1736 ((|#2| (-589 |#2|)) 134)) (-3971 ((|#2| (-589 |#2|)) 124)) (-2788 ((|#2| |#2|) 122)) (-2728 ((|#2| (-589 |#2|)) 109)) (-1573 ((|#2| (-589 |#2|)) 110)) (-1362 ((|#2| (-589 |#2|)) 132)) (-3109 ((|#2| |#2| (-1087)) 54) ((|#2| |#2|) 53)) (-3459 ((|#2| |#2|) 23)) (-3435 ((|#2| |#2| |#2|) 26)) (-3198 (((-108) (-110)) 47)) (** ((|#2| |#2| |#2|) 38))) +(((-145 |#1| |#2|) (-10 -7 (-15 -3198 ((-108) (-110))) (-15 -2947 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -3435 (|#2| |#2| |#2|)) (-15 -3325 (|#2| |#2| |#2|)) (-15 -3459 (|#2| |#2|)) (-15 -3109 (|#2| |#2|)) (-15 -3109 (|#2| |#2| (-1087))) (-15 -1428 (|#2| |#2| (-1087))) (-15 -1428 (|#2| |#2| (-1009 |#2|))) (-15 -3584 (|#2| |#2| (-1087))) (-15 -3584 (|#2| |#2| (-1009 |#2|))) (-15 -2788 (|#2| |#2|)) (-15 -1362 (|#2| (-589 |#2|))) (-15 -3971 (|#2| (-589 |#2|))) (-15 -1736 (|#2| (-589 |#2|))) (-15 -2728 (|#2| (-589 |#2|))) (-15 -1573 (|#2| (-589 |#2|))) (-15 -3935 (|#2| (-589 |#2|)))) (-13 (-786) (-515)) (-406 |#1|)) (T -145)) +((-3935 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-2788 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-3584 (*1 *2 *2 *3) (-12 (-5 *3 (-1009 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)))) (-3584 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) (-4 *2 (-406 *4)))) (-1428 (*1 *2 *2 *3) (-12 (-5 *3 (-1009 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)))) (-1428 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) (-4 *2 (-406 *4)))) (-3109 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) (-4 *2 (-406 *4)))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-3325 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-3435 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-2947 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *4)) (-4 *4 (-406 *3)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-145 *4 *5)) (-4 *5 (-406 *4))))) +(-10 -7 (-15 -3198 ((-108) (-110))) (-15 -2947 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -3435 (|#2| |#2| |#2|)) (-15 -3325 (|#2| |#2| |#2|)) (-15 -3459 (|#2| |#2|)) (-15 -3109 (|#2| |#2|)) (-15 -3109 (|#2| |#2| (-1087))) (-15 -1428 (|#2| |#2| (-1087))) (-15 -1428 (|#2| |#2| (-1009 |#2|))) (-15 -3584 (|#2| |#2| (-1087))) (-15 -3584 (|#2| |#2| (-1009 |#2|))) (-15 -2788 (|#2| |#2|)) (-15 -1362 (|#2| (-589 |#2|))) (-15 -3971 (|#2| (-589 |#2|))) (-15 -1736 (|#2| (-589 |#2|))) (-15 -2728 (|#2| (-589 |#2|))) (-15 -1573 (|#2| (-589 |#2|))) (-15 -3935 (|#2| (-589 |#2|)))) +((-3098 ((|#1| |#1| |#1|) 53)) (-2238 ((|#1| |#1| |#1|) 50)) (-3325 ((|#1| |#1| |#1|) 44)) (-4096 ((|#1| |#1|) 35)) (-2177 ((|#1| |#1| (-589 |#1|)) 43)) (-3459 ((|#1| |#1|) 37)) (-3435 ((|#1| |#1| |#1|) 40))) +(((-146 |#1|) (-10 -7 (-15 -3435 (|#1| |#1| |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -2177 (|#1| |#1| (-589 |#1|))) (-15 -4096 (|#1| |#1|)) (-15 -3325 (|#1| |#1| |#1|)) (-15 -2238 (|#1| |#1| |#1|)) (-15 -3098 (|#1| |#1| |#1|))) (-508)) (T -146)) +((-3098 (*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-2238 (*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-3325 (*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-4096 (*1 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-2177 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-508)) (-5 *1 (-146 *2)))) (-3459 (*1 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-3435 (*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) +(-10 -7 (-15 -3435 (|#1| |#1| |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -2177 (|#1| |#1| (-589 |#1|))) (-15 -4096 (|#1| |#1|)) (-15 -3325 (|#1| |#1| |#1|)) (-15 -2238 (|#1| |#1| |#1|)) (-15 -3098 (|#1| |#1| |#1|))) +((-1428 (($ $ (-1087)) 12) (($ $ (-1009 $)) 11)) (-3584 (($ $ (-1087)) 10) (($ $ (-1009 $)) 9)) (-3325 (($ $ $) 8)) (-3109 (($ $) 14) (($ $ (-1087)) 13)) (-3459 (($ $) 7)) (-3435 (($ $ $) 6))) (((-147) (-129)) (T -147)) -((-2988 (*1 *1 *1) (-4 *1 (-147))) (-2988 (*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) (-1815 (*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) (-1815 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-147)))) (-1656 (*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-147))))) -(-13 (-132) (-10 -8 (-15 -2988 ($ $)) (-15 -2988 ($ $ (-1087))) (-15 -1815 ($ $ (-1087))) (-15 -1815 ($ $ (-1009 $))) (-15 -1656 ($ $ (-1087))) (-15 -1656 ($ $ (-1009 $))))) +((-3109 (*1 *1 *1) (-4 *1 (-147))) (-3109 (*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) (-1428 (*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) (-1428 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-147)))) (-3584 (*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-147))))) +(-13 (-132) (-10 -8 (-15 -3109 ($ $)) (-15 -3109 ($ $ (-1087))) (-15 -1428 ($ $ (-1087))) (-15 -1428 ($ $ (-1009 $))) (-15 -3584 ($ $ (-1087))) (-15 -3584 ($ $ (-1009 $))))) (((-132) . T)) -((-3924 (((-108) $ $) NIL)) (-2911 (($ (-523)) 13) (($ $ $) 14)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 17)) (-3983 (((-108) $ $) 9))) -(((-148) (-13 (-1016) (-10 -8 (-15 -2911 ($ (-523))) (-15 -2911 ($ $ $))))) (T -148)) -((-2911 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-148)))) (-2911 (*1 *1 *1 *1) (-5 *1 (-148)))) -(-13 (-1016) (-10 -8 (-15 -2911 ($ (-523))) (-15 -2911 ($ $ $)))) -((-1403 (((-110) (-1087)) 97))) -(((-149) (-10 -7 (-15 -1403 ((-110) (-1087))))) (T -149)) -((-1403 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-110)) (-5 *1 (-149))))) -(-10 -7 (-15 -1403 ((-110) (-1087)))) -((-1828 ((|#3| |#3|) 20))) -(((-150 |#1| |#2| |#3|) (-10 -7 (-15 -1828 (|#3| |#3|))) (-973) (-1144 |#1|) (-1144 |#2|)) (T -150)) -((-1828 (*1 *2 *2) (-12 (-4 *3 (-973)) (-4 *4 (-1144 *3)) (-5 *1 (-150 *3 *4 *2)) (-4 *2 (-1144 *4))))) -(-10 -7 (-15 -1828 (|#3| |#3|))) -((-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 216)) (-4187 ((|#2| $) 96)) (-1769 (($ $) 243)) (-3780 (($ $) 237)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 40)) (-1744 (($ $) 241)) (-3711 (($ $) 235)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-3474 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#2| $) 138)) (-3796 (($ $ $) 221)) (-2381 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) 154) (((-629 |#2|) (-629 $)) 148)) (-2437 (($ (-1083 |#2|)) 119) (((-3 $ "failed") (-383 (-1083 |#2|))) NIL)) (-2121 (((-3 $ "failed") $) 208)) (-3346 (((-3 (-383 (-523)) "failed") $) 198)) (-1292 (((-108) $) 193)) (-2146 (((-383 (-523)) $) 196)) (-1319 (((-852)) 89)) (-3769 (($ $ $) 223)) (-4107 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2820 (($) 232)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 185) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 190)) (-3892 ((|#2| $) 94)) (-1397 (((-1083 |#2|) $) 121)) (-3612 (($ (-1 |#2| |#2|) $) 102)) (-2384 (($ $) 234)) (-2428 (((-1083 |#2|) $) 120)) (-3738 (($ $) 201)) (-3917 (($) 97)) (-1219 (((-394 (-1083 $)) (-1083 $)) 88)) (-3967 (((-394 (-1083 $)) (-1083 $)) 57)) (-3746 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-1811 (($ $) 233)) (-1972 (((-710) $) 218)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 227)) (-3549 ((|#2| (-1168 $)) NIL) ((|#2|) 91)) (-3523 (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-3727 (((-1083 |#2|)) 114)) (-1757 (($ $) 242)) (-3767 (($ $) 236)) (-2966 (((-1168 |#2|) $ (-1168 $)) 127) (((-629 |#2|) (-1168 $) (-1168 $)) NIL) (((-1168 |#2|) $) 110) (((-629 |#2|) (-1168 $)) NIL)) (-3663 (((-1168 |#2|) $) NIL) (($ (-1168 |#2|)) NIL) (((-1083 |#2|) $) NIL) (($ (-1083 |#2|)) NIL) (((-823 (-523)) $) 176) (((-823 (-355)) $) 180) (((-155 (-355)) $) 166) (((-155 (-203)) $) 161) (((-499) $) 172)) (-3208 (($ $) 98)) (-1458 (((-794) $) 137) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-383 (-523))) NIL) (($ $) NIL)) (-1807 (((-1083 |#2|) $) 23)) (-1621 (((-710)) 100)) (-1839 (($ $) 246)) (-3847 (($ $) 240)) (-1818 (($ $) 244)) (-3828 (($ $) 238)) (-2135 ((|#2| $) 231)) (-1830 (($ $) 245)) (-3838 (($ $) 239)) (-2619 (($ $) 156)) (-3983 (((-108) $ $) 104)) (-4007 (((-108) $ $) 192)) (-4087 (($ $) 106) (($ $ $) NIL)) (-4075 (($ $ $) 105)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-383 (-523))) 265) (($ $ $) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 112) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL))) -(((-151 |#1| |#2|) (-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -1458 (|#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1669 ((-2 (|:| -3819 |#1|) (|:| -4231 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -1972 ((-710) |#1|)) (-15 -3462 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3769 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -4007 ((-108) |#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3663 ((-155 (-203)) |#1|)) (-15 -3663 ((-155 (-355)) |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2820 (|#1|)) (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -3967 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1219 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -4107 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2135 (|#2| |#1|)) (-15 -2619 (|#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3208 (|#1| |#1|)) (-15 -3917 (|#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -2437 ((-3 |#1| "failed") (-383 (-1083 |#2|)))) (-15 -2428 ((-1083 |#2|) |#1|)) (-15 -3663 (|#1| (-1083 |#2|))) (-15 -2437 (|#1| (-1083 |#2|))) (-15 -3727 ((-1083 |#2|))) (-15 -2381 ((-629 |#2|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3663 ((-1083 |#2|) |#1|)) (-15 -3549 (|#2|)) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -1397 ((-1083 |#2|) |#1|)) (-15 -1807 ((-1083 |#2|) |#1|)) (-15 -3549 (|#2| (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -3892 (|#2| |#1|)) (-15 -4187 (|#2| |#1|)) (-15 -1319 ((-852))) (-15 -1458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-152 |#2|) (-158)) (T -151)) -((-1621 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-151 *3 *4)) (-4 *3 (-152 *4)))) (-1319 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-852)) (-5 *1 (-151 *3 *4)) (-4 *3 (-152 *4)))) (-3549 (*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-151 *3 *2)) (-4 *3 (-152 *2)))) (-3727 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-1083 *4)) (-5 *1 (-151 *3 *4)) (-4 *3 (-152 *4))))) -(-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -1458 (|#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1669 ((-2 (|:| -3819 |#1|) (|:| -4231 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -1972 ((-710) |#1|)) (-15 -3462 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3769 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -4007 ((-108) |#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3663 ((-155 (-203)) |#1|)) (-15 -3663 ((-155 (-355)) |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2820 (|#1|)) (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -3967 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1219 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -4107 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2135 (|#2| |#1|)) (-15 -2619 (|#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3208 (|#1| |#1|)) (-15 -3917 (|#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -2437 ((-3 |#1| "failed") (-383 (-1083 |#2|)))) (-15 -2428 ((-1083 |#2|) |#1|)) (-15 -3663 (|#1| (-1083 |#2|))) (-15 -2437 (|#1| (-1083 |#2|))) (-15 -3727 ((-1083 |#2|))) (-15 -2381 ((-629 |#2|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3663 ((-1083 |#2|) |#1|)) (-15 -3549 (|#2|)) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -1397 ((-1083 |#2|) |#1|)) (-15 -1807 ((-1083 |#2|) |#1|)) (-15 -3549 (|#2| (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -3892 (|#2| |#1|)) (-15 -4187 (|#2| |#1|)) (-15 -1319 ((-852))) (-15 -1458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 93 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3345 (($ $) 94 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3331 (((-108) $) 96 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3750 (((-629 |#1|) (-1168 $)) 46) (((-629 |#1|)) 61)) (-4187 ((|#1| $) 52)) (-1769 (($ $) 228 (|has| |#1| (-1108)))) (-3780 (($ $) 211 (|has| |#1| (-1108)))) (-2430 (((-1096 (-852) (-710)) (-523)) 147 (|has| |#1| (-325)))) (-3212 (((-3 $ "failed") $ $) 19)) (-3156 (((-394 (-1083 $)) (-1083 $)) 242 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-2291 (($ $) 113 (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-3614 (((-394 $) $) 114 (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-1832 (($ $) 241 (-12 (|has| |#1| (-930)) (|has| |#1| (-1108))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 245 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-1387 (((-108) $ $) 104 (|has| |#1| (-284)))) (-1703 (((-710)) 87 (|has| |#1| (-344)))) (-1744 (($ $) 227 (|has| |#1| (-1108)))) (-3711 (($ $) 212 (|has| |#1| (-1108)))) (-1793 (($ $) 226 (|has| |#1| (-1108)))) (-3805 (($ $) 213 (|has| |#1| (-1108)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 169 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 167 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 166)) (-3474 (((-523) $) 170 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 168 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 165)) (-3409 (($ (-1168 |#1|) (-1168 $)) 48) (($ (-1168 |#1|)) 64)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-325)))) (-3796 (($ $ $) 108 (|has| |#1| (-284)))) (-4079 (((-629 |#1|) $ (-1168 $)) 53) (((-629 |#1|) $) 59)) (-2381 (((-629 (-523)) (-629 $)) 164 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 163 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 162) (((-629 |#1|) (-629 $)) 161)) (-2437 (($ (-1083 |#1|)) 158) (((-3 $ "failed") (-383 (-1083 |#1|))) 155 (|has| |#1| (-339)))) (-2121 (((-3 $ "failed") $) 34)) (-1842 ((|#1| $) 253)) (-3346 (((-3 (-383 (-523)) "failed") $) 246 (|has| |#1| (-508)))) (-1292 (((-108) $) 248 (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) 247 (|has| |#1| (-508)))) (-1319 (((-852)) 54)) (-4032 (($) 90 (|has| |#1| (-344)))) (-3769 (($ $ $) 107 (|has| |#1| (-284)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 102 (|has| |#1| (-284)))) (-1996 (($) 149 (|has| |#1| (-325)))) (-2155 (((-108) $) 150 (|has| |#1| (-325)))) (-1991 (($ $ (-710)) 141 (|has| |#1| (-325))) (($ $) 140 (|has| |#1| (-325)))) (-2657 (((-108) $) 115 (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-4107 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-982)) (|has| |#1| (-1108))))) (-2820 (($) 238 (|has| |#1| (-1108)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 261 (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 260 (|has| |#1| (-817 (-355))))) (-1640 (((-852) $) 152 (|has| |#1| (-325))) (((-772 (-852)) $) 138 (|has| |#1| (-325)))) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 240 (-12 (|has| |#1| (-930)) (|has| |#1| (-1108))))) (-3892 ((|#1| $) 51)) (-4058 (((-3 $ "failed") $) 142 (|has| |#1| (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 111 (|has| |#1| (-284)))) (-1397 (((-1083 |#1|) $) 44 (|has| |#1| (-339)))) (-2454 (($ $ $) 207 (|has| |#1| (-786)))) (-2062 (($ $ $) 206 (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) 262)) (-2072 (((-852) $) 89 (|has| |#1| (-344)))) (-2384 (($ $) 235 (|has| |#1| (-1108)))) (-2428 (((-1083 |#1|) $) 156)) (-3244 (($ (-589 $)) 100 (-3262 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (($ $ $) 99 (-3262 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3779 (((-1070) $) 9)) (-3738 (($ $) 116 (|has| |#1| (-339)))) (-2262 (($) 143 (|has| |#1| (-325)) CONST)) (-3878 (($ (-852)) 88 (|has| |#1| (-344)))) (-3917 (($) 257)) (-1856 ((|#1| $) 254)) (-2783 (((-1034) $) 10)) (-3441 (($) 160)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 101 (-3262 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3278 (($ (-589 $)) 98 (-3262 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (($ $ $) 97 (-3262 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 146 (|has| |#1| (-325)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 244 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-3967 (((-394 (-1083 $)) (-1083 $)) 243 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-1820 (((-394 $) $) 112 (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-284))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 109 (|has| |#1| (-284)))) (-3746 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 92 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 103 (|has| |#1| (-284)))) (-1811 (($ $) 236 (|has| |#1| (-1108)))) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) 268 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 266 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 265 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 264 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) 263 (|has| |#1| (-484 (-1087) |#1|)))) (-1972 (((-710) $) 105 (|has| |#1| (-284)))) (-3223 (($ $ |#1|) 269 (|has| |#1| (-263 |#1| |#1|)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 106 (|has| |#1| (-284)))) (-3549 ((|#1| (-1168 $)) 47) ((|#1|) 60)) (-2974 (((-710) $) 151 (|has| |#1| (-325))) (((-3 (-710) "failed") $ $) 139 (|has| |#1| (-325)))) (-3523 (($ $ (-1 |#1| |#1|) (-710)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-589 (-1087)) (-589 (-710))) 130 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 131 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 132 (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 133 (|has| |#1| (-831 (-1087)))) (($ $ (-710)) 135 (-3262 (-4099 (|has| |#1| (-339)) (|has| |#1| (-211))) (|has| |#1| (-211)) (-4099 (|has| |#1| (-211)) (|has| |#1| (-339))))) (($ $) 137 (-3262 (-4099 (|has| |#1| (-339)) (|has| |#1| (-211))) (|has| |#1| (-211)) (-4099 (|has| |#1| (-211)) (|has| |#1| (-339)))))) (-1976 (((-629 |#1|) (-1168 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-339)))) (-3727 (((-1083 |#1|)) 159)) (-1805 (($ $) 225 (|has| |#1| (-1108)))) (-3816 (($ $) 214 (|has| |#1| (-1108)))) (-3425 (($) 148 (|has| |#1| (-325)))) (-1782 (($ $) 224 (|has| |#1| (-1108)))) (-3793 (($ $) 215 (|has| |#1| (-1108)))) (-1757 (($ $) 223 (|has| |#1| (-1108)))) (-3767 (($ $) 216 (|has| |#1| (-1108)))) (-2966 (((-1168 |#1|) $ (-1168 $)) 50) (((-629 |#1|) (-1168 $) (-1168 $)) 49) (((-1168 |#1|) $) 66) (((-629 |#1|) (-1168 $)) 65)) (-3663 (((-1168 |#1|) $) 63) (($ (-1168 |#1|)) 62) (((-1083 |#1|) $) 171) (($ (-1083 |#1|)) 157) (((-823 (-523)) $) 259 (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) 258 (|has| |#1| (-564 (-823 (-355))))) (((-155 (-355)) $) 210 (|has| |#1| (-949))) (((-155 (-203)) $) 209 (|has| |#1| (-949))) (((-499) $) 208 (|has| |#1| (-564 (-499))))) (-3208 (($ $) 256)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 145 (-3262 (-4099 (|has| $ (-134)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))) (|has| |#1| (-325))))) (-2571 (($ |#1| |#1|) 255)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37) (($ (-383 (-523))) 86 (-3262 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523)))))) (($ $) 91 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3901 (($ $) 144 (|has| |#1| (-325))) (((-3 $ "failed") $) 43 (-3262 (-4099 (|has| $ (-134)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))) (|has| |#1| (-134))))) (-1807 (((-1083 |#1|) $) 45)) (-1621 (((-710)) 29)) (-4041 (((-1168 $)) 67)) (-1839 (($ $) 234 (|has| |#1| (-1108)))) (-3847 (($ $) 222 (|has| |#1| (-1108)))) (-1704 (((-108) $ $) 95 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-1818 (($ $) 233 (|has| |#1| (-1108)))) (-3828 (($ $) 221 (|has| |#1| (-1108)))) (-1865 (($ $) 232 (|has| |#1| (-1108)))) (-1719 (($ $) 220 (|has| |#1| (-1108)))) (-2135 ((|#1| $) 250 (|has| |#1| (-1108)))) (-2914 (($ $) 231 (|has| |#1| (-1108)))) (-1731 (($ $) 219 (|has| |#1| (-1108)))) (-1852 (($ $) 230 (|has| |#1| (-1108)))) (-3859 (($ $) 218 (|has| |#1| (-1108)))) (-1830 (($ $) 229 (|has| |#1| (-1108)))) (-3838 (($ $) 217 (|has| |#1| (-1108)))) (-2619 (($ $) 251 (|has| |#1| (-982)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 117 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1 |#1| |#1|) (-710)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-589 (-1087)) (-589 (-710))) 126 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 127 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 128 (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 129 (|has| |#1| (-831 (-1087)))) (($ $ (-710)) 134 (-3262 (-4099 (|has| |#1| (-339)) (|has| |#1| (-211))) (|has| |#1| (-211)) (-4099 (|has| |#1| (-211)) (|has| |#1| (-339))))) (($ $) 136 (-3262 (-4099 (|has| |#1| (-339)) (|has| |#1| (-211))) (|has| |#1| (-211)) (-4099 (|has| |#1| (-211)) (|has| |#1| (-339)))))) (-4043 (((-108) $ $) 204 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 203 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 205 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 202 (|has| |#1| (-786)))) (-4098 (($ $ $) 121 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-383 (-523))) 239 (-12 (|has| |#1| (-930)) (|has| |#1| (-1108)))) (($ $ $) 237 (|has| |#1| (-1108))) (($ $ (-523)) 118 (|has| |#1| (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-383 (-523)) $) 120 (|has| |#1| (-339))) (($ $ (-383 (-523))) 119 (|has| |#1| (-339))))) +((-1680 (((-108) $ $) NIL)) (-3598 (($ (-523)) 13) (($ $ $) 14)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 17)) (-3941 (((-108) $ $) 9))) +(((-148) (-13 (-1016) (-10 -8 (-15 -3598 ($ (-523))) (-15 -3598 ($ $ $))))) (T -148)) +((-3598 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-148)))) (-3598 (*1 *1 *1 *1) (-5 *1 (-148)))) +(-13 (-1016) (-10 -8 (-15 -3598 ($ (-523))) (-15 -3598 ($ $ $)))) +((-2947 (((-110) (-1087)) 97))) +(((-149) (-10 -7 (-15 -2947 ((-110) (-1087))))) (T -149)) +((-2947 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-110)) (-5 *1 (-149))))) +(-10 -7 (-15 -2947 ((-110) (-1087)))) +((-1538 ((|#3| |#3|) 19))) +(((-150 |#1| |#2| |#3|) (-10 -7 (-15 -1538 (|#3| |#3|))) (-973) (-1145 |#1|) (-1145 |#2|)) (T -150)) +((-1538 (*1 *2 *2) (-12 (-4 *3 (-973)) (-4 *4 (-1145 *3)) (-5 *1 (-150 *3 *4 *2)) (-4 *2 (-1145 *4))))) +(-10 -7 (-15 -1538 (|#3| |#3|))) +((-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 217)) (-1477 ((|#2| $) 96)) (-1462 (($ $) 245)) (-1285 (($ $) 239)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 40)) (-1441 (($ $) 243)) (-1260 (($ $) 237)) (-1220 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-3508 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#2| $) 139)) (-4059 (($ $ $) 222)) (-2243 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) 155) (((-629 |#2|) (-629 $)) 149)) (-2116 (($ (-1083 |#2|)) 119) (((-3 $ "failed") (-383 (-1083 |#2|))) NIL)) (-1444 (((-3 $ "failed") $) 209)) (-3317 (((-3 (-383 (-523)) "failed") $) 199)) (-3045 (((-108) $) 194)) (-1682 (((-383 (-523)) $) 197)) (-3569 (((-852)) 89)) (-4032 (($ $ $) 224)) (-3125 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3352 (($) 234)) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 186) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 191)) (-1863 ((|#2| $) 94)) (-2887 (((-1083 |#2|) $) 121)) (-1345 (($ (-1 |#2| |#2|) $) 102)) (-2313 (($ $) 236)) (-2104 (((-1083 |#2|) $) 120)) (-1396 (($ $) 202)) (-3887 (($) 97)) (-1708 (((-394 (-1083 $)) (-1083 $)) 88)) (-1417 (((-394 (-1083 $)) (-1083 $)) 57)) (-4007 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2922 (($ $) 235)) (-3413 (((-710) $) 219)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 229)) (-1744 ((|#2| (-1169 $)) NIL) ((|#2|) 91)) (-3984 (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-2762 (((-1083 |#2|)) 114)) (-1453 (($ $) 244)) (-1274 (($ $) 238)) (-2906 (((-1169 |#2|) $ (-1169 $)) 128) (((-629 |#2|) (-1169 $) (-1169 $)) NIL) (((-1169 |#2|) $) 110) (((-629 |#2|) (-1169 $)) NIL)) (-1400 (((-1169 |#2|) $) NIL) (($ (-1169 |#2|)) NIL) (((-1083 |#2|) $) NIL) (($ (-1083 |#2|)) NIL) (((-823 (-523)) $) 177) (((-823 (-355)) $) 181) (((-155 (-355)) $) 167) (((-155 (-203)) $) 162) (((-499) $) 173)) (-3361 (($ $) 98)) (-1691 (((-794) $) 138) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-383 (-523))) NIL) (($ $) NIL)) (-1356 (((-1083 |#2|) $) 23)) (-3272 (((-710)) 100)) (-2341 (($ $) 248)) (-1401 (($ $) 242)) (-2318 (($ $) 246)) (-1334 (($ $) 240)) (-1572 ((|#2| $) 233)) (-2330 (($ $) 247)) (-1346 (($ $) 241)) (-2695 (($ $) 157)) (-3941 (((-108) $ $) 104)) (-3966 (((-108) $ $) 193)) (-4060 (($ $) 106) (($ $ $) NIL)) (-4045 (($ $ $) 105)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-383 (-523))) 267) (($ $ $) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL))) +(((-151 |#1| |#2|) (-10 -8 (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -1691 (|#1| |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2545 ((-2 (|:| -2345 |#1|) (|:| -4235 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3413 ((-710) |#1|)) (-15 -2083 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -4032 (|#1| |#1| |#1|)) (-15 -4059 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -3966 ((-108) |#1| |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -1400 ((-155 (-203)) |#1|)) (-15 -1400 ((-155 (-355)) |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -1260 (|#1| |#1|)) (-15 -1274 (|#1| |#1|)) (-15 -1346 (|#1| |#1|)) (-15 -1334 (|#1| |#1|)) (-15 -1401 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1462 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2341 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2922 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3352 (|#1|)) (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -1417 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1708 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3302 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -3317 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1682 ((-383 (-523)) |#1|)) (-15 -3045 ((-108) |#1|)) (-15 -3125 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -2695 (|#1| |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3361 (|#1| |#1|)) (-15 -3887 (|#1|)) (-15 -1400 ((-823 (-355)) |#1|)) (-15 -1400 ((-823 (-523)) |#1|)) (-15 -1524 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -1524 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -2116 ((-3 |#1| "failed") (-383 (-1083 |#2|)))) (-15 -2104 ((-1083 |#2|) |#1|)) (-15 -1400 (|#1| (-1083 |#2|))) (-15 -2116 (|#1| (-1083 |#2|))) (-15 -2762 ((-1083 |#2|))) (-15 -2243 ((-629 |#2|) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-629 (-523)) (-629 |#1|))) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1400 ((-1083 |#2|) |#1|)) (-15 -1744 (|#2|)) (-15 -1400 (|#1| (-1169 |#2|))) (-15 -1400 ((-1169 |#2|) |#1|)) (-15 -2906 ((-629 |#2|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1|)) (-15 -2887 ((-1083 |#2|) |#1|)) (-15 -1356 ((-1083 |#2|) |#1|)) (-15 -1744 (|#2| (-1169 |#1|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -1863 (|#2| |#1|)) (-15 -1477 (|#2| |#1|)) (-15 -3569 ((-852))) (-15 -1691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1691 (|#1| (-523))) (-15 -3272 ((-710))) (-15 ** (|#1| |#1| (-710))) (-15 -1444 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 * (|#1| (-523) |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|))) (-152 |#2|) (-158)) (T -151)) +((-3272 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-151 *3 *4)) (-4 *3 (-152 *4)))) (-3569 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-852)) (-5 *1 (-151 *3 *4)) (-4 *3 (-152 *4)))) (-1744 (*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-151 *3 *2)) (-4 *3 (-152 *2)))) (-2762 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-1083 *4)) (-5 *1 (-151 *3 *4)) (-4 *3 (-152 *4))))) +(-10 -8 (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -1691 (|#1| |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2545 ((-2 (|:| -2345 |#1|) (|:| -4235 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3413 ((-710) |#1|)) (-15 -2083 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -4032 (|#1| |#1| |#1|)) (-15 -4059 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -3966 ((-108) |#1| |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -1400 ((-155 (-203)) |#1|)) (-15 -1400 ((-155 (-355)) |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -1260 (|#1| |#1|)) (-15 -1274 (|#1| |#1|)) (-15 -1346 (|#1| |#1|)) (-15 -1334 (|#1| |#1|)) (-15 -1401 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1462 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2341 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2922 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3352 (|#1|)) (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -1417 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1708 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3302 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -3317 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1682 ((-383 (-523)) |#1|)) (-15 -3045 ((-108) |#1|)) (-15 -3125 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -2695 (|#1| |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3361 (|#1| |#1|)) (-15 -3887 (|#1|)) (-15 -1400 ((-823 (-355)) |#1|)) (-15 -1400 ((-823 (-523)) |#1|)) (-15 -1524 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -1524 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -2116 ((-3 |#1| "failed") (-383 (-1083 |#2|)))) (-15 -2104 ((-1083 |#2|) |#1|)) (-15 -1400 (|#1| (-1083 |#2|))) (-15 -2116 (|#1| (-1083 |#2|))) (-15 -2762 ((-1083 |#2|))) (-15 -2243 ((-629 |#2|) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-629 (-523)) (-629 |#1|))) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1400 ((-1083 |#2|) |#1|)) (-15 -1744 (|#2|)) (-15 -1400 (|#1| (-1169 |#2|))) (-15 -1400 ((-1169 |#2|) |#1|)) (-15 -2906 ((-629 |#2|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1|)) (-15 -2887 ((-1083 |#2|) |#1|)) (-15 -1356 ((-1083 |#2|) |#1|)) (-15 -1744 (|#2| (-1169 |#1|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -1863 (|#2| |#1|)) (-15 -1477 (|#2| |#1|)) (-15 -3569 ((-852))) (-15 -1691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1691 (|#1| (-523))) (-15 -3272 ((-710))) (-15 ** (|#1| |#1| (-710))) (-15 -1444 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 * (|#1| (-523) |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 93 (-3172 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3306 (($ $) 94 (-3172 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3174 (((-108) $) 96 (-3172 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-2959 (((-629 |#1|) (-1169 $)) 46) (((-629 |#1|)) 61)) (-1477 ((|#1| $) 52)) (-1462 (($ $) 228 (|has| |#1| (-1109)))) (-1285 (($ $) 211 (|has| |#1| (-1109)))) (-1557 (((-1097 (-852) (-710)) (-523)) 147 (|has| |#1| (-325)))) (-3405 (((-3 $ "failed") $ $) 19)) (-4130 (((-394 (-1083 $)) (-1083 $)) 242 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-3718 (($ $) 113 (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-4226 (((-394 $) $) 114 (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-2437 (($ $) 241 (-12 (|has| |#1| (-930)) (|has| |#1| (-1109))))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 245 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-2787 (((-108) $ $) 104 (|has| |#1| (-284)))) (-2395 (((-710)) 87 (|has| |#1| (-344)))) (-1441 (($ $) 227 (|has| |#1| (-1109)))) (-1260 (($ $) 212 (|has| |#1| (-1109)))) (-1481 (($ $) 226 (|has| |#1| (-1109)))) (-1309 (($ $) 213 (|has| |#1| (-1109)))) (-4189 (($) 17 T CONST)) (-1220 (((-3 (-523) "failed") $) 169 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 167 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 166)) (-3508 (((-523) $) 170 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 168 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 165)) (-2754 (($ (-1169 |#1|) (-1169 $)) 48) (($ (-1169 |#1|)) 64)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-325)))) (-4059 (($ $ $) 108 (|has| |#1| (-284)))) (-2927 (((-629 |#1|) $ (-1169 $)) 53) (((-629 |#1|) $) 59)) (-2243 (((-629 (-523)) (-629 $)) 164 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 163 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 162) (((-629 |#1|) (-629 $)) 161)) (-2116 (($ (-1083 |#1|)) 158) (((-3 $ "failed") (-383 (-1083 |#1|))) 155 (|has| |#1| (-339)))) (-1444 (((-3 $ "failed") $) 34)) (-2448 ((|#1| $) 253)) (-3317 (((-3 (-383 (-523)) "failed") $) 246 (|has| |#1| (-508)))) (-3045 (((-108) $) 248 (|has| |#1| (-508)))) (-1682 (((-383 (-523)) $) 247 (|has| |#1| (-508)))) (-3569 (((-852)) 54)) (-1631 (($) 90 (|has| |#1| (-344)))) (-4032 (($ $ $) 107 (|has| |#1| (-284)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 102 (|has| |#1| (-284)))) (-3665 (($) 149 (|has| |#1| (-325)))) (-1766 (((-108) $) 150 (|has| |#1| (-325)))) (-3610 (($ $ (-710)) 141 (|has| |#1| (-325))) (($ $) 140 (|has| |#1| (-325)))) (-3049 (((-108) $) 115 (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-3125 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-982)) (|has| |#1| (-1109))))) (-3352 (($) 238 (|has| |#1| (-1109)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 261 (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 260 (|has| |#1| (-817 (-355))))) (-3437 (((-852) $) 152 (|has| |#1| (-325))) (((-772 (-852)) $) 138 (|has| |#1| (-325)))) (-2769 (((-108) $) 31)) (-1973 (($ $ (-523)) 240 (-12 (|has| |#1| (-930)) (|has| |#1| (-1109))))) (-1863 ((|#1| $) 51)) (-2738 (((-3 $ "failed") $) 142 (|has| |#1| (-325)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 111 (|has| |#1| (-284)))) (-2887 (((-1083 |#1|) $) 44 (|has| |#1| (-339)))) (-3239 (($ $ $) 207 (|has| |#1| (-786)))) (-3158 (($ $ $) 206 (|has| |#1| (-786)))) (-1345 (($ (-1 |#1| |#1|) $) 262)) (-2060 (((-852) $) 89 (|has| |#1| (-344)))) (-2313 (($ $) 235 (|has| |#1| (-1109)))) (-2104 (((-1083 |#1|) $) 156)) (-3278 (($ (-589 $)) 100 (-3172 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (($ $ $) 99 (-3172 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-2032 (((-1070) $) 9)) (-1396 (($ $) 116 (|has| |#1| (-339)))) (-2773 (($) 143 (|has| |#1| (-325)) CONST)) (-4013 (($ (-852)) 88 (|has| |#1| (-344)))) (-3887 (($) 257)) (-2459 ((|#1| $) 254)) (-3951 (((-1034) $) 10)) (-1621 (($) 160)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 101 (-3172 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3310 (($ (-589 $)) 98 (-3172 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (($ $ $) 97 (-3172 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) 146 (|has| |#1| (-325)))) (-1708 (((-394 (-1083 $)) (-1083 $)) 244 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-1417 (((-394 (-1083 $)) (-1083 $)) 243 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-2424 (((-394 $) $) 112 (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-284))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 109 (|has| |#1| (-284)))) (-4007 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 92 (-3172 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 103 (|has| |#1| (-284)))) (-2922 (($ $) 236 (|has| |#1| (-1109)))) (-2812 (($ $ (-589 |#1|) (-589 |#1|)) 268 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 266 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 265 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 264 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) 263 (|has| |#1| (-484 (-1087) |#1|)))) (-3413 (((-710) $) 105 (|has| |#1| (-284)))) (-1937 (($ $ |#1|) 269 (|has| |#1| (-263 |#1| |#1|)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 106 (|has| |#1| (-284)))) (-1744 ((|#1| (-1169 $)) 47) ((|#1|) 60)) (-2984 (((-710) $) 151 (|has| |#1| (-325))) (((-3 (-710) "failed") $ $) 139 (|has| |#1| (-325)))) (-3984 (($ $ (-1 |#1| |#1|) (-710)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-589 (-1087)) (-589 (-710))) 130 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 131 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 132 (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 133 (|has| |#1| (-831 (-1087)))) (($ $ (-710)) 135 (-3172 (-3147 (|has| |#1| (-339)) (|has| |#1| (-211))) (|has| |#1| (-211)) (-3147 (|has| |#1| (-211)) (|has| |#1| (-339))))) (($ $) 137 (-3172 (-3147 (|has| |#1| (-339)) (|has| |#1| (-211))) (|has| |#1| (-211)) (-3147 (|has| |#1| (-211)) (|has| |#1| (-339)))))) (-3456 (((-629 |#1|) (-1169 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-339)))) (-2762 (((-1083 |#1|)) 159)) (-2306 (($ $) 225 (|has| |#1| (-1109)))) (-1322 (($ $) 214 (|has| |#1| (-1109)))) (-2893 (($) 148 (|has| |#1| (-325)))) (-1471 (($ $) 224 (|has| |#1| (-1109)))) (-1295 (($ $) 215 (|has| |#1| (-1109)))) (-1453 (($ $) 223 (|has| |#1| (-1109)))) (-1274 (($ $) 216 (|has| |#1| (-1109)))) (-2906 (((-1169 |#1|) $ (-1169 $)) 50) (((-629 |#1|) (-1169 $) (-1169 $)) 49) (((-1169 |#1|) $) 66) (((-629 |#1|) (-1169 $)) 65)) (-1400 (((-1169 |#1|) $) 63) (($ (-1169 |#1|)) 62) (((-1083 |#1|) $) 171) (($ (-1083 |#1|)) 157) (((-823 (-523)) $) 259 (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) 258 (|has| |#1| (-564 (-823 (-355))))) (((-155 (-355)) $) 210 (|has| |#1| (-949))) (((-155 (-203)) $) 209 (|has| |#1| (-949))) (((-499) $) 208 (|has| |#1| (-564 (-499))))) (-3361 (($ $) 256)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 145 (-3172 (-3147 (|has| $ (-134)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))) (|has| |#1| (-325))))) (-4115 (($ |#1| |#1|) 255)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37) (($ (-383 (-523))) 86 (-3172 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523)))))) (($ $) 91 (-3172 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-1942 (($ $) 144 (|has| |#1| (-325))) (((-3 $ "failed") $) 43 (-3172 (-3147 (|has| $ (-134)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))) (|has| |#1| (-134))))) (-1356 (((-1083 |#1|) $) 45)) (-3272 (((-710)) 29)) (-3760 (((-1169 $)) 67)) (-2341 (($ $) 234 (|has| |#1| (-1109)))) (-1401 (($ $) 222 (|has| |#1| (-1109)))) (-2801 (((-108) $ $) 95 (-3172 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-2318 (($ $) 233 (|has| |#1| (-1109)))) (-1334 (($ $) 221 (|has| |#1| (-1109)))) (-2366 (($ $) 232 (|has| |#1| (-1109)))) (-1421 (($ $) 220 (|has| |#1| (-1109)))) (-1572 ((|#1| $) 250 (|has| |#1| (-1109)))) (-2102 (($ $) 231 (|has| |#1| (-1109)))) (-1431 (($ $) 219 (|has| |#1| (-1109)))) (-2353 (($ $) 230 (|has| |#1| (-1109)))) (-1413 (($ $) 218 (|has| |#1| (-1109)))) (-2330 (($ $) 229 (|has| |#1| (-1109)))) (-1346 (($ $) 217 (|has| |#1| (-1109)))) (-2695 (($ $) 251 (|has| |#1| (-982)))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 117 (|has| |#1| (-339)))) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-1 |#1| |#1|) (-710)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-589 (-1087)) (-589 (-710))) 126 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 127 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 128 (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 129 (|has| |#1| (-831 (-1087)))) (($ $ (-710)) 134 (-3172 (-3147 (|has| |#1| (-339)) (|has| |#1| (-211))) (|has| |#1| (-211)) (-3147 (|has| |#1| (-211)) (|has| |#1| (-339))))) (($ $) 136 (-3172 (-3147 (|has| |#1| (-339)) (|has| |#1| (-211))) (|has| |#1| (-211)) (-3147 (|has| |#1| (-211)) (|has| |#1| (-339)))))) (-4006 (((-108) $ $) 204 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 203 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 205 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 202 (|has| |#1| (-786)))) (-4074 (($ $ $) 121 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-383 (-523))) 239 (-12 (|has| |#1| (-930)) (|has| |#1| (-1109)))) (($ $ $) 237 (|has| |#1| (-1109))) (($ $ (-523)) 118 (|has| |#1| (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-383 (-523)) $) 120 (|has| |#1| (-339))) (($ $ (-383 (-523))) 119 (|has| |#1| (-339))))) (((-152 |#1|) (-129) (-158)) (T -152)) -((-3892 (*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-3917 (*1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-3208 (*1 *1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-2571 (*1 *1 *2 *2) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-3746 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) (-2619 (*1 *1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) (-2135 (*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-1108)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-982)) (-4 *3 (-1108)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523))))) (-3346 (*1 *2 *1) (|partial| -12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523)))))) -(-13 (-664 |t#1| (-1083 |t#1|)) (-387 |t#1|) (-209 |t#1|) (-314 |t#1|) (-376 |t#1|) (-815 |t#1|) (-353 |t#1|) (-158) (-10 -8 (-6 -2571) (-15 -3917 ($)) (-15 -3208 ($ $)) (-15 -2571 ($ |t#1| |t#1|)) (-15 -1856 (|t#1| $)) (-15 -1842 (|t#1| $)) (-15 -3892 (|t#1| $)) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-6 (-515)) (-15 -3746 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-284)) (-6 (-284)) |%noBranch|) (IF (|has| |t#1| (-6 -4243)) (-6 -4243) |%noBranch|) (IF (|has| |t#1| (-6 -4240)) (-6 -4240) |%noBranch|) (IF (|has| |t#1| (-339)) (-6 (-339)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-949)) (PROGN (-6 (-564 (-155 (-203)))) (-6 (-564 (-155 (-355))))) |%noBranch|) (IF (|has| |t#1| (-982)) (-15 -2619 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1108)) (PROGN (-6 (-1108)) (-15 -2135 (|t#1| $)) (IF (|has| |t#1| (-930)) (-6 (-930)) |%noBranch|) (IF (|has| |t#1| (-982)) (-15 -4107 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-840)) (IF (|has| |t#1| (-284)) (-6 (-840)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-37 |#1|) . T) ((-37 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-34) |has| |#1| (-1108)) ((-91) |has| |#1| (-1108)) ((-97) . T) ((-107 #0# #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3262 (|has| |#1| (-325)) (|has| |#1| (-134))) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 (-155 (-203))) |has| |#1| (-949)) ((-564 (-155 (-355))) |has| |#1| (-949)) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523)))) ((-564 #1=(-1083 |#1|)) . T) ((-209 |#1|) . T) ((-211) -3262 (|has| |#1| (-325)) (|has| |#1| (-211))) ((-221) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-261) |has| |#1| (-1108)) ((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-267) -3262 (|has| |#1| (-515)) (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-284) -3262 (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-339) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-378) |has| |#1| (-325)) ((-344) -3262 (|has| |#1| (-344)) (|has| |#1| (-325))) ((-325) |has| |#1| (-325)) ((-346 |#1| #1#) . T) ((-385 |#1| #1#) . T) ((-314 |#1|) . T) ((-353 |#1|) . T) ((-376 |#1|) . T) ((-387 |#1|) . T) ((-427) -3262 (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-464) |has| |#1| (-1108)) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|)) ((-515) -3262 (|has| |#1| (-515)) (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-591 #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-657 |#1|) . T) ((-657 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-664 |#1| #1#) . T) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-815 |#1|) . T) ((-840) -12 (|has| |#1| (-284)) (|has| |#1| (-840))) ((-851) -3262 (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-930) -12 (|has| |#1| (-930)) (|has| |#1| (-1108))) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-325)) ((-1108) |has| |#1| (-1108)) ((-1111) |has| |#1| (-1108)) ((-1122) . T) ((-1126) -3262 (|has| |#1| (-325)) (|has| |#1| (-339)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) -((-1820 (((-394 |#2|) |#2|) 63))) -(((-153 |#1| |#2|) (-10 -7 (-15 -1820 ((-394 |#2|) |#2|))) (-284) (-1144 (-155 |#1|))) (T -153)) -((-1820 (*1 *2 *3) (-12 (-4 *4 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-155 *4)))))) -(-10 -7 (-15 -1820 ((-394 |#2|) |#2|))) -((-3612 (((-155 |#2|) (-1 |#2| |#1|) (-155 |#1|)) 14))) -(((-154 |#1| |#2|) (-10 -7 (-15 -3612 ((-155 |#2|) (-1 |#2| |#1|) (-155 |#1|)))) (-158) (-158)) (T -154)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-155 *5)) (-4 *5 (-158)) (-4 *6 (-158)) (-5 *2 (-155 *6)) (-5 *1 (-154 *5 *6))))) -(-10 -7 (-15 -3612 ((-155 |#2|) (-1 |#2| |#1|) (-155 |#1|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 33)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-3345 (($ $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-3331 (((-108) $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-3750 (((-629 |#1|) (-1168 $)) NIL) (((-629 |#1|)) NIL)) (-4187 ((|#1| $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-1108)))) (-3780 (($ $) NIL (|has| |#1| (-1108)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| |#1| (-325)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-2291 (($ $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-3614 (((-394 $) $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-1832 (($ $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-1108))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-284)))) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-1744 (($ $) NIL (|has| |#1| (-1108)))) (-3711 (($ $) NIL (|has| |#1| (-1108)))) (-1793 (($ $) NIL (|has| |#1| (-1108)))) (-3805 (($ $) NIL (|has| |#1| (-1108)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3409 (($ (-1168 |#1|) (-1168 $)) NIL) (($ (-1168 |#1|)) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-325)))) (-3796 (($ $ $) NIL (|has| |#1| (-284)))) (-4079 (((-629 |#1|) $ (-1168 $)) NIL) (((-629 |#1|) $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2437 (($ (-1083 |#1|)) NIL) (((-3 $ "failed") (-383 (-1083 |#1|))) NIL (|has| |#1| (-339)))) (-2121 (((-3 $ "failed") $) NIL)) (-1842 ((|#1| $) 13)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-508)))) (-1292 (((-108) $) NIL (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) NIL (|has| |#1| (-508)))) (-1319 (((-852)) NIL)) (-4032 (($) NIL (|has| |#1| (-344)))) (-3769 (($ $ $) NIL (|has| |#1| (-284)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-284)))) (-1996 (($) NIL (|has| |#1| (-325)))) (-2155 (((-108) $) NIL (|has| |#1| (-325)))) (-1991 (($ $ (-710)) NIL (|has| |#1| (-325))) (($ $) NIL (|has| |#1| (-325)))) (-2657 (((-108) $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-4107 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-982)) (|has| |#1| (-1108))))) (-2820 (($) NIL (|has| |#1| (-1108)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| |#1| (-817 (-355))))) (-1640 (((-852) $) NIL (|has| |#1| (-325))) (((-772 (-852)) $) NIL (|has| |#1| (-325)))) (-2023 (((-108) $) 35)) (-1420 (($ $ (-523)) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-1108))))) (-3892 ((|#1| $) 46)) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-284)))) (-1397 (((-1083 |#1|) $) NIL (|has| |#1| (-339)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-2384 (($ $) NIL (|has| |#1| (-1108)))) (-2428 (((-1083 |#1|) $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-284))) (($ $ $) NIL (|has| |#1| (-284)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-2262 (($) NIL (|has| |#1| (-325)) CONST)) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-3917 (($) NIL)) (-1856 ((|#1| $) 15)) (-2783 (((-1034) $) NIL)) (-3441 (($) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-284)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-284))) (($ $ $) NIL (|has| |#1| (-284)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| |#1| (-325)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-1820 (((-394 $) $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-284))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-284)))) (-3746 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 47 (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-284)))) (-1811 (($ $) NIL (|has| |#1| (-1108)))) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|)))) (-1972 (((-710) $) NIL (|has| |#1| (-284)))) (-3223 (($ $ |#1|) NIL (|has| |#1| (-263 |#1| |#1|)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-284)))) (-3549 ((|#1| (-1168 $)) NIL) ((|#1|) NIL)) (-2974 (((-710) $) NIL (|has| |#1| (-325))) (((-3 (-710) "failed") $ $) NIL (|has| |#1| (-325)))) (-3523 (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $) NIL (|has| |#1| (-211)))) (-1976 (((-629 |#1|) (-1168 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-339)))) (-3727 (((-1083 |#1|)) NIL)) (-1805 (($ $) NIL (|has| |#1| (-1108)))) (-3816 (($ $) NIL (|has| |#1| (-1108)))) (-3425 (($) NIL (|has| |#1| (-325)))) (-1782 (($ $) NIL (|has| |#1| (-1108)))) (-3793 (($ $) NIL (|has| |#1| (-1108)))) (-1757 (($ $) NIL (|has| |#1| (-1108)))) (-3767 (($ $) NIL (|has| |#1| (-1108)))) (-2966 (((-1168 |#1|) $ (-1168 $)) NIL) (((-629 |#1|) (-1168 $) (-1168 $)) NIL) (((-1168 |#1|) $) NIL) (((-629 |#1|) (-1168 $)) NIL)) (-3663 (((-1168 |#1|) $) NIL) (($ (-1168 |#1|)) NIL) (((-1083 |#1|) $) NIL) (($ (-1083 |#1|)) NIL) (((-823 (-523)) $) NIL (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| |#1| (-564 (-823 (-355))))) (((-155 (-355)) $) NIL (|has| |#1| (-949))) (((-155 (-203)) $) NIL (|has| |#1| (-949))) (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-3208 (($ $) 45)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-325))))) (-2571 (($ |#1| |#1|) 37)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) 36) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-3901 (($ $) NIL (|has| |#1| (-325))) (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1807 (((-1083 |#1|) $) NIL)) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL)) (-1839 (($ $) NIL (|has| |#1| (-1108)))) (-3847 (($ $) NIL (|has| |#1| (-1108)))) (-1704 (((-108) $ $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-1818 (($ $) NIL (|has| |#1| (-1108)))) (-3828 (($ $) NIL (|has| |#1| (-1108)))) (-1865 (($ $) NIL (|has| |#1| (-1108)))) (-1719 (($ $) NIL (|has| |#1| (-1108)))) (-2135 ((|#1| $) NIL (|has| |#1| (-1108)))) (-2914 (($ $) NIL (|has| |#1| (-1108)))) (-1731 (($ $) NIL (|has| |#1| (-1108)))) (-1852 (($ $) NIL (|has| |#1| (-1108)))) (-3859 (($ $) NIL (|has| |#1| (-1108)))) (-1830 (($ $) NIL (|has| |#1| (-1108)))) (-3838 (($ $) NIL (|has| |#1| (-1108)))) (-2619 (($ $) NIL (|has| |#1| (-982)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 28 T CONST)) (-2767 (($) 30 T CONST)) (-3790 (((-1070) $) 23 (|has| |#1| (-767))) (((-1070) $ (-108)) 25 (|has| |#1| (-767))) (((-1173) (-761) $) 26 (|has| |#1| (-767))) (((-1173) (-761) $ (-108)) 27 (|has| |#1| (-767)))) (-2862 (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $) NIL (|has| |#1| (-211)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 39)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-383 (-523))) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-1108)))) (($ $ $) NIL (|has| |#1| (-1108))) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-339))) (($ $ (-383 (-523))) NIL (|has| |#1| (-339))))) +((-1863 (*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-3887 (*1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-3361 (*1 *1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-4115 (*1 *1 *2 *2) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-2459 (*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-4007 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) (-2695 (*1 *1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-1109)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-982)) (-4 *3 (-1109)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) (-1682 (*1 *2 *1) (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523))))) (-3317 (*1 *2 *1) (|partial| -12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523)))))) +(-13 (-664 |t#1| (-1083 |t#1|)) (-387 |t#1|) (-209 |t#1|) (-314 |t#1|) (-376 |t#1|) (-815 |t#1|) (-353 |t#1|) (-158) (-10 -8 (-6 -4115) (-15 -3887 ($)) (-15 -3361 ($ $)) (-15 -4115 ($ |t#1| |t#1|)) (-15 -2459 (|t#1| $)) (-15 -2448 (|t#1| $)) (-15 -1863 (|t#1| $)) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-6 (-515)) (-15 -4007 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-284)) (-6 (-284)) |%noBranch|) (IF (|has| |t#1| (-6 -4247)) (-6 -4247) |%noBranch|) (IF (|has| |t#1| (-6 -4244)) (-6 -4244) |%noBranch|) (IF (|has| |t#1| (-339)) (-6 (-339)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-949)) (PROGN (-6 (-564 (-155 (-203)))) (-6 (-564 (-155 (-355))))) |%noBranch|) (IF (|has| |t#1| (-982)) (-15 -2695 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1109)) (PROGN (-6 (-1109)) (-15 -1572 (|t#1| $)) (IF (|has| |t#1| (-930)) (-6 (-930)) |%noBranch|) (IF (|has| |t#1| (-982)) (-15 -3125 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -3045 ((-108) $)) (-15 -1682 ((-383 (-523)) $)) (-15 -3317 ((-3 (-383 (-523)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-840)) (IF (|has| |t#1| (-284)) (-6 (-840)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-37 |#1|) . T) ((-37 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-34) |has| |#1| (-1109)) ((-91) |has| |#1| (-1109)) ((-97) . T) ((-107 #0# #0#) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3172 (|has| |#1| (-325)) (|has| |#1| (-134))) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 (-155 (-203))) |has| |#1| (-949)) ((-564 (-155 (-355))) |has| |#1| (-949)) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523)))) ((-564 #1=(-1083 |#1|)) . T) ((-209 |#1|) . T) ((-211) -3172 (|has| |#1| (-325)) (|has| |#1| (-211))) ((-221) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-261) |has| |#1| (-1109)) ((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-267) -3172 (|has| |#1| (-515)) (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-284) -3172 (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-339) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-378) |has| |#1| (-325)) ((-344) -3172 (|has| |#1| (-344)) (|has| |#1| (-325))) ((-325) |has| |#1| (-325)) ((-346 |#1| #1#) . T) ((-385 |#1| #1#) . T) ((-314 |#1|) . T) ((-353 |#1|) . T) ((-376 |#1|) . T) ((-387 |#1|) . T) ((-427) -3172 (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-464) |has| |#1| (-1109)) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|)) ((-515) -3172 (|has| |#1| (-515)) (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-591 #0#) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-657 |#1|) . T) ((-657 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-664 |#1| #1#) . T) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-815 |#1|) . T) ((-840) -12 (|has| |#1| (-284)) (|has| |#1| (-840))) ((-851) -3172 (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-930) -12 (|has| |#1| (-930)) (|has| |#1| (-1109))) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 #0#) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-325)) ((-1109) |has| |#1| (-1109)) ((-1112) |has| |#1| (-1109)) ((-1123) . T) ((-1127) -3172 (|has| |#1| (-325)) (|has| |#1| (-339)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) +((-2424 (((-394 |#2|) |#2|) 63))) +(((-153 |#1| |#2|) (-10 -7 (-15 -2424 ((-394 |#2|) |#2|))) (-284) (-1145 (-155 |#1|))) (T -153)) +((-2424 (*1 *2 *3) (-12 (-4 *4 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-155 *4)))))) +(-10 -7 (-15 -2424 ((-394 |#2|) |#2|))) +((-1345 (((-155 |#2|) (-1 |#2| |#1|) (-155 |#1|)) 14))) +(((-154 |#1| |#2|) (-10 -7 (-15 -1345 ((-155 |#2|) (-1 |#2| |#1|) (-155 |#1|)))) (-158) (-158)) (T -154)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-155 *5)) (-4 *5 (-158)) (-4 *6 (-158)) (-5 *2 (-155 *6)) (-5 *1 (-154 *5 *6))))) +(-10 -7 (-15 -1345 ((-155 |#2|) (-1 |#2| |#1|) (-155 |#1|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 33)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-3306 (($ $) NIL (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-3174 (((-108) $) NIL (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-2959 (((-629 |#1|) (-1169 $)) NIL) (((-629 |#1|)) NIL)) (-1477 ((|#1| $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-1109)))) (-1285 (($ $) NIL (|has| |#1| (-1109)))) (-1557 (((-1097 (-852) (-710)) (-523)) NIL (|has| |#1| (-325)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-3718 (($ $) NIL (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-4226 (((-394 $) $) NIL (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-2437 (($ $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-1109))))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-2787 (((-108) $ $) NIL (|has| |#1| (-284)))) (-2395 (((-710)) NIL (|has| |#1| (-344)))) (-1441 (($ $) NIL (|has| |#1| (-1109)))) (-1260 (($ $) NIL (|has| |#1| (-1109)))) (-1481 (($ $) NIL (|has| |#1| (-1109)))) (-1309 (($ $) NIL (|has| |#1| (-1109)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-2754 (($ (-1169 |#1|) (-1169 $)) NIL) (($ (-1169 |#1|)) NIL)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-325)))) (-4059 (($ $ $) NIL (|has| |#1| (-284)))) (-2927 (((-629 |#1|) $ (-1169 $)) NIL) (((-629 |#1|) $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2116 (($ (-1083 |#1|)) NIL) (((-3 $ "failed") (-383 (-1083 |#1|))) NIL (|has| |#1| (-339)))) (-1444 (((-3 $ "failed") $) NIL)) (-2448 ((|#1| $) 13)) (-3317 (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-508)))) (-3045 (((-108) $) NIL (|has| |#1| (-508)))) (-1682 (((-383 (-523)) $) NIL (|has| |#1| (-508)))) (-3569 (((-852)) NIL)) (-1631 (($) NIL (|has| |#1| (-344)))) (-4032 (($ $ $) NIL (|has| |#1| (-284)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-284)))) (-3665 (($) NIL (|has| |#1| (-325)))) (-1766 (((-108) $) NIL (|has| |#1| (-325)))) (-3610 (($ $ (-710)) NIL (|has| |#1| (-325))) (($ $) NIL (|has| |#1| (-325)))) (-3049 (((-108) $) NIL (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-3125 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-982)) (|has| |#1| (-1109))))) (-3352 (($) NIL (|has| |#1| (-1109)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| |#1| (-817 (-355))))) (-3437 (((-852) $) NIL (|has| |#1| (-325))) (((-772 (-852)) $) NIL (|has| |#1| (-325)))) (-2769 (((-108) $) 35)) (-1973 (($ $ (-523)) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-1109))))) (-1863 ((|#1| $) 46)) (-2738 (((-3 $ "failed") $) NIL (|has| |#1| (-325)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-284)))) (-2887 (((-1083 |#1|) $) NIL (|has| |#1| (-339)))) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-2060 (((-852) $) NIL (|has| |#1| (-344)))) (-2313 (($ $) NIL (|has| |#1| (-1109)))) (-2104 (((-1083 |#1|) $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-284))) (($ $ $) NIL (|has| |#1| (-284)))) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-339)))) (-2773 (($) NIL (|has| |#1| (-325)) CONST)) (-4013 (($ (-852)) NIL (|has| |#1| (-344)))) (-3887 (($) NIL)) (-2459 ((|#1| $) 15)) (-3951 (((-1034) $) NIL)) (-1621 (($) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-284)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-284))) (($ $ $) NIL (|has| |#1| (-284)))) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL (|has| |#1| (-325)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-2424 (((-394 $) $) NIL (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-284))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-284)))) (-4007 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 47 (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-284)))) (-2922 (($ $) NIL (|has| |#1| (-1109)))) (-2812 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|)))) (-3413 (((-710) $) NIL (|has| |#1| (-284)))) (-1937 (($ $ |#1|) NIL (|has| |#1| (-263 |#1| |#1|)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-284)))) (-1744 ((|#1| (-1169 $)) NIL) ((|#1|) NIL)) (-2984 (((-710) $) NIL (|has| |#1| (-325))) (((-3 (-710) "failed") $ $) NIL (|has| |#1| (-325)))) (-3984 (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $) NIL (|has| |#1| (-211)))) (-3456 (((-629 |#1|) (-1169 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-339)))) (-2762 (((-1083 |#1|)) NIL)) (-2306 (($ $) NIL (|has| |#1| (-1109)))) (-1322 (($ $) NIL (|has| |#1| (-1109)))) (-2893 (($) NIL (|has| |#1| (-325)))) (-1471 (($ $) NIL (|has| |#1| (-1109)))) (-1295 (($ $) NIL (|has| |#1| (-1109)))) (-1453 (($ $) NIL (|has| |#1| (-1109)))) (-1274 (($ $) NIL (|has| |#1| (-1109)))) (-2906 (((-1169 |#1|) $ (-1169 $)) NIL) (((-629 |#1|) (-1169 $) (-1169 $)) NIL) (((-1169 |#1|) $) NIL) (((-629 |#1|) (-1169 $)) NIL)) (-1400 (((-1169 |#1|) $) NIL) (($ (-1169 |#1|)) NIL) (((-1083 |#1|) $) NIL) (($ (-1083 |#1|)) NIL) (((-823 (-523)) $) NIL (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| |#1| (-564 (-823 (-355))))) (((-155 (-355)) $) NIL (|has| |#1| (-949))) (((-155 (-203)) $) NIL (|has| |#1| (-949))) (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-3361 (($ $) 45)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-325))))) (-4115 (($ |#1| |#1|) 37)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) 36) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-1942 (($ $) NIL (|has| |#1| (-325))) (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1356 (((-1083 |#1|) $) NIL)) (-3272 (((-710)) NIL)) (-3760 (((-1169 $)) NIL)) (-2341 (($ $) NIL (|has| |#1| (-1109)))) (-1401 (($ $) NIL (|has| |#1| (-1109)))) (-2801 (((-108) $ $) NIL (-3172 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-2318 (($ $) NIL (|has| |#1| (-1109)))) (-1334 (($ $) NIL (|has| |#1| (-1109)))) (-2366 (($ $) NIL (|has| |#1| (-1109)))) (-1421 (($ $) NIL (|has| |#1| (-1109)))) (-1572 ((|#1| $) NIL (|has| |#1| (-1109)))) (-2102 (($ $) NIL (|has| |#1| (-1109)))) (-1431 (($ $) NIL (|has| |#1| (-1109)))) (-2353 (($ $) NIL (|has| |#1| (-1109)))) (-1413 (($ $) NIL (|has| |#1| (-1109)))) (-2330 (($ $) NIL (|has| |#1| (-1109)))) (-1346 (($ $) NIL (|has| |#1| (-1109)))) (-2695 (($ $) NIL (|has| |#1| (-982)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-1879 (($) 28 T CONST)) (-1891 (($) 30 T CONST)) (-2111 (((-1070) $) 23 (|has| |#1| (-767))) (((-1070) $ (-108)) 25 (|has| |#1| (-767))) (((-1174) (-761) $) 26 (|has| |#1| (-767))) (((-1174) (-761) $ (-108)) 27 (|has| |#1| (-767)))) (-2909 (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $) NIL (|has| |#1| (-211)))) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4074 (($ $ $) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 39)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-383 (-523))) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-1109)))) (($ $ $) NIL (|has| |#1| (-1109))) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-339))) (($ $ (-383 (-523))) NIL (|has| |#1| (-339))))) (((-155 |#1|) (-13 (-152 |#1|) (-10 -7 (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|))) (-158)) (T -155)) NIL (-13 (-152 |#1|) (-10 -7 (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|))) -((-3663 (((-823 |#1|) |#3|) 22))) -(((-156 |#1| |#2| |#3|) (-10 -7 (-15 -3663 ((-823 |#1|) |#3|))) (-1016) (-13 (-564 (-823 |#1|)) (-158)) (-152 |#2|)) (T -156)) -((-3663 (*1 *2 *3) (-12 (-4 *5 (-13 (-564 *2) (-158))) (-5 *2 (-823 *4)) (-5 *1 (-156 *4 *5 *3)) (-4 *4 (-1016)) (-4 *3 (-152 *5))))) -(-10 -7 (-15 -3663 ((-823 |#1|) |#3|))) -((-3924 (((-108) $ $) NIL)) (-3238 (((-108) $) 9)) (-4067 (((-108) $ (-108)) 11)) (-3052 (($) 12)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1664 (($ $) 13)) (-1458 (((-794) $) 17)) (-1553 (((-108) $) 8)) (-3952 (((-108) $ (-108)) 10)) (-3983 (((-108) $ $) NIL))) -(((-157) (-13 (-1016) (-10 -8 (-15 -3052 ($)) (-15 -1553 ((-108) $)) (-15 -3238 ((-108) $)) (-15 -3952 ((-108) $ (-108))) (-15 -4067 ((-108) $ (-108))) (-15 -1664 ($ $))))) (T -157)) -((-3052 (*1 *1) (-5 *1 (-157))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) (-3952 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) (-4067 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) (-1664 (*1 *1 *1) (-5 *1 (-157)))) -(-13 (-1016) (-10 -8 (-15 -3052 ($)) (-15 -1553 ((-108) $)) (-15 -3238 ((-108) $)) (-15 -3952 ((-108) $ (-108))) (-15 -4067 ((-108) $ (-108))) (-15 -1664 ($ $)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-1400 (((-823 |#1|) |#3|) 22))) +(((-156 |#1| |#2| |#3|) (-10 -7 (-15 -1400 ((-823 |#1|) |#3|))) (-1016) (-13 (-564 (-823 |#1|)) (-158)) (-152 |#2|)) (T -156)) +((-1400 (*1 *2 *3) (-12 (-4 *5 (-13 (-564 *2) (-158))) (-5 *2 (-823 *4)) (-5 *1 (-156 *4 *5 *3)) (-4 *4 (-1016)) (-4 *3 (-152 *5))))) +(-10 -7 (-15 -1400 ((-823 |#1|) |#3|))) +((-1680 (((-108) $ $) NIL)) (-3657 (((-108) $) 9)) (-2815 (((-108) $ (-108)) 11)) (-3733 (($) 12)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1874 (($ $) 13)) (-1691 (((-794) $) 17)) (-3814 (((-108) $) 8)) (-1214 (((-108) $ (-108)) 10)) (-3941 (((-108) $ $) NIL))) +(((-157) (-13 (-1016) (-10 -8 (-15 -3733 ($)) (-15 -3814 ((-108) $)) (-15 -3657 ((-108) $)) (-15 -1214 ((-108) $ (-108))) (-15 -2815 ((-108) $ (-108))) (-15 -1874 ($ $))))) (T -157)) +((-3733 (*1 *1) (-5 *1 (-157))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) (-1214 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) (-2815 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) (-1874 (*1 *1 *1) (-5 *1 (-157)))) +(-13 (-1016) (-10 -8 (-15 -3733 ($)) (-15 -3814 ((-108) $)) (-15 -3657 ((-108) $)) (-15 -1214 ((-108) $ (-108))) (-15 -2815 ((-108) $ (-108))) (-15 -1874 ($ $)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ (-523)) 28)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-158) (-129)) (T -158)) NIL -(-13 (-973) (-107 $ $) (-10 -7 (-6 (-4246 "*")))) +(-13 (-973) (-107 $ $) (-10 -7 (-6 (-4250 "*")))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 ((|#1| $) 75)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL)) (-2427 (($ $) 19)) (-1399 (($ |#1| (-1068 |#1|)) 48)) (-2121 (((-3 $ "failed") $) 117)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2070 (((-1068 |#1|) $) 82)) (-3145 (((-1068 |#1|) $) 79)) (-3577 (((-1068 |#1|) $) 80)) (-2023 (((-108) $) NIL)) (-1720 (((-1068 |#1|) $) 88)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3244 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-4097 (($ $ (-523)) 91)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3228 (((-1068 |#1|) $) 89)) (-3250 (((-1068 (-383 |#1|)) $) 13)) (-2947 (($ (-383 |#1|)) 17) (($ |#1| (-1068 |#1|) (-1068 |#1|)) 38)) (-1353 (($ $) 93)) (-1458 (((-794) $) 127) (($ (-523)) 51) (($ |#1|) 52) (($ (-383 |#1|)) 36) (($ (-383 (-523))) NIL) (($ $) NIL)) (-1621 (((-710)) 64)) (-1704 (((-108) $ $) NIL)) (-3911 (((-1068 (-383 |#1|)) $) 18)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 25 T CONST)) (-2767 (($) 28 T CONST)) (-3983 (((-108) $ $) 35)) (-4098 (($ $ $) 115)) (-4087 (($ $) 106) (($ $ $) 103)) (-4075 (($ $ $) 101)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-383 |#1|) $) 111) (($ $ (-383 |#1|)) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL))) -(((-159 |#1|) (-13 (-37 |#1|) (-37 (-383 |#1|)) (-339) (-10 -8 (-15 -2947 ($ (-383 |#1|))) (-15 -2947 ($ |#1| (-1068 |#1|) (-1068 |#1|))) (-15 -1399 ($ |#1| (-1068 |#1|))) (-15 -3145 ((-1068 |#1|) $)) (-15 -3577 ((-1068 |#1|) $)) (-15 -2070 ((-1068 |#1|) $)) (-15 -3458 (|#1| $)) (-15 -2427 ($ $)) (-15 -3911 ((-1068 (-383 |#1|)) $)) (-15 -3250 ((-1068 (-383 |#1|)) $)) (-15 -1720 ((-1068 |#1|) $)) (-15 -3228 ((-1068 |#1|) $)) (-15 -4097 ($ $ (-523))) (-15 -1353 ($ $)))) (-284)) (T -159)) -((-2947 (*1 *1 *2) (-12 (-5 *2 (-383 *3)) (-4 *3 (-284)) (-5 *1 (-159 *3)))) (-2947 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-284)) (-5 *1 (-159 *2)))) (-1399 (*1 *1 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-284)) (-5 *1 (-159 *2)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-3458 (*1 *2 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284)))) (-2427 (*1 *1 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284)))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-1068 (-383 *3))) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-1068 (-383 *3))) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-1720 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-1353 (*1 *1 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284))))) -(-13 (-37 |#1|) (-37 (-383 |#1|)) (-339) (-10 -8 (-15 -2947 ($ (-383 |#1|))) (-15 -2947 ($ |#1| (-1068 |#1|) (-1068 |#1|))) (-15 -1399 ($ |#1| (-1068 |#1|))) (-15 -3145 ((-1068 |#1|) $)) (-15 -3577 ((-1068 |#1|) $)) (-15 -2070 ((-1068 |#1|) $)) (-15 -3458 (|#1| $)) (-15 -2427 ($ $)) (-15 -3911 ((-1068 (-383 |#1|)) $)) (-15 -3250 ((-1068 (-383 |#1|)) $)) (-15 -1720 ((-1068 |#1|) $)) (-15 -3228 ((-1068 |#1|) $)) (-15 -4097 ($ $ (-523))) (-15 -1353 ($ $)))) -((-1902 (($ (-104) $) 13)) (-1422 (((-3 (-104) "failed") (-1087) $) 12)) (-1458 (((-794) $) 16)) (-3903 (((-589 (-104)) $) 7))) -(((-160) (-13 (-563 (-794)) (-10 -8 (-15 -3903 ((-589 (-104)) $)) (-15 -1902 ($ (-104) $)) (-15 -1422 ((-3 (-104) "failed") (-1087) $))))) (T -160)) -((-3903 (*1 *2 *1) (-12 (-5 *2 (-589 (-104))) (-5 *1 (-160)))) (-1902 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-160)))) (-1422 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-104)) (-5 *1 (-160))))) -(-13 (-563 (-794)) (-10 -8 (-15 -3903 ((-589 (-104)) $)) (-15 -1902 ($ (-104) $)) (-15 -1422 ((-3 (-104) "failed") (-1087) $)))) -((-2497 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 40)) (-1715 (((-874 |#1|) (-874 |#1|)) 19)) (-3843 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 36)) (-3008 (((-874 |#1|) (-874 |#1|)) 17)) (-2143 (((-874 |#1|) (-874 |#1|)) 25)) (-2357 (((-874 |#1|) (-874 |#1|)) 24)) (-3493 (((-874 |#1|) (-874 |#1|)) 23)) (-1929 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 37)) (-2039 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 35)) (-3308 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 34)) (-1299 (((-874 |#1|) (-874 |#1|)) 18)) (-2034 (((-1 (-874 |#1|) (-874 |#1|)) |#1| |#1|) 43)) (-3583 (((-874 |#1|) (-874 |#1|)) 8)) (-3030 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 39)) (-3827 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 38))) -(((-161 |#1|) (-10 -7 (-15 -3583 ((-874 |#1|) (-874 |#1|))) (-15 -3008 ((-874 |#1|) (-874 |#1|))) (-15 -1299 ((-874 |#1|) (-874 |#1|))) (-15 -1715 ((-874 |#1|) (-874 |#1|))) (-15 -3493 ((-874 |#1|) (-874 |#1|))) (-15 -2357 ((-874 |#1|) (-874 |#1|))) (-15 -2143 ((-874 |#1|) (-874 |#1|))) (-15 -3308 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2039 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3843 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -1929 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3827 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3030 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2497 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2034 ((-1 (-874 |#1|) (-874 |#1|)) |#1| |#1|))) (-13 (-339) (-1108) (-930))) (T -161)) -((-2034 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-2497 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-3030 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-3827 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-1929 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-3843 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-2039 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-3308 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-2143 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3)))) (-1715 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3)))) (-1299 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3)))) (-3008 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3)))) (-3583 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3))))) -(-10 -7 (-15 -3583 ((-874 |#1|) (-874 |#1|))) (-15 -3008 ((-874 |#1|) (-874 |#1|))) (-15 -1299 ((-874 |#1|) (-874 |#1|))) (-15 -1715 ((-874 |#1|) (-874 |#1|))) (-15 -3493 ((-874 |#1|) (-874 |#1|))) (-15 -2357 ((-874 |#1|) (-874 |#1|))) (-15 -2143 ((-874 |#1|) (-874 |#1|))) (-15 -3308 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2039 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3843 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -1929 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3827 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3030 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2497 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2034 ((-1 (-874 |#1|) (-874 |#1|)) |#1| |#1|))) -((-1807 ((|#2| |#3|) 27))) -(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1807 (|#2| |#3|))) (-158) (-1144 |#1|) (-664 |#1| |#2|)) (T -162)) -((-1807 (*1 *2 *3) (-12 (-4 *4 (-158)) (-4 *2 (-1144 *4)) (-5 *1 (-162 *4 *2 *3)) (-4 *3 (-664 *4 *2))))) -(-10 -7 (-15 -1807 (|#2| |#3|))) -((-2130 (((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)) 47 (|has| (-883 |#2|) (-817 |#1|))))) -(((-163 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-883 |#2|) (-817 |#1|)) (-15 -2130 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))) |%noBranch|)) (-1016) (-13 (-817 |#1|) (-158)) (-152 |#2|)) (T -163)) -((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *3)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *3 (-152 *6)) (-4 (-883 *6) (-817 *5)) (-4 *6 (-13 (-817 *5) (-158))) (-5 *1 (-163 *5 *6 *3))))) -(-10 -7 (IF (|has| (-883 |#2|) (-817 |#1|)) (-15 -2130 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))) |%noBranch|)) -((-3015 (((-589 |#1|) (-589 |#1|) |#1|) 36)) (-2451 (((-589 |#1|) |#1| (-589 |#1|)) 19)) (-3169 (((-589 |#1|) (-589 (-589 |#1|)) (-589 |#1|)) 31) ((|#1| (-589 |#1|) (-589 |#1|)) 29))) -(((-164 |#1|) (-10 -7 (-15 -2451 ((-589 |#1|) |#1| (-589 |#1|))) (-15 -3169 (|#1| (-589 |#1|) (-589 |#1|))) (-15 -3169 ((-589 |#1|) (-589 (-589 |#1|)) (-589 |#1|))) (-15 -3015 ((-589 |#1|) (-589 |#1|) |#1|))) (-284)) (T -164)) -((-3015 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *3)) (-4 *3 (-284)) (-5 *1 (-164 *3)))) (-3169 (*1 *2 *3 *2) (-12 (-5 *3 (-589 (-589 *4))) (-5 *2 (-589 *4)) (-4 *4 (-284)) (-5 *1 (-164 *4)))) (-3169 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-164 *2)) (-4 *2 (-284)))) (-2451 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-284)) (-5 *1 (-164 *3))))) -(-10 -7 (-15 -2451 ((-589 |#1|) |#1| (-589 |#1|))) (-15 -3169 (|#1| (-589 |#1|) (-589 |#1|))) (-15 -3169 ((-589 |#1|) (-589 (-589 |#1|)) (-589 |#1|))) (-15 -3015 ((-589 |#1|) (-589 |#1|) |#1|))) -((-3719 (((-2 (|:| |start| |#2|) (|:| -1979 (-394 |#2|))) |#2|) 61)) (-1798 ((|#1| |#1|) 54)) (-2671 (((-155 |#1|) |#2|) 83)) (-2733 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-3093 ((|#2| |#2|) 82)) (-3405 (((-394 |#2|) |#2| |#1|) 113) (((-394 |#2|) |#2| |#1| (-108)) 80)) (-3892 ((|#1| |#2|) 112)) (-3477 ((|#2| |#2|) 119)) (-1820 (((-394 |#2|) |#2|) 134) (((-394 |#2|) |#2| |#1|) 32) (((-394 |#2|) |#2| |#1| (-108)) 133)) (-1603 (((-589 (-2 (|:| -1979 (-589 |#2|)) (|:| -3314 |#1|))) |#2| |#2|) 132) (((-589 (-2 (|:| -1979 (-589 |#2|)) (|:| -3314 |#1|))) |#2| |#2| (-108)) 75)) (-2138 (((-589 (-155 |#1|)) |#2| |#1|) 40) (((-589 (-155 |#1|)) |#2|) 41))) -(((-165 |#1| |#2|) (-10 -7 (-15 -2138 ((-589 (-155 |#1|)) |#2|)) (-15 -2138 ((-589 (-155 |#1|)) |#2| |#1|)) (-15 -1603 ((-589 (-2 (|:| -1979 (-589 |#2|)) (|:| -3314 |#1|))) |#2| |#2| (-108))) (-15 -1603 ((-589 (-2 (|:| -1979 (-589 |#2|)) (|:| -3314 |#1|))) |#2| |#2|)) (-15 -1820 ((-394 |#2|) |#2| |#1| (-108))) (-15 -1820 ((-394 |#2|) |#2| |#1|)) (-15 -1820 ((-394 |#2|) |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -3892 (|#1| |#2|)) (-15 -3405 ((-394 |#2|) |#2| |#1| (-108))) (-15 -3405 ((-394 |#2|) |#2| |#1|)) (-15 -3093 (|#2| |#2|)) (-15 -2733 (|#1| |#2| |#1|)) (-15 -2733 (|#1| |#2|)) (-15 -2671 ((-155 |#1|) |#2|)) (-15 -1798 (|#1| |#1|)) (-15 -3719 ((-2 (|:| |start| |#2|) (|:| -1979 (-394 |#2|))) |#2|))) (-13 (-339) (-784)) (-1144 (-155 |#1|))) (T -165)) -((-3719 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-2 (|:| |start| *3) (|:| -1979 (-394 *3)))) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-1798 (*1 *2 *2) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) (-4 *3 (-1144 (-155 *2))))) (-2671 (*1 *2 *3) (-12 (-5 *2 (-155 *4)) (-5 *1 (-165 *4 *3)) (-4 *4 (-13 (-339) (-784))) (-4 *3 (-1144 *2)))) (-2733 (*1 *2 *3) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) (-4 *3 (-1144 (-155 *2))))) (-2733 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) (-4 *3 (-1144 (-155 *2))))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-784))) (-5 *1 (-165 *3 *2)) (-4 *2 (-1144 (-155 *3))))) (-3405 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-3405 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-3892 (*1 *2 *3) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) (-4 *3 (-1144 (-155 *2))))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-784))) (-5 *1 (-165 *3 *2)) (-4 *2 (-1144 (-155 *3))))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-1820 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-1820 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-1603 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-2 (|:| -1979 (-589 *3)) (|:| -3314 *4)))) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-1603 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-339) (-784))) (-5 *2 (-589 (-2 (|:| -1979 (-589 *3)) (|:| -3314 *5)))) (-5 *1 (-165 *5 *3)) (-4 *3 (-1144 (-155 *5))))) (-2138 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-155 *4))) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-2138 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-155 *4))) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4)))))) -(-10 -7 (-15 -2138 ((-589 (-155 |#1|)) |#2|)) (-15 -2138 ((-589 (-155 |#1|)) |#2| |#1|)) (-15 -1603 ((-589 (-2 (|:| -1979 (-589 |#2|)) (|:| -3314 |#1|))) |#2| |#2| (-108))) (-15 -1603 ((-589 (-2 (|:| -1979 (-589 |#2|)) (|:| -3314 |#1|))) |#2| |#2|)) (-15 -1820 ((-394 |#2|) |#2| |#1| (-108))) (-15 -1820 ((-394 |#2|) |#2| |#1|)) (-15 -1820 ((-394 |#2|) |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -3892 (|#1| |#2|)) (-15 -3405 ((-394 |#2|) |#2| |#1| (-108))) (-15 -3405 ((-394 |#2|) |#2| |#1|)) (-15 -3093 (|#2| |#2|)) (-15 -2733 (|#1| |#2| |#1|)) (-15 -2733 (|#1| |#2|)) (-15 -2671 ((-155 |#1|) |#2|)) (-15 -1798 (|#1| |#1|)) (-15 -3719 ((-2 (|:| |start| |#2|) (|:| -1979 (-394 |#2|))) |#2|))) -((-1993 (((-3 |#2| "failed") |#2|) 14)) (-1765 (((-710) |#2|) 16)) (-1650 ((|#2| |#2| |#2|) 18))) -(((-166 |#1| |#2|) (-10 -7 (-15 -1993 ((-3 |#2| "failed") |#2|)) (-15 -1765 ((-710) |#2|)) (-15 -1650 (|#2| |#2| |#2|))) (-1122) (-616 |#1|)) (T -166)) -((-1650 (*1 *2 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-166 *3 *2)) (-4 *2 (-616 *3)))) (-1765 (*1 *2 *3) (-12 (-4 *4 (-1122)) (-5 *2 (-710)) (-5 *1 (-166 *4 *3)) (-4 *3 (-616 *4)))) (-1993 (*1 *2 *2) (|partial| -12 (-4 *3 (-1122)) (-5 *1 (-166 *3 *2)) (-4 *2 (-616 *3))))) -(-10 -7 (-15 -1993 ((-3 |#2| "failed") |#2|)) (-15 -1765 ((-710) |#2|)) (-15 -1650 (|#2| |#2| |#2|))) -((-3035 (((-1087) $) 9)) (-1458 (((-794) $) 13)) (-2455 (((-589 (-1092)) $) 11))) -(((-167) (-13 (-563 (-794)) (-10 -8 (-15 -3035 ((-1087) $)) (-15 -2455 ((-589 (-1092)) $))))) (T -167)) -((-3035 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-167)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-167))))) -(-13 (-563 (-794)) (-10 -8 (-15 -3035 ((-1087) $)) (-15 -2455 ((-589 (-1092)) $)))) -((-2653 ((|#2| |#2|) 28)) (-3623 (((-108) |#2|) 19)) (-1842 (((-292 |#1|) |#2|) 12)) (-1856 (((-292 |#1|) |#2|) 14)) (-2902 ((|#2| |#2| (-1087)) 68) ((|#2| |#2|) 69)) (-3726 (((-155 (-292 |#1|)) |#2|) 9)) (-1901 ((|#2| |#2| (-1087)) 65) ((|#2| |#2|) 58))) -(((-168 |#1| |#2|) (-10 -7 (-15 -2902 (|#2| |#2|)) (-15 -2902 (|#2| |#2| (-1087))) (-15 -1901 (|#2| |#2|)) (-15 -1901 (|#2| |#2| (-1087))) (-15 -1842 ((-292 |#1|) |#2|)) (-15 -1856 ((-292 |#1|) |#2|)) (-15 -3623 ((-108) |#2|)) (-15 -2653 (|#2| |#2|)) (-15 -3726 ((-155 (-292 |#1|)) |#2|))) (-13 (-515) (-786) (-964 (-523))) (-13 (-27) (-1108) (-406 (-155 |#1|)))) (T -168)) -((-3726 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-155 (-292 *4))) (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) (-2653 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *3)))))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-108)) (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-292 *4)) (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) (-1842 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-292 *4)) (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) (-1901 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *4)))))) (-1901 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *3)))))) (-2902 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *4)))))) (-2902 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *3))))))) -(-10 -7 (-15 -2902 (|#2| |#2|)) (-15 -2902 (|#2| |#2| (-1087))) (-15 -1901 (|#2| |#2|)) (-15 -1901 (|#2| |#2| (-1087))) (-15 -1842 ((-292 |#1|) |#2|)) (-15 -1856 ((-292 |#1|) |#2|)) (-15 -3623 ((-108) |#2|)) (-15 -2653 (|#2| |#2|)) (-15 -3726 ((-155 (-292 |#1|)) |#2|))) -((-1727 (((-1168 (-629 (-883 |#1|))) (-1168 (-629 |#1|))) 22)) (-1458 (((-1168 (-629 (-383 (-883 |#1|)))) (-1168 (-629 |#1|))) 30))) -(((-169 |#1|) (-10 -7 (-15 -1727 ((-1168 (-629 (-883 |#1|))) (-1168 (-629 |#1|)))) (-15 -1458 ((-1168 (-629 (-383 (-883 |#1|)))) (-1168 (-629 |#1|))))) (-158)) (T -169)) -((-1458 (*1 *2 *3) (-12 (-5 *3 (-1168 (-629 *4))) (-4 *4 (-158)) (-5 *2 (-1168 (-629 (-383 (-883 *4))))) (-5 *1 (-169 *4)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-1168 (-629 *4))) (-4 *4 (-158)) (-5 *2 (-1168 (-629 (-883 *4)))) (-5 *1 (-169 *4))))) -(-10 -7 (-15 -1727 ((-1168 (-629 (-883 |#1|))) (-1168 (-629 |#1|)))) (-15 -1458 ((-1168 (-629 (-383 (-883 |#1|)))) (-1168 (-629 |#1|))))) -((-1774 (((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523)))) 66)) (-3797 (((-1089 (-383 (-523))) (-589 (-523)) (-589 (-523))) 74)) (-1671 (((-1089 (-383 (-523))) (-523)) 40)) (-2951 (((-1089 (-383 (-523))) (-523)) 52)) (-2679 (((-383 (-523)) (-1089 (-383 (-523)))) 62)) (-1513 (((-1089 (-383 (-523))) (-523)) 32)) (-3088 (((-1089 (-383 (-523))) (-523)) 48)) (-2473 (((-1089 (-383 (-523))) (-523)) 46)) (-3734 (((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523)))) 60)) (-1353 (((-1089 (-383 (-523))) (-523)) 25)) (-2188 (((-383 (-523)) (-1089 (-383 (-523))) (-1089 (-383 (-523)))) 64)) (-3544 (((-1089 (-383 (-523))) (-523)) 30)) (-3467 (((-1089 (-383 (-523))) (-589 (-523))) 71))) -(((-170) (-10 -7 (-15 -1353 ((-1089 (-383 (-523))) (-523))) (-15 -1671 ((-1089 (-383 (-523))) (-523))) (-15 -1513 ((-1089 (-383 (-523))) (-523))) (-15 -3544 ((-1089 (-383 (-523))) (-523))) (-15 -2473 ((-1089 (-383 (-523))) (-523))) (-15 -3088 ((-1089 (-383 (-523))) (-523))) (-15 -2951 ((-1089 (-383 (-523))) (-523))) (-15 -2188 ((-383 (-523)) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -3734 ((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -2679 ((-383 (-523)) (-1089 (-383 (-523))))) (-15 -1774 ((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -3467 ((-1089 (-383 (-523))) (-589 (-523)))) (-15 -3797 ((-1089 (-383 (-523))) (-589 (-523)) (-589 (-523)))))) (T -170)) -((-3797 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)))) (-1774 (*1 *2 *2 *2) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-1089 (-383 (-523)))) (-5 *2 (-383 (-523))) (-5 *1 (-170)))) (-3734 (*1 *2 *2 *2) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)))) (-2188 (*1 *2 *3 *3) (-12 (-5 *3 (-1089 (-383 (-523)))) (-5 *2 (-383 (-523))) (-5 *1 (-170)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-3088 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-2473 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-3544 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-1513 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-1671 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-1353 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) -(-10 -7 (-15 -1353 ((-1089 (-383 (-523))) (-523))) (-15 -1671 ((-1089 (-383 (-523))) (-523))) (-15 -1513 ((-1089 (-383 (-523))) (-523))) (-15 -3544 ((-1089 (-383 (-523))) (-523))) (-15 -2473 ((-1089 (-383 (-523))) (-523))) (-15 -3088 ((-1089 (-383 (-523))) (-523))) (-15 -2951 ((-1089 (-383 (-523))) (-523))) (-15 -2188 ((-383 (-523)) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -3734 ((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -2679 ((-383 (-523)) (-1089 (-383 (-523))))) (-15 -1774 ((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -3467 ((-1089 (-383 (-523))) (-589 (-523)))) (-15 -3797 ((-1089 (-383 (-523))) (-589 (-523)) (-589 (-523))))) -((-3180 (((-394 (-1083 (-523))) (-523)) 28)) (-2461 (((-589 (-1083 (-523))) (-523)) 23)) (-1625 (((-1083 (-523)) (-523)) 21))) -(((-171) (-10 -7 (-15 -2461 ((-589 (-1083 (-523))) (-523))) (-15 -1625 ((-1083 (-523)) (-523))) (-15 -3180 ((-394 (-1083 (-523))) (-523))))) (T -171)) -((-3180 (*1 *2 *3) (-12 (-5 *2 (-394 (-1083 (-523)))) (-5 *1 (-171)) (-5 *3 (-523)))) (-1625 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-171)) (-5 *3 (-523)))) (-2461 (*1 *2 *3) (-12 (-5 *2 (-589 (-1083 (-523)))) (-5 *1 (-171)) (-5 *3 (-523))))) -(-10 -7 (-15 -2461 ((-589 (-1083 (-523))) (-523))) (-15 -1625 ((-1083 (-523)) (-523))) (-15 -3180 ((-394 (-1083 (-523))) (-523)))) -((-2582 (((-1068 (-203)) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 101)) (-1975 (((-589 (-1070)) (-1068 (-203))) NIL)) (-3526 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 77)) (-3593 (((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203)))) NIL)) (-1863 (((-589 (-1070)) (-589 (-203))) NIL)) (-2074 (((-203) (-1011 (-779 (-203)))) 22)) (-2728 (((-203) (-1011 (-779 (-203)))) 23)) (-1692 (((-355) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 93)) (-1461 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 40)) (-1729 (((-1070) (-203)) NIL)) (-1622 (((-1070) (-589 (-1070))) 19)) (-2160 (((-962) (-1087) (-1087) (-962)) 12))) -(((-172) (-10 -7 (-15 -3526 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1461 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2074 ((-203) (-1011 (-779 (-203))))) (-15 -2728 ((-203) (-1011 (-779 (-203))))) (-15 -1692 ((-355) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3593 ((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203))))) (-15 -2582 ((-1068 (-203)) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1729 ((-1070) (-203))) (-15 -1863 ((-589 (-1070)) (-589 (-203)))) (-15 -1975 ((-589 (-1070)) (-1068 (-203)))) (-15 -1622 ((-1070) (-589 (-1070)))) (-15 -2160 ((-962) (-1087) (-1087) (-962))))) (T -172)) -((-2160 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-962)) (-5 *3 (-1087)) (-5 *1 (-172)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-172)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-172)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-172)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-172)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-172)))) (-3593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-1087)) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-172)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-172)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-172)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-172)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-172)))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-172))))) -(-10 -7 (-15 -3526 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1461 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2074 ((-203) (-1011 (-779 (-203))))) (-15 -2728 ((-203) (-1011 (-779 (-203))))) (-15 -1692 ((-355) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3593 ((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203))))) (-15 -2582 ((-1068 (-203)) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1729 ((-1070) (-203))) (-15 -1863 ((-589 (-1070)) (-589 (-203)))) (-15 -1975 ((-589 (-1070)) (-1068 (-203)))) (-15 -1622 ((-1070) (-589 (-1070)))) (-15 -2160 ((-962) (-1087) (-1087) (-962)))) -((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 53) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 28) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2046 ((|#1| $) 75)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-4059 (($ $ $) NIL)) (-1539 (($ $) 19)) (-2907 (($ |#1| (-1068 |#1|)) 48)) (-1444 (((-3 $ "failed") $) 117)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-2040 (((-1068 |#1|) $) 82)) (-4004 (((-1068 |#1|) $) 79)) (-3787 (((-1068 |#1|) $) 80)) (-2769 (((-108) $) NIL)) (-2942 (((-1068 |#1|) $) 88)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ (-589 $)) NIL) (($ $ $) NIL)) (-2424 (((-394 $) $) NIL)) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL)) (-3053 (($ $ (-523)) 91)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3561 (((-1068 |#1|) $) 89)) (-3756 (((-1068 (-383 |#1|)) $) 13)) (-2748 (($ (-383 |#1|)) 17) (($ |#1| (-1068 |#1|) (-1068 |#1|)) 38)) (-2488 (($ $) 93)) (-1691 (((-794) $) 127) (($ (-523)) 51) (($ |#1|) 52) (($ (-383 |#1|)) 36) (($ (-383 (-523))) NIL) (($ $) NIL)) (-3272 (((-710)) 64)) (-2801 (((-108) $ $) NIL)) (-3828 (((-1068 (-383 |#1|)) $) 18)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 25 T CONST)) (-1891 (($) 28 T CONST)) (-3941 (((-108) $ $) 35)) (-4074 (($ $ $) 115)) (-4060 (($ $) 106) (($ $ $) 103)) (-4045 (($ $ $) 101)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-383 |#1|) $) 111) (($ $ (-383 |#1|)) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL))) +(((-159 |#1|) (-13 (-37 |#1|) (-37 (-383 |#1|)) (-339) (-10 -8 (-15 -2748 ($ (-383 |#1|))) (-15 -2748 ($ |#1| (-1068 |#1|) (-1068 |#1|))) (-15 -2907 ($ |#1| (-1068 |#1|))) (-15 -4004 ((-1068 |#1|) $)) (-15 -3787 ((-1068 |#1|) $)) (-15 -2040 ((-1068 |#1|) $)) (-15 -2046 (|#1| $)) (-15 -1539 ($ $)) (-15 -3828 ((-1068 (-383 |#1|)) $)) (-15 -3756 ((-1068 (-383 |#1|)) $)) (-15 -2942 ((-1068 |#1|) $)) (-15 -3561 ((-1068 |#1|) $)) (-15 -3053 ($ $ (-523))) (-15 -2488 ($ $)))) (-284)) (T -159)) +((-2748 (*1 *1 *2) (-12 (-5 *2 (-383 *3)) (-4 *3 (-284)) (-5 *1 (-159 *3)))) (-2748 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-284)) (-5 *1 (-159 *2)))) (-2907 (*1 *1 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-284)) (-5 *1 (-159 *2)))) (-4004 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-3787 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-2046 (*1 *2 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284)))) (-1539 (*1 *1 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-1068 (-383 *3))) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-1068 (-383 *3))) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-2488 (*1 *1 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284))))) +(-13 (-37 |#1|) (-37 (-383 |#1|)) (-339) (-10 -8 (-15 -2748 ($ (-383 |#1|))) (-15 -2748 ($ |#1| (-1068 |#1|) (-1068 |#1|))) (-15 -2907 ($ |#1| (-1068 |#1|))) (-15 -4004 ((-1068 |#1|) $)) (-15 -3787 ((-1068 |#1|) $)) (-15 -2040 ((-1068 |#1|) $)) (-15 -2046 (|#1| $)) (-15 -1539 ($ $)) (-15 -3828 ((-1068 (-383 |#1|)) $)) (-15 -3756 ((-1068 (-383 |#1|)) $)) (-15 -2942 ((-1068 |#1|) $)) (-15 -3561 ((-1068 |#1|) $)) (-15 -3053 ($ $ (-523))) (-15 -2488 ($ $)))) +((-3974 (($ (-104) $) 13)) (-1987 (((-3 (-104) "failed") (-1087) $) 12)) (-1691 (((-794) $) 16)) (-1959 (((-589 (-104)) $) 7))) +(((-160) (-13 (-563 (-794)) (-10 -8 (-15 -1959 ((-589 (-104)) $)) (-15 -3974 ($ (-104) $)) (-15 -1987 ((-3 (-104) "failed") (-1087) $))))) (T -160)) +((-1959 (*1 *2 *1) (-12 (-5 *2 (-589 (-104))) (-5 *1 (-160)))) (-3974 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-160)))) (-1987 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-104)) (-5 *1 (-160))))) +(-13 (-563 (-794)) (-10 -8 (-15 -1959 ((-589 (-104)) $)) (-15 -3974 ($ (-104) $)) (-15 -1987 ((-3 (-104) "failed") (-1087) $)))) +((-3975 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 40)) (-2902 (((-874 |#1|) (-874 |#1|)) 19)) (-2562 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 36)) (-2127 (((-874 |#1|) (-874 |#1|)) 17)) (-1654 (((-874 |#1|) (-874 |#1|)) 25)) (-2017 (((-874 |#1|) (-874 |#1|)) 24)) (-2392 (((-874 |#1|) (-874 |#1|)) 23)) (-1243 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 37)) (-2908 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 35)) (-1201 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 34)) (-3102 (((-874 |#1|) (-874 |#1|)) 18)) (-2858 (((-1 (-874 |#1|) (-874 |#1|)) |#1| |#1|) 43)) (-3856 (((-874 |#1|) (-874 |#1|)) 8)) (-2339 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 39)) (-2412 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 38))) +(((-161 |#1|) (-10 -7 (-15 -3856 ((-874 |#1|) (-874 |#1|))) (-15 -2127 ((-874 |#1|) (-874 |#1|))) (-15 -3102 ((-874 |#1|) (-874 |#1|))) (-15 -2902 ((-874 |#1|) (-874 |#1|))) (-15 -2392 ((-874 |#1|) (-874 |#1|))) (-15 -2017 ((-874 |#1|) (-874 |#1|))) (-15 -1654 ((-874 |#1|) (-874 |#1|))) (-15 -1201 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2908 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2562 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -1243 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2412 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2339 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3975 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2858 ((-1 (-874 |#1|) (-874 |#1|)) |#1| |#1|))) (-13 (-339) (-1109) (-930))) (T -161)) +((-2858 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1109) (-930))))) (-3975 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1109) (-930))))) (-2339 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1109) (-930))))) (-2412 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1109) (-930))))) (-1243 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1109) (-930))))) (-2562 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1109) (-930))))) (-2908 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1109) (-930))))) (-1201 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1109) (-930))))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) (-5 *1 (-161 *3)))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) (-5 *1 (-161 *3)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) (-5 *1 (-161 *3)))) (-2902 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) (-5 *1 (-161 *3)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) (-5 *1 (-161 *3)))) (-2127 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) (-5 *1 (-161 *3)))) (-3856 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) (-5 *1 (-161 *3))))) +(-10 -7 (-15 -3856 ((-874 |#1|) (-874 |#1|))) (-15 -2127 ((-874 |#1|) (-874 |#1|))) (-15 -3102 ((-874 |#1|) (-874 |#1|))) (-15 -2902 ((-874 |#1|) (-874 |#1|))) (-15 -2392 ((-874 |#1|) (-874 |#1|))) (-15 -2017 ((-874 |#1|) (-874 |#1|))) (-15 -1654 ((-874 |#1|) (-874 |#1|))) (-15 -1201 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2908 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2562 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -1243 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2412 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2339 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3975 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2858 ((-1 (-874 |#1|) (-874 |#1|)) |#1| |#1|))) +((-1356 ((|#2| |#3|) 27))) +(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1356 (|#2| |#3|))) (-158) (-1145 |#1|) (-664 |#1| |#2|)) (T -162)) +((-1356 (*1 *2 *3) (-12 (-4 *4 (-158)) (-4 *2 (-1145 *4)) (-5 *1 (-162 *4 *2 *3)) (-4 *3 (-664 *4 *2))))) +(-10 -7 (-15 -1356 (|#2| |#3|))) +((-1524 (((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)) 47 (|has| (-883 |#2|) (-817 |#1|))))) +(((-163 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-883 |#2|) (-817 |#1|)) (-15 -1524 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))) |%noBranch|)) (-1016) (-13 (-817 |#1|) (-158)) (-152 |#2|)) (T -163)) +((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *3)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *3 (-152 *6)) (-4 (-883 *6) (-817 *5)) (-4 *6 (-13 (-817 *5) (-158))) (-5 *1 (-163 *5 *6 *3))))) +(-10 -7 (IF (|has| (-883 |#2|) (-817 |#1|)) (-15 -1524 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))) |%noBranch|)) +((-2194 (((-589 |#1|) (-589 |#1|) |#1|) 38)) (-1743 (((-589 |#1|) |#1| (-589 |#1|)) 19)) (-1244 (((-589 |#1|) (-589 (-589 |#1|)) (-589 |#1|)) 33) ((|#1| (-589 |#1|) (-589 |#1|)) 31))) +(((-164 |#1|) (-10 -7 (-15 -1743 ((-589 |#1|) |#1| (-589 |#1|))) (-15 -1244 (|#1| (-589 |#1|) (-589 |#1|))) (-15 -1244 ((-589 |#1|) (-589 (-589 |#1|)) (-589 |#1|))) (-15 -2194 ((-589 |#1|) (-589 |#1|) |#1|))) (-284)) (T -164)) +((-2194 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *3)) (-4 *3 (-284)) (-5 *1 (-164 *3)))) (-1244 (*1 *2 *3 *2) (-12 (-5 *3 (-589 (-589 *4))) (-5 *2 (-589 *4)) (-4 *4 (-284)) (-5 *1 (-164 *4)))) (-1244 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-164 *2)) (-4 *2 (-284)))) (-1743 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-284)) (-5 *1 (-164 *3))))) +(-10 -7 (-15 -1743 ((-589 |#1|) |#1| (-589 |#1|))) (-15 -1244 (|#1| (-589 |#1|) (-589 |#1|))) (-15 -1244 ((-589 |#1|) (-589 (-589 |#1|)) (-589 |#1|))) (-15 -2194 ((-589 |#1|) (-589 |#1|) |#1|))) +((-2703 (((-2 (|:| |start| |#2|) (|:| -3491 (-394 |#2|))) |#2|) 61)) (-2406 ((|#1| |#1|) 54)) (-2022 (((-155 |#1|) |#2|) 83)) (-2590 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-1755 ((|#2| |#2|) 82)) (-2716 (((-394 |#2|) |#2| |#1|) 113) (((-394 |#2|) |#2| |#1| (-108)) 80)) (-1863 ((|#1| |#2|) 112)) (-2221 ((|#2| |#2|) 119)) (-2424 (((-394 |#2|) |#2|) 134) (((-394 |#2|) |#2| |#1|) 32) (((-394 |#2|) |#2| |#1| (-108)) 133)) (-3097 (((-589 (-2 (|:| -3491 (-589 |#2|)) (|:| -3460 |#1|))) |#2| |#2|) 132) (((-589 (-2 (|:| -3491 (-589 |#2|)) (|:| -3460 |#1|))) |#2| |#2| (-108)) 75)) (-1604 (((-589 (-155 |#1|)) |#2| |#1|) 40) (((-589 (-155 |#1|)) |#2|) 41))) +(((-165 |#1| |#2|) (-10 -7 (-15 -1604 ((-589 (-155 |#1|)) |#2|)) (-15 -1604 ((-589 (-155 |#1|)) |#2| |#1|)) (-15 -3097 ((-589 (-2 (|:| -3491 (-589 |#2|)) (|:| -3460 |#1|))) |#2| |#2| (-108))) (-15 -3097 ((-589 (-2 (|:| -3491 (-589 |#2|)) (|:| -3460 |#1|))) |#2| |#2|)) (-15 -2424 ((-394 |#2|) |#2| |#1| (-108))) (-15 -2424 ((-394 |#2|) |#2| |#1|)) (-15 -2424 ((-394 |#2|) |#2|)) (-15 -2221 (|#2| |#2|)) (-15 -1863 (|#1| |#2|)) (-15 -2716 ((-394 |#2|) |#2| |#1| (-108))) (-15 -2716 ((-394 |#2|) |#2| |#1|)) (-15 -1755 (|#2| |#2|)) (-15 -2590 (|#1| |#2| |#1|)) (-15 -2590 (|#1| |#2|)) (-15 -2022 ((-155 |#1|) |#2|)) (-15 -2406 (|#1| |#1|)) (-15 -2703 ((-2 (|:| |start| |#2|) (|:| -3491 (-394 |#2|))) |#2|))) (-13 (-339) (-784)) (-1145 (-155 |#1|))) (T -165)) +((-2703 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-2 (|:| |start| *3) (|:| -3491 (-394 *3)))) (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) (-2406 (*1 *2 *2) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) (-4 *3 (-1145 (-155 *2))))) (-2022 (*1 *2 *3) (-12 (-5 *2 (-155 *4)) (-5 *1 (-165 *4 *3)) (-4 *4 (-13 (-339) (-784))) (-4 *3 (-1145 *2)))) (-2590 (*1 *2 *3) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) (-4 *3 (-1145 (-155 *2))))) (-2590 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) (-4 *3 (-1145 (-155 *2))))) (-1755 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-784))) (-5 *1 (-165 *3 *2)) (-4 *2 (-1145 (-155 *3))))) (-2716 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) (-2716 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) (-1863 (*1 *2 *3) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) (-4 *3 (-1145 (-155 *2))))) (-2221 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-784))) (-5 *1 (-165 *3 *2)) (-4 *2 (-1145 (-155 *3))))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) (-2424 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) (-2424 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) (-3097 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-2 (|:| -3491 (-589 *3)) (|:| -3460 *4)))) (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) (-3097 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-339) (-784))) (-5 *2 (-589 (-2 (|:| -3491 (-589 *3)) (|:| -3460 *5)))) (-5 *1 (-165 *5 *3)) (-4 *3 (-1145 (-155 *5))))) (-1604 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-155 *4))) (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) (-1604 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-155 *4))) (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4)))))) +(-10 -7 (-15 -1604 ((-589 (-155 |#1|)) |#2|)) (-15 -1604 ((-589 (-155 |#1|)) |#2| |#1|)) (-15 -3097 ((-589 (-2 (|:| -3491 (-589 |#2|)) (|:| -3460 |#1|))) |#2| |#2| (-108))) (-15 -3097 ((-589 (-2 (|:| -3491 (-589 |#2|)) (|:| -3460 |#1|))) |#2| |#2|)) (-15 -2424 ((-394 |#2|) |#2| |#1| (-108))) (-15 -2424 ((-394 |#2|) |#2| |#1|)) (-15 -2424 ((-394 |#2|) |#2|)) (-15 -2221 (|#2| |#2|)) (-15 -1863 (|#1| |#2|)) (-15 -2716 ((-394 |#2|) |#2| |#1| (-108))) (-15 -2716 ((-394 |#2|) |#2| |#1|)) (-15 -1755 (|#2| |#2|)) (-15 -2590 (|#1| |#2| |#1|)) (-15 -2590 (|#1| |#2|)) (-15 -2022 ((-155 |#1|) |#2|)) (-15 -2406 (|#1| |#1|)) (-15 -2703 ((-2 (|:| |start| |#2|) (|:| -3491 (-394 |#2|))) |#2|))) +((-3630 (((-3 |#2| "failed") |#2|) 14)) (-2146 (((-710) |#2|) 16)) (-3528 ((|#2| |#2| |#2|) 18))) +(((-166 |#1| |#2|) (-10 -7 (-15 -3630 ((-3 |#2| "failed") |#2|)) (-15 -2146 ((-710) |#2|)) (-15 -3528 (|#2| |#2| |#2|))) (-1123) (-616 |#1|)) (T -166)) +((-3528 (*1 *2 *2 *2) (-12 (-4 *3 (-1123)) (-5 *1 (-166 *3 *2)) (-4 *2 (-616 *3)))) (-2146 (*1 *2 *3) (-12 (-4 *4 (-1123)) (-5 *2 (-710)) (-5 *1 (-166 *4 *3)) (-4 *3 (-616 *4)))) (-3630 (*1 *2 *2) (|partial| -12 (-4 *3 (-1123)) (-5 *1 (-166 *3 *2)) (-4 *2 (-616 *3))))) +(-10 -7 (-15 -3630 ((-3 |#2| "failed") |#2|)) (-15 -2146 ((-710) |#2|)) (-15 -3528 (|#2| |#2| |#2|))) +((-3079 (((-1087) $) 9)) (-1691 (((-794) $) 13)) (-2134 (((-589 (-1092)) $) 11))) +(((-167) (-13 (-563 (-794)) (-10 -8 (-15 -3079 ((-1087) $)) (-15 -2134 ((-589 (-1092)) $))))) (T -167)) +((-3079 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-167)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-167))))) +(-13 (-563 (-794)) (-10 -8 (-15 -3079 ((-1087) $)) (-15 -2134 ((-589 (-1092)) $)))) +((-3011 ((|#2| |#2|) 28)) (-1308 (((-108) |#2|) 19)) (-2448 (((-292 |#1|) |#2|) 12)) (-2459 (((-292 |#1|) |#2|) 14)) (-3499 ((|#2| |#2| (-1087)) 68) ((|#2| |#2|) 69)) (-2752 (((-155 (-292 |#1|)) |#2|) 9)) (-3961 ((|#2| |#2| (-1087)) 65) ((|#2| |#2|) 58))) +(((-168 |#1| |#2|) (-10 -7 (-15 -3499 (|#2| |#2|)) (-15 -3499 (|#2| |#2| (-1087))) (-15 -3961 (|#2| |#2|)) (-15 -3961 (|#2| |#2| (-1087))) (-15 -2448 ((-292 |#1|) |#2|)) (-15 -2459 ((-292 |#1|) |#2|)) (-15 -1308 ((-108) |#2|)) (-15 -3011 (|#2| |#2|)) (-15 -2752 ((-155 (-292 |#1|)) |#2|))) (-13 (-515) (-786) (-964 (-523))) (-13 (-27) (-1109) (-406 (-155 |#1|)))) (T -168)) +((-2752 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-155 (-292 *4))) (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 (-155 *4)))))) (-3011 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 (-155 *3)))))) (-1308 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-108)) (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 (-155 *4)))))) (-2459 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-292 *4)) (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 (-155 *4)))))) (-2448 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-292 *4)) (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 (-155 *4)))))) (-3961 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 (-155 *4)))))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 (-155 *3)))))) (-3499 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 (-155 *4)))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 (-155 *3))))))) +(-10 -7 (-15 -3499 (|#2| |#2|)) (-15 -3499 (|#2| |#2| (-1087))) (-15 -3961 (|#2| |#2|)) (-15 -3961 (|#2| |#2| (-1087))) (-15 -2448 ((-292 |#1|) |#2|)) (-15 -2459 ((-292 |#1|) |#2|)) (-15 -1308 ((-108) |#2|)) (-15 -3011 (|#2| |#2|)) (-15 -2752 ((-155 (-292 |#1|)) |#2|))) +((-3002 (((-1169 (-629 (-883 |#1|))) (-1169 (-629 |#1|))) 22)) (-1691 (((-1169 (-629 (-383 (-883 |#1|)))) (-1169 (-629 |#1|))) 30))) +(((-169 |#1|) (-10 -7 (-15 -3002 ((-1169 (-629 (-883 |#1|))) (-1169 (-629 |#1|)))) (-15 -1691 ((-1169 (-629 (-383 (-883 |#1|)))) (-1169 (-629 |#1|))))) (-158)) (T -169)) +((-1691 (*1 *2 *3) (-12 (-5 *3 (-1169 (-629 *4))) (-4 *4 (-158)) (-5 *2 (-1169 (-629 (-383 (-883 *4))))) (-5 *1 (-169 *4)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-1169 (-629 *4))) (-4 *4 (-158)) (-5 *2 (-1169 (-629 (-883 *4)))) (-5 *1 (-169 *4))))) +(-10 -7 (-15 -3002 ((-1169 (-629 (-883 |#1|))) (-1169 (-629 |#1|)))) (-15 -1691 ((-1169 (-629 (-383 (-883 |#1|)))) (-1169 (-629 |#1|))))) +((-2211 (((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523)))) 66)) (-2154 (((-1089 (-383 (-523))) (-589 (-523)) (-589 (-523))) 74)) (-2565 (((-1089 (-383 (-523))) (-523)) 40)) (-2777 (((-1089 (-383 (-523))) (-523)) 52)) (-2812 (((-383 (-523)) (-1089 (-383 (-523)))) 62)) (-1690 (((-1089 (-383 (-523))) (-523)) 32)) (-1697 (((-1089 (-383 (-523))) (-523)) 48)) (-1926 (((-1089 (-383 (-523))) (-523)) 46)) (-2828 (((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523)))) 60)) (-2488 (((-1089 (-383 (-523))) (-523)) 25)) (-3896 (((-383 (-523)) (-1089 (-383 (-523))) (-1089 (-383 (-523)))) 64)) (-1711 (((-1089 (-383 (-523))) (-523)) 30)) (-2125 (((-1089 (-383 (-523))) (-589 (-523))) 71))) +(((-170) (-10 -7 (-15 -2488 ((-1089 (-383 (-523))) (-523))) (-15 -2565 ((-1089 (-383 (-523))) (-523))) (-15 -1690 ((-1089 (-383 (-523))) (-523))) (-15 -1711 ((-1089 (-383 (-523))) (-523))) (-15 -1926 ((-1089 (-383 (-523))) (-523))) (-15 -1697 ((-1089 (-383 (-523))) (-523))) (-15 -2777 ((-1089 (-383 (-523))) (-523))) (-15 -3896 ((-383 (-523)) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -2828 ((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -2812 ((-383 (-523)) (-1089 (-383 (-523))))) (-15 -2211 ((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -2125 ((-1089 (-383 (-523))) (-589 (-523)))) (-15 -2154 ((-1089 (-383 (-523))) (-589 (-523)) (-589 (-523)))))) (T -170)) +((-2154 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)))) (-2211 (*1 *2 *2 *2) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-1089 (-383 (-523)))) (-5 *2 (-383 (-523))) (-5 *1 (-170)))) (-2828 (*1 *2 *2 *2) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)))) (-3896 (*1 *2 *3 *3) (-12 (-5 *3 (-1089 (-383 (-523)))) (-5 *2 (-383 (-523))) (-5 *1 (-170)))) (-2777 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-1697 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-1926 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-1711 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-1690 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-2565 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-2488 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) +(-10 -7 (-15 -2488 ((-1089 (-383 (-523))) (-523))) (-15 -2565 ((-1089 (-383 (-523))) (-523))) (-15 -1690 ((-1089 (-383 (-523))) (-523))) (-15 -1711 ((-1089 (-383 (-523))) (-523))) (-15 -1926 ((-1089 (-383 (-523))) (-523))) (-15 -1697 ((-1089 (-383 (-523))) (-523))) (-15 -2777 ((-1089 (-383 (-523))) (-523))) (-15 -3896 ((-383 (-523)) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -2828 ((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -2812 ((-383 (-523)) (-1089 (-383 (-523))))) (-15 -2211 ((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -2125 ((-1089 (-383 (-523))) (-589 (-523)))) (-15 -2154 ((-1089 (-383 (-523))) (-589 (-523)) (-589 (-523))))) +((-1384 (((-394 (-1083 (-523))) (-523)) 28)) (-1816 (((-589 (-1083 (-523))) (-523)) 23)) (-3315 (((-1083 (-523)) (-523)) 21))) +(((-171) (-10 -7 (-15 -1816 ((-589 (-1083 (-523))) (-523))) (-15 -3315 ((-1083 (-523)) (-523))) (-15 -1384 ((-394 (-1083 (-523))) (-523))))) (T -171)) +((-1384 (*1 *2 *3) (-12 (-5 *2 (-394 (-1083 (-523)))) (-5 *1 (-171)) (-5 *3 (-523)))) (-3315 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-171)) (-5 *3 (-523)))) (-1816 (*1 *2 *3) (-12 (-5 *2 (-589 (-1083 (-523)))) (-5 *1 (-171)) (-5 *3 (-523))))) +(-10 -7 (-15 -1816 ((-589 (-1083 (-523))) (-523))) (-15 -3315 ((-1083 (-523)) (-523))) (-15 -1384 ((-394 (-1083 (-523))) (-523)))) +((-3502 (((-1068 (-203)) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 101)) (-3443 (((-589 (-1070)) (-1068 (-203))) NIL)) (-1548 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 77)) (-3976 (((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203)))) NIL)) (-1815 (((-589 (-1070)) (-589 (-203))) NIL)) (-2079 (((-203) (-1011 (-779 (-203)))) 22)) (-2542 (((-203) (-1011 (-779 (-203)))) 23)) (-2714 (((-355) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 93)) (-2354 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 40)) (-3021 (((-1070) (-203)) NIL)) (-3284 (((-1070) (-589 (-1070))) 19)) (-1811 (((-962) (-1087) (-1087) (-962)) 12))) +(((-172) (-10 -7 (-15 -1548 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2354 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2079 ((-203) (-1011 (-779 (-203))))) (-15 -2542 ((-203) (-1011 (-779 (-203))))) (-15 -2714 ((-355) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3976 ((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203))))) (-15 -3502 ((-1068 (-203)) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3021 ((-1070) (-203))) (-15 -1815 ((-589 (-1070)) (-589 (-203)))) (-15 -3443 ((-589 (-1070)) (-1068 (-203)))) (-15 -3284 ((-1070) (-589 (-1070)))) (-15 -1811 ((-962) (-1087) (-1087) (-962))))) (T -172)) +((-1811 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-962)) (-5 *3 (-1087)) (-5 *1 (-172)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-172)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-172)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-172)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-172)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-172)))) (-3976 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-1087)) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-172)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-172)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-172)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-172)))) (-2354 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-172)))) (-1548 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-172))))) +(-10 -7 (-15 -1548 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2354 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2079 ((-203) (-1011 (-779 (-203))))) (-15 -2542 ((-203) (-1011 (-779 (-203))))) (-15 -2714 ((-355) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3976 ((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203))))) (-15 -3502 ((-1068 (-203)) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3021 ((-1070) (-203))) (-15 -1815 ((-589 (-1070)) (-589 (-203)))) (-15 -3443 ((-589 (-1070)) (-1068 (-203)))) (-15 -3284 ((-1070) (-589 (-1070)))) (-15 -1811 ((-962) (-1087) (-1087) (-962)))) +((-1680 (((-108) $ $) NIL)) (-3077 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 53) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 28) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-173) (-726)) (T -173)) NIL (-726) -((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 58) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-3077 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 58) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-174) (-726)) (T -174)) NIL (-726) -((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 67) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 36) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-3077 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 67) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 36) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-175) (-726)) (T -175)) NIL (-726) -((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 54) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 30) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-3077 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 54) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 30) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-176) (-726)) (T -176)) NIL (-726) -((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 65) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 35) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-3077 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 65) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 35) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-177) (-726)) (T -177)) NIL (-726) -((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 71) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 33) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-3077 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 71) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 33) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-178) (-726)) (T -178)) NIL (-726) -((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 78) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 43) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-3077 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 78) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 43) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-179) (-726)) (T -179)) NIL (-726) -((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 68) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-3077 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 68) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-180) (-726)) (T -180)) NIL (-726) -((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 62)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 29)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-3077 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 62)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 29)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-181) (-726)) (T -181)) NIL (-726) -((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 60)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 32)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-3077 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 60)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 32)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-182) (-726)) (T -182)) NIL (-726) -((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 89) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 77) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-3077 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 89) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 77) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-183) (-726)) (T -183)) NIL (-726) -((-1878 (((-3 (-2 (|:| -3013 (-110)) (|:| |w| (-203))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 81)) (-3096 (((-523) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 39)) (-3633 (((-3 (-589 (-203)) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 69))) -(((-184) (-10 -7 (-15 -1878 ((-3 (-2 (|:| -3013 (-110)) (|:| |w| (-203))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3633 ((-3 (-589 (-203)) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3096 ((-523) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (T -184)) -((-3096 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-523)) (-5 *1 (-184)))) (-3633 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-184)))) (-1878 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| -3013 (-110)) (|:| |w| (-203)))) (-5 *1 (-184))))) -(-10 -7 (-15 -1878 ((-3 (-2 (|:| -3013 (-110)) (|:| |w| (-203))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3633 ((-3 (-589 (-203)) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3096 ((-523) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) -((-1962 (((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37)) (-2723 (((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 128)) (-3808 (((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-629 (-292 (-203)))) 88)) (-3688 (((-355) (-629 (-292 (-203)))) 111)) (-2140 (((-629 (-292 (-203))) (-1168 (-292 (-203))) (-589 (-1087))) 108)) (-2052 (((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 26)) (-2051 (((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 42)) (-2679 (((-629 (-292 (-203))) (-629 (-292 (-203))) (-589 (-1087)) (-1168 (-292 (-203)))) 100)) (-1910 (((-355) (-355) (-589 (-355))) 105) (((-355) (-355) (-355)) 103)) (-1241 (((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 33))) -(((-185) (-10 -7 (-15 -1910 ((-355) (-355) (-355))) (-15 -1910 ((-355) (-355) (-589 (-355)))) (-15 -3688 ((-355) (-629 (-292 (-203))))) (-15 -2140 ((-629 (-292 (-203))) (-1168 (-292 (-203))) (-589 (-1087)))) (-15 -2679 ((-629 (-292 (-203))) (-629 (-292 (-203))) (-589 (-1087)) (-1168 (-292 (-203))))) (-15 -3808 ((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-629 (-292 (-203))))) (-15 -2723 ((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1962 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2051 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1241 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2052 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (T -185)) -((-2052 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-1241 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-1962 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355)))) (-5 *1 (-185)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-629 (-292 (-203)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355)))) (-5 *1 (-185)))) (-2679 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-629 (-292 (-203)))) (-5 *3 (-589 (-1087))) (-5 *4 (-1168 (-292 (-203)))) (-5 *1 (-185)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *4 (-589 (-1087))) (-5 *2 (-629 (-292 (-203)))) (-5 *1 (-185)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-629 (-292 (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-1910 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-355))) (-5 *2 (-355)) (-5 *1 (-185)))) (-1910 (*1 *2 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-185))))) -(-10 -7 (-15 -1910 ((-355) (-355) (-355))) (-15 -1910 ((-355) (-355) (-589 (-355)))) (-15 -3688 ((-355) (-629 (-292 (-203))))) (-15 -2140 ((-629 (-292 (-203))) (-1168 (-292 (-203))) (-589 (-1087)))) (-15 -2679 ((-629 (-292 (-203))) (-629 (-292 (-203))) (-589 (-1087)) (-1168 (-292 (-203))))) (-15 -3808 ((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-629 (-292 (-203))))) (-15 -2723 ((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1962 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2051 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1241 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2052 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) -((-3924 (((-108) $ $) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3098 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 60)) (-3983 (((-108) $ $) NIL))) +((-3722 (((-3 (-2 (|:| -2888 (-110)) (|:| |w| (-203))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 81)) (-1773 (((-523) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 39)) (-1399 (((-3 (-589 (-203)) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 69))) +(((-184) (-10 -7 (-15 -3722 ((-3 (-2 (|:| -2888 (-110)) (|:| |w| (-203))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1399 ((-3 (-589 (-203)) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1773 ((-523) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (T -184)) +((-1773 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-523)) (-5 *1 (-184)))) (-1399 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-184)))) (-3722 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| -2888 (-110)) (|:| |w| (-203)))) (-5 *1 (-184))))) +(-10 -7 (-15 -3722 ((-3 (-2 (|:| -2888 (-110)) (|:| |w| (-203))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1399 ((-3 (-589 (-203)) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1773 ((-523) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) +((-3311 (((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37)) (-2499 (((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 128)) (-2250 (((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-629 (-292 (-203)))) 88)) (-3632 (((-355) (-629 (-292 (-203)))) 111)) (-1623 (((-629 (-292 (-203))) (-1169 (-292 (-203))) (-589 (-1087))) 108)) (-3027 (((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 26)) (-3017 (((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 42)) (-2812 (((-629 (-292 (-203))) (-629 (-292 (-203))) (-589 (-1087)) (-1169 (-292 (-203)))) 100)) (-4066 (((-355) (-355) (-589 (-355))) 105) (((-355) (-355) (-355)) 103)) (-3708 (((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 33))) +(((-185) (-10 -7 (-15 -4066 ((-355) (-355) (-355))) (-15 -4066 ((-355) (-355) (-589 (-355)))) (-15 -3632 ((-355) (-629 (-292 (-203))))) (-15 -1623 ((-629 (-292 (-203))) (-1169 (-292 (-203))) (-589 (-1087)))) (-15 -2812 ((-629 (-292 (-203))) (-629 (-292 (-203))) (-589 (-1087)) (-1169 (-292 (-203))))) (-15 -2250 ((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-629 (-292 (-203))))) (-15 -2499 ((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3311 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3017 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3708 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3027 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (T -185)) +((-3027 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355)))) (-5 *1 (-185)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-629 (-292 (-203)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355)))) (-5 *1 (-185)))) (-2812 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-629 (-292 (-203)))) (-5 *3 (-589 (-1087))) (-5 *4 (-1169 (-292 (-203)))) (-5 *1 (-185)))) (-1623 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 (-292 (-203)))) (-5 *4 (-589 (-1087))) (-5 *2 (-629 (-292 (-203)))) (-5 *1 (-185)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-629 (-292 (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-4066 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-355))) (-5 *2 (-355)) (-5 *1 (-185)))) (-4066 (*1 *2 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-185))))) +(-10 -7 (-15 -4066 ((-355) (-355) (-355))) (-15 -4066 ((-355) (-355) (-589 (-355)))) (-15 -3632 ((-355) (-629 (-292 (-203))))) (-15 -1623 ((-629 (-292 (-203))) (-1169 (-292 (-203))) (-589 (-1087)))) (-15 -2812 ((-629 (-292 (-203))) (-629 (-292 (-203))) (-589 (-1087)) (-1169 (-292 (-203))))) (-15 -2250 ((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-629 (-292 (-203))))) (-15 -2499 ((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3311 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3017 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3708 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3027 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) +((-1680 (((-108) $ $) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-1791 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 60)) (-3941 (((-108) $ $) NIL))) (((-186) (-739)) (T -186)) NIL (-739) -((-3924 (((-108) $ $) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3098 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 60)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-1791 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 60)) (-3941 (((-108) $ $) NIL))) (((-187) (-739)) (T -187)) NIL (-739) -((-3924 (((-108) $ $) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 36)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3098 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 64)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 36)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-1791 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 64)) (-3941 (((-108) $ $) NIL))) (((-188) (-739)) (T -188)) NIL (-739) -((-3924 (((-108) $ $) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 42)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3098 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 73)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 42)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-1791 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 73)) (-3941 (((-108) $ $) NIL))) (((-189) (-739)) (T -189)) NIL (-739) -((-2061 (((-589 (-1087)) (-1087) (-710)) 22)) (-1205 (((-292 (-203)) (-292 (-203))) 29)) (-1256 (((-108) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 67)) (-2040 (((-108) (-203) (-203) (-589 (-292 (-203)))) 43))) -(((-190) (-10 -7 (-15 -2061 ((-589 (-1087)) (-1087) (-710))) (-15 -1205 ((-292 (-203)) (-292 (-203)))) (-15 -2040 ((-108) (-203) (-203) (-589 (-292 (-203))))) (-15 -1256 ((-108) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))))) (T -190)) -((-1256 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *2 (-108)) (-5 *1 (-190)))) (-2040 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-589 (-292 (-203)))) (-5 *3 (-203)) (-5 *2 (-108)) (-5 *1 (-190)))) (-1205 (*1 *2 *2) (-12 (-5 *2 (-292 (-203))) (-5 *1 (-190)))) (-2061 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-589 (-1087))) (-5 *1 (-190)) (-5 *3 (-1087))))) -(-10 -7 (-15 -2061 ((-589 (-1087)) (-1087) (-710))) (-15 -1205 ((-292 (-203)) (-292 (-203)))) (-15 -2040 ((-108) (-203) (-203) (-589 (-292 (-203))))) (-15 -1256 ((-108) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))))) -((-3924 (((-108) $ $) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 17)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-1864 (((-962) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 55)) (-3983 (((-108) $ $) NIL))) +((-2634 (((-589 (-1087)) (-1087) (-710)) 22)) (-1564 (((-292 (-203)) (-292 (-203))) 29)) (-3877 (((-108) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 67)) (-2919 (((-108) (-203) (-203) (-589 (-292 (-203)))) 43))) +(((-190) (-10 -7 (-15 -2634 ((-589 (-1087)) (-1087) (-710))) (-15 -1564 ((-292 (-203)) (-292 (-203)))) (-15 -2919 ((-108) (-203) (-203) (-589 (-292 (-203))))) (-15 -3877 ((-108) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))))) (T -190)) +((-3877 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *2 (-108)) (-5 *1 (-190)))) (-2919 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-589 (-292 (-203)))) (-5 *3 (-203)) (-5 *2 (-108)) (-5 *1 (-190)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-292 (-203))) (-5 *1 (-190)))) (-2634 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-589 (-1087))) (-5 *1 (-190)) (-5 *3 (-1087))))) +(-10 -7 (-15 -2634 ((-589 (-1087)) (-1087) (-710))) (-15 -1564 ((-292 (-203)) (-292 (-203)))) (-15 -2919 ((-108) (-203) (-203) (-589 (-292 (-203))))) (-15 -3877 ((-108) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))))) +((-1680 (((-108) $ $) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 17)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-1824 (((-962) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 55)) (-3941 (((-108) $ $) NIL))) (((-191) (-826)) (T -191)) NIL (-826) -((-3924 (((-108) $ $) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 12)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-1864 (((-962) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 12)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-1824 (((-962) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) NIL)) (-3941 (((-108) $ $) NIL))) (((-192) (-826)) (T -192)) NIL (-826) -((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2823 (((-1173) $) 36) (((-1173) $ (-852) (-852)) 38)) (-3223 (($ $ (-918)) 19) (((-223 (-1070)) $ (-1087)) 15)) (-3973 (((-1173) $) 34)) (-1458 (((-794) $) 31) (($ (-589 |#1|)) 8)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $ $) 27)) (-4075 (($ $ $) 22))) -(((-193 |#1|) (-13 (-1016) (-10 -8 (-15 -3223 ($ $ (-918))) (-15 -3223 ((-223 (-1070)) $ (-1087))) (-15 -4075 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -1458 ($ (-589 |#1|))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $)) (-15 -2823 ((-1173) $ (-852) (-852))))) (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $))))) (T -193)) -((-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-193 *3)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $))))))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-223 (-1070))) (-5 *1 (-193 *4)) (-4 *4 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ *3)) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $))))))) (-4075 (*1 *1 *1 *1) (-12 (-5 *1 (-193 *2)) (-4 *2 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $))))))) (-4087 (*1 *1 *1 *1) (-12 (-5 *1 (-193 *2)) (-4 *2 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $))))))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $))))) (-5 *1 (-193 *3)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-193 *3)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 (*2 $)) (-15 -2823 (*2 $))))))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-193 *3)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 (*2 $)) (-15 -2823 (*2 $))))))) (-2823 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1173)) (-5 *1 (-193 *4)) (-4 *4 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 (*2 $)) (-15 -2823 (*2 $)))))))) -(-13 (-1016) (-10 -8 (-15 -3223 ($ $ (-918))) (-15 -3223 ((-223 (-1070)) $ (-1087))) (-15 -4075 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -1458 ($ (-589 |#1|))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $)) (-15 -2823 ((-1173) $ (-852) (-852))))) -((-2011 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-194 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2011 (|#2| |#4| (-1 |#2| |#2|)))) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -194)) -((-2011 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-339)) (-4 *6 (-1144 (-383 *2))) (-4 *2 (-1144 *5)) (-5 *1 (-194 *5 *2 *6 *3)) (-4 *3 (-318 *5 *2 *6))))) -(-10 -7 (-15 -2011 (|#2| |#4| (-1 |#2| |#2|)))) -((-1460 ((|#2| |#2| (-710) |#2|) 41)) (-2576 ((|#2| |#2| (-710) |#2|) 37)) (-2987 (((-589 |#2|) (-589 (-2 (|:| |deg| (-710)) (|:| -1992 |#2|)))) 57)) (-1291 (((-589 (-2 (|:| |deg| (-710)) (|:| -1992 |#2|))) |#2|) 52)) (-2768 (((-108) |#2|) 49)) (-3906 (((-394 |#2|) |#2|) 76)) (-1820 (((-394 |#2|) |#2|) 75)) (-1281 ((|#2| |#2| (-710) |#2|) 35)) (-4016 (((-2 (|:| |cont| |#1|) (|:| -1979 (-589 (-2 (|:| |irr| |#2|) (|:| -1227 (-523)))))) |#2| (-108)) 68))) -(((-195 |#1| |#2|) (-10 -7 (-15 -1820 ((-394 |#2|) |#2|)) (-15 -3906 ((-394 |#2|) |#2|)) (-15 -4016 ((-2 (|:| |cont| |#1|) (|:| -1979 (-589 (-2 (|:| |irr| |#2|) (|:| -1227 (-523)))))) |#2| (-108))) (-15 -1291 ((-589 (-2 (|:| |deg| (-710)) (|:| -1992 |#2|))) |#2|)) (-15 -2987 ((-589 |#2|) (-589 (-2 (|:| |deg| (-710)) (|:| -1992 |#2|))))) (-15 -1281 (|#2| |#2| (-710) |#2|)) (-15 -2576 (|#2| |#2| (-710) |#2|)) (-15 -1460 (|#2| |#2| (-710) |#2|)) (-15 -2768 ((-108) |#2|))) (-325) (-1144 |#1|)) (T -195)) -((-2768 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-195 *4 *3)) (-4 *3 (-1144 *4)))) (-1460 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) (-4 *2 (-1144 *4)))) (-2576 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) (-4 *2 (-1144 *4)))) (-1281 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) (-4 *2 (-1144 *4)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| |deg| (-710)) (|:| -1992 *5)))) (-4 *5 (-1144 *4)) (-4 *4 (-325)) (-5 *2 (-589 *5)) (-5 *1 (-195 *4 *5)))) (-1291 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-589 (-2 (|:| |deg| (-710)) (|:| -1992 *3)))) (-5 *1 (-195 *4 *3)) (-4 *3 (-1144 *4)))) (-4016 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-325)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) (-5 *1 (-195 *5 *3)) (-4 *3 (-1144 *5)))) (-3906 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-195 *4 *3)) (-4 *3 (-1144 *4)))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-195 *4 *3)) (-4 *3 (-1144 *4))))) -(-10 -7 (-15 -1820 ((-394 |#2|) |#2|)) (-15 -3906 ((-394 |#2|) |#2|)) (-15 -4016 ((-2 (|:| |cont| |#1|) (|:| -1979 (-589 (-2 (|:| |irr| |#2|) (|:| -1227 (-523)))))) |#2| (-108))) (-15 -1291 ((-589 (-2 (|:| |deg| (-710)) (|:| -1992 |#2|))) |#2|)) (-15 -2987 ((-589 |#2|) (-589 (-2 (|:| |deg| (-710)) (|:| -1992 |#2|))))) (-15 -1281 (|#2| |#2| (-710) |#2|)) (-15 -2576 (|#2| |#2| (-710) |#2|)) (-15 -1460 (|#2| |#2| (-710) |#2|)) (-15 -2768 ((-108) |#2|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-523) $) NIL (|has| (-523) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-523) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-523) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-523) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-523) (-964 (-523))))) (-3474 (((-523) $) NIL) (((-1087) $) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-523) (-964 (-523)))) (((-523) $) NIL (|has| (-523) (-964 (-523))))) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-523) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| (-523) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-523) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-523) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-523) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| (-523) (-1063)))) (-4114 (((-108) $) NIL (|has| (-523) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-523) (-786)))) (-3612 (($ (-1 (-523) (-523)) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-523) (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-523) (-284))) (((-383 (-523)) $) NIL)) (-3722 (((-523) $) NIL (|has| (-523) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-523)) (-589 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-523) (-523)) NIL (|has| (-523) (-286 (-523)))) (($ $ (-271 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-271 (-523)))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-1087)) (-589 (-523))) NIL (|has| (-523) (-484 (-1087) (-523)))) (($ $ (-1087) (-523)) NIL (|has| (-523) (-484 (-1087) (-523))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-523)) NIL (|has| (-523) (-263 (-523) (-523))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-523) $) NIL)) (-3488 (($ (-383 (-523))) 8)) (-3663 (((-823 (-523)) $) NIL (|has| (-523) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-523) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-523) (-564 (-499)))) (((-355) $) NIL (|has| (-523) (-949))) (((-203) $) NIL (|has| (-523) (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-523) (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 7) (($ (-523)) NIL) (($ (-1087)) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL) (((-932 10) $) 9)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-523) (-840))) (|has| (-523) (-134))))) (-1621 (((-710)) NIL)) (-1886 (((-523) $) NIL (|has| (-523) (-508)))) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL (|has| (-523) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4098 (($ $ $) NIL) (($ (-523) (-523)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-523) $) NIL) (($ $ (-523)) NIL))) -(((-196) (-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -1458 ((-932 10) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -3488 ($ (-383 (-523))))))) (T -196)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-932 10)) (-5 *1 (-196)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196)))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196))))) -(-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -1458 ((-932 10) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -3488 ($ (-383 (-523)))))) -((-3417 (((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)) (-1070)) 27) (((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|))) 23)) (-1202 (((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1087) (-779 |#2|) (-779 |#2|) (-108)) 16))) -(((-197 |#1| |#2|) (-10 -7 (-15 -3417 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)))) (-15 -3417 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)) (-1070))) (-15 -1202 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1087) (-779 |#2|) (-779 |#2|) (-108)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-889) (-29 |#1|))) (T -197)) -((-1202 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1087)) (-5 *6 (-108)) (-4 *7 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-4 *3 (-13 (-1108) (-889) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *7 *3)) (-5 *5 (-779 *3)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1009 (-779 *3))) (-5 *5 (-1070)) (-4 *3 (-13 (-1108) (-889) (-29 *6))) (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *6 *3)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-779 *3))) (-4 *3 (-13 (-1108) (-889) (-29 *5))) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *5 *3))))) -(-10 -7 (-15 -3417 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)))) (-15 -3417 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)) (-1070))) (-15 -1202 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1087) (-779 |#2|) (-779 |#2|) (-108)))) -((-3417 (((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))) (-1070)) 44) (((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|))))) 41) (((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))) (-1070)) 45) (((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|)))) 17))) -(((-198 |#1|) (-10 -7 (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))))) (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))) (-1070))) (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))))) (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))) (-1070)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (T -198)) -((-3417 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1009 (-779 (-383 (-883 *6))))) (-5 *5 (-1070)) (-5 *3 (-383 (-883 *6))) (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 (-292 *6))) (|:| |f2| (-589 (-779 (-292 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-198 *6)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-779 (-383 (-883 *5))))) (-5 *3 (-383 (-883 *5))) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 (-292 *5))) (|:| |f2| (-589 (-779 (-292 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-198 *5)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-383 (-883 *6))) (-5 *4 (-1009 (-779 (-292 *6)))) (-5 *5 (-1070)) (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 (-292 *6))) (|:| |f2| (-589 (-779 (-292 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-198 *6)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1009 (-779 (-292 *5)))) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 (-292 *5))) (|:| |f2| (-589 (-779 (-292 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-198 *5))))) -(-10 -7 (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))))) (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))) (-1070))) (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))))) (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))) (-1070)))) -((-2437 (((-2 (|:| -1480 (-1083 |#1|)) (|:| |deg| (-852))) (-1083 |#1|)) 21)) (-3686 (((-589 (-292 |#2|)) (-292 |#2|) (-852)) 43))) -(((-199 |#1| |#2|) (-10 -7 (-15 -2437 ((-2 (|:| -1480 (-1083 |#1|)) (|:| |deg| (-852))) (-1083 |#1|))) (-15 -3686 ((-589 (-292 |#2|)) (-292 |#2|) (-852)))) (-973) (-13 (-515) (-786))) (T -199)) -((-3686 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-4 *6 (-13 (-515) (-786))) (-5 *2 (-589 (-292 *6))) (-5 *1 (-199 *5 *6)) (-5 *3 (-292 *6)) (-4 *5 (-973)))) (-2437 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-2 (|:| -1480 (-1083 *4)) (|:| |deg| (-852)))) (-5 *1 (-199 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-13 (-515) (-786)))))) -(-10 -7 (-15 -2437 ((-2 (|:| -1480 (-1083 |#1|)) (|:| |deg| (-852))) (-1083 |#1|))) (-15 -3686 ((-589 (-292 |#2|)) (-292 |#2|) (-852)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2292 ((|#1| $) NIL)) (-3125 ((|#1| $) 25)) (-3079 (((-108) $ (-710)) NIL)) (-2518 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-2867 (($ $) 31)) (-3845 ((|#1| |#1| $) NIL)) (-2085 ((|#1| $) NIL)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2996 (((-710) $) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1934 ((|#1| $) NIL)) (-1598 ((|#1| |#1| $) 28)) (-2544 ((|#1| |#1| $) 30)) (-3450 (($ |#1| $) NIL)) (-2510 (((-710) $) 27)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1592 ((|#1| $) NIL)) (-1352 ((|#1| $) 26)) (-2395 ((|#1| $) 24)) (-3761 ((|#1| $) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1651 ((|#1| |#1| $) NIL)) (-3883 (((-108) $) 9)) (-3988 (($) NIL)) (-1234 ((|#1| $) NIL)) (-3047 (($) NIL) (($ (-589 |#1|)) 16)) (-1583 (((-710) $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-4040 ((|#1| $) 13)) (-2401 (($ (-589 |#1|)) NIL)) (-1348 ((|#1| $) NIL)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-200 |#1|) (-13 (-231 |#1|) (-10 -8 (-15 -3047 ($ (-589 |#1|))))) (-1016)) (T -200)) -((-3047 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-200 *3))))) -(-13 (-231 |#1|) (-10 -8 (-15 -3047 ($ (-589 |#1|))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2945 (($ (-292 |#1|)) 23)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-1406 (((-108) $) NIL)) (-3517 (((-3 (-292 |#1|) "failed") $) NIL)) (-3474 (((-292 |#1|) $) NIL)) (-3810 (($ $) 31)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3612 (($ (-1 (-292 |#1|) (-292 |#1|)) $) NIL)) (-3786 (((-292 |#1|) $) NIL)) (-2418 (($ $) 30)) (-3779 (((-1070) $) NIL)) (-1519 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-3441 (($ (-710)) NIL)) (-1610 (($ $) 32)) (-2299 (((-523) $) NIL)) (-1458 (((-794) $) 57) (($ (-523)) NIL) (($ (-292 |#1|)) NIL)) (-2365 (((-292 |#1|) $ $) NIL)) (-1621 (((-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 25 T CONST)) (-2767 (($) 50 T CONST)) (-3983 (((-108) $ $) 28)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 19)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 24) (($ (-292 |#1|) $) 18))) -(((-201 |#1| |#2|) (-13 (-567 (-292 |#1|)) (-964 (-292 |#1|)) (-10 -8 (-15 -3786 ((-292 |#1|) $)) (-15 -2418 ($ $)) (-15 -3810 ($ $)) (-15 -2365 ((-292 |#1|) $ $)) (-15 -3441 ($ (-710))) (-15 -1519 ((-108) $)) (-15 -1406 ((-108) $)) (-15 -2299 ((-523) $)) (-15 -3612 ($ (-1 (-292 |#1|) (-292 |#1|)) $)) (-15 -2945 ($ (-292 |#1|))) (-15 -1610 ($ $)))) (-13 (-973) (-786)) (-589 (-1087))) (T -201)) -((-3786 (*1 *2 *1) (-12 (-5 *2 (-292 *3)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-2418 (*1 *1 *1) (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) (-14 *3 (-589 (-1087))))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) (-14 *3 (-589 (-1087))))) (-2365 (*1 *2 *1 *1) (-12 (-5 *2 (-292 *3)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-292 *3) (-292 *3))) (-4 *3 (-13 (-973) (-786))) (-5 *1 (-201 *3 *4)) (-14 *4 (-589 (-1087))))) (-2945 (*1 *1 *2) (-12 (-5 *2 (-292 *3)) (-4 *3 (-13 (-973) (-786))) (-5 *1 (-201 *3 *4)) (-14 *4 (-589 (-1087))))) (-1610 (*1 *1 *1) (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) (-14 *3 (-589 (-1087)))))) -(-13 (-567 (-292 |#1|)) (-964 (-292 |#1|)) (-10 -8 (-15 -3786 ((-292 |#1|) $)) (-15 -2418 ($ $)) (-15 -3810 ($ $)) (-15 -2365 ((-292 |#1|) $ $)) (-15 -3441 ($ (-710))) (-15 -1519 ((-108) $)) (-15 -1406 ((-108) $)) (-15 -2299 ((-523) $)) (-15 -3612 ($ (-1 (-292 |#1|) (-292 |#1|)) $)) (-15 -2945 ($ (-292 |#1|))) (-15 -1610 ($ $)))) -((-4037 (((-108) (-1070)) 22)) (-1382 (((-3 (-779 |#2|) "failed") (-562 |#2|) |#2| (-779 |#2|) (-779 |#2|) (-108)) 32)) (-4022 (((-3 (-108) "failed") (-1083 |#2|) (-779 |#2|) (-779 |#2|) (-108)) 73) (((-3 (-108) "failed") (-883 |#1|) (-1087) (-779 |#2|) (-779 |#2|) (-108)) 74))) -(((-202 |#1| |#2|) (-10 -7 (-15 -4037 ((-108) (-1070))) (-15 -1382 ((-3 (-779 |#2|) "failed") (-562 |#2|) |#2| (-779 |#2|) (-779 |#2|) (-108))) (-15 -4022 ((-3 (-108) "failed") (-883 |#1|) (-1087) (-779 |#2|) (-779 |#2|) (-108))) (-15 -4022 ((-3 (-108) "failed") (-1083 |#2|) (-779 |#2|) (-779 |#2|) (-108)))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-29 |#1|))) (T -202)) -((-4022 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1083 *6)) (-5 *4 (-779 *6)) (-4 *6 (-13 (-1108) (-29 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-202 *5 *6)))) (-4022 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-883 *6)) (-5 *4 (-1087)) (-5 *5 (-779 *7)) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-4 *7 (-13 (-1108) (-29 *6))) (-5 *1 (-202 *6 *7)))) (-1382 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-779 *4)) (-5 *3 (-562 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1108) (-29 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-202 *6 *4)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-108)) (-5 *1 (-202 *4 *5)) (-4 *5 (-13 (-1108) (-29 *4)))))) -(-10 -7 (-15 -4037 ((-108) (-1070))) (-15 -1382 ((-3 (-779 |#2|) "failed") (-562 |#2|) |#2| (-779 |#2|) (-779 |#2|) (-108))) (-15 -4022 ((-3 (-108) "failed") (-883 |#1|) (-1087) (-779 |#2|) (-779 |#2|) (-108))) (-15 -4022 ((-3 (-108) "failed") (-1083 |#2|) (-779 |#2|) (-779 |#2|) (-108)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 89)) (-3458 (((-523) $) 99)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3984 (($ $) NIL)) (-1769 (($ $) 77)) (-3780 (($ $) 65)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1832 (($ $) 56)) (-1387 (((-108) $ $) NIL)) (-1744 (($ $) 75)) (-3711 (($ $) 63)) (-3671 (((-523) $) 116)) (-1793 (($ $) 80)) (-3805 (($ $) 67)) (-2518 (($) NIL T CONST)) (-1258 (($ $) NIL)) (-3517 (((-3 (-523) "failed") $) 115) (((-3 (-383 (-523)) "failed") $) 112)) (-3474 (((-523) $) 113) (((-383 (-523)) $) 110)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) 92)) (-3193 (((-383 (-523)) $ (-710)) 108) (((-383 (-523)) $ (-710) (-710)) 107)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2685 (((-852)) 29) (((-852) (-852)) NIL (|has| $ (-6 -4235)))) (-2604 (((-108) $) NIL)) (-2820 (($) 39)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL)) (-1640 (((-523) $) 35)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL)) (-3892 (($ $) NIL)) (-4114 (((-108) $) 88)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) 53) (($) 34 (-12 (-3900 (|has| $ (-6 -4227))) (-3900 (|has| $ (-6 -4235)))))) (-2062 (($ $ $) 52) (($) 33 (-12 (-3900 (|has| $ (-6 -4227))) (-3900 (|has| $ (-6 -4235)))))) (-1369 (((-523) $) 27)) (-4121 (($ $) 30)) (-1574 (($ $) 57)) (-2384 (($ $) 62)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-3986 (((-852) (-523)) NIL (|has| $ (-6 -4235)))) (-2783 (((-1034) $) NIL) (((-523) $) 90)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL)) (-3722 (($ $) NIL)) (-4092 (($ (-523) (-523)) NIL) (($ (-523) (-523) (-852)) 100)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2735 (((-523) $) 28)) (-2094 (($) 38)) (-1811 (($ $) 61)) (-1972 (((-710) $) NIL)) (-4027 (((-1070) (-1070)) 8)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1617 (((-852)) NIL) (((-852) (-852)) NIL (|has| $ (-6 -4235)))) (-3523 (($ $ (-710)) NIL) (($ $) 93)) (-3134 (((-852) (-523)) NIL (|has| $ (-6 -4235)))) (-1805 (($ $) 78)) (-3816 (($ $) 68)) (-1782 (($ $) 79)) (-3793 (($ $) 66)) (-1757 (($ $) 76)) (-3767 (($ $) 64)) (-3663 (((-355) $) 104) (((-203) $) 101) (((-823 (-355)) $) NIL) (((-499) $) 45)) (-1458 (((-794) $) 42) (($ (-523)) 60) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-523)) 60) (($ (-383 (-523))) NIL)) (-1621 (((-710)) NIL)) (-1886 (($ $) NIL)) (-1329 (((-852)) 32) (((-852) (-852)) NIL (|has| $ (-6 -4235)))) (-3007 (((-852)) 25)) (-1839 (($ $) 83)) (-3847 (($ $) 71) (($ $ $) 109)) (-1704 (((-108) $ $) NIL)) (-1818 (($ $) 81)) (-3828 (($ $) 69)) (-1865 (($ $) 86)) (-1719 (($ $) 74)) (-2914 (($ $) 84)) (-1731 (($ $) 72)) (-1852 (($ $) 85)) (-3859 (($ $) 73)) (-1830 (($ $) 82)) (-3838 (($ $) 70)) (-2619 (($ $) 117)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 36 T CONST)) (-2767 (($) 37 T CONST)) (-3790 (((-1070) $) 19) (((-1070) $ (-108)) 21) (((-1173) (-761) $) 22) (((-1173) (-761) $ (-108)) 23)) (-2033 (($ $) 96)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-3599 (($ $ $) 98)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 54)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 46)) (-4098 (($ $ $) 87) (($ $ (-523)) 55)) (-4087 (($ $) 47) (($ $ $) 49)) (-4075 (($ $ $) 48)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 58) (($ $ (-383 (-523))) 128) (($ $ $) 59)) (* (($ (-852) $) 31) (($ (-710) $) NIL) (($ (-523) $) 51) (($ $ $) 50) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) -(((-203) (-13 (-380) (-211) (-767) (-1108) (-564 (-499)) (-10 -8 (-15 -4098 ($ $ (-523))) (-15 ** ($ $ $)) (-15 -2094 ($)) (-15 -2783 ((-523) $)) (-15 -4121 ($ $)) (-15 -1574 ($ $)) (-15 -3847 ($ $ $)) (-15 -2033 ($ $)) (-15 -3599 ($ $ $)) (-15 -4027 ((-1070) (-1070))) (-15 -3193 ((-383 (-523)) $ (-710))) (-15 -3193 ((-383 (-523)) $ (-710) (-710)))))) (T -203)) -((** (*1 *1 *1 *1) (-5 *1 (-203))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-203)))) (-2094 (*1 *1) (-5 *1 (-203))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-203)))) (-4121 (*1 *1 *1) (-5 *1 (-203))) (-1574 (*1 *1 *1) (-5 *1 (-203))) (-3847 (*1 *1 *1 *1) (-5 *1 (-203))) (-2033 (*1 *1 *1) (-5 *1 (-203))) (-3599 (*1 *1 *1 *1) (-5 *1 (-203))) (-4027 (*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-203)))) (-3193 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-203)))) (-3193 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-203))))) -(-13 (-380) (-211) (-767) (-1108) (-564 (-499)) (-10 -8 (-15 -4098 ($ $ (-523))) (-15 ** ($ $ $)) (-15 -2094 ($)) (-15 -2783 ((-523) $)) (-15 -4121 ($ $)) (-15 -1574 ($ $)) (-15 -3847 ($ $ $)) (-15 -2033 ($ $)) (-15 -3599 ($ $ $)) (-15 -4027 ((-1070) (-1070))) (-15 -3193 ((-383 (-523)) $ (-710))) (-15 -3193 ((-383 (-523)) $ (-710) (-710))))) -((-2789 (((-155 (-203)) (-710) (-155 (-203))) 11) (((-203) (-710) (-203)) 12)) (-2889 (((-155 (-203)) (-155 (-203))) 13) (((-203) (-203)) 14)) (-2775 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 19) (((-203) (-203) (-203)) 22)) (-2710 (((-155 (-203)) (-155 (-203))) 25) (((-203) (-203)) 24)) (-2322 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 43) (((-203) (-203) (-203)) 35)) (-4102 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 48) (((-203) (-203) (-203)) 45)) (-3254 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 15) (((-203) (-203) (-203)) 16)) (-1325 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 17) (((-203) (-203) (-203)) 18)) (-3728 (((-155 (-203)) (-155 (-203))) 60) (((-203) (-203)) 59)) (-2320 (((-203) (-203)) 54) (((-155 (-203)) (-155 (-203))) 58)) (-2033 (((-155 (-203)) (-155 (-203))) 7) (((-203) (-203)) 9)) (-3599 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 30) (((-203) (-203) (-203)) 26))) -(((-204) (-10 -7 (-15 -2033 ((-203) (-203))) (-15 -2033 ((-155 (-203)) (-155 (-203)))) (-15 -3599 ((-203) (-203) (-203))) (-15 -3599 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2889 ((-203) (-203))) (-15 -2889 ((-155 (-203)) (-155 (-203)))) (-15 -2710 ((-203) (-203))) (-15 -2710 ((-155 (-203)) (-155 (-203)))) (-15 -2789 ((-203) (-710) (-203))) (-15 -2789 ((-155 (-203)) (-710) (-155 (-203)))) (-15 -3254 ((-203) (-203) (-203))) (-15 -3254 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2322 ((-203) (-203) (-203))) (-15 -2322 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -1325 ((-203) (-203) (-203))) (-15 -1325 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -4102 ((-203) (-203) (-203))) (-15 -4102 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2320 ((-155 (-203)) (-155 (-203)))) (-15 -2320 ((-203) (-203))) (-15 -3728 ((-203) (-203))) (-15 -3728 ((-155 (-203)) (-155 (-203)))) (-15 -2775 ((-203) (-203) (-203))) (-15 -2775 ((-155 (-203)) (-155 (-203)) (-155 (-203)))))) (T -204)) -((-2775 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2775 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-3728 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-3728 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-4102 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-4102 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-1325 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-1325 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2322 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2322 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-3254 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-3254 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2789 (*1 *2 *3 *2) (-12 (-5 *2 (-155 (-203))) (-5 *3 (-710)) (-5 *1 (-204)))) (-2789 (*1 *2 *3 *2) (-12 (-5 *2 (-203)) (-5 *3 (-710)) (-5 *1 (-204)))) (-2710 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2710 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2889 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2889 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-3599 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-3599 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2033 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2033 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204))))) -(-10 -7 (-15 -2033 ((-203) (-203))) (-15 -2033 ((-155 (-203)) (-155 (-203)))) (-15 -3599 ((-203) (-203) (-203))) (-15 -3599 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2889 ((-203) (-203))) (-15 -2889 ((-155 (-203)) (-155 (-203)))) (-15 -2710 ((-203) (-203))) (-15 -2710 ((-155 (-203)) (-155 (-203)))) (-15 -2789 ((-203) (-710) (-203))) (-15 -2789 ((-155 (-203)) (-710) (-155 (-203)))) (-15 -3254 ((-203) (-203) (-203))) (-15 -3254 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2322 ((-203) (-203) (-203))) (-15 -2322 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -1325 ((-203) (-203) (-203))) (-15 -1325 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -4102 ((-203) (-203) (-203))) (-15 -4102 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2320 ((-155 (-203)) (-155 (-203)))) (-15 -2320 ((-203) (-203))) (-15 -3728 ((-203) (-203))) (-15 -3728 ((-155 (-203)) (-155 (-203)))) (-15 -2775 ((-203) (-203) (-203))) (-15 -2775 ((-155 (-203)) (-155 (-203)) (-155 (-203))))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2821 (($ (-710) (-710)) NIL)) (-1911 (($ $ $) NIL)) (-4190 (($ (-1168 |#1|)) NIL) (($ $) NIL)) (-3706 (($ |#1| |#1| |#1|) 32)) (-2606 (((-108) $) NIL)) (-2637 (($ $ (-523) (-523)) NIL)) (-3276 (($ $ (-523) (-523)) NIL)) (-2934 (($ $ (-523) (-523) (-523) (-523)) NIL)) (-3858 (($ $) NIL)) (-2651 (((-108) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1494 (($ $ (-523) (-523) $) NIL)) (-1641 ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523)) $) NIL)) (-3787 (($ $ (-523) (-1168 |#1|)) NIL)) (-3617 (($ $ (-523) (-1168 |#1|)) NIL)) (-3495 (($ |#1| |#1| |#1|) 31)) (-1421 (($ (-710) |#1|) NIL)) (-2518 (($) NIL T CONST)) (-2445 (($ $) NIL (|has| |#1| (-284)))) (-2031 (((-1168 |#1|) $ (-523)) NIL)) (-3248 (($ |#1|) 30)) (-2078 (($ |#1|) 29)) (-3099 (($ |#1|) 28)) (-1319 (((-710) $) NIL (|has| |#1| (-515)))) (-2863 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2795 ((|#1| $ (-523) (-523)) NIL)) (-1666 (((-589 |#1|) $) NIL)) (-1867 (((-710) $) NIL (|has| |#1| (-515)))) (-3498 (((-589 (-1168 |#1|)) $) NIL (|has| |#1| (-515)))) (-2803 (((-710) $) NIL)) (-3052 (($ (-710) (-710) |#1|) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-1925 ((|#1| $) NIL (|has| |#1| (-6 (-4246 "*"))))) (-3871 (((-523) $) NIL)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3338 (((-523) $) NIL)) (-2347 (((-523) $) NIL)) (-3068 (($ (-589 (-589 |#1|))) 10)) (-2852 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2289 (((-589 (-589 |#1|)) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-339)))) (-1439 (($) 11)) (-3945 (($ $ $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523))) NIL)) (-3739 (($ (-589 |#1|)) NIL) (($ (-589 $)) NIL)) (-3117 (((-108) $) NIL)) (-2310 ((|#1| $) NIL (|has| |#1| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1595 (((-1168 |#1|) $ (-523)) NIL)) (-1458 (($ (-1168 |#1|)) NIL) (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2175 (((-108) $) NIL)) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-523) $) NIL) (((-1168 |#1|) $ (-1168 |#1|)) 14) (((-1168 |#1|) (-1168 |#1|) $) NIL) (((-874 |#1|) $ (-874 |#1|)) 20)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-205 |#1|) (-13 (-627 |#1| (-1168 |#1|) (-1168 |#1|)) (-10 -8 (-15 * ((-874 |#1|) $ (-874 |#1|))) (-15 -1439 ($)) (-15 -3099 ($ |#1|)) (-15 -2078 ($ |#1|)) (-15 -3248 ($ |#1|)) (-15 -3495 ($ |#1| |#1| |#1|)) (-15 -3706 ($ |#1| |#1| |#1|)))) (-13 (-339) (-1108))) (T -205)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108))) (-5 *1 (-205 *3)))) (-1439 (*1 *1) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) (-3099 (*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) (-2078 (*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) (-3248 (*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) (-3495 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) (-3706 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108)))))) -(-13 (-627 |#1| (-1168 |#1|) (-1168 |#1|)) (-10 -8 (-15 * ((-874 |#1|) $ (-874 |#1|))) (-15 -1439 ($)) (-15 -3099 ($ |#1|)) (-15 -2078 ($ |#1|)) (-15 -3248 ($ |#1|)) (-15 -3495 ($ |#1| |#1| |#1|)) (-15 -3706 ($ |#1| |#1| |#1|)))) -((-3387 (($ (-1 (-108) |#2|) $) 16)) (-2249 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 24)) (-3433 (($) NIL) (($ (-589 |#2|)) 11)) (-3983 (((-108) $ $) 22))) -(((-206 |#1| |#2|) (-10 -8 (-15 -3387 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2249 (|#1| |#2| |#1|)) (-15 -3433 (|#1| (-589 |#2|))) (-15 -3433 (|#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-207 |#2|) (-1016)) (T -206)) -NIL -(-10 -8 (-15 -3387 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2249 (|#1| |#2| |#1|)) (-15 -3433 (|#1| (-589 |#2|))) (-15 -3433 (|#1|)) (-15 -3983 ((-108) |#1| |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-3387 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-1773 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3433 (($) 49) (($ (-589 |#1|)) 48)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 50)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-1680 (((-108) $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-4048 (((-1174) $) 36) (((-1174) $ (-852) (-852)) 38)) (-1937 (($ $ (-918)) 19) (((-223 (-1070)) $ (-1087)) 15)) (-1239 (((-1174) $) 34)) (-1691 (((-794) $) 31) (($ (-589 |#1|)) 8)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $ $) 27)) (-4045 (($ $ $) 22))) +(((-193 |#1|) (-13 (-1016) (-10 -8 (-15 -1937 ($ $ (-918))) (-15 -1937 ((-223 (-1070)) $ (-1087))) (-15 -4045 ($ $ $)) (-15 -4060 ($ $ $)) (-15 -1691 ($ (-589 |#1|))) (-15 -1239 ((-1174) $)) (-15 -4048 ((-1174) $)) (-15 -4048 ((-1174) $ (-852) (-852))))) (-13 (-786) (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 ((-1174) $)) (-15 -4048 ((-1174) $))))) (T -193)) +((-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-193 *3)) (-4 *3 (-13 (-786) (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 ((-1174) $)) (-15 -4048 ((-1174) $))))))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-223 (-1070))) (-5 *1 (-193 *4)) (-4 *4 (-13 (-786) (-10 -8 (-15 -1937 ((-1070) $ *3)) (-15 -1239 ((-1174) $)) (-15 -4048 ((-1174) $))))))) (-4045 (*1 *1 *1 *1) (-12 (-5 *1 (-193 *2)) (-4 *2 (-13 (-786) (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 ((-1174) $)) (-15 -4048 ((-1174) $))))))) (-4060 (*1 *1 *1 *1) (-12 (-5 *1 (-193 *2)) (-4 *2 (-13 (-786) (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 ((-1174) $)) (-15 -4048 ((-1174) $))))))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-13 (-786) (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 ((-1174) $)) (-15 -4048 ((-1174) $))))) (-5 *1 (-193 *3)))) (-1239 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-193 *3)) (-4 *3 (-13 (-786) (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 (*2 $)) (-15 -4048 (*2 $))))))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-193 *3)) (-4 *3 (-13 (-786) (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 (*2 $)) (-15 -4048 (*2 $))))))) (-4048 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1174)) (-5 *1 (-193 *4)) (-4 *4 (-13 (-786) (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 (*2 $)) (-15 -4048 (*2 $)))))))) +(-13 (-1016) (-10 -8 (-15 -1937 ($ $ (-918))) (-15 -1937 ((-223 (-1070)) $ (-1087))) (-15 -4045 ($ $ $)) (-15 -4060 ($ $ $)) (-15 -1691 ($ (-589 |#1|))) (-15 -1239 ((-1174) $)) (-15 -4048 ((-1174) $)) (-15 -4048 ((-1174) $ (-852) (-852))))) +((-2664 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-194 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2664 (|#2| |#4| (-1 |#2| |#2|)))) (-339) (-1145 |#1|) (-1145 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -194)) +((-2664 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-339)) (-4 *6 (-1145 (-383 *2))) (-4 *2 (-1145 *5)) (-5 *1 (-194 *5 *2 *6 *3)) (-4 *3 (-318 *5 *2 *6))))) +(-10 -7 (-15 -2664 (|#2| |#4| (-1 |#2| |#2|)))) +((-2342 ((|#2| |#2| (-710) |#2|) 41)) (-3457 ((|#2| |#2| (-710) |#2|) 37)) (-3100 (((-589 |#2|) (-589 (-2 (|:| |deg| (-710)) (|:| -3620 |#2|)))) 57)) (-3036 (((-589 (-2 (|:| |deg| (-710)) (|:| -3620 |#2|))) |#2|) 52)) (-1776 (((-108) |#2|) 49)) (-1982 (((-394 |#2|) |#2|) 76)) (-2424 (((-394 |#2|) |#2|) 75)) (-4186 ((|#2| |#2| (-710) |#2|) 35)) (-3565 (((-2 (|:| |cont| |#1|) (|:| -3491 (-589 (-2 (|:| |irr| |#2|) (|:| -1787 (-523)))))) |#2| (-108)) 68))) +(((-195 |#1| |#2|) (-10 -7 (-15 -2424 ((-394 |#2|) |#2|)) (-15 -1982 ((-394 |#2|) |#2|)) (-15 -3565 ((-2 (|:| |cont| |#1|) (|:| -3491 (-589 (-2 (|:| |irr| |#2|) (|:| -1787 (-523)))))) |#2| (-108))) (-15 -3036 ((-589 (-2 (|:| |deg| (-710)) (|:| -3620 |#2|))) |#2|)) (-15 -3100 ((-589 |#2|) (-589 (-2 (|:| |deg| (-710)) (|:| -3620 |#2|))))) (-15 -4186 (|#2| |#2| (-710) |#2|)) (-15 -3457 (|#2| |#2| (-710) |#2|)) (-15 -2342 (|#2| |#2| (-710) |#2|)) (-15 -1776 ((-108) |#2|))) (-325) (-1145 |#1|)) (T -195)) +((-1776 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-195 *4 *3)) (-4 *3 (-1145 *4)))) (-2342 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) (-4 *2 (-1145 *4)))) (-3457 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) (-4 *2 (-1145 *4)))) (-4186 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) (-4 *2 (-1145 *4)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| |deg| (-710)) (|:| -3620 *5)))) (-4 *5 (-1145 *4)) (-4 *4 (-325)) (-5 *2 (-589 *5)) (-5 *1 (-195 *4 *5)))) (-3036 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-589 (-2 (|:| |deg| (-710)) (|:| -3620 *3)))) (-5 *1 (-195 *4 *3)) (-4 *3 (-1145 *4)))) (-3565 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-325)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3491 (-589 (-2 (|:| |irr| *3) (|:| -1787 (-523))))))) (-5 *1 (-195 *5 *3)) (-4 *3 (-1145 *5)))) (-1982 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-195 *4 *3)) (-4 *3 (-1145 *4)))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-195 *4 *3)) (-4 *3 (-1145 *4))))) +(-10 -7 (-15 -2424 ((-394 |#2|) |#2|)) (-15 -1982 ((-394 |#2|) |#2|)) (-15 -3565 ((-2 (|:| |cont| |#1|) (|:| -3491 (-589 (-2 (|:| |irr| |#2|) (|:| -1787 (-523)))))) |#2| (-108))) (-15 -3036 ((-589 (-2 (|:| |deg| (-710)) (|:| -3620 |#2|))) |#2|)) (-15 -3100 ((-589 |#2|) (-589 (-2 (|:| |deg| (-710)) (|:| -3620 |#2|))))) (-15 -4186 (|#2| |#2| (-710) |#2|)) (-15 -3457 (|#2| |#2| (-710) |#2|)) (-15 -2342 (|#2| |#2| (-710) |#2|)) (-15 -1776 ((-108) |#2|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2046 (((-523) $) NIL (|has| (-523) (-284)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL (|has| (-523) (-759)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-523) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-523) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-523) (-964 (-523))))) (-3508 (((-523) $) NIL) (((-1087) $) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-523) (-964 (-523)))) (((-523) $) NIL (|has| (-523) (-964 (-523))))) (-4059 (($ $ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| (-523) (-508)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-3712 (((-108) $) NIL (|has| (-523) (-759)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-523) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-523) (-817 (-355))))) (-2769 (((-108) $) NIL)) (-1296 (($ $) NIL)) (-3316 (((-523) $) NIL)) (-2738 (((-3 $ "failed") $) NIL (|has| (-523) (-1063)))) (-2057 (((-108) $) NIL (|has| (-523) (-759)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3239 (($ $ $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| (-523) (-786)))) (-1345 (($ (-1 (-523) (-523)) $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| (-523) (-1063)) CONST)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4110 (($ $) NIL (|has| (-523) (-284))) (((-383 (-523)) $) NIL)) (-2733 (((-523) $) NIL (|has| (-523) (-508)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2812 (($ $ (-589 (-523)) (-589 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-523) (-523)) NIL (|has| (-523) (-286 (-523)))) (($ $ (-271 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-271 (-523)))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-1087)) (-589 (-523))) NIL (|has| (-523) (-484 (-1087) (-523)))) (($ $ (-1087) (-523)) NIL (|has| (-523) (-484 (-1087) (-523))))) (-3413 (((-710) $) NIL)) (-1937 (($ $ (-523)) NIL (|has| (-523) (-263 (-523) (-523))))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3984 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-2793 (($ $) NIL)) (-3329 (((-523) $) NIL)) (-2337 (($ (-383 (-523))) 8)) (-1400 (((-823 (-523)) $) NIL (|has| (-523) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-523) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-523) (-564 (-499)))) (((-355) $) NIL (|has| (-523) (-949))) (((-203) $) NIL (|has| (-523) (-949)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-523) (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 7) (($ (-523)) NIL) (($ (-1087)) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL) (((-932 10) $) 9)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| (-523) (-840))) (|has| (-523) (-134))))) (-3272 (((-710)) NIL)) (-3809 (((-523) $) NIL (|has| (-523) (-508)))) (-2801 (((-108) $ $) NIL)) (-2695 (($ $) NIL (|has| (-523) (-759)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-4006 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3980 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3966 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4074 (($ $ $) NIL) (($ (-523) (-523)) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-523) $) NIL) (($ $ (-523)) NIL))) +(((-196) (-13 (-921 (-523)) (-10 -8 (-15 -1691 ((-383 (-523)) $)) (-15 -1691 ((-932 10) $)) (-15 -4110 ((-383 (-523)) $)) (-15 -2337 ($ (-383 (-523))))))) (T -196)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-932 10)) (-5 *1 (-196)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196))))) +(-13 (-921 (-523)) (-10 -8 (-15 -1691 ((-383 (-523)) $)) (-15 -1691 ((-932 10) $)) (-15 -4110 ((-383 (-523)) $)) (-15 -2337 ($ (-383 (-523)))))) +((-2814 (((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)) (-1070)) 27) (((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|))) 23)) (-1537 (((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1087) (-779 |#2|) (-779 |#2|) (-108)) 16))) +(((-197 |#1| |#2|) (-10 -7 (-15 -2814 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)))) (-15 -2814 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)) (-1070))) (-15 -1537 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1087) (-779 |#2|) (-779 |#2|) (-108)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1109) (-889) (-29 |#1|))) (T -197)) +((-1537 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1087)) (-5 *6 (-108)) (-4 *7 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-4 *3 (-13 (-1109) (-889) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *7 *3)) (-5 *5 (-779 *3)))) (-2814 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1009 (-779 *3))) (-5 *5 (-1070)) (-4 *3 (-13 (-1109) (-889) (-29 *6))) (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *6 *3)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-779 *3))) (-4 *3 (-13 (-1109) (-889) (-29 *5))) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *5 *3))))) +(-10 -7 (-15 -2814 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)))) (-15 -2814 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)) (-1070))) (-15 -1537 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1087) (-779 |#2|) (-779 |#2|) (-108)))) +((-2814 (((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))) (-1070)) 44) (((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|))))) 41) (((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))) (-1070)) 45) (((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|)))) 17))) +(((-198 |#1|) (-10 -7 (-15 -2814 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))))) (-15 -2814 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))) (-1070))) (-15 -2814 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))))) (-15 -2814 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))) (-1070)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (T -198)) +((-2814 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1009 (-779 (-383 (-883 *6))))) (-5 *5 (-1070)) (-5 *3 (-383 (-883 *6))) (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 (-292 *6))) (|:| |f2| (-589 (-779 (-292 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-198 *6)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-779 (-383 (-883 *5))))) (-5 *3 (-383 (-883 *5))) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 (-292 *5))) (|:| |f2| (-589 (-779 (-292 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-198 *5)))) (-2814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-383 (-883 *6))) (-5 *4 (-1009 (-779 (-292 *6)))) (-5 *5 (-1070)) (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 (-292 *6))) (|:| |f2| (-589 (-779 (-292 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-198 *6)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1009 (-779 (-292 *5)))) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 (-292 *5))) (|:| |f2| (-589 (-779 (-292 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-198 *5))))) +(-10 -7 (-15 -2814 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))))) (-15 -2814 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))) (-1070))) (-15 -2814 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))))) (-15 -2814 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))) (-1070)))) +((-2116 (((-2 (|:| -1385 (-1083 |#1|)) (|:| |deg| (-852))) (-1083 |#1|)) 20)) (-1870 (((-589 (-292 |#2|)) (-292 |#2|) (-852)) 42))) +(((-199 |#1| |#2|) (-10 -7 (-15 -2116 ((-2 (|:| -1385 (-1083 |#1|)) (|:| |deg| (-852))) (-1083 |#1|))) (-15 -1870 ((-589 (-292 |#2|)) (-292 |#2|) (-852)))) (-973) (-13 (-515) (-786))) (T -199)) +((-1870 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-4 *6 (-13 (-515) (-786))) (-5 *2 (-589 (-292 *6))) (-5 *1 (-199 *5 *6)) (-5 *3 (-292 *6)) (-4 *5 (-973)))) (-2116 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-2 (|:| -1385 (-1083 *4)) (|:| |deg| (-852)))) (-5 *1 (-199 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-13 (-515) (-786)))))) +(-10 -7 (-15 -2116 ((-2 (|:| -1385 (-1083 |#1|)) (|:| |deg| (-852))) (-1083 |#1|))) (-15 -1870 ((-589 (-292 |#2|)) (-292 |#2|) (-852)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2573 ((|#1| $) NIL)) (-3781 ((|#1| $) 25)) (-1620 (((-108) $ (-710)) NIL)) (-4189 (($) NIL T CONST)) (-4084 (($ $) NIL)) (-1426 (($ $) 31)) (-2581 ((|#1| |#1| $) NIL)) (-2197 ((|#1| $) NIL)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2616 (((-710) $) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1293 ((|#1| $) NIL)) (-1287 ((|#1| |#1| $) 28)) (-3168 ((|#1| |#1| $) 30)) (-3108 (($ |#1| $) NIL)) (-1933 (((-710) $) 27)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1212 ((|#1| $) NIL)) (-2478 ((|#1| $) 26)) (-2349 ((|#1| $) 24)) (-3048 ((|#1| $) NIL)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-3542 ((|#1| |#1| $) NIL)) (-1777 (((-108) $) 9)) (-3320 (($) NIL)) (-3629 ((|#1| $) NIL)) (-2486 (($) NIL) (($ (-589 |#1|)) 16)) (-1576 (((-710) $) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-3750 ((|#1| $) 13)) (-2417 (($ (-589 |#1|)) NIL)) (-3579 ((|#1| $) NIL)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-200 |#1|) (-13 (-231 |#1|) (-10 -8 (-15 -2486 ($ (-589 |#1|))))) (-1016)) (T -200)) +((-2486 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-200 *3))))) +(-13 (-231 |#1|) (-10 -8 (-15 -2486 ($ (-589 |#1|))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2729 (($ (-292 |#1|)) 23)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-2977 (((-108) $) NIL)) (-1220 (((-3 (-292 |#1|) "failed") $) NIL)) (-3508 (((-292 |#1|) $) NIL)) (-1457 (($ $) 31)) (-1444 (((-3 $ "failed") $) NIL)) (-2769 (((-108) $) NIL)) (-1345 (($ (-1 (-292 |#1|) (-292 |#1|)) $) NIL)) (-1437 (((-292 |#1|) $) NIL)) (-1449 (($ $) 30)) (-2032 (((-1070) $) NIL)) (-1756 (((-108) $) NIL)) (-3951 (((-1034) $) NIL)) (-1621 (($ (-710)) NIL)) (-3162 (($ $) 32)) (-2640 (((-523) $) NIL)) (-1691 (((-794) $) 57) (($ (-523)) NIL) (($ (-292 |#1|)) NIL)) (-2084 (((-292 |#1|) $ $) NIL)) (-3272 (((-710)) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 25 T CONST)) (-1891 (($) 50 T CONST)) (-3941 (((-108) $ $) 28)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 19)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 24) (($ (-292 |#1|) $) 18))) +(((-201 |#1| |#2|) (-13 (-567 (-292 |#1|)) (-964 (-292 |#1|)) (-10 -8 (-15 -1437 ((-292 |#1|) $)) (-15 -1449 ($ $)) (-15 -1457 ($ $)) (-15 -2084 ((-292 |#1|) $ $)) (-15 -1621 ($ (-710))) (-15 -1756 ((-108) $)) (-15 -2977 ((-108) $)) (-15 -2640 ((-523) $)) (-15 -1345 ($ (-1 (-292 |#1|) (-292 |#1|)) $)) (-15 -2729 ($ (-292 |#1|))) (-15 -3162 ($ $)))) (-13 (-973) (-786)) (-589 (-1087))) (T -201)) +((-1437 (*1 *2 *1) (-12 (-5 *2 (-292 *3)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-1449 (*1 *1 *1) (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) (-14 *3 (-589 (-1087))))) (-1457 (*1 *1 *1) (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) (-14 *3 (-589 (-1087))))) (-2084 (*1 *2 *1 *1) (-12 (-5 *2 (-292 *3)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-292 *3) (-292 *3))) (-4 *3 (-13 (-973) (-786))) (-5 *1 (-201 *3 *4)) (-14 *4 (-589 (-1087))))) (-2729 (*1 *1 *2) (-12 (-5 *2 (-292 *3)) (-4 *3 (-13 (-973) (-786))) (-5 *1 (-201 *3 *4)) (-14 *4 (-589 (-1087))))) (-3162 (*1 *1 *1) (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) (-14 *3 (-589 (-1087)))))) +(-13 (-567 (-292 |#1|)) (-964 (-292 |#1|)) (-10 -8 (-15 -1437 ((-292 |#1|) $)) (-15 -1449 ($ $)) (-15 -1457 ($ $)) (-15 -2084 ((-292 |#1|) $ $)) (-15 -1621 ($ (-710))) (-15 -1756 ((-108) $)) (-15 -2977 ((-108) $)) (-15 -2640 ((-523) $)) (-15 -1345 ($ (-1 (-292 |#1|) (-292 |#1|)) $)) (-15 -2729 ($ (-292 |#1|))) (-15 -3162 ($ $)))) +((-3740 (((-108) (-1070)) 22)) (-2749 (((-3 (-779 |#2|) "failed") (-562 |#2|) |#2| (-779 |#2|) (-779 |#2|) (-108)) 32)) (-3608 (((-3 (-108) "failed") (-1083 |#2|) (-779 |#2|) (-779 |#2|) (-108)) 73) (((-3 (-108) "failed") (-883 |#1|) (-1087) (-779 |#2|) (-779 |#2|) (-108)) 74))) +(((-202 |#1| |#2|) (-10 -7 (-15 -3740 ((-108) (-1070))) (-15 -2749 ((-3 (-779 |#2|) "failed") (-562 |#2|) |#2| (-779 |#2|) (-779 |#2|) (-108))) (-15 -3608 ((-3 (-108) "failed") (-883 |#1|) (-1087) (-779 |#2|) (-779 |#2|) (-108))) (-15 -3608 ((-3 (-108) "failed") (-1083 |#2|) (-779 |#2|) (-779 |#2|) (-108)))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-1109) (-29 |#1|))) (T -202)) +((-3608 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1083 *6)) (-5 *4 (-779 *6)) (-4 *6 (-13 (-1109) (-29 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-202 *5 *6)))) (-3608 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-883 *6)) (-5 *4 (-1087)) (-5 *5 (-779 *7)) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-4 *7 (-13 (-1109) (-29 *6))) (-5 *1 (-202 *6 *7)))) (-2749 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-779 *4)) (-5 *3 (-562 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1109) (-29 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-202 *6 *4)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-108)) (-5 *1 (-202 *4 *5)) (-4 *5 (-13 (-1109) (-29 *4)))))) +(-10 -7 (-15 -3740 ((-108) (-1070))) (-15 -2749 ((-3 (-779 |#2|) "failed") (-562 |#2|) |#2| (-779 |#2|) (-779 |#2|) (-108))) (-15 -3608 ((-3 (-108) "failed") (-883 |#1|) (-1087) (-779 |#2|) (-779 |#2|) (-108))) (-15 -3608 ((-3 (-108) "failed") (-1083 |#2|) (-779 |#2|) (-779 |#2|) (-108)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 89)) (-2046 (((-523) $) 99)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3276 (($ $) NIL)) (-1462 (($ $) 77)) (-1285 (($ $) 65)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2437 (($ $) 56)) (-2787 (((-108) $ $) NIL)) (-1441 (($ $) 75)) (-1260 (($ $) 63)) (-3482 (((-523) $) 116)) (-1481 (($ $) 80)) (-1309 (($ $) 67)) (-4189 (($) NIL T CONST)) (-3900 (($ $) NIL)) (-1220 (((-3 (-523) "failed") $) 115) (((-3 (-383 (-523)) "failed") $) 112)) (-3508 (((-523) $) 113) (((-383 (-523)) $) 110)) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) 92)) (-3240 (((-383 (-523)) $ (-710)) 108) (((-383 (-523)) $ (-710) (-710)) 107)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-2285 (((-852)) 29) (((-852) (-852)) NIL (|has| $ (-6 -4239)))) (-3712 (((-108) $) NIL)) (-3352 (($) 39)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL)) (-3437 (((-523) $) 35)) (-2769 (((-108) $) NIL)) (-1973 (($ $ (-523)) NIL)) (-1863 (($ $) NIL)) (-2057 (((-108) $) 88)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3239 (($ $ $) 53) (($) 34 (-12 (-4179 (|has| $ (-6 -4231))) (-4179 (|has| $ (-6 -4239)))))) (-3158 (($ $ $) 52) (($) 33 (-12 (-4179 (|has| $ (-6 -4231))) (-4179 (|has| $ (-6 -4239)))))) (-1512 (((-523) $) 27)) (-2128 (($ $) 30)) (-1602 (($ $) 57)) (-2313 (($ $) 62)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-3297 (((-852) (-523)) NIL (|has| $ (-6 -4239)))) (-3951 (((-1034) $) NIL) (((-523) $) 90)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4110 (($ $) NIL)) (-2733 (($ $) NIL)) (-4210 (($ (-523) (-523)) NIL) (($ (-523) (-523) (-852)) 100)) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1475 (((-523) $) 28)) (-2287 (($) 38)) (-2922 (($ $) 61)) (-3413 (((-710) $) NIL)) (-3651 (((-1070) (-1070)) 8)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3229 (((-852)) NIL) (((-852) (-852)) NIL (|has| $ (-6 -4239)))) (-3984 (($ $ (-710)) NIL) (($ $) 93)) (-3892 (((-852) (-523)) NIL (|has| $ (-6 -4239)))) (-2306 (($ $) 78)) (-1322 (($ $) 68)) (-1471 (($ $) 79)) (-1295 (($ $) 66)) (-1453 (($ $) 76)) (-1274 (($ $) 64)) (-1400 (((-355) $) 104) (((-203) $) 101) (((-823 (-355)) $) NIL) (((-499) $) 45)) (-1691 (((-794) $) 42) (($ (-523)) 60) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-523)) 60) (($ (-383 (-523))) NIL)) (-3272 (((-710)) NIL)) (-3809 (($ $) NIL)) (-3401 (((-852)) 32) (((-852) (-852)) NIL (|has| $ (-6 -4239)))) (-1416 (((-852)) 25)) (-2341 (($ $) 83)) (-1401 (($ $) 71) (($ $ $) 109)) (-2801 (((-108) $ $) NIL)) (-2318 (($ $) 81)) (-1334 (($ $) 69)) (-2366 (($ $) 86)) (-1421 (($ $) 74)) (-2102 (($ $) 84)) (-1431 (($ $) 72)) (-2353 (($ $) 85)) (-1413 (($ $) 73)) (-2330 (($ $) 82)) (-1346 (($ $) 70)) (-2695 (($ $) 117)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 36 T CONST)) (-1891 (($) 37 T CONST)) (-2111 (((-1070) $) 19) (((-1070) $ (-108)) 21) (((-1174) (-761) $) 22) (((-1174) (-761) $ (-108)) 23)) (-2846 (($ $) 96)) (-2909 (($ $ (-710)) NIL) (($ $) NIL)) (-4056 (($ $ $) 98)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 54)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 46)) (-4074 (($ $ $) 87) (($ $ (-523)) 55)) (-4060 (($ $) 47) (($ $ $) 49)) (-4045 (($ $ $) 48)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 58) (($ $ (-383 (-523))) 128) (($ $ $) 59)) (* (($ (-852) $) 31) (($ (-710) $) NIL) (($ (-523) $) 51) (($ $ $) 50) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-203) (-13 (-380) (-211) (-767) (-1109) (-564 (-499)) (-10 -8 (-15 -4074 ($ $ (-523))) (-15 ** ($ $ $)) (-15 -2287 ($)) (-15 -3951 ((-523) $)) (-15 -2128 ($ $)) (-15 -1602 ($ $)) (-15 -1401 ($ $ $)) (-15 -2846 ($ $)) (-15 -4056 ($ $ $)) (-15 -3651 ((-1070) (-1070))) (-15 -3240 ((-383 (-523)) $ (-710))) (-15 -3240 ((-383 (-523)) $ (-710) (-710)))))) (T -203)) +((** (*1 *1 *1 *1) (-5 *1 (-203))) (-4074 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-203)))) (-2287 (*1 *1) (-5 *1 (-203))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-203)))) (-2128 (*1 *1 *1) (-5 *1 (-203))) (-1602 (*1 *1 *1) (-5 *1 (-203))) (-1401 (*1 *1 *1 *1) (-5 *1 (-203))) (-2846 (*1 *1 *1) (-5 *1 (-203))) (-4056 (*1 *1 *1 *1) (-5 *1 (-203))) (-3651 (*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-203)))) (-3240 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-203)))) (-3240 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-203))))) +(-13 (-380) (-211) (-767) (-1109) (-564 (-499)) (-10 -8 (-15 -4074 ($ $ (-523))) (-15 ** ($ $ $)) (-15 -2287 ($)) (-15 -3951 ((-523) $)) (-15 -2128 ($ $)) (-15 -1602 ($ $)) (-15 -1401 ($ $ $)) (-15 -2846 ($ $)) (-15 -4056 ($ $ $)) (-15 -3651 ((-1070) (-1070))) (-15 -3240 ((-383 (-523)) $ (-710))) (-15 -3240 ((-383 (-523)) $ (-710) (-710))))) +((-1960 (((-155 (-203)) (-710) (-155 (-203))) 11) (((-203) (-710) (-203)) 12)) (-3355 (((-155 (-203)) (-155 (-203))) 13) (((-203) (-203)) 14)) (-1842 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 19) (((-203) (-203) (-203)) 22)) (-2370 (((-155 (-203)) (-155 (-203))) 25) (((-203) (-203)) 24)) (-2842 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 43) (((-203) (-203) (-203)) 35)) (-3083 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 48) (((-203) (-203) (-203)) 45)) (-3789 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 15) (((-203) (-203) (-203)) 16)) (-3357 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 17) (((-203) (-203) (-203)) 18)) (-2771 (((-155 (-203)) (-155 (-203))) 60) (((-203) (-203)) 59)) (-2823 (((-203) (-203)) 54) (((-155 (-203)) (-155 (-203))) 58)) (-2846 (((-155 (-203)) (-155 (-203))) 7) (((-203) (-203)) 9)) (-4056 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 30) (((-203) (-203) (-203)) 26))) +(((-204) (-10 -7 (-15 -2846 ((-203) (-203))) (-15 -2846 ((-155 (-203)) (-155 (-203)))) (-15 -4056 ((-203) (-203) (-203))) (-15 -4056 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -3355 ((-203) (-203))) (-15 -3355 ((-155 (-203)) (-155 (-203)))) (-15 -2370 ((-203) (-203))) (-15 -2370 ((-155 (-203)) (-155 (-203)))) (-15 -1960 ((-203) (-710) (-203))) (-15 -1960 ((-155 (-203)) (-710) (-155 (-203)))) (-15 -3789 ((-203) (-203) (-203))) (-15 -3789 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2842 ((-203) (-203) (-203))) (-15 -2842 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -3357 ((-203) (-203) (-203))) (-15 -3357 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -3083 ((-203) (-203) (-203))) (-15 -3083 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2823 ((-155 (-203)) (-155 (-203)))) (-15 -2823 ((-203) (-203))) (-15 -2771 ((-203) (-203))) (-15 -2771 ((-155 (-203)) (-155 (-203)))) (-15 -1842 ((-203) (-203) (-203))) (-15 -1842 ((-155 (-203)) (-155 (-203)) (-155 (-203)))))) (T -204)) +((-1842 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-1842 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2823 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2823 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-3083 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-3083 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-3357 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-3357 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2842 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2842 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-3789 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-3789 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-1960 (*1 *2 *3 *2) (-12 (-5 *2 (-155 (-203))) (-5 *3 (-710)) (-5 *1 (-204)))) (-1960 (*1 *2 *3 *2) (-12 (-5 *2 (-203)) (-5 *3 (-710)) (-5 *1 (-204)))) (-2370 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2370 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-3355 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-3355 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-4056 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-4056 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2846 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2846 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204))))) +(-10 -7 (-15 -2846 ((-203) (-203))) (-15 -2846 ((-155 (-203)) (-155 (-203)))) (-15 -4056 ((-203) (-203) (-203))) (-15 -4056 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -3355 ((-203) (-203))) (-15 -3355 ((-155 (-203)) (-155 (-203)))) (-15 -2370 ((-203) (-203))) (-15 -2370 ((-155 (-203)) (-155 (-203)))) (-15 -1960 ((-203) (-710) (-203))) (-15 -1960 ((-155 (-203)) (-710) (-155 (-203)))) (-15 -3789 ((-203) (-203) (-203))) (-15 -3789 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2842 ((-203) (-203) (-203))) (-15 -2842 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -3357 ((-203) (-203) (-203))) (-15 -3357 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -3083 ((-203) (-203) (-203))) (-15 -3083 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2823 ((-155 (-203)) (-155 (-203)))) (-15 -2823 ((-203) (-203))) (-15 -2771 ((-203) (-203))) (-15 -2771 ((-155 (-203)) (-155 (-203)))) (-15 -1842 ((-203) (-203) (-203))) (-15 -1842 ((-155 (-203)) (-155 (-203)) (-155 (-203))))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1709 (($ (-710) (-710)) NIL)) (-4081 (($ $ $) NIL)) (-4005 (($ (-1169 |#1|)) NIL) (($ $) NIL)) (-1371 (($ |#1| |#1| |#1|) 32)) (-3735 (((-108) $) NIL)) (-2859 (($ $ (-523) (-523)) NIL)) (-3909 (($ $ (-523) (-523)) NIL)) (-2641 (($ $ (-523) (-523) (-523) (-523)) NIL)) (-1553 (($ $) NIL)) (-2989 (((-108) $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1522 (($ $ (-523) (-523) $) NIL)) (-1849 ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523)) $) NIL)) (-2080 (($ $ (-523) (-1169 |#1|)) NIL)) (-1232 (($ $ (-523) (-1169 |#1|)) NIL)) (-2418 (($ |#1| |#1| |#1|) 31)) (-1979 (($ (-710) |#1|) NIL)) (-4189 (($) NIL T CONST)) (-1678 (($ $) NIL (|has| |#1| (-284)))) (-2827 (((-1169 |#1|) $ (-523)) NIL)) (-3736 (($ |#1|) 30)) (-2121 (($ |#1|) 29)) (-1800 (($ |#1|) 28)) (-3569 (((-710) $) NIL (|has| |#1| (-515)))) (-2053 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2000 ((|#1| $ (-523) (-523)) NIL)) (-1871 (((-589 |#1|) $) NIL)) (-1835 (((-710) $) NIL (|has| |#1| (-515)))) (-2454 (((-589 (-1169 |#1|)) $) NIL (|has| |#1| (-515)))) (-1357 (((-710) $) NIL)) (-3733 (($ (-710) (-710) |#1|) NIL)) (-1370 (((-710) $) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-4224 ((|#1| $) NIL (|has| |#1| (-6 (-4250 "*"))))) (-1665 (((-523) $) NIL)) (-2082 (((-523) $) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3231 (((-523) $) NIL)) (-3060 (((-523) $) NIL)) (-3648 (($ (-589 (-589 |#1|))) 10)) (-2043 (($ (-1 |#1| |#1|) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3692 (((-589 (-589 |#1|)) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3713 (((-3 $ "failed") $) NIL (|has| |#1| (-339)))) (-2140 (($) 11)) (-4207 (($ $ $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4141 (($ $ |#1|) NIL)) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523))) NIL)) (-2870 (($ (-589 |#1|)) NIL) (($ (-589 $)) NIL)) (-1956 (((-108) $) NIL)) (-2736 ((|#1| $) NIL (|has| |#1| (-6 (-4250 "*"))))) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1249 (((-1169 |#1|) $ (-523)) NIL)) (-1691 (($ (-1169 |#1|)) NIL) (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3749 (((-108) $) NIL)) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $ $) NIL) (($ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-523) $) NIL) (((-1169 |#1|) $ (-1169 |#1|)) 14) (((-1169 |#1|) (-1169 |#1|) $) NIL) (((-874 |#1|) $ (-874 |#1|)) 20)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-205 |#1|) (-13 (-627 |#1| (-1169 |#1|) (-1169 |#1|)) (-10 -8 (-15 * ((-874 |#1|) $ (-874 |#1|))) (-15 -2140 ($)) (-15 -1800 ($ |#1|)) (-15 -2121 ($ |#1|)) (-15 -3736 ($ |#1|)) (-15 -2418 ($ |#1| |#1| |#1|)) (-15 -1371 ($ |#1| |#1| |#1|)))) (-13 (-339) (-1109))) (T -205)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109))) (-5 *1 (-205 *3)))) (-2140 (*1 *1) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1109))))) (-1800 (*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1109))))) (-2121 (*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1109))))) (-3736 (*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1109))))) (-2418 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1109))))) (-1371 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1109)))))) +(-13 (-627 |#1| (-1169 |#1|) (-1169 |#1|)) (-10 -8 (-15 * ((-874 |#1|) $ (-874 |#1|))) (-15 -2140 ($)) (-15 -1800 ($ |#1|)) (-15 -2121 ($ |#1|)) (-15 -3736 ($ |#1|)) (-15 -2418 ($ |#1| |#1| |#1|)) (-15 -1371 ($ |#1| |#1| |#1|)))) +((-3703 (($ (-1 (-108) |#2|) $) 16)) (-3286 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 25)) (-2963 (($) NIL) (($ (-589 |#2|)) 11)) (-3941 (((-108) $ $) 23))) +(((-206 |#1| |#2|) (-10 -8 (-15 -3703 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3286 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3286 (|#1| |#2| |#1|)) (-15 -2963 (|#1| (-589 |#2|))) (-15 -2963 (|#1|)) (-15 -3941 ((-108) |#1| |#1|))) (-207 |#2|) (-1016)) (T -206)) +NIL +(-10 -8 (-15 -3703 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3286 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3286 (|#1| |#2| |#1|)) (-15 -2963 (|#1| (-589 |#2|))) (-15 -2963 (|#1|)) (-15 -3941 ((-108) |#1| |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) 8)) (-3703 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-2462 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3286 (($ |#1| $) 47 (|has| $ (-6 -4248))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4248)))) (-2514 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4248)))) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1293 ((|#1| $) 39)) (-3108 (($ |#1| $) 40)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3048 ((|#1| $) 41)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-2963 (($) 49) (($ (-589 |#1|)) 48)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1400 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 50)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2417 (($ (-589 |#1|)) 42)) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-207 |#1|) (-129) (-1016)) (T -207)) NIL (-13 (-213 |t#1|)) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-3523 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) 11) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) 19) (($ $ (-710)) NIL) (($ $) 16)) (-2862 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-710)) 14) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL))) -(((-208 |#1| |#2|) (-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -2862 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2862 (|#1| |#1| (-1087))) (-15 -2862 (|#1| |#1| (-589 (-1087)))) (-15 -2862 (|#1| |#1| (-1087) (-710))) (-15 -2862 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2862 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -2862 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|)))) (-209 |#2|) (-973)) (T -208)) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-3984 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) 11) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) 19) (($ $ (-710)) NIL) (($ $) 16)) (-2909 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-710)) 14) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL))) +(((-208 |#1| |#2|) (-10 -8 (-15 -3984 (|#1| |#1|)) (-15 -2909 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -2909 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2909 (|#1| |#1| (-1087))) (-15 -2909 (|#1| |#1| (-589 (-1087)))) (-15 -2909 (|#1| |#1| (-1087) (-710))) (-15 -2909 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2909 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -2909 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|)))) (-209 |#2|) (-973)) (T -208)) NIL -(-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -2862 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2862 (|#1| |#1| (-1087))) (-15 -2862 (|#1| |#1| (-589 (-1087)))) (-15 -2862 (|#1| |#1| (-1087) (-710))) (-15 -2862 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2862 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -2862 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3523 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-710)) 51) (($ $ (-589 (-1087)) (-589 (-710))) 44 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 43 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 42 (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 41 (|has| |#1| (-831 (-1087)))) (($ $ (-710)) 39 (|has| |#1| (-211))) (($ $) 37 (|has| |#1| (-211)))) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-710)) 49) (($ $ (-589 (-1087)) (-589 (-710))) 48 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 47 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 46 (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 45 (|has| |#1| (-831 (-1087)))) (($ $ (-710)) 40 (|has| |#1| (-211))) (($ $) 38 (|has| |#1| (-211)))) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(-10 -8 (-15 -3984 (|#1| |#1|)) (-15 -2909 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -2909 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2909 (|#1| |#1| (-1087))) (-15 -2909 (|#1| |#1| (-589 (-1087)))) (-15 -2909 (|#1| |#1| (-1087) (-710))) (-15 -2909 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2909 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -2909 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3984 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-710)) 51) (($ $ (-589 (-1087)) (-589 (-710))) 44 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 43 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 42 (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 41 (|has| |#1| (-831 (-1087)))) (($ $ (-710)) 39 (|has| |#1| (-211))) (($ $) 37 (|has| |#1| (-211)))) (-1691 (((-794) $) 11) (($ (-523)) 28)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-710)) 49) (($ $ (-589 (-1087)) (-589 (-710))) 48 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 47 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 46 (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 45 (|has| |#1| (-831 (-1087)))) (($ $ (-710)) 40 (|has| |#1| (-211))) (($ $) 38 (|has| |#1| (-211)))) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-209 |#1|) (-129) (-973)) (T -209)) -((-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-209 *3)) (-4 *3 (-973)))) (-3523 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *1 (-209 *4)) (-4 *4 (-973)))) (-2862 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-209 *3)) (-4 *3 (-973)))) (-2862 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *1 (-209 *4)) (-4 *4 (-973))))) -(-13 (-973) (-10 -8 (-15 -3523 ($ $ (-1 |t#1| |t#1|))) (-15 -3523 ($ $ (-1 |t#1| |t#1|) (-710))) (-15 -2862 ($ $ (-1 |t#1| |t#1|))) (-15 -2862 ($ $ (-1 |t#1| |t#1|) (-710))) (IF (|has| |t#1| (-211)) (-6 (-211)) |%noBranch|) (IF (|has| |t#1| (-831 (-1087))) (-6 (-831 (-1087))) |%noBranch|))) +((-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-209 *3)) (-4 *3 (-973)))) (-3984 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *1 (-209 *4)) (-4 *4 (-973)))) (-2909 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-209 *3)) (-4 *3 (-973)))) (-2909 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *1 (-209 *4)) (-4 *4 (-973))))) +(-13 (-973) (-10 -8 (-15 -3984 ($ $ (-1 |t#1| |t#1|))) (-15 -3984 ($ $ (-1 |t#1| |t#1|) (-710))) (-15 -2909 ($ $ (-1 |t#1| |t#1|))) (-15 -2909 ($ $ (-1 |t#1| |t#1|) (-710))) (IF (|has| |t#1| (-211)) (-6 (-211)) |%noBranch|) (IF (|has| |t#1| (-831 (-1087))) (-6 (-831 (-1087))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-211) |has| |#1| (-211)) ((-591 $) . T) ((-666) . T) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3523 (($ $) NIL) (($ $ (-710)) 10)) (-2862 (($ $) 8) (($ $ (-710)) 12))) -(((-210 |#1|) (-10 -8 (-15 -2862 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-710))) (-15 -2862 (|#1| |#1|)) (-15 -3523 (|#1| |#1|))) (-211)) (T -210)) +((-3984 (($ $) NIL) (($ $ (-710)) 10)) (-2909 (($ $) 8) (($ $ (-710)) 12))) +(((-210 |#1|) (-10 -8 (-15 -2909 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1| (-710))) (-15 -2909 (|#1| |#1|)) (-15 -3984 (|#1| |#1|))) (-211)) (T -210)) NIL -(-10 -8 (-15 -2862 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-710))) (-15 -2862 (|#1| |#1|)) (-15 -3523 (|#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3523 (($ $) 38) (($ $ (-710)) 36)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $) 37) (($ $ (-710)) 35)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(-10 -8 (-15 -2909 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1| (-710))) (-15 -2909 (|#1| |#1|)) (-15 -3984 (|#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3984 (($ $) 38) (($ $ (-710)) 36)) (-1691 (((-794) $) 11) (($ (-523)) 28)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $) 37) (($ $ (-710)) 35)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-211) (-129)) (T -211)) -((-3523 (*1 *1 *1) (-4 *1 (-211))) (-2862 (*1 *1 *1) (-4 *1 (-211))) (-3523 (*1 *1 *1 *2) (-12 (-4 *1 (-211)) (-5 *2 (-710)))) (-2862 (*1 *1 *1 *2) (-12 (-4 *1 (-211)) (-5 *2 (-710))))) -(-13 (-973) (-10 -8 (-15 -3523 ($ $)) (-15 -2862 ($ $)) (-15 -3523 ($ $ (-710))) (-15 -2862 ($ $ (-710))))) +((-3984 (*1 *1 *1) (-4 *1 (-211))) (-2909 (*1 *1 *1) (-4 *1 (-211))) (-3984 (*1 *1 *1 *2) (-12 (-4 *1 (-211)) (-5 *2 (-710)))) (-2909 (*1 *1 *1 *2) (-12 (-4 *1 (-211)) (-5 *2 (-710))))) +(-13 (-973) (-10 -8 (-15 -3984 ($ $)) (-15 -2909 ($ $)) (-15 -3984 ($ $ (-710))) (-15 -2909 ($ $ (-710))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3433 (($) 12) (($ (-589 |#2|)) NIL)) (-1664 (($ $) 14)) (-1472 (($ (-589 |#2|)) 10)) (-1458 (((-794) $) 21))) -(((-212 |#1| |#2|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3433 (|#1| (-589 |#2|))) (-15 -3433 (|#1|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -1664 (|#1| |#1|))) (-213 |#2|) (-1016)) (T -212)) +((-2963 (($) 12) (($ (-589 |#2|)) NIL)) (-1874 (($ $) 14)) (-1704 (($ (-589 |#2|)) 10)) (-1691 (((-794) $) 21))) +(((-212 |#1| |#2|) (-10 -8 (-15 -1691 ((-794) |#1|)) (-15 -2963 (|#1| (-589 |#2|))) (-15 -2963 (|#1|)) (-15 -1704 (|#1| (-589 |#2|))) (-15 -1874 (|#1| |#1|))) (-213 |#2|) (-1016)) (T -212)) NIL -(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3433 (|#1| (-589 |#2|))) (-15 -3433 (|#1|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -1664 (|#1| |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-3387 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-1773 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3433 (($) 49) (($ (-589 |#1|)) 48)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 50)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(-10 -8 (-15 -1691 ((-794) |#1|)) (-15 -2963 (|#1| (-589 |#2|))) (-15 -2963 (|#1|)) (-15 -1704 (|#1| (-589 |#2|))) (-15 -1874 (|#1| |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) 8)) (-3703 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-2462 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3286 (($ |#1| $) 47 (|has| $ (-6 -4248))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4248)))) (-2514 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4248)))) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1293 ((|#1| $) 39)) (-3108 (($ |#1| $) 40)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3048 ((|#1| $) 41)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-2963 (($) 49) (($ (-589 |#1|)) 48)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1400 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 50)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2417 (($ (-589 |#1|)) 42)) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-213 |#1|) (-129) (-1016)) (T -213)) -((-3433 (*1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1016)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-213 *3)))) (-2249 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-213 *2)) (-4 *2 (-1016)))) (-2249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-213 *3)) (-4 *3 (-1016)))) (-3387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-213 *3)) (-4 *3 (-1016))))) -(-13 (-102 |t#1|) (-140 |t#1|) (-10 -8 (-15 -3433 ($)) (-15 -3433 ($ (-589 |t#1|))) (IF (|has| $ (-6 -4244)) (PROGN (-15 -2249 ($ |t#1| $)) (-15 -2249 ($ (-1 (-108) |t#1|) $)) (-15 -3387 ($ (-1 (-108) |t#1|) $))) |%noBranch|))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-2179 (((-2 (|:| |varOrder| (-589 (-1087))) (|:| |inhom| (-3 (-589 (-1168 (-710))) "failed")) (|:| |hom| (-589 (-1168 (-710))))) (-271 (-883 (-523)))) 25))) -(((-214) (-10 -7 (-15 -2179 ((-2 (|:| |varOrder| (-589 (-1087))) (|:| |inhom| (-3 (-589 (-1168 (-710))) "failed")) (|:| |hom| (-589 (-1168 (-710))))) (-271 (-883 (-523))))))) (T -214)) -((-2179 (*1 *2 *3) (-12 (-5 *3 (-271 (-883 (-523)))) (-5 *2 (-2 (|:| |varOrder| (-589 (-1087))) (|:| |inhom| (-3 (-589 (-1168 (-710))) "failed")) (|:| |hom| (-589 (-1168 (-710)))))) (-5 *1 (-214))))) -(-10 -7 (-15 -2179 ((-2 (|:| |varOrder| (-589 (-1087))) (|:| |inhom| (-3 (-589 (-1168 (-710))) "failed")) (|:| |hom| (-589 (-1168 (-710))))) (-271 (-883 (-523)))))) -((-1703 (((-710)) 51)) (-2381 (((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 $) (-1168 $)) 49) (((-629 |#3|) (-629 $)) 41) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-3203 (((-126)) 57)) (-3523 (($ $ (-1 |#3| |#3|) (-710)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-1458 (((-1168 |#3|) $) NIL) (($ |#3|) NIL) (((-794) $) NIL) (($ (-523)) 12) (($ (-383 (-523))) NIL)) (-1621 (((-710)) 15)) (-4098 (($ $ |#3|) 54))) -(((-215 |#1| |#2| |#3|) (-10 -8 (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|)) (-15 -1621 ((-710))) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -1458 (|#1| |#3|)) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|) (-710))) (-15 -2381 ((-629 |#3|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 |#1|) (-1168 |#1|))) (-15 -1703 ((-710))) (-15 -4098 (|#1| |#1| |#3|)) (-15 -3203 ((-126))) (-15 -1458 ((-1168 |#3|) |#1|))) (-216 |#2| |#3|) (-710) (-1122)) (T -215)) -((-3203 (*1 *2) (-12 (-14 *4 (-710)) (-4 *5 (-1122)) (-5 *2 (-126)) (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) (-1703 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1122)) (-5 *2 (-710)) (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) (-1621 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1122)) (-5 *2 (-710)) (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5))))) -(-10 -8 (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|)) (-15 -1621 ((-710))) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -1458 (|#1| |#3|)) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|) (-710))) (-15 -2381 ((-629 |#3|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 |#1|) (-1168 |#1|))) (-15 -1703 ((-710))) (-15 -4098 (|#1| |#1| |#3|)) (-15 -3203 ((-126))) (-15 -1458 ((-1168 |#3|) |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#2| (-1016)))) (-2295 (((-108) $) 72 (|has| |#2| (-124)))) (-1890 (($ (-852)) 127 (|has| |#2| (-973)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-3596 (($ $ $) 123 (|has| |#2| (-732)))) (-3212 (((-3 $ "failed") $ $) 74 (|has| |#2| (-124)))) (-3079 (((-108) $ (-710)) 8)) (-1703 (((-710)) 109 (|has| |#2| (-344)))) (-3671 (((-523) $) 121 (|has| |#2| (-784)))) (-1641 ((|#2| $ (-523) |#2|) 52 (|has| $ (-6 -4245)))) (-2518 (($) 7 T CONST)) (-3517 (((-3 (-523) "failed") $) 67 (-4099 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-3 (-383 (-523)) "failed") $) 64 (-4099 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1016)))) (-3474 (((-523) $) 68 (-4099 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-383 (-523)) $) 65 (-4099 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((|#2| $) 60 (|has| |#2| (-1016)))) (-2381 (((-629 (-523)) (-629 $)) 108 (-4099 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 107 (-4099 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) 106 (|has| |#2| (-973))) (((-629 |#2|) (-629 $)) 105 (|has| |#2| (-973)))) (-2121 (((-3 $ "failed") $) 99 (|has| |#2| (-973)))) (-4032 (($) 112 (|has| |#2| (-344)))) (-2863 ((|#2| $ (-523) |#2|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#2| $ (-523)) 51)) (-2604 (((-108) $) 119 (|has| |#2| (-784)))) (-1666 (((-589 |#2|) $) 30 (|has| $ (-6 -4244)))) (-2023 (((-108) $) 102 (|has| |#2| (-973)))) (-4114 (((-108) $) 120 (|has| |#2| (-784)))) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 118 (-3262 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-2136 (((-589 |#2|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 117 (-3262 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-2852 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2|) $) 35)) (-2072 (((-852) $) 111 (|has| |#2| (-344)))) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#2| (-1016)))) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-3878 (($ (-852)) 110 (|has| |#2| (-344)))) (-2783 (((-1034) $) 21 (|has| |#2| (-1016)))) (-1738 ((|#2| $) 42 (|has| (-523) (-786)))) (-4203 (($ $ |#2|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) 26 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 25 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 23 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#2| $ (-523) |#2|) 50) ((|#2| $ (-523)) 49)) (-3269 ((|#2| $ $) 126 (|has| |#2| (-973)))) (-1868 (($ (-1168 |#2|)) 128)) (-3203 (((-126)) 125 (|has| |#2| (-339)))) (-3523 (($ $) 92 (-4099 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) 90 (-4099 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) 88 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) 87 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) 86 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) 85 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) 78 (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-973)))) (-2792 (((-710) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4244))) (((-710) |#2| $) 28 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-1168 |#2|) $) 129) (($ (-523)) 66 (-3262 (-4099 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (|has| |#2| (-973)))) (($ (-383 (-523))) 63 (-4099 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (($ |#2|) 62 (|has| |#2| (-1016))) (((-794) $) 18 (|has| |#2| (-563 (-794))))) (-1621 (((-710)) 104 (|has| |#2| (-973)))) (-2096 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4244)))) (-2619 (($ $) 122 (|has| |#2| (-784)))) (-2364 (($ $ (-710)) 100 (|has| |#2| (-973))) (($ $ (-852)) 96 (|has| |#2| (-973)))) (-2756 (($) 71 (|has| |#2| (-124)) CONST)) (-2767 (($) 103 (|has| |#2| (-973)) CONST)) (-2862 (($ $) 91 (-4099 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) 89 (-4099 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) 84 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) 83 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) 82 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) 81 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) 80 (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-973)))) (-4043 (((-108) $ $) 115 (-3262 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-4019 (((-108) $ $) 114 (-3262 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-3983 (((-108) $ $) 20 (|has| |#2| (-1016)))) (-4030 (((-108) $ $) 116 (-3262 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-4007 (((-108) $ $) 113 (-3262 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-4098 (($ $ |#2|) 124 (|has| |#2| (-339)))) (-4087 (($ $ $) 94 (|has| |#2| (-973))) (($ $) 93 (|has| |#2| (-973)))) (-4075 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-710)) 101 (|has| |#2| (-973))) (($ $ (-852)) 97 (|has| |#2| (-973)))) (* (($ $ $) 98 (|has| |#2| (-973))) (($ (-523) $) 95 (|has| |#2| (-973))) (($ $ |#2|) 76 (|has| |#2| (-666))) (($ |#2| $) 75 (|has| |#2| (-666))) (($ (-710) $) 73 (|has| |#2| (-124))) (($ (-852) $) 70 (|has| |#2| (-25)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-216 |#1| |#2|) (-129) (-710) (-1122)) (T -216)) -((-1868 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1122)) (-4 *1 (-216 *3 *4)))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-216 *3 *4)) (-4 *4 (-973)) (-4 *4 (-1122)))) (-3269 (*1 *2 *1 *1) (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1122)) (-4 *2 (-973)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1122)) (-4 *2 (-666))))) -(-13 (-556 (-523) |t#2|) (-563 (-1168 |t#2|)) (-10 -8 (-6 -4244) (-15 -1868 ($ (-1168 |t#2|))) (IF (|has| |t#2| (-1016)) (-6 (-387 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-973)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-209 |t#2|)) (-6 (-353 |t#2|)) (-15 -1890 ($ (-852))) (-15 -3269 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-124)) (-6 (-124)) |%noBranch|) (IF (|has| |t#2| (-666)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#2| (-158)) (PROGN (-6 (-37 |t#2|)) (-6 (-158))) |%noBranch|) (IF (|has| |t#2| (-6 -4241)) (-6 -4241) |%noBranch|) (IF (|has| |t#2| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#2| (-732)) (-6 (-732)) |%noBranch|) (IF (|has| |t#2| (-339)) (-6 (-1175 |t#2|)) |%noBranch|))) -(((-21) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-339)) (|has| |#2| (-158))) ((-23) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124))) ((-25) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-158)) ((-97) -3262 (|has| |#2| (-1016)) (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-344)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3262 (|has| |#2| (-973)) (|has| |#2| (-339)) (|has| |#2| (-158))) ((-107 $ $) |has| |#2| (-158)) ((-124) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124))) ((-563 (-794)) -3262 (|has| |#2| (-1016)) (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-344)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-563 (-794))) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-563 (-1168 |#2|)) . T) ((-158) |has| |#2| (-158)) ((-209 |#2|) |has| |#2| (-973)) ((-211) -12 (|has| |#2| (-211)) (|has| |#2| (-973))) ((-263 #0=(-523) |#2|) . T) ((-265 #0# |#2|) . T) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-344) |has| |#2| (-344)) ((-353 |#2|) |has| |#2| (-973)) ((-387 |#2|) |has| |#2| (-1016)) ((-462 |#2|) . T) ((-556 #0# |#2|) . T) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-591 |#2|) -3262 (|has| |#2| (-973)) (|has| |#2| (-339)) (|has| |#2| (-158))) ((-591 $) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-585 (-523)) -12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973))) ((-585 |#2|) |has| |#2| (-973)) ((-657 |#2|) -3262 (|has| |#2| (-339)) (|has| |#2| (-158))) ((-666) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-730) |has| |#2| (-784)) ((-731) -3262 (|has| |#2| (-784)) (|has| |#2| (-732))) ((-732) |has| |#2| (-732)) ((-733) -3262 (|has| |#2| (-784)) (|has| |#2| (-732))) ((-734) -3262 (|has| |#2| (-784)) (|has| |#2| (-732))) ((-784) |has| |#2| (-784)) ((-786) -3262 (|has| |#2| (-784)) (|has| |#2| (-732))) ((-831 (-1087)) -12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973))) ((-964 (-383 (-523))) -12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016))) ((-964 (-523)) -12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) ((-964 |#2|) |has| |#2| (-1016)) ((-979 |#2|) -3262 (|has| |#2| (-973)) (|has| |#2| (-339)) (|has| |#2| (-158))) ((-979 $) |has| |#2| (-158)) ((-973) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-980) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-1028) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-1016) -3262 (|has| |#2| (-1016)) (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-344)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-1122) . T) ((-1175 |#2|) |has| |#2| (-339))) -((-2837 (((-218 |#1| |#3|) (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|) 21)) (-2437 ((|#3| (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|) 23)) (-3612 (((-218 |#1| |#3|) (-1 |#3| |#2|) (-218 |#1| |#2|)) 18))) -(((-217 |#1| |#2| |#3|) (-10 -7 (-15 -2837 ((-218 |#1| |#3|) (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|)) (-15 -2437 (|#3| (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|)) (-15 -3612 ((-218 |#1| |#3|) (-1 |#3| |#2|) (-218 |#1| |#2|)))) (-710) (-1122) (-1122)) (T -217)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-218 *5 *6)) (-14 *5 (-710)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-218 *5 *7)) (-5 *1 (-217 *5 *6 *7)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-218 *5 *6)) (-14 *5 (-710)) (-4 *6 (-1122)) (-4 *2 (-1122)) (-5 *1 (-217 *5 *6 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-218 *6 *7)) (-14 *6 (-710)) (-4 *7 (-1122)) (-4 *5 (-1122)) (-5 *2 (-218 *6 *5)) (-5 *1 (-217 *6 *7 *5))))) -(-10 -7 (-15 -2837 ((-218 |#1| |#3|) (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|)) (-15 -2437 (|#3| (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|)) (-15 -3612 ((-218 |#1| |#3|) (-1 |#3| |#2|) (-218 |#1| |#2|)))) -((-3924 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-2295 (((-108) $) NIL (|has| |#2| (-124)))) (-1890 (($ (-852)) 56 (|has| |#2| (-973)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-3596 (($ $ $) 60 (|has| |#2| (-732)))) (-3212 (((-3 $ "failed") $ $) 48 (|has| |#2| (-124)))) (-3079 (((-108) $ (-710)) 17)) (-1703 (((-710)) NIL (|has| |#2| (-344)))) (-3671 (((-523) $) NIL (|has| |#2| (-784)))) (-1641 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1016)))) (-3474 (((-523) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((|#2| $) 27 (|has| |#2| (-1016)))) (-2381 (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL (|has| |#2| (-973))) (((-629 |#2|) (-629 $)) NIL (|has| |#2| (-973)))) (-2121 (((-3 $ "failed") $) 53 (|has| |#2| (-973)))) (-4032 (($) NIL (|has| |#2| (-344)))) (-2863 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ (-523)) 51)) (-2604 (((-108) $) NIL (|has| |#2| (-784)))) (-1666 (((-589 |#2|) $) 15 (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL (|has| |#2| (-973)))) (-4114 (((-108) $) NIL (|has| |#2| (-784)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 20 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2136 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 (((-523) $) 50 (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2852 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2|) $) 41)) (-2072 (((-852) $) NIL (|has| |#2| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#2| (-1016)))) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-3878 (($ (-852)) NIL (|has| |#2| (-344)))) (-2783 (((-1034) $) NIL (|has| |#2| (-1016)))) (-1738 ((|#2| $) NIL (|has| (-523) (-786)))) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-523)) 21)) (-3269 ((|#2| $ $) NIL (|has| |#2| (-973)))) (-1868 (($ (-1168 |#2|)) 18)) (-3203 (((-126)) NIL (|has| |#2| (-339)))) (-3523 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-2792 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1168 |#2|) $) 10) (($ (-523)) NIL (-3262 (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (|has| |#2| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (($ |#2|) 13 (|has| |#2| (-1016))) (((-794) $) NIL (|has| |#2| (-563 (-794))))) (-1621 (((-710)) NIL (|has| |#2| (-973)))) (-2096 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2619 (($ $) NIL (|has| |#2| (-784)))) (-2364 (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (-2756 (($) 35 (|has| |#2| (-124)) CONST)) (-2767 (($) 38 (|has| |#2| (-973)) CONST)) (-2862 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-4043 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3983 (((-108) $ $) 26 (|has| |#2| (-1016)))) (-4030 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4007 (((-108) $ $) 58 (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $ $) NIL (|has| |#2| (-973))) (($ $) NIL (|has| |#2| (-973)))) (-4075 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (* (($ $ $) 49 (|has| |#2| (-973))) (($ (-523) $) NIL (|has| |#2| (-973))) (($ $ |#2|) 42 (|has| |#2| (-666))) (($ |#2| $) 43 (|has| |#2| (-666))) (($ (-710) $) NIL (|has| |#2| (-124))) (($ (-852) $) NIL (|has| |#2| (-25)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-218 |#1| |#2|) (-216 |#1| |#2|) (-710) (-1122)) (T -218)) +((-2963 (*1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1016)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-213 *3)))) (-3286 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4248)) (-4 *1 (-213 *2)) (-4 *2 (-1016)))) (-3286 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4248)) (-4 *1 (-213 *3)) (-4 *3 (-1016)))) (-3703 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4248)) (-4 *1 (-213 *3)) (-4 *3 (-1016))))) +(-13 (-102 |t#1|) (-140 |t#1|) (-10 -8 (-15 -2963 ($)) (-15 -2963 ($ (-589 |t#1|))) (IF (|has| $ (-6 -4248)) (PROGN (-15 -3286 ($ |t#1| $)) (-15 -3286 ($ (-1 (-108) |t#1|) $)) (-15 -3703 ($ (-1 (-108) |t#1|) $))) |%noBranch|))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-3791 (((-2 (|:| |varOrder| (-589 (-1087))) (|:| |inhom| (-3 (-589 (-1169 (-710))) "failed")) (|:| |hom| (-589 (-1169 (-710))))) (-271 (-883 (-523)))) 25))) +(((-214) (-10 -7 (-15 -3791 ((-2 (|:| |varOrder| (-589 (-1087))) (|:| |inhom| (-3 (-589 (-1169 (-710))) "failed")) (|:| |hom| (-589 (-1169 (-710))))) (-271 (-883 (-523))))))) (T -214)) +((-3791 (*1 *2 *3) (-12 (-5 *3 (-271 (-883 (-523)))) (-5 *2 (-2 (|:| |varOrder| (-589 (-1087))) (|:| |inhom| (-3 (-589 (-1169 (-710))) "failed")) (|:| |hom| (-589 (-1169 (-710)))))) (-5 *1 (-214))))) +(-10 -7 (-15 -3791 ((-2 (|:| |varOrder| (-589 (-1087))) (|:| |inhom| (-3 (-589 (-1169 (-710))) "failed")) (|:| |hom| (-589 (-1169 (-710))))) (-271 (-883 (-523)))))) +((-2395 (((-710)) 51)) (-2243 (((-2 (|:| -2600 (-629 |#3|)) (|:| |vec| (-1169 |#3|))) (-629 $) (-1169 $)) 49) (((-629 |#3|) (-629 $)) 41) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-3314 (((-126)) 57)) (-3984 (($ $ (-1 |#3| |#3|) (-710)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-1691 (((-1169 |#3|) $) NIL) (($ |#3|) NIL) (((-794) $) NIL) (($ (-523)) 12) (($ (-383 (-523))) NIL)) (-3272 (((-710)) 15)) (-4074 (($ $ |#3|) 54))) +(((-215 |#1| |#2| |#3|) (-10 -8 (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|)) (-15 -3272 ((-710))) (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2243 ((-629 (-523)) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 |#1|) (-1169 |#1|))) (-15 -1691 (|#1| |#3|)) (-15 -3984 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3984 (|#1| |#1| (-1 |#3| |#3|) (-710))) (-15 -2243 ((-629 |#3|) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 |#3|)) (|:| |vec| (-1169 |#3|))) (-629 |#1|) (-1169 |#1|))) (-15 -2395 ((-710))) (-15 -4074 (|#1| |#1| |#3|)) (-15 -3314 ((-126))) (-15 -1691 ((-1169 |#3|) |#1|))) (-216 |#2| |#3|) (-710) (-1123)) (T -215)) +((-3314 (*1 *2) (-12 (-14 *4 (-710)) (-4 *5 (-1123)) (-5 *2 (-126)) (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) (-2395 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1123)) (-5 *2 (-710)) (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) (-3272 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1123)) (-5 *2 (-710)) (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5))))) +(-10 -8 (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|)) (-15 -3272 ((-710))) (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2243 ((-629 (-523)) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 |#1|) (-1169 |#1|))) (-15 -1691 (|#1| |#3|)) (-15 -3984 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3984 (|#1| |#1| (-1 |#3| |#3|) (-710))) (-15 -2243 ((-629 |#3|) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 |#3|)) (|:| |vec| (-1169 |#3|))) (-629 |#1|) (-1169 |#1|))) (-15 -2395 ((-710))) (-15 -4074 (|#1| |#1| |#3|)) (-15 -3314 ((-126))) (-15 -1691 ((-1169 |#3|) |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#2| (-1016)))) (-2603 (((-108) $) 72 (|has| |#2| (-124)))) (-3845 (($ (-852)) 127 (|has| |#2| (-973)))) (-4191 (((-1174) $ (-523) (-523)) 40 (|has| $ (-6 -4249)))) (-4016 (($ $ $) 123 (|has| |#2| (-732)))) (-3405 (((-3 $ "failed") $ $) 74 (|has| |#2| (-124)))) (-1620 (((-108) $ (-710)) 8)) (-2395 (((-710)) 109 (|has| |#2| (-344)))) (-3482 (((-523) $) 121 (|has| |#2| (-784)))) (-1849 ((|#2| $ (-523) |#2|) 52 (|has| $ (-6 -4249)))) (-4189 (($) 7 T CONST)) (-1220 (((-3 (-523) "failed") $) 67 (-3147 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-3 (-383 (-523)) "failed") $) 64 (-3147 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1016)))) (-3508 (((-523) $) 68 (-3147 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-383 (-523)) $) 65 (-3147 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((|#2| $) 60 (|has| |#2| (-1016)))) (-2243 (((-629 (-523)) (-629 $)) 108 (-3147 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 107 (-3147 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) 106 (|has| |#2| (-973))) (((-629 |#2|) (-629 $)) 105 (|has| |#2| (-973)))) (-1444 (((-3 $ "failed") $) 99 (|has| |#2| (-973)))) (-1631 (($) 112 (|has| |#2| (-344)))) (-2053 ((|#2| $ (-523) |#2|) 53 (|has| $ (-6 -4249)))) (-2000 ((|#2| $ (-523)) 51)) (-3712 (((-108) $) 119 (|has| |#2| (-784)))) (-1871 (((-589 |#2|) $) 30 (|has| $ (-6 -4248)))) (-2769 (((-108) $) 102 (|has| |#2| (-973)))) (-2057 (((-108) $) 120 (|has| |#2| (-784)))) (-3051 (((-108) $ (-710)) 9)) (-2965 (((-523) $) 43 (|has| (-523) (-786)))) (-3239 (($ $ $) 118 (-3172 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-1584 (((-589 |#2|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 44 (|has| (-523) (-786)))) (-3158 (($ $ $) 117 (-3172 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-2043 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#2| |#2|) $) 35)) (-2060 (((-852) $) 111 (|has| |#2| (-344)))) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#2| (-1016)))) (-2536 (((-589 (-523)) $) 46)) (-2254 (((-108) (-523) $) 47)) (-4013 (($ (-852)) 110 (|has| |#2| (-344)))) (-3951 (((-1034) $) 21 (|has| |#2| (-1016)))) (-2428 ((|#2| $) 42 (|has| (-523) (-786)))) (-4141 (($ $ |#2|) 41 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#2|))) 26 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 25 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 23 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3973 (((-589 |#2|) $) 48)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#2| $ (-523) |#2|) 50) ((|#2| $ (-523)) 49)) (-3839 ((|#2| $ $) 126 (|has| |#2| (-973)))) (-2469 (($ (-1169 |#2|)) 128)) (-3314 (((-126)) 125 (|has| |#2| (-339)))) (-3984 (($ $) 92 (-3147 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) 90 (-3147 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) 88 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) 87 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) 86 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) 85 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) 78 (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-973)))) (-3977 (((-710) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4248))) (((-710) |#2| $) 28 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1691 (((-1169 |#2|) $) 129) (($ (-523)) 66 (-3172 (-3147 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (|has| |#2| (-973)))) (($ (-383 (-523))) 63 (-3147 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (($ |#2|) 62 (|has| |#2| (-1016))) (((-794) $) 18 (|has| |#2| (-563 (-794))))) (-3272 (((-710)) 104 (|has| |#2| (-973)))) (-2308 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4248)))) (-2695 (($ $) 122 (|has| |#2| (-784)))) (-2423 (($ $ (-710)) 100 (|has| |#2| (-973))) (($ $ (-852)) 96 (|has| |#2| (-973)))) (-1879 (($) 71 (|has| |#2| (-124)) CONST)) (-1891 (($) 103 (|has| |#2| (-973)) CONST)) (-2909 (($ $) 91 (-3147 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) 89 (-3147 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) 84 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) 83 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) 82 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) 81 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) 80 (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-973)))) (-4006 (((-108) $ $) 115 (-3172 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-3980 (((-108) $ $) 114 (-3172 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-3941 (((-108) $ $) 20 (|has| |#2| (-1016)))) (-3993 (((-108) $ $) 116 (-3172 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-3966 (((-108) $ $) 113 (-3172 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-4074 (($ $ |#2|) 124 (|has| |#2| (-339)))) (-4060 (($ $ $) 94 (|has| |#2| (-973))) (($ $) 93 (|has| |#2| (-973)))) (-4045 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-710)) 101 (|has| |#2| (-973))) (($ $ (-852)) 97 (|has| |#2| (-973)))) (* (($ $ $) 98 (|has| |#2| (-973))) (($ (-523) $) 95 (|has| |#2| (-973))) (($ $ |#2|) 76 (|has| |#2| (-666))) (($ |#2| $) 75 (|has| |#2| (-666))) (($ (-710) $) 73 (|has| |#2| (-124))) (($ (-852) $) 70 (|has| |#2| (-25)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-216 |#1| |#2|) (-129) (-710) (-1123)) (T -216)) +((-2469 (*1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1123)) (-4 *1 (-216 *3 *4)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-216 *3 *4)) (-4 *4 (-973)) (-4 *4 (-1123)))) (-3839 (*1 *2 *1 *1) (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1123)) (-4 *2 (-973)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1123)) (-4 *2 (-666)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1123)) (-4 *2 (-666))))) +(-13 (-556 (-523) |t#2|) (-563 (-1169 |t#2|)) (-10 -8 (-6 -4248) (-15 -2469 ($ (-1169 |t#2|))) (IF (|has| |t#2| (-1016)) (-6 (-387 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-973)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-209 |t#2|)) (-6 (-353 |t#2|)) (-15 -3845 ($ (-852))) (-15 -3839 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-124)) (-6 (-124)) |%noBranch|) (IF (|has| |t#2| (-666)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#2| (-158)) (PROGN (-6 (-37 |t#2|)) (-6 (-158))) |%noBranch|) (IF (|has| |t#2| (-6 -4245)) (-6 -4245) |%noBranch|) (IF (|has| |t#2| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#2| (-732)) (-6 (-732)) |%noBranch|) (IF (|has| |t#2| (-339)) (-6 (-1176 |t#2|)) |%noBranch|))) +(((-21) -3172 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-339)) (|has| |#2| (-158))) ((-23) -3172 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124))) ((-25) -3172 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-158)) ((-97) -3172 (|has| |#2| (-1016)) (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-344)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3172 (|has| |#2| (-973)) (|has| |#2| (-339)) (|has| |#2| (-158))) ((-107 $ $) |has| |#2| (-158)) ((-124) -3172 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124))) ((-563 (-794)) -3172 (|has| |#2| (-1016)) (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-344)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-563 (-794))) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-563 (-1169 |#2|)) . T) ((-158) |has| |#2| (-158)) ((-209 |#2|) |has| |#2| (-973)) ((-211) -12 (|has| |#2| (-211)) (|has| |#2| (-973))) ((-263 #0=(-523) |#2|) . T) ((-265 #0# |#2|) . T) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-344) |has| |#2| (-344)) ((-353 |#2|) |has| |#2| (-973)) ((-387 |#2|) |has| |#2| (-1016)) ((-462 |#2|) . T) ((-556 #0# |#2|) . T) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-591 |#2|) -3172 (|has| |#2| (-973)) (|has| |#2| (-339)) (|has| |#2| (-158))) ((-591 $) -3172 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-585 (-523)) -12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973))) ((-585 |#2|) |has| |#2| (-973)) ((-657 |#2|) -3172 (|has| |#2| (-339)) (|has| |#2| (-158))) ((-666) -3172 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-730) |has| |#2| (-784)) ((-731) -3172 (|has| |#2| (-784)) (|has| |#2| (-732))) ((-732) |has| |#2| (-732)) ((-733) -3172 (|has| |#2| (-784)) (|has| |#2| (-732))) ((-734) -3172 (|has| |#2| (-784)) (|has| |#2| (-732))) ((-784) |has| |#2| (-784)) ((-786) -3172 (|has| |#2| (-784)) (|has| |#2| (-732))) ((-831 (-1087)) -12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973))) ((-964 (-383 (-523))) -12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016))) ((-964 (-523)) -12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) ((-964 |#2|) |has| |#2| (-1016)) ((-979 |#2|) -3172 (|has| |#2| (-973)) (|has| |#2| (-339)) (|has| |#2| (-158))) ((-979 $) |has| |#2| (-158)) ((-973) -3172 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-980) -3172 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-1028) -3172 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-1016) -3172 (|has| |#2| (-1016)) (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-344)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-1123) . T) ((-1176 |#2|) |has| |#2| (-339))) +((-4184 (((-218 |#1| |#3|) (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|) 21)) (-2116 ((|#3| (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|) 23)) (-1345 (((-218 |#1| |#3|) (-1 |#3| |#2|) (-218 |#1| |#2|)) 18))) +(((-217 |#1| |#2| |#3|) (-10 -7 (-15 -4184 ((-218 |#1| |#3|) (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|)) (-15 -2116 (|#3| (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|)) (-15 -1345 ((-218 |#1| |#3|) (-1 |#3| |#2|) (-218 |#1| |#2|)))) (-710) (-1123) (-1123)) (T -217)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-218 *5 *6)) (-14 *5 (-710)) (-4 *6 (-1123)) (-4 *7 (-1123)) (-5 *2 (-218 *5 *7)) (-5 *1 (-217 *5 *6 *7)))) (-2116 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-218 *5 *6)) (-14 *5 (-710)) (-4 *6 (-1123)) (-4 *2 (-1123)) (-5 *1 (-217 *5 *6 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-218 *6 *7)) (-14 *6 (-710)) (-4 *7 (-1123)) (-4 *5 (-1123)) (-5 *2 (-218 *6 *5)) (-5 *1 (-217 *6 *7 *5))))) +(-10 -7 (-15 -4184 ((-218 |#1| |#3|) (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|)) (-15 -2116 (|#3| (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|)) (-15 -1345 ((-218 |#1| |#3|) (-1 |#3| |#2|) (-218 |#1| |#2|)))) +((-1680 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-2603 (((-108) $) NIL (|has| |#2| (-124)))) (-3845 (($ (-852)) 56 (|has| |#2| (-973)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-4016 (($ $ $) 60 (|has| |#2| (-732)))) (-3405 (((-3 $ "failed") $ $) 48 (|has| |#2| (-124)))) (-1620 (((-108) $ (-710)) 17)) (-2395 (((-710)) NIL (|has| |#2| (-344)))) (-3482 (((-523) $) NIL (|has| |#2| (-784)))) (-1849 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1016)))) (-3508 (((-523) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((|#2| $) 27 (|has| |#2| (-1016)))) (-2243 (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL (|has| |#2| (-973))) (((-629 |#2|) (-629 $)) NIL (|has| |#2| (-973)))) (-1444 (((-3 $ "failed") $) 53 (|has| |#2| (-973)))) (-1631 (($) NIL (|has| |#2| (-344)))) (-2053 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#2| $ (-523)) 51)) (-3712 (((-108) $) NIL (|has| |#2| (-784)))) (-1871 (((-589 |#2|) $) 15 (|has| $ (-6 -4248)))) (-2769 (((-108) $) NIL (|has| |#2| (-973)))) (-2057 (((-108) $) NIL (|has| |#2| (-784)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) 20 (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-1584 (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-2567 (((-523) $) 50 (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2043 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#2| |#2|) $) 41)) (-2060 (((-852) $) NIL (|has| |#2| (-344)))) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#2| (-1016)))) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-4013 (($ (-852)) NIL (|has| |#2| (-344)))) (-3951 (((-1034) $) NIL (|has| |#2| (-1016)))) (-2428 ((|#2| $) NIL (|has| (-523) (-786)))) (-4141 (($ $ |#2|) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3973 (((-589 |#2|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-523)) 21)) (-3839 ((|#2| $ $) NIL (|has| |#2| (-973)))) (-2469 (($ (-1169 |#2|)) 18)) (-3314 (((-126)) NIL (|has| |#2| (-339)))) (-3984 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-3977 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-1169 |#2|) $) 10) (($ (-523)) NIL (-3172 (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (|has| |#2| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (($ |#2|) 13 (|has| |#2| (-1016))) (((-794) $) NIL (|has| |#2| (-563 (-794))))) (-3272 (((-710)) NIL (|has| |#2| (-973)))) (-2308 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2695 (($ $) NIL (|has| |#2| (-784)))) (-2423 (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (-1879 (($) 35 (|has| |#2| (-124)) CONST)) (-1891 (($) 38 (|has| |#2| (-973)) CONST)) (-2909 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-4006 (((-108) $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3980 (((-108) $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3941 (((-108) $ $) 26 (|has| |#2| (-1016)))) (-3993 (((-108) $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3966 (((-108) $ $) 58 (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4074 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4060 (($ $ $) NIL (|has| |#2| (-973))) (($ $) NIL (|has| |#2| (-973)))) (-4045 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (* (($ $ $) 49 (|has| |#2| (-973))) (($ (-523) $) NIL (|has| |#2| (-973))) (($ $ |#2|) 42 (|has| |#2| (-666))) (($ |#2| $) 43 (|has| |#2| (-666))) (($ (-710) $) NIL (|has| |#2| (-124))) (($ (-852) $) NIL (|has| |#2| (-25)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-218 |#1| |#2|) (-216 |#1| |#2|) (-710) (-1123)) (T -218)) NIL (-216 |#1| |#2|) -((-4004 (((-523) (-589 (-1070))) 24) (((-523) (-1070)) 19)) (-1672 (((-1173) (-589 (-1070))) 29) (((-1173) (-1070)) 28)) (-3290 (((-1070)) 14)) (-2166 (((-1070) (-523) (-1070)) 16)) (-1288 (((-589 (-1070)) (-589 (-1070)) (-523) (-1070)) 25) (((-1070) (-1070) (-523) (-1070)) 23)) (-1427 (((-589 (-1070)) (-589 (-1070))) 13) (((-589 (-1070)) (-1070)) 11))) -(((-219) (-10 -7 (-15 -1427 ((-589 (-1070)) (-1070))) (-15 -1427 ((-589 (-1070)) (-589 (-1070)))) (-15 -3290 ((-1070))) (-15 -2166 ((-1070) (-523) (-1070))) (-15 -1288 ((-1070) (-1070) (-523) (-1070))) (-15 -1288 ((-589 (-1070)) (-589 (-1070)) (-523) (-1070))) (-15 -1672 ((-1173) (-1070))) (-15 -1672 ((-1173) (-589 (-1070)))) (-15 -4004 ((-523) (-1070))) (-15 -4004 ((-523) (-589 (-1070)))))) (T -219)) -((-4004 (*1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-523)) (-5 *1 (-219)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-523)) (-5 *1 (-219)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1173)) (-5 *1 (-219)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-219)))) (-1288 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-589 (-1070))) (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *1 (-219)))) (-1288 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-219)))) (-2166 (*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-219)))) (-3290 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-219)))) (-1427 (*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-219)))) (-1427 (*1 *2 *3) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-219)) (-5 *3 (-1070))))) -(-10 -7 (-15 -1427 ((-589 (-1070)) (-1070))) (-15 -1427 ((-589 (-1070)) (-589 (-1070)))) (-15 -3290 ((-1070))) (-15 -2166 ((-1070) (-523) (-1070))) (-15 -1288 ((-1070) (-1070) (-523) (-1070))) (-15 -1288 ((-589 (-1070)) (-589 (-1070)) (-523) (-1070))) (-15 -1672 ((-1173) (-1070))) (-15 -1672 ((-1173) (-589 (-1070)))) (-15 -4004 ((-523) (-1070))) (-15 -4004 ((-523) (-589 (-1070))))) -((-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 9)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 18)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ (-383 (-523)) $) 25) (($ $ (-383 (-523))) NIL))) -(((-220 |#1|) (-10 -8 (-15 -2364 (|#1| |#1| (-523))) (-15 ** (|#1| |#1| (-523))) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 ** (|#1| |#1| (-710))) (-15 -2364 (|#1| |#1| (-710))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 -2364 (|#1| |#1| (-852))) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-221)) (T -220)) -NIL -(-10 -8 (-15 -2364 (|#1| |#1| (-523))) (-15 ** (|#1| |#1| (-523))) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 ** (|#1| |#1| (-710))) (-15 -2364 (|#1| |#1| (-710))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 -2364 (|#1| |#1| (-852))) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 39)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 44)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 40)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 41)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ (-383 (-523)) $) 43) (($ $ (-383 (-523))) 42))) +((-3453 (((-523) (-589 (-1070))) 24) (((-523) (-1070)) 19)) (-2269 (((-1174) (-589 (-1070))) 29) (((-1174) (-1070)) 28)) (-4046 (((-1070)) 14)) (-1875 (((-1070) (-523) (-1070)) 16)) (-3710 (((-589 (-1070)) (-589 (-1070)) (-523) (-1070)) 25) (((-1070) (-1070) (-523) (-1070)) 23)) (-1464 (((-589 (-1070)) (-589 (-1070))) 13) (((-589 (-1070)) (-1070)) 11))) +(((-219) (-10 -7 (-15 -1464 ((-589 (-1070)) (-1070))) (-15 -1464 ((-589 (-1070)) (-589 (-1070)))) (-15 -4046 ((-1070))) (-15 -1875 ((-1070) (-523) (-1070))) (-15 -3710 ((-1070) (-1070) (-523) (-1070))) (-15 -3710 ((-589 (-1070)) (-589 (-1070)) (-523) (-1070))) (-15 -2269 ((-1174) (-1070))) (-15 -2269 ((-1174) (-589 (-1070)))) (-15 -3453 ((-523) (-1070))) (-15 -3453 ((-523) (-589 (-1070)))))) (T -219)) +((-3453 (*1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-523)) (-5 *1 (-219)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-523)) (-5 *1 (-219)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1174)) (-5 *1 (-219)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-219)))) (-3710 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-589 (-1070))) (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *1 (-219)))) (-3710 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-219)))) (-1875 (*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-219)))) (-4046 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-219)))) (-1464 (*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-219)))) (-1464 (*1 *2 *3) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-219)) (-5 *3 (-1070))))) +(-10 -7 (-15 -1464 ((-589 (-1070)) (-1070))) (-15 -1464 ((-589 (-1070)) (-589 (-1070)))) (-15 -4046 ((-1070))) (-15 -1875 ((-1070) (-523) (-1070))) (-15 -3710 ((-1070) (-1070) (-523) (-1070))) (-15 -3710 ((-589 (-1070)) (-589 (-1070)) (-523) (-1070))) (-15 -2269 ((-1174) (-1070))) (-15 -2269 ((-1174) (-589 (-1070)))) (-15 -3453 ((-523) (-1070))) (-15 -3453 ((-523) (-589 (-1070))))) +((-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 9)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 18)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ (-383 (-523)) $) 25) (($ $ (-383 (-523))) NIL))) +(((-220 |#1|) (-10 -8 (-15 -2423 (|#1| |#1| (-523))) (-15 ** (|#1| |#1| (-523))) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 ** (|#1| |#1| (-710))) (-15 -2423 (|#1| |#1| (-710))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 -2423 (|#1| |#1| (-852))) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-221)) (T -220)) +NIL +(-10 -8 (-15 -2423 (|#1| |#1| (-523))) (-15 ** (|#1| |#1| (-523))) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 ** (|#1| |#1| (-710))) (-15 -2423 (|#1| |#1| (-710))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 -2423 (|#1| |#1| (-852))) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 39)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 44)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 40)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 41)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ (-383 (-523)) $) 43) (($ $ (-383 (-523))) 42))) (((-221) (-129)) (T -221)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-523)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-523)))) (-3738 (*1 *1 *1) (-4 *1 (-221)))) -(-13 (-267) (-37 (-383 (-523))) (-10 -8 (-15 ** ($ $ (-523))) (-15 -2364 ($ $ (-523))) (-15 -3738 ($ $)))) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-523)))) (-2423 (*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-523)))) (-1396 (*1 *1 *1) (-4 *1 (-221)))) +(-13 (-267) (-37 (-383 (-523))) (-10 -8 (-15 ** ($ $ (-523))) (-15 -2423 ($ $ (-523))) (-15 -1396 ($ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-267) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-666) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-4039 (($ $) 57)) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-1963 (($ $ $) 53 (|has| $ (-6 -4245)))) (-4221 (($ $ $) 52 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-2518 (($) 7 T CONST)) (-3105 (($ $) 56)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-1739 (($ $) 55)) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2579 ((|#1| $) 59)) (-3729 (($ $) 58)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47)) (-1549 (((-523) $ $) 44)) (-2524 (((-108) $) 46)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1746 (($ $ $) 54 (|has| $ (-6 -4245)))) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-222 |#1|) (-129) (-1122)) (T -222)) -((-2579 (*1 *2 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-3729 (*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-4039 (*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-3105 (*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-1739 (*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-1746 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-1963 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-4221 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-222 *2)) (-4 *2 (-1122))))) -(-13 (-938 |t#1|) (-10 -8 (-15 -2579 (|t#1| $)) (-15 -3729 ($ $)) (-15 -4039 ($ $)) (-15 -3105 ($ $)) (-15 -1739 ($ $)) (IF (|has| $ (-6 -4245)) (PROGN (-15 -1746 ($ $ $)) (-15 -1963 ($ $ $)) (-15 -4221 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) NIL)) (-1546 ((|#1| $) NIL)) (-4039 (($ $) NIL)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) $) NIL (|has| |#1| (-786))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1506 (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3974 (($ $) 10 (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-2110 (($ $ $) NIL (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "rest" $) NIL (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) |#1|) $) NIL)) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-1532 ((|#1| $) NIL)) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1751 (($ $) NIL) (($ $ (-710)) NIL)) (-3941 (($ $) NIL (|has| |#1| (-1016)))) (-1773 (($ $) 7 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) NIL)) (-2557 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1232 (((-108) $) NIL)) (-1479 (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016))) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) (-1 (-108) |#1|) $) NIL)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2158 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2178 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3992 (($ |#1|) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2579 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-3450 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2847 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-2402 (((-108) $) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1135 (-523))) NIL) ((|#1| $ (-523)) NIL) ((|#1| $ (-523) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-710) $ "count") 16)) (-1549 (((-523) $ $) NIL)) (-2753 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-1469 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-4143 (($ (-589 |#1|)) 22)) (-2524 (((-108) $) NIL)) (-2732 (($ $) NIL)) (-2363 (($ $) NIL (|has| $ (-6 -4245)))) (-2316 (((-710) $) NIL)) (-3562 (($ $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-1746 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2326 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-589 $)) NIL) (($ $ |#1|) NIL)) (-1458 (($ (-589 |#1|)) 17) (((-589 |#1|) $) 18) (((-794) $) 21 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) 14 (|has| $ (-6 -4244))))) -(((-223 |#1|) (-13 (-609 |#1|) (-10 -8 (-15 -1458 ($ (-589 |#1|))) (-15 -1458 ((-589 |#1|) $)) (-15 -4143 ($ (-589 |#1|))) (-15 -3223 ($ $ "unique")) (-15 -3223 ($ $ "sort")) (-15 -3223 ((-710) $ "count")))) (-786)) (T -223)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-223 *3)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-223 *3)) (-4 *3 (-786)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-223 *3)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-223 *3)) (-4 *3 (-786)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-223 *3)) (-4 *3 (-786)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-710)) (-5 *1 (-223 *4)) (-4 *4 (-786))))) -(-13 (-609 |#1|) (-10 -8 (-15 -1458 ($ (-589 |#1|))) (-15 -1458 ((-589 |#1|) $)) (-15 -4143 ($ (-589 |#1|))) (-15 -3223 ($ $ "unique")) (-15 -3223 ($ $ "sort")) (-15 -3223 ((-710) $ "count")))) -((-2142 (((-3 (-710) "failed") |#1| |#1| (-710)) 27))) -(((-224 |#1|) (-10 -7 (-15 -2142 ((-3 (-710) "failed") |#1| |#1| (-710)))) (-13 (-666) (-344) (-10 -7 (-15 ** (|#1| |#1| (-523)))))) (T -224)) -((-2142 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-710)) (-4 *3 (-13 (-666) (-344) (-10 -7 (-15 ** (*3 *3 (-523)))))) (-5 *1 (-224 *3))))) -(-10 -7 (-15 -2142 ((-3 (-710) "failed") |#1| |#1| (-710)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-796 |#1|)) $) NIL)) (-1786 (((-1083 $) $ (-796 |#1|)) NIL) (((-1083 |#2|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3345 (($ $) NIL (|has| |#2| (-515)))) (-3331 (((-108) $) NIL (|has| |#2| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-796 |#1|))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2291 (($ $) NIL (|has| |#2| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-796 |#1|) "failed") $) NIL)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-796 |#1|) $) NIL)) (-3078 (($ $ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3806 (($ $ (-589 (-523))) NIL)) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#2| (-840)))) (-1284 (($ $ |#2| (-218 (-2676 |#1|) (-710)) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#2|) (-796 |#1|)) NIL) (($ (-1083 $) (-796 |#1|)) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#2| (-218 (-2676 |#1|) (-710))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-796 |#1|)) NIL)) (-1575 (((-218 (-2676 |#1|) (-710)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-2454 (($ $ $) NIL (|has| |#2| (-786)))) (-2062 (($ $ $) NIL (|has| |#2| (-786)))) (-3782 (($ (-1 (-218 (-2676 |#1|) (-710)) (-218 (-2676 |#1|) (-710))) $) NIL)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2520 (((-3 (-796 |#1|) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#2| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-796 |#1|)) (|:| -2735 (-710))) "failed") $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#2| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#2| (-840)))) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-796 |#1|) |#2|) NIL) (($ $ (-589 (-796 |#1|)) (-589 |#2|)) NIL) (($ $ (-796 |#1|) $) NIL) (($ $ (-589 (-796 |#1|)) (-589 $)) NIL)) (-3549 (($ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3523 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2299 (((-218 (-2676 |#1|) (-710)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-796 |#1|) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-2438 ((|#2| $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-796 |#1|)) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#2| (-515)))) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-218 (-2676 |#1|) (-710))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-225 |#1| |#2|) (-13 (-880 |#2| (-218 (-2676 |#1|) (-710)) (-796 |#1|)) (-10 -8 (-15 -3806 ($ $ (-589 (-523)))))) (-589 (-1087)) (-973)) (T -225)) -((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-225 *3 *4)) (-14 *3 (-589 (-1087))) (-4 *4 (-973))))) -(-13 (-880 |#2| (-218 (-2676 |#1|) (-710)) (-796 |#1|)) (-10 -8 (-15 -3806 ($ $ (-589 (-523)))))) -((-4198 (((-1173) $) 12)) (-3687 (((-167) $) 9)) (-4109 (($ (-167)) 10)) (-1458 (((-794) $) 7))) -(((-226) (-13 (-563 (-794)) (-10 -8 (-15 -3687 ((-167) $)) (-15 -4109 ($ (-167))) (-15 -4198 ((-1173) $))))) (T -226)) -((-3687 (*1 *2 *1) (-12 (-5 *2 (-167)) (-5 *1 (-226)))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-167)) (-5 *1 (-226)))) (-4198 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-226))))) -(-13 (-563 (-794)) (-10 -8 (-15 -3687 ((-167) $)) (-15 -4109 ($ (-167))) (-15 -4198 ((-1173) $)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1890 (($ (-852)) NIL (|has| |#4| (-973)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-3596 (($ $ $) NIL (|has| |#4| (-732)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| |#4| (-344)))) (-3671 (((-523) $) NIL (|has| |#4| (-784)))) (-1641 ((|#4| $ (-523) |#4|) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1016))) (((-3 (-523) "failed") $) NIL (-12 (|has| |#4| (-964 (-523))) (|has| |#4| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#4| (-964 (-383 (-523)))) (|has| |#4| (-1016))))) (-3474 ((|#4| $) NIL (|has| |#4| (-1016))) (((-523) $) NIL (-12 (|has| |#4| (-964 (-523))) (|has| |#4| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#4| (-964 (-383 (-523)))) (|has| |#4| (-1016))))) (-2381 (((-2 (|:| -3392 (-629 |#4|)) (|:| |vec| (-1168 |#4|))) (-629 $) (-1168 $)) NIL (|has| |#4| (-973))) (((-629 |#4|) (-629 $)) NIL (|has| |#4| (-973))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#4| (-585 (-523))) (|has| |#4| (-973)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#4| (-585 (-523))) (|has| |#4| (-973))))) (-2121 (((-3 $ "failed") $) NIL (|has| |#4| (-973)))) (-4032 (($) NIL (|has| |#4| (-344)))) (-2863 ((|#4| $ (-523) |#4|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#4| $ (-523)) NIL)) (-2604 (((-108) $) NIL (|has| |#4| (-784)))) (-1666 (((-589 |#4|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL (|has| |#4| (-973)))) (-4114 (((-108) $) NIL (|has| |#4| (-784)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (-3262 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-2136 (((-589 |#4|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (-3262 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-2852 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#4| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-3878 (($ (-852)) NIL (|has| |#4| (-344)))) (-2783 (((-1034) $) NIL)) (-1738 ((|#4| $) NIL (|has| (-523) (-786)))) (-4203 (($ $ |#4|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-1264 (((-589 |#4|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#4| $ (-523) |#4|) NIL) ((|#4| $ (-523)) 12)) (-3269 ((|#4| $ $) NIL (|has| |#4| (-973)))) (-1868 (($ (-1168 |#4|)) NIL)) (-3203 (((-126)) NIL (|has| |#4| (-339)))) (-3523 (($ $ (-1 |#4| |#4|) (-710)) NIL (|has| |#4| (-973))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#4| (-211)) (|has| |#4| (-973)))) (($ $) NIL (-12 (|has| |#4| (-211)) (|has| |#4| (-973))))) (-2792 (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244))) (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1168 |#4|) $) NIL) (((-794) $) NIL) (($ |#4|) NIL (|has| |#4| (-1016))) (($ (-523)) NIL (-3262 (-12 (|has| |#4| (-964 (-523))) (|has| |#4| (-1016))) (|has| |#4| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#4| (-964 (-383 (-523)))) (|has| |#4| (-1016))))) (-1621 (((-710)) NIL (|has| |#4| (-973)))) (-2096 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2619 (($ $) NIL (|has| |#4| (-784)))) (-2364 (($ $ (-710)) NIL (|has| |#4| (-973))) (($ $ (-852)) NIL (|has| |#4| (-973)))) (-2756 (($) NIL T CONST)) (-2767 (($) NIL (|has| |#4| (-973)) CONST)) (-2862 (($ $ (-1 |#4| |#4|) (-710)) NIL (|has| |#4| (-973))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#4| (-211)) (|has| |#4| (-973)))) (($ $) NIL (-12 (|has| |#4| (-211)) (|has| |#4| (-973))))) (-4043 (((-108) $ $) NIL (-3262 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (-3262 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-4007 (((-108) $ $) NIL (-3262 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-4098 (($ $ |#4|) NIL (|has| |#4| (-339)))) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL (|has| |#4| (-973))) (($ $ (-852)) NIL (|has| |#4| (-973)))) (* (($ |#2| $) 14) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-666))) (($ |#4| $) NIL (|has| |#4| (-666))) (($ $ $) NIL (|has| |#4| (-973)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3370 ((|#1| $) 48)) (-2227 (($ $) 57)) (-1620 (((-108) $ (-710)) 8)) (-1487 ((|#1| $ |#1|) 39 (|has| $ (-6 -4249)))) (-3323 (($ $ $) 53 (|has| $ (-6 -4249)))) (-1318 (($ $ $) 52 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) 41 (|has| $ (-6 -4249)))) (-4189 (($) 7 T CONST)) (-1523 (($ $) 56)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) 50)) (-3675 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-1832 (($ $) 55)) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-1701 (((-589 |#1|) $) 45)) (-1799 (((-108) $) 49)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2535 ((|#1| $) 59)) (-2781 (($ $) 58)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ "value") 47)) (-3766 (((-523) $ $) 44)) (-1221 (((-108) $) 46)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-2001 (($ $ $) 54 (|has| $ (-6 -4249)))) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) 51)) (-3313 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-222 |#1|) (-129) (-1123)) (T -222)) +((-2535 (*1 *2 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1123)))) (-2781 (*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1123)))) (-2227 (*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1123)))) (-1523 (*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1123)))) (-1832 (*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1123)))) (-2001 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-222 *2)) (-4 *2 (-1123)))) (-3323 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-222 *2)) (-4 *2 (-1123)))) (-1318 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-222 *2)) (-4 *2 (-1123))))) +(-13 (-938 |t#1|) (-10 -8 (-15 -2535 (|t#1| $)) (-15 -2781 ($ $)) (-15 -2227 ($ $)) (-15 -1523 ($ $)) (-15 -1832 ($ $)) (IF (|has| $ (-6 -4249)) (PROGN (-15 -2001 ($ $ $)) (-15 -3323 ($ $ $)) (-15 -1318 ($ $ $))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3370 ((|#1| $) NIL)) (-2176 ((|#1| $) NIL)) (-2227 (($ $) NIL)) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-2856 (($ $ (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) $) NIL (|has| |#1| (-786))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1632 (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| |#1| (-786)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1581 (($ $) 10 (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1487 ((|#1| $ |#1|) NIL (|has| $ (-6 -4249)))) (-2470 (($ $ $) NIL (|has| $ (-6 -4249)))) (-2622 ((|#1| $ |#1|) NIL (|has| $ (-6 -4249)))) (-2027 ((|#1| $ |#1|) NIL (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4249))) (($ $ "rest" $) NIL (|has| $ (-6 -4249))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) NIL (|has| $ (-6 -4249)))) (-3703 (($ (-1 (-108) |#1|) $) NIL)) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2165 ((|#1| $) NIL)) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-2441 (($ $) NIL) (($ $ (-710)) NIL)) (-4160 (($ $) NIL (|has| |#1| (-1016)))) (-2462 (($ $) 7 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3286 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) NIL)) (-2514 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2053 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) NIL)) (-1833 (((-108) $) NIL)) (-3449 (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016))) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) (-1 (-108) |#1|) $) NIL)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) NIL)) (-3675 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3733 (($ (-710) |#1|) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-1793 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3780 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2301 (($ |#1|) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-1701 (((-589 |#1|) $) NIL)) (-1799 (((-108) $) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2535 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-3108 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2912 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2428 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4141 (($ $ |#1|) NIL (|has| $ (-6 -4249)))) (-2430 (((-108) $) NIL)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1136 (-523))) NIL) ((|#1| $ (-523)) NIL) ((|#1| $ (-523) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-710) $ "count") 16)) (-3766 (((-523) $ $) NIL)) (-1655 (($ $ (-1136 (-523))) NIL) (($ $ (-523)) NIL)) (-1499 (($ $ (-1136 (-523))) NIL) (($ $ (-523)) NIL)) (-3589 (($ (-589 |#1|)) 22)) (-1221 (((-108) $) NIL)) (-2582 (($ $) NIL)) (-2075 (($ $) NIL (|has| $ (-6 -4249)))) (-2784 (((-710) $) NIL)) (-1867 (($ $) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) NIL)) (-2001 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2394 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-589 $)) NIL) (($ $ |#1|) NIL)) (-1691 (($ (-589 |#1|)) 17) (((-589 |#1|) $) 18) (((-794) $) 21 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) NIL)) (-3313 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2810 (((-710) $) 14 (|has| $ (-6 -4248))))) +(((-223 |#1|) (-13 (-609 |#1|) (-10 -8 (-15 -1691 ($ (-589 |#1|))) (-15 -1691 ((-589 |#1|) $)) (-15 -3589 ($ (-589 |#1|))) (-15 -1937 ($ $ "unique")) (-15 -1937 ($ $ "sort")) (-15 -1937 ((-710) $ "count")))) (-786)) (T -223)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-223 *3)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-223 *3)) (-4 *3 (-786)))) (-3589 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-223 *3)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-223 *3)) (-4 *3 (-786)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-223 *3)) (-4 *3 (-786)))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-710)) (-5 *1 (-223 *4)) (-4 *4 (-786))))) +(-13 (-609 |#1|) (-10 -8 (-15 -1691 ($ (-589 |#1|))) (-15 -1691 ((-589 |#1|) $)) (-15 -3589 ($ (-589 |#1|))) (-15 -1937 ($ $ "unique")) (-15 -1937 ($ $ "sort")) (-15 -1937 ((-710) $ "count")))) +((-1642 (((-3 (-710) "failed") |#1| |#1| (-710)) 27))) +(((-224 |#1|) (-10 -7 (-15 -1642 ((-3 (-710) "failed") |#1| |#1| (-710)))) (-13 (-666) (-344) (-10 -7 (-15 ** (|#1| |#1| (-523)))))) (T -224)) +((-1642 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-710)) (-4 *3 (-13 (-666) (-344) (-10 -7 (-15 ** (*3 *3 (-523)))))) (-5 *1 (-224 *3))))) +(-10 -7 (-15 -1642 ((-3 (-710) "failed") |#1| |#1| (-710)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1292 (((-589 (-796 |#1|)) $) NIL)) (-2389 (((-1083 $) $ (-796 |#1|)) NIL) (((-1083 |#2|) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3306 (($ $) NIL (|has| |#2| (-515)))) (-3174 (((-108) $) NIL (|has| |#2| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 (-796 |#1|))) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3718 (($ $) NIL (|has| |#2| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-796 |#1|) "failed") $) NIL)) (-3508 ((|#2| $) NIL) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-796 |#1|) $) NIL)) (-1611 (($ $ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-2229 (($ $ (-589 (-523))) NIL)) (-1457 (($ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#2| (-840)))) (-4222 (($ $ |#2| (-218 (-2810 |#1|) (-710)) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-1280 (($ (-1083 |#2|) (-796 |#1|)) NIL) (($ (-1083 $) (-796 |#1|)) NIL)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#2| (-218 (-2810 |#1|) (-710))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ (-796 |#1|)) NIL)) (-4047 (((-218 (-2810 |#1|) (-710)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-3239 (($ $ $) NIL (|has| |#2| (-786)))) (-3158 (($ $ $) NIL (|has| |#2| (-786)))) (-2041 (($ (-1 (-218 (-2810 |#1|) (-710)) (-218 (-2810 |#1|) (-710))) $) NIL)) (-1345 (($ (-1 |#2| |#2|) $) NIL)) (-4213 (((-3 (-796 |#1|) "failed") $) NIL)) (-1427 (($ $) NIL)) (-1437 ((|#2| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-2032 (((-1070) $) NIL)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| (-796 |#1|)) (|:| -1475 (-710))) "failed") $) NIL)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) NIL)) (-1419 ((|#2| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#2| (-840)))) (-4007 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-796 |#1|) |#2|) NIL) (($ $ (-589 (-796 |#1|)) (-589 |#2|)) NIL) (($ $ (-796 |#1|) $) NIL) (($ $ (-589 (-796 |#1|)) (-589 $)) NIL)) (-1744 (($ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3984 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2640 (((-218 (-2810 |#1|) (-710)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-796 |#1|) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-1618 ((|#2| $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-796 |#1|)) NIL) (($ (-383 (-523))) NIL (-3172 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#2| (-515)))) (-3819 (((-589 |#2|) $) NIL)) (-2084 ((|#2| $ (-218 (-2810 |#1|) (-710))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-4006 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4074 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-225 |#1| |#2|) (-13 (-880 |#2| (-218 (-2810 |#1|) (-710)) (-796 |#1|)) (-10 -8 (-15 -2229 ($ $ (-589 (-523)))))) (-589 (-1087)) (-973)) (T -225)) +((-2229 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-225 *3 *4)) (-14 *3 (-589 (-1087))) (-4 *4 (-973))))) +(-13 (-880 |#2| (-218 (-2810 |#1|) (-710)) (-796 |#1|)) (-10 -8 (-15 -2229 ($ $ (-589 (-523)))))) +((-1504 (((-1174) $) 12)) (-3621 (((-167) $) 9)) (-3145 (($ (-167)) 10)) (-1691 (((-794) $) 7))) +(((-226) (-13 (-563 (-794)) (-10 -8 (-15 -3621 ((-167) $)) (-15 -3145 ($ (-167))) (-15 -1504 ((-1174) $))))) (T -226)) +((-3621 (*1 *2 *1) (-12 (-5 *2 (-167)) (-5 *1 (-226)))) (-3145 (*1 *1 *2) (-12 (-5 *2 (-167)) (-5 *1 (-226)))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-226))))) +(-13 (-563 (-794)) (-10 -8 (-15 -3621 ((-167) $)) (-15 -3145 ($ (-167))) (-15 -1504 ((-1174) $)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3845 (($ (-852)) NIL (|has| |#4| (-973)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-4016 (($ $ $) NIL (|has| |#4| (-732)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-2395 (((-710)) NIL (|has| |#4| (-344)))) (-3482 (((-523) $) NIL (|has| |#4| (-784)))) (-1849 ((|#4| $ (-523) |#4|) NIL (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1016))) (((-3 (-523) "failed") $) NIL (-12 (|has| |#4| (-964 (-523))) (|has| |#4| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#4| (-964 (-383 (-523)))) (|has| |#4| (-1016))))) (-3508 ((|#4| $) NIL (|has| |#4| (-1016))) (((-523) $) NIL (-12 (|has| |#4| (-964 (-523))) (|has| |#4| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#4| (-964 (-383 (-523)))) (|has| |#4| (-1016))))) (-2243 (((-2 (|:| -2600 (-629 |#4|)) (|:| |vec| (-1169 |#4|))) (-629 $) (-1169 $)) NIL (|has| |#4| (-973))) (((-629 |#4|) (-629 $)) NIL (|has| |#4| (-973))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (-12 (|has| |#4| (-585 (-523))) (|has| |#4| (-973)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#4| (-585 (-523))) (|has| |#4| (-973))))) (-1444 (((-3 $ "failed") $) NIL (|has| |#4| (-973)))) (-1631 (($) NIL (|has| |#4| (-344)))) (-2053 ((|#4| $ (-523) |#4|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#4| $ (-523)) NIL)) (-3712 (((-108) $) NIL (|has| |#4| (-784)))) (-1871 (((-589 |#4|) $) NIL (|has| $ (-6 -4248)))) (-2769 (((-108) $) NIL (|has| |#4| (-973)))) (-2057 (((-108) $) NIL (|has| |#4| (-784)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (-3172 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-1584 (((-589 |#4|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (-3172 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-2043 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#4| |#4|) $) NIL)) (-2060 (((-852) $) NIL (|has| |#4| (-344)))) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-4013 (($ (-852)) NIL (|has| |#4| (-344)))) (-3951 (((-1034) $) NIL)) (-2428 ((|#4| $) NIL (|has| (-523) (-786)))) (-4141 (($ $ |#4|) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-3973 (((-589 |#4|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#4| $ (-523) |#4|) NIL) ((|#4| $ (-523)) 12)) (-3839 ((|#4| $ $) NIL (|has| |#4| (-973)))) (-2469 (($ (-1169 |#4|)) NIL)) (-3314 (((-126)) NIL (|has| |#4| (-339)))) (-3984 (($ $ (-1 |#4| |#4|) (-710)) NIL (|has| |#4| (-973))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#4| (-211)) (|has| |#4| (-973)))) (($ $) NIL (-12 (|has| |#4| (-211)) (|has| |#4| (-973))))) (-3977 (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248))) (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-1169 |#4|) $) NIL) (((-794) $) NIL) (($ |#4|) NIL (|has| |#4| (-1016))) (($ (-523)) NIL (-3172 (-12 (|has| |#4| (-964 (-523))) (|has| |#4| (-1016))) (|has| |#4| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#4| (-964 (-383 (-523)))) (|has| |#4| (-1016))))) (-3272 (((-710)) NIL (|has| |#4| (-973)))) (-2308 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-2695 (($ $) NIL (|has| |#4| (-784)))) (-2423 (($ $ (-710)) NIL (|has| |#4| (-973))) (($ $ (-852)) NIL (|has| |#4| (-973)))) (-1879 (($) NIL T CONST)) (-1891 (($) NIL (|has| |#4| (-973)) CONST)) (-2909 (($ $ (-1 |#4| |#4|) (-710)) NIL (|has| |#4| (-973))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#4| (-211)) (|has| |#4| (-973)))) (($ $) NIL (-12 (|has| |#4| (-211)) (|has| |#4| (-973))))) (-4006 (((-108) $ $) NIL (-3172 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-3980 (((-108) $ $) NIL (-3172 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (-3172 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-3966 (((-108) $ $) NIL (-3172 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-4074 (($ $ |#4|) NIL (|has| |#4| (-339)))) (-4060 (($ $ $) NIL) (($ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-710)) NIL (|has| |#4| (-973))) (($ $ (-852)) NIL (|has| |#4| (-973)))) (* (($ |#2| $) 14) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-666))) (($ |#4| $) NIL (|has| |#4| (-666))) (($ $ $) NIL (|has| |#4| (-973)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) (((-227 |#1| |#2| |#3| |#4|) (-13 (-216 |#1| |#4|) (-591 |#2|) (-591 |#3|)) (-852) (-973) (-1037 |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) (-591 |#2|)) (T -227)) NIL (-13 (-216 |#1| |#4|) (-591 |#2|) (-591 |#3|)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1890 (($ (-852)) NIL (|has| |#3| (-973)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-3596 (($ $ $) NIL (|has| |#3| (-732)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| |#3| (-344)))) (-3671 (((-523) $) NIL (|has| |#3| (-784)))) (-1641 ((|#3| $ (-523) |#3|) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1016))) (((-3 (-523) "failed") $) NIL (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016))))) (-3474 ((|#3| $) NIL (|has| |#3| (-1016))) (((-523) $) NIL (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016))))) (-2381 (((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 $) (-1168 $)) NIL (|has| |#3| (-973))) (((-629 |#3|) (-629 $)) NIL (|has| |#3| (-973))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973))))) (-2121 (((-3 $ "failed") $) NIL (|has| |#3| (-973)))) (-4032 (($) NIL (|has| |#3| (-344)))) (-2863 ((|#3| $ (-523) |#3|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#3| $ (-523)) NIL)) (-2604 (((-108) $) NIL (|has| |#3| (-784)))) (-1666 (((-589 |#3|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL (|has| |#3| (-973)))) (-4114 (((-108) $) NIL (|has| |#3| (-784)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-2136 (((-589 |#3|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-2852 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#3| |#3|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#3| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-3878 (($ (-852)) NIL (|has| |#3| (-344)))) (-2783 (((-1034) $) NIL)) (-1738 ((|#3| $) NIL (|has| (-523) (-786)))) (-4203 (($ $ |#3|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#3|))) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-271 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-589 |#3|) (-589 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-1264 (((-589 |#3|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#3| $ (-523) |#3|) NIL) ((|#3| $ (-523)) 11)) (-3269 ((|#3| $ $) NIL (|has| |#3| (-973)))) (-1868 (($ (-1168 |#3|)) NIL)) (-3203 (((-126)) NIL (|has| |#3| (-339)))) (-3523 (($ $ (-1 |#3| |#3|) (-710)) NIL (|has| |#3| (-973))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973))))) (-2792 (((-710) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244))) (((-710) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1168 |#3|) $) NIL) (((-794) $) NIL) (($ |#3|) NIL (|has| |#3| (-1016))) (($ (-523)) NIL (-3262 (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016))) (|has| |#3| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016))))) (-1621 (((-710)) NIL (|has| |#3| (-973)))) (-2096 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-2619 (($ $) NIL (|has| |#3| (-784)))) (-2364 (($ $ (-710)) NIL (|has| |#3| (-973))) (($ $ (-852)) NIL (|has| |#3| (-973)))) (-2756 (($) NIL T CONST)) (-2767 (($) NIL (|has| |#3| (-973)) CONST)) (-2862 (($ $ (-1 |#3| |#3|) (-710)) NIL (|has| |#3| (-973))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973))))) (-4043 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4007 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4098 (($ $ |#3|) NIL (|has| |#3| (-339)))) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL (|has| |#3| (-973))) (($ $ (-852)) NIL (|has| |#3| (-973)))) (* (($ |#2| $) 13) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-666))) (($ |#3| $) NIL (|has| |#3| (-666))) (($ $ $) NIL (|has| |#3| (-973)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3845 (($ (-852)) NIL (|has| |#3| (-973)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-4016 (($ $ $) NIL (|has| |#3| (-732)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-2395 (((-710)) NIL (|has| |#3| (-344)))) (-3482 (((-523) $) NIL (|has| |#3| (-784)))) (-1849 ((|#3| $ (-523) |#3|) NIL (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1016))) (((-3 (-523) "failed") $) NIL (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016))))) (-3508 ((|#3| $) NIL (|has| |#3| (-1016))) (((-523) $) NIL (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016))))) (-2243 (((-2 (|:| -2600 (-629 |#3|)) (|:| |vec| (-1169 |#3|))) (-629 $) (-1169 $)) NIL (|has| |#3| (-973))) (((-629 |#3|) (-629 $)) NIL (|has| |#3| (-973))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (-12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973))))) (-1444 (((-3 $ "failed") $) NIL (|has| |#3| (-973)))) (-1631 (($) NIL (|has| |#3| (-344)))) (-2053 ((|#3| $ (-523) |#3|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#3| $ (-523)) NIL)) (-3712 (((-108) $) NIL (|has| |#3| (-784)))) (-1871 (((-589 |#3|) $) NIL (|has| $ (-6 -4248)))) (-2769 (((-108) $) NIL (|has| |#3| (-973)))) (-2057 (((-108) $) NIL (|has| |#3| (-784)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (-3172 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-1584 (((-589 |#3|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#3| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (-3172 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-2043 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#3| |#3|) $) NIL)) (-2060 (((-852) $) NIL (|has| |#3| (-344)))) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-4013 (($ (-852)) NIL (|has| |#3| (-344)))) (-3951 (((-1034) $) NIL)) (-2428 ((|#3| $) NIL (|has| (-523) (-786)))) (-4141 (($ $ |#3|) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#3|))) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-271 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-589 |#3|) (-589 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#3| (-1016))))) (-3973 (((-589 |#3|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#3| $ (-523) |#3|) NIL) ((|#3| $ (-523)) 11)) (-3839 ((|#3| $ $) NIL (|has| |#3| (-973)))) (-2469 (($ (-1169 |#3|)) NIL)) (-3314 (((-126)) NIL (|has| |#3| (-339)))) (-3984 (($ $ (-1 |#3| |#3|) (-710)) NIL (|has| |#3| (-973))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973))))) (-3977 (((-710) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4248))) (((-710) |#3| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#3| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-1169 |#3|) $) NIL) (((-794) $) NIL) (($ |#3|) NIL (|has| |#3| (-1016))) (($ (-523)) NIL (-3172 (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016))) (|has| |#3| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016))))) (-3272 (((-710)) NIL (|has| |#3| (-973)))) (-2308 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4248)))) (-2695 (($ $) NIL (|has| |#3| (-784)))) (-2423 (($ $ (-710)) NIL (|has| |#3| (-973))) (($ $ (-852)) NIL (|has| |#3| (-973)))) (-1879 (($) NIL T CONST)) (-1891 (($) NIL (|has| |#3| (-973)) CONST)) (-2909 (($ $ (-1 |#3| |#3|) (-710)) NIL (|has| |#3| (-973))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973))))) (-4006 (((-108) $ $) NIL (-3172 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-3980 (((-108) $ $) NIL (-3172 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (-3172 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-3966 (((-108) $ $) NIL (-3172 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4074 (($ $ |#3|) NIL (|has| |#3| (-339)))) (-4060 (($ $ $) NIL) (($ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-710)) NIL (|has| |#3| (-973))) (($ $ (-852)) NIL (|has| |#3| (-973)))) (* (($ |#2| $) 13) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-666))) (($ |#3| $) NIL (|has| |#3| (-666))) (($ $ $) NIL (|has| |#3| (-973)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) (((-228 |#1| |#2| |#3|) (-13 (-216 |#1| |#3|) (-591 |#2|)) (-710) (-973) (-591 |#2|)) (T -228)) NIL (-13 (-216 |#1| |#3|) (-591 |#2|)) -((-1854 (((-589 (-710)) $) 47) (((-589 (-710)) $ |#3|) 50)) (-2656 (((-710) $) 49) (((-710) $ |#3|) 52)) (-1413 (($ $) 65)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-1640 (((-710) $ |#3|) 39) (((-710) $) 36)) (-3178 (((-1 $ (-710)) |#3|) 15) (((-1 $ (-710)) $) 77)) (-3415 ((|#4| $) 58)) (-1453 (((-108) $) 56)) (-3197 (($ $) 64)) (-2679 (($ $ (-589 (-271 $))) 96) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-589 |#4|) (-589 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-589 |#4|) (-589 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-589 |#3|) (-589 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-589 |#3|) (-589 |#2|)) 84)) (-3523 (($ $ |#4|) NIL) (($ $ (-589 |#4|)) NIL) (($ $ |#4| (-710)) NIL) (($ $ (-589 |#4|) (-589 (-710))) NIL) (($ $) NIL) (($ $ (-710)) NIL) (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1748 (((-589 |#3|) $) 75)) (-2299 ((|#5| $) NIL) (((-710) $ |#4|) NIL) (((-589 (-710)) $ (-589 |#4|)) NIL) (((-710) $ |#3|) 44)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-383 (-523))) NIL) (($ $) NIL))) -(((-229 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -2679 (|#1| |#1| (-589 |#3|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#3| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#3|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#3| |#1|)) (-15 -3178 ((-1 |#1| (-710)) |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -3415 (|#4| |#1|)) (-15 -1453 ((-108) |#1|)) (-15 -2656 ((-710) |#1| |#3|)) (-15 -1854 ((-589 (-710)) |#1| |#3|)) (-15 -2656 ((-710) |#1|)) (-15 -1854 ((-589 (-710)) |#1|)) (-15 -2299 ((-710) |#1| |#3|)) (-15 -1640 ((-710) |#1|)) (-15 -1640 ((-710) |#1| |#3|)) (-15 -1748 ((-589 |#3|) |#1|)) (-15 -3178 ((-1 |#1| (-710)) |#3|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -1458 (|#1| |#3|)) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -2299 ((-589 (-710)) |#1| (-589 |#4|))) (-15 -2299 ((-710) |#1| |#4|)) (-15 -3517 ((-3 |#4| "failed") |#1|)) (-15 -1458 (|#1| |#4|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#4| |#1|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#4| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2299 (|#5| |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3523 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -3523 (|#1| |#1| |#4| (-710))) (-15 -3523 (|#1| |#1| (-589 |#4|))) (-15 -3523 (|#1| |#1| |#4|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-230 |#2| |#3| |#4| |#5|) (-973) (-786) (-243 |#3|) (-732)) (T -229)) +((-1741 (((-589 (-710)) $) 47) (((-589 (-710)) $ |#3|) 50)) (-3038 (((-710) $) 49) (((-710) $ |#3|) 52)) (-1914 (($ $) 65)) (-1220 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3437 (((-710) $ |#3|) 39) (((-710) $) 36)) (-1360 (((-1 $ (-710)) |#3|) 15) (((-1 $ (-710)) $) 77)) (-3994 ((|#4| $) 58)) (-2286 (((-108) $) 56)) (-3865 (($ $) 64)) (-2812 (($ $ (-589 (-271 $))) 96) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-589 |#4|) (-589 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-589 |#4|) (-589 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-589 |#3|) (-589 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-589 |#3|) (-589 |#2|)) 84)) (-3984 (($ $ |#4|) NIL) (($ $ (-589 |#4|)) NIL) (($ $ |#4| (-710)) NIL) (($ $ (-589 |#4|) (-589 (-710))) NIL) (($ $) NIL) (($ $ (-710)) NIL) (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2007 (((-589 |#3|) $) 75)) (-2640 ((|#5| $) NIL) (((-710) $ |#4|) NIL) (((-589 (-710)) $ (-589 |#4|)) NIL) (((-710) $ |#3|) 44)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-383 (-523))) NIL) (($ $) NIL))) +(((-229 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1691 (|#1| |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -2812 (|#1| |#1| (-589 |#3|) (-589 |#2|))) (-15 -2812 (|#1| |#1| |#3| |#2|)) (-15 -2812 (|#1| |#1| (-589 |#3|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#3| |#1|)) (-15 -1360 ((-1 |#1| (-710)) |#1|)) (-15 -1914 (|#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -3994 (|#4| |#1|)) (-15 -2286 ((-108) |#1|)) (-15 -3038 ((-710) |#1| |#3|)) (-15 -1741 ((-589 (-710)) |#1| |#3|)) (-15 -3038 ((-710) |#1|)) (-15 -1741 ((-589 (-710)) |#1|)) (-15 -2640 ((-710) |#1| |#3|)) (-15 -3437 ((-710) |#1|)) (-15 -3437 ((-710) |#1| |#3|)) (-15 -2007 ((-589 |#3|) |#1|)) (-15 -1360 ((-1 |#1| (-710)) |#3|)) (-15 -1220 ((-3 |#3| "failed") |#1|)) (-15 -1691 (|#1| |#3|)) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1|)) (-15 -2640 ((-589 (-710)) |#1| (-589 |#4|))) (-15 -2640 ((-710) |#1| |#4|)) (-15 -1220 ((-3 |#4| "failed") |#1|)) (-15 -1691 (|#1| |#4|)) (-15 -2812 (|#1| |#1| (-589 |#4|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#4| |#1|)) (-15 -2812 (|#1| |#1| (-589 |#4|) (-589 |#2|))) (-15 -2812 (|#1| |#1| |#4| |#2|)) (-15 -2812 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| (-271 |#1|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2640 (|#5| |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -3984 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -3984 (|#1| |#1| |#4| (-710))) (-15 -3984 (|#1| |#1| (-589 |#4|))) (-15 -3984 (|#1| |#1| |#4|)) (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) (-230 |#2| |#3| |#4| |#5|) (-973) (-786) (-243 |#3|) (-732)) (T -229)) NIL -(-10 -8 (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -2679 (|#1| |#1| (-589 |#3|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#3| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#3|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#3| |#1|)) (-15 -3178 ((-1 |#1| (-710)) |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -3415 (|#4| |#1|)) (-15 -1453 ((-108) |#1|)) (-15 -2656 ((-710) |#1| |#3|)) (-15 -1854 ((-589 (-710)) |#1| |#3|)) (-15 -2656 ((-710) |#1|)) (-15 -1854 ((-589 (-710)) |#1|)) (-15 -2299 ((-710) |#1| |#3|)) (-15 -1640 ((-710) |#1|)) (-15 -1640 ((-710) |#1| |#3|)) (-15 -1748 ((-589 |#3|) |#1|)) (-15 -3178 ((-1 |#1| (-710)) |#3|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -1458 (|#1| |#3|)) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -2299 ((-589 (-710)) |#1| (-589 |#4|))) (-15 -2299 ((-710) |#1| |#4|)) (-15 -3517 ((-3 |#4| "failed") |#1|)) (-15 -1458 (|#1| |#4|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#4| |#1|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#4| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2299 (|#5| |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3523 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -3523 (|#1| |#1| |#4| (-710))) (-15 -3523 (|#1| |#1| (-589 |#4|))) (-15 -3523 (|#1| |#1| |#4|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1854 (((-589 (-710)) $) 214) (((-589 (-710)) $ |#2|) 212)) (-2656 (((-710) $) 213) (((-710) $ |#2|) 211)) (-1957 (((-589 |#3|) $) 110)) (-1786 (((-1083 $) $ |#3|) 125) (((-1083 |#1|) $) 124)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 87 (|has| |#1| (-515)))) (-3345 (($ $) 88 (|has| |#1| (-515)))) (-3331 (((-108) $) 90 (|has| |#1| (-515)))) (-3893 (((-710) $) 112) (((-710) $ (-589 |#3|)) 111)) (-3212 (((-3 $ "failed") $ $) 19)) (-3156 (((-394 (-1083 $)) (-1083 $)) 100 (|has| |#1| (-840)))) (-2291 (($ $) 98 (|has| |#1| (-427)))) (-3614 (((-394 $) $) 97 (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-840)))) (-1413 (($ $) 207)) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 164) (((-3 (-383 (-523)) "failed") $) 162 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 160 (|has| |#1| (-964 (-523)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3474 ((|#1| $) 165) (((-383 (-523)) $) 161 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 159 (|has| |#1| (-964 (-523)))) ((|#3| $) 135) ((|#2| $) 220)) (-3078 (($ $ $ |#3|) 108 (|has| |#1| (-158)))) (-3810 (($ $) 154)) (-2381 (((-629 (-523)) (-629 $)) 134 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 133 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 132) (((-629 |#1|) (-629 $)) 131)) (-2121 (((-3 $ "failed") $) 34)) (-2528 (($ $) 176 (|has| |#1| (-427))) (($ $ |#3|) 105 (|has| |#1| (-427)))) (-3799 (((-589 $) $) 109)) (-2657 (((-108) $) 96 (|has| |#1| (-840)))) (-1284 (($ $ |#1| |#4| $) 172)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 84 (-12 (|has| |#3| (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 83 (-12 (|has| |#3| (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1640 (((-710) $ |#2|) 217) (((-710) $) 216)) (-2023 (((-108) $) 31)) (-3554 (((-710) $) 169)) (-1945 (($ (-1083 |#1|) |#3|) 117) (($ (-1083 $) |#3|) 116)) (-3679 (((-589 $) $) 126)) (-2620 (((-108) $) 152)) (-1933 (($ |#1| |#4|) 153) (($ $ |#3| (-710)) 119) (($ $ (-589 |#3|) (-589 (-710))) 118)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#3|) 120)) (-1575 ((|#4| $) 170) (((-710) $ |#3|) 122) (((-589 (-710)) $ (-589 |#3|)) 121)) (-2454 (($ $ $) 79 (|has| |#1| (-786)))) (-2062 (($ $ $) 78 (|has| |#1| (-786)))) (-3782 (($ (-1 |#4| |#4|) $) 171)) (-3612 (($ (-1 |#1| |#1|) $) 151)) (-3178 (((-1 $ (-710)) |#2|) 219) (((-1 $ (-710)) $) 206 (|has| |#1| (-211)))) (-2520 (((-3 |#3| "failed") $) 123)) (-3774 (($ $) 149)) (-3786 ((|#1| $) 148)) (-3415 ((|#3| $) 209)) (-3244 (($ (-589 $)) 94 (|has| |#1| (-427))) (($ $ $) 93 (|has| |#1| (-427)))) (-3779 (((-1070) $) 9)) (-1453 (((-108) $) 210)) (-3226 (((-3 (-589 $) "failed") $) 114)) (-4006 (((-3 (-589 $) "failed") $) 115)) (-2630 (((-3 (-2 (|:| |var| |#3|) (|:| -2735 (-710))) "failed") $) 113)) (-3197 (($ $) 208)) (-2783 (((-1034) $) 10)) (-3749 (((-108) $) 166)) (-3760 ((|#1| $) 167)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 95 (|has| |#1| (-427)))) (-3278 (($ (-589 $)) 92 (|has| |#1| (-427))) (($ $ $) 91 (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 101 (|has| |#1| (-840)))) (-1820 (((-394 $) $) 99 (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) 145) (($ $ (-271 $)) 144) (($ $ $ $) 143) (($ $ (-589 $) (-589 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-589 |#3|) (-589 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-589 |#3|) (-589 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-211))) (($ $ (-589 |#2|) (-589 $)) 204 (|has| |#1| (-211))) (($ $ |#2| |#1|) 203 (|has| |#1| (-211))) (($ $ (-589 |#2|) (-589 |#1|)) 202 (|has| |#1| (-211)))) (-3549 (($ $ |#3|) 107 (|has| |#1| (-158)))) (-3523 (($ $ |#3|) 42) (($ $ (-589 |#3|)) 41) (($ $ |#3| (-710)) 40) (($ $ (-589 |#3|) (-589 (-710))) 39) (($ $) 238 (|has| |#1| (-211))) (($ $ (-710)) 236 (|has| |#1| (-211))) (($ $ (-1087)) 234 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 233 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 232 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 231 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1748 (((-589 |#2|) $) 218)) (-2299 ((|#4| $) 150) (((-710) $ |#3|) 130) (((-589 (-710)) $ (-589 |#3|)) 129) (((-710) $ |#2|) 215)) (-3663 (((-823 (-355)) $) 82 (-12 (|has| |#3| (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) 81 (-12 (|has| |#3| (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) 80 (-12 (|has| |#3| (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) 175 (|has| |#1| (-427))) (($ $ |#3|) 106 (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 104 (-4099 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-383 (-523))) 72 (-3262 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))))) (($ $) 85 (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) 168)) (-2365 ((|#1| $ |#4|) 155) (($ $ |#3| (-710)) 128) (($ $ (-589 |#3|) (-589 (-710))) 127)) (-3901 (((-3 $ "failed") $) 73 (-3262 (-4099 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) 29)) (-2276 (($ $ $ (-710)) 173 (|has| |#1| (-158)))) (-1704 (((-108) $ $) 89 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ |#3|) 38) (($ $ (-589 |#3|)) 37) (($ $ |#3| (-710)) 36) (($ $ (-589 |#3|) (-589 (-710))) 35) (($ $) 237 (|has| |#1| (-211))) (($ $ (-710)) 235 (|has| |#1| (-211))) (($ $ (-1087)) 230 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 229 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 228 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 227 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-4043 (((-108) $ $) 76 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 75 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 77 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 74 (|has| |#1| (-786)))) (-4098 (($ $ |#1|) 156 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 157 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(-10 -8 (-15 -1691 (|#1| |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -2812 (|#1| |#1| (-589 |#3|) (-589 |#2|))) (-15 -2812 (|#1| |#1| |#3| |#2|)) (-15 -2812 (|#1| |#1| (-589 |#3|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#3| |#1|)) (-15 -1360 ((-1 |#1| (-710)) |#1|)) (-15 -1914 (|#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -3994 (|#4| |#1|)) (-15 -2286 ((-108) |#1|)) (-15 -3038 ((-710) |#1| |#3|)) (-15 -1741 ((-589 (-710)) |#1| |#3|)) (-15 -3038 ((-710) |#1|)) (-15 -1741 ((-589 (-710)) |#1|)) (-15 -2640 ((-710) |#1| |#3|)) (-15 -3437 ((-710) |#1|)) (-15 -3437 ((-710) |#1| |#3|)) (-15 -2007 ((-589 |#3|) |#1|)) (-15 -1360 ((-1 |#1| (-710)) |#3|)) (-15 -1220 ((-3 |#3| "failed") |#1|)) (-15 -1691 (|#1| |#3|)) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1|)) (-15 -2640 ((-589 (-710)) |#1| (-589 |#4|))) (-15 -2640 ((-710) |#1| |#4|)) (-15 -1220 ((-3 |#4| "failed") |#1|)) (-15 -1691 (|#1| |#4|)) (-15 -2812 (|#1| |#1| (-589 |#4|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#4| |#1|)) (-15 -2812 (|#1| |#1| (-589 |#4|) (-589 |#2|))) (-15 -2812 (|#1| |#1| |#4| |#2|)) (-15 -2812 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| (-271 |#1|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2640 (|#5| |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -3984 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -3984 (|#1| |#1| |#4| (-710))) (-15 -3984 (|#1| |#1| (-589 |#4|))) (-15 -3984 (|#1| |#1| |#4|)) (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1741 (((-589 (-710)) $) 214) (((-589 (-710)) $ |#2|) 212)) (-3038 (((-710) $) 213) (((-710) $ |#2|) 211)) (-1292 (((-589 |#3|) $) 110)) (-2389 (((-1083 $) $ |#3|) 125) (((-1083 |#1|) $) 124)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 87 (|has| |#1| (-515)))) (-3306 (($ $) 88 (|has| |#1| (-515)))) (-3174 (((-108) $) 90 (|has| |#1| (-515)))) (-1877 (((-710) $) 112) (((-710) $ (-589 |#3|)) 111)) (-3405 (((-3 $ "failed") $ $) 19)) (-4130 (((-394 (-1083 $)) (-1083 $)) 100 (|has| |#1| (-840)))) (-3718 (($ $) 98 (|has| |#1| (-427)))) (-4226 (((-394 $) $) 97 (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-840)))) (-1914 (($ $) 207)) (-4189 (($) 17 T CONST)) (-1220 (((-3 |#1| "failed") $) 164) (((-3 (-383 (-523)) "failed") $) 162 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 160 (|has| |#1| (-964 (-523)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3508 ((|#1| $) 165) (((-383 (-523)) $) 161 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 159 (|has| |#1| (-964 (-523)))) ((|#3| $) 135) ((|#2| $) 220)) (-1611 (($ $ $ |#3|) 108 (|has| |#1| (-158)))) (-1457 (($ $) 154)) (-2243 (((-629 (-523)) (-629 $)) 134 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 133 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 132) (((-629 |#1|) (-629 $)) 131)) (-1444 (((-3 $ "failed") $) 34)) (-1272 (($ $) 176 (|has| |#1| (-427))) (($ $ |#3|) 105 (|has| |#1| (-427)))) (-1447 (((-589 $) $) 109)) (-3049 (((-108) $) 96 (|has| |#1| (-840)))) (-4222 (($ $ |#1| |#4| $) 172)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 84 (-12 (|has| |#3| (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 83 (-12 (|has| |#3| (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-3437 (((-710) $ |#2|) 217) (((-710) $) 216)) (-2769 (((-108) $) 31)) (-1789 (((-710) $) 169)) (-1280 (($ (-1083 |#1|) |#3|) 117) (($ (-1083 $) |#3|) 116)) (-3560 (((-589 $) $) 126)) (-2704 (((-108) $) 152)) (-1267 (($ |#1| |#4|) 153) (($ $ |#3| (-710)) 119) (($ $ (-589 |#3|) (-589 (-710))) 118)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ |#3|) 120)) (-4047 ((|#4| $) 170) (((-710) $ |#3|) 122) (((-589 (-710)) $ (-589 |#3|)) 121)) (-3239 (($ $ $) 79 (|has| |#1| (-786)))) (-3158 (($ $ $) 78 (|has| |#1| (-786)))) (-2041 (($ (-1 |#4| |#4|) $) 171)) (-1345 (($ (-1 |#1| |#1|) $) 151)) (-1360 (((-1 $ (-710)) |#2|) 219) (((-1 $ (-710)) $) 206 (|has| |#1| (-211)))) (-4213 (((-3 |#3| "failed") $) 123)) (-1427 (($ $) 149)) (-1437 ((|#1| $) 148)) (-3994 ((|#3| $) 209)) (-3278 (($ (-589 $)) 94 (|has| |#1| (-427))) (($ $ $) 93 (|has| |#1| (-427)))) (-2032 (((-1070) $) 9)) (-2286 (((-108) $) 210)) (-3538 (((-3 (-589 $) "failed") $) 114)) (-3478 (((-3 (-589 $) "failed") $) 115)) (-2790 (((-3 (-2 (|:| |var| |#3|) (|:| -1475 (-710))) "failed") $) 113)) (-3865 (($ $) 208)) (-3951 (((-1034) $) 10)) (-1408 (((-108) $) 166)) (-1419 ((|#1| $) 167)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 95 (|has| |#1| (-427)))) (-3310 (($ (-589 $)) 92 (|has| |#1| (-427))) (($ $ $) 91 (|has| |#1| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) 101 (|has| |#1| (-840)))) (-2424 (((-394 $) $) 99 (|has| |#1| (-840)))) (-4007 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-515)))) (-2812 (($ $ (-589 (-271 $))) 145) (($ $ (-271 $)) 144) (($ $ $ $) 143) (($ $ (-589 $) (-589 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-589 |#3|) (-589 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-589 |#3|) (-589 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-211))) (($ $ (-589 |#2|) (-589 $)) 204 (|has| |#1| (-211))) (($ $ |#2| |#1|) 203 (|has| |#1| (-211))) (($ $ (-589 |#2|) (-589 |#1|)) 202 (|has| |#1| (-211)))) (-1744 (($ $ |#3|) 107 (|has| |#1| (-158)))) (-3984 (($ $ |#3|) 42) (($ $ (-589 |#3|)) 41) (($ $ |#3| (-710)) 40) (($ $ (-589 |#3|) (-589 (-710))) 39) (($ $) 238 (|has| |#1| (-211))) (($ $ (-710)) 236 (|has| |#1| (-211))) (($ $ (-1087)) 234 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 233 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 232 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 231 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2007 (((-589 |#2|) $) 218)) (-2640 ((|#4| $) 150) (((-710) $ |#3|) 130) (((-589 (-710)) $ (-589 |#3|)) 129) (((-710) $ |#2|) 215)) (-1400 (((-823 (-355)) $) 82 (-12 (|has| |#3| (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) 81 (-12 (|has| |#3| (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) 80 (-12 (|has| |#3| (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-1618 ((|#1| $) 175 (|has| |#1| (-427))) (($ $ |#3|) 106 (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 104 (-3147 (|has| $ (-134)) (|has| |#1| (-840))))) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-383 (-523))) 72 (-3172 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))))) (($ $) 85 (|has| |#1| (-515)))) (-3819 (((-589 |#1|) $) 168)) (-2084 ((|#1| $ |#4|) 155) (($ $ |#3| (-710)) 128) (($ $ (-589 |#3|) (-589 (-710))) 127)) (-1942 (((-3 $ "failed") $) 73 (-3172 (-3147 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) 29)) (-3553 (($ $ $ (-710)) 173 (|has| |#1| (-158)))) (-2801 (((-108) $ $) 89 (|has| |#1| (-515)))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ |#3|) 38) (($ $ (-589 |#3|)) 37) (($ $ |#3| (-710)) 36) (($ $ (-589 |#3|) (-589 (-710))) 35) (($ $) 237 (|has| |#1| (-211))) (($ $ (-710)) 235 (|has| |#1| (-211))) (($ $ (-1087)) 230 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 229 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 228 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 227 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-4006 (((-108) $ $) 76 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 75 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 77 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 74 (|has| |#1| (-786)))) (-4074 (($ $ |#1|) 156 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 157 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 147) (($ $ |#1|) 146))) (((-230 |#1| |#2| |#3| |#4|) (-129) (-973) (-786) (-243 |t#2|) (-732)) (T -230)) -((-3178 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-1 *1 (-710))) (-4 *1 (-230 *4 *3 *5 *6)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-589 *4)))) (-1640 (*1 *2 *1 *3) (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-710)))) (-2299 (*1 *2 *1 *3) (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) (-1854 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-589 (-710))))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-710)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-589 (-710))))) (-2656 (*1 *2 *1 *3) (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) (-1453 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-108)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-4 *2 (-243 *4)))) (-3197 (*1 *1 *1) (-12 (-4 *1 (-230 *2 *3 *4 *5)) (-4 *2 (-973)) (-4 *3 (-786)) (-4 *4 (-243 *3)) (-4 *5 (-732)))) (-1413 (*1 *1 *1) (-12 (-4 *1 (-230 *2 *3 *4 *5)) (-4 *2 (-973)) (-4 *3 (-786)) (-4 *4 (-243 *3)) (-4 *5 (-732)))) (-3178 (*1 *2 *1) (-12 (-4 *3 (-211)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-1 *1 (-710))) (-4 *1 (-230 *3 *4 *5 *6))))) -(-13 (-880 |t#1| |t#4| |t#3|) (-209 |t#1|) (-964 |t#2|) (-10 -8 (-15 -3178 ((-1 $ (-710)) |t#2|)) (-15 -1748 ((-589 |t#2|) $)) (-15 -1640 ((-710) $ |t#2|)) (-15 -1640 ((-710) $)) (-15 -2299 ((-710) $ |t#2|)) (-15 -1854 ((-589 (-710)) $)) (-15 -2656 ((-710) $)) (-15 -1854 ((-589 (-710)) $ |t#2|)) (-15 -2656 ((-710) $ |t#2|)) (-15 -1453 ((-108) $)) (-15 -3415 (|t#3| $)) (-15 -3197 ($ $)) (-15 -1413 ($ $)) (IF (|has| |t#1| (-211)) (PROGN (-6 (-484 |t#2| |t#1|)) (-6 (-484 |t#2| $)) (-6 (-286 $)) (-15 -3178 ((-1 $ (-710)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-564 (-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523))))) ((-209 |#1|) . T) ((-211) |has| |#1| (-211)) ((-267) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-286 $) . T) ((-302 |#1| |#4|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3262 (|has| |#1| (-840)) (|has| |#1| (-427))) ((-484 |#2| |#1|) |has| |#1| (-211)) ((-484 |#2| $) |has| |#1| (-211)) ((-484 |#3| |#1|) . T) ((-484 |#3| $) . T) ((-484 $ $) . T) ((-515) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-831 |#3|) . T) ((-817 (-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355)))) ((-817 (-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))) ((-880 |#1| |#4| |#3|) . T) ((-840) |has| |#1| (-840)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-964 |#2|) . T) ((-964 |#3|) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) |has| |#1| (-840))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-2292 ((|#1| $) 54)) (-3125 ((|#1| $) 44)) (-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-3152 (($ $) 60)) (-2867 (($ $) 48)) (-3845 ((|#1| |#1| $) 46)) (-2085 ((|#1| $) 45)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-2996 (((-710) $) 61)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-1598 ((|#1| |#1| $) 52)) (-2544 ((|#1| |#1| $) 51)) (-3450 (($ |#1| $) 40)) (-2510 (((-710) $) 55)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1592 ((|#1| $) 62)) (-1352 ((|#1| $) 50)) (-2395 ((|#1| $) 49)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1651 ((|#1| |#1| $) 58)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-1234 ((|#1| $) 59)) (-3047 (($) 57) (($ (-589 |#1|)) 56)) (-1583 (((-710) $) 43)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-4040 ((|#1| $) 53)) (-2401 (($ (-589 |#1|)) 42)) (-1348 ((|#1| $) 63)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-231 |#1|) (-129) (-1122)) (T -231)) -((-3047 (*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-3047 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-4 *1 (-231 *3)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-231 *3)) (-4 *3 (-1122)) (-5 *2 (-710)))) (-2292 (*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-1598 (*1 *2 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-2544 (*1 *2 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-1352 (*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-2867 (*1 *1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) -(-13 (-1035 |t#1|) (-923 |t#1|) (-10 -8 (-15 -3047 ($)) (-15 -3047 ($ (-589 |t#1|))) (-15 -2510 ((-710) $)) (-15 -2292 (|t#1| $)) (-15 -4040 (|t#1| $)) (-15 -1598 (|t#1| |t#1| $)) (-15 -2544 (|t#1| |t#1| $)) (-15 -1352 (|t#1| $)) (-15 -2395 (|t#1| $)) (-15 -2867 ($ $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-923 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1035 |#1|) . T) ((-1122) . T)) -((-2189 (((-1 (-874 (-203)) (-203) (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203) (-203))) 139)) (-2916 (((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355))) 160) (((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 158) (((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355))) 163) (((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 159) (((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355))) 150) (((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 149) (((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355))) 129) (((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240))) 127) (((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355))) 128) (((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240))) 125)) (-2879 (((-1170) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355))) 162) (((-1170) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 161) (((-1170) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355))) 165) (((-1170) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 164) (((-1170) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355))) 152) (((-1170) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 151) (((-1170) (-1 (-874 (-203)) (-203)) (-1011 (-355))) 135) (((-1170) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240))) 134) (((-1170) (-810 (-1 (-203) (-203))) (-1011 (-355))) 133) (((-1170) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240))) 132) (((-1169) (-808 (-1 (-203) (-203))) (-1011 (-355))) 99) (((-1169) (-808 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240))) 98) (((-1169) (-1 (-203) (-203)) (-1011 (-355))) 95) (((-1169) (-1 (-203) (-203)) (-1011 (-355)) (-589 (-240))) 94))) -(((-232) (-10 -7 (-15 -2879 ((-1169) (-1 (-203) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) (-1 (-203) (-203)) (-1011 (-355)))) (-15 -2879 ((-1169) (-808 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) (-808 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -2879 ((-1170) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-810 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)))) (-15 -2879 ((-1170) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2879 ((-1170) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)))) (-15 -2189 ((-1 (-874 (-203)) (-203) (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203) (-203)))))) (T -232)) -((-2189 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203) (-203))) (-5 *3 (-1 (-203) (-203) (-203) (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-808 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1169)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1169)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-232))))) -(-10 -7 (-15 -2879 ((-1169) (-1 (-203) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) (-1 (-203) (-203)) (-1011 (-355)))) (-15 -2879 ((-1169) (-808 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) (-808 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -2879 ((-1170) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-810 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)))) (-15 -2879 ((-1170) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2879 ((-1170) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)))) (-15 -2189 ((-1 (-874 (-203)) (-203) (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203) (-203))))) -((-2879 (((-1169) (-271 |#2|) (-1087) (-1087) (-589 (-240))) 93))) -(((-233 |#1| |#2|) (-10 -7 (-15 -2879 ((-1169) (-271 |#2|) (-1087) (-1087) (-589 (-240))))) (-13 (-515) (-786) (-964 (-523))) (-406 |#1|)) (T -233)) -((-2879 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-271 *7)) (-5 *4 (-1087)) (-5 *5 (-589 (-240))) (-4 *7 (-406 *6)) (-4 *6 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-1169)) (-5 *1 (-233 *6 *7))))) -(-10 -7 (-15 -2879 ((-1169) (-271 |#2|) (-1087) (-1087) (-589 (-240))))) -((-1657 (((-523) (-523)) 50)) (-3110 (((-523) (-523)) 51)) (-4005 (((-203) (-203)) 52)) (-2880 (((-1170) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203))) 49)) (-2400 (((-1170) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)) (-108)) 47))) -(((-234) (-10 -7 (-15 -2400 ((-1170) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)) (-108))) (-15 -2880 ((-1170) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)))) (-15 -1657 ((-523) (-523))) (-15 -3110 ((-523) (-523))) (-15 -4005 ((-203) (-203))))) (T -234)) -((-4005 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-234)))) (-3110 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-234)))) (-1657 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-234)))) (-2880 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-155 (-203)) (-155 (-203)))) (-5 *4 (-1011 (-203))) (-5 *2 (-1170)) (-5 *1 (-234)))) (-2400 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-155 (-203)) (-155 (-203)))) (-5 *4 (-1011 (-203))) (-5 *5 (-108)) (-5 *2 (-1170)) (-5 *1 (-234))))) -(-10 -7 (-15 -2400 ((-1170) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)) (-108))) (-15 -2880 ((-1170) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)))) (-15 -1657 ((-523) (-523))) (-15 -3110 ((-523) (-523))) (-15 -4005 ((-203) (-203)))) -((-1458 (((-1009 (-355)) (-1009 (-292 |#1|))) 16))) -(((-235 |#1|) (-10 -7 (-15 -1458 ((-1009 (-355)) (-1009 (-292 |#1|))))) (-13 (-786) (-515) (-564 (-355)))) (T -235)) -((-1458 (*1 *2 *3) (-12 (-5 *3 (-1009 (-292 *4))) (-4 *4 (-13 (-786) (-515) (-564 (-355)))) (-5 *2 (-1009 (-355))) (-5 *1 (-235 *4))))) -(-10 -7 (-15 -1458 ((-1009 (-355)) (-1009 (-292 |#1|))))) -((-2916 (((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355))) 69) (((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240))) 68) (((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355))) 59) (((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240))) 58) (((-1047 (-203)) (-810 |#1|) (-1009 (-355))) 50) (((-1047 (-203)) (-810 |#1|) (-1009 (-355)) (-589 (-240))) 49)) (-2879 (((-1170) (-813 |#1|) (-1009 (-355)) (-1009 (-355))) 72) (((-1170) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240))) 71) (((-1170) |#1| (-1009 (-355)) (-1009 (-355))) 62) (((-1170) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240))) 61) (((-1170) (-810 |#1|) (-1009 (-355))) 54) (((-1170) (-810 |#1|) (-1009 (-355)) (-589 (-240))) 53) (((-1169) (-808 |#1|) (-1009 (-355))) 41) (((-1169) (-808 |#1|) (-1009 (-355)) (-589 (-240))) 40) (((-1169) |#1| (-1009 (-355))) 33) (((-1169) |#1| (-1009 (-355)) (-589 (-240))) 32))) -(((-236 |#1|) (-10 -7 (-15 -2879 ((-1169) |#1| (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) |#1| (-1009 (-355)))) (-15 -2879 ((-1169) (-808 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) (-808 |#1|) (-1009 (-355)))) (-15 -2879 ((-1170) (-810 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-810 |#1|) (-1009 (-355)))) (-15 -2916 ((-1047 (-203)) (-810 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-810 |#1|) (-1009 (-355)))) (-15 -2879 ((-1170) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) |#1| (-1009 (-355)) (-1009 (-355)))) (-15 -2916 ((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)))) (-15 -2879 ((-1170) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-813 |#1|) (-1009 (-355)) (-1009 (-355)))) (-15 -2916 ((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355))))) (-13 (-564 (-499)) (-1016))) (T -236)) -((-2916 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-813 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *5)))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-813 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *6)))) (-2879 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-813 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) (-5 *1 (-236 *5)))) (-2879 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-813 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) (-5 *1 (-236 *6)))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-2879 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1170)) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-2879 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-810 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *5)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-810 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) (-5 *1 (-236 *5)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) (-5 *1 (-236 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-808 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1169)) (-5 *1 (-236 *5)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1169)) (-5 *1 (-236 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1169)) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016)))))) -(-10 -7 (-15 -2879 ((-1169) |#1| (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) |#1| (-1009 (-355)))) (-15 -2879 ((-1169) (-808 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) (-808 |#1|) (-1009 (-355)))) (-15 -2879 ((-1170) (-810 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-810 |#1|) (-1009 (-355)))) (-15 -2916 ((-1047 (-203)) (-810 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-810 |#1|) (-1009 (-355)))) (-15 -2879 ((-1170) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) |#1| (-1009 (-355)) (-1009 (-355)))) (-15 -2916 ((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)))) (-15 -2879 ((-1170) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-813 |#1|) (-1009 (-355)) (-1009 (-355)))) (-15 -2916 ((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355))))) -((-2879 (((-1170) (-589 (-203)) (-589 (-203)) (-589 (-203)) (-589 (-240))) 21) (((-1170) (-589 (-203)) (-589 (-203)) (-589 (-203))) 22) (((-1169) (-589 (-874 (-203))) (-589 (-240))) 13) (((-1169) (-589 (-874 (-203)))) 14) (((-1169) (-589 (-203)) (-589 (-203)) (-589 (-240))) 18) (((-1169) (-589 (-203)) (-589 (-203))) 19))) -(((-237) (-10 -7 (-15 -2879 ((-1169) (-589 (-203)) (-589 (-203)))) (-15 -2879 ((-1169) (-589 (-203)) (-589 (-203)) (-589 (-240)))) (-15 -2879 ((-1169) (-589 (-874 (-203))))) (-15 -2879 ((-1169) (-589 (-874 (-203))) (-589 (-240)))) (-15 -2879 ((-1170) (-589 (-203)) (-589 (-203)) (-589 (-203)))) (-15 -2879 ((-1170) (-589 (-203)) (-589 (-203)) (-589 (-203)) (-589 (-240)))))) (T -237)) -((-2879 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-589 (-203))) (-5 *4 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-237)))) (-2879 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1170)) (-5 *1 (-237)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *4 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-237)))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *2 (-1169)) (-5 *1 (-237)))) (-2879 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-589 (-203))) (-5 *4 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-237)))) (-2879 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1169)) (-5 *1 (-237))))) -(-10 -7 (-15 -2879 ((-1169) (-589 (-203)) (-589 (-203)))) (-15 -2879 ((-1169) (-589 (-203)) (-589 (-203)) (-589 (-240)))) (-15 -2879 ((-1169) (-589 (-874 (-203))))) (-15 -2879 ((-1169) (-589 (-874 (-203))) (-589 (-240)))) (-15 -2879 ((-1170) (-589 (-203)) (-589 (-203)) (-589 (-203)))) (-15 -2879 ((-1170) (-589 (-203)) (-589 (-203)) (-589 (-203)) (-589 (-240))))) -((-3087 (((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) (-589 (-240)) (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) 24)) (-1665 (((-852) (-589 (-240)) (-852)) 49)) (-3380 (((-852) (-589 (-240)) (-852)) 48)) (-3142 (((-589 (-355)) (-589 (-240)) (-589 (-355))) 65)) (-3026 (((-355) (-589 (-240)) (-355)) 55)) (-2027 (((-852) (-589 (-240)) (-852)) 50)) (-3935 (((-108) (-589 (-240)) (-108)) 26)) (-2331 (((-1070) (-589 (-240)) (-1070)) 19)) (-1775 (((-1070) (-589 (-240)) (-1070)) 25)) (-2992 (((-1047 (-203)) (-589 (-240))) 43)) (-4051 (((-589 (-1011 (-355))) (-589 (-240)) (-589 (-1011 (-355)))) 37)) (-3427 (((-805) (-589 (-240)) (-805)) 31)) (-3451 (((-805) (-589 (-240)) (-805)) 32)) (-2013 (((-1 (-874 (-203)) (-874 (-203))) (-589 (-240)) (-1 (-874 (-203)) (-874 (-203)))) 60)) (-1636 (((-108) (-589 (-240)) (-108)) 15)) (-2386 (((-108) (-589 (-240)) (-108)) 14))) -(((-238) (-10 -7 (-15 -2386 ((-108) (-589 (-240)) (-108))) (-15 -1636 ((-108) (-589 (-240)) (-108))) (-15 -3087 ((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) (-589 (-240)) (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -2331 ((-1070) (-589 (-240)) (-1070))) (-15 -1775 ((-1070) (-589 (-240)) (-1070))) (-15 -3935 ((-108) (-589 (-240)) (-108))) (-15 -3427 ((-805) (-589 (-240)) (-805))) (-15 -3451 ((-805) (-589 (-240)) (-805))) (-15 -4051 ((-589 (-1011 (-355))) (-589 (-240)) (-589 (-1011 (-355))))) (-15 -3380 ((-852) (-589 (-240)) (-852))) (-15 -1665 ((-852) (-589 (-240)) (-852))) (-15 -2992 ((-1047 (-203)) (-589 (-240)))) (-15 -2027 ((-852) (-589 (-240)) (-852))) (-15 -3026 ((-355) (-589 (-240)) (-355))) (-15 -2013 ((-1 (-874 (-203)) (-874 (-203))) (-589 (-240)) (-1 (-874 (-203)) (-874 (-203))))) (-15 -3142 ((-589 (-355)) (-589 (-240)) (-589 (-355)))))) (T -238)) -((-3142 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-355))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2013 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3026 (*1 *2 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2027 (*1 *2 *3 *2) (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-238)))) (-1665 (*1 *2 *3 *2) (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3380 (*1 *2 *3 *2) (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-4051 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3451 (*1 *2 *3 *2) (-12 (-5 *2 (-805)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3427 (*1 *2 *3 *2) (-12 (-5 *2 (-805)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3935 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-1775 (*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2331 (*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3087 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-1636 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2386 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238))))) -(-10 -7 (-15 -2386 ((-108) (-589 (-240)) (-108))) (-15 -1636 ((-108) (-589 (-240)) (-108))) (-15 -3087 ((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) (-589 (-240)) (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -2331 ((-1070) (-589 (-240)) (-1070))) (-15 -1775 ((-1070) (-589 (-240)) (-1070))) (-15 -3935 ((-108) (-589 (-240)) (-108))) (-15 -3427 ((-805) (-589 (-240)) (-805))) (-15 -3451 ((-805) (-589 (-240)) (-805))) (-15 -4051 ((-589 (-1011 (-355))) (-589 (-240)) (-589 (-1011 (-355))))) (-15 -3380 ((-852) (-589 (-240)) (-852))) (-15 -1665 ((-852) (-589 (-240)) (-852))) (-15 -2992 ((-1047 (-203)) (-589 (-240)))) (-15 -2027 ((-852) (-589 (-240)) (-852))) (-15 -3026 ((-355) (-589 (-240)) (-355))) (-15 -2013 ((-1 (-874 (-203)) (-874 (-203))) (-589 (-240)) (-1 (-874 (-203)) (-874 (-203))))) (-15 -3142 ((-589 (-355)) (-589 (-240)) (-589 (-355))))) -((-2385 (((-3 |#1| "failed") (-589 (-240)) (-1087)) 17))) -(((-239 |#1|) (-10 -7 (-15 -2385 ((-3 |#1| "failed") (-589 (-240)) (-1087)))) (-1122)) (T -239)) -((-2385 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *1 (-239 *2)) (-4 *2 (-1122))))) -(-10 -7 (-15 -2385 ((-3 |#1| "failed") (-589 (-240)) (-1087)))) -((-3924 (((-108) $ $) NIL)) (-3087 (($ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) 14)) (-1665 (($ (-852)) 70)) (-3380 (($ (-852)) 69)) (-3819 (($ (-589 (-355))) 76)) (-3026 (($ (-355)) 55)) (-2027 (($ (-852)) 71)) (-3935 (($ (-108)) 22)) (-2331 (($ (-1070)) 17)) (-1775 (($ (-1070)) 18)) (-2992 (($ (-1047 (-203))) 65)) (-4051 (($ (-589 (-1011 (-355)))) 61)) (-3499 (($ (-589 (-1011 (-355)))) 56) (($ (-589 (-1011 (-383 (-523))))) 60)) (-2905 (($ (-355)) 28) (($ (-805)) 32)) (-1826 (((-108) (-589 $) (-1087)) 85)) (-2385 (((-3 (-51) "failed") (-589 $) (-1087)) 87)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2393 (($ (-355)) 33) (($ (-805)) 34)) (-2966 (($ (-1 (-874 (-203)) (-874 (-203)))) 54)) (-2013 (($ (-1 (-874 (-203)) (-874 (-203)))) 72)) (-1796 (($ (-1 (-203) (-203))) 38) (($ (-1 (-203) (-203) (-203))) 42) (($ (-1 (-203) (-203) (-203) (-203))) 46)) (-1458 (((-794) $) 81)) (-1520 (($ (-108)) 23) (($ (-589 (-1011 (-355)))) 50)) (-2386 (($ (-108)) 24)) (-3983 (((-108) $ $) 83))) -(((-240) (-13 (-1016) (-10 -8 (-15 -2386 ($ (-108))) (-15 -1520 ($ (-108))) (-15 -3087 ($ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -2331 ($ (-1070))) (-15 -1775 ($ (-1070))) (-15 -3935 ($ (-108))) (-15 -1520 ($ (-589 (-1011 (-355))))) (-15 -2966 ($ (-1 (-874 (-203)) (-874 (-203))))) (-15 -2905 ($ (-355))) (-15 -2905 ($ (-805))) (-15 -2393 ($ (-355))) (-15 -2393 ($ (-805))) (-15 -1796 ($ (-1 (-203) (-203)))) (-15 -1796 ($ (-1 (-203) (-203) (-203)))) (-15 -1796 ($ (-1 (-203) (-203) (-203) (-203)))) (-15 -3026 ($ (-355))) (-15 -3499 ($ (-589 (-1011 (-355))))) (-15 -3499 ($ (-589 (-1011 (-383 (-523)))))) (-15 -4051 ($ (-589 (-1011 (-355))))) (-15 -2992 ($ (-1047 (-203)))) (-15 -3380 ($ (-852))) (-15 -1665 ($ (-852))) (-15 -2027 ($ (-852))) (-15 -2013 ($ (-1 (-874 (-203)) (-874 (-203))))) (-15 -3819 ($ (-589 (-355)))) (-15 -2385 ((-3 (-51) "failed") (-589 $) (-1087))) (-15 -1826 ((-108) (-589 $) (-1087)))))) (T -240)) -((-2386 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240)))) (-3087 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) (-5 *1 (-240)))) (-2331 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-240)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-240)))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) (-2966 (*1 *1 *2) (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *1 (-240)))) (-2905 (*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240)))) (-2905 (*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-240)))) (-2393 (*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240)))) (-2393 (*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-240)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-240)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203) (-203))) (-5 *1 (-240)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203) (-203) (-203))) (-5 *1 (-240)))) (-3026 (*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-383 (-523))))) (-5 *1 (-240)))) (-4051 (*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-240)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *1 (-240)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-240)))) (-2385 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *2 (-51)) (-5 *1 (-240)))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *2 (-108)) (-5 *1 (-240))))) -(-13 (-1016) (-10 -8 (-15 -2386 ($ (-108))) (-15 -1520 ($ (-108))) (-15 -3087 ($ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -2331 ($ (-1070))) (-15 -1775 ($ (-1070))) (-15 -3935 ($ (-108))) (-15 -1520 ($ (-589 (-1011 (-355))))) (-15 -2966 ($ (-1 (-874 (-203)) (-874 (-203))))) (-15 -2905 ($ (-355))) (-15 -2905 ($ (-805))) (-15 -2393 ($ (-355))) (-15 -2393 ($ (-805))) (-15 -1796 ($ (-1 (-203) (-203)))) (-15 -1796 ($ (-1 (-203) (-203) (-203)))) (-15 -1796 ($ (-1 (-203) (-203) (-203) (-203)))) (-15 -3026 ($ (-355))) (-15 -3499 ($ (-589 (-1011 (-355))))) (-15 -3499 ($ (-589 (-1011 (-383 (-523)))))) (-15 -4051 ($ (-589 (-1011 (-355))))) (-15 -2992 ($ (-1047 (-203)))) (-15 -3380 ($ (-852))) (-15 -1665 ($ (-852))) (-15 -2027 ($ (-852))) (-15 -2013 ($ (-1 (-874 (-203)) (-874 (-203))))) (-15 -3819 ($ (-589 (-355)))) (-15 -2385 ((-3 (-51) "failed") (-589 $) (-1087))) (-15 -1826 ((-108) (-589 $) (-1087))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1854 (((-589 (-710)) $) NIL) (((-589 (-710)) $ |#2|) NIL)) (-2656 (((-710) $) NIL) (((-710) $ |#2|) NIL)) (-1957 (((-589 |#3|) $) NIL)) (-1786 (((-1083 $) $ |#3|) NIL) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 |#3|)) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1413 (($ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1039 |#1| |#2|) "failed") $) 20)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1039 |#1| |#2|) $) NIL)) (-3078 (($ $ $ |#3|) NIL (|has| |#1| (-158)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ |#3|) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-495 |#3|) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))))) (-1640 (((-710) $ |#2|) NIL) (((-710) $) 10)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#1|) |#3|) NIL) (($ (-1083 $) |#3|) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-495 |#3|)) NIL) (($ $ |#3| (-710)) NIL) (($ $ (-589 |#3|) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#3|) NIL)) (-1575 (((-495 |#3|) $) NIL) (((-710) $ |#3|) NIL) (((-589 (-710)) $ (-589 |#3|)) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-495 |#3|) (-495 |#3|)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3178 (((-1 $ (-710)) |#2|) NIL) (((-1 $ (-710)) $) NIL (|has| |#1| (-211)))) (-2520 (((-3 |#3| "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3415 ((|#3| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-1453 (((-108) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| |#3|) (|:| -2735 (-710))) "failed") $) NIL)) (-3197 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-589 |#3|) (-589 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-589 |#3|) (-589 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-211))) (($ $ (-589 |#2|) (-589 $)) NIL (|has| |#1| (-211))) (($ $ |#2| |#1|) NIL (|has| |#1| (-211))) (($ $ (-589 |#2|) (-589 |#1|)) NIL (|has| |#1| (-211)))) (-3549 (($ $ |#3|) NIL (|has| |#1| (-158)))) (-3523 (($ $ |#3|) NIL) (($ $ (-589 |#3|)) NIL) (($ $ |#3| (-710)) NIL) (($ $ (-589 |#3|) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1748 (((-589 |#2|) $) NIL)) (-2299 (((-495 |#3|) $) NIL) (((-710) $ |#3|) NIL) (((-589 (-710)) $ (-589 |#3|)) NIL) (((-710) $ |#2|) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499)))))) (-2438 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ |#3|) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1039 |#1| |#2|)) 28) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-495 |#3|)) NIL) (($ $ |#3| (-710)) NIL) (($ $ (-589 |#3|) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ |#3|) NIL) (($ $ (-589 |#3|)) NIL) (($ $ |#3| (-710)) NIL) (($ $ (-589 |#3|) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +((-1360 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-1 *1 (-710))) (-4 *1 (-230 *4 *3 *5 *6)))) (-2007 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-589 *4)))) (-3437 (*1 *2 *1 *3) (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-710)))) (-2640 (*1 *2 *1 *3) (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) (-1741 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-589 (-710))))) (-3038 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-710)))) (-1741 (*1 *2 *1 *3) (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-589 (-710))))) (-3038 (*1 *2 *1 *3) (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) (-2286 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-108)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-4 *2 (-243 *4)))) (-3865 (*1 *1 *1) (-12 (-4 *1 (-230 *2 *3 *4 *5)) (-4 *2 (-973)) (-4 *3 (-786)) (-4 *4 (-243 *3)) (-4 *5 (-732)))) (-1914 (*1 *1 *1) (-12 (-4 *1 (-230 *2 *3 *4 *5)) (-4 *2 (-973)) (-4 *3 (-786)) (-4 *4 (-243 *3)) (-4 *5 (-732)))) (-1360 (*1 *2 *1) (-12 (-4 *3 (-211)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-1 *1 (-710))) (-4 *1 (-230 *3 *4 *5 *6))))) +(-13 (-880 |t#1| |t#4| |t#3|) (-209 |t#1|) (-964 |t#2|) (-10 -8 (-15 -1360 ((-1 $ (-710)) |t#2|)) (-15 -2007 ((-589 |t#2|) $)) (-15 -3437 ((-710) $ |t#2|)) (-15 -3437 ((-710) $)) (-15 -2640 ((-710) $ |t#2|)) (-15 -1741 ((-589 (-710)) $)) (-15 -3038 ((-710) $)) (-15 -1741 ((-589 (-710)) $ |t#2|)) (-15 -3038 ((-710) $ |t#2|)) (-15 -2286 ((-108) $)) (-15 -3994 (|t#3| $)) (-15 -3865 ($ $)) (-15 -1914 ($ $)) (IF (|has| |t#1| (-211)) (PROGN (-6 (-484 |t#2| |t#1|)) (-6 (-484 |t#2| $)) (-6 (-286 $)) (-15 -1360 ((-1 $ (-710)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-564 (-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523))))) ((-209 |#1|) . T) ((-211) |has| |#1| (-211)) ((-267) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-286 $) . T) ((-302 |#1| |#4|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3172 (|has| |#1| (-840)) (|has| |#1| (-427))) ((-484 |#2| |#1|) |has| |#1| (-211)) ((-484 |#2| $) |has| |#1| (-211)) ((-484 |#3| |#1|) . T) ((-484 |#3| $) . T) ((-484 $ $) . T) ((-515) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-831 |#3|) . T) ((-817 (-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355)))) ((-817 (-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))) ((-880 |#1| |#4| |#3|) . T) ((-840) |has| |#1| (-840)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-964 |#2|) . T) ((-964 |#3|) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1127) |has| |#1| (-840))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-2573 ((|#1| $) 54)) (-3781 ((|#1| $) 44)) (-1620 (((-108) $ (-710)) 8)) (-4189 (($) 7 T CONST)) (-4084 (($ $) 60)) (-1426 (($ $) 48)) (-2581 ((|#1| |#1| $) 46)) (-2197 ((|#1| $) 45)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2616 (((-710) $) 61)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1293 ((|#1| $) 39)) (-1287 ((|#1| |#1| $) 52)) (-3168 ((|#1| |#1| $) 51)) (-3108 (($ |#1| $) 40)) (-1933 (((-710) $) 55)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1212 ((|#1| $) 62)) (-2478 ((|#1| $) 50)) (-2349 ((|#1| $) 49)) (-3048 ((|#1| $) 41)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-3542 ((|#1| |#1| $) 58)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-3629 ((|#1| $) 59)) (-2486 (($) 57) (($ (-589 |#1|)) 56)) (-1576 (((-710) $) 43)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-3750 ((|#1| $) 53)) (-2417 (($ (-589 |#1|)) 42)) (-3579 ((|#1| $) 63)) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-231 |#1|) (-129) (-1123)) (T -231)) +((-2486 (*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123)))) (-2486 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-4 *1 (-231 *3)))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-231 *3)) (-4 *3 (-1123)) (-5 *2 (-710)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123)))) (-1287 (*1 *2 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123)))) (-3168 (*1 *2 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123)))) (-2478 (*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123)))) (-1426 (*1 *1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123))))) +(-13 (-1035 |t#1|) (-923 |t#1|) (-10 -8 (-15 -2486 ($)) (-15 -2486 ($ (-589 |t#1|))) (-15 -1933 ((-710) $)) (-15 -2573 (|t#1| $)) (-15 -3750 (|t#1| $)) (-15 -1287 (|t#1| |t#1| $)) (-15 -3168 (|t#1| |t#1| $)) (-15 -2478 (|t#1| $)) (-15 -2349 (|t#1| $)) (-15 -1426 ($ $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-923 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1035 |#1|) . T) ((-1123) . T)) +((-3908 (((-1 (-874 (-203)) (-203) (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203) (-203))) 139)) (-3448 (((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355))) 160) (((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 158) (((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355))) 163) (((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 159) (((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355))) 150) (((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 149) (((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355))) 129) (((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240))) 127) (((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355))) 128) (((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240))) 125)) (-3406 (((-1171) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355))) 162) (((-1171) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 161) (((-1171) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355))) 165) (((-1171) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 164) (((-1171) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355))) 152) (((-1171) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 151) (((-1171) (-1 (-874 (-203)) (-203)) (-1011 (-355))) 135) (((-1171) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240))) 134) (((-1171) (-810 (-1 (-203) (-203))) (-1011 (-355))) 133) (((-1171) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240))) 132) (((-1170) (-808 (-1 (-203) (-203))) (-1011 (-355))) 99) (((-1170) (-808 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240))) 98) (((-1170) (-1 (-203) (-203)) (-1011 (-355))) 95) (((-1170) (-1 (-203) (-203)) (-1011 (-355)) (-589 (-240))) 94))) +(((-232) (-10 -7 (-15 -3406 ((-1170) (-1 (-203) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1170) (-1 (-203) (-203)) (-1011 (-355)))) (-15 -3406 ((-1170) (-808 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1170) (-808 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -3406 ((-1171) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-810 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -3406 ((-1171) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-1 (-874 (-203)) (-203)) (-1011 (-355)))) (-15 -3448 ((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -3448 ((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)))) (-15 -3406 ((-1171) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -3448 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -3406 ((-1171) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -3448 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -3406 ((-1171) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)))) (-15 -3448 ((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)))) (-15 -3908 ((-1 (-874 (-203)) (-203) (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203) (-203)))))) (T -232)) +((-3908 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203) (-203))) (-5 *3 (-1 (-203) (-203) (-203) (-203))) (-5 *1 (-232)))) (-3448 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-3448 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1171)) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1171)) (-5 *1 (-232)))) (-3448 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-3448 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1171)) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1171)) (-5 *1 (-232)))) (-3448 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-3448 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1171)) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1171)) (-5 *1 (-232)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-3448 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-3448 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1171)) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1171)) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1171)) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1171)) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-808 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232))))) +(-10 -7 (-15 -3406 ((-1170) (-1 (-203) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1170) (-1 (-203) (-203)) (-1011 (-355)))) (-15 -3406 ((-1170) (-808 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1170) (-808 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -3406 ((-1171) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-810 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -3406 ((-1171) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-1 (-874 (-203)) (-203)) (-1011 (-355)))) (-15 -3448 ((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -3448 ((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)))) (-15 -3406 ((-1171) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -3448 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -3406 ((-1171) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -3448 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -3406 ((-1171) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)))) (-15 -3448 ((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)))) (-15 -3908 ((-1 (-874 (-203)) (-203) (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203) (-203))))) +((-3406 (((-1170) (-271 |#2|) (-1087) (-1087) (-589 (-240))) 93))) +(((-233 |#1| |#2|) (-10 -7 (-15 -3406 ((-1170) (-271 |#2|) (-1087) (-1087) (-589 (-240))))) (-13 (-515) (-786) (-964 (-523))) (-406 |#1|)) (T -233)) +((-3406 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-271 *7)) (-5 *4 (-1087)) (-5 *5 (-589 (-240))) (-4 *7 (-406 *6)) (-4 *6 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-1170)) (-5 *1 (-233 *6 *7))))) +(-10 -7 (-15 -3406 ((-1170) (-271 |#2|) (-1087) (-1087) (-589 (-240))))) +((-3595 (((-523) (-523)) 50)) (-1893 (((-523) (-523)) 51)) (-3464 (((-203) (-203)) 52)) (-3264 (((-1171) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203))) 49)) (-2407 (((-1171) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)) (-108)) 47))) +(((-234) (-10 -7 (-15 -2407 ((-1171) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)) (-108))) (-15 -3264 ((-1171) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)))) (-15 -3595 ((-523) (-523))) (-15 -1893 ((-523) (-523))) (-15 -3464 ((-203) (-203))))) (T -234)) +((-3464 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-234)))) (-1893 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-234)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-234)))) (-3264 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-155 (-203)) (-155 (-203)))) (-5 *4 (-1011 (-203))) (-5 *2 (-1171)) (-5 *1 (-234)))) (-2407 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-155 (-203)) (-155 (-203)))) (-5 *4 (-1011 (-203))) (-5 *5 (-108)) (-5 *2 (-1171)) (-5 *1 (-234))))) +(-10 -7 (-15 -2407 ((-1171) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)) (-108))) (-15 -3264 ((-1171) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)))) (-15 -3595 ((-523) (-523))) (-15 -1893 ((-523) (-523))) (-15 -3464 ((-203) (-203)))) +((-1691 (((-1009 (-355)) (-1009 (-292 |#1|))) 16))) +(((-235 |#1|) (-10 -7 (-15 -1691 ((-1009 (-355)) (-1009 (-292 |#1|))))) (-13 (-786) (-515) (-564 (-355)))) (T -235)) +((-1691 (*1 *2 *3) (-12 (-5 *3 (-1009 (-292 *4))) (-4 *4 (-13 (-786) (-515) (-564 (-355)))) (-5 *2 (-1009 (-355))) (-5 *1 (-235 *4))))) +(-10 -7 (-15 -1691 ((-1009 (-355)) (-1009 (-292 |#1|))))) +((-3448 (((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355))) 69) (((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240))) 68) (((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355))) 59) (((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240))) 58) (((-1047 (-203)) (-810 |#1|) (-1009 (-355))) 50) (((-1047 (-203)) (-810 |#1|) (-1009 (-355)) (-589 (-240))) 49)) (-3406 (((-1171) (-813 |#1|) (-1009 (-355)) (-1009 (-355))) 72) (((-1171) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240))) 71) (((-1171) |#1| (-1009 (-355)) (-1009 (-355))) 62) (((-1171) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240))) 61) (((-1171) (-810 |#1|) (-1009 (-355))) 54) (((-1171) (-810 |#1|) (-1009 (-355)) (-589 (-240))) 53) (((-1170) (-808 |#1|) (-1009 (-355))) 41) (((-1170) (-808 |#1|) (-1009 (-355)) (-589 (-240))) 40) (((-1170) |#1| (-1009 (-355))) 33) (((-1170) |#1| (-1009 (-355)) (-589 (-240))) 32))) +(((-236 |#1|) (-10 -7 (-15 -3406 ((-1170) |#1| (-1009 (-355)) (-589 (-240)))) (-15 -3406 ((-1170) |#1| (-1009 (-355)))) (-15 -3406 ((-1170) (-808 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -3406 ((-1170) (-808 |#1|) (-1009 (-355)))) (-15 -3406 ((-1171) (-810 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-810 |#1|) (-1009 (-355)))) (-15 -3448 ((-1047 (-203)) (-810 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-810 |#1|) (-1009 (-355)))) (-15 -3406 ((-1171) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) |#1| (-1009 (-355)) (-1009 (-355)))) (-15 -3448 ((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)))) (-15 -3406 ((-1171) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-813 |#1|) (-1009 (-355)) (-1009 (-355)))) (-15 -3448 ((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355))))) (-13 (-564 (-499)) (-1016))) (T -236)) +((-3448 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-813 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *5)))) (-3448 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-813 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *6)))) (-3406 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-813 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1171)) (-5 *1 (-236 *5)))) (-3406 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-813 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1171)) (-5 *1 (-236 *6)))) (-3448 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-3448 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-3406 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1171)) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-3406 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1171)) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-810 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *5)))) (-3448 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *6)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-810 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1171)) (-5 *1 (-236 *5)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1171)) (-5 *1 (-236 *6)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-808 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) (-5 *1 (-236 *5)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) (-5 *1 (-236 *6)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1170)) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016)))))) +(-10 -7 (-15 -3406 ((-1170) |#1| (-1009 (-355)) (-589 (-240)))) (-15 -3406 ((-1170) |#1| (-1009 (-355)))) (-15 -3406 ((-1170) (-808 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -3406 ((-1170) (-808 |#1|) (-1009 (-355)))) (-15 -3406 ((-1171) (-810 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-810 |#1|) (-1009 (-355)))) (-15 -3448 ((-1047 (-203)) (-810 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-810 |#1|) (-1009 (-355)))) (-15 -3406 ((-1171) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) |#1| (-1009 (-355)) (-1009 (-355)))) (-15 -3448 ((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)))) (-15 -3406 ((-1171) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -3406 ((-1171) (-813 |#1|) (-1009 (-355)) (-1009 (-355)))) (-15 -3448 ((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -3448 ((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355))))) +((-3406 (((-1171) (-589 (-203)) (-589 (-203)) (-589 (-203)) (-589 (-240))) 21) (((-1171) (-589 (-203)) (-589 (-203)) (-589 (-203))) 22) (((-1170) (-589 (-874 (-203))) (-589 (-240))) 13) (((-1170) (-589 (-874 (-203)))) 14) (((-1170) (-589 (-203)) (-589 (-203)) (-589 (-240))) 18) (((-1170) (-589 (-203)) (-589 (-203))) 19))) +(((-237) (-10 -7 (-15 -3406 ((-1170) (-589 (-203)) (-589 (-203)))) (-15 -3406 ((-1170) (-589 (-203)) (-589 (-203)) (-589 (-240)))) (-15 -3406 ((-1170) (-589 (-874 (-203))))) (-15 -3406 ((-1170) (-589 (-874 (-203))) (-589 (-240)))) (-15 -3406 ((-1171) (-589 (-203)) (-589 (-203)) (-589 (-203)))) (-15 -3406 ((-1171) (-589 (-203)) (-589 (-203)) (-589 (-203)) (-589 (-240)))))) (T -237)) +((-3406 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-589 (-203))) (-5 *4 (-589 (-240))) (-5 *2 (-1171)) (-5 *1 (-237)))) (-3406 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1171)) (-5 *1 (-237)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *4 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-237)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *2 (-1170)) (-5 *1 (-237)))) (-3406 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-589 (-203))) (-5 *4 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-237)))) (-3406 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1170)) (-5 *1 (-237))))) +(-10 -7 (-15 -3406 ((-1170) (-589 (-203)) (-589 (-203)))) (-15 -3406 ((-1170) (-589 (-203)) (-589 (-203)) (-589 (-240)))) (-15 -3406 ((-1170) (-589 (-874 (-203))))) (-15 -3406 ((-1170) (-589 (-874 (-203))) (-589 (-240)))) (-15 -3406 ((-1171) (-589 (-203)) (-589 (-203)) (-589 (-203)))) (-15 -3406 ((-1171) (-589 (-203)) (-589 (-203)) (-589 (-203)) (-589 (-240))))) +((-1689 (((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) (-589 (-240)) (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) 24)) (-2512 (((-852) (-589 (-240)) (-852)) 49)) (-3635 (((-852) (-589 (-240)) (-852)) 48)) (-2061 (((-589 (-355)) (-589 (-240)) (-589 (-355))) 65)) (-2294 (((-355) (-589 (-240)) (-355)) 55)) (-2807 (((-852) (-589 (-240)) (-852)) 50)) (-4089 (((-108) (-589 (-240)) (-108)) 26)) (-2402 (((-1070) (-589 (-240)) (-1070)) 19)) (-2220 (((-1070) (-589 (-240)) (-1070)) 25)) (-3146 (((-1047 (-203)) (-589 (-240))) 43)) (-2680 (((-589 (-1011 (-355))) (-589 (-240)) (-589 (-1011 (-355)))) 37)) (-2914 (((-805) (-589 (-240)) (-805)) 31)) (-1984 (((-805) (-589 (-240)) (-805)) 32)) (-2684 (((-1 (-874 (-203)) (-874 (-203))) (-589 (-240)) (-1 (-874 (-203)) (-874 (-203)))) 60)) (-3407 (((-108) (-589 (-240)) (-108)) 15)) (-2271 (((-108) (-589 (-240)) (-108)) 14))) +(((-238) (-10 -7 (-15 -2271 ((-108) (-589 (-240)) (-108))) (-15 -3407 ((-108) (-589 (-240)) (-108))) (-15 -1689 ((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) (-589 (-240)) (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -2402 ((-1070) (-589 (-240)) (-1070))) (-15 -2220 ((-1070) (-589 (-240)) (-1070))) (-15 -4089 ((-108) (-589 (-240)) (-108))) (-15 -2914 ((-805) (-589 (-240)) (-805))) (-15 -1984 ((-805) (-589 (-240)) (-805))) (-15 -2680 ((-589 (-1011 (-355))) (-589 (-240)) (-589 (-1011 (-355))))) (-15 -3635 ((-852) (-589 (-240)) (-852))) (-15 -2512 ((-852) (-589 (-240)) (-852))) (-15 -3146 ((-1047 (-203)) (-589 (-240)))) (-15 -2807 ((-852) (-589 (-240)) (-852))) (-15 -2294 ((-355) (-589 (-240)) (-355))) (-15 -2684 ((-1 (-874 (-203)) (-874 (-203))) (-589 (-240)) (-1 (-874 (-203)) (-874 (-203))))) (-15 -2061 ((-589 (-355)) (-589 (-240)) (-589 (-355)))))) (T -238)) +((-2061 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-355))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2684 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2294 (*1 *2 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2807 (*1 *2 *3 *2) (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-238)))) (-2512 (*1 *2 *3 *2) (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3635 (*1 *2 *3 *2) (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2680 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-1984 (*1 *2 *3 *2) (-12 (-5 *2 (-805)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2914 (*1 *2 *3 *2) (-12 (-5 *2 (-805)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-4089 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2220 (*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2402 (*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-1689 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3407 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2271 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238))))) +(-10 -7 (-15 -2271 ((-108) (-589 (-240)) (-108))) (-15 -3407 ((-108) (-589 (-240)) (-108))) (-15 -1689 ((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) (-589 (-240)) (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -2402 ((-1070) (-589 (-240)) (-1070))) (-15 -2220 ((-1070) (-589 (-240)) (-1070))) (-15 -4089 ((-108) (-589 (-240)) (-108))) (-15 -2914 ((-805) (-589 (-240)) (-805))) (-15 -1984 ((-805) (-589 (-240)) (-805))) (-15 -2680 ((-589 (-1011 (-355))) (-589 (-240)) (-589 (-1011 (-355))))) (-15 -3635 ((-852) (-589 (-240)) (-852))) (-15 -2512 ((-852) (-589 (-240)) (-852))) (-15 -3146 ((-1047 (-203)) (-589 (-240)))) (-15 -2807 ((-852) (-589 (-240)) (-852))) (-15 -2294 ((-355) (-589 (-240)) (-355))) (-15 -2684 ((-1 (-874 (-203)) (-874 (-203))) (-589 (-240)) (-1 (-874 (-203)) (-874 (-203))))) (-15 -2061 ((-589 (-355)) (-589 (-240)) (-589 (-355))))) +((-1324 (((-3 |#1| "failed") (-589 (-240)) (-1087)) 17))) +(((-239 |#1|) (-10 -7 (-15 -1324 ((-3 |#1| "failed") (-589 (-240)) (-1087)))) (-1123)) (T -239)) +((-1324 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *1 (-239 *2)) (-4 *2 (-1123))))) +(-10 -7 (-15 -1324 ((-3 |#1| "failed") (-589 (-240)) (-1087)))) +((-1680 (((-108) $ $) NIL)) (-1689 (($ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) 14)) (-2512 (($ (-852)) 70)) (-3635 (($ (-852)) 69)) (-2345 (($ (-589 (-355))) 76)) (-2294 (($ (-355)) 55)) (-2807 (($ (-852)) 71)) (-4089 (($ (-108)) 22)) (-2402 (($ (-1070)) 17)) (-2220 (($ (-1070)) 18)) (-3146 (($ (-1047 (-203))) 65)) (-2680 (($ (-589 (-1011 (-355)))) 61)) (-2464 (($ (-589 (-1011 (-355)))) 56) (($ (-589 (-1011 (-383 (-523))))) 60)) (-3531 (($ (-355)) 28) (($ (-805)) 32)) (-1518 (((-108) (-589 $) (-1087)) 85)) (-1324 (((-3 (-51) "failed") (-589 $) (-1087)) 87)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2326 (($ (-355)) 33) (($ (-805)) 34)) (-2906 (($ (-1 (-874 (-203)) (-874 (-203)))) 54)) (-2684 (($ (-1 (-874 (-203)) (-874 (-203)))) 72)) (-2393 (($ (-1 (-203) (-203))) 38) (($ (-1 (-203) (-203) (-203))) 42) (($ (-1 (-203) (-203) (-203) (-203))) 46)) (-1691 (((-794) $) 81)) (-1765 (($ (-108)) 23) (($ (-589 (-1011 (-355)))) 50)) (-2271 (($ (-108)) 24)) (-3941 (((-108) $ $) 83))) +(((-240) (-13 (-1016) (-10 -8 (-15 -2271 ($ (-108))) (-15 -1765 ($ (-108))) (-15 -1689 ($ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -2402 ($ (-1070))) (-15 -2220 ($ (-1070))) (-15 -4089 ($ (-108))) (-15 -1765 ($ (-589 (-1011 (-355))))) (-15 -2906 ($ (-1 (-874 (-203)) (-874 (-203))))) (-15 -3531 ($ (-355))) (-15 -3531 ($ (-805))) (-15 -2326 ($ (-355))) (-15 -2326 ($ (-805))) (-15 -2393 ($ (-1 (-203) (-203)))) (-15 -2393 ($ (-1 (-203) (-203) (-203)))) (-15 -2393 ($ (-1 (-203) (-203) (-203) (-203)))) (-15 -2294 ($ (-355))) (-15 -2464 ($ (-589 (-1011 (-355))))) (-15 -2464 ($ (-589 (-1011 (-383 (-523)))))) (-15 -2680 ($ (-589 (-1011 (-355))))) (-15 -3146 ($ (-1047 (-203)))) (-15 -3635 ($ (-852))) (-15 -2512 ($ (-852))) (-15 -2807 ($ (-852))) (-15 -2684 ($ (-1 (-874 (-203)) (-874 (-203))))) (-15 -2345 ($ (-589 (-355)))) (-15 -1324 ((-3 (-51) "failed") (-589 $) (-1087))) (-15 -1518 ((-108) (-589 $) (-1087)))))) (T -240)) +((-2271 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240)))) (-1689 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) (-5 *1 (-240)))) (-2402 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-240)))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-240)))) (-4089 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) (-2906 (*1 *1 *2) (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *1 (-240)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-240)))) (-2326 (*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240)))) (-2326 (*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-240)))) (-2393 (*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-240)))) (-2393 (*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203) (-203))) (-5 *1 (-240)))) (-2393 (*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203) (-203) (-203))) (-5 *1 (-240)))) (-2294 (*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240)))) (-2464 (*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) (-2464 (*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-383 (-523))))) (-5 *1 (-240)))) (-2680 (*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) (-3146 (*1 *1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-240)))) (-3635 (*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240)))) (-2512 (*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240)))) (-2807 (*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240)))) (-2684 (*1 *1 *2) (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *1 (-240)))) (-2345 (*1 *1 *2) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-240)))) (-1324 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *2 (-51)) (-5 *1 (-240)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *2 (-108)) (-5 *1 (-240))))) +(-13 (-1016) (-10 -8 (-15 -2271 ($ (-108))) (-15 -1765 ($ (-108))) (-15 -1689 ($ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -2402 ($ (-1070))) (-15 -2220 ($ (-1070))) (-15 -4089 ($ (-108))) (-15 -1765 ($ (-589 (-1011 (-355))))) (-15 -2906 ($ (-1 (-874 (-203)) (-874 (-203))))) (-15 -3531 ($ (-355))) (-15 -3531 ($ (-805))) (-15 -2326 ($ (-355))) (-15 -2326 ($ (-805))) (-15 -2393 ($ (-1 (-203) (-203)))) (-15 -2393 ($ (-1 (-203) (-203) (-203)))) (-15 -2393 ($ (-1 (-203) (-203) (-203) (-203)))) (-15 -2294 ($ (-355))) (-15 -2464 ($ (-589 (-1011 (-355))))) (-15 -2464 ($ (-589 (-1011 (-383 (-523)))))) (-15 -2680 ($ (-589 (-1011 (-355))))) (-15 -3146 ($ (-1047 (-203)))) (-15 -3635 ($ (-852))) (-15 -2512 ($ (-852))) (-15 -2807 ($ (-852))) (-15 -2684 ($ (-1 (-874 (-203)) (-874 (-203))))) (-15 -2345 ($ (-589 (-355)))) (-15 -1324 ((-3 (-51) "failed") (-589 $) (-1087))) (-15 -1518 ((-108) (-589 $) (-1087))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1741 (((-589 (-710)) $) NIL) (((-589 (-710)) $ |#2|) NIL)) (-3038 (((-710) $) NIL) (((-710) $ |#2|) NIL)) (-1292 (((-589 |#3|) $) NIL)) (-2389 (((-1083 $) $ |#3|) NIL) (((-1083 |#1|) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 |#3|)) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3718 (($ $) NIL (|has| |#1| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1914 (($ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1039 |#1| |#2|) "failed") $) 20)) (-3508 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1039 |#1| |#2|) $) NIL)) (-1611 (($ $ $ |#3|) NIL (|has| |#1| (-158)))) (-1457 (($ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#1| (-427))) (($ $ |#3|) NIL (|has| |#1| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#1| (-840)))) (-4222 (($ $ |#1| (-495 |#3|) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))))) (-3437 (((-710) $ |#2|) NIL) (((-710) $) 10)) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-1280 (($ (-1083 |#1|) |#3|) NIL) (($ (-1083 $) |#3|) NIL)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-495 |#3|)) NIL) (($ $ |#3| (-710)) NIL) (($ $ (-589 |#3|) (-589 (-710))) NIL)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ |#3|) NIL)) (-4047 (((-495 |#3|) $) NIL) (((-710) $ |#3|) NIL) (((-589 (-710)) $ (-589 |#3|)) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2041 (($ (-1 (-495 |#3|) (-495 |#3|)) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1360 (((-1 $ (-710)) |#2|) NIL) (((-1 $ (-710)) $) NIL (|has| |#1| (-211)))) (-4213 (((-3 |#3| "failed") $) NIL)) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3994 ((|#3| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2032 (((-1070) $) NIL)) (-2286 (((-108) $) NIL)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| |#3|) (|:| -1475 (-710))) "failed") $) NIL)) (-3865 (($ $) NIL)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) NIL)) (-1419 ((|#1| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-840)))) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-589 |#3|) (-589 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-589 |#3|) (-589 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-211))) (($ $ (-589 |#2|) (-589 $)) NIL (|has| |#1| (-211))) (($ $ |#2| |#1|) NIL (|has| |#1| (-211))) (($ $ (-589 |#2|) (-589 |#1|)) NIL (|has| |#1| (-211)))) (-1744 (($ $ |#3|) NIL (|has| |#1| (-158)))) (-3984 (($ $ |#3|) NIL) (($ $ (-589 |#3|)) NIL) (($ $ |#3| (-710)) NIL) (($ $ (-589 |#3|) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2007 (((-589 |#2|) $) NIL)) (-2640 (((-495 |#3|) $) NIL) (((-710) $ |#3|) NIL) (((-589 (-710)) $ (-589 |#3|)) NIL) (((-710) $ |#2|) NIL)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499)))))) (-1618 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ |#3|) NIL (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1039 |#1| |#2|)) 28) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-495 |#3|)) NIL) (($ $ |#3| (-710)) NIL) (($ $ (-589 |#3|) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ |#3|) NIL) (($ $ (-589 |#3|)) NIL) (($ $ |#3| (-710)) NIL) (($ $ (-589 |#3|) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) (((-241 |#1| |#2| |#3|) (-13 (-230 |#1| |#2| |#3| (-495 |#3|)) (-964 (-1039 |#1| |#2|))) (-973) (-786) (-243 |#2|)) (T -241)) NIL (-13 (-230 |#1| |#2| |#3| (-495 |#3|)) (-964 (-1039 |#1| |#2|))) -((-2656 (((-710) $) 30)) (-3517 (((-3 |#2| "failed") $) 17)) (-3474 ((|#2| $) 27)) (-3523 (($ $) 12) (($ $ (-710)) 15)) (-1458 (((-794) $) 26) (($ |#2|) 10)) (-3983 (((-108) $ $) 20)) (-4007 (((-108) $ $) 29))) -(((-242 |#1| |#2|) (-10 -8 (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -2656 ((-710) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-243 |#2|) (-786)) (T -242)) +((-3038 (((-710) $) 30)) (-1220 (((-3 |#2| "failed") $) 17)) (-3508 ((|#2| $) 27)) (-3984 (($ $) 12) (($ $ (-710)) 15)) (-1691 (((-794) $) 26) (($ |#2|) 10)) (-3941 (((-108) $ $) 20)) (-3966 (((-108) $ $) 29))) +(((-242 |#1| |#2|) (-10 -8 (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1|)) (-15 -3038 ((-710) |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -3966 ((-108) |#1| |#1|)) (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|))) (-243 |#2|) (-786)) (T -242)) NIL -(-10 -8 (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -2656 ((-710) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2656 (((-710) $) 22)) (-2700 ((|#1| $) 23)) (-3517 (((-3 |#1| "failed") $) 27)) (-3474 ((|#1| $) 26)) (-1640 (((-710) $) 24)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3178 (($ |#1| (-710)) 25)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3523 (($ $) 21) (($ $ (-710)) 20)) (-1458 (((-794) $) 11) (($ |#1|) 28)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18))) +(-10 -8 (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1|)) (-15 -3038 ((-710) |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -3966 ((-108) |#1| |#1|)) (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-3038 (((-710) $) 22)) (-2724 ((|#1| $) 23)) (-1220 (((-3 |#1| "failed") $) 27)) (-3508 ((|#1| $) 26)) (-3437 (((-710) $) 24)) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-1360 (($ |#1| (-710)) 25)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3984 (($ $) 21) (($ $ (-710)) 20)) (-1691 (((-794) $) 11) (($ |#1|) 28)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18))) (((-243 |#1|) (-129) (-786)) (T -243)) -((-1458 (*1 *1 *2) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) (-3178 (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-243 *2)) (-4 *2 (-786)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-243 *3)) (-4 *3 (-786)) (-5 *2 (-710)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-243 *3)) (-4 *3 (-786)) (-5 *2 (-710)))) (-3523 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-243 *3)) (-4 *3 (-786))))) -(-13 (-786) (-964 |t#1|) (-10 -8 (-15 -3178 ($ |t#1| (-710))) (-15 -1640 ((-710) $)) (-15 -2700 (|t#1| $)) (-15 -2656 ((-710) $)) (-15 -3523 ($ $)) (-15 -3523 ($ $ (-710))) (-15 -1458 ($ |t#1|)))) +((-1691 (*1 *1 *2) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) (-1360 (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-243 *2)) (-4 *2 (-786)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-243 *3)) (-4 *3 (-786)) (-5 *2 (-710)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) (-3038 (*1 *2 *1) (-12 (-4 *1 (-243 *3)) (-4 *3 (-786)) (-5 *2 (-710)))) (-3984 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-243 *3)) (-4 *3 (-786))))) +(-13 (-786) (-964 |t#1|) (-10 -8 (-15 -1360 ($ |t#1| (-710))) (-15 -3437 ((-710) $)) (-15 -2724 (|t#1| $)) (-15 -3038 ((-710) $)) (-15 -3984 ($ $)) (-15 -3984 ($ $ (-710))) (-15 -1691 ($ |t#1|)))) (((-97) . T) ((-563 (-794)) . T) ((-786) . T) ((-964 |#1|) . T) ((-1016) . T)) -((-1957 (((-589 (-1087)) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 40)) (-2061 (((-589 (-1087)) (-292 (-203)) (-710)) 79)) (-4108 (((-3 (-292 (-203)) "failed") (-292 (-203))) 50)) (-2251 (((-292 (-203)) (-292 (-203))) 65)) (-1732 (((-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 26)) (-3174 (((-108) (-589 (-292 (-203)))) 83)) (-1965 (((-108) (-292 (-203))) 24)) (-1539 (((-589 (-1070)) (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))))) 105)) (-2334 (((-589 (-292 (-203))) (-589 (-292 (-203)))) 87)) (-2045 (((-589 (-292 (-203))) (-589 (-292 (-203)))) 85)) (-1250 (((-629 (-203)) (-589 (-292 (-203))) (-710)) 94)) (-2715 (((-108) (-292 (-203))) 20) (((-108) (-589 (-292 (-203)))) 84)) (-3390 (((-589 (-203)) (-589 (-779 (-203))) (-203)) 14)) (-2258 (((-355) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 100)) (-2746 (((-962) (-1087) (-962)) 33))) -(((-244) (-10 -7 (-15 -3390 ((-589 (-203)) (-589 (-779 (-203))) (-203))) (-15 -1732 ((-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -4108 ((-3 (-292 (-203)) "failed") (-292 (-203)))) (-15 -2251 ((-292 (-203)) (-292 (-203)))) (-15 -3174 ((-108) (-589 (-292 (-203))))) (-15 -2715 ((-108) (-589 (-292 (-203))))) (-15 -2715 ((-108) (-292 (-203)))) (-15 -1250 ((-629 (-203)) (-589 (-292 (-203))) (-710))) (-15 -2045 ((-589 (-292 (-203))) (-589 (-292 (-203))))) (-15 -2334 ((-589 (-292 (-203))) (-589 (-292 (-203))))) (-15 -1965 ((-108) (-292 (-203)))) (-15 -1957 ((-589 (-1087)) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -2061 ((-589 (-1087)) (-292 (-203)) (-710))) (-15 -2746 ((-962) (-1087) (-962))) (-15 -2258 ((-355) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -1539 ((-589 (-1070)) (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))))))) (T -244)) -((-1539 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))))) (-5 *2 (-589 (-1070))) (-5 *1 (-244)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) (-5 *2 (-355)) (-5 *1 (-244)))) (-2746 (*1 *2 *3 *2) (-12 (-5 *2 (-962)) (-5 *3 (-1087)) (-5 *1 (-244)))) (-2061 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-710)) (-5 *2 (-589 (-1087))) (-5 *1 (-244)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) (-5 *2 (-589 (-1087))) (-5 *1 (-244)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-108)) (-5 *1 (-244)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-589 (-292 (-203)))) (-5 *1 (-244)))) (-2045 (*1 *2 *2) (-12 (-5 *2 (-589 (-292 (-203)))) (-5 *1 (-244)))) (-1250 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *4 (-710)) (-5 *2 (-629 (-203))) (-5 *1 (-244)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-108)) (-5 *1 (-244)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *2 (-108)) (-5 *1 (-244)))) (-3174 (*1 *2 *3) (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *2 (-108)) (-5 *1 (-244)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-292 (-203))) (-5 *1 (-244)))) (-4108 (*1 *2 *2) (|partial| -12 (-5 *2 (-292 (-203))) (-5 *1 (-244)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *1 (-244)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-779 (-203)))) (-5 *4 (-203)) (-5 *2 (-589 *4)) (-5 *1 (-244))))) -(-10 -7 (-15 -3390 ((-589 (-203)) (-589 (-779 (-203))) (-203))) (-15 -1732 ((-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -4108 ((-3 (-292 (-203)) "failed") (-292 (-203)))) (-15 -2251 ((-292 (-203)) (-292 (-203)))) (-15 -3174 ((-108) (-589 (-292 (-203))))) (-15 -2715 ((-108) (-589 (-292 (-203))))) (-15 -2715 ((-108) (-292 (-203)))) (-15 -1250 ((-629 (-203)) (-589 (-292 (-203))) (-710))) (-15 -2045 ((-589 (-292 (-203))) (-589 (-292 (-203))))) (-15 -2334 ((-589 (-292 (-203))) (-589 (-292 (-203))))) (-15 -1965 ((-108) (-292 (-203)))) (-15 -1957 ((-589 (-1087)) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -2061 ((-589 (-1087)) (-292 (-203)) (-710))) (-15 -2746 ((-962) (-1087) (-962))) (-15 -2258 ((-355) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -1539 ((-589 (-1070)) (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))))))) -((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 39)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 20) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1292 (((-589 (-1087)) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) 40)) (-2634 (((-589 (-1087)) (-292 (-203)) (-710)) 79)) (-3134 (((-3 (-292 (-203)) "failed") (-292 (-203))) 50)) (-3305 (((-292 (-203)) (-292 (-203))) 65)) (-3040 (((-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 26)) (-1305 (((-108) (-589 (-292 (-203)))) 83)) (-3347 (((-108) (-292 (-203))) 24)) (-3702 (((-589 (-1070)) (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))))) 105)) (-2943 (((-589 (-292 (-203))) (-589 (-292 (-203)))) 87)) (-2958 (((-589 (-292 (-203))) (-589 (-292 (-203)))) 85)) (-3806 (((-629 (-203)) (-589 (-292 (-203))) (-710)) 94)) (-2415 (((-108) (-292 (-203))) 20) (((-108) (-589 (-292 (-203)))) 84)) (-2585 (((-589 (-203)) (-589 (-779 (-203))) (-203)) 14)) (-3375 (((-355) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) 100)) (-1585 (((-962) (-1087) (-962)) 33))) +(((-244) (-10 -7 (-15 -2585 ((-589 (-203)) (-589 (-779 (-203))) (-203))) (-15 -3040 ((-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -3134 ((-3 (-292 (-203)) "failed") (-292 (-203)))) (-15 -3305 ((-292 (-203)) (-292 (-203)))) (-15 -1305 ((-108) (-589 (-292 (-203))))) (-15 -2415 ((-108) (-589 (-292 (-203))))) (-15 -2415 ((-108) (-292 (-203)))) (-15 -3806 ((-629 (-203)) (-589 (-292 (-203))) (-710))) (-15 -2958 ((-589 (-292 (-203))) (-589 (-292 (-203))))) (-15 -2943 ((-589 (-292 (-203))) (-589 (-292 (-203))))) (-15 -3347 ((-108) (-292 (-203)))) (-15 -1292 ((-589 (-1087)) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))) (-15 -2634 ((-589 (-1087)) (-292 (-203)) (-710))) (-15 -1585 ((-962) (-1087) (-962))) (-15 -3375 ((-355) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))) (-15 -3702 ((-589 (-1070)) (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))))))) (T -244)) +((-3702 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))))) (-5 *2 (-589 (-1070))) (-5 *1 (-244)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) (-5 *2 (-355)) (-5 *1 (-244)))) (-1585 (*1 *2 *3 *2) (-12 (-5 *2 (-962)) (-5 *3 (-1087)) (-5 *1 (-244)))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-710)) (-5 *2 (-589 (-1087))) (-5 *1 (-244)))) (-1292 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) (-5 *2 (-589 (-1087))) (-5 *1 (-244)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-108)) (-5 *1 (-244)))) (-2943 (*1 *2 *2) (-12 (-5 *2 (-589 (-292 (-203)))) (-5 *1 (-244)))) (-2958 (*1 *2 *2) (-12 (-5 *2 (-589 (-292 (-203)))) (-5 *1 (-244)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *4 (-710)) (-5 *2 (-629 (-203))) (-5 *1 (-244)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-108)) (-5 *1 (-244)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *2 (-108)) (-5 *1 (-244)))) (-1305 (*1 *2 *3) (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *2 (-108)) (-5 *1 (-244)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-292 (-203))) (-5 *1 (-244)))) (-3134 (*1 *2 *2) (|partial| -12 (-5 *2 (-292 (-203))) (-5 *1 (-244)))) (-3040 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *1 (-244)))) (-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-779 (-203)))) (-5 *4 (-203)) (-5 *2 (-589 *4)) (-5 *1 (-244))))) +(-10 -7 (-15 -2585 ((-589 (-203)) (-589 (-779 (-203))) (-203))) (-15 -3040 ((-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -3134 ((-3 (-292 (-203)) "failed") (-292 (-203)))) (-15 -3305 ((-292 (-203)) (-292 (-203)))) (-15 -1305 ((-108) (-589 (-292 (-203))))) (-15 -2415 ((-108) (-589 (-292 (-203))))) (-15 -2415 ((-108) (-292 (-203)))) (-15 -3806 ((-629 (-203)) (-589 (-292 (-203))) (-710))) (-15 -2958 ((-589 (-292 (-203))) (-589 (-292 (-203))))) (-15 -2943 ((-589 (-292 (-203))) (-589 (-292 (-203))))) (-15 -3347 ((-108) (-292 (-203)))) (-15 -1292 ((-589 (-1087)) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))) (-15 -2634 ((-589 (-1087)) (-292 (-203)) (-710))) (-15 -1585 ((-962) (-1087) (-962))) (-15 -3375 ((-355) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))) (-15 -3702 ((-589 (-1070)) (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))))))) +((-1680 (((-108) $ $) NIL)) (-2268 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 39)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 20) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-245) (-775)) (T -245)) NIL (-775) -((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 54) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 49)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 29) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 31)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2268 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) 54) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 49)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 29) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) 31)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-246) (-775)) (T -246)) NIL (-775) -((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 73) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 69)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 40) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 51)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2268 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) 73) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 69)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 40) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) 51)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-247) (-775)) (T -247)) NIL (-775) -((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 48)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 27) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2268 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 48)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 27) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-248) (-775)) (T -248)) NIL (-775) -((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 48)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 23) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2268 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 48)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 23) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-249) (-775)) (T -249)) NIL (-775) -((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 69)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 23) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2268 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 69)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 23) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-250) (-775)) (T -250)) NIL (-775) -((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 73)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 19) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2268 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 73)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 19) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-3941 (((-108) $ $) NIL))) (((-251) (-775)) (T -251)) NIL (-775) -((-3924 (((-108) $ $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1876 (((-589 (-523)) $) 17)) (-2299 (((-710) $) 15)) (-1458 (((-794) $) 21) (($ (-589 (-523))) 13)) (-1836 (($ (-710)) 18)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 9)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 11))) -(((-252) (-13 (-786) (-10 -8 (-15 -1458 ($ (-589 (-523)))) (-15 -2299 ((-710) $)) (-15 -1876 ((-589 (-523)) $)) (-15 -1836 ($ (-710)))))) (T -252)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-252)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-252)))) (-1876 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-252)))) (-1836 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-252))))) -(-13 (-786) (-10 -8 (-15 -1458 ($ (-589 (-523)))) (-15 -2299 ((-710) $)) (-15 -1876 ((-589 (-523)) $)) (-15 -1836 ($ (-710))))) -((-1769 ((|#2| |#2|) 77)) (-3780 ((|#2| |#2|) 65)) (-3060 (((-3 |#2| "failed") |#2| (-589 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-1744 ((|#2| |#2|) 75)) (-3711 ((|#2| |#2|) 63)) (-1793 ((|#2| |#2|) 79)) (-3805 ((|#2| |#2|) 67)) (-2820 ((|#2|) 46)) (-1403 (((-110) (-110)) 95)) (-2384 ((|#2| |#2|) 61)) (-1927 (((-108) |#2|) 134)) (-3627 ((|#2| |#2|) 180)) (-2050 ((|#2| |#2|) 156)) (-1424 ((|#2|) 59)) (-2116 ((|#2|) 58)) (-2141 ((|#2| |#2|) 176)) (-2327 ((|#2| |#2|) 152)) (-1816 ((|#2| |#2|) 184)) (-1784 ((|#2| |#2|) 160)) (-1389 ((|#2| |#2|) 148)) (-3051 ((|#2| |#2|) 150)) (-3856 ((|#2| |#2|) 186)) (-3273 ((|#2| |#2|) 162)) (-3758 ((|#2| |#2|) 182)) (-1526 ((|#2| |#2|) 158)) (-3937 ((|#2| |#2|) 178)) (-3412 ((|#2| |#2|) 154)) (-4132 ((|#2| |#2|) 192)) (-4064 ((|#2| |#2|) 168)) (-4154 ((|#2| |#2|) 188)) (-1599 ((|#2| |#2|) 164)) (-2549 ((|#2| |#2|) 196)) (-1210 ((|#2| |#2|) 172)) (-1559 ((|#2| |#2|) 198)) (-3541 ((|#2| |#2|) 174)) (-1245 ((|#2| |#2|) 194)) (-4076 ((|#2| |#2|) 170)) (-2008 ((|#2| |#2|) 190)) (-2171 ((|#2| |#2|) 166)) (-1811 ((|#2| |#2|) 62)) (-1805 ((|#2| |#2|) 80)) (-3816 ((|#2| |#2|) 68)) (-1782 ((|#2| |#2|) 78)) (-3793 ((|#2| |#2|) 66)) (-1757 ((|#2| |#2|) 76)) (-3767 ((|#2| |#2|) 64)) (-1950 (((-108) (-110)) 93)) (-1839 ((|#2| |#2|) 83)) (-3847 ((|#2| |#2|) 71)) (-1818 ((|#2| |#2|) 81)) (-3828 ((|#2| |#2|) 69)) (-1865 ((|#2| |#2|) 85)) (-1719 ((|#2| |#2|) 73)) (-2914 ((|#2| |#2|) 86)) (-1731 ((|#2| |#2|) 74)) (-1852 ((|#2| |#2|) 84)) (-3859 ((|#2| |#2|) 72)) (-1830 ((|#2| |#2|) 82)) (-3838 ((|#2| |#2|) 70))) -(((-253 |#1| |#2|) (-10 -7 (-15 -1811 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -3793 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -1731 (|#2| |#2|)) (-15 -1744 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -1769 (|#2| |#2|)) (-15 -1782 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1818 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1852 (|#2| |#2|)) (-15 -1865 (|#2| |#2|)) (-15 -2914 (|#2| |#2|)) (-15 -2820 (|#2|)) (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -2116 (|#2|)) (-15 -1424 (|#2|)) (-15 -3051 (|#2| |#2|)) (-15 -1389 (|#2| |#2|)) (-15 -2327 (|#2| |#2|)) (-15 -3412 (|#2| |#2|)) (-15 -2050 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -3273 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -2171 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -1210 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -2141 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -3856 (|#2| |#2|)) (-15 -4154 (|#2| |#2|)) (-15 -2008 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -1245 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -1559 (|#2| |#2|)) (-15 -3060 ((-3 |#2| "failed") |#2| (-589 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1927 ((-108) |#2|))) (-13 (-786) (-515)) (-13 (-406 |#1|) (-930))) (T -253)) -((-1927 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-253 *4 *3)) (-4 *3 (-13 (-406 *4) (-930))))) (-3060 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-589 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-406 *4) (-930))) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-253 *4 *2)))) (-1559 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2549 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1245 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2008 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-4154 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3856 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2141 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3541 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1210 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2171 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3273 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2050 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3412 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2327 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1389 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3051 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1424 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) (-4 *3 (-13 (-786) (-515))))) (-2116 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) (-4 *3 (-13 (-786) (-515))))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *4)) (-4 *4 (-13 (-406 *3) (-930))))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-253 *4 *5)) (-4 *5 (-13 (-406 *4) (-930))))) (-2820 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) (-4 *3 (-13 (-786) (-515))))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1852 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1818 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1793 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1782 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1769 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1811 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930)))))) -(-10 -7 (-15 -1811 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -3793 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -1731 (|#2| |#2|)) (-15 -1744 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -1769 (|#2| |#2|)) (-15 -1782 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1818 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1852 (|#2| |#2|)) (-15 -1865 (|#2| |#2|)) (-15 -2914 (|#2| |#2|)) (-15 -2820 (|#2|)) (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -2116 (|#2|)) (-15 -1424 (|#2|)) (-15 -3051 (|#2| |#2|)) (-15 -1389 (|#2| |#2|)) (-15 -2327 (|#2| |#2|)) (-15 -3412 (|#2| |#2|)) (-15 -2050 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -3273 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -2171 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -1210 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -2141 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -3856 (|#2| |#2|)) (-15 -4154 (|#2| |#2|)) (-15 -2008 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -1245 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -1559 (|#2| |#2|)) (-15 -3060 ((-3 |#2| "failed") |#2| (-589 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1927 ((-108) |#2|))) -((-2403 (((-3 |#2| "failed") (-589 (-562 |#2|)) |#2| (-1087)) 133)) (-1356 ((|#2| (-383 (-523)) |#2|) 50)) (-3502 ((|#2| |#2| (-562 |#2|)) 126)) (-3323 (((-2 (|:| |func| |#2|) (|:| |kers| (-589 (-562 |#2|))) (|:| |vals| (-589 |#2|))) |#2| (-1087)) 125)) (-3626 ((|#2| |#2| (-1087)) 19) ((|#2| |#2|) 22)) (-2018 ((|#2| |#2| (-1087)) 139) ((|#2| |#2|) 137))) -(((-254 |#1| |#2|) (-10 -7 (-15 -2018 (|#2| |#2|)) (-15 -2018 (|#2| |#2| (-1087))) (-15 -3323 ((-2 (|:| |func| |#2|) (|:| |kers| (-589 (-562 |#2|))) (|:| |vals| (-589 |#2|))) |#2| (-1087))) (-15 -3626 (|#2| |#2|)) (-15 -3626 (|#2| |#2| (-1087))) (-15 -2403 ((-3 |#2| "failed") (-589 (-562 |#2|)) |#2| (-1087))) (-15 -3502 (|#2| |#2| (-562 |#2|))) (-15 -1356 (|#2| (-383 (-523)) |#2|))) (-13 (-515) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -254)) -((-1356 (*1 *2 *3 *2) (-12 (-5 *3 (-383 (-523))) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) (-3502 (*1 *2 *2 *3) (-12 (-5 *3 (-562 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *4 *2)))) (-2403 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-589 (-562 *2))) (-5 *4 (-1087)) (-4 *2 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *5 *2)))) (-3626 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) (-3323 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-589 (-562 *3))) (|:| |vals| (-589 *3)))) (-5 *1 (-254 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-2018 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) (-2018 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3)))))) -(-10 -7 (-15 -2018 (|#2| |#2|)) (-15 -2018 (|#2| |#2| (-1087))) (-15 -3323 ((-2 (|:| |func| |#2|) (|:| |kers| (-589 (-562 |#2|))) (|:| |vals| (-589 |#2|))) |#2| (-1087))) (-15 -3626 (|#2| |#2|)) (-15 -3626 (|#2| |#2| (-1087))) (-15 -2403 ((-3 |#2| "failed") (-589 (-562 |#2|)) |#2| (-1087))) (-15 -3502 (|#2| |#2| (-562 |#2|))) (-15 -1356 (|#2| (-383 (-523)) |#2|))) -((-2977 (((-3 |#3| "failed") |#3|) 110)) (-1769 ((|#3| |#3|) 131)) (-1434 (((-3 |#3| "failed") |#3|) 82)) (-3780 ((|#3| |#3|) 121)) (-1742 (((-3 |#3| "failed") |#3|) 58)) (-1744 ((|#3| |#3|) 129)) (-2409 (((-3 |#3| "failed") |#3|) 46)) (-3711 ((|#3| |#3|) 119)) (-1542 (((-3 |#3| "failed") |#3|) 112)) (-1793 ((|#3| |#3|) 133)) (-3443 (((-3 |#3| "failed") |#3|) 84)) (-3805 ((|#3| |#3|) 123)) (-2054 (((-3 |#3| "failed") |#3| (-710)) 36)) (-4214 (((-3 |#3| "failed") |#3|) 74)) (-2384 ((|#3| |#3|) 118)) (-3214 (((-3 |#3| "failed") |#3|) 44)) (-1811 ((|#3| |#3|) 117)) (-2601 (((-3 |#3| "failed") |#3|) 113)) (-1805 ((|#3| |#3|) 134)) (-1378 (((-3 |#3| "failed") |#3|) 85)) (-3816 ((|#3| |#3|) 124)) (-3143 (((-3 |#3| "failed") |#3|) 111)) (-1782 ((|#3| |#3|) 132)) (-2838 (((-3 |#3| "failed") |#3|) 83)) (-3793 ((|#3| |#3|) 122)) (-2313 (((-3 |#3| "failed") |#3|) 60)) (-1757 ((|#3| |#3|) 130)) (-1591 (((-3 |#3| "failed") |#3|) 48)) (-3767 ((|#3| |#3|) 120)) (-1837 (((-3 |#3| "failed") |#3|) 66)) (-1839 ((|#3| |#3|) 137)) (-1947 (((-3 |#3| "failed") |#3|) 104)) (-3847 ((|#3| |#3|) 142)) (-1648 (((-3 |#3| "failed") |#3|) 62)) (-1818 ((|#3| |#3|) 135)) (-1908 (((-3 |#3| "failed") |#3|) 50)) (-3828 ((|#3| |#3|) 125)) (-2355 (((-3 |#3| "failed") |#3|) 70)) (-1865 ((|#3| |#3|) 139)) (-2609 (((-3 |#3| "failed") |#3|) 54)) (-1719 ((|#3| |#3|) 127)) (-3170 (((-3 |#3| "failed") |#3|) 72)) (-2914 ((|#3| |#3|) 140)) (-2107 (((-3 |#3| "failed") |#3|) 56)) (-1731 ((|#3| |#3|) 128)) (-1716 (((-3 |#3| "failed") |#3|) 68)) (-1852 ((|#3| |#3|) 138)) (-2718 (((-3 |#3| "failed") |#3|) 107)) (-3859 ((|#3| |#3|) 143)) (-1588 (((-3 |#3| "failed") |#3|) 64)) (-1830 ((|#3| |#3|) 136)) (-1955 (((-3 |#3| "failed") |#3|) 52)) (-3838 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-383 (-523))) 40 (|has| |#1| (-339))))) -(((-255 |#1| |#2| |#3|) (-13 (-912 |#3|) (-10 -7 (IF (|has| |#1| (-339)) (-15 ** (|#3| |#3| (-383 (-523)))) |%noBranch|) (-15 -1811 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -3711 (|#3| |#3|)) (-15 -3767 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3793 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3816 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3859 (|#3| |#3|)) (-15 -1719 (|#3| |#3|)) (-15 -1731 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1769 (|#3| |#3|)) (-15 -1782 (|#3| |#3|)) (-15 -1793 (|#3| |#3|)) (-15 -1805 (|#3| |#3|)) (-15 -1818 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1852 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)))) (-37 (-383 (-523))) (-1159 |#1|) (-1130 |#1| |#2|)) (T -255)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-383 (-523))) (-4 *4 (-339)) (-4 *4 (-37 *3)) (-4 *5 (-1159 *4)) (-5 *1 (-255 *4 *5 *2)) (-4 *2 (-1130 *4 *5)))) (-1811 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1769 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1782 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1793 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1818 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1852 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4))))) -(-13 (-912 |#3|) (-10 -7 (IF (|has| |#1| (-339)) (-15 ** (|#3| |#3| (-383 (-523)))) |%noBranch|) (-15 -1811 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -3711 (|#3| |#3|)) (-15 -3767 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3793 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3816 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3859 (|#3| |#3|)) (-15 -1719 (|#3| |#3|)) (-15 -1731 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1769 (|#3| |#3|)) (-15 -1782 (|#3| |#3|)) (-15 -1793 (|#3| |#3|)) (-15 -1805 (|#3| |#3|)) (-15 -1818 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1852 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)))) -((-2977 (((-3 |#3| "failed") |#3|) 66)) (-1769 ((|#3| |#3|) 133)) (-1434 (((-3 |#3| "failed") |#3|) 50)) (-3780 ((|#3| |#3|) 121)) (-1742 (((-3 |#3| "failed") |#3|) 62)) (-1744 ((|#3| |#3|) 131)) (-2409 (((-3 |#3| "failed") |#3|) 46)) (-3711 ((|#3| |#3|) 119)) (-1542 (((-3 |#3| "failed") |#3|) 70)) (-1793 ((|#3| |#3|) 135)) (-3443 (((-3 |#3| "failed") |#3|) 54)) (-3805 ((|#3| |#3|) 123)) (-2054 (((-3 |#3| "failed") |#3| (-710)) 35)) (-4214 (((-3 |#3| "failed") |#3|) 44)) (-2384 ((|#3| |#3|) 112)) (-3214 (((-3 |#3| "failed") |#3|) 42)) (-1811 ((|#3| |#3|) 118)) (-2601 (((-3 |#3| "failed") |#3|) 72)) (-1805 ((|#3| |#3|) 136)) (-1378 (((-3 |#3| "failed") |#3|) 56)) (-3816 ((|#3| |#3|) 124)) (-3143 (((-3 |#3| "failed") |#3|) 68)) (-1782 ((|#3| |#3|) 134)) (-2838 (((-3 |#3| "failed") |#3|) 52)) (-3793 ((|#3| |#3|) 122)) (-2313 (((-3 |#3| "failed") |#3|) 64)) (-1757 ((|#3| |#3|) 132)) (-1591 (((-3 |#3| "failed") |#3|) 48)) (-3767 ((|#3| |#3|) 120)) (-1837 (((-3 |#3| "failed") |#3|) 78)) (-1839 ((|#3| |#3|) 139)) (-1947 (((-3 |#3| "failed") |#3|) 58)) (-3847 ((|#3| |#3|) 127)) (-1648 (((-3 |#3| "failed") |#3|) 74)) (-1818 ((|#3| |#3|) 137)) (-1908 (((-3 |#3| "failed") |#3|) 102)) (-3828 ((|#3| |#3|) 125)) (-2355 (((-3 |#3| "failed") |#3|) 82)) (-1865 ((|#3| |#3|) 141)) (-2609 (((-3 |#3| "failed") |#3|) 109)) (-1719 ((|#3| |#3|) 129)) (-3170 (((-3 |#3| "failed") |#3|) 84)) (-2914 ((|#3| |#3|) 142)) (-2107 (((-3 |#3| "failed") |#3|) 111)) (-1731 ((|#3| |#3|) 130)) (-1716 (((-3 |#3| "failed") |#3|) 80)) (-1852 ((|#3| |#3|) 140)) (-2718 (((-3 |#3| "failed") |#3|) 60)) (-3859 ((|#3| |#3|) 128)) (-1588 (((-3 |#3| "failed") |#3|) 76)) (-1830 ((|#3| |#3|) 138)) (-1955 (((-3 |#3| "failed") |#3|) 105)) (-3838 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-383 (-523))) 40 (|has| |#1| (-339))))) -(((-256 |#1| |#2| |#3| |#4|) (-13 (-912 |#3|) (-10 -7 (IF (|has| |#1| (-339)) (-15 ** (|#3| |#3| (-383 (-523)))) |%noBranch|) (-15 -1811 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -3711 (|#3| |#3|)) (-15 -3767 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3793 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3816 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3859 (|#3| |#3|)) (-15 -1719 (|#3| |#3|)) (-15 -1731 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1769 (|#3| |#3|)) (-15 -1782 (|#3| |#3|)) (-15 -1793 (|#3| |#3|)) (-15 -1805 (|#3| |#3|)) (-15 -1818 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1852 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)))) (-37 (-383 (-523))) (-1128 |#1|) (-1151 |#1| |#2|) (-912 |#2|)) (T -256)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-383 (-523))) (-4 *4 (-339)) (-4 *4 (-37 *3)) (-4 *5 (-1128 *4)) (-5 *1 (-256 *4 *5 *2 *6)) (-4 *2 (-1151 *4 *5)) (-4 *6 (-912 *5)))) (-1811 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1769 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1782 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1793 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1818 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1852 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4))))) -(-13 (-912 |#3|) (-10 -7 (IF (|has| |#1| (-339)) (-15 ** (|#3| |#3| (-383 (-523)))) |%noBranch|) (-15 -1811 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -3711 (|#3| |#3|)) (-15 -3767 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3793 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3816 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3859 (|#3| |#3|)) (-15 -1719 (|#3| |#3|)) (-15 -1731 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1769 (|#3| |#3|)) (-15 -1782 (|#3| |#3|)) (-15 -1793 (|#3| |#3|)) (-15 -1805 (|#3| |#3|)) (-15 -1818 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1852 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)))) -((-3677 (((-108) $) 18)) (-3773 (((-167) $) 7)) (-4139 (((-3 (-1087) "failed") $) 13)) (-2936 (((-3 (-589 $) "failed") $) NIL)) (-1838 (((-3 (-1087) "failed") $) 21)) (-3693 (((-3 (-1020) "failed") $) 16)) (-1869 (((-108) $) 14)) (-1458 (((-794) $) NIL)) (-2223 (((-108) $) 9))) -(((-257) (-13 (-563 (-794)) (-10 -8 (-15 -3773 ((-167) $)) (-15 -1869 ((-108) $)) (-15 -3693 ((-3 (-1020) "failed") $)) (-15 -3677 ((-108) $)) (-15 -1838 ((-3 (-1087) "failed") $)) (-15 -2223 ((-108) $)) (-15 -4139 ((-3 (-1087) "failed") $)) (-15 -2936 ((-3 (-589 $) "failed") $))))) (T -257)) -((-3773 (*1 *2 *1) (-12 (-5 *2 (-167)) (-5 *1 (-257)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) (-3693 (*1 *2 *1) (|partial| -12 (-5 *2 (-1020)) (-5 *1 (-257)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) (-1838 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-257)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) (-4139 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-257)))) (-2936 (*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-257))) (-5 *1 (-257))))) -(-13 (-563 (-794)) (-10 -8 (-15 -3773 ((-167) $)) (-15 -1869 ((-108) $)) (-15 -3693 ((-3 (-1020) "failed") $)) (-15 -3677 ((-108) $)) (-15 -1838 ((-3 (-1087) "failed") $)) (-15 -2223 ((-108) $)) (-15 -4139 ((-3 (-1087) "failed") $)) (-15 -2936 ((-3 (-589 $) "failed") $)))) -((-3724 (($ (-1 (-108) |#2|) $) 23)) (-1773 (($ $) 36)) (-2249 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-2557 (($ |#2| $) 31) (($ (-1 (-108) |#2|) $) 17)) (-2158 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2847 (($ |#2| $ (-523)) 19) (($ $ $ (-523)) 21)) (-1469 (($ $ (-523)) 11) (($ $ (-1135 (-523))) 14)) (-1746 (($ $ |#2|) 29) (($ $ $) NIL)) (-2326 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-589 $)) NIL))) -(((-258 |#1| |#2|) (-10 -8 (-15 -2158 (|#1| |#1| |#1|)) (-15 -2249 (|#1| |#2| |#1|)) (-15 -2158 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -1746 (|#1| |#1| |#2|)) (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -1469 (|#1| |#1| (-1135 (-523)))) (-15 -1469 (|#1| |#1| (-523))) (-15 -2326 (|#1| (-589 |#1|))) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -2557 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3724 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2557 (|#1| |#2| |#1|)) (-15 -1773 (|#1| |#1|))) (-259 |#2|) (-1122)) (T -258)) -NIL -(-10 -8 (-15 -2158 (|#1| |#1| |#1|)) (-15 -2249 (|#1| |#2| |#1|)) (-15 -2158 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -1746 (|#1| |#1| |#2|)) (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -1469 (|#1| |#1| (-1135 (-523)))) (-15 -1469 (|#1| |#1| (-523))) (-15 -2326 (|#1| (-589 |#1|))) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -2557 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3724 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2557 (|#1| |#2| |#1|)) (-15 -1773 (|#1| |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 58 (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) |#1|) $) 85)) (-3724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-3941 (($ $) 83 (|has| |#1| (-1016)))) (-1773 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1016)))) (-2557 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 51)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2158 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-3450 (($ |#1| $ (-523)) 88) (($ $ $ (-523)) 87)) (-2847 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 42 (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4203 (($ $ |#1|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1135 (-523))) 63)) (-2753 (($ $ (-523)) 91) (($ $ (-1135 (-523))) 90)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 70)) (-1746 (($ $ |#1|) 93) (($ $ $) 92)) (-2326 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-259 |#1|) (-129) (-1122)) (T -259)) -((-1746 (*1 *1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)))) (-1746 (*1 *1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)))) (-2753 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) (-2753 (*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-523))) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) (-2249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) (-3450 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-259 *2)) (-4 *2 (-1122)))) (-3450 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) (-2158 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) (-3387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) (-2249 (*1 *1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)) (-4 *2 (-1016)))) (-3941 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)) (-4 *2 (-1016)))) (-2158 (*1 *1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)) (-4 *2 (-786))))) -(-13 (-594 |t#1|) (-10 -8 (-6 -4245) (-15 -1746 ($ $ |t#1|)) (-15 -1746 ($ $ $)) (-15 -2753 ($ $ (-523))) (-15 -2753 ($ $ (-1135 (-523)))) (-15 -2249 ($ (-1 (-108) |t#1|) $)) (-15 -3450 ($ |t#1| $ (-523))) (-15 -3450 ($ $ $ (-523))) (-15 -2158 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -3387 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -2249 ($ |t#1| $)) (-15 -3941 ($ $))) |%noBranch|) (IF (|has| |t#1| (-786)) (-15 -2158 ($ $ $)) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-1680 (((-108) $ $) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3696 (((-589 (-523)) $) 19)) (-2640 (((-710) $) 17)) (-1691 (((-794) $) 23) (($ (-589 (-523))) 15)) (-1597 (($ (-710)) 20)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 9)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 11))) +(((-252) (-13 (-786) (-10 -8 (-15 -1691 ($ (-589 (-523)))) (-15 -2640 ((-710) $)) (-15 -3696 ((-589 (-523)) $)) (-15 -1597 ($ (-710)))))) (T -252)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-252)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-252)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-252)))) (-1597 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-252))))) +(-13 (-786) (-10 -8 (-15 -1691 ($ (-589 (-523)))) (-15 -2640 ((-710) $)) (-15 -3696 ((-589 (-523)) $)) (-15 -1597 ($ (-710))))) +((-1462 ((|#2| |#2|) 77)) (-1285 ((|#2| |#2|) 65)) (-2595 (((-3 |#2| "failed") |#2| (-589 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-1441 ((|#2| |#2|) 75)) (-1260 ((|#2| |#2|) 63)) (-1481 ((|#2| |#2|) 79)) (-1309 ((|#2| |#2|) 67)) (-3352 ((|#2|) 46)) (-2947 (((-110) (-110)) 95)) (-2313 ((|#2| |#2|) 61)) (-1217 (((-108) |#2|) 134)) (-1358 ((|#2| |#2|) 181)) (-3009 ((|#2| |#2|) 157)) (-2005 ((|#2|) 59)) (-1393 ((|#2|) 58)) (-1633 ((|#2| |#2|) 177)) (-2883 ((|#2| |#2|) 153)) (-1438 ((|#2| |#2|) 185)) (-2291 ((|#2| |#2|) 161)) (-2806 ((|#2| |#2|) 149)) (-2526 ((|#2| |#2|) 151)) (-1535 ((|#2| |#2|) 187)) (-3873 ((|#2| |#2|) 163)) (-3028 ((|#2| |#2|) 183)) (-1810 ((|#2| |#2|) 159)) (-4112 ((|#2| |#2|) 179)) (-2774 ((|#2| |#2|) 155)) (-2234 ((|#2| |#2|) 193)) (-2794 ((|#2| |#2|) 169)) (-2456 ((|#2| |#2|) 189)) (-3059 ((|#2| |#2|) 165)) (-3208 ((|#2| |#2|) 197)) (-1616 ((|#2| |#2|) 173)) (-3883 ((|#2| |#2|) 199)) (-1677 ((|#2| |#2|) 175)) (-3752 ((|#2| |#2|) 195)) (-2895 ((|#2| |#2|) 171)) (-2635 ((|#2| |#2|) 191)) (-1922 ((|#2| |#2|) 167)) (-2922 ((|#2| |#2|) 62)) (-2306 ((|#2| |#2|) 80)) (-1322 ((|#2| |#2|) 68)) (-1471 ((|#2| |#2|) 78)) (-1295 ((|#2| |#2|) 66)) (-1453 ((|#2| |#2|) 76)) (-1274 ((|#2| |#2|) 64)) (-3198 (((-108) (-110)) 93)) (-2341 ((|#2| |#2|) 83)) (-1401 ((|#2| |#2|) 71)) (-2318 ((|#2| |#2|) 81)) (-1334 ((|#2| |#2|) 69)) (-2366 ((|#2| |#2|) 85)) (-1421 ((|#2| |#2|) 73)) (-2102 ((|#2| |#2|) 86)) (-1431 ((|#2| |#2|) 74)) (-2353 ((|#2| |#2|) 84)) (-1413 ((|#2| |#2|) 72)) (-2330 ((|#2| |#2|) 82)) (-1346 ((|#2| |#2|) 70))) +(((-253 |#1| |#2|) (-10 -7 (-15 -2922 (|#2| |#2|)) (-15 -2313 (|#2| |#2|)) (-15 -1260 (|#2| |#2|)) (-15 -1274 (|#2| |#2|)) (-15 -1285 (|#2| |#2|)) (-15 -1295 (|#2| |#2|)) (-15 -1309 (|#2| |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -1334 (|#2| |#2|)) (-15 -1346 (|#2| |#2|)) (-15 -1401 (|#2| |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -1421 (|#2| |#2|)) (-15 -1431 (|#2| |#2|)) (-15 -1441 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1462 (|#2| |#2|)) (-15 -1471 (|#2| |#2|)) (-15 -1481 (|#2| |#2|)) (-15 -2306 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2341 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -2366 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -3352 (|#2|)) (-15 -3198 ((-108) (-110))) (-15 -2947 ((-110) (-110))) (-15 -1393 (|#2|)) (-15 -2005 (|#2|)) (-15 -2526 (|#2| |#2|)) (-15 -2806 (|#2| |#2|)) (-15 -2883 (|#2| |#2|)) (-15 -2774 (|#2| |#2|)) (-15 -3009 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -3059 (|#2| |#2|)) (-15 -1922 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2895 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -1358 (|#2| |#2|)) (-15 -3028 (|#2| |#2|)) (-15 -1438 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -2456 (|#2| |#2|)) (-15 -2635 (|#2| |#2|)) (-15 -2234 (|#2| |#2|)) (-15 -3752 (|#2| |#2|)) (-15 -3208 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -2595 ((-3 |#2| "failed") |#2| (-589 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1217 ((-108) |#2|))) (-13 (-786) (-515)) (-13 (-406 |#1|) (-930))) (T -253)) +((-1217 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-253 *4 *3)) (-4 *3 (-13 (-406 *4) (-930))))) (-2595 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-589 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-406 *4) (-930))) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-253 *4 *2)))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3208 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3752 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2234 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2635 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1438 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3028 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1358 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-4112 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1633 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2895 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1922 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3059 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1810 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3009 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2774 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2883 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2806 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2526 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2005 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) (-4 *3 (-13 (-786) (-515))))) (-1393 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) (-4 *3 (-13 (-786) (-515))))) (-2947 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *4)) (-4 *4 (-13 (-406 *3) (-930))))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-253 *4 *5)) (-4 *5 (-13 (-406 *4) (-930))))) (-3352 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) (-4 *3 (-13 (-786) (-515))))) (-2102 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2366 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2353 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2341 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1481 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1462 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1441 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1421 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1401 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1346 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1334 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1322 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1309 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1295 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1285 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1274 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1260 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2313 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2922 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930)))))) +(-10 -7 (-15 -2922 (|#2| |#2|)) (-15 -2313 (|#2| |#2|)) (-15 -1260 (|#2| |#2|)) (-15 -1274 (|#2| |#2|)) (-15 -1285 (|#2| |#2|)) (-15 -1295 (|#2| |#2|)) (-15 -1309 (|#2| |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -1334 (|#2| |#2|)) (-15 -1346 (|#2| |#2|)) (-15 -1401 (|#2| |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -1421 (|#2| |#2|)) (-15 -1431 (|#2| |#2|)) (-15 -1441 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1462 (|#2| |#2|)) (-15 -1471 (|#2| |#2|)) (-15 -1481 (|#2| |#2|)) (-15 -2306 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2341 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -2366 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -3352 (|#2|)) (-15 -3198 ((-108) (-110))) (-15 -2947 ((-110) (-110))) (-15 -1393 (|#2|)) (-15 -2005 (|#2|)) (-15 -2526 (|#2| |#2|)) (-15 -2806 (|#2| |#2|)) (-15 -2883 (|#2| |#2|)) (-15 -2774 (|#2| |#2|)) (-15 -3009 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -3059 (|#2| |#2|)) (-15 -1922 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2895 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -1358 (|#2| |#2|)) (-15 -3028 (|#2| |#2|)) (-15 -1438 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -2456 (|#2| |#2|)) (-15 -2635 (|#2| |#2|)) (-15 -2234 (|#2| |#2|)) (-15 -3752 (|#2| |#2|)) (-15 -3208 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -2595 ((-3 |#2| "failed") |#2| (-589 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1217 ((-108) |#2|))) +((-2442 (((-3 |#2| "failed") (-589 (-562 |#2|)) |#2| (-1087)) 134)) (-2519 ((|#2| (-383 (-523)) |#2|) 50)) (-2494 ((|#2| |#2| (-562 |#2|)) 127)) (-1376 (((-2 (|:| |func| |#2|) (|:| |kers| (-589 (-562 |#2|))) (|:| |vals| (-589 |#2|))) |#2| (-1087)) 126)) (-1341 ((|#2| |#2| (-1087)) 19) ((|#2| |#2|) 22)) (-2722 ((|#2| |#2| (-1087)) 140) ((|#2| |#2|) 138))) +(((-254 |#1| |#2|) (-10 -7 (-15 -2722 (|#2| |#2|)) (-15 -2722 (|#2| |#2| (-1087))) (-15 -1376 ((-2 (|:| |func| |#2|) (|:| |kers| (-589 (-562 |#2|))) (|:| |vals| (-589 |#2|))) |#2| (-1087))) (-15 -1341 (|#2| |#2|)) (-15 -1341 (|#2| |#2| (-1087))) (-15 -2442 ((-3 |#2| "failed") (-589 (-562 |#2|)) |#2| (-1087))) (-15 -2494 (|#2| |#2| (-562 |#2|))) (-15 -2519 (|#2| (-383 (-523)) |#2|))) (-13 (-515) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1109) (-406 |#1|))) (T -254)) +((-2519 (*1 *2 *3 *2) (-12 (-5 *3 (-383 (-523))) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4))))) (-2494 (*1 *2 *2 *3) (-12 (-5 *3 (-562 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4))) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *4 *2)))) (-2442 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-589 (-562 *2))) (-5 *4 (-1087)) (-4 *2 (-13 (-27) (-1109) (-406 *5))) (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *5 *2)))) (-1341 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4))))) (-1341 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3))))) (-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-589 (-562 *3))) (|:| |vals| (-589 *3)))) (-5 *1 (-254 *5 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))))) (-2722 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4))))) (-2722 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3)))))) +(-10 -7 (-15 -2722 (|#2| |#2|)) (-15 -2722 (|#2| |#2| (-1087))) (-15 -1376 ((-2 (|:| |func| |#2|) (|:| |kers| (-589 (-562 |#2|))) (|:| |vals| (-589 |#2|))) |#2| (-1087))) (-15 -1341 (|#2| |#2|)) (-15 -1341 (|#2| |#2| (-1087))) (-15 -2442 ((-3 |#2| "failed") (-589 (-562 |#2|)) |#2| (-1087))) (-15 -2494 (|#2| |#2| (-562 |#2|))) (-15 -2519 (|#2| (-383 (-523)) |#2|))) +((-3016 (((-3 |#3| "failed") |#3|) 110)) (-1462 ((|#3| |#3|) 131)) (-2087 (((-3 |#3| "failed") |#3|) 82)) (-1285 ((|#3| |#3|) 121)) (-1977 (((-3 |#3| "failed") |#3|) 58)) (-1441 ((|#3| |#3|) 129)) (-2504 (((-3 |#3| "failed") |#3|) 46)) (-1260 ((|#3| |#3|) 119)) (-3737 (((-3 |#3| "failed") |#3|) 112)) (-1481 ((|#3| |#3|) 133)) (-3050 (((-3 |#3| "failed") |#3|) 84)) (-1309 ((|#3| |#3|) 123)) (-3047 (((-3 |#3| "failed") |#3| (-710)) 36)) (-1248 (((-3 |#3| "failed") |#3|) 74)) (-2313 ((|#3| |#3|) 118)) (-3426 (((-3 |#3| "failed") |#3|) 44)) (-2922 ((|#3| |#3|) 117)) (-3678 (((-3 |#3| "failed") |#3|) 113)) (-2306 ((|#3| |#3|) 134)) (-2710 (((-3 |#3| "failed") |#3|) 85)) (-1322 ((|#3| |#3|) 124)) (-3979 (((-3 |#3| "failed") |#3|) 111)) (-1471 ((|#3| |#3|) 132)) (-4196 (((-3 |#3| "failed") |#3|) 83)) (-1295 ((|#3| |#3|) 122)) (-2765 (((-3 |#3| "failed") |#3|) 60)) (-1453 ((|#3| |#3|) 130)) (-1200 (((-3 |#3| "failed") |#3|) 48)) (-1274 ((|#3| |#3|) 120)) (-1608 (((-3 |#3| "failed") |#3|) 66)) (-2341 ((|#3| |#3|) 137)) (-3169 (((-3 |#3| "failed") |#3|) 104)) (-1401 ((|#3| |#3|) 142)) (-3506 (((-3 |#3| "failed") |#3|) 62)) (-2318 ((|#3| |#3|) 135)) (-4040 (((-3 |#3| "failed") |#3|) 50)) (-1334 ((|#3| |#3|) 125)) (-2003 (((-3 |#3| "failed") |#3|) 70)) (-2366 ((|#3| |#3|) 139)) (-3755 (((-3 |#3| "failed") |#3|) 54)) (-1421 ((|#3| |#3|) 127)) (-1261 (((-3 |#3| "failed") |#3|) 72)) (-2102 ((|#3| |#3|) 140)) (-2436 (((-3 |#3| "failed") |#3|) 56)) (-1431 ((|#3| |#3|) 128)) (-2913 (((-3 |#3| "failed") |#3|) 68)) (-2353 ((|#3| |#3|) 138)) (-2450 (((-3 |#3| "failed") |#3|) 107)) (-1413 ((|#3| |#3|) 143)) (-4192 (((-3 |#3| "failed") |#3|) 64)) (-2330 ((|#3| |#3|) 136)) (-3247 (((-3 |#3| "failed") |#3|) 52)) (-1346 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-383 (-523))) 40 (|has| |#1| (-339))))) +(((-255 |#1| |#2| |#3|) (-13 (-912 |#3|) (-10 -7 (IF (|has| |#1| (-339)) (-15 ** (|#3| |#3| (-383 (-523)))) |%noBranch|) (-15 -2922 (|#3| |#3|)) (-15 -2313 (|#3| |#3|)) (-15 -1260 (|#3| |#3|)) (-15 -1274 (|#3| |#3|)) (-15 -1285 (|#3| |#3|)) (-15 -1295 (|#3| |#3|)) (-15 -1309 (|#3| |#3|)) (-15 -1322 (|#3| |#3|)) (-15 -1334 (|#3| |#3|)) (-15 -1346 (|#3| |#3|)) (-15 -1401 (|#3| |#3|)) (-15 -1413 (|#3| |#3|)) (-15 -1421 (|#3| |#3|)) (-15 -1431 (|#3| |#3|)) (-15 -1441 (|#3| |#3|)) (-15 -1453 (|#3| |#3|)) (-15 -1462 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1481 (|#3| |#3|)) (-15 -2306 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2330 (|#3| |#3|)) (-15 -2341 (|#3| |#3|)) (-15 -2353 (|#3| |#3|)) (-15 -2366 (|#3| |#3|)) (-15 -2102 (|#3| |#3|)))) (-37 (-383 (-523))) (-1160 |#1|) (-1131 |#1| |#2|)) (T -255)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-383 (-523))) (-4 *4 (-339)) (-4 *4 (-37 *3)) (-4 *5 (-1160 *4)) (-5 *1 (-255 *4 *5 *2)) (-4 *2 (-1131 *4 *5)))) (-2922 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-2313 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1260 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1274 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1285 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1295 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1309 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1322 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1334 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1346 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1401 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1421 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1441 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1462 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-1481 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-2341 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-2353 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-2366 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) (-2102 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4))))) +(-13 (-912 |#3|) (-10 -7 (IF (|has| |#1| (-339)) (-15 ** (|#3| |#3| (-383 (-523)))) |%noBranch|) (-15 -2922 (|#3| |#3|)) (-15 -2313 (|#3| |#3|)) (-15 -1260 (|#3| |#3|)) (-15 -1274 (|#3| |#3|)) (-15 -1285 (|#3| |#3|)) (-15 -1295 (|#3| |#3|)) (-15 -1309 (|#3| |#3|)) (-15 -1322 (|#3| |#3|)) (-15 -1334 (|#3| |#3|)) (-15 -1346 (|#3| |#3|)) (-15 -1401 (|#3| |#3|)) (-15 -1413 (|#3| |#3|)) (-15 -1421 (|#3| |#3|)) (-15 -1431 (|#3| |#3|)) (-15 -1441 (|#3| |#3|)) (-15 -1453 (|#3| |#3|)) (-15 -1462 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1481 (|#3| |#3|)) (-15 -2306 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2330 (|#3| |#3|)) (-15 -2341 (|#3| |#3|)) (-15 -2353 (|#3| |#3|)) (-15 -2366 (|#3| |#3|)) (-15 -2102 (|#3| |#3|)))) +((-3016 (((-3 |#3| "failed") |#3|) 66)) (-1462 ((|#3| |#3|) 133)) (-2087 (((-3 |#3| "failed") |#3|) 50)) (-1285 ((|#3| |#3|) 121)) (-1977 (((-3 |#3| "failed") |#3|) 62)) (-1441 ((|#3| |#3|) 131)) (-2504 (((-3 |#3| "failed") |#3|) 46)) (-1260 ((|#3| |#3|) 119)) (-3737 (((-3 |#3| "failed") |#3|) 70)) (-1481 ((|#3| |#3|) 135)) (-3050 (((-3 |#3| "failed") |#3|) 54)) (-1309 ((|#3| |#3|) 123)) (-3047 (((-3 |#3| "failed") |#3| (-710)) 35)) (-1248 (((-3 |#3| "failed") |#3|) 44)) (-2313 ((|#3| |#3|) 112)) (-3426 (((-3 |#3| "failed") |#3|) 42)) (-2922 ((|#3| |#3|) 118)) (-3678 (((-3 |#3| "failed") |#3|) 72)) (-2306 ((|#3| |#3|) 136)) (-2710 (((-3 |#3| "failed") |#3|) 56)) (-1322 ((|#3| |#3|) 124)) (-3979 (((-3 |#3| "failed") |#3|) 68)) (-1471 ((|#3| |#3|) 134)) (-4196 (((-3 |#3| "failed") |#3|) 52)) (-1295 ((|#3| |#3|) 122)) (-2765 (((-3 |#3| "failed") |#3|) 64)) (-1453 ((|#3| |#3|) 132)) (-1200 (((-3 |#3| "failed") |#3|) 48)) (-1274 ((|#3| |#3|) 120)) (-1608 (((-3 |#3| "failed") |#3|) 78)) (-2341 ((|#3| |#3|) 139)) (-3169 (((-3 |#3| "failed") |#3|) 58)) (-1401 ((|#3| |#3|) 127)) (-3506 (((-3 |#3| "failed") |#3|) 74)) (-2318 ((|#3| |#3|) 137)) (-4040 (((-3 |#3| "failed") |#3|) 102)) (-1334 ((|#3| |#3|) 125)) (-2003 (((-3 |#3| "failed") |#3|) 82)) (-2366 ((|#3| |#3|) 141)) (-3755 (((-3 |#3| "failed") |#3|) 109)) (-1421 ((|#3| |#3|) 129)) (-1261 (((-3 |#3| "failed") |#3|) 84)) (-2102 ((|#3| |#3|) 142)) (-2436 (((-3 |#3| "failed") |#3|) 111)) (-1431 ((|#3| |#3|) 130)) (-2913 (((-3 |#3| "failed") |#3|) 80)) (-2353 ((|#3| |#3|) 140)) (-2450 (((-3 |#3| "failed") |#3|) 60)) (-1413 ((|#3| |#3|) 128)) (-4192 (((-3 |#3| "failed") |#3|) 76)) (-2330 ((|#3| |#3|) 138)) (-3247 (((-3 |#3| "failed") |#3|) 105)) (-1346 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-383 (-523))) 40 (|has| |#1| (-339))))) +(((-256 |#1| |#2| |#3| |#4|) (-13 (-912 |#3|) (-10 -7 (IF (|has| |#1| (-339)) (-15 ** (|#3| |#3| (-383 (-523)))) |%noBranch|) (-15 -2922 (|#3| |#3|)) (-15 -2313 (|#3| |#3|)) (-15 -1260 (|#3| |#3|)) (-15 -1274 (|#3| |#3|)) (-15 -1285 (|#3| |#3|)) (-15 -1295 (|#3| |#3|)) (-15 -1309 (|#3| |#3|)) (-15 -1322 (|#3| |#3|)) (-15 -1334 (|#3| |#3|)) (-15 -1346 (|#3| |#3|)) (-15 -1401 (|#3| |#3|)) (-15 -1413 (|#3| |#3|)) (-15 -1421 (|#3| |#3|)) (-15 -1431 (|#3| |#3|)) (-15 -1441 (|#3| |#3|)) (-15 -1453 (|#3| |#3|)) (-15 -1462 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1481 (|#3| |#3|)) (-15 -2306 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2330 (|#3| |#3|)) (-15 -2341 (|#3| |#3|)) (-15 -2353 (|#3| |#3|)) (-15 -2366 (|#3| |#3|)) (-15 -2102 (|#3| |#3|)))) (-37 (-383 (-523))) (-1129 |#1|) (-1152 |#1| |#2|) (-912 |#2|)) (T -256)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-383 (-523))) (-4 *4 (-339)) (-4 *4 (-37 *3)) (-4 *5 (-1129 *4)) (-5 *1 (-256 *4 *5 *2 *6)) (-4 *2 (-1152 *4 *5)) (-4 *6 (-912 *5)))) (-2922 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-2313 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1260 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1274 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1285 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1295 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1309 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1322 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1334 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1346 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1401 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1421 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1441 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1462 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-1481 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-2341 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-2353 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-2366 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) (-2102 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4))))) +(-13 (-912 |#3|) (-10 -7 (IF (|has| |#1| (-339)) (-15 ** (|#3| |#3| (-383 (-523)))) |%noBranch|) (-15 -2922 (|#3| |#3|)) (-15 -2313 (|#3| |#3|)) (-15 -1260 (|#3| |#3|)) (-15 -1274 (|#3| |#3|)) (-15 -1285 (|#3| |#3|)) (-15 -1295 (|#3| |#3|)) (-15 -1309 (|#3| |#3|)) (-15 -1322 (|#3| |#3|)) (-15 -1334 (|#3| |#3|)) (-15 -1346 (|#3| |#3|)) (-15 -1401 (|#3| |#3|)) (-15 -1413 (|#3| |#3|)) (-15 -1421 (|#3| |#3|)) (-15 -1431 (|#3| |#3|)) (-15 -1441 (|#3| |#3|)) (-15 -1453 (|#3| |#3|)) (-15 -1462 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1481 (|#3| |#3|)) (-15 -2306 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2330 (|#3| |#3|)) (-15 -2341 (|#3| |#3|)) (-15 -2353 (|#3| |#3|)) (-15 -2366 (|#3| |#3|)) (-15 -2102 (|#3| |#3|)))) +((-3537 (((-108) $) 18)) (-3727 (((-167) $) 7)) (-2295 (((-3 (-1087) "failed") $) 13)) (-2652 (((-3 (-589 $) "failed") $) NIL)) (-1617 (((-3 (-1087) "failed") $) 21)) (-3666 (((-3 (-1020) "failed") $) 16)) (-1844 (((-108) $) 14)) (-1691 (((-794) $) NIL)) (-1276 (((-108) $) 9))) +(((-257) (-13 (-563 (-794)) (-10 -8 (-15 -3727 ((-167) $)) (-15 -1844 ((-108) $)) (-15 -3666 ((-3 (-1020) "failed") $)) (-15 -3537 ((-108) $)) (-15 -1617 ((-3 (-1087) "failed") $)) (-15 -1276 ((-108) $)) (-15 -2295 ((-3 (-1087) "failed") $)) (-15 -2652 ((-3 (-589 $) "failed") $))))) (T -257)) +((-3727 (*1 *2 *1) (-12 (-5 *2 (-167)) (-5 *1 (-257)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) (-3666 (*1 *2 *1) (|partial| -12 (-5 *2 (-1020)) (-5 *1 (-257)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) (-1617 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-257)))) (-1276 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) (-2295 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-257)))) (-2652 (*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-257))) (-5 *1 (-257))))) +(-13 (-563 (-794)) (-10 -8 (-15 -3727 ((-167) $)) (-15 -1844 ((-108) $)) (-15 -3666 ((-3 (-1020) "failed") $)) (-15 -3537 ((-108) $)) (-15 -1617 ((-3 (-1087) "failed") $)) (-15 -1276 ((-108) $)) (-15 -2295 ((-3 (-1087) "failed") $)) (-15 -2652 ((-3 (-589 $) "failed") $)))) +((-1903 (($ (-1 (-108) |#2|) $) 23)) (-2462 (($ $) 36)) (-3286 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-2514 (($ |#2| $) 31) (($ (-1 (-108) |#2|) $) 17)) (-1793 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2912 (($ |#2| $ (-523)) 19) (($ $ $ (-523)) 21)) (-1499 (($ $ (-523)) 11) (($ $ (-1136 (-523))) 14)) (-2001 (($ $ |#2|) 29) (($ $ $) NIL)) (-2394 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-589 $)) NIL))) +(((-258 |#1| |#2|) (-10 -8 (-15 -1793 (|#1| |#1| |#1|)) (-15 -3286 (|#1| |#2| |#1|)) (-15 -1793 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3286 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2001 (|#1| |#1| |#1|)) (-15 -2001 (|#1| |#1| |#2|)) (-15 -2912 (|#1| |#1| |#1| (-523))) (-15 -2912 (|#1| |#2| |#1| (-523))) (-15 -1499 (|#1| |#1| (-1136 (-523)))) (-15 -1499 (|#1| |#1| (-523))) (-15 -2394 (|#1| (-589 |#1|))) (-15 -2394 (|#1| |#1| |#1|)) (-15 -2394 (|#1| |#2| |#1|)) (-15 -2394 (|#1| |#1| |#2|)) (-15 -2514 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1903 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2514 (|#1| |#2| |#1|)) (-15 -2462 (|#1| |#1|))) (-259 |#2|) (-1123)) (T -258)) +NIL +(-10 -8 (-15 -1793 (|#1| |#1| |#1|)) (-15 -3286 (|#1| |#2| |#1|)) (-15 -1793 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3286 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2001 (|#1| |#1| |#1|)) (-15 -2001 (|#1| |#1| |#2|)) (-15 -2912 (|#1| |#1| |#1| (-523))) (-15 -2912 (|#1| |#2| |#1| (-523))) (-15 -1499 (|#1| |#1| (-1136 (-523)))) (-15 -1499 (|#1| |#1| (-523))) (-15 -2394 (|#1| (-589 |#1|))) (-15 -2394 (|#1| |#1| |#1|)) (-15 -2394 (|#1| |#2| |#1|)) (-15 -2394 (|#1| |#1| |#2|)) (-15 -2514 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1903 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2514 (|#1| |#2| |#1|)) (-15 -2462 (|#1| |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-4191 (((-1174) $ (-523) (-523)) 40 (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) 8)) (-1849 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) 58 (|has| $ (-6 -4249)))) (-3703 (($ (-1 (-108) |#1|) $) 85)) (-1903 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-4160 (($ $) 83 (|has| |#1| (-1016)))) (-2462 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3286 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1016)))) (-2514 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) 51)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3733 (($ (-710) |#1|) 69)) (-3051 (((-108) $ (-710)) 9)) (-2965 (((-523) $) 43 (|has| (-523) (-786)))) (-1793 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 44 (|has| (-523) (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-3108 (($ |#1| $ (-523)) 88) (($ $ $ (-523)) 87)) (-2912 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2536 (((-589 (-523)) $) 46)) (-2254 (((-108) (-523) $) 47)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2428 ((|#1| $) 42 (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4141 (($ $ |#1|) 41 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) 48)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1136 (-523))) 63)) (-1655 (($ $ (-523)) 91) (($ $ (-1136 (-523))) 90)) (-1499 (($ $ (-523)) 62) (($ $ (-1136 (-523))) 61)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1400 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 70)) (-2001 (($ $ |#1|) 93) (($ $ $) 92)) (-2394 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-259 |#1|) (-129) (-1123)) (T -259)) +((-2001 (*1 *1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1123)))) (-2001 (*1 *1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1123)))) (-1655 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-259 *3)) (-4 *3 (-1123)))) (-1655 (*1 *1 *1 *2) (-12 (-5 *2 (-1136 (-523))) (-4 *1 (-259 *3)) (-4 *3 (-1123)))) (-3286 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-259 *3)) (-4 *3 (-1123)))) (-3108 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-259 *2)) (-4 *2 (-1123)))) (-3108 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-259 *3)) (-4 *3 (-1123)))) (-1793 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1123)))) (-3703 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-259 *3)) (-4 *3 (-1123)))) (-3286 (*1 *1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1123)) (-4 *2 (-1016)))) (-4160 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1123)) (-4 *2 (-1016)))) (-1793 (*1 *1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1123)) (-4 *2 (-786))))) +(-13 (-594 |t#1|) (-10 -8 (-6 -4249) (-15 -2001 ($ $ |t#1|)) (-15 -2001 ($ $ $)) (-15 -1655 ($ $ (-523))) (-15 -1655 ($ $ (-1136 (-523)))) (-15 -3286 ($ (-1 (-108) |t#1|) $)) (-15 -3108 ($ |t#1| $ (-523))) (-15 -3108 ($ $ $ (-523))) (-15 -1793 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -3703 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -3286 ($ |t#1| $)) (-15 -4160 ($ $))) |%noBranch|) (IF (|has| |t#1| (-786)) (-15 -1793 ($ $ $)) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) ((** (($ $ $) 10))) (((-260 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-261)) (T -260)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2384 (($ $) 6)) (-1811 (($ $) 7)) (** (($ $ $) 8))) +((-2313 (($ $) 6)) (-2922 (($ $) 7)) (** (($ $ $) 8))) (((-261) (-129)) (T -261)) -((** (*1 *1 *1 *1) (-4 *1 (-261))) (-1811 (*1 *1 *1) (-4 *1 (-261))) (-2384 (*1 *1 *1) (-4 *1 (-261)))) -(-13 (-10 -8 (-15 -2384 ($ $)) (-15 -1811 ($ $)) (-15 ** ($ $ $)))) -((-3179 (((-589 (-1068 |#1|)) (-1068 |#1|) |#1|) 35)) (-3966 ((|#2| |#2| |#1|) 38)) (-1635 ((|#2| |#2| |#1|) 40)) (-2952 ((|#2| |#2| |#1|) 39))) -(((-262 |#1| |#2|) (-10 -7 (-15 -3966 (|#2| |#2| |#1|)) (-15 -2952 (|#2| |#2| |#1|)) (-15 -1635 (|#2| |#2| |#1|)) (-15 -3179 ((-589 (-1068 |#1|)) (-1068 |#1|) |#1|))) (-339) (-1159 |#1|)) (T -262)) -((-3179 (*1 *2 *3 *4) (-12 (-4 *4 (-339)) (-5 *2 (-589 (-1068 *4))) (-5 *1 (-262 *4 *5)) (-5 *3 (-1068 *4)) (-4 *5 (-1159 *4)))) (-1635 (*1 *2 *2 *3) (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1159 *3)))) (-2952 (*1 *2 *2 *3) (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1159 *3)))) (-3966 (*1 *2 *2 *3) (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1159 *3))))) -(-10 -7 (-15 -3966 (|#2| |#2| |#1|)) (-15 -2952 (|#2| |#2| |#1|)) (-15 -1635 (|#2| |#2| |#1|)) (-15 -3179 ((-589 (-1068 |#1|)) (-1068 |#1|) |#1|))) -((-3223 ((|#2| $ |#1|) 6))) -(((-263 |#1| |#2|) (-129) (-1016) (-1122)) (T -263)) -((-3223 (*1 *2 *1 *3) (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122))))) -(-13 (-10 -8 (-15 -3223 (|t#2| $ |t#1|)))) -((-2863 ((|#3| $ |#2| |#3|) 12)) (-2795 ((|#3| $ |#2|) 10))) -(((-264 |#1| |#2| |#3|) (-10 -8 (-15 -2863 (|#3| |#1| |#2| |#3|)) (-15 -2795 (|#3| |#1| |#2|))) (-265 |#2| |#3|) (-1016) (-1122)) (T -264)) -NIL -(-10 -8 (-15 -2863 (|#3| |#1| |#2| |#3|)) (-15 -2795 (|#3| |#1| |#2|))) -((-1641 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4245)))) (-2863 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) 11)) (-3223 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-265 |#1| |#2|) (-129) (-1016) (-1122)) (T -265)) -((-3223 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) (-2795 (*1 *2 *1 *3) (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) (-1641 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) (-2863 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122))))) -(-13 (-263 |t#1| |t#2|) (-10 -8 (-15 -3223 (|t#2| $ |t#1| |t#2|)) (-15 -2795 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4245)) (PROGN (-15 -1641 (|t#2| $ |t#1| |t#2|)) (-15 -2863 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +((** (*1 *1 *1 *1) (-4 *1 (-261))) (-2922 (*1 *1 *1) (-4 *1 (-261))) (-2313 (*1 *1 *1) (-4 *1 (-261)))) +(-13 (-10 -8 (-15 -2313 ($ $)) (-15 -2922 ($ $)) (-15 ** ($ $ $)))) +((-1374 (((-589 (-1068 |#1|)) (-1068 |#1|) |#1|) 35)) (-1406 ((|#2| |#2| |#1|) 38)) (-3395 ((|#2| |#2| |#1|) 40)) (-3471 ((|#2| |#2| |#1|) 39))) +(((-262 |#1| |#2|) (-10 -7 (-15 -1406 (|#2| |#2| |#1|)) (-15 -3471 (|#2| |#2| |#1|)) (-15 -3395 (|#2| |#2| |#1|)) (-15 -1374 ((-589 (-1068 |#1|)) (-1068 |#1|) |#1|))) (-339) (-1160 |#1|)) (T -262)) +((-1374 (*1 *2 *3 *4) (-12 (-4 *4 (-339)) (-5 *2 (-589 (-1068 *4))) (-5 *1 (-262 *4 *5)) (-5 *3 (-1068 *4)) (-4 *5 (-1160 *4)))) (-3395 (*1 *2 *2 *3) (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1160 *3)))) (-3471 (*1 *2 *2 *3) (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1160 *3)))) (-1406 (*1 *2 *2 *3) (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1160 *3))))) +(-10 -7 (-15 -1406 (|#2| |#2| |#1|)) (-15 -3471 (|#2| |#2| |#1|)) (-15 -3395 (|#2| |#2| |#1|)) (-15 -1374 ((-589 (-1068 |#1|)) (-1068 |#1|) |#1|))) +((-1937 ((|#2| $ |#1|) 6))) +(((-263 |#1| |#2|) (-129) (-1016) (-1123)) (T -263)) +((-1937 (*1 *2 *1 *3) (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1123))))) +(-13 (-10 -8 (-15 -1937 (|t#2| $ |t#1|)))) +((-2053 ((|#3| $ |#2| |#3|) 12)) (-2000 ((|#3| $ |#2|) 10))) +(((-264 |#1| |#2| |#3|) (-10 -8 (-15 -2053 (|#3| |#1| |#2| |#3|)) (-15 -2000 (|#3| |#1| |#2|))) (-265 |#2| |#3|) (-1016) (-1123)) (T -264)) +NIL +(-10 -8 (-15 -2053 (|#3| |#1| |#2| |#3|)) (-15 -2000 (|#3| |#1| |#2|))) +((-1849 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4249)))) (-2053 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4249)))) (-2000 ((|#2| $ |#1|) 11)) (-1937 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-265 |#1| |#2|) (-129) (-1016) (-1123)) (T -265)) +((-1937 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1123)))) (-2000 (*1 *2 *1 *3) (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1123)))) (-1849 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1123)))) (-2053 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1123))))) +(-13 (-263 |t#1| |t#2|) (-10 -8 (-15 -1937 (|t#2| $ |t#1| |t#2|)) (-15 -2000 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4249)) (PROGN (-15 -1849 (|t#2| $ |t#1| |t#2|)) (-15 -2053 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) (((-263 |#1| |#2|) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 35)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 40)) (-3345 (($ $) 38)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) 33)) (-2437 (($ |#2| |#3|) 19)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3507 ((|#3| $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 20)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3620 (((-3 $ "failed") $ $) NIL)) (-1972 (((-710) $) 34)) (-3223 ((|#2| $ |#2|) 42)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 24)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 29 T CONST)) (-2767 (($) 36 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 37))) -(((-266 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-284) (-10 -8 (-15 -3507 (|#3| $)) (-15 -1458 (|#2| $)) (-15 -2437 ($ |#2| |#3|)) (-15 -3620 ((-3 $ "failed") $ $)) (-15 -2121 ((-3 $ "failed") $)) (-15 -3738 ($ $)) (-15 -3223 (|#2| $ |#2|)))) (-158) (-1144 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -266)) -((-2121 (*1 *1 *1) (|partial| -12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3507 (*1 *2 *1) (-12 (-4 *3 (-158)) (-4 *2 (-23)) (-5 *1 (-266 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1144 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1458 (*1 *2 *1) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-266 *3 *2 *4 *5 *6 *7)) (-4 *3 (-158)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2437 (*1 *1 *2 *3) (-12 (-4 *4 (-158)) (-5 *1 (-266 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1144 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3620 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3738 (*1 *1 *1) (-12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3223 (*1 *2 *1 *2) (-12 (-4 *3 (-158)) (-5 *1 (-266 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1144 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-284) (-10 -8 (-15 -3507 (|#3| $)) (-15 -1458 (|#2| $)) (-15 -2437 ($ |#2| |#3|)) (-15 -3620 ((-3 $ "failed") $ $)) (-15 -2121 ((-3 $ "failed") $)) (-15 -3738 ($ $)) (-15 -3223 (|#2| $ |#2|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 35)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 40)) (-3306 (($ $) 38)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2787 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-4059 (($ $ $) 33)) (-2116 (($ |#2| |#3|) 19)) (-1444 (((-3 $ "failed") $) NIL)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-2769 (((-108) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2547 ((|#3| $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 20)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1271 (((-3 $ "failed") $ $) NIL)) (-3413 (((-710) $) 34)) (-1937 ((|#2| $ |#2|) 42)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 24)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3272 (((-710)) NIL)) (-2801 (((-108) $ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 29 T CONST)) (-1891 (($) 36 T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 37))) +(((-266 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-284) (-10 -8 (-15 -2547 (|#3| $)) (-15 -1691 (|#2| $)) (-15 -2116 ($ |#2| |#3|)) (-15 -1271 ((-3 $ "failed") $ $)) (-15 -1444 ((-3 $ "failed") $)) (-15 -1396 ($ $)) (-15 -1937 (|#2| $ |#2|)))) (-158) (-1145 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -266)) +((-1444 (*1 *1 *1) (|partial| -12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1145 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2547 (*1 *2 *1) (-12 (-4 *3 (-158)) (-4 *2 (-23)) (-5 *1 (-266 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1145 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1691 (*1 *2 *1) (-12 (-4 *2 (-1145 *3)) (-5 *1 (-266 *3 *2 *4 *5 *6 *7)) (-4 *3 (-158)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2116 (*1 *1 *2 *3) (-12 (-4 *4 (-158)) (-5 *1 (-266 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1145 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1271 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1145 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1396 (*1 *1 *1) (-12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1145 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1937 (*1 *2 *1 *2) (-12 (-4 *3 (-158)) (-5 *1 (-266 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1145 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-284) (-10 -8 (-15 -2547 (|#3| $)) (-15 -1691 (|#2| $)) (-15 -2116 ($ |#2| |#3|)) (-15 -1271 ((-3 $ "failed") $ $)) (-15 -1444 ((-3 $ "failed") $)) (-15 -1396 ($ $)) (-15 -1937 (|#2| $ |#2|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ (-523)) 28)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-267) (-129)) (T -267)) NIL -(-13 (-973) (-107 $ $) (-10 -7 (-6 -4237))) +(-13 (-973) (-107 $ $) (-10 -7 (-6 -4241))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3946 (($ (-1087) (-1087) (-1020) $) 15)) (-3885 (($ (-1087) (-589 (-895)) $) 19)) (-2750 (((-589 (-1003)) $) 8)) (-1766 (((-3 (-1020) "failed") (-1087) (-1087) $) 14)) (-3342 (((-3 (-589 (-895)) "failed") (-1087) $) 17)) (-3988 (($) 6)) (-3221 (($) 20)) (-1458 (((-794) $) 24)) (-3319 (($) 21))) -(((-268) (-13 (-563 (-794)) (-10 -8 (-15 -3988 ($)) (-15 -2750 ((-589 (-1003)) $)) (-15 -1766 ((-3 (-1020) "failed") (-1087) (-1087) $)) (-15 -3946 ($ (-1087) (-1087) (-1020) $)) (-15 -3342 ((-3 (-589 (-895)) "failed") (-1087) $)) (-15 -3885 ($ (-1087) (-589 (-895)) $)) (-15 -3221 ($)) (-15 -3319 ($))))) (T -268)) -((-3988 (*1 *1) (-5 *1 (-268))) (-2750 (*1 *2 *1) (-12 (-5 *2 (-589 (-1003))) (-5 *1 (-268)))) (-1766 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-268)))) (-3946 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1087)) (-5 *3 (-1020)) (-5 *1 (-268)))) (-3342 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-589 (-895))) (-5 *1 (-268)))) (-3885 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-895))) (-5 *1 (-268)))) (-3221 (*1 *1) (-5 *1 (-268))) (-3319 (*1 *1) (-5 *1 (-268)))) -(-13 (-563 (-794)) (-10 -8 (-15 -3988 ($)) (-15 -2750 ((-589 (-1003)) $)) (-15 -1766 ((-3 (-1020) "failed") (-1087) (-1087) $)) (-15 -3946 ($ (-1087) (-1087) (-1020) $)) (-15 -3342 ((-3 (-589 (-895)) "failed") (-1087) $)) (-15 -3885 ($ (-1087) (-589 (-895)) $)) (-15 -3221 ($)) (-15 -3319 ($)))) -((-1629 (((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |geneigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|)))) 84)) (-3794 (((-589 (-629 (-383 (-883 |#1|)))) (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|)))))) (-629 (-383 (-883 |#1|)))) 79) (((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))) (-710) (-710)) 37)) (-3118 (((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|)))) 81)) (-1441 (((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|)))) 61)) (-3619 (((-589 (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (-629 (-383 (-883 |#1|)))) 60)) (-1807 (((-883 |#1|) (-629 (-383 (-883 |#1|)))) 48) (((-883 |#1|) (-629 (-383 (-883 |#1|))) (-1087)) 49))) -(((-269 |#1|) (-10 -7 (-15 -1807 ((-883 |#1|) (-629 (-383 (-883 |#1|))) (-1087))) (-15 -1807 ((-883 |#1|) (-629 (-383 (-883 |#1|))))) (-15 -3619 ((-589 (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (-629 (-383 (-883 |#1|))))) (-15 -1441 ((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))))) (-15 -3794 ((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))) (-710) (-710))) (-15 -3794 ((-589 (-629 (-383 (-883 |#1|)))) (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|)))))) (-629 (-383 (-883 |#1|))))) (-15 -1629 ((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |geneigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|))))) (-15 -3118 ((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|)))))) (-427)) (T -269)) -((-3118 (*1 *2 *3) (-12 (-4 *4 (-427)) (-5 *2 (-589 (-2 (|:| |eigval| (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 *4)))))))) (-5 *1 (-269 *4)) (-5 *3 (-629 (-383 (-883 *4)))))) (-1629 (*1 *2 *3) (-12 (-4 *4 (-427)) (-5 *2 (-589 (-2 (|:| |eigval| (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4)))) (|:| |geneigvec| (-589 (-629 (-383 (-883 *4)))))))) (-5 *1 (-269 *4)) (-5 *3 (-629 (-383 (-883 *4)))))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-383 (-883 *5)) (-1077 (-1087) (-883 *5)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 *4)))) (-4 *5 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *5))))) (-5 *1 (-269 *5)) (-5 *4 (-629 (-383 (-883 *5)))))) (-3794 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-383 (-883 *6)) (-1077 (-1087) (-883 *6)))) (-5 *5 (-710)) (-4 *6 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *6))))) (-5 *1 (-269 *6)) (-5 *4 (-629 (-383 (-883 *6)))))) (-1441 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-383 (-883 *5)) (-1077 (-1087) (-883 *5)))) (-4 *5 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *5))))) (-5 *1 (-269 *5)) (-5 *4 (-629 (-383 (-883 *5)))))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 *4)))) (-4 *4 (-427)) (-5 *2 (-589 (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4))))) (-5 *1 (-269 *4)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 *4)))) (-5 *2 (-883 *4)) (-5 *1 (-269 *4)) (-4 *4 (-427)))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-383 (-883 *5)))) (-5 *4 (-1087)) (-5 *2 (-883 *5)) (-5 *1 (-269 *5)) (-4 *5 (-427))))) -(-10 -7 (-15 -1807 ((-883 |#1|) (-629 (-383 (-883 |#1|))) (-1087))) (-15 -1807 ((-883 |#1|) (-629 (-383 (-883 |#1|))))) (-15 -3619 ((-589 (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (-629 (-383 (-883 |#1|))))) (-15 -1441 ((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))))) (-15 -3794 ((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))) (-710) (-710))) (-15 -3794 ((-589 (-629 (-383 (-883 |#1|)))) (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|)))))) (-629 (-383 (-883 |#1|))))) (-15 -1629 ((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |geneigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|))))) (-15 -3118 ((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|)))))) -((-3612 (((-271 |#2|) (-1 |#2| |#1|) (-271 |#1|)) 14))) -(((-270 |#1| |#2|) (-10 -7 (-15 -3612 ((-271 |#2|) (-1 |#2| |#1|) (-271 |#1|)))) (-1122) (-1122)) (T -270)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-271 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-271 *6)) (-5 *1 (-270 *5 *6))))) -(-10 -7 (-15 -3612 ((-271 |#2|) (-1 |#2| |#1|) (-271 |#1|)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2295 (((-108) $) NIL (|has| |#1| (-21)))) (-1828 (($ $) 22)) (-3212 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2955 (($ $ $) 93 (|has| |#1| (-279)))) (-2518 (($) NIL (-3262 (|has| |#1| (-21)) (|has| |#1| (-666))) CONST)) (-4018 (($ $) 8 (|has| |#1| (-21)))) (-2959 (((-3 $ "failed") $) 68 (|has| |#1| (-666)))) (-1797 ((|#1| $) 21)) (-2121 (((-3 $ "failed") $) 66 (|has| |#1| (-666)))) (-2023 (((-108) $) NIL (|has| |#1| (-666)))) (-3612 (($ (-1 |#1| |#1|) $) 24)) (-1787 ((|#1| $) 9)) (-2923 (($ $) 57 (|has| |#1| (-21)))) (-1497 (((-3 $ "failed") $) 67 (|has| |#1| (-666)))) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3738 (($ $) 70 (-3262 (|has| |#1| (-339)) (|has| |#1| (-448))))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3775 (((-589 $) $) 19 (|has| |#1| (-515)))) (-2679 (($ $ $) 34 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 $)) 37 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-1087) |#1|) 27 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 31 (|has| |#1| (-484 (-1087) |#1|)))) (-1915 (($ |#1| |#1|) 17)) (-3203 (((-126)) 88 (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 85 (|has| |#1| (-831 (-1087))))) (-3208 (($ $ $) NIL (|has| |#1| (-448)))) (-1714 (($ $ $) NIL (|has| |#1| (-448)))) (-1458 (($ (-523)) NIL (|has| |#1| (-973))) (((-108) $) 45 (|has| |#1| (-1016))) (((-794) $) 44 (|has| |#1| (-1016)))) (-1621 (((-710)) 73 (|has| |#1| (-973)))) (-2364 (($ $ (-523)) NIL (|has| |#1| (-448))) (($ $ (-710)) NIL (|has| |#1| (-666))) (($ $ (-852)) NIL (|has| |#1| (-1028)))) (-2756 (($) 55 (|has| |#1| (-21)) CONST)) (-2767 (($) 63 (|has| |#1| (-666)) CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087))))) (-3983 (($ |#1| |#1|) 20) (((-108) $ $) 40 (|has| |#1| (-1016)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) 90 (-3262 (|has| |#1| (-339)) (|has| |#1| (-448))))) (-4087 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-4075 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-523)) NIL (|has| |#1| (-448))) (($ $ (-710)) NIL (|has| |#1| (-666))) (($ $ (-852)) NIL (|has| |#1| (-1028)))) (* (($ $ |#1|) 61 (|has| |#1| (-1028))) (($ |#1| $) 60 (|has| |#1| (-1028))) (($ $ $) 59 (|has| |#1| (-1028))) (($ (-523) $) 76 (|has| |#1| (-21))) (($ (-710) $) NIL (|has| |#1| (-21))) (($ (-852) $) NIL (|has| |#1| (-25))))) -(((-271 |#1|) (-13 (-1122) (-10 -8 (-15 -3983 ($ |#1| |#1|)) (-15 -1915 ($ |#1| |#1|)) (-15 -1828 ($ $)) (-15 -1787 (|#1| $)) (-15 -1797 (|#1| $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-484 (-1087) |#1|)) (-6 (-484 (-1087) |#1|)) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-563 (-108))) (IF (|has| |#1| (-286 |#1|)) (PROGN (-15 -2679 ($ $ $)) (-15 -2679 ($ $ (-589 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4075 ($ |#1| $)) (-15 -4075 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2923 ($ $)) (-15 -4018 ($ $)) (-15 -4087 ($ |#1| $)) (-15 -4087 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-6 (-1028)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-666)) (PROGN (-6 (-666)) (-15 -1497 ((-3 $ "failed") $)) (-15 -2959 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-448)) (PROGN (-6 (-448)) (-15 -1497 ((-3 $ "failed") $)) (-15 -2959 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-6 (-973)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-158)) (-6 (-657 |#1|)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -3775 ((-589 $) $)) |%noBranch|) (IF (|has| |#1| (-831 (-1087))) (-6 (-831 (-1087))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-6 (-1175 |#1|)) (-15 -4098 ($ $ $)) (-15 -3738 ($ $))) |%noBranch|) (IF (|has| |#1| (-279)) (-15 -2955 ($ $ $)) |%noBranch|))) (-1122)) (T -271)) -((-3983 (*1 *1 *2 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) (-1915 (*1 *1 *2 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) (-1828 (*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) (-1787 (*1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) (-1797 (*1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-271 *3)))) (-2679 (*1 *1 *1 *1) (-12 (-4 *2 (-286 *2)) (-4 *2 (-1016)) (-4 *2 (-1122)) (-5 *1 (-271 *2)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *3))) (-4 *3 (-286 *3)) (-4 *3 (-1016)) (-4 *3 (-1122)) (-5 *1 (-271 *3)))) (-4075 (*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-25)) (-4 *2 (-1122)))) (-4075 (*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-25)) (-4 *2 (-1122)))) (-2923 (*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122)))) (-4018 (*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122)))) (-4087 (*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122)))) (-4087 (*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122)))) (-1497 (*1 *1 *1) (|partial| -12 (-5 *1 (-271 *2)) (-4 *2 (-666)) (-4 *2 (-1122)))) (-2959 (*1 *1 *1) (|partial| -12 (-5 *1 (-271 *2)) (-4 *2 (-666)) (-4 *2 (-1122)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-589 (-271 *3))) (-5 *1 (-271 *3)) (-4 *3 (-515)) (-4 *3 (-1122)))) (-2955 (*1 *1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-279)) (-4 *2 (-1122)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1028)) (-4 *2 (-1122)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1028)) (-4 *2 (-1122)))) (-4098 (*1 *1 *1 *1) (-3262 (-12 (-5 *1 (-271 *2)) (-4 *2 (-339)) (-4 *2 (-1122))) (-12 (-5 *1 (-271 *2)) (-4 *2 (-448)) (-4 *2 (-1122))))) (-3738 (*1 *1 *1) (-3262 (-12 (-5 *1 (-271 *2)) (-4 *2 (-339)) (-4 *2 (-1122))) (-12 (-5 *1 (-271 *2)) (-4 *2 (-448)) (-4 *2 (-1122)))))) -(-13 (-1122) (-10 -8 (-15 -3983 ($ |#1| |#1|)) (-15 -1915 ($ |#1| |#1|)) (-15 -1828 ($ $)) (-15 -1787 (|#1| $)) (-15 -1797 (|#1| $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-484 (-1087) |#1|)) (-6 (-484 (-1087) |#1|)) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-563 (-108))) (IF (|has| |#1| (-286 |#1|)) (PROGN (-15 -2679 ($ $ $)) (-15 -2679 ($ $ (-589 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4075 ($ |#1| $)) (-15 -4075 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2923 ($ $)) (-15 -4018 ($ $)) (-15 -4087 ($ |#1| $)) (-15 -4087 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-6 (-1028)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-666)) (PROGN (-6 (-666)) (-15 -1497 ((-3 $ "failed") $)) (-15 -2959 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-448)) (PROGN (-6 (-448)) (-15 -1497 ((-3 $ "failed") $)) (-15 -2959 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-6 (-973)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-158)) (-6 (-657 |#1|)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -3775 ((-589 $) $)) |%noBranch|) (IF (|has| |#1| (-831 (-1087))) (-6 (-831 (-1087))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-6 (-1175 |#1|)) (-15 -4098 ($ $ $)) (-15 -3738 ($ $))) |%noBranch|) (IF (|has| |#1| (-279)) (-15 -2955 ($ $ $)) |%noBranch|))) -((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#2| $ |#1| |#2|) NIL)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) NIL)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1330 (((-589 |#1|) $) NIL)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2412 (((-589 |#1|) $) NIL)) (-4135 (((-108) |#1| $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-272 |#1| |#2|) (-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) (-1016) (-1016)) (T -272)) -NIL -(-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) -((-3314 (((-288) (-1070) (-589 (-1070))) 16) (((-288) (-1070) (-1070)) 15) (((-288) (-589 (-1070))) 14) (((-288) (-1070)) 12))) -(((-273) (-10 -7 (-15 -3314 ((-288) (-1070))) (-15 -3314 ((-288) (-589 (-1070)))) (-15 -3314 ((-288) (-1070) (-1070))) (-15 -3314 ((-288) (-1070) (-589 (-1070)))))) (T -273)) -((-3314 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-1070))) (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273)))) (-3314 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-288)) (-5 *1 (-273)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273))))) -(-10 -7 (-15 -3314 ((-288) (-1070))) (-15 -3314 ((-288) (-589 (-1070)))) (-15 -3314 ((-288) (-1070) (-1070))) (-15 -3314 ((-288) (-1070) (-589 (-1070))))) -((-3612 ((|#2| (-1 |#2| |#1|) (-1070) (-562 |#1|)) 17))) -(((-274 |#1| |#2|) (-10 -7 (-15 -3612 (|#2| (-1 |#2| |#1|) (-1070) (-562 |#1|)))) (-279) (-1122)) (T -274)) -((-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1070)) (-5 *5 (-562 *6)) (-4 *6 (-279)) (-4 *2 (-1122)) (-5 *1 (-274 *6 *2))))) -(-10 -7 (-15 -3612 (|#2| (-1 |#2| |#1|) (-1070) (-562 |#1|)))) -((-3612 ((|#2| (-1 |#2| |#1|) (-562 |#1|)) 17))) -(((-275 |#1| |#2|) (-10 -7 (-15 -3612 (|#2| (-1 |#2| |#1|) (-562 |#1|)))) (-279) (-279)) (T -275)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-562 *5)) (-4 *5 (-279)) (-4 *2 (-279)) (-5 *1 (-275 *5 *2))))) -(-10 -7 (-15 -3612 (|#2| (-1 |#2| |#1|) (-562 |#1|)))) -((-3224 (((-108) (-203)) 10))) -(((-276 |#1| |#2|) (-10 -7 (-15 -3224 ((-108) (-203)))) (-203) (-203)) (T -276)) -((-3224 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-108)) (-5 *1 (-276 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -3224 ((-108) (-203)))) -((-1728 (((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203)))) 88)) (-2582 (((-1068 (-203)) (-1168 (-292 (-203))) (-589 (-1087)) (-1011 (-779 (-203)))) 103) (((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203)))) 58)) (-1975 (((-589 (-1070)) (-1068 (-203))) NIL)) (-3593 (((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203)))) 55)) (-2420 (((-589 (-203)) (-883 (-383 (-523))) (-1087) (-1011 (-779 (-203)))) 47)) (-1863 (((-589 (-1070)) (-589 (-203))) NIL)) (-2074 (((-203) (-1011 (-779 (-203)))) 23)) (-2728 (((-203) (-1011 (-779 (-203)))) 24)) (-3905 (((-108) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 51)) (-1729 (((-1070) (-203)) NIL))) -(((-277) (-10 -7 (-15 -2074 ((-203) (-1011 (-779 (-203))))) (-15 -2728 ((-203) (-1011 (-779 (-203))))) (-15 -3905 ((-108) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3593 ((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203))))) (-15 -1728 ((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -2582 ((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -2582 ((-1068 (-203)) (-1168 (-292 (-203))) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -2420 ((-589 (-203)) (-883 (-383 (-523))) (-1087) (-1011 (-779 (-203))))) (-15 -1729 ((-1070) (-203))) (-15 -1863 ((-589 (-1070)) (-589 (-203)))) (-15 -1975 ((-589 (-1070)) (-1068 (-203)))))) (T -277)) -((-1975 (*1 *2 *3) (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-277)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-277)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-277)))) (-2420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *4 (-1087)) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-277)))) (-2582 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *4 (-589 (-1087))) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277)))) (-2582 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-589 (-1087))) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277)))) (-1728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-589 (-1087))) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277)))) (-3593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-1087)) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-277)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-108)) (-5 *1 (-277)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-277)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-277))))) -(-10 -7 (-15 -2074 ((-203) (-1011 (-779 (-203))))) (-15 -2728 ((-203) (-1011 (-779 (-203))))) (-15 -3905 ((-108) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3593 ((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203))))) (-15 -1728 ((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -2582 ((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -2582 ((-1068 (-203)) (-1168 (-292 (-203))) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -2420 ((-589 (-203)) (-883 (-383 (-523))) (-1087) (-1011 (-779 (-203))))) (-15 -1729 ((-1070) (-203))) (-15 -1863 ((-589 (-1070)) (-589 (-203)))) (-15 -1975 ((-589 (-1070)) (-1068 (-203))))) -((-3072 (((-589 (-562 $)) $) 28)) (-2955 (($ $ (-271 $)) 81) (($ $ (-589 (-271 $))) 121) (($ $ (-589 (-562 $)) (-589 $)) NIL)) (-3517 (((-3 (-562 $) "failed") $) 111)) (-3474 (((-562 $) $) 110)) (-2361 (($ $) 19) (($ (-589 $)) 55)) (-1444 (((-589 (-110)) $) 37)) (-1403 (((-110) (-110)) 91)) (-1557 (((-108) $) 129)) (-3612 (($ (-1 $ $) (-562 $)) 89)) (-1363 (((-3 (-562 $) "failed") $) 93)) (-2868 (($ (-110) $) 61) (($ (-110) (-589 $)) 99)) (-3259 (((-108) $ (-110)) 115) (((-108) $ (-1087)) 114)) (-2510 (((-710) $) 45)) (-2585 (((-108) $ $) 59) (((-108) $ (-1087)) 50)) (-4104 (((-108) $) 127)) (-2679 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL) (($ $ (-589 (-271 $))) 119) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) 84) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) 69) (($ $ (-1087) (-1 $ $)) 75) (($ $ (-589 (-110)) (-589 (-1 $ $))) 83) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) 85) (($ $ (-110) (-1 $ (-589 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-3223 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-589 $)) 107)) (-3957 (($ $) 52) (($ $ $) 117)) (-3822 (($ $) 17) (($ (-589 $)) 54)) (-1950 (((-108) (-110)) 22))) -(((-278 |#1|) (-10 -8 (-15 -1557 ((-108) |#1|)) (-15 -4104 ((-108) |#1|)) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| |#1|)))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| |#1|)))) (-15 -2585 ((-108) |#1| (-1087))) (-15 -2585 ((-108) |#1| |#1|)) (-15 -3612 (|#1| (-1 |#1| |#1|) (-562 |#1|))) (-15 -2868 (|#1| (-110) (-589 |#1|))) (-15 -2868 (|#1| (-110) |#1|)) (-15 -3259 ((-108) |#1| (-1087))) (-15 -3259 ((-108) |#1| (-110))) (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -1444 ((-589 (-110)) |#1|)) (-15 -3072 ((-589 (-562 |#1|)) |#1|)) (-15 -1363 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -2510 ((-710) |#1|)) (-15 -3957 (|#1| |#1| |#1|)) (-15 -3957 (|#1| |#1|)) (-15 -2361 (|#1| (-589 |#1|))) (-15 -2361 (|#1| |#1|)) (-15 -3822 (|#1| (-589 |#1|))) (-15 -3822 (|#1| |#1|)) (-15 -2955 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2955 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2955 (|#1| |#1| (-271 |#1|))) (-15 -3223 (|#1| (-110) (-589 |#1|))) (-15 -3223 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2679 (|#1| |#1| (-562 |#1|) |#1|)) (-15 -3474 ((-562 |#1|) |#1|)) (-15 -3517 ((-3 (-562 |#1|) "failed") |#1|))) (-279)) (T -278)) -((-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-278 *3)) (-4 *3 (-279)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-278 *4)) (-4 *4 (-279))))) -(-10 -8 (-15 -1557 ((-108) |#1|)) (-15 -4104 ((-108) |#1|)) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| |#1|)))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| |#1|)))) (-15 -2585 ((-108) |#1| (-1087))) (-15 -2585 ((-108) |#1| |#1|)) (-15 -3612 (|#1| (-1 |#1| |#1|) (-562 |#1|))) (-15 -2868 (|#1| (-110) (-589 |#1|))) (-15 -2868 (|#1| (-110) |#1|)) (-15 -3259 ((-108) |#1| (-1087))) (-15 -3259 ((-108) |#1| (-110))) (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -1444 ((-589 (-110)) |#1|)) (-15 -3072 ((-589 (-562 |#1|)) |#1|)) (-15 -1363 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -2510 ((-710) |#1|)) (-15 -3957 (|#1| |#1| |#1|)) (-15 -3957 (|#1| |#1|)) (-15 -2361 (|#1| (-589 |#1|))) (-15 -2361 (|#1| |#1|)) (-15 -3822 (|#1| (-589 |#1|))) (-15 -3822 (|#1| |#1|)) (-15 -2955 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2955 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2955 (|#1| |#1| (-271 |#1|))) (-15 -3223 (|#1| (-110) (-589 |#1|))) (-15 -3223 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2679 (|#1| |#1| (-562 |#1|) |#1|)) (-15 -3474 ((-562 |#1|) |#1|)) (-15 -3517 ((-3 (-562 |#1|) "failed") |#1|))) -((-3924 (((-108) $ $) 7)) (-3072 (((-589 (-562 $)) $) 44)) (-2955 (($ $ (-271 $)) 56) (($ $ (-589 (-271 $))) 55) (($ $ (-589 (-562 $)) (-589 $)) 54)) (-3517 (((-3 (-562 $) "failed") $) 69)) (-3474 (((-562 $) $) 68)) (-2361 (($ $) 51) (($ (-589 $)) 50)) (-1444 (((-589 (-110)) $) 43)) (-1403 (((-110) (-110)) 42)) (-1557 (((-108) $) 22 (|has| $ (-964 (-523))))) (-1483 (((-1083 $) (-562 $)) 25 (|has| $ (-973)))) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3612 (($ (-1 $ $) (-562 $)) 36)) (-1363 (((-3 (-562 $) "failed") $) 46)) (-3779 (((-1070) $) 9)) (-1771 (((-589 (-562 $)) $) 45)) (-2868 (($ (-110) $) 38) (($ (-110) (-589 $)) 37)) (-3259 (((-108) $ (-110)) 40) (((-108) $ (-1087)) 39)) (-2510 (((-710) $) 47)) (-2783 (((-1034) $) 10)) (-2585 (((-108) $ $) 35) (((-108) $ (-1087)) 34)) (-4104 (((-108) $) 23 (|has| $ (-964 (-523))))) (-2679 (($ $ (-562 $) $) 67) (($ $ (-589 (-562 $)) (-589 $)) 66) (($ $ (-589 (-271 $))) 65) (($ $ (-271 $)) 64) (($ $ $ $) 63) (($ $ (-589 $) (-589 $)) 62) (($ $ (-589 (-1087)) (-589 (-1 $ $))) 33) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) 32) (($ $ (-1087) (-1 $ (-589 $))) 31) (($ $ (-1087) (-1 $ $)) 30) (($ $ (-589 (-110)) (-589 (-1 $ $))) 29) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) 28) (($ $ (-110) (-1 $ (-589 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-3223 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-589 $)) 57)) (-3957 (($ $) 49) (($ $ $) 48)) (-3727 (($ $) 24 (|has| $ (-973)))) (-1458 (((-794) $) 11) (($ (-562 $)) 70)) (-3822 (($ $) 53) (($ (-589 $)) 52)) (-1950 (((-108) (-110)) 41)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18))) +((-4220 (($ (-1087) (-1087) (-1020) $) 15)) (-1794 (($ (-1087) (-589 (-895)) $) 19)) (-1624 (((-589 (-1003)) $) 8)) (-2157 (((-3 (-1020) "failed") (-1087) (-1087) $) 14)) (-3274 (((-3 (-589 (-895)) "failed") (-1087) $) 17)) (-3320 (($) 6)) (-3808 (($) 20)) (-1691 (((-794) $) 24)) (-1326 (($) 21))) +(((-268) (-13 (-563 (-794)) (-10 -8 (-15 -3320 ($)) (-15 -1624 ((-589 (-1003)) $)) (-15 -2157 ((-3 (-1020) "failed") (-1087) (-1087) $)) (-15 -4220 ($ (-1087) (-1087) (-1020) $)) (-15 -3274 ((-3 (-589 (-895)) "failed") (-1087) $)) (-15 -1794 ($ (-1087) (-589 (-895)) $)) (-15 -3808 ($)) (-15 -1326 ($))))) (T -268)) +((-3320 (*1 *1) (-5 *1 (-268))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-589 (-1003))) (-5 *1 (-268)))) (-2157 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-268)))) (-4220 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1087)) (-5 *3 (-1020)) (-5 *1 (-268)))) (-3274 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-589 (-895))) (-5 *1 (-268)))) (-1794 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-895))) (-5 *1 (-268)))) (-3808 (*1 *1) (-5 *1 (-268))) (-1326 (*1 *1) (-5 *1 (-268)))) +(-13 (-563 (-794)) (-10 -8 (-15 -3320 ($)) (-15 -1624 ((-589 (-1003)) $)) (-15 -2157 ((-3 (-1020) "failed") (-1087) (-1087) $)) (-15 -4220 ($ (-1087) (-1087) (-1020) $)) (-15 -3274 ((-3 (-589 (-895)) "failed") (-1087) $)) (-15 -1794 ($ (-1087) (-589 (-895)) $)) (-15 -3808 ($)) (-15 -1326 ($)))) +((-3341 (((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |geneigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|)))) 85)) (-2132 (((-589 (-629 (-383 (-883 |#1|)))) (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|)))))) (-629 (-383 (-883 |#1|)))) 80) (((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))) (-710) (-710)) 37)) (-1964 (((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|)))) 82)) (-2163 (((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|)))) 62)) (-1254 (((-589 (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (-629 (-383 (-883 |#1|)))) 61)) (-1356 (((-883 |#1|) (-629 (-383 (-883 |#1|)))) 49) (((-883 |#1|) (-629 (-383 (-883 |#1|))) (-1087)) 50))) +(((-269 |#1|) (-10 -7 (-15 -1356 ((-883 |#1|) (-629 (-383 (-883 |#1|))) (-1087))) (-15 -1356 ((-883 |#1|) (-629 (-383 (-883 |#1|))))) (-15 -1254 ((-589 (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (-629 (-383 (-883 |#1|))))) (-15 -2163 ((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))))) (-15 -2132 ((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))) (-710) (-710))) (-15 -2132 ((-589 (-629 (-383 (-883 |#1|)))) (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|)))))) (-629 (-383 (-883 |#1|))))) (-15 -3341 ((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |geneigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|))))) (-15 -1964 ((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|)))))) (-427)) (T -269)) +((-1964 (*1 *2 *3) (-12 (-4 *4 (-427)) (-5 *2 (-589 (-2 (|:| |eigval| (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 *4)))))))) (-5 *1 (-269 *4)) (-5 *3 (-629 (-383 (-883 *4)))))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-427)) (-5 *2 (-589 (-2 (|:| |eigval| (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4)))) (|:| |geneigvec| (-589 (-629 (-383 (-883 *4)))))))) (-5 *1 (-269 *4)) (-5 *3 (-629 (-383 (-883 *4)))))) (-2132 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-383 (-883 *5)) (-1077 (-1087) (-883 *5)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 *4)))) (-4 *5 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *5))))) (-5 *1 (-269 *5)) (-5 *4 (-629 (-383 (-883 *5)))))) (-2132 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-383 (-883 *6)) (-1077 (-1087) (-883 *6)))) (-5 *5 (-710)) (-4 *6 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *6))))) (-5 *1 (-269 *6)) (-5 *4 (-629 (-383 (-883 *6)))))) (-2163 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-383 (-883 *5)) (-1077 (-1087) (-883 *5)))) (-4 *5 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *5))))) (-5 *1 (-269 *5)) (-5 *4 (-629 (-383 (-883 *5)))))) (-1254 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 *4)))) (-4 *4 (-427)) (-5 *2 (-589 (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4))))) (-5 *1 (-269 *4)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 *4)))) (-5 *2 (-883 *4)) (-5 *1 (-269 *4)) (-4 *4 (-427)))) (-1356 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-383 (-883 *5)))) (-5 *4 (-1087)) (-5 *2 (-883 *5)) (-5 *1 (-269 *5)) (-4 *5 (-427))))) +(-10 -7 (-15 -1356 ((-883 |#1|) (-629 (-383 (-883 |#1|))) (-1087))) (-15 -1356 ((-883 |#1|) (-629 (-383 (-883 |#1|))))) (-15 -1254 ((-589 (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (-629 (-383 (-883 |#1|))))) (-15 -2163 ((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))))) (-15 -2132 ((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))) (-710) (-710))) (-15 -2132 ((-589 (-629 (-383 (-883 |#1|)))) (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|)))))) (-629 (-383 (-883 |#1|))))) (-15 -3341 ((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |geneigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|))))) (-15 -1964 ((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|)))))) +((-1345 (((-271 |#2|) (-1 |#2| |#1|) (-271 |#1|)) 14))) +(((-270 |#1| |#2|) (-10 -7 (-15 -1345 ((-271 |#2|) (-1 |#2| |#1|) (-271 |#1|)))) (-1123) (-1123)) (T -270)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-271 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-271 *6)) (-5 *1 (-270 *5 *6))))) +(-10 -7 (-15 -1345 ((-271 |#2|) (-1 |#2| |#1|) (-271 |#1|)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2603 (((-108) $) NIL (|has| |#1| (-21)))) (-1538 (($ $) 22)) (-3405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1349 (($ $ $) 93 (|has| |#1| (-279)))) (-4189 (($) NIL (-3172 (|has| |#1| (-21)) (|has| |#1| (-666))) CONST)) (-3587 (($ $) 8 (|has| |#1| (-21)))) (-2834 (((-3 $ "failed") $) 68 (|has| |#1| (-666)))) (-1909 ((|#1| $) 21)) (-1444 (((-3 $ "failed") $) 66 (|has| |#1| (-666)))) (-2769 (((-108) $) NIL (|has| |#1| (-666)))) (-1345 (($ (-1 |#1| |#1|) $) 24)) (-1899 ((|#1| $) 9)) (-3706 (($ $) 57 (|has| |#1| (-21)))) (-1551 (((-3 $ "failed") $) 67 (|has| |#1| (-666)))) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1396 (($ $) 70 (-3172 (|has| |#1| (-339)) (|has| |#1| (-448))))) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3129 (((-589 $) $) 19 (|has| |#1| (-515)))) (-2812 (($ $ $) 34 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 $)) 37 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-1087) |#1|) 27 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 31 (|has| |#1| (-484 (-1087) |#1|)))) (-1948 (($ |#1| |#1|) 17)) (-3314 (((-126)) 88 (|has| |#1| (-339)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 85 (|has| |#1| (-831 (-1087))))) (-3361 (($ $ $) NIL (|has| |#1| (-448)))) (-2892 (($ $ $) NIL (|has| |#1| (-448)))) (-1691 (($ (-523)) NIL (|has| |#1| (-973))) (((-108) $) 45 (|has| |#1| (-1016))) (((-794) $) 44 (|has| |#1| (-1016)))) (-3272 (((-710)) 73 (|has| |#1| (-973)))) (-2423 (($ $ (-523)) NIL (|has| |#1| (-448))) (($ $ (-710)) NIL (|has| |#1| (-666))) (($ $ (-852)) NIL (|has| |#1| (-1028)))) (-1879 (($) 55 (|has| |#1| (-21)) CONST)) (-1891 (($) 63 (|has| |#1| (-666)) CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087))))) (-3941 (($ |#1| |#1|) 20) (((-108) $ $) 40 (|has| |#1| (-1016)))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) 90 (-3172 (|has| |#1| (-339)) (|has| |#1| (-448))))) (-4060 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-4045 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-523)) NIL (|has| |#1| (-448))) (($ $ (-710)) NIL (|has| |#1| (-666))) (($ $ (-852)) NIL (|has| |#1| (-1028)))) (* (($ $ |#1|) 61 (|has| |#1| (-1028))) (($ |#1| $) 60 (|has| |#1| (-1028))) (($ $ $) 59 (|has| |#1| (-1028))) (($ (-523) $) 76 (|has| |#1| (-21))) (($ (-710) $) NIL (|has| |#1| (-21))) (($ (-852) $) NIL (|has| |#1| (-25))))) +(((-271 |#1|) (-13 (-1123) (-10 -8 (-15 -3941 ($ |#1| |#1|)) (-15 -1948 ($ |#1| |#1|)) (-15 -1538 ($ $)) (-15 -1899 (|#1| $)) (-15 -1909 (|#1| $)) (-15 -1345 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-484 (-1087) |#1|)) (-6 (-484 (-1087) |#1|)) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-563 (-108))) (IF (|has| |#1| (-286 |#1|)) (PROGN (-15 -2812 ($ $ $)) (-15 -2812 ($ $ (-589 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4045 ($ |#1| $)) (-15 -4045 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3706 ($ $)) (-15 -3587 ($ $)) (-15 -4060 ($ |#1| $)) (-15 -4060 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-6 (-1028)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-666)) (PROGN (-6 (-666)) (-15 -1551 ((-3 $ "failed") $)) (-15 -2834 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-448)) (PROGN (-6 (-448)) (-15 -1551 ((-3 $ "failed") $)) (-15 -2834 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-6 (-973)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-158)) (-6 (-657 |#1|)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -3129 ((-589 $) $)) |%noBranch|) (IF (|has| |#1| (-831 (-1087))) (-6 (-831 (-1087))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-6 (-1176 |#1|)) (-15 -4074 ($ $ $)) (-15 -1396 ($ $))) |%noBranch|) (IF (|has| |#1| (-279)) (-15 -1349 ($ $ $)) |%noBranch|))) (-1123)) (T -271)) +((-3941 (*1 *1 *2 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1123)))) (-1948 (*1 *1 *2 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1123)))) (-1538 (*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1123)))) (-1899 (*1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1123)))) (-1909 (*1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1123)))) (-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1123)) (-5 *1 (-271 *3)))) (-2812 (*1 *1 *1 *1) (-12 (-4 *2 (-286 *2)) (-4 *2 (-1016)) (-4 *2 (-1123)) (-5 *1 (-271 *2)))) (-2812 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *3))) (-4 *3 (-286 *3)) (-4 *3 (-1016)) (-4 *3 (-1123)) (-5 *1 (-271 *3)))) (-4045 (*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-25)) (-4 *2 (-1123)))) (-4045 (*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-25)) (-4 *2 (-1123)))) (-3706 (*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1123)))) (-3587 (*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1123)))) (-4060 (*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1123)))) (-4060 (*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1123)))) (-1551 (*1 *1 *1) (|partial| -12 (-5 *1 (-271 *2)) (-4 *2 (-666)) (-4 *2 (-1123)))) (-2834 (*1 *1 *1) (|partial| -12 (-5 *1 (-271 *2)) (-4 *2 (-666)) (-4 *2 (-1123)))) (-3129 (*1 *2 *1) (-12 (-5 *2 (-589 (-271 *3))) (-5 *1 (-271 *3)) (-4 *3 (-515)) (-4 *3 (-1123)))) (-1349 (*1 *1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-279)) (-4 *2 (-1123)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1028)) (-4 *2 (-1123)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1028)) (-4 *2 (-1123)))) (-4074 (*1 *1 *1 *1) (-3172 (-12 (-5 *1 (-271 *2)) (-4 *2 (-339)) (-4 *2 (-1123))) (-12 (-5 *1 (-271 *2)) (-4 *2 (-448)) (-4 *2 (-1123))))) (-1396 (*1 *1 *1) (-3172 (-12 (-5 *1 (-271 *2)) (-4 *2 (-339)) (-4 *2 (-1123))) (-12 (-5 *1 (-271 *2)) (-4 *2 (-448)) (-4 *2 (-1123)))))) +(-13 (-1123) (-10 -8 (-15 -3941 ($ |#1| |#1|)) (-15 -1948 ($ |#1| |#1|)) (-15 -1538 ($ $)) (-15 -1899 (|#1| $)) (-15 -1909 (|#1| $)) (-15 -1345 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-484 (-1087) |#1|)) (-6 (-484 (-1087) |#1|)) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-563 (-108))) (IF (|has| |#1| (-286 |#1|)) (PROGN (-15 -2812 ($ $ $)) (-15 -2812 ($ $ (-589 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4045 ($ |#1| $)) (-15 -4045 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3706 ($ $)) (-15 -3587 ($ $)) (-15 -4060 ($ |#1| $)) (-15 -4060 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-6 (-1028)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-666)) (PROGN (-6 (-666)) (-15 -1551 ((-3 $ "failed") $)) (-15 -2834 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-448)) (PROGN (-6 (-448)) (-15 -1551 ((-3 $ "failed") $)) (-15 -2834 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-6 (-973)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-158)) (-6 (-657 |#1|)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -3129 ((-589 $) $)) |%noBranch|) (IF (|has| |#1| (-831 (-1087))) (-6 (-831 (-1087))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-6 (-1176 |#1|)) (-15 -4074 ($ $ $)) (-15 -1396 ($ $))) |%noBranch|) (IF (|has| |#1| (-279)) (-15 -1349 ($ $ $)) |%noBranch|))) +((-1680 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3723 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-4191 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#2| $ |#1| |#2|) NIL)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-4216 (((-3 |#2| "failed") |#1| $) NIL)) (-4189 (($) NIL T CONST)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-3286 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-3 |#2| "failed") |#1| $) NIL)) (-2514 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#2| $ |#1|) NIL)) (-1871 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 ((|#1| $) NIL (|has| |#1| (-786)))) (-1584 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-2567 ((|#1| $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4249))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1255 (((-589 |#1|) $) NIL)) (-1862 (((-108) |#1| $) NIL)) (-1293 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3108 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-2536 (((-589 |#1|) $) NIL)) (-2254 (((-108) |#1| $) NIL)) (-3951 (((-1034) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2428 ((|#2| $) NIL (|has| |#1| (-786)))) (-2509 (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL)) (-4141 (($ $ |#2|) NIL (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3973 (((-589 |#2|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2963 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-1691 (((-794) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2417 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-272 |#1| |#2|) (-13 (-1100 |#1| |#2|) (-10 -7 (-6 -4248))) (-1016) (-1016)) (T -272)) +NIL +(-13 (-1100 |#1| |#2|) (-10 -7 (-6 -4248))) +((-3460 (((-288) (-1070) (-589 (-1070))) 16) (((-288) (-1070) (-1070)) 15) (((-288) (-589 (-1070))) 14) (((-288) (-1070)) 12))) +(((-273) (-10 -7 (-15 -3460 ((-288) (-1070))) (-15 -3460 ((-288) (-589 (-1070)))) (-15 -3460 ((-288) (-1070) (-1070))) (-15 -3460 ((-288) (-1070) (-589 (-1070)))))) (T -273)) +((-3460 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-1070))) (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273)))) (-3460 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-288)) (-5 *1 (-273)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273))))) +(-10 -7 (-15 -3460 ((-288) (-1070))) (-15 -3460 ((-288) (-589 (-1070)))) (-15 -3460 ((-288) (-1070) (-1070))) (-15 -3460 ((-288) (-1070) (-589 (-1070))))) +((-1345 ((|#2| (-1 |#2| |#1|) (-1070) (-562 |#1|)) 17))) +(((-274 |#1| |#2|) (-10 -7 (-15 -1345 (|#2| (-1 |#2| |#1|) (-1070) (-562 |#1|)))) (-279) (-1123)) (T -274)) +((-1345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1070)) (-5 *5 (-562 *6)) (-4 *6 (-279)) (-4 *2 (-1123)) (-5 *1 (-274 *6 *2))))) +(-10 -7 (-15 -1345 (|#2| (-1 |#2| |#1|) (-1070) (-562 |#1|)))) +((-1345 ((|#2| (-1 |#2| |#1|) (-562 |#1|)) 17))) +(((-275 |#1| |#2|) (-10 -7 (-15 -1345 (|#2| (-1 |#2| |#1|) (-562 |#1|)))) (-279) (-279)) (T -275)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-562 *5)) (-4 *5 (-279)) (-4 *2 (-279)) (-5 *1 (-275 *5 *2))))) +(-10 -7 (-15 -1345 (|#2| (-1 |#2| |#1|) (-562 |#1|)))) +((-3516 (((-108) (-203)) 10))) +(((-276 |#1| |#2|) (-10 -7 (-15 -3516 ((-108) (-203)))) (-203) (-203)) (T -276)) +((-3516 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-108)) (-5 *1 (-276 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3516 ((-108) (-203)))) +((-3012 (((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203)))) 88)) (-3502 (((-1068 (-203)) (-1169 (-292 (-203))) (-589 (-1087)) (-1011 (-779 (-203)))) 103) (((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203)))) 58)) (-3443 (((-589 (-1070)) (-1068 (-203))) NIL)) (-3976 (((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203)))) 55)) (-1469 (((-589 (-203)) (-883 (-383 (-523))) (-1087) (-1011 (-779 (-203)))) 47)) (-1815 (((-589 (-1070)) (-589 (-203))) NIL)) (-2079 (((-203) (-1011 (-779 (-203)))) 23)) (-2542 (((-203) (-1011 (-779 (-203)))) 24)) (-1975 (((-108) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 51)) (-3021 (((-1070) (-203)) NIL))) +(((-277) (-10 -7 (-15 -2079 ((-203) (-1011 (-779 (-203))))) (-15 -2542 ((-203) (-1011 (-779 (-203))))) (-15 -1975 ((-108) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3976 ((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203))))) (-15 -3012 ((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -3502 ((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -3502 ((-1068 (-203)) (-1169 (-292 (-203))) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -1469 ((-589 (-203)) (-883 (-383 (-523))) (-1087) (-1011 (-779 (-203))))) (-15 -3021 ((-1070) (-203))) (-15 -1815 ((-589 (-1070)) (-589 (-203)))) (-15 -3443 ((-589 (-1070)) (-1068 (-203)))))) (T -277)) +((-3443 (*1 *2 *3) (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-277)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-277)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-277)))) (-1469 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *4 (-1087)) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-277)))) (-3502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1169 (-292 (-203)))) (-5 *4 (-589 (-1087))) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277)))) (-3502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-589 (-1087))) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277)))) (-3012 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-589 (-1087))) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277)))) (-3976 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-1087)) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-277)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-108)) (-5 *1 (-277)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-277)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-277))))) +(-10 -7 (-15 -2079 ((-203) (-1011 (-779 (-203))))) (-15 -2542 ((-203) (-1011 (-779 (-203))))) (-15 -1975 ((-108) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3976 ((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203))))) (-15 -3012 ((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -3502 ((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -3502 ((-1068 (-203)) (-1169 (-292 (-203))) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -1469 ((-589 (-203)) (-883 (-383 (-523))) (-1087) (-1011 (-779 (-203))))) (-15 -3021 ((-1070) (-203))) (-15 -1815 ((-589 (-1070)) (-589 (-203)))) (-15 -3443 ((-589 (-1070)) (-1068 (-203))))) +((-3643 (((-589 (-562 $)) $) 28)) (-1349 (($ $ (-271 $)) 81) (($ $ (-589 (-271 $))) 122) (($ $ (-589 (-562 $)) (-589 $)) NIL)) (-1220 (((-3 (-562 $) "failed") $) 112)) (-3508 (((-562 $) $) 111)) (-2055 (($ $) 19) (($ (-589 $)) 55)) (-2196 (((-589 (-110)) $) 37)) (-2947 (((-110) (-110)) 91)) (-3860 (((-108) $) 130)) (-1345 (($ (-1 $ $) (-562 $)) 89)) (-2577 (((-3 (-562 $) "failed") $) 93)) (-3396 (($ (-110) $) 61) (($ (-110) (-589 $)) 99)) (-3739 (((-108) $ (-110)) 116) (((-108) $ (-1087)) 115)) (-1933 (((-710) $) 45)) (-3536 (((-108) $ $) 59) (((-108) $ (-1087)) 50)) (-3101 (((-108) $) 128)) (-2812 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL) (($ $ (-589 (-271 $))) 120) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) 84) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) 69) (($ $ (-1087) (-1 $ $)) 75) (($ $ (-589 (-110)) (-589 (-1 $ $))) 83) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) 85) (($ $ (-110) (-1 $ (-589 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-1937 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-589 $)) 108)) (-1303 (($ $) 52) (($ $ $) 118)) (-2850 (($ $) 17) (($ (-589 $)) 54)) (-3198 (((-108) (-110)) 22))) +(((-278 |#1|) (-10 -8 (-15 -3860 ((-108) |#1|)) (-15 -3101 ((-108) |#1|)) (-15 -2812 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2812 (|#1| |#1| (-110) (-1 |#1| (-589 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2812 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| |#1|)))) (-15 -2812 (|#1| |#1| (-1087) (-1 |#1| |#1|))) (-15 -2812 (|#1| |#1| (-1087) (-1 |#1| (-589 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| |#1|)))) (-15 -3536 ((-108) |#1| (-1087))) (-15 -3536 ((-108) |#1| |#1|)) (-15 -1345 (|#1| (-1 |#1| |#1|) (-562 |#1|))) (-15 -3396 (|#1| (-110) (-589 |#1|))) (-15 -3396 (|#1| (-110) |#1|)) (-15 -3739 ((-108) |#1| (-1087))) (-15 -3739 ((-108) |#1| (-110))) (-15 -3198 ((-108) (-110))) (-15 -2947 ((-110) (-110))) (-15 -2196 ((-589 (-110)) |#1|)) (-15 -3643 ((-589 (-562 |#1|)) |#1|)) (-15 -2577 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -1933 ((-710) |#1|)) (-15 -1303 (|#1| |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -2055 (|#1| (-589 |#1|))) (-15 -2055 (|#1| |#1|)) (-15 -2850 (|#1| (-589 |#1|))) (-15 -2850 (|#1| |#1|)) (-15 -1349 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -1349 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -1349 (|#1| |#1| (-271 |#1|))) (-15 -1937 (|#1| (-110) (-589 |#1|))) (-15 -1937 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -1937 (|#1| (-110) |#1| |#1| |#1|)) (-15 -1937 (|#1| (-110) |#1| |#1|)) (-15 -1937 (|#1| (-110) |#1|)) (-15 -2812 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| (-271 |#1|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2812 (|#1| |#1| (-562 |#1|) |#1|)) (-15 -3508 ((-562 |#1|) |#1|)) (-15 -1220 ((-3 (-562 |#1|) "failed") |#1|))) (-279)) (T -278)) +((-2947 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-278 *3)) (-4 *3 (-279)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-278 *4)) (-4 *4 (-279))))) +(-10 -8 (-15 -3860 ((-108) |#1|)) (-15 -3101 ((-108) |#1|)) (-15 -2812 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2812 (|#1| |#1| (-110) (-1 |#1| (-589 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2812 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| |#1|)))) (-15 -2812 (|#1| |#1| (-1087) (-1 |#1| |#1|))) (-15 -2812 (|#1| |#1| (-1087) (-1 |#1| (-589 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| |#1|)))) (-15 -3536 ((-108) |#1| (-1087))) (-15 -3536 ((-108) |#1| |#1|)) (-15 -1345 (|#1| (-1 |#1| |#1|) (-562 |#1|))) (-15 -3396 (|#1| (-110) (-589 |#1|))) (-15 -3396 (|#1| (-110) |#1|)) (-15 -3739 ((-108) |#1| (-1087))) (-15 -3739 ((-108) |#1| (-110))) (-15 -3198 ((-108) (-110))) (-15 -2947 ((-110) (-110))) (-15 -2196 ((-589 (-110)) |#1|)) (-15 -3643 ((-589 (-562 |#1|)) |#1|)) (-15 -2577 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -1933 ((-710) |#1|)) (-15 -1303 (|#1| |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -2055 (|#1| (-589 |#1|))) (-15 -2055 (|#1| |#1|)) (-15 -2850 (|#1| (-589 |#1|))) (-15 -2850 (|#1| |#1|)) (-15 -1349 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -1349 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -1349 (|#1| |#1| (-271 |#1|))) (-15 -1937 (|#1| (-110) (-589 |#1|))) (-15 -1937 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -1937 (|#1| (-110) |#1| |#1| |#1|)) (-15 -1937 (|#1| (-110) |#1| |#1|)) (-15 -1937 (|#1| (-110) |#1|)) (-15 -2812 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| (-271 |#1|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2812 (|#1| |#1| (-562 |#1|) |#1|)) (-15 -3508 ((-562 |#1|) |#1|)) (-15 -1220 ((-3 (-562 |#1|) "failed") |#1|))) +((-1680 (((-108) $ $) 7)) (-3643 (((-589 (-562 $)) $) 44)) (-1349 (($ $ (-271 $)) 56) (($ $ (-589 (-271 $))) 55) (($ $ (-589 (-562 $)) (-589 $)) 54)) (-1220 (((-3 (-562 $) "failed") $) 69)) (-3508 (((-562 $) $) 68)) (-2055 (($ $) 51) (($ (-589 $)) 50)) (-2196 (((-589 (-110)) $) 43)) (-2947 (((-110) (-110)) 42)) (-3860 (((-108) $) 22 (|has| $ (-964 (-523))))) (-1414 (((-1083 $) (-562 $)) 25 (|has| $ (-973)))) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-1345 (($ (-1 $ $) (-562 $)) 36)) (-2577 (((-3 (-562 $) "failed") $) 46)) (-2032 (((-1070) $) 9)) (-2378 (((-589 (-562 $)) $) 45)) (-3396 (($ (-110) $) 38) (($ (-110) (-589 $)) 37)) (-3739 (((-108) $ (-110)) 40) (((-108) $ (-1087)) 39)) (-1933 (((-710) $) 47)) (-3951 (((-1034) $) 10)) (-3536 (((-108) $ $) 35) (((-108) $ (-1087)) 34)) (-3101 (((-108) $) 23 (|has| $ (-964 (-523))))) (-2812 (($ $ (-562 $) $) 67) (($ $ (-589 (-562 $)) (-589 $)) 66) (($ $ (-589 (-271 $))) 65) (($ $ (-271 $)) 64) (($ $ $ $) 63) (($ $ (-589 $) (-589 $)) 62) (($ $ (-589 (-1087)) (-589 (-1 $ $))) 33) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) 32) (($ $ (-1087) (-1 $ (-589 $))) 31) (($ $ (-1087) (-1 $ $)) 30) (($ $ (-589 (-110)) (-589 (-1 $ $))) 29) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) 28) (($ $ (-110) (-1 $ (-589 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-1937 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-589 $)) 57)) (-1303 (($ $) 49) (($ $ $) 48)) (-2762 (($ $) 24 (|has| $ (-973)))) (-1691 (((-794) $) 11) (($ (-562 $)) 70)) (-2850 (($ $) 53) (($ (-589 $)) 52)) (-3198 (((-108) (-110)) 41)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18))) (((-279) (-129)) (T -279)) -((-3223 (*1 *1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-3223 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-3223 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-3223 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-3223 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 *1)) (-4 *1 (-279)))) (-2955 (*1 *1 *1 *2) (-12 (-5 *2 (-271 *1)) (-4 *1 (-279)))) (-2955 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *1))) (-4 *1 (-279)))) (-2955 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-562 *1))) (-5 *3 (-589 *1)) (-4 *1 (-279)))) (-3822 (*1 *1 *1) (-4 *1 (-279))) (-3822 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-279)))) (-2361 (*1 *1 *1) (-4 *1 (-279))) (-2361 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-279)))) (-3957 (*1 *1 *1) (-4 *1 (-279))) (-3957 (*1 *1 *1 *1) (-4 *1 (-279))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-710)))) (-1363 (*1 *2 *1) (|partial| -12 (-5 *2 (-562 *1)) (-4 *1 (-279)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-589 (-562 *1))) (-4 *1 (-279)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-589 (-562 *1))) (-4 *1 (-279)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-589 (-110))))) (-1403 (*1 *2 *2) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-1950 (*1 *2 *3) (-12 (-4 *1 (-279)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3259 (*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3259 (*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-1087)) (-5 *2 (-108)))) (-2868 (*1 *1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-2868 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 *1)) (-4 *1 (-279)))) (-3612 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-562 *1)) (-4 *1 (-279)))) (-2585 (*1 *2 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-108)))) (-2585 (*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-1087)) (-5 *2 (-108)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-1 *1 *1))) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-1 *1 (-589 *1)))) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1 *1 (-589 *1))) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1 *1 *1)) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-110))) (-5 *3 (-589 (-1 *1 *1))) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-110))) (-5 *3 (-589 (-1 *1 (-589 *1)))) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-589 *1))) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-279)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-562 *1)) (-4 *1 (-973)) (-4 *1 (-279)) (-5 *2 (-1083 *1)))) (-3727 (*1 *1 *1) (-12 (-4 *1 (-973)) (-4 *1 (-279)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-964 (-523))) (-4 *1 (-279)) (-5 *2 (-108)))) (-1557 (*1 *2 *1) (-12 (-4 *1 (-964 (-523))) (-4 *1 (-279)) (-5 *2 (-108))))) -(-13 (-786) (-964 (-562 $)) (-484 (-562 $) $) (-286 $) (-10 -8 (-15 -3223 ($ (-110) $)) (-15 -3223 ($ (-110) $ $)) (-15 -3223 ($ (-110) $ $ $)) (-15 -3223 ($ (-110) $ $ $ $)) (-15 -3223 ($ (-110) (-589 $))) (-15 -2955 ($ $ (-271 $))) (-15 -2955 ($ $ (-589 (-271 $)))) (-15 -2955 ($ $ (-589 (-562 $)) (-589 $))) (-15 -3822 ($ $)) (-15 -3822 ($ (-589 $))) (-15 -2361 ($ $)) (-15 -2361 ($ (-589 $))) (-15 -3957 ($ $)) (-15 -3957 ($ $ $)) (-15 -2510 ((-710) $)) (-15 -1363 ((-3 (-562 $) "failed") $)) (-15 -1771 ((-589 (-562 $)) $)) (-15 -3072 ((-589 (-562 $)) $)) (-15 -1444 ((-589 (-110)) $)) (-15 -1403 ((-110) (-110))) (-15 -1950 ((-108) (-110))) (-15 -3259 ((-108) $ (-110))) (-15 -3259 ((-108) $ (-1087))) (-15 -2868 ($ (-110) $)) (-15 -2868 ($ (-110) (-589 $))) (-15 -3612 ($ (-1 $ $) (-562 $))) (-15 -2585 ((-108) $ $)) (-15 -2585 ((-108) $ (-1087))) (-15 -2679 ($ $ (-589 (-1087)) (-589 (-1 $ $)))) (-15 -2679 ($ $ (-589 (-1087)) (-589 (-1 $ (-589 $))))) (-15 -2679 ($ $ (-1087) (-1 $ (-589 $)))) (-15 -2679 ($ $ (-1087) (-1 $ $))) (-15 -2679 ($ $ (-589 (-110)) (-589 (-1 $ $)))) (-15 -2679 ($ $ (-589 (-110)) (-589 (-1 $ (-589 $))))) (-15 -2679 ($ $ (-110) (-1 $ (-589 $)))) (-15 -2679 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-973)) (PROGN (-15 -1483 ((-1083 $) (-562 $))) (-15 -3727 ($ $))) |%noBranch|) (IF (|has| $ (-964 (-523))) (PROGN (-15 -4104 ((-108) $)) (-15 -1557 ((-108) $))) |%noBranch|))) +((-1937 (*1 *1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-1937 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-1937 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-1937 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-1937 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 *1)) (-4 *1 (-279)))) (-1349 (*1 *1 *1 *2) (-12 (-5 *2 (-271 *1)) (-4 *1 (-279)))) (-1349 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *1))) (-4 *1 (-279)))) (-1349 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-562 *1))) (-5 *3 (-589 *1)) (-4 *1 (-279)))) (-2850 (*1 *1 *1) (-4 *1 (-279))) (-2850 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-279)))) (-2055 (*1 *1 *1) (-4 *1 (-279))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-279)))) (-1303 (*1 *1 *1) (-4 *1 (-279))) (-1303 (*1 *1 *1 *1) (-4 *1 (-279))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-710)))) (-2577 (*1 *2 *1) (|partial| -12 (-5 *2 (-562 *1)) (-4 *1 (-279)))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-589 (-562 *1))) (-4 *1 (-279)))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-589 (-562 *1))) (-4 *1 (-279)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-589 (-110))))) (-2947 (*1 *2 *2) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-3198 (*1 *2 *3) (-12 (-4 *1 (-279)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3739 (*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3739 (*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-1087)) (-5 *2 (-108)))) (-3396 (*1 *1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-3396 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 *1)) (-4 *1 (-279)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-562 *1)) (-4 *1 (-279)))) (-3536 (*1 *2 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-108)))) (-3536 (*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-1087)) (-5 *2 (-108)))) (-2812 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-1 *1 *1))) (-4 *1 (-279)))) (-2812 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-1 *1 (-589 *1)))) (-4 *1 (-279)))) (-2812 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1 *1 (-589 *1))) (-4 *1 (-279)))) (-2812 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1 *1 *1)) (-4 *1 (-279)))) (-2812 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-110))) (-5 *3 (-589 (-1 *1 *1))) (-4 *1 (-279)))) (-2812 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-110))) (-5 *3 (-589 (-1 *1 (-589 *1)))) (-4 *1 (-279)))) (-2812 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-589 *1))) (-4 *1 (-279)))) (-2812 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-279)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-562 *1)) (-4 *1 (-973)) (-4 *1 (-279)) (-5 *2 (-1083 *1)))) (-2762 (*1 *1 *1) (-12 (-4 *1 (-973)) (-4 *1 (-279)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-964 (-523))) (-4 *1 (-279)) (-5 *2 (-108)))) (-3860 (*1 *2 *1) (-12 (-4 *1 (-964 (-523))) (-4 *1 (-279)) (-5 *2 (-108))))) +(-13 (-786) (-964 (-562 $)) (-484 (-562 $) $) (-286 $) (-10 -8 (-15 -1937 ($ (-110) $)) (-15 -1937 ($ (-110) $ $)) (-15 -1937 ($ (-110) $ $ $)) (-15 -1937 ($ (-110) $ $ $ $)) (-15 -1937 ($ (-110) (-589 $))) (-15 -1349 ($ $ (-271 $))) (-15 -1349 ($ $ (-589 (-271 $)))) (-15 -1349 ($ $ (-589 (-562 $)) (-589 $))) (-15 -2850 ($ $)) (-15 -2850 ($ (-589 $))) (-15 -2055 ($ $)) (-15 -2055 ($ (-589 $))) (-15 -1303 ($ $)) (-15 -1303 ($ $ $)) (-15 -1933 ((-710) $)) (-15 -2577 ((-3 (-562 $) "failed") $)) (-15 -2378 ((-589 (-562 $)) $)) (-15 -3643 ((-589 (-562 $)) $)) (-15 -2196 ((-589 (-110)) $)) (-15 -2947 ((-110) (-110))) (-15 -3198 ((-108) (-110))) (-15 -3739 ((-108) $ (-110))) (-15 -3739 ((-108) $ (-1087))) (-15 -3396 ($ (-110) $)) (-15 -3396 ($ (-110) (-589 $))) (-15 -1345 ($ (-1 $ $) (-562 $))) (-15 -3536 ((-108) $ $)) (-15 -3536 ((-108) $ (-1087))) (-15 -2812 ($ $ (-589 (-1087)) (-589 (-1 $ $)))) (-15 -2812 ($ $ (-589 (-1087)) (-589 (-1 $ (-589 $))))) (-15 -2812 ($ $ (-1087) (-1 $ (-589 $)))) (-15 -2812 ($ $ (-1087) (-1 $ $))) (-15 -2812 ($ $ (-589 (-110)) (-589 (-1 $ $)))) (-15 -2812 ($ $ (-589 (-110)) (-589 (-1 $ (-589 $))))) (-15 -2812 ($ $ (-110) (-1 $ (-589 $)))) (-15 -2812 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-973)) (PROGN (-15 -1414 ((-1083 $) (-562 $))) (-15 -2762 ($ $))) |%noBranch|) (IF (|has| $ (-964 (-523))) (PROGN (-15 -3101 ((-108) $)) (-15 -3860 ((-108) $))) |%noBranch|))) (((-97) . T) ((-563 (-794)) . T) ((-286 $) . T) ((-484 (-562 $) $) . T) ((-484 $ $) . T) ((-786) . T) ((-964 (-562 $)) . T) ((-1016) . T)) -((-3140 (((-589 |#1|) (-589 |#1|)) 10))) -(((-280 |#1|) (-10 -7 (-15 -3140 ((-589 |#1|) (-589 |#1|)))) (-784)) (T -280)) -((-3140 (*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-784)) (-5 *1 (-280 *3))))) -(-10 -7 (-15 -3140 ((-589 |#1|) (-589 |#1|)))) -((-3612 (((-629 |#2|) (-1 |#2| |#1|) (-629 |#1|)) 15))) -(((-281 |#1| |#2|) (-10 -7 (-15 -3612 ((-629 |#2|) (-1 |#2| |#1|) (-629 |#1|)))) (-973) (-973)) (T -281)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-629 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-629 *6)) (-5 *1 (-281 *5 *6))))) -(-10 -7 (-15 -3612 ((-629 |#2|) (-1 |#2| |#1|) (-629 |#1|)))) -((-2835 (((-1168 (-292 (-355))) (-1168 (-292 (-203)))) 105)) (-3934 (((-1011 (-779 (-203))) (-1011 (-779 (-355)))) 39)) (-1975 (((-589 (-1070)) (-1068 (-203))) 87)) (-2567 (((-292 (-355)) (-883 (-203))) 49)) (-3550 (((-203) (-883 (-203))) 45)) (-2989 (((-1070) (-355)) 167)) (-2814 (((-779 (-203)) (-779 (-355))) 33)) (-3330 (((-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523))) (-1168 (-292 (-203)))) 142)) (-3266 (((-962) (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) 180) (((-962) (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) 178)) (-3392 (((-629 (-203)) (-589 (-203)) (-710)) 13)) (-3713 (((-1168 (-638)) (-589 (-203))) 94)) (-1863 (((-589 (-1070)) (-589 (-203))) 74)) (-2463 (((-3 (-292 (-203)) "failed") (-292 (-203))) 120)) (-3224 (((-108) (-203) (-1011 (-779 (-203)))) 109)) (-3086 (((-962) (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))) 198)) (-2074 (((-203) (-1011 (-779 (-203)))) 107)) (-2728 (((-203) (-1011 (-779 (-203)))) 108)) (-3251 (((-203) (-383 (-523))) 26)) (-1391 (((-1070) (-355)) 72)) (-2080 (((-203) (-355)) 17)) (-2258 (((-355) (-1168 (-292 (-203)))) 153)) (-1802 (((-292 (-203)) (-292 (-355))) 23)) (-2263 (((-383 (-523)) (-292 (-203))) 52)) (-2321 (((-292 (-383 (-523))) (-292 (-203))) 68)) (-3321 (((-292 (-355)) (-292 (-203))) 98)) (-2822 (((-203) (-292 (-203))) 53)) (-1392 (((-589 (-203)) (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) 63)) (-2360 (((-1011 (-779 (-203))) (-1011 (-779 (-203)))) 60)) (-1729 (((-1070) (-203)) 71)) (-3318 (((-638) (-203)) 90)) (-1272 (((-383 (-523)) (-203)) 54)) (-2790 (((-292 (-355)) (-203)) 48)) (-3663 (((-589 (-1011 (-779 (-203)))) (-589 (-1011 (-779 (-355))))) 42)) (-2326 (((-962) (-589 (-962))) 163) (((-962) (-962) (-962)) 160)) (-2761 (((-962) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194))) -(((-282) (-10 -7 (-15 -2080 ((-203) (-355))) (-15 -1802 ((-292 (-203)) (-292 (-355)))) (-15 -2814 ((-779 (-203)) (-779 (-355)))) (-15 -3934 ((-1011 (-779 (-203))) (-1011 (-779 (-355))))) (-15 -3663 ((-589 (-1011 (-779 (-203)))) (-589 (-1011 (-779 (-355)))))) (-15 -1272 ((-383 (-523)) (-203))) (-15 -2263 ((-383 (-523)) (-292 (-203)))) (-15 -2822 ((-203) (-292 (-203)))) (-15 -2463 ((-3 (-292 (-203)) "failed") (-292 (-203)))) (-15 -2258 ((-355) (-1168 (-292 (-203))))) (-15 -3330 ((-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523))) (-1168 (-292 (-203))))) (-15 -2321 ((-292 (-383 (-523))) (-292 (-203)))) (-15 -2360 ((-1011 (-779 (-203))) (-1011 (-779 (-203))))) (-15 -1392 ((-589 (-203)) (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) (-15 -3318 ((-638) (-203))) (-15 -3713 ((-1168 (-638)) (-589 (-203)))) (-15 -3321 ((-292 (-355)) (-292 (-203)))) (-15 -2835 ((-1168 (-292 (-355))) (-1168 (-292 (-203))))) (-15 -3224 ((-108) (-203) (-1011 (-779 (-203))))) (-15 -1729 ((-1070) (-203))) (-15 -1391 ((-1070) (-355))) (-15 -1863 ((-589 (-1070)) (-589 (-203)))) (-15 -1975 ((-589 (-1070)) (-1068 (-203)))) (-15 -2074 ((-203) (-1011 (-779 (-203))))) (-15 -2728 ((-203) (-1011 (-779 (-203))))) (-15 -2326 ((-962) (-962) (-962))) (-15 -2326 ((-962) (-589 (-962)))) (-15 -2989 ((-1070) (-355))) (-15 -3266 ((-962) (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))))) (-15 -3266 ((-962) (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))))) (-15 -2761 ((-962) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3086 ((-962) (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))) (-15 -2567 ((-292 (-355)) (-883 (-203)))) (-15 -3550 ((-203) (-883 (-203)))) (-15 -2790 ((-292 (-355)) (-203))) (-15 -3251 ((-203) (-383 (-523)))) (-15 -3392 ((-629 (-203)) (-589 (-203)) (-710))))) (T -282)) -((-3392 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-203))) (-5 *4 (-710)) (-5 *2 (-629 (-203))) (-5 *1 (-282)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-383 (-523))) (-5 *2 (-203)) (-5 *1 (-282)))) (-2790 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-292 (-355))) (-5 *1 (-282)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-883 (-203))) (-5 *2 (-203)) (-5 *1 (-282)))) (-2567 (*1 *2 *3) (-12 (-5 *3 (-883 (-203))) (-5 *2 (-292 (-355))) (-5 *1 (-282)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))) (-5 *2 (-962)) (-5 *1 (-282)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-962)) (-5 *1 (-282)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) (-5 *2 (-962)) (-5 *1 (-282)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *2 (-962)) (-5 *1 (-282)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1070)) (-5 *1 (-282)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-589 (-962))) (-5 *2 (-962)) (-5 *1 (-282)))) (-2326 (*1 *2 *2 *2) (-12 (-5 *2 (-962)) (-5 *1 (-282)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-282)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-282)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-282)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-282)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1070)) (-5 *1 (-282)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-282)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *4 (-1011 (-779 (-203)))) (-5 *3 (-203)) (-5 *2 (-108)) (-5 *1 (-282)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *2 (-1168 (-292 (-355)))) (-5 *1 (-282)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-292 (-355))) (-5 *1 (-282)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1168 (-638))) (-5 *1 (-282)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-638)) (-5 *1 (-282)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *2 (-589 (-203))) (-5 *1 (-282)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-1011 (-779 (-203)))) (-5 *1 (-282)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-292 (-383 (-523)))) (-5 *1 (-282)))) (-3330 (*1 *2 *3) (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *2 (-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523)))) (-5 *1 (-282)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *2 (-355)) (-5 *1 (-282)))) (-2463 (*1 *2 *2) (|partial| -12 (-5 *2 (-292 (-203))) (-5 *1 (-282)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-203)) (-5 *1 (-282)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-383 (-523))) (-5 *1 (-282)))) (-1272 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-383 (-523))) (-5 *1 (-282)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-589 (-1011 (-779 (-355))))) (-5 *2 (-589 (-1011 (-779 (-203))))) (-5 *1 (-282)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-355)))) (-5 *2 (-1011 (-779 (-203)))) (-5 *1 (-282)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-779 (-355))) (-5 *2 (-779 (-203))) (-5 *1 (-282)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-292 (-355))) (-5 *2 (-292 (-203))) (-5 *1 (-282)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-203)) (-5 *1 (-282))))) -(-10 -7 (-15 -2080 ((-203) (-355))) (-15 -1802 ((-292 (-203)) (-292 (-355)))) (-15 -2814 ((-779 (-203)) (-779 (-355)))) (-15 -3934 ((-1011 (-779 (-203))) (-1011 (-779 (-355))))) (-15 -3663 ((-589 (-1011 (-779 (-203)))) (-589 (-1011 (-779 (-355)))))) (-15 -1272 ((-383 (-523)) (-203))) (-15 -2263 ((-383 (-523)) (-292 (-203)))) (-15 -2822 ((-203) (-292 (-203)))) (-15 -2463 ((-3 (-292 (-203)) "failed") (-292 (-203)))) (-15 -2258 ((-355) (-1168 (-292 (-203))))) (-15 -3330 ((-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523))) (-1168 (-292 (-203))))) (-15 -2321 ((-292 (-383 (-523))) (-292 (-203)))) (-15 -2360 ((-1011 (-779 (-203))) (-1011 (-779 (-203))))) (-15 -1392 ((-589 (-203)) (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) (-15 -3318 ((-638) (-203))) (-15 -3713 ((-1168 (-638)) (-589 (-203)))) (-15 -3321 ((-292 (-355)) (-292 (-203)))) (-15 -2835 ((-1168 (-292 (-355))) (-1168 (-292 (-203))))) (-15 -3224 ((-108) (-203) (-1011 (-779 (-203))))) (-15 -1729 ((-1070) (-203))) (-15 -1391 ((-1070) (-355))) (-15 -1863 ((-589 (-1070)) (-589 (-203)))) (-15 -1975 ((-589 (-1070)) (-1068 (-203)))) (-15 -2074 ((-203) (-1011 (-779 (-203))))) (-15 -2728 ((-203) (-1011 (-779 (-203))))) (-15 -2326 ((-962) (-962) (-962))) (-15 -2326 ((-962) (-589 (-962)))) (-15 -2989 ((-1070) (-355))) (-15 -3266 ((-962) (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))))) (-15 -3266 ((-962) (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))))) (-15 -2761 ((-962) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3086 ((-962) (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))) (-15 -2567 ((-292 (-355)) (-883 (-203)))) (-15 -3550 ((-203) (-883 (-203)))) (-15 -2790 ((-292 (-355)) (-203))) (-15 -3251 ((-203) (-383 (-523)))) (-15 -3392 ((-629 (-203)) (-589 (-203)) (-710)))) -((-1387 (((-108) $ $) 11)) (-3796 (($ $ $) 15)) (-3769 (($ $ $) 14)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 44)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 53)) (-3278 (($ $ $) 21) (($ (-589 $)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3746 (((-3 $ "failed") $ $) 17)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 46))) -(((-283 |#1|) (-10 -8 (-15 -2270 ((-3 (-589 |#1|) "failed") (-589 |#1|) |#1|)) (-15 -1760 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1760 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| |#1|)) (-15 -1387 ((-108) |#1| |#1|)) (-15 -3312 ((-3 (-589 |#1|) "failed") (-589 |#1|) |#1|)) (-15 -1590 ((-2 (|:| -2935 (-589 |#1|)) (|:| -3441 |#1|)) (-589 |#1|))) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|))) (-284)) (T -283)) -NIL -(-10 -8 (-15 -2270 ((-3 (-589 |#1|) "failed") (-589 |#1|) |#1|)) (-15 -1760 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1760 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| |#1|)) (-15 -1387 ((-108) |#1| |#1|)) (-15 -3312 ((-3 (-589 |#1|) "failed") (-589 |#1|) |#1|)) (-15 -1590 ((-2 (|:| -2935 (-589 |#1|)) (|:| -3441 |#1|)) (-589 |#1|))) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2023 (((-108) $) 31)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-3953 (((-589 |#1|) (-589 |#1|)) 10))) +(((-280 |#1|) (-10 -7 (-15 -3953 ((-589 |#1|) (-589 |#1|)))) (-784)) (T -280)) +((-3953 (*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-784)) (-5 *1 (-280 *3))))) +(-10 -7 (-15 -3953 ((-589 |#1|) (-589 |#1|)))) +((-1345 (((-629 |#2|) (-1 |#2| |#1|) (-629 |#1|)) 15))) +(((-281 |#1| |#2|) (-10 -7 (-15 -1345 ((-629 |#2|) (-1 |#2| |#1|) (-629 |#1|)))) (-973) (-973)) (T -281)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-629 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-629 *6)) (-5 *1 (-281 *5 *6))))) +(-10 -7 (-15 -1345 ((-629 |#2|) (-1 |#2| |#1|) (-629 |#1|)))) +((-4159 (((-1169 (-292 (-355))) (-1169 (-292 (-203)))) 105)) (-4078 (((-1011 (-779 (-203))) (-1011 (-779 (-355)))) 39)) (-3443 (((-589 (-1070)) (-1068 (-203))) 87)) (-3381 (((-292 (-355)) (-883 (-203))) 49)) (-1754 (((-203) (-883 (-203))) 45)) (-3116 (((-1070) (-355)) 167)) (-3985 (((-779 (-203)) (-779 (-355))) 33)) (-3163 (((-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523))) (-1169 (-292 (-203)))) 142)) (-3802 (((-962) (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) 180) (((-962) (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))))) 178)) (-2600 (((-629 (-203)) (-589 (-203)) (-710)) 13)) (-2655 (((-1169 (-638)) (-589 (-203))) 94)) (-1815 (((-589 (-1070)) (-589 (-203))) 74)) (-1887 (((-3 (-292 (-203)) "failed") (-292 (-203))) 120)) (-3516 (((-108) (-203) (-1011 (-779 (-203)))) 109)) (-1679 (((-962) (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))) 198)) (-2079 (((-203) (-1011 (-779 (-203)))) 107)) (-2542 (((-203) (-1011 (-779 (-203)))) 108)) (-3765 (((-203) (-383 (-523))) 26)) (-2826 (((-1070) (-355)) 72)) (-2142 (((-203) (-355)) 17)) (-3375 (((-355) (-1169 (-292 (-203)))) 153)) (-2451 (((-292 (-203)) (-292 (-355))) 23)) (-3418 (((-383 (-523)) (-292 (-203))) 52)) (-2831 (((-292 (-383 (-523))) (-292 (-203))) 68)) (-1350 (((-292 (-355)) (-292 (-203))) 98)) (-4037 (((-203) (-292 (-203))) 53)) (-2835 (((-589 (-203)) (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) 63)) (-2045 (((-1011 (-779 (-203))) (-1011 (-779 (-203)))) 60)) (-3021 (((-1070) (-203)) 71)) (-1312 (((-638) (-203)) 90)) (-4080 (((-383 (-523)) (-203)) 54)) (-1967 (((-292 (-355)) (-203)) 48)) (-1400 (((-589 (-1011 (-779 (-203)))) (-589 (-1011 (-779 (-355))))) 42)) (-2394 (((-962) (-589 (-962))) 163) (((-962) (-962) (-962)) 160)) (-1717 (((-962) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194))) +(((-282) (-10 -7 (-15 -2142 ((-203) (-355))) (-15 -2451 ((-292 (-203)) (-292 (-355)))) (-15 -3985 ((-779 (-203)) (-779 (-355)))) (-15 -4078 ((-1011 (-779 (-203))) (-1011 (-779 (-355))))) (-15 -1400 ((-589 (-1011 (-779 (-203)))) (-589 (-1011 (-779 (-355)))))) (-15 -4080 ((-383 (-523)) (-203))) (-15 -3418 ((-383 (-523)) (-292 (-203)))) (-15 -4037 ((-203) (-292 (-203)))) (-15 -1887 ((-3 (-292 (-203)) "failed") (-292 (-203)))) (-15 -3375 ((-355) (-1169 (-292 (-203))))) (-15 -3163 ((-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523))) (-1169 (-292 (-203))))) (-15 -2831 ((-292 (-383 (-523))) (-292 (-203)))) (-15 -2045 ((-1011 (-779 (-203))) (-1011 (-779 (-203))))) (-15 -2835 ((-589 (-203)) (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))))) (-15 -1312 ((-638) (-203))) (-15 -2655 ((-1169 (-638)) (-589 (-203)))) (-15 -1350 ((-292 (-355)) (-292 (-203)))) (-15 -4159 ((-1169 (-292 (-355))) (-1169 (-292 (-203))))) (-15 -3516 ((-108) (-203) (-1011 (-779 (-203))))) (-15 -3021 ((-1070) (-203))) (-15 -2826 ((-1070) (-355))) (-15 -1815 ((-589 (-1070)) (-589 (-203)))) (-15 -3443 ((-589 (-1070)) (-1068 (-203)))) (-15 -2079 ((-203) (-1011 (-779 (-203))))) (-15 -2542 ((-203) (-1011 (-779 (-203))))) (-15 -2394 ((-962) (-962) (-962))) (-15 -2394 ((-962) (-589 (-962)))) (-15 -3116 ((-1070) (-355))) (-15 -3802 ((-962) (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))))) (-15 -3802 ((-962) (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))))) (-15 -1717 ((-962) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1679 ((-962) (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))) (-15 -3381 ((-292 (-355)) (-883 (-203)))) (-15 -1754 ((-203) (-883 (-203)))) (-15 -1967 ((-292 (-355)) (-203))) (-15 -3765 ((-203) (-383 (-523)))) (-15 -2600 ((-629 (-203)) (-589 (-203)) (-710))))) (T -282)) +((-2600 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-203))) (-5 *4 (-710)) (-5 *2 (-629 (-203))) (-5 *1 (-282)))) (-3765 (*1 *2 *3) (-12 (-5 *3 (-383 (-523))) (-5 *2 (-203)) (-5 *1 (-282)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-292 (-355))) (-5 *1 (-282)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-883 (-203))) (-5 *2 (-203)) (-5 *1 (-282)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-883 (-203))) (-5 *2 (-292 (-355))) (-5 *1 (-282)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))) (-5 *2 (-962)) (-5 *1 (-282)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-962)) (-5 *1 (-282)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) (-5 *2 (-962)) (-5 *1 (-282)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *2 (-962)) (-5 *1 (-282)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1070)) (-5 *1 (-282)))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-589 (-962))) (-5 *2 (-962)) (-5 *1 (-282)))) (-2394 (*1 *2 *2 *2) (-12 (-5 *2 (-962)) (-5 *1 (-282)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-282)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-282)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-282)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-282)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1070)) (-5 *1 (-282)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-282)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-1011 (-779 (-203)))) (-5 *3 (-203)) (-5 *2 (-108)) (-5 *1 (-282)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-1169 (-292 (-203)))) (-5 *2 (-1169 (-292 (-355)))) (-5 *1 (-282)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-292 (-355))) (-5 *1 (-282)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1169 (-638))) (-5 *1 (-282)))) (-1312 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-638)) (-5 *1 (-282)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-5 *2 (-589 (-203))) (-5 *1 (-282)))) (-2045 (*1 *2 *2) (-12 (-5 *2 (-1011 (-779 (-203)))) (-5 *1 (-282)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-292 (-383 (-523)))) (-5 *1 (-282)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-1169 (-292 (-203)))) (-5 *2 (-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523)))) (-5 *1 (-282)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-1169 (-292 (-203)))) (-5 *2 (-355)) (-5 *1 (-282)))) (-1887 (*1 *2 *2) (|partial| -12 (-5 *2 (-292 (-203))) (-5 *1 (-282)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-203)) (-5 *1 (-282)))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-383 (-523))) (-5 *1 (-282)))) (-4080 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-383 (-523))) (-5 *1 (-282)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-589 (-1011 (-779 (-355))))) (-5 *2 (-589 (-1011 (-779 (-203))))) (-5 *1 (-282)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-355)))) (-5 *2 (-1011 (-779 (-203)))) (-5 *1 (-282)))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-779 (-355))) (-5 *2 (-779 (-203))) (-5 *1 (-282)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-292 (-355))) (-5 *2 (-292 (-203))) (-5 *1 (-282)))) (-2142 (*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-203)) (-5 *1 (-282))))) +(-10 -7 (-15 -2142 ((-203) (-355))) (-15 -2451 ((-292 (-203)) (-292 (-355)))) (-15 -3985 ((-779 (-203)) (-779 (-355)))) (-15 -4078 ((-1011 (-779 (-203))) (-1011 (-779 (-355))))) (-15 -1400 ((-589 (-1011 (-779 (-203)))) (-589 (-1011 (-779 (-355)))))) (-15 -4080 ((-383 (-523)) (-203))) (-15 -3418 ((-383 (-523)) (-292 (-203)))) (-15 -4037 ((-203) (-292 (-203)))) (-15 -1887 ((-3 (-292 (-203)) "failed") (-292 (-203)))) (-15 -3375 ((-355) (-1169 (-292 (-203))))) (-15 -3163 ((-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523))) (-1169 (-292 (-203))))) (-15 -2831 ((-292 (-383 (-523))) (-292 (-203)))) (-15 -2045 ((-1011 (-779 (-203))) (-1011 (-779 (-203))))) (-15 -2835 ((-589 (-203)) (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))))) (-15 -1312 ((-638) (-203))) (-15 -2655 ((-1169 (-638)) (-589 (-203)))) (-15 -1350 ((-292 (-355)) (-292 (-203)))) (-15 -4159 ((-1169 (-292 (-355))) (-1169 (-292 (-203))))) (-15 -3516 ((-108) (-203) (-1011 (-779 (-203))))) (-15 -3021 ((-1070) (-203))) (-15 -2826 ((-1070) (-355))) (-15 -1815 ((-589 (-1070)) (-589 (-203)))) (-15 -3443 ((-589 (-1070)) (-1068 (-203)))) (-15 -2079 ((-203) (-1011 (-779 (-203))))) (-15 -2542 ((-203) (-1011 (-779 (-203))))) (-15 -2394 ((-962) (-962) (-962))) (-15 -2394 ((-962) (-589 (-962)))) (-15 -3116 ((-1070) (-355))) (-15 -3802 ((-962) (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))))) (-15 -3802 ((-962) (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))))) (-15 -1717 ((-962) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1679 ((-962) (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))) (-15 -3381 ((-292 (-355)) (-883 (-203)))) (-15 -1754 ((-203) (-883 (-203)))) (-15 -1967 ((-292 (-355)) (-203))) (-15 -3765 ((-203) (-383 (-523)))) (-15 -2600 ((-629 (-203)) (-589 (-203)) (-710)))) +((-2787 (((-108) $ $) 11)) (-4059 (($ $ $) 15)) (-4032 (($ $ $) 14)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 44)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 53)) (-3310 (($ $ $) 21) (($ (-589 $)) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-4007 (((-3 $ "failed") $ $) 17)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 46))) +(((-283 |#1|) (-10 -8 (-15 -3496 ((-3 (-589 |#1|) "failed") (-589 |#1|) |#1|)) (-15 -2100 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2100 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1621 |#1|)) |#1| |#1|)) (-15 -4059 (|#1| |#1| |#1|)) (-15 -4032 (|#1| |#1| |#1|)) (-15 -2787 ((-108) |#1| |#1|)) (-15 -1251 ((-3 (-589 |#1|) "failed") (-589 |#1|) |#1|)) (-15 -4217 ((-2 (|:| -3474 (-589 |#1|)) (|:| -1621 |#1|)) (-589 |#1|))) (-15 -3310 (|#1| (-589 |#1|))) (-15 -3310 (|#1| |#1| |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#1|))) (-284)) (T -283)) +NIL +(-10 -8 (-15 -3496 ((-3 (-589 |#1|) "failed") (-589 |#1|) |#1|)) (-15 -2100 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2100 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1621 |#1|)) |#1| |#1|)) (-15 -4059 (|#1| |#1| |#1|)) (-15 -4032 (|#1| |#1| |#1|)) (-15 -2787 ((-108) |#1| |#1|)) (-15 -1251 ((-3 (-589 |#1|) "failed") (-589 |#1|) |#1|)) (-15 -4217 ((-2 (|:| -3474 (-589 |#1|)) (|:| -1621 |#1|)) (-589 |#1|))) (-15 -3310 (|#1| (-589 |#1|))) (-15 -3310 (|#1| |#1| |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-2787 (((-108) $ $) 59)) (-4189 (($) 17 T CONST)) (-4059 (($ $ $) 55)) (-1444 (((-3 $ "failed") $) 34)) (-4032 (($ $ $) 56)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-2769 (((-108) $) 31)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-3413 (((-710) $) 58)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-284) (-129)) (T -284)) -((-1387 (*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-108)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-710)))) (-3462 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-284)))) (-3769 (*1 *1 *1 *1) (-4 *1 (-284))) (-3796 (*1 *1 *1 *1) (-4 *1 (-284))) (-1760 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) (-4 *1 (-284)))) (-1760 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-284)))) (-2270 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-589 *1)) (-4 *1 (-284))))) -(-13 (-851) (-10 -8 (-15 -1387 ((-108) $ $)) (-15 -1972 ((-710) $)) (-15 -3462 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -3769 ($ $ $)) (-15 -3796 ($ $ $)) (-15 -1760 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $)) (-15 -1760 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2270 ((-3 (-589 $) "failed") (-589 $) $)))) +((-2787 (*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-108)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-710)))) (-2083 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-284)))) (-4032 (*1 *1 *1 *1) (-4 *1 (-284))) (-4059 (*1 *1 *1 *1) (-4 *1 (-284))) (-2100 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1621 *1))) (-4 *1 (-284)))) (-2100 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-284)))) (-3496 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-589 *1)) (-4 *1 (-284))))) +(-13 (-851) (-10 -8 (-15 -2787 ((-108) $ $)) (-15 -3413 ((-710) $)) (-15 -2083 ((-2 (|:| -3070 $) (|:| -3969 $)) $ $)) (-15 -4032 ($ $ $)) (-15 -4059 ($ $ $)) (-15 -2100 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $)) (-15 -2100 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3496 ((-3 (-589 $) "failed") (-589 $) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-2679 (($ $ (-589 |#2|) (-589 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-271 |#2|)) 11) (($ $ (-589 (-271 |#2|))) NIL))) -(((-285 |#1| |#2|) (-10 -8 (-15 -2679 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -2679 (|#1| |#1| (-271 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#2|)))) (-286 |#2|) (-1016)) (T -285)) +((-2812 (($ $ (-589 |#2|) (-589 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-271 |#2|)) 11) (($ $ (-589 (-271 |#2|))) NIL))) +(((-285 |#1| |#2|) (-10 -8 (-15 -2812 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -2812 (|#1| |#1| (-271 |#2|))) (-15 -2812 (|#1| |#1| |#2| |#2|)) (-15 -2812 (|#1| |#1| (-589 |#2|) (-589 |#2|)))) (-286 |#2|) (-1016)) (T -285)) NIL -(-10 -8 (-15 -2679 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -2679 (|#1| |#1| (-271 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#2|)))) -((-2679 (($ $ (-589 |#1|) (-589 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-271 |#1|)) 11) (($ $ (-589 (-271 |#1|))) 10))) +(-10 -8 (-15 -2812 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -2812 (|#1| |#1| (-271 |#2|))) (-15 -2812 (|#1| |#1| |#2| |#2|)) (-15 -2812 (|#1| |#1| (-589 |#2|) (-589 |#2|)))) +((-2812 (($ $ (-589 |#1|) (-589 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-271 |#1|)) 11) (($ $ (-589 (-271 |#1|))) 10))) (((-286 |#1|) (-129) (-1016)) (T -286)) -((-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-271 *3)) (-4 *1 (-286 *3)) (-4 *3 (-1016)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *3))) (-4 *1 (-286 *3)) (-4 *3 (-1016))))) -(-13 (-484 |t#1| |t#1|) (-10 -8 (-15 -2679 ($ $ (-271 |t#1|))) (-15 -2679 ($ $ (-589 (-271 |t#1|)))))) +((-2812 (*1 *1 *1 *2) (-12 (-5 *2 (-271 *3)) (-4 *1 (-286 *3)) (-4 *3 (-1016)))) (-2812 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *3))) (-4 *1 (-286 *3)) (-4 *3 (-1016))))) +(-13 (-484 |t#1| |t#1|) (-10 -8 (-15 -2812 ($ $ (-271 |t#1|))) (-15 -2812 ($ $ (-589 (-271 |t#1|)))))) (((-484 |#1| |#1|) . T)) -((-2679 ((|#1| (-1 |#1| (-523)) (-1089 (-383 (-523)))) 24))) -(((-287 |#1|) (-10 -7 (-15 -2679 (|#1| (-1 |#1| (-523)) (-1089 (-383 (-523)))))) (-37 (-383 (-523)))) (T -287)) -((-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-523))) (-5 *4 (-1089 (-383 (-523)))) (-5 *1 (-287 *2)) (-4 *2 (-37 (-383 (-523))))))) -(-10 -7 (-15 -2679 (|#1| (-1 |#1| (-523)) (-1089 (-383 (-523)))))) -((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 7)) (-3983 (((-108) $ $) 9))) +((-2812 ((|#1| (-1 |#1| (-523)) (-1089 (-383 (-523)))) 24))) +(((-287 |#1|) (-10 -7 (-15 -2812 (|#1| (-1 |#1| (-523)) (-1089 (-383 (-523)))))) (-37 (-383 (-523)))) (T -287)) +((-2812 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-523))) (-5 *4 (-1089 (-383 (-523)))) (-5 *1 (-287 *2)) (-4 *2 (-37 (-383 (-523))))))) +(-10 -7 (-15 -2812 (|#1| (-1 |#1| (-523)) (-1089 (-383 (-523)))))) +((-1680 (((-108) $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 7)) (-3941 (((-108) $ $) 9))) (((-288) (-1016)) (T -288)) NIL (-1016) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 62)) (-3458 (((-1154 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-1154 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-523)))) (((-3 (-1153 |#2| |#3| |#4|) "failed") $) 24)) (-3474 (((-1154 |#1| |#2| |#3| |#4|) $) NIL) (((-1087) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-523)))) (((-523) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-523)))) (((-1153 |#2| |#3| |#4|) $) NIL)) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-1154 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1168 (-1154 |#1| |#2| |#3| |#4|)))) (-629 $) (-1168 $)) NIL) (((-629 (-1154 |#1| |#2| |#3| |#4|)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-1154 |#1| |#2| |#3| |#4|) $) 21)) (-4058 (((-3 $ "failed") $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-1063)))) (-4114 (((-108) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-786)))) (-2062 (($ $ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-786)))) (-3612 (($ (-1 (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|)) $) NIL)) (-3684 (((-3 (-779 |#2|) "failed") $) 76)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-284)))) (-3722 (((-1154 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-1154 |#1| |#2| |#3| |#4|)) (-589 (-1154 |#1| |#2| |#3| |#4|))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-286 (-1154 |#1| |#2| |#3| |#4|)))) (($ $ (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-286 (-1154 |#1| |#2| |#3| |#4|)))) (($ $ (-271 (-1154 |#1| |#2| |#3| |#4|))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-286 (-1154 |#1| |#2| |#3| |#4|)))) (($ $ (-589 (-271 (-1154 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-286 (-1154 |#1| |#2| |#3| |#4|)))) (($ $ (-589 (-1087)) (-589 (-1154 |#1| |#2| |#3| |#4|))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-484 (-1087) (-1154 |#1| |#2| |#3| |#4|)))) (($ $ (-1087) (-1154 |#1| |#2| |#3| |#4|)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-484 (-1087) (-1154 |#1| |#2| |#3| |#4|))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-1154 |#1| |#2| |#3| |#4|)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-263 (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-211))) (($ $ (-710)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-211))) (($ $ (-1087)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-1 (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|)) (-710)) NIL) (($ $ (-1 (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-1154 |#1| |#2| |#3| |#4|) $) 17)) (-3663 (((-823 (-523)) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-564 (-499)))) (((-355) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-949))) (((-203) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-1154 |#1| |#2| |#3| |#4|) (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-1154 |#1| |#2| |#3| |#4|)) 28) (($ (-1087)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-1087)))) (($ (-1153 |#2| |#3| |#4|)) 36)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-1154 |#1| |#2| |#3| |#4|) (-840))) (|has| (-1154 |#1| |#2| |#3| |#4|) (-134))))) (-1621 (((-710)) NIL)) (-1886 (((-1154 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-508)))) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 41 T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-211))) (($ $ (-710)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-211))) (($ $ (-1087)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-1 (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|)) (-710)) NIL) (($ $ (-1 (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-786)))) (-4098 (($ $ $) 33) (($ (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|)) 30)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-1154 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1154 |#1| |#2| |#3| |#4|)) NIL))) -(((-289 |#1| |#2| |#3| |#4|) (-13 (-921 (-1154 |#1| |#2| |#3| |#4|)) (-964 (-1153 |#2| |#3| |#4|)) (-10 -8 (-15 -3684 ((-3 (-779 |#2|) "failed") $)) (-15 -1458 ($ (-1153 |#2| |#3| |#4|))))) (-13 (-786) (-964 (-523)) (-585 (-523)) (-427)) (-13 (-27) (-1108) (-406 |#1|)) (-1087) |#2|) (T -289)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1153 *4 *5 *6)) (-4 *4 (-13 (-27) (-1108) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4) (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *1 (-289 *3 *4 *5 *6)))) (-3684 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *2 (-779 *4)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1108) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4)))) -(-13 (-921 (-1154 |#1| |#2| |#3| |#4|)) (-964 (-1153 |#2| |#3| |#4|)) (-10 -8 (-15 -3684 ((-3 (-779 |#2|) "failed") $)) (-15 -1458 ($ (-1153 |#2| |#3| |#4|))))) -((-3612 (((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)) 13))) -(((-290 |#1| |#2|) (-10 -7 (-15 -3612 ((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)))) (-786) (-786)) (T -290)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-292 *5)) (-4 *5 (-786)) (-4 *6 (-786)) (-5 *2 (-292 *6)) (-5 *1 (-290 *5 *6))))) -(-10 -7 (-15 -3612 ((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)))) -((-2015 (((-51) |#2| (-271 |#2|) (-710)) 33) (((-51) |#2| (-271 |#2|)) 24) (((-51) |#2| (-710)) 28) (((-51) |#2|) 25) (((-51) (-1087)) 21)) (-2417 (((-51) |#2| (-271 |#2|) (-383 (-523))) 51) (((-51) |#2| (-271 |#2|)) 48) (((-51) |#2| (-383 (-523))) 50) (((-51) |#2|) 49) (((-51) (-1087)) 47)) (-3717 (((-51) |#2| (-271 |#2|) (-383 (-523))) 46) (((-51) |#2| (-271 |#2|)) 43) (((-51) |#2| (-383 (-523))) 45) (((-51) |#2|) 44) (((-51) (-1087)) 42)) (-2028 (((-51) |#2| (-271 |#2|) (-523)) 39) (((-51) |#2| (-271 |#2|)) 35) (((-51) |#2| (-523)) 38) (((-51) |#2|) 36) (((-51) (-1087)) 34))) -(((-291 |#1| |#2|) (-10 -7 (-15 -2015 ((-51) (-1087))) (-15 -2015 ((-51) |#2|)) (-15 -2015 ((-51) |#2| (-710))) (-15 -2015 ((-51) |#2| (-271 |#2|))) (-15 -2015 ((-51) |#2| (-271 |#2|) (-710))) (-15 -2028 ((-51) (-1087))) (-15 -2028 ((-51) |#2|)) (-15 -2028 ((-51) |#2| (-523))) (-15 -2028 ((-51) |#2| (-271 |#2|))) (-15 -2028 ((-51) |#2| (-271 |#2|) (-523))) (-15 -3717 ((-51) (-1087))) (-15 -3717 ((-51) |#2|)) (-15 -3717 ((-51) |#2| (-383 (-523)))) (-15 -3717 ((-51) |#2| (-271 |#2|))) (-15 -3717 ((-51) |#2| (-271 |#2|) (-383 (-523)))) (-15 -2417 ((-51) (-1087))) (-15 -2417 ((-51) |#2|)) (-15 -2417 ((-51) |#2| (-383 (-523)))) (-15 -2417 ((-51) |#2| (-271 |#2|))) (-15 -2417 ((-51) |#2| (-271 |#2|) (-383 (-523))))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -291)) -((-2417 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-271 *3)) (-5 *5 (-383 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *4 (-383 (-523))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-2417 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4))))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) (-4 *5 (-13 (-27) (-1108) (-406 *4))))) (-3717 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-271 *3)) (-5 *5 (-383 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-383 (-523))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-3717 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4))))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) (-4 *5 (-13 (-27) (-1108) (-406 *4))))) (-2028 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 *5) (-585 *5))) (-5 *5 (-523)) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-4 *5 (-13 (-427) (-786) (-964 *4) (-585 *4))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-2028 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4))))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) (-4 *5 (-13 (-27) (-1108) (-406 *4))))) (-2015 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-271 *3)) (-5 *5 (-710)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-2015 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4))))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) (-4 *5 (-13 (-27) (-1108) (-406 *4)))))) -(-10 -7 (-15 -2015 ((-51) (-1087))) (-15 -2015 ((-51) |#2|)) (-15 -2015 ((-51) |#2| (-710))) (-15 -2015 ((-51) |#2| (-271 |#2|))) (-15 -2015 ((-51) |#2| (-271 |#2|) (-710))) (-15 -2028 ((-51) (-1087))) (-15 -2028 ((-51) |#2|)) (-15 -2028 ((-51) |#2| (-523))) (-15 -2028 ((-51) |#2| (-271 |#2|))) (-15 -2028 ((-51) |#2| (-271 |#2|) (-523))) (-15 -3717 ((-51) (-1087))) (-15 -3717 ((-51) |#2|)) (-15 -3717 ((-51) |#2| (-383 (-523)))) (-15 -3717 ((-51) |#2| (-271 |#2|))) (-15 -3717 ((-51) |#2| (-271 |#2|) (-383 (-523)))) (-15 -2417 ((-51) (-1087))) (-15 -2417 ((-51) |#2|)) (-15 -2417 ((-51) |#2| (-383 (-523)))) (-15 -2417 ((-51) |#2| (-271 |#2|))) (-15 -2417 ((-51) |#2| (-271 |#2|) (-383 (-523))))) -((-3924 (((-108) $ $) NIL)) (-1728 (((-589 $) $ (-1087)) NIL (|has| |#1| (-515))) (((-589 $) $) NIL (|has| |#1| (-515))) (((-589 $) (-1083 $) (-1087)) NIL (|has| |#1| (-515))) (((-589 $) (-1083 $)) NIL (|has| |#1| (-515))) (((-589 $) (-883 $)) NIL (|has| |#1| (-515)))) (-2488 (($ $ (-1087)) NIL (|has| |#1| (-515))) (($ $) NIL (|has| |#1| (-515))) (($ (-1083 $) (-1087)) NIL (|has| |#1| (-515))) (($ (-1083 $)) NIL (|has| |#1| (-515))) (($ (-883 $)) NIL (|has| |#1| (-515)))) (-2295 (((-108) $) 27 (-3262 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (-1957 (((-589 (-1087)) $) 345)) (-1786 (((-383 (-1083 $)) $ (-562 $)) NIL (|has| |#1| (-515)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3072 (((-589 (-562 $)) $) NIL)) (-1769 (($ $) 154 (|has| |#1| (-515)))) (-3780 (($ $) 130 (|has| |#1| (-515)))) (-1815 (($ $ (-1009 $)) 215 (|has| |#1| (-515))) (($ $ (-1087)) 211 (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) NIL (-3262 (|has| |#1| (-21)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (-2955 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) 361) (($ $ (-589 (-562 $)) (-589 $)) 404)) (-3156 (((-394 (-1083 $)) (-1083 $)) 289 (-12 (|has| |#1| (-427)) (|has| |#1| (-515))))) (-2291 (($ $) NIL (|has| |#1| (-515)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-515)))) (-1832 (($ $) NIL (|has| |#1| (-515)))) (-1387 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1744 (($ $) 150 (|has| |#1| (-515)))) (-3711 (($ $) 126 (|has| |#1| (-515)))) (-1764 (($ $ (-523)) 64 (|has| |#1| (-515)))) (-1793 (($ $) 158 (|has| |#1| (-515)))) (-3805 (($ $) 134 (|has| |#1| (-515)))) (-2518 (($) NIL (-3262 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))) CONST)) (-1694 (((-589 $) $ (-1087)) NIL (|has| |#1| (-515))) (((-589 $) $) NIL (|has| |#1| (-515))) (((-589 $) (-1083 $) (-1087)) NIL (|has| |#1| (-515))) (((-589 $) (-1083 $)) NIL (|has| |#1| (-515))) (((-589 $) (-883 $)) NIL (|has| |#1| (-515)))) (-3313 (($ $ (-1087)) NIL (|has| |#1| (-515))) (($ $) NIL (|has| |#1| (-515))) (($ (-1083 $) (-1087)) 117 (|has| |#1| (-515))) (($ (-1083 $)) NIL (|has| |#1| (-515))) (($ (-883 $)) NIL (|has| |#1| (-515)))) (-3517 (((-3 (-562 $) "failed") $) 17) (((-3 (-1087) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 318 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-883 |#1|)) "failed") $) NIL (|has| |#1| (-515))) (((-3 (-883 |#1|) "failed") $) NIL (|has| |#1| (-973))) (((-3 (-383 (-523)) "failed") $) 45 (-3262 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3474 (((-562 $) $) 11) (((-1087) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-883 |#1|)) $) NIL (|has| |#1| (-515))) (((-883 |#1|) $) NIL (|has| |#1| (-973))) (((-383 (-523)) $) 302 (-3262 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3796 (($ $ $) NIL (|has| |#1| (-515)))) (-2381 (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 110 (|has| |#1| (-973))) (((-629 |#1|) (-629 $)) 102 (|has| |#1| (-973))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (-2437 (($ $) 84 (|has| |#1| (-515)))) (-2121 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))))) (-3769 (($ $ $) NIL (|has| |#1| (-515)))) (-1656 (($ $ (-1009 $)) 219 (|has| |#1| (-515))) (($ $ (-1087)) 217 (|has| |#1| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-515)))) (-2657 (((-108) $) NIL (|has| |#1| (-515)))) (-2789 (($ $ $) 185 (|has| |#1| (-515)))) (-2820 (($) 120 (|has| |#1| (-515)))) (-3654 (($ $ $) 205 (|has| |#1| (-515)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 367 (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 373 (|has| |#1| (-817 (-355))))) (-2361 (($ $) NIL) (($ (-589 $)) NIL)) (-1444 (((-589 (-110)) $) NIL)) (-1403 (((-110) (-110)) 260)) (-2023 (((-108) $) 25 (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))))) (-1557 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2531 (($ $) 66 (|has| |#1| (-973)))) (-2785 (((-1039 |#1| (-562 $)) $) 79 (|has| |#1| (-973)))) (-3831 (((-108) $) 46 (|has| |#1| (-515)))) (-1420 (($ $ (-523)) NIL (|has| |#1| (-515)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-515)))) (-1483 (((-1083 $) (-562 $)) 261 (|has| $ (-973)))) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 $ $) (-562 $)) 400)) (-1363 (((-3 (-562 $) "failed") $) NIL)) (-2384 (($ $) 124 (|has| |#1| (-515)))) (-3825 (($ $) 230 (|has| |#1| (-515)))) (-3244 (($ (-589 $)) NIL (|has| |#1| (-515))) (($ $ $) NIL (|has| |#1| (-515)))) (-3779 (((-1070) $) NIL)) (-1771 (((-589 (-562 $)) $) 48)) (-2868 (($ (-110) $) NIL) (($ (-110) (-589 $)) 405)) (-3226 (((-3 (-589 $) "failed") $) NIL (|has| |#1| (-1028)))) (-1295 (((-3 (-2 (|:| |val| $) (|:| -2735 (-523))) "failed") $) NIL (|has| |#1| (-973)))) (-4006 (((-3 (-589 $) "failed") $) 408 (|has| |#1| (-25)))) (-2492 (((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 $))) "failed") $) 412 (|has| |#1| (-25)))) (-2630 (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $) NIL (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-110)) NIL (|has| |#1| (-973))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-1087)) NIL (|has| |#1| (-973)))) (-3259 (((-108) $ (-110)) NIL) (((-108) $ (-1087)) 52)) (-3738 (($ $) NIL (-3262 (|has| |#1| (-448)) (|has| |#1| (-515))))) (-1373 (($ $ (-1087)) 234 (|has| |#1| (-515))) (($ $ (-1009 $)) 236 (|has| |#1| (-515)))) (-2510 (((-710) $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) 43)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 282 (|has| |#1| (-515)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-515))) (($ $ $) NIL (|has| |#1| (-515)))) (-2585 (((-108) $ $) NIL) (((-108) $ (-1087)) NIL)) (-2988 (($ $ (-1087)) 209 (|has| |#1| (-515))) (($ $) 207 (|has| |#1| (-515)))) (-3217 (($ $) 201 (|has| |#1| (-515)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 287 (-12 (|has| |#1| (-427)) (|has| |#1| (-515))))) (-1820 (((-394 $) $) NIL (|has| |#1| (-515)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-515))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-515)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-515)))) (-1811 (($ $) 122 (|has| |#1| (-515)))) (-4104 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2679 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) 399) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) 355) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1087)) NIL (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-564 (-499)))) (($ $) NIL (|has| |#1| (-564 (-499)))) (($ $ (-110) $ (-1087)) 343 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-110)) (-589 $) (-1087)) 342 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $))) NIL (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $)))) NIL (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ (-589 $))) NIL (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ $)) NIL (|has| |#1| (-973)))) (-1972 (((-710) $) NIL (|has| |#1| (-515)))) (-3084 (($ $) 222 (|has| |#1| (-515)))) (-3223 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-3957 (($ $) NIL) (($ $ $) NIL)) (-3694 (($ $) 232 (|has| |#1| (-515)))) (-2710 (($ $) 183 (|has| |#1| (-515)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-973))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-973))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-973))) (($ $ (-1087)) NIL (|has| |#1| (-973)))) (-3414 (($ $) 67 (|has| |#1| (-515)))) (-2797 (((-1039 |#1| (-562 $)) $) 81 (|has| |#1| (-515)))) (-3727 (($ $) 300 (|has| $ (-973)))) (-1805 (($ $) 160 (|has| |#1| (-515)))) (-3816 (($ $) 136 (|has| |#1| (-515)))) (-1782 (($ $) 156 (|has| |#1| (-515)))) (-3793 (($ $) 132 (|has| |#1| (-515)))) (-1757 (($ $) 152 (|has| |#1| (-515)))) (-3767 (($ $) 128 (|has| |#1| (-515)))) (-3663 (((-823 (-523)) $) NIL (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| |#1| (-564 (-823 (-355))))) (($ (-394 $)) NIL (|has| |#1| (-515))) (((-499) $) 340 (|has| |#1| (-564 (-499))))) (-3208 (($ $ $) NIL (|has| |#1| (-448)))) (-1714 (($ $ $) NIL (|has| |#1| (-448)))) (-1458 (((-794) $) 398) (($ (-562 $)) 389) (($ (-1087)) 357) (($ |#1|) 319) (($ $) NIL (|has| |#1| (-515))) (($ (-47)) 294 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) (($ (-1039 |#1| (-562 $))) 83 (|has| |#1| (-973))) (($ (-383 |#1|)) NIL (|has| |#1| (-515))) (($ (-883 (-383 |#1|))) NIL (|has| |#1| (-515))) (($ (-383 (-883 (-383 |#1|)))) NIL (|has| |#1| (-515))) (($ (-383 (-883 |#1|))) NIL (|has| |#1| (-515))) (($ (-883 |#1|)) NIL (|has| |#1| (-973))) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-515)) (|has| |#1| (-964 (-383 (-523)))))) (($ (-523)) 34 (-3262 (|has| |#1| (-964 (-523))) (|has| |#1| (-973))))) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL (|has| |#1| (-973)))) (-3822 (($ $) NIL) (($ (-589 $)) NIL)) (-2574 (($ $ $) 203 (|has| |#1| (-515)))) (-2322 (($ $ $) 189 (|has| |#1| (-515)))) (-4102 (($ $ $) 193 (|has| |#1| (-515)))) (-3254 (($ $ $) 187 (|has| |#1| (-515)))) (-1325 (($ $ $) 191 (|has| |#1| (-515)))) (-1950 (((-108) (-110)) 9)) (-1839 (($ $) 166 (|has| |#1| (-515)))) (-3847 (($ $) 142 (|has| |#1| (-515)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) 162 (|has| |#1| (-515)))) (-3828 (($ $) 138 (|has| |#1| (-515)))) (-1865 (($ $) 170 (|has| |#1| (-515)))) (-1719 (($ $) 146 (|has| |#1| (-515)))) (-2523 (($ (-1087) $) NIL) (($ (-1087) $ $) NIL) (($ (-1087) $ $ $) NIL) (($ (-1087) $ $ $ $) NIL) (($ (-1087) (-589 $)) NIL)) (-3728 (($ $) 197 (|has| |#1| (-515)))) (-2320 (($ $) 195 (|has| |#1| (-515)))) (-2914 (($ $) 172 (|has| |#1| (-515)))) (-1731 (($ $) 148 (|has| |#1| (-515)))) (-1852 (($ $) 168 (|has| |#1| (-515)))) (-3859 (($ $) 144 (|has| |#1| (-515)))) (-1830 (($ $) 164 (|has| |#1| (-515)))) (-3838 (($ $) 140 (|has| |#1| (-515)))) (-2619 (($ $) 175 (|has| |#1| (-515)))) (-2364 (($ $ (-523)) NIL (-3262 (|has| |#1| (-448)) (|has| |#1| (-515)))) (($ $ (-710)) NIL (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028)))) (($ $ (-852)) NIL (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))))) (-2756 (($) 20 (-3262 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) CONST)) (-3334 (($ $) 226 (|has| |#1| (-515)))) (-2767 (($) 22 (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))) CONST)) (-2033 (($ $) 177 (|has| |#1| (-515))) (($ $ $) 179 (|has| |#1| (-515)))) (-2440 (($ $) 224 (|has| |#1| (-515)))) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-973))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-973))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-973))) (($ $ (-1087)) NIL (|has| |#1| (-973)))) (-1527 (($ $) 228 (|has| |#1| (-515)))) (-3599 (($ $ $) 181 (|has| |#1| (-515)))) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 76)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 75)) (-4098 (($ (-1039 |#1| (-562 $)) (-1039 |#1| (-562 $))) 93 (|has| |#1| (-515))) (($ $ $) 42 (-3262 (|has| |#1| (-448)) (|has| |#1| (-515))))) (-4087 (($ $ $) 40 (-3262 (|has| |#1| (-21)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (($ $) 29 (-3262 (|has| |#1| (-21)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (-4075 (($ $ $) 38 (-3262 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (** (($ $ $) 61 (|has| |#1| (-515))) (($ $ (-383 (-523))) 297 (|has| |#1| (-515))) (($ $ (-523)) 71 (-3262 (|has| |#1| (-448)) (|has| |#1| (-515)))) (($ $ (-710)) 68 (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028)))) (($ $ (-852)) 73 (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))))) (* (($ (-383 (-523)) $) NIL (|has| |#1| (-515))) (($ $ (-383 (-523))) NIL (|has| |#1| (-515))) (($ |#1| $) NIL (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))) (($ $ $) 36 (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028)))) (($ (-523) $) 32 (-3262 (|has| |#1| (-21)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (($ (-710) $) NIL (-3262 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (($ (-852) $) NIL (-3262 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))))) -(((-292 |#1|) (-13 (-406 |#1|) (-10 -8 (IF (|has| |#1| (-515)) (PROGN (-6 (-29 |#1|)) (-6 (-1108)) (-6 (-147)) (-6 (-575)) (-6 (-1051)) (-15 -2437 ($ $)) (-15 -3831 ((-108) $)) (-15 -1764 ($ $ (-523))) (IF (|has| |#1| (-427)) (PROGN (-15 -3967 ((-394 (-1083 $)) (-1083 $))) (-15 -3156 ((-394 (-1083 $)) (-1083 $)))) |%noBranch|) (IF (|has| |#1| (-964 (-523))) (-6 (-964 (-47))) |%noBranch|)) |%noBranch|))) (-786)) (T -292)) -((-2437 (*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-515)) (-4 *2 (-786)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-292 *3)) (-4 *3 (-515)) (-4 *3 (-786)))) (-1764 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-292 *3)) (-4 *3 (-515)) (-4 *3 (-786)))) (-3967 (*1 *2 *3) (-12 (-5 *2 (-394 (-1083 *1))) (-5 *1 (-292 *4)) (-5 *3 (-1083 *1)) (-4 *4 (-427)) (-4 *4 (-515)) (-4 *4 (-786)))) (-3156 (*1 *2 *3) (-12 (-5 *2 (-394 (-1083 *1))) (-5 *1 (-292 *4)) (-5 *3 (-1083 *1)) (-4 *4 (-427)) (-4 *4 (-515)) (-4 *4 (-786))))) -(-13 (-406 |#1|) (-10 -8 (IF (|has| |#1| (-515)) (PROGN (-6 (-29 |#1|)) (-6 (-1108)) (-6 (-147)) (-6 (-575)) (-6 (-1051)) (-15 -2437 ($ $)) (-15 -3831 ((-108) $)) (-15 -1764 ($ $ (-523))) (IF (|has| |#1| (-427)) (PROGN (-15 -3967 ((-394 (-1083 $)) (-1083 $))) (-15 -3156 ((-394 (-1083 $)) (-1083 $)))) |%noBranch|) (IF (|has| |#1| (-964 (-523))) (-6 (-964 (-47))) |%noBranch|)) |%noBranch|))) -((-1586 (((-51) |#2| (-110) (-271 |#2|) (-589 |#2|)) 86) (((-51) |#2| (-110) (-271 |#2|) (-271 |#2|)) 82) (((-51) |#2| (-110) (-271 |#2|) |#2|) 84) (((-51) (-271 |#2|) (-110) (-271 |#2|) |#2|) 85) (((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|))) 78) (((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 |#2|)) 80) (((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 |#2|)) 81) (((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|))) 79) (((-51) (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|)) 87) (((-51) (-271 |#2|) (-110) (-271 |#2|) (-271 |#2|)) 83))) -(((-293 |#1| |#2|) (-10 -7 (-15 -1586 ((-51) (-271 |#2|) (-110) (-271 |#2|) (-271 |#2|))) (-15 -1586 ((-51) (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|))) (-15 -1586 ((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|)))) (-15 -1586 ((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 |#2|))) (-15 -1586 ((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 |#2|))) (-15 -1586 ((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|)))) (-15 -1586 ((-51) (-271 |#2|) (-110) (-271 |#2|) |#2|)) (-15 -1586 ((-51) |#2| (-110) (-271 |#2|) |#2|)) (-15 -1586 ((-51) |#2| (-110) (-271 |#2|) (-271 |#2|))) (-15 -1586 ((-51) |#2| (-110) (-271 |#2|) (-589 |#2|)))) (-13 (-786) (-515) (-564 (-499))) (-406 |#1|)) (T -293)) -((-1586 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-5 *6 (-589 *3)) (-4 *3 (-406 *7)) (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *7 *3)))) (-1586 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-4 *3 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-1586 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-4 *3 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-1586 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-271 *5)) (-5 *4 (-110)) (-4 *5 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *5)))) (-1586 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-110))) (-5 *6 (-589 (-271 *8))) (-4 *8 (-406 *7)) (-5 *5 (-271 *8)) (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *7 *8)))) (-1586 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-589 *7)) (-5 *4 (-589 (-110))) (-5 *5 (-271 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) (-1586 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-589 (-271 *8))) (-5 *4 (-589 (-110))) (-5 *5 (-271 *8)) (-5 *6 (-589 *8)) (-4 *8 (-406 *7)) (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *7 *8)))) (-1586 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-589 (-271 *7))) (-5 *4 (-589 (-110))) (-5 *5 (-271 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) (-1586 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-271 *7)) (-5 *4 (-110)) (-5 *5 (-589 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) (-1586 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-271 *6)) (-5 *4 (-110)) (-4 *6 (-406 *5)) (-4 *5 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *6))))) -(-10 -7 (-15 -1586 ((-51) (-271 |#2|) (-110) (-271 |#2|) (-271 |#2|))) (-15 -1586 ((-51) (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|))) (-15 -1586 ((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|)))) (-15 -1586 ((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 |#2|))) (-15 -1586 ((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 |#2|))) (-15 -1586 ((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|)))) (-15 -1586 ((-51) (-271 |#2|) (-110) (-271 |#2|) |#2|)) (-15 -1586 ((-51) |#2| (-110) (-271 |#2|) |#2|)) (-15 -1586 ((-51) |#2| (-110) (-271 |#2|) (-271 |#2|))) (-15 -1586 ((-51) |#2| (-110) (-271 |#2|) (-589 |#2|)))) -((-3939 (((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523) (-1070)) 46) (((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523)) 47) (((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523) (-1070)) 43) (((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523)) 44)) (-4167 (((-1 (-203) (-203)) (-203)) 45))) -(((-294) (-10 -7 (-15 -4167 ((-1 (-203) (-203)) (-203))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523) (-1070))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523) (-1070))))) (T -294)) -((-3939 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-203)) (-5 *7 (-523)) (-5 *8 (-1070)) (-5 *2 (-1118 (-857))) (-5 *1 (-294)))) (-3939 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-203)) (-5 *7 (-523)) (-5 *2 (-1118 (-857))) (-5 *1 (-294)))) (-3939 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-523)) (-5 *7 (-1070)) (-5 *2 (-1118 (-857))) (-5 *1 (-294)))) (-3939 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-523)) (-5 *2 (-1118 (-857))) (-5 *1 (-294)))) (-4167 (*1 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-294)) (-5 *3 (-203))))) -(-10 -7 (-15 -4167 ((-1 (-203) (-203)) (-203))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523) (-1070))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523) (-1070)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 24)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) NIL) (($ $ (-383 (-523)) (-383 (-523))) NIL)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) 19)) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) 31)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) NIL) (((-383 (-523)) $ (-383 (-523))) 15)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) NIL) (($ $ (-383 (-523))) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-383 (-523))) NIL) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3417 (($ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108)))))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) NIL)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2885 (((-383 (-523)) $) 16)) (-1708 (($ (-1153 |#1| |#2| |#3|)) 11)) (-2735 (((-1153 |#1| |#2| |#3|) $) 12)) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) NIL) (($ $ $) NIL (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-2299 (((-383 (-523)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 10)) (-1458 (((-794) $) 37) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) 29)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) NIL)) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 26)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 32)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-295 |#1| |#2| |#3|) (-13 (-1149 |#1|) (-731) (-10 -8 (-15 -1708 ($ (-1153 |#1| |#2| |#3|))) (-15 -2735 ((-1153 |#1| |#2| |#3|) $)) (-15 -2885 ((-383 (-523)) $)))) (-13 (-339) (-786)) (-1087) |#1|) (T -295)) -((-1708 (*1 *1 *2) (-12 (-5 *2 (-1153 *3 *4 *5)) (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-295 *3 *4 *5)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-1153 *3 *4 *5)) (-5 *1 (-295 *3 *4 *5)) (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-295 *3 *4 *5)) (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3)))) -(-13 (-1149 |#1|) (-731) (-10 -8 (-15 -1708 ($ (-1153 |#1| |#2| |#3|))) (-15 -2735 ((-1153 |#1| |#2| |#3|) $)) (-15 -2885 ((-383 (-523)) $)))) -((-1420 (((-2 (|:| -2735 (-710)) (|:| -2935 |#1|) (|:| |radicand| (-589 |#1|))) (-394 |#1|) (-710)) 24)) (-2384 (((-589 (-2 (|:| -2935 (-710)) (|:| |logand| |#1|))) (-394 |#1|)) 28))) -(((-296 |#1|) (-10 -7 (-15 -1420 ((-2 (|:| -2735 (-710)) (|:| -2935 |#1|) (|:| |radicand| (-589 |#1|))) (-394 |#1|) (-710))) (-15 -2384 ((-589 (-2 (|:| -2935 (-710)) (|:| |logand| |#1|))) (-394 |#1|)))) (-515)) (T -296)) -((-2384 (*1 *2 *3) (-12 (-5 *3 (-394 *4)) (-4 *4 (-515)) (-5 *2 (-589 (-2 (|:| -2935 (-710)) (|:| |logand| *4)))) (-5 *1 (-296 *4)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-394 *5)) (-4 *5 (-515)) (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *5) (|:| |radicand| (-589 *5)))) (-5 *1 (-296 *5)) (-5 *4 (-710))))) -(-10 -7 (-15 -1420 ((-2 (|:| -2735 (-710)) (|:| -2935 |#1|) (|:| |radicand| (-589 |#1|))) (-394 |#1|) (-710))) (-15 -2384 ((-589 (-2 (|:| -2935 (-710)) (|:| |logand| |#1|))) (-394 |#1|)))) -((-1957 (((-589 |#2|) (-1083 |#4|)) 43)) (-2144 ((|#3| (-523)) 46)) (-3300 (((-1083 |#4|) (-1083 |#3|)) 30)) (-4128 (((-1083 |#4|) (-1083 |#4|) (-523)) 56)) (-1221 (((-1083 |#3|) (-1083 |#4|)) 21)) (-2299 (((-589 (-710)) (-1083 |#4|) (-589 |#2|)) 40)) (-1604 (((-1083 |#3|) (-1083 |#4|) (-589 |#2|) (-589 |#3|)) 35))) -(((-297 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1604 ((-1083 |#3|) (-1083 |#4|) (-589 |#2|) (-589 |#3|))) (-15 -2299 ((-589 (-710)) (-1083 |#4|) (-589 |#2|))) (-15 -1957 ((-589 |#2|) (-1083 |#4|))) (-15 -1221 ((-1083 |#3|) (-1083 |#4|))) (-15 -3300 ((-1083 |#4|) (-1083 |#3|))) (-15 -4128 ((-1083 |#4|) (-1083 |#4|) (-523))) (-15 -2144 (|#3| (-523)))) (-732) (-786) (-973) (-880 |#3| |#1| |#2|)) (T -297)) -((-2144 (*1 *2 *3) (-12 (-5 *3 (-523)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-973)) (-5 *1 (-297 *4 *5 *2 *6)) (-4 *6 (-880 *2 *4 *5)))) (-4128 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *7)) (-5 *3 (-523)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-5 *1 (-297 *4 *5 *6 *7)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-1083 *6)) (-4 *6 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-1083 *7)) (-5 *1 (-297 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-1221 (*1 *2 *3) (-12 (-5 *3 (-1083 *7)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-5 *2 (-1083 *6)) (-5 *1 (-297 *4 *5 *6 *7)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-1083 *7)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-5 *2 (-589 *5)) (-5 *1 (-297 *4 *5 *6 *7)))) (-2299 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *8)) (-5 *4 (-589 *6)) (-4 *6 (-786)) (-4 *8 (-880 *7 *5 *6)) (-4 *5 (-732)) (-4 *7 (-973)) (-5 *2 (-589 (-710))) (-5 *1 (-297 *5 *6 *7 *8)))) (-1604 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-5 *5 (-589 *8)) (-4 *7 (-786)) (-4 *8 (-973)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-5 *2 (-1083 *8)) (-5 *1 (-297 *6 *7 *8 *9))))) -(-10 -7 (-15 -1604 ((-1083 |#3|) (-1083 |#4|) (-589 |#2|) (-589 |#3|))) (-15 -2299 ((-589 (-710)) (-1083 |#4|) (-589 |#2|))) (-15 -1957 ((-589 |#2|) (-1083 |#4|))) (-15 -1221 ((-1083 |#3|) (-1083 |#4|))) (-15 -3300 ((-1083 |#4|) (-1083 |#3|))) (-15 -4128 ((-1083 |#4|) (-1083 |#4|) (-523))) (-15 -2144 (|#3| (-523)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 14)) (-2133 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-523)))) $) 18)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1703 (((-710) $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-2378 ((|#1| $ (-523)) NIL)) (-4126 (((-523) $ (-523)) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-4093 (($ (-1 |#1| |#1|) $) NIL)) (-1620 (($ (-1 (-523) (-523)) $) 10)) (-3779 (((-1070) $) NIL)) (-3887 (($ $ $) NIL (|has| (-523) (-731)))) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL) (($ |#1|) NIL)) (-2365 (((-523) |#1| $) NIL)) (-2756 (($) 15 T CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) 21 (|has| |#1| (-786)))) (-4087 (($ $) 11) (($ $ $) 20)) (-4075 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ (-523)) NIL) (($ (-523) |#1|) 19))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 62)) (-2046 (((-1155 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-284)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-840)))) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-840)))) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-759)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-1155 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-964 (-523)))) (((-3 (-1154 |#2| |#3| |#4|) "failed") $) 24)) (-3508 (((-1155 |#1| |#2| |#3| |#4|) $) NIL) (((-1087) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-964 (-523)))) (((-523) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-964 (-523)))) (((-1154 |#2| |#3| |#4|) $) NIL)) (-4059 (($ $ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-1155 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1169 (-1155 |#1| |#2| |#3| |#4|)))) (-629 $) (-1169 $)) NIL) (((-629 (-1155 |#1| |#2| |#3| |#4|)) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-508)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-3712 (((-108) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-759)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-817 (-355))))) (-2769 (((-108) $) NIL)) (-1296 (($ $) NIL)) (-3316 (((-1155 |#1| |#2| |#3| |#4|) $) 21)) (-2738 (((-3 $ "failed") $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-1063)))) (-2057 (((-108) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-759)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3239 (($ $ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-786)))) (-3158 (($ $ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-786)))) (-1345 (($ (-1 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)) $) NIL)) (-3603 (((-3 (-779 |#2|) "failed") $) 76)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-1063)) CONST)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4110 (($ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-284)))) (-2733 (((-1155 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-508)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-840)))) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2812 (($ $ (-589 (-1155 |#1| |#2| |#3| |#4|)) (-589 (-1155 |#1| |#2| |#3| |#4|))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-286 (-1155 |#1| |#2| |#3| |#4|)))) (($ $ (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-286 (-1155 |#1| |#2| |#3| |#4|)))) (($ $ (-271 (-1155 |#1| |#2| |#3| |#4|))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-286 (-1155 |#1| |#2| |#3| |#4|)))) (($ $ (-589 (-271 (-1155 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-286 (-1155 |#1| |#2| |#3| |#4|)))) (($ $ (-589 (-1087)) (-589 (-1155 |#1| |#2| |#3| |#4|))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-484 (-1087) (-1155 |#1| |#2| |#3| |#4|)))) (($ $ (-1087) (-1155 |#1| |#2| |#3| |#4|)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-484 (-1087) (-1155 |#1| |#2| |#3| |#4|))))) (-3413 (((-710) $) NIL)) (-1937 (($ $ (-1155 |#1| |#2| |#3| |#4|)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-263 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|))))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3984 (($ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-211))) (($ $ (-710)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-211))) (($ $ (-1087)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-1 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)) (-710)) NIL) (($ $ (-1 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|))) NIL)) (-2793 (($ $) NIL)) (-3329 (((-1155 |#1| |#2| |#3| |#4|) $) 17)) (-1400 (((-823 (-523)) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-564 (-499)))) (((-355) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-949))) (((-203) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-949)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-1155 |#1| |#2| |#3| |#4|) (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-1155 |#1| |#2| |#3| |#4|)) 28) (($ (-1087)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-964 (-1087)))) (($ (-1154 |#2| |#3| |#4|)) 36)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| (-1155 |#1| |#2| |#3| |#4|) (-840))) (|has| (-1155 |#1| |#2| |#3| |#4|) (-134))))) (-3272 (((-710)) NIL)) (-3809 (((-1155 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-508)))) (-2801 (((-108) $ $) NIL)) (-2695 (($ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-759)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 41 T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-211))) (($ $ (-710)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-211))) (($ $ (-1087)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-1 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)) (-710)) NIL) (($ $ (-1 (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|))) NIL)) (-4006 (((-108) $ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-786)))) (-3980 (((-108) $ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-786)))) (-3966 (((-108) $ $) NIL (|has| (-1155 |#1| |#2| |#3| |#4|) (-786)))) (-4074 (($ $ $) 33) (($ (-1155 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2| |#3| |#4|)) 30)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-1155 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1155 |#1| |#2| |#3| |#4|)) NIL))) +(((-289 |#1| |#2| |#3| |#4|) (-13 (-921 (-1155 |#1| |#2| |#3| |#4|)) (-964 (-1154 |#2| |#3| |#4|)) (-10 -8 (-15 -3603 ((-3 (-779 |#2|) "failed") $)) (-15 -1691 ($ (-1154 |#2| |#3| |#4|))))) (-13 (-786) (-964 (-523)) (-585 (-523)) (-427)) (-13 (-27) (-1109) (-406 |#1|)) (-1087) |#2|) (T -289)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1154 *4 *5 *6)) (-4 *4 (-13 (-27) (-1109) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4) (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *1 (-289 *3 *4 *5 *6)))) (-3603 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *2 (-779 *4)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1109) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4)))) +(-13 (-921 (-1155 |#1| |#2| |#3| |#4|)) (-964 (-1154 |#2| |#3| |#4|)) (-10 -8 (-15 -3603 ((-3 (-779 |#2|) "failed") $)) (-15 -1691 ($ (-1154 |#2| |#3| |#4|))))) +((-1345 (((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)) 13))) +(((-290 |#1| |#2|) (-10 -7 (-15 -1345 ((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)))) (-786) (-786)) (T -290)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-292 *5)) (-4 *5 (-786)) (-4 *6 (-786)) (-5 *2 (-292 *6)) (-5 *1 (-290 *5 *6))))) +(-10 -7 (-15 -1345 ((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)))) +((-1355 (((-51) |#2| (-271 |#2|) (-710)) 33) (((-51) |#2| (-271 |#2|)) 24) (((-51) |#2| (-710)) 28) (((-51) |#2|) 25) (((-51) (-1087)) 21)) (-3199 (((-51) |#2| (-271 |#2|) (-383 (-523))) 51) (((-51) |#2| (-271 |#2|)) 48) (((-51) |#2| (-383 (-523))) 50) (((-51) |#2|) 49) (((-51) (-1087)) 47)) (-1380 (((-51) |#2| (-271 |#2|) (-383 (-523))) 46) (((-51) |#2| (-271 |#2|)) 43) (((-51) |#2| (-383 (-523))) 45) (((-51) |#2|) 44) (((-51) (-1087)) 42)) (-1369 (((-51) |#2| (-271 |#2|) (-523)) 39) (((-51) |#2| (-271 |#2|)) 35) (((-51) |#2| (-523)) 38) (((-51) |#2|) 36) (((-51) (-1087)) 34))) +(((-291 |#1| |#2|) (-10 -7 (-15 -1355 ((-51) (-1087))) (-15 -1355 ((-51) |#2|)) (-15 -1355 ((-51) |#2| (-710))) (-15 -1355 ((-51) |#2| (-271 |#2|))) (-15 -1355 ((-51) |#2| (-271 |#2|) (-710))) (-15 -1369 ((-51) (-1087))) (-15 -1369 ((-51) |#2|)) (-15 -1369 ((-51) |#2| (-523))) (-15 -1369 ((-51) |#2| (-271 |#2|))) (-15 -1369 ((-51) |#2| (-271 |#2|) (-523))) (-15 -1380 ((-51) (-1087))) (-15 -1380 ((-51) |#2|)) (-15 -1380 ((-51) |#2| (-383 (-523)))) (-15 -1380 ((-51) |#2| (-271 |#2|))) (-15 -1380 ((-51) |#2| (-271 |#2|) (-383 (-523)))) (-15 -3199 ((-51) (-1087))) (-15 -3199 ((-51) |#2|)) (-15 -3199 ((-51) |#2| (-383 (-523)))) (-15 -3199 ((-51) |#2| (-271 |#2|))) (-15 -3199 ((-51) |#2| (-271 |#2|) (-383 (-523))))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1109) (-406 |#1|))) (T -291)) +((-3199 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-271 *3)) (-5 *5 (-383 (-523))) (-4 *3 (-13 (-27) (-1109) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *4 (-383 (-523))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))))) (-3199 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *4))))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) (-4 *5 (-13 (-27) (-1109) (-406 *4))))) (-1380 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-271 *3)) (-5 *5 (-383 (-523))) (-4 *3 (-13 (-27) (-1109) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-1380 (*1 *2 *3 *4) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) (-1380 (*1 *2 *3 *4) (-12 (-5 *4 (-383 (-523))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))))) (-1380 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *4))))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) (-4 *5 (-13 (-27) (-1109) (-406 *4))))) (-1369 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 *5) (-585 *5))) (-5 *5 (-523)) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-1369 (*1 *2 *3 *4) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) (-1369 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-4 *5 (-13 (-427) (-786) (-964 *4) (-585 *4))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))))) (-1369 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *4))))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) (-4 *5 (-13 (-27) (-1109) (-406 *4))))) (-1355 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-271 *3)) (-5 *5 (-710)) (-4 *3 (-13 (-27) (-1109) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-1355 (*1 *2 *3 *4) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) (-1355 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))))) (-1355 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *4))))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) (-4 *5 (-13 (-27) (-1109) (-406 *4)))))) +(-10 -7 (-15 -1355 ((-51) (-1087))) (-15 -1355 ((-51) |#2|)) (-15 -1355 ((-51) |#2| (-710))) (-15 -1355 ((-51) |#2| (-271 |#2|))) (-15 -1355 ((-51) |#2| (-271 |#2|) (-710))) (-15 -1369 ((-51) (-1087))) (-15 -1369 ((-51) |#2|)) (-15 -1369 ((-51) |#2| (-523))) (-15 -1369 ((-51) |#2| (-271 |#2|))) (-15 -1369 ((-51) |#2| (-271 |#2|) (-523))) (-15 -1380 ((-51) (-1087))) (-15 -1380 ((-51) |#2|)) (-15 -1380 ((-51) |#2| (-383 (-523)))) (-15 -1380 ((-51) |#2| (-271 |#2|))) (-15 -1380 ((-51) |#2| (-271 |#2|) (-383 (-523)))) (-15 -3199 ((-51) (-1087))) (-15 -3199 ((-51) |#2|)) (-15 -3199 ((-51) |#2| (-383 (-523)))) (-15 -3199 ((-51) |#2| (-271 |#2|))) (-15 -3199 ((-51) |#2| (-271 |#2|) (-383 (-523))))) +((-1680 (((-108) $ $) NIL)) (-3012 (((-589 $) $ (-1087)) NIL (|has| |#1| (-515))) (((-589 $) $) NIL (|has| |#1| (-515))) (((-589 $) (-1083 $) (-1087)) NIL (|has| |#1| (-515))) (((-589 $) (-1083 $)) NIL (|has| |#1| (-515))) (((-589 $) (-883 $)) NIL (|has| |#1| (-515)))) (-3879 (($ $ (-1087)) NIL (|has| |#1| (-515))) (($ $) NIL (|has| |#1| (-515))) (($ (-1083 $) (-1087)) NIL (|has| |#1| (-515))) (($ (-1083 $)) NIL (|has| |#1| (-515))) (($ (-883 $)) NIL (|has| |#1| (-515)))) (-2603 (((-108) $) 27 (-3172 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (-1292 (((-589 (-1087)) $) 345)) (-2389 (((-383 (-1083 $)) $ (-562 $)) NIL (|has| |#1| (-515)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-3643 (((-589 (-562 $)) $) NIL)) (-1462 (($ $) 154 (|has| |#1| (-515)))) (-1285 (($ $) 130 (|has| |#1| (-515)))) (-1428 (($ $ (-1009 $)) 215 (|has| |#1| (-515))) (($ $ (-1087)) 211 (|has| |#1| (-515)))) (-3405 (((-3 $ "failed") $ $) NIL (-3172 (|has| |#1| (-21)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (-1349 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) 361) (($ $ (-589 (-562 $)) (-589 $)) 404)) (-4130 (((-394 (-1083 $)) (-1083 $)) 288 (-12 (|has| |#1| (-427)) (|has| |#1| (-515))))) (-3718 (($ $) NIL (|has| |#1| (-515)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-515)))) (-2437 (($ $) NIL (|has| |#1| (-515)))) (-2787 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1441 (($ $) 150 (|has| |#1| (-515)))) (-1260 (($ $) 126 (|has| |#1| (-515)))) (-2135 (($ $ (-523)) 64 (|has| |#1| (-515)))) (-1481 (($ $) 158 (|has| |#1| (-515)))) (-1309 (($ $) 134 (|has| |#1| (-515)))) (-4189 (($) NIL (-3172 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))) CONST)) (-2734 (((-589 $) $ (-1087)) NIL (|has| |#1| (-515))) (((-589 $) $) NIL (|has| |#1| (-515))) (((-589 $) (-1083 $) (-1087)) NIL (|has| |#1| (-515))) (((-589 $) (-1083 $)) NIL (|has| |#1| (-515))) (((-589 $) (-883 $)) NIL (|has| |#1| (-515)))) (-1264 (($ $ (-1087)) NIL (|has| |#1| (-515))) (($ $) NIL (|has| |#1| (-515))) (($ (-1083 $) (-1087)) 117 (|has| |#1| (-515))) (($ (-1083 $)) NIL (|has| |#1| (-515))) (($ (-883 $)) NIL (|has| |#1| (-515)))) (-1220 (((-3 (-562 $) "failed") $) 17) (((-3 (-1087) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 317 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-883 |#1|)) "failed") $) NIL (|has| |#1| (-515))) (((-3 (-883 |#1|) "failed") $) NIL (|has| |#1| (-973))) (((-3 (-383 (-523)) "failed") $) 45 (-3172 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3508 (((-562 $) $) 11) (((-1087) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-883 |#1|)) $) NIL (|has| |#1| (-515))) (((-883 |#1|) $) NIL (|has| |#1| (-973))) (((-383 (-523)) $) 301 (-3172 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-4059 (($ $ $) NIL (|has| |#1| (-515)))) (-2243 (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 110 (|has| |#1| (-973))) (((-629 |#1|) (-629 $)) 102 (|has| |#1| (-973))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (-2116 (($ $) 84 (|has| |#1| (-515)))) (-1444 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))))) (-4032 (($ $ $) NIL (|has| |#1| (-515)))) (-3584 (($ $ (-1009 $)) 219 (|has| |#1| (-515))) (($ $ (-1087)) 217 (|has| |#1| (-515)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-515)))) (-3049 (((-108) $) NIL (|has| |#1| (-515)))) (-1960 (($ $ $) 185 (|has| |#1| (-515)))) (-3352 (($) 120 (|has| |#1| (-515)))) (-3325 (($ $ $) 205 (|has| |#1| (-515)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 367 (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 373 (|has| |#1| (-817 (-355))))) (-2055 (($ $) NIL) (($ (-589 $)) NIL)) (-2196 (((-589 (-110)) $) NIL)) (-2947 (((-110) (-110)) 260)) (-2769 (((-108) $) 25 (-3172 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))))) (-3860 (((-108) $) NIL (|has| $ (-964 (-523))))) (-1296 (($ $) 66 (|has| |#1| (-973)))) (-3316 (((-1039 |#1| (-562 $)) $) 79 (|has| |#1| (-973)))) (-2449 (((-108) $) 46 (|has| |#1| (-515)))) (-1973 (($ $ (-523)) NIL (|has| |#1| (-515)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-515)))) (-1414 (((-1083 $) (-562 $)) 261 (|has| $ (-973)))) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-1345 (($ (-1 $ $) (-562 $)) 400)) (-2577 (((-3 (-562 $) "failed") $) NIL)) (-2313 (($ $) 124 (|has| |#1| (-515)))) (-1451 (($ $) 230 (|has| |#1| (-515)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-515))) (($ $ $) NIL (|has| |#1| (-515)))) (-2032 (((-1070) $) NIL)) (-2378 (((-589 (-562 $)) $) 48)) (-3396 (($ (-110) $) NIL) (($ (-110) (-589 $)) 405)) (-3538 (((-3 (-589 $) "failed") $) NIL (|has| |#1| (-1028)))) (-3064 (((-3 (-2 (|:| |val| $) (|:| -1475 (-523))) "failed") $) NIL (|has| |#1| (-973)))) (-3478 (((-3 (-589 $) "failed") $) 408 (|has| |#1| (-25)))) (-3925 (((-3 (-2 (|:| -3474 (-523)) (|:| |var| (-562 $))) "failed") $) 412 (|has| |#1| (-25)))) (-2790 (((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $) NIL (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $ (-110)) NIL (|has| |#1| (-973))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $ (-1087)) NIL (|has| |#1| (-973)))) (-3739 (((-108) $ (-110)) NIL) (((-108) $ (-1087)) 52)) (-1396 (($ $) NIL (-3172 (|has| |#1| (-448)) (|has| |#1| (-515))))) (-2663 (($ $ (-1087)) 234 (|has| |#1| (-515))) (($ $ (-1009 $)) 236 (|has| |#1| (-515)))) (-1933 (((-710) $) NIL)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) 43)) (-1419 ((|#1| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 281 (|has| |#1| (-515)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-515))) (($ $ $) NIL (|has| |#1| (-515)))) (-3536 (((-108) $ $) NIL) (((-108) $ (-1087)) NIL)) (-3109 (($ $ (-1087)) 209 (|has| |#1| (-515))) (($ $) 207 (|has| |#1| (-515)))) (-3459 (($ $) 201 (|has| |#1| (-515)))) (-1417 (((-394 (-1083 $)) (-1083 $)) 286 (-12 (|has| |#1| (-427)) (|has| |#1| (-515))))) (-2424 (((-394 $) $) NIL (|has| |#1| (-515)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-515))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-515)))) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-515)))) (-2922 (($ $) 122 (|has| |#1| (-515)))) (-3101 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2812 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) 399) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) 355) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1087)) NIL (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-564 (-499)))) (($ $) NIL (|has| |#1| (-564 (-499)))) (($ $ (-110) $ (-1087)) 343 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-110)) (-589 $) (-1087)) 342 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $))) NIL (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $)))) NIL (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ (-589 $))) NIL (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ $)) NIL (|has| |#1| (-973)))) (-3413 (((-710) $) NIL (|has| |#1| (-515)))) (-2533 (($ $) 222 (|has| |#1| (-515)))) (-1937 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-515)))) (-1303 (($ $) NIL) (($ $ $) NIL)) (-1247 (($ $) 232 (|has| |#1| (-515)))) (-2370 (($ $) 183 (|has| |#1| (-515)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-973))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-973))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-973))) (($ $ (-1087)) NIL (|has| |#1| (-973)))) (-2793 (($ $) 67 (|has| |#1| (-515)))) (-3329 (((-1039 |#1| (-562 $)) $) 81 (|has| |#1| (-515)))) (-2762 (($ $) 299 (|has| $ (-973)))) (-2306 (($ $) 160 (|has| |#1| (-515)))) (-1322 (($ $) 136 (|has| |#1| (-515)))) (-1471 (($ $) 156 (|has| |#1| (-515)))) (-1295 (($ $) 132 (|has| |#1| (-515)))) (-1453 (($ $) 152 (|has| |#1| (-515)))) (-1274 (($ $) 128 (|has| |#1| (-515)))) (-1400 (((-823 (-523)) $) NIL (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| |#1| (-564 (-823 (-355))))) (($ (-394 $)) NIL (|has| |#1| (-515))) (((-499) $) 340 (|has| |#1| (-564 (-499))))) (-3361 (($ $ $) NIL (|has| |#1| (-448)))) (-2892 (($ $ $) NIL (|has| |#1| (-448)))) (-1691 (((-794) $) 398) (($ (-562 $)) 389) (($ (-1087)) 357) (($ |#1|) 318) (($ $) NIL (|has| |#1| (-515))) (($ (-47)) 293 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) (($ (-1039 |#1| (-562 $))) 83 (|has| |#1| (-973))) (($ (-383 |#1|)) NIL (|has| |#1| (-515))) (($ (-883 (-383 |#1|))) NIL (|has| |#1| (-515))) (($ (-383 (-883 (-383 |#1|)))) NIL (|has| |#1| (-515))) (($ (-383 (-883 |#1|))) NIL (|has| |#1| (-515))) (($ (-883 |#1|)) NIL (|has| |#1| (-973))) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-515)) (|has| |#1| (-964 (-383 (-523)))))) (($ (-523)) 34 (-3172 (|has| |#1| (-964 (-523))) (|has| |#1| (-973))))) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL (|has| |#1| (-973)))) (-2850 (($ $) NIL) (($ (-589 $)) NIL)) (-3435 (($ $ $) 203 (|has| |#1| (-515)))) (-2842 (($ $ $) 189 (|has| |#1| (-515)))) (-3083 (($ $ $) 193 (|has| |#1| (-515)))) (-3789 (($ $ $) 187 (|has| |#1| (-515)))) (-3357 (($ $ $) 191 (|has| |#1| (-515)))) (-3198 (((-108) (-110)) 9)) (-2341 (($ $) 166 (|has| |#1| (-515)))) (-1401 (($ $) 142 (|has| |#1| (-515)))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2318 (($ $) 162 (|has| |#1| (-515)))) (-1334 (($ $) 138 (|has| |#1| (-515)))) (-2366 (($ $) 170 (|has| |#1| (-515)))) (-1421 (($ $) 146 (|has| |#1| (-515)))) (-2971 (($ (-1087) $) NIL) (($ (-1087) $ $) NIL) (($ (-1087) $ $ $) NIL) (($ (-1087) $ $ $ $) NIL) (($ (-1087) (-589 $)) NIL)) (-2771 (($ $) 197 (|has| |#1| (-515)))) (-2823 (($ $) 195 (|has| |#1| (-515)))) (-2102 (($ $) 172 (|has| |#1| (-515)))) (-1431 (($ $) 148 (|has| |#1| (-515)))) (-2353 (($ $) 168 (|has| |#1| (-515)))) (-1413 (($ $) 144 (|has| |#1| (-515)))) (-2330 (($ $) 164 (|has| |#1| (-515)))) (-1346 (($ $) 140 (|has| |#1| (-515)))) (-2695 (($ $) 175 (|has| |#1| (-515)))) (-2423 (($ $ (-523)) NIL (-3172 (|has| |#1| (-448)) (|has| |#1| (-515)))) (($ $ (-710)) NIL (-3172 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028)))) (($ $ (-852)) NIL (-3172 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))))) (-1879 (($) 20 (-3172 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) CONST)) (-3202 (($ $) 226 (|has| |#1| (-515)))) (-1891 (($) 22 (-3172 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))) CONST)) (-2846 (($ $) 177 (|has| |#1| (-515))) (($ $ $) 179 (|has| |#1| (-515)))) (-1638 (($ $) 224 (|has| |#1| (-515)))) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-973))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-973))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-973))) (($ $ (-1087)) NIL (|has| |#1| (-973)))) (-1819 (($ $) 228 (|has| |#1| (-515)))) (-4056 (($ $ $) 181 (|has| |#1| (-515)))) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 76)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 75)) (-4074 (($ (-1039 |#1| (-562 $)) (-1039 |#1| (-562 $))) 93 (|has| |#1| (-515))) (($ $ $) 42 (-3172 (|has| |#1| (-448)) (|has| |#1| (-515))))) (-4060 (($ $ $) 40 (-3172 (|has| |#1| (-21)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (($ $) 29 (-3172 (|has| |#1| (-21)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (-4045 (($ $ $) 38 (-3172 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (** (($ $ $) 61 (|has| |#1| (-515))) (($ $ (-383 (-523))) 296 (|has| |#1| (-515))) (($ $ (-523)) 71 (-3172 (|has| |#1| (-448)) (|has| |#1| (-515)))) (($ $ (-710)) 68 (-3172 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028)))) (($ $ (-852)) 73 (-3172 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))))) (* (($ (-383 (-523)) $) NIL (|has| |#1| (-515))) (($ $ (-383 (-523))) NIL (|has| |#1| (-515))) (($ |#1| $) NIL (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))) (($ $ $) 36 (-3172 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028)))) (($ (-523) $) 32 (-3172 (|has| |#1| (-21)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (($ (-710) $) NIL (-3172 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (($ (-852) $) NIL (-3172 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))))) +(((-292 |#1|) (-13 (-406 |#1|) (-10 -8 (IF (|has| |#1| (-515)) (PROGN (-6 (-29 |#1|)) (-6 (-1109)) (-6 (-147)) (-6 (-575)) (-6 (-1051)) (-15 -2116 ($ $)) (-15 -2449 ((-108) $)) (-15 -2135 ($ $ (-523))) (IF (|has| |#1| (-427)) (PROGN (-15 -1417 ((-394 (-1083 $)) (-1083 $))) (-15 -4130 ((-394 (-1083 $)) (-1083 $)))) |%noBranch|) (IF (|has| |#1| (-964 (-523))) (-6 (-964 (-47))) |%noBranch|)) |%noBranch|))) (-786)) (T -292)) +((-2116 (*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-515)) (-4 *2 (-786)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-292 *3)) (-4 *3 (-515)) (-4 *3 (-786)))) (-2135 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-292 *3)) (-4 *3 (-515)) (-4 *3 (-786)))) (-1417 (*1 *2 *3) (-12 (-5 *2 (-394 (-1083 *1))) (-5 *1 (-292 *4)) (-5 *3 (-1083 *1)) (-4 *4 (-427)) (-4 *4 (-515)) (-4 *4 (-786)))) (-4130 (*1 *2 *3) (-12 (-5 *2 (-394 (-1083 *1))) (-5 *1 (-292 *4)) (-5 *3 (-1083 *1)) (-4 *4 (-427)) (-4 *4 (-515)) (-4 *4 (-786))))) +(-13 (-406 |#1|) (-10 -8 (IF (|has| |#1| (-515)) (PROGN (-6 (-29 |#1|)) (-6 (-1109)) (-6 (-147)) (-6 (-575)) (-6 (-1051)) (-15 -2116 ($ $)) (-15 -2449 ((-108) $)) (-15 -2135 ($ $ (-523))) (IF (|has| |#1| (-427)) (PROGN (-15 -1417 ((-394 (-1083 $)) (-1083 $))) (-15 -4130 ((-394 (-1083 $)) (-1083 $)))) |%noBranch|) (IF (|has| |#1| (-964 (-523))) (-6 (-964 (-47))) |%noBranch|)) |%noBranch|))) +((-4168 (((-51) |#2| (-110) (-271 |#2|) (-589 |#2|)) 86) (((-51) |#2| (-110) (-271 |#2|) (-271 |#2|)) 82) (((-51) |#2| (-110) (-271 |#2|) |#2|) 84) (((-51) (-271 |#2|) (-110) (-271 |#2|) |#2|) 85) (((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|))) 78) (((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 |#2|)) 80) (((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 |#2|)) 81) (((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|))) 79) (((-51) (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|)) 87) (((-51) (-271 |#2|) (-110) (-271 |#2|) (-271 |#2|)) 83))) +(((-293 |#1| |#2|) (-10 -7 (-15 -4168 ((-51) (-271 |#2|) (-110) (-271 |#2|) (-271 |#2|))) (-15 -4168 ((-51) (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|))) (-15 -4168 ((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|)))) (-15 -4168 ((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 |#2|))) (-15 -4168 ((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 |#2|))) (-15 -4168 ((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|)))) (-15 -4168 ((-51) (-271 |#2|) (-110) (-271 |#2|) |#2|)) (-15 -4168 ((-51) |#2| (-110) (-271 |#2|) |#2|)) (-15 -4168 ((-51) |#2| (-110) (-271 |#2|) (-271 |#2|))) (-15 -4168 ((-51) |#2| (-110) (-271 |#2|) (-589 |#2|)))) (-13 (-786) (-515) (-564 (-499))) (-406 |#1|)) (T -293)) +((-4168 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-5 *6 (-589 *3)) (-4 *3 (-406 *7)) (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *7 *3)))) (-4168 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-4 *3 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-4168 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-4 *3 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-4168 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-271 *5)) (-5 *4 (-110)) (-4 *5 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *5)))) (-4168 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-110))) (-5 *6 (-589 (-271 *8))) (-4 *8 (-406 *7)) (-5 *5 (-271 *8)) (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *7 *8)))) (-4168 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-589 *7)) (-5 *4 (-589 (-110))) (-5 *5 (-271 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) (-4168 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-589 (-271 *8))) (-5 *4 (-589 (-110))) (-5 *5 (-271 *8)) (-5 *6 (-589 *8)) (-4 *8 (-406 *7)) (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *7 *8)))) (-4168 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-589 (-271 *7))) (-5 *4 (-589 (-110))) (-5 *5 (-271 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) (-4168 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-271 *7)) (-5 *4 (-110)) (-5 *5 (-589 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) (-4168 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-271 *6)) (-5 *4 (-110)) (-4 *6 (-406 *5)) (-4 *5 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *6))))) +(-10 -7 (-15 -4168 ((-51) (-271 |#2|) (-110) (-271 |#2|) (-271 |#2|))) (-15 -4168 ((-51) (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|))) (-15 -4168 ((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|)))) (-15 -4168 ((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 |#2|))) (-15 -4168 ((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 |#2|))) (-15 -4168 ((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|)))) (-15 -4168 ((-51) (-271 |#2|) (-110) (-271 |#2|) |#2|)) (-15 -4168 ((-51) |#2| (-110) (-271 |#2|) |#2|)) (-15 -4168 ((-51) |#2| (-110) (-271 |#2|) (-271 |#2|))) (-15 -4168 ((-51) |#2| (-110) (-271 |#2|) (-589 |#2|)))) +((-4135 (((-1119 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523) (-1070)) 46) (((-1119 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523)) 47) (((-1119 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523) (-1070)) 43) (((-1119 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523)) 44)) (-2566 (((-1 (-203) (-203)) (-203)) 45))) +(((-294) (-10 -7 (-15 -2566 ((-1 (-203) (-203)) (-203))) (-15 -4135 ((-1119 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523))) (-15 -4135 ((-1119 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523) (-1070))) (-15 -4135 ((-1119 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523))) (-15 -4135 ((-1119 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523) (-1070))))) (T -294)) +((-4135 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-203)) (-5 *7 (-523)) (-5 *8 (-1070)) (-5 *2 (-1119 (-857))) (-5 *1 (-294)))) (-4135 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-203)) (-5 *7 (-523)) (-5 *2 (-1119 (-857))) (-5 *1 (-294)))) (-4135 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-523)) (-5 *7 (-1070)) (-5 *2 (-1119 (-857))) (-5 *1 (-294)))) (-4135 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-523)) (-5 *2 (-1119 (-857))) (-5 *1 (-294)))) (-2566 (*1 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-294)) (-5 *3 (-203))))) +(-10 -7 (-15 -2566 ((-1 (-203) (-203)) (-203))) (-15 -4135 ((-1119 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523))) (-15 -4135 ((-1119 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523) (-1070))) (-15 -4135 ((-1119 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523))) (-15 -4135 ((-1119 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523) (-1070)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 24)) (-1292 (((-589 (-1001)) $) NIL)) (-2724 (((-1087) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-3276 (($ $ (-383 (-523))) NIL) (($ $ (-383 (-523)) (-383 (-523))) NIL)) (-1552 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) 19)) (-1462 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL (|has| |#1| (-339)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2437 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1441 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3199 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) NIL)) (-1481 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) NIL T CONST)) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-1457 (($ $) 31)) (-1444 (((-3 $ "failed") $) NIL)) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-3049 (((-108) $) NIL (|has| |#1| (-339)))) (-2589 (((-108) $) NIL)) (-3352 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-383 (-523)) $) NIL) (((-383 (-523)) $ (-383 (-523))) 15)) (-2769 (((-108) $) NIL)) (-1973 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3590 (($ $ (-852)) NIL) (($ $ (-383 (-523))) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-383 (-523))) NIL) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-2313 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-339)))) (-2814 (($ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3172 (-12 (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1109)))))) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-3053 (($ $ (-383 (-523))) NIL)) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-3307 (((-383 (-523)) $) 16)) (-2840 (($ (-1154 |#1| |#2| |#3|)) 11)) (-1475 (((-1154 |#1| |#2| |#3|) $) 12)) (-2922 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-3413 (((-710) $) NIL (|has| |#1| (-339)))) (-1937 ((|#1| $ (-383 (-523))) NIL) (($ $ $) NIL (|has| (-383 (-523)) (-1028)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-2640 (((-383 (-523)) $) NIL)) (-2306 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) 10)) (-1691 (((-794) $) 37) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2084 ((|#1| $ (-383 (-523))) 29)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-3710 ((|#1| $) NIL)) (-2341 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2318 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-383 (-523))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 26)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 32)) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-295 |#1| |#2| |#3|) (-13 (-1150 |#1|) (-731) (-10 -8 (-15 -2840 ($ (-1154 |#1| |#2| |#3|))) (-15 -1475 ((-1154 |#1| |#2| |#3|) $)) (-15 -3307 ((-383 (-523)) $)))) (-13 (-339) (-786)) (-1087) |#1|) (T -295)) +((-2840 (*1 *1 *2) (-12 (-5 *2 (-1154 *3 *4 *5)) (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-295 *3 *4 *5)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-1154 *3 *4 *5)) (-5 *1 (-295 *3 *4 *5)) (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-295 *3 *4 *5)) (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3)))) +(-13 (-1150 |#1|) (-731) (-10 -8 (-15 -2840 ($ (-1154 |#1| |#2| |#3|))) (-15 -1475 ((-1154 |#1| |#2| |#3|) $)) (-15 -3307 ((-383 (-523)) $)))) +((-1973 (((-2 (|:| -1475 (-710)) (|:| -3474 |#1|) (|:| |radicand| (-589 |#1|))) (-394 |#1|) (-710)) 24)) (-2313 (((-589 (-2 (|:| -3474 (-710)) (|:| |logand| |#1|))) (-394 |#1|)) 28))) +(((-296 |#1|) (-10 -7 (-15 -1973 ((-2 (|:| -1475 (-710)) (|:| -3474 |#1|) (|:| |radicand| (-589 |#1|))) (-394 |#1|) (-710))) (-15 -2313 ((-589 (-2 (|:| -3474 (-710)) (|:| |logand| |#1|))) (-394 |#1|)))) (-515)) (T -296)) +((-2313 (*1 *2 *3) (-12 (-5 *3 (-394 *4)) (-4 *4 (-515)) (-5 *2 (-589 (-2 (|:| -3474 (-710)) (|:| |logand| *4)))) (-5 *1 (-296 *4)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-394 *5)) (-4 *5 (-515)) (-5 *2 (-2 (|:| -1475 (-710)) (|:| -3474 *5) (|:| |radicand| (-589 *5)))) (-5 *1 (-296 *5)) (-5 *4 (-710))))) +(-10 -7 (-15 -1973 ((-2 (|:| -1475 (-710)) (|:| -3474 |#1|) (|:| |radicand| (-589 |#1|))) (-394 |#1|) (-710))) (-15 -2313 ((-589 (-2 (|:| -3474 (-710)) (|:| |logand| |#1|))) (-394 |#1|)))) +((-1292 (((-589 |#2|) (-1083 |#4|)) 43)) (-1663 ((|#3| (-523)) 46)) (-4144 (((-1083 |#4|) (-1083 |#3|)) 30)) (-2195 (((-1083 |#4|) (-1083 |#4|) (-523)) 56)) (-1730 (((-1083 |#3|) (-1083 |#4|)) 21)) (-2640 (((-589 (-710)) (-1083 |#4|) (-589 |#2|)) 40)) (-3106 (((-1083 |#3|) (-1083 |#4|) (-589 |#2|) (-589 |#3|)) 35))) +(((-297 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 ((-1083 |#3|) (-1083 |#4|) (-589 |#2|) (-589 |#3|))) (-15 -2640 ((-589 (-710)) (-1083 |#4|) (-589 |#2|))) (-15 -1292 ((-589 |#2|) (-1083 |#4|))) (-15 -1730 ((-1083 |#3|) (-1083 |#4|))) (-15 -4144 ((-1083 |#4|) (-1083 |#3|))) (-15 -2195 ((-1083 |#4|) (-1083 |#4|) (-523))) (-15 -1663 (|#3| (-523)))) (-732) (-786) (-973) (-880 |#3| |#1| |#2|)) (T -297)) +((-1663 (*1 *2 *3) (-12 (-5 *3 (-523)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-973)) (-5 *1 (-297 *4 *5 *2 *6)) (-4 *6 (-880 *2 *4 *5)))) (-2195 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *7)) (-5 *3 (-523)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-5 *1 (-297 *4 *5 *6 *7)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-1083 *6)) (-4 *6 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-1083 *7)) (-5 *1 (-297 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-1083 *7)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-5 *2 (-1083 *6)) (-5 *1 (-297 *4 *5 *6 *7)))) (-1292 (*1 *2 *3) (-12 (-5 *3 (-1083 *7)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-5 *2 (-589 *5)) (-5 *1 (-297 *4 *5 *6 *7)))) (-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *8)) (-5 *4 (-589 *6)) (-4 *6 (-786)) (-4 *8 (-880 *7 *5 *6)) (-4 *5 (-732)) (-4 *7 (-973)) (-5 *2 (-589 (-710))) (-5 *1 (-297 *5 *6 *7 *8)))) (-3106 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-5 *5 (-589 *8)) (-4 *7 (-786)) (-4 *8 (-973)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-5 *2 (-1083 *8)) (-5 *1 (-297 *6 *7 *8 *9))))) +(-10 -7 (-15 -3106 ((-1083 |#3|) (-1083 |#4|) (-589 |#2|) (-589 |#3|))) (-15 -2640 ((-589 (-710)) (-1083 |#4|) (-589 |#2|))) (-15 -1292 ((-589 |#2|) (-1083 |#4|))) (-15 -1730 ((-1083 |#3|) (-1083 |#4|))) (-15 -4144 ((-1083 |#4|) (-1083 |#3|))) (-15 -2195 ((-1083 |#4|) (-1083 |#4|) (-523))) (-15 -1663 (|#3| (-523)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 14)) (-1552 (((-589 (-2 (|:| |gen| |#1|) (|:| -2922 (-523)))) $) 18)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2395 (((-710) $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL)) (-3508 ((|#1| $) NIL)) (-2212 ((|#1| $ (-523)) NIL)) (-2173 (((-523) $ (-523)) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-3015 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 (-523) (-523)) $) 10)) (-2032 (((-1070) $) NIL)) (-1812 (($ $ $) NIL (|has| (-523) (-731)))) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL) (($ |#1|) NIL)) (-2084 (((-523) |#1| $) NIL)) (-1879 (($) 15 T CONST)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) 21 (|has| |#1| (-786)))) (-4060 (($ $) 11) (($ $ $) 20)) (-4045 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ (-523)) NIL) (($ (-523) |#1|) 19))) (((-298 |#1|) (-13 (-21) (-657 (-523)) (-299 |#1| (-523)) (-10 -7 (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|))) (-1016)) (T -298)) NIL (-13 (-21) (-657 (-523)) (-299 |#1| (-523)) (-10 -7 (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2133 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))) $) 27)) (-3212 (((-3 $ "failed") $ $) 19)) (-1703 (((-710) $) 28)) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 32)) (-3474 ((|#1| $) 31)) (-2378 ((|#1| $ (-523)) 25)) (-4126 ((|#2| $ (-523)) 26)) (-4093 (($ (-1 |#1| |#1|) $) 22)) (-1620 (($ (-1 |#2| |#2|) $) 23)) (-3779 (((-1070) $) 9)) (-3887 (($ $ $) 21 (|has| |#2| (-731)))) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ |#1|) 33)) (-2365 ((|#2| |#1| $) 24)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4075 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ |#2| |#1|) 29))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1552 (((-589 (-2 (|:| |gen| |#1|) (|:| -2922 |#2|))) $) 27)) (-3405 (((-3 $ "failed") $ $) 19)) (-2395 (((-710) $) 28)) (-4189 (($) 17 T CONST)) (-1220 (((-3 |#1| "failed") $) 32)) (-3508 ((|#1| $) 31)) (-2212 ((|#1| $ (-523)) 25)) (-2173 ((|#2| $ (-523)) 26)) (-3015 (($ (-1 |#1| |#1|) $) 22)) (-3261 (($ (-1 |#2| |#2|) $) 23)) (-2032 (((-1070) $) 9)) (-1812 (($ $ $) 21 (|has| |#2| (-731)))) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ |#1|) 33)) (-2084 ((|#2| |#1| $) 24)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4045 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ |#2| |#1|) 29))) (((-299 |#1| |#2|) (-129) (-1016) (-124)) (T -299)) -((-4075 (*1 *1 *2 *1) (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-124)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-124)))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)) (-5 *2 (-710)))) (-2133 (*1 *2 *1) (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)) (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 *4)))))) (-4126 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-299 *4 *2)) (-4 *4 (-1016)) (-4 *2 (-124)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-299 *2 *4)) (-4 *4 (-124)) (-4 *2 (-1016)))) (-2365 (*1 *2 *3 *1) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-124)))) (-1620 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)))) (-4093 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)))) (-3887 (*1 *1 *1 *1) (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-124)) (-4 *3 (-731))))) -(-13 (-124) (-964 |t#1|) (-10 -8 (-15 -4075 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1703 ((-710) $)) (-15 -2133 ((-589 (-2 (|:| |gen| |t#1|) (|:| -1811 |t#2|))) $)) (-15 -4126 (|t#2| $ (-523))) (-15 -2378 (|t#1| $ (-523))) (-15 -2365 (|t#2| |t#1| $)) (-15 -1620 ($ (-1 |t#2| |t#2|) $)) (-15 -4093 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-731)) (-15 -3887 ($ $ $)) |%noBranch|))) +((-4045 (*1 *1 *2 *1) (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-124)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-124)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)) (-5 *2 (-710)))) (-1552 (*1 *2 *1) (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)) (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -2922 *4)))))) (-2173 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-299 *4 *2)) (-4 *4 (-1016)) (-4 *2 (-124)))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-299 *2 *4)) (-4 *4 (-124)) (-4 *2 (-1016)))) (-2084 (*1 *2 *3 *1) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-124)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)))) (-3015 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)))) (-1812 (*1 *1 *1 *1) (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-124)) (-4 *3 (-731))))) +(-13 (-124) (-964 |t#1|) (-10 -8 (-15 -4045 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2395 ((-710) $)) (-15 -1552 ((-589 (-2 (|:| |gen| |t#1|) (|:| -2922 |t#2|))) $)) (-15 -2173 (|t#2| $ (-523))) (-15 -2212 (|t#1| $ (-523))) (-15 -2084 (|t#2| |t#1| $)) (-15 -3261 ($ (-1 |t#2| |t#2|) $)) (-15 -3015 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-731)) (-15 -1812 ($ $ $)) |%noBranch|))) (((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-964 |#1|) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2133 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1703 (((-710) $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-2378 ((|#1| $ (-523)) NIL)) (-4126 (((-710) $ (-523)) NIL)) (-4093 (($ (-1 |#1| |#1|) $) NIL)) (-1620 (($ (-1 (-710) (-710)) $) NIL)) (-3779 (((-1070) $) NIL)) (-3887 (($ $ $) NIL (|has| (-710) (-731)))) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL) (($ |#1|) NIL)) (-2365 (((-710) |#1| $) NIL)) (-2756 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-710) |#1|) NIL))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1552 (((-589 (-2 (|:| |gen| |#1|) (|:| -2922 (-710)))) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2395 (((-710) $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL)) (-3508 ((|#1| $) NIL)) (-2212 ((|#1| $ (-523)) NIL)) (-2173 (((-710) $ (-523)) NIL)) (-3015 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 (-710) (-710)) $) NIL)) (-2032 (((-1070) $) NIL)) (-1812 (($ $ $) NIL (|has| (-710) (-731)))) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL) (($ |#1|) NIL)) (-2084 (((-710) |#1| $) NIL)) (-1879 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4045 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-710) |#1|) NIL))) (((-300 |#1|) (-299 |#1| (-710)) (-1016)) (T -300)) NIL (-299 |#1| (-710)) -((-2528 (($ $) 53)) (-1284 (($ $ |#2| |#3| $) 14)) (-3782 (($ (-1 |#3| |#3|) $) 35)) (-3749 (((-108) $) 27)) (-3760 ((|#2| $) 29)) (-3746 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-2438 ((|#2| $) 49)) (-1251 (((-589 |#2|) $) 38)) (-2276 (($ $ $ (-710)) 23)) (-4098 (($ $ |#2|) 42))) -(((-301 |#1| |#2| |#3|) (-10 -8 (-15 -2528 (|#1| |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2276 (|#1| |#1| |#1| (-710))) (-15 -1284 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3782 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1251 ((-589 |#2|) |#1|)) (-15 -3760 (|#2| |#1|)) (-15 -3749 ((-108) |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4098 (|#1| |#1| |#2|))) (-302 |#2| |#3|) (-973) (-731)) (T -301)) +((-1272 (($ $) 53)) (-4222 (($ $ |#2| |#3| $) 14)) (-2041 (($ (-1 |#3| |#3|) $) 35)) (-1408 (((-108) $) 27)) (-1419 ((|#2| $) 29)) (-4007 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-1618 ((|#2| $) 49)) (-3819 (((-589 |#2|) $) 38)) (-3553 (($ $ $ (-710)) 23)) (-4074 (($ $ |#2|) 42))) +(((-301 |#1| |#2| |#3|) (-10 -8 (-15 -1272 (|#1| |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3553 (|#1| |#1| |#1| (-710))) (-15 -4222 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2041 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3819 ((-589 |#2|) |#1|)) (-15 -1419 (|#2| |#1|)) (-15 -1408 ((-108) |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4074 (|#1| |#1| |#2|))) (-302 |#2| |#3|) (-973) (-731)) (T -301)) NIL -(-10 -8 (-15 -2528 (|#1| |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2276 (|#1| |#1| |#1| (-710))) (-15 -1284 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3782 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1251 ((-589 |#2|) |#1|)) (-15 -3760 (|#2| |#1|)) (-15 -3749 ((-108) |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4098 (|#1| |#1| |#2|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 90 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 88 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 87)) (-3474 (((-523) $) 91 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 89 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 86)) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-2528 (($ $) 75 (|has| |#1| (-427)))) (-1284 (($ $ |#1| |#2| $) 79)) (-2023 (((-108) $) 31)) (-3554 (((-710) $) 82)) (-2620 (((-108) $) 62)) (-1933 (($ |#1| |#2|) 61)) (-1575 ((|#2| $) 81)) (-3782 (($ (-1 |#2| |#2|) $) 80)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3749 (((-108) $) 85)) (-3760 ((|#1| $) 84)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-515)))) (-2299 ((|#2| $) 64)) (-2438 ((|#1| $) 76 (|has| |#1| (-427)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47) (($ (-383 (-523))) 57 (-3262 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523))))))) (-1251 (((-589 |#1|) $) 83)) (-2365 ((|#1| $ |#2|) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-2276 (($ $ $ (-710)) 78 (|has| |#1| (-158)))) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(-10 -8 (-15 -1272 (|#1| |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3553 (|#1| |#1| |#1| (-710))) (-15 -4222 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2041 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3819 ((-589 |#2|) |#1|)) (-15 -1419 (|#2| |#1|)) (-15 -1408 ((-108) |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4074 (|#1| |#1| |#2|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3306 (($ $) 52 (|has| |#1| (-515)))) (-3174 (((-108) $) 54 (|has| |#1| (-515)))) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1220 (((-3 (-523) "failed") $) 90 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 88 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 87)) (-3508 (((-523) $) 91 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 89 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 86)) (-1457 (($ $) 60)) (-1444 (((-3 $ "failed") $) 34)) (-1272 (($ $) 75 (|has| |#1| (-427)))) (-4222 (($ $ |#1| |#2| $) 79)) (-2769 (((-108) $) 31)) (-1789 (((-710) $) 82)) (-2704 (((-108) $) 62)) (-1267 (($ |#1| |#2|) 61)) (-4047 ((|#2| $) 81)) (-2041 (($ (-1 |#2| |#2|) $) 80)) (-1345 (($ (-1 |#1| |#1|) $) 63)) (-1427 (($ $) 65)) (-1437 ((|#1| $) 66)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1408 (((-108) $) 85)) (-1419 ((|#1| $) 84)) (-4007 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-515)))) (-2640 ((|#2| $) 64)) (-1618 ((|#1| $) 76 (|has| |#1| (-427)))) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47) (($ (-383 (-523))) 57 (-3172 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523))))))) (-3819 (((-589 |#1|) $) 83)) (-2084 ((|#1| $ |#2|) 59)) (-1942 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-3553 (($ $ $ (-710)) 78 (|has| |#1| (-158)))) (-2801 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) (((-302 |#1| |#2|) (-129) (-973) (-731)) (T -302)) -((-3749 (*1 *2 *1) (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-108)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-589 *3)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-710)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-302 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-3782 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)))) (-1284 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) (-2276 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-4 *3 (-158)))) (-3746 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *2 (-515)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)) (-4 *2 (-427)))) (-2528 (*1 *1 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *2 (-427))))) -(-13 (-46 |t#1| |t#2|) (-387 |t#1|) (-10 -8 (-15 -3749 ((-108) $)) (-15 -3760 (|t#1| $)) (-15 -1251 ((-589 |t#1|) $)) (-15 -3554 ((-710) $)) (-15 -1575 (|t#2| $)) (-15 -3782 ($ (-1 |t#2| |t#2|) $)) (-15 -1284 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-158)) (-15 -2276 ($ $ $ (-710))) |%noBranch|) (IF (|has| |t#1| (-515)) (-15 -3746 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-427)) (PROGN (-15 -2438 (|t#1| $)) (-15 -2528 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-267) |has| |#1| (-515)) ((-387 |#1|) . T) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-4159 (((-108) (-108)) NIL)) (-1641 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) |#1|) $) NIL)) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-3941 (($ $) NIL (|has| |#1| (-1016)))) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) NIL)) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-2277 (($ $ (-523)) NIL)) (-2128 (((-710) $) NIL)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2158 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3450 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3837 (($ (-589 |#1|)) NIL)) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2753 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-1746 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-303 |#1|) (-13 (-19 |#1|) (-259 |#1|) (-10 -8 (-15 -3837 ($ (-589 |#1|))) (-15 -2128 ((-710) $)) (-15 -2277 ($ $ (-523))) (-15 -4159 ((-108) (-108))))) (-1122)) (T -303)) -((-3837 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-303 *3)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-303 *3)) (-4 *3 (-1122)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-303 *3)) (-4 *3 (-1122)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-303 *3)) (-4 *3 (-1122))))) -(-13 (-19 |#1|) (-259 |#1|) (-10 -8 (-15 -3837 ($ (-589 |#1|))) (-15 -2128 ((-710) $)) (-15 -2277 ($ $ (-523))) (-15 -4159 ((-108) (-108))))) -((-2318 (((-108) $) 42)) (-2654 (((-710)) 22)) (-4187 ((|#2| $) 46) (($ $ (-852)) 103)) (-1703 (((-710)) 97)) (-3409 (($ (-1168 |#2|)) 20)) (-2307 (((-108) $) 115)) (-3892 ((|#2| $) 48) (($ $ (-852)) 101)) (-1397 (((-1083 |#2|) $) NIL) (((-1083 $) $ (-852)) 94)) (-3943 (((-1083 |#2|) $) 83)) (-2122 (((-1083 |#2|) $) 80) (((-3 (-1083 |#2|) "failed") $ $) 77)) (-3865 (($ $ (-1083 |#2|)) 53)) (-4124 (((-772 (-852))) 28) (((-852)) 43)) (-3203 (((-126)) 25)) (-2299 (((-772 (-852)) $) 30) (((-852) $) 116)) (-2749 (($) 109)) (-2966 (((-1168 |#2|) $) NIL) (((-629 |#2|) (-1168 $)) 39)) (-3901 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2153 (((-108) $) 41))) -(((-304 |#1| |#2|) (-10 -8 (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -1703 ((-710))) (-15 -3901 (|#1| |#1|)) (-15 -2122 ((-3 (-1083 |#2|) "failed") |#1| |#1|)) (-15 -2122 ((-1083 |#2|) |#1|)) (-15 -3943 ((-1083 |#2|) |#1|)) (-15 -3865 (|#1| |#1| (-1083 |#2|))) (-15 -2307 ((-108) |#1|)) (-15 -2749 (|#1|)) (-15 -4187 (|#1| |#1| (-852))) (-15 -3892 (|#1| |#1| (-852))) (-15 -1397 ((-1083 |#1|) |#1| (-852))) (-15 -4187 (|#2| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -2299 ((-852) |#1|)) (-15 -4124 ((-852))) (-15 -1397 ((-1083 |#2|) |#1|)) (-15 -3409 (|#1| (-1168 |#2|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -2654 ((-710))) (-15 -4124 ((-772 (-852)))) (-15 -2299 ((-772 (-852)) |#1|)) (-15 -2318 ((-108) |#1|)) (-15 -2153 ((-108) |#1|)) (-15 -3203 ((-126)))) (-305 |#2|) (-339)) (T -304)) -((-3203 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-126)) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4)))) (-4124 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-772 (-852))) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4)))) (-2654 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4)))) (-4124 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-852)) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4)))) (-1703 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4))))) -(-10 -8 (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -1703 ((-710))) (-15 -3901 (|#1| |#1|)) (-15 -2122 ((-3 (-1083 |#2|) "failed") |#1| |#1|)) (-15 -2122 ((-1083 |#2|) |#1|)) (-15 -3943 ((-1083 |#2|) |#1|)) (-15 -3865 (|#1| |#1| (-1083 |#2|))) (-15 -2307 ((-108) |#1|)) (-15 -2749 (|#1|)) (-15 -4187 (|#1| |#1| (-852))) (-15 -3892 (|#1| |#1| (-852))) (-15 -1397 ((-1083 |#1|) |#1| (-852))) (-15 -4187 (|#2| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -2299 ((-852) |#1|)) (-15 -4124 ((-852))) (-15 -1397 ((-1083 |#2|) |#1|)) (-15 -3409 (|#1| (-1168 |#2|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -2654 ((-710))) (-15 -4124 ((-772 (-852)))) (-15 -2299 ((-772 (-852)) |#1|)) (-15 -2318 ((-108) |#1|)) (-15 -2153 ((-108) |#1|)) (-15 -3203 ((-126)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-2318 (((-108) $) 94)) (-2654 (((-710)) 90)) (-4187 ((|#1| $) 140) (($ $ (-852)) 137 (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) 122 (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1387 (((-108) $ $) 59)) (-1703 (((-710)) 112 (|has| |#1| (-344)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 101)) (-3474 ((|#1| $) 100)) (-3409 (($ (-1168 |#1|)) 146)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-344)))) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-4032 (($) 109 (|has| |#1| (-344)))) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-1996 (($) 124 (|has| |#1| (-344)))) (-2155 (((-108) $) 125 (|has| |#1| (-344)))) (-1991 (($ $ (-710)) 87 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) 86 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) 71)) (-1640 (((-852) $) 127 (|has| |#1| (-344))) (((-772 (-852)) $) 84 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) 31)) (-1881 (($) 135 (|has| |#1| (-344)))) (-2307 (((-108) $) 134 (|has| |#1| (-344)))) (-3892 ((|#1| $) 141) (($ $ (-852)) 138 (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) 113 (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-1397 (((-1083 |#1|) $) 145) (((-1083 $) $ (-852)) 139 (|has| |#1| (-344)))) (-2072 (((-852) $) 110 (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) 131 (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) 130 (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) 129 (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) 132 (|has| |#1| (-344)))) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2262 (($) 114 (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) 111 (|has| |#1| (-344)))) (-1290 (((-108) $) 93)) (-2783 (((-1034) $) 10)) (-3441 (($) 133 (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 121 (|has| |#1| (-344)))) (-1820 (((-394 $) $) 74)) (-4124 (((-772 (-852))) 91) (((-852)) 143)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-2974 (((-710) $) 126 (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) 85 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) 99)) (-3523 (($ $) 118 (|has| |#1| (-344))) (($ $ (-710)) 116 (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) 92) (((-852) $) 142)) (-3727 (((-1083 |#1|)) 144)) (-3425 (($) 123 (|has| |#1| (-344)))) (-2749 (($) 136 (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) 148) (((-629 |#1|) (-1168 $)) 147)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 120 (|has| |#1| (-344)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ |#1|) 102)) (-3901 (($ $) 119 (|has| |#1| (-344))) (((-3 $ "failed") $) 83 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) 29)) (-4041 (((-1168 $)) 150) (((-1168 $) (-852)) 149)) (-1704 (((-108) $ $) 39)) (-2153 (((-108) $) 95)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3454 (($ $) 89 (|has| |#1| (-344))) (($ $ (-710)) 88 (|has| |#1| (-344)))) (-2862 (($ $) 117 (|has| |#1| (-344))) (($ $ (-710)) 115 (|has| |#1| (-344)))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 64) (($ $ |#1|) 98)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) +((-1408 (*1 *2 *1) (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-108)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-589 *3)))) (-1789 (*1 *2 *1) (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-710)))) (-4047 (*1 *2 *1) (-12 (-4 *1 (-302 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-2041 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)))) (-4222 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) (-3553 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-4 *3 (-158)))) (-4007 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *2 (-515)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)) (-4 *2 (-427)))) (-1272 (*1 *1 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *2 (-427))))) +(-13 (-46 |t#1| |t#2|) (-387 |t#1|) (-10 -8 (-15 -1408 ((-108) $)) (-15 -1419 (|t#1| $)) (-15 -3819 ((-589 |t#1|) $)) (-15 -1789 ((-710) $)) (-15 -4047 (|t#2| $)) (-15 -2041 ($ (-1 |t#2| |t#2|) $)) (-15 -4222 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-158)) (-15 -3553 ($ $ $ (-710))) |%noBranch|) (IF (|has| |t#1| (-515)) (-15 -4007 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-427)) (PROGN (-15 -1618 (|t#1| $)) (-15 -1272 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-267) |has| |#1| (-515)) ((-387 |#1|) . T) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1632 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4249))) (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| |#1| (-786))))) (-1581 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-1620 (((-108) $ (-710)) NIL)) (-2506 (((-108) (-108)) NIL)) (-1849 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) NIL (|has| $ (-6 -4249)))) (-3703 (($ (-1 (-108) |#1|) $) NIL)) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-4160 (($ $) NIL (|has| |#1| (-1016)))) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3286 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) NIL)) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) NIL)) (-3449 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-3563 (($ $ (-523)) NIL)) (-1511 (((-710) $) NIL)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3733 (($ (-710) |#1|) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-1793 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3780 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3108 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2912 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2510 (($ (-589 |#1|)) NIL)) (-2428 ((|#1| $) NIL (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4141 (($ $ |#1|) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-1655 (($ $ (-1136 (-523))) NIL) (($ $ (-523)) NIL)) (-1499 (($ $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) NIL)) (-2001 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2394 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-303 |#1|) (-13 (-19 |#1|) (-259 |#1|) (-10 -8 (-15 -2510 ($ (-589 |#1|))) (-15 -1511 ((-710) $)) (-15 -3563 ($ $ (-523))) (-15 -2506 ((-108) (-108))))) (-1123)) (T -303)) +((-2510 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-303 *3)))) (-1511 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-303 *3)) (-4 *3 (-1123)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-303 *3)) (-4 *3 (-1123)))) (-2506 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-303 *3)) (-4 *3 (-1123))))) +(-13 (-19 |#1|) (-259 |#1|) (-10 -8 (-15 -2510 ($ (-589 |#1|))) (-15 -1511 ((-710) $)) (-15 -3563 ($ $ (-523))) (-15 -2506 ((-108) (-108))))) +((-2803 (((-108) $) 42)) (-3019 (((-710)) 22)) (-1477 ((|#2| $) 46) (($ $ (-852)) 104)) (-2395 (((-710)) 98)) (-2754 (($ (-1169 |#2|)) 20)) (-2706 (((-108) $) 116)) (-1863 ((|#2| $) 48) (($ $ (-852)) 102)) (-2887 (((-1083 |#2|) $) NIL) (((-1083 $) $ (-852)) 95)) (-4183 (((-1083 |#2|) $) 83)) (-1455 (((-1083 |#2|) $) 80) (((-3 (-1083 |#2|) "failed") $ $) 77)) (-1605 (($ $ (-1083 |#2|)) 53)) (-2151 (((-772 (-852))) 28) (((-852)) 43)) (-3314 (((-126)) 25)) (-2640 (((-772 (-852)) $) 30) (((-852) $) 118)) (-1614 (($) 110)) (-2906 (((-1169 |#2|) $) NIL) (((-629 |#2|) (-1169 $)) 39)) (-1942 (($ $) NIL) (((-3 $ "failed") $) 86)) (-1747 (((-108) $) 41))) +(((-304 |#1| |#2|) (-10 -8 (-15 -1942 ((-3 |#1| "failed") |#1|)) (-15 -2395 ((-710))) (-15 -1942 (|#1| |#1|)) (-15 -1455 ((-3 (-1083 |#2|) "failed") |#1| |#1|)) (-15 -1455 ((-1083 |#2|) |#1|)) (-15 -4183 ((-1083 |#2|) |#1|)) (-15 -1605 (|#1| |#1| (-1083 |#2|))) (-15 -2706 ((-108) |#1|)) (-15 -1614 (|#1|)) (-15 -1477 (|#1| |#1| (-852))) (-15 -1863 (|#1| |#1| (-852))) (-15 -2887 ((-1083 |#1|) |#1| (-852))) (-15 -1477 (|#2| |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -2640 ((-852) |#1|)) (-15 -2151 ((-852))) (-15 -2887 ((-1083 |#2|) |#1|)) (-15 -2754 (|#1| (-1169 |#2|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1|)) (-15 -3019 ((-710))) (-15 -2151 ((-772 (-852)))) (-15 -2640 ((-772 (-852)) |#1|)) (-15 -2803 ((-108) |#1|)) (-15 -1747 ((-108) |#1|)) (-15 -3314 ((-126)))) (-305 |#2|) (-339)) (T -304)) +((-3314 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-126)) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4)))) (-2151 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-772 (-852))) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4)))) (-3019 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4)))) (-2151 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-852)) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4)))) (-2395 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4))))) +(-10 -8 (-15 -1942 ((-3 |#1| "failed") |#1|)) (-15 -2395 ((-710))) (-15 -1942 (|#1| |#1|)) (-15 -1455 ((-3 (-1083 |#2|) "failed") |#1| |#1|)) (-15 -1455 ((-1083 |#2|) |#1|)) (-15 -4183 ((-1083 |#2|) |#1|)) (-15 -1605 (|#1| |#1| (-1083 |#2|))) (-15 -2706 ((-108) |#1|)) (-15 -1614 (|#1|)) (-15 -1477 (|#1| |#1| (-852))) (-15 -1863 (|#1| |#1| (-852))) (-15 -2887 ((-1083 |#1|) |#1| (-852))) (-15 -1477 (|#2| |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -2640 ((-852) |#1|)) (-15 -2151 ((-852))) (-15 -2887 ((-1083 |#2|) |#1|)) (-15 -2754 (|#1| (-1169 |#2|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1|)) (-15 -3019 ((-710))) (-15 -2151 ((-772 (-852)))) (-15 -2640 ((-772 (-852)) |#1|)) (-15 -2803 ((-108) |#1|)) (-15 -1747 ((-108) |#1|)) (-15 -3314 ((-126)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-2803 (((-108) $) 94)) (-3019 (((-710)) 90)) (-1477 ((|#1| $) 140) (($ $ (-852)) 137 (|has| |#1| (-344)))) (-1557 (((-1097 (-852) (-710)) (-523)) 122 (|has| |#1| (-344)))) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 73)) (-4226 (((-394 $) $) 72)) (-2787 (((-108) $ $) 59)) (-2395 (((-710)) 112 (|has| |#1| (-344)))) (-4189 (($) 17 T CONST)) (-1220 (((-3 |#1| "failed") $) 101)) (-3508 ((|#1| $) 100)) (-2754 (($ (-1169 |#1|)) 146)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-344)))) (-4059 (($ $ $) 55)) (-1444 (((-3 $ "failed") $) 34)) (-1631 (($) 109 (|has| |#1| (-344)))) (-4032 (($ $ $) 56)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-3665 (($) 124 (|has| |#1| (-344)))) (-1766 (((-108) $) 125 (|has| |#1| (-344)))) (-3610 (($ $ (-710)) 87 (-3172 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) 86 (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3049 (((-108) $) 71)) (-3437 (((-852) $) 127 (|has| |#1| (-344))) (((-772 (-852)) $) 84 (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2769 (((-108) $) 31)) (-3753 (($) 135 (|has| |#1| (-344)))) (-2706 (((-108) $) 134 (|has| |#1| (-344)))) (-1863 ((|#1| $) 141) (($ $ (-852)) 138 (|has| |#1| (-344)))) (-2738 (((-3 $ "failed") $) 113 (|has| |#1| (-344)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-2887 (((-1083 |#1|) $) 145) (((-1083 $) $ (-852)) 139 (|has| |#1| (-344)))) (-2060 (((-852) $) 110 (|has| |#1| (-344)))) (-4183 (((-1083 |#1|) $) 131 (|has| |#1| (-344)))) (-1455 (((-1083 |#1|) $) 130 (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) 129 (|has| |#1| (-344)))) (-1605 (($ $ (-1083 |#1|)) 132 (|has| |#1| (-344)))) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 70)) (-2773 (($) 114 (|has| |#1| (-344)) CONST)) (-4013 (($ (-852)) 111 (|has| |#1| (-344)))) (-3026 (((-108) $) 93)) (-3951 (((-1034) $) 10)) (-1621 (($) 133 (|has| |#1| (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) 121 (|has| |#1| (-344)))) (-2424 (((-394 $) $) 74)) (-2151 (((-772 (-852))) 91) (((-852)) 143)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-3413 (((-710) $) 58)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57)) (-2984 (((-710) $) 126 (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) 85 (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3314 (((-126)) 99)) (-3984 (($ $) 118 (|has| |#1| (-344))) (($ $ (-710)) 116 (|has| |#1| (-344)))) (-2640 (((-772 (-852)) $) 92) (((-852) $) 142)) (-2762 (((-1083 |#1|)) 144)) (-2893 (($) 123 (|has| |#1| (-344)))) (-1614 (($) 136 (|has| |#1| (-344)))) (-2906 (((-1169 |#1|) $) 148) (((-629 |#1|) (-1169 $)) 147)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 120 (|has| |#1| (-344)))) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ |#1|) 102)) (-1942 (($ $) 119 (|has| |#1| (-344))) (((-3 $ "failed") $) 83 (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3272 (((-710)) 29)) (-3760 (((-1169 $)) 150) (((-1169 $) (-852)) 149)) (-2801 (((-108) $ $) 39)) (-1747 (((-108) $) 95)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2009 (($ $) 89 (|has| |#1| (-344))) (($ $ (-710)) 88 (|has| |#1| (-344)))) (-2909 (($ $) 117 (|has| |#1| (-344))) (($ $ (-710)) 115 (|has| |#1| (-344)))) (-3941 (((-108) $ $) 6)) (-4074 (($ $ $) 64) (($ $ |#1|) 98)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) (((-305 |#1|) (-129) (-339)) (T -305)) -((-4041 (*1 *2) (-12 (-4 *3 (-339)) (-5 *2 (-1168 *1)) (-4 *1 (-305 *3)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-852)) (-4 *4 (-339)) (-5 *2 (-1168 *1)) (-4 *1 (-305 *4)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1168 *3)))) (-2966 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-305 *4)) (-4 *4 (-339)) (-5 *2 (-629 *4)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-339)) (-4 *1 (-305 *3)))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1083 *3)))) (-3727 (*1 *2) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1083 *3)))) (-4124 (*1 *2) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-852)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-852)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-339)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-339)))) (-1397 (*1 *2 *1 *3) (-12 (-5 *3 (-852)) (-4 *4 (-344)) (-4 *4 (-339)) (-5 *2 (-1083 *1)) (-4 *1 (-305 *4)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) (-4187 (*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) (-2749 (*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) (-1881 (*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-108)))) (-3441 (*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *1 (-305 *3)) (-4 *3 (-339)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-1083 *3)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-1083 *3)))) (-2122 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-1083 *3))))) -(-13 (-1185 |t#1|) (-964 |t#1|) (-10 -8 (-15 -4041 ((-1168 $))) (-15 -4041 ((-1168 $) (-852))) (-15 -2966 ((-1168 |t#1|) $)) (-15 -2966 ((-629 |t#1|) (-1168 $))) (-15 -3409 ($ (-1168 |t#1|))) (-15 -1397 ((-1083 |t#1|) $)) (-15 -3727 ((-1083 |t#1|))) (-15 -4124 ((-852))) (-15 -2299 ((-852) $)) (-15 -3892 (|t#1| $)) (-15 -4187 (|t#1| $)) (IF (|has| |t#1| (-344)) (PROGN (-6 (-325)) (-15 -1397 ((-1083 $) $ (-852))) (-15 -3892 ($ $ (-852))) (-15 -4187 ($ $ (-852))) (-15 -2749 ($)) (-15 -1881 ($)) (-15 -2307 ((-108) $)) (-15 -3441 ($)) (-15 -3865 ($ $ (-1083 |t#1|))) (-15 -3943 ((-1083 |t#1|) $)) (-15 -2122 ((-1083 |t#1|) $)) (-15 -2122 ((-3 (-1083 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3262 (|has| |#1| (-344)) (|has| |#1| (-134))) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-211) |has| |#1| (-344)) ((-221) . T) ((-267) . T) ((-284) . T) ((-1185 |#1|) . T) ((-339) . T) ((-378) -3262 (|has| |#1| (-344)) (|has| |#1| (-134))) ((-344) |has| |#1| (-344)) ((-325) |has| |#1| (-344)) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-964 |#1|) . T) ((-979 #0#) . T) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-344)) ((-1126) . T) ((-1175 |#1|) . T)) -((-3924 (((-108) $ $) NIL)) (-3690 (($ (-1086) $) 88)) (-3628 (($) 76)) (-1265 (((-1034) (-1034)) 11)) (-2943 (($) 77)) (-3423 (($) 90) (($ (-292 (-638))) 96) (($ (-292 (-640))) 93) (($ (-292 (-633))) 99) (($ (-292 (-355))) 105) (($ (-292 (-523))) 102) (($ (-292 (-155 (-355)))) 108)) (-1495 (($ (-1086) $) 89)) (-1872 (($ (-589 (-794))) 79)) (-3817 (((-1173) $) 73)) (-3464 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1242 (($ (-1034)) 45)) (-1541 (((-1020) $) 25)) (-3813 (($ (-1009 (-883 (-523))) $) 85) (($ (-1009 (-883 (-523))) (-883 (-523)) $) 86)) (-3136 (($ (-1034)) 87)) (-3649 (($ (-1086) $) 110) (($ (-1086) $ $) 111)) (-2337 (($ (-1087) (-589 (-1087))) 75)) (-3953 (($ (-1070)) 82) (($ (-589 (-1070))) 80)) (-1458 (((-794) $) 113)) (-3189 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1087)) (|:| |arrayIndex| (-589 (-883 (-523)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1086)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3883 (-108)) (|:| -1733 (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |blockBranch| (-589 $)) (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) (|:| |forBranch| (-2 (|:| -3499 (-1009 (-883 (-523)))) (|:| |span| (-883 (-523))) (|:| -3913 $))) (|:| |labelBranch| (-1034)) (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -3913 $))) (|:| |commonBranch| (-2 (|:| -4038 (-1087)) (|:| |contents| (-589 (-1087))))) (|:| |printBranch| (-589 (-794)))) $) 37)) (-2547 (($ (-1070)) 182)) (-3890 (($ (-589 $)) 109)) (-3122 (($ (-1087) (-1070)) 115) (($ (-1087) (-292 (-640))) 155) (($ (-1087) (-292 (-638))) 156) (($ (-1087) (-292 (-633))) 157) (($ (-1087) (-629 (-640))) 118) (($ (-1087) (-629 (-638))) 121) (($ (-1087) (-629 (-633))) 124) (($ (-1087) (-1168 (-640))) 127) (($ (-1087) (-1168 (-638))) 130) (($ (-1087) (-1168 (-633))) 133) (($ (-1087) (-629 (-292 (-640)))) 136) (($ (-1087) (-629 (-292 (-638)))) 139) (($ (-1087) (-629 (-292 (-633)))) 142) (($ (-1087) (-1168 (-292 (-640)))) 145) (($ (-1087) (-1168 (-292 (-638)))) 148) (($ (-1087) (-1168 (-292 (-633)))) 151) (($ (-1087) (-589 (-883 (-523))) (-292 (-640))) 152) (($ (-1087) (-589 (-883 (-523))) (-292 (-638))) 153) (($ (-1087) (-589 (-883 (-523))) (-292 (-633))) 154) (($ (-1087) (-292 (-523))) 179) (($ (-1087) (-292 (-355))) 180) (($ (-1087) (-292 (-155 (-355)))) 181) (($ (-1087) (-629 (-292 (-523)))) 160) (($ (-1087) (-629 (-292 (-355)))) 163) (($ (-1087) (-629 (-292 (-155 (-355))))) 166) (($ (-1087) (-1168 (-292 (-523)))) 169) (($ (-1087) (-1168 (-292 (-355)))) 172) (($ (-1087) (-1168 (-292 (-155 (-355))))) 175) (($ (-1087) (-589 (-883 (-523))) (-292 (-523))) 176) (($ (-1087) (-589 (-883 (-523))) (-292 (-355))) 177) (($ (-1087) (-589 (-883 (-523))) (-292 (-155 (-355)))) 178)) (-3983 (((-108) $ $) NIL))) -(((-306) (-13 (-1016) (-10 -8 (-15 -1458 ((-794) $)) (-15 -3813 ($ (-1009 (-883 (-523))) $)) (-15 -3813 ($ (-1009 (-883 (-523))) (-883 (-523)) $)) (-15 -3690 ($ (-1086) $)) (-15 -1495 ($ (-1086) $)) (-15 -1242 ($ (-1034))) (-15 -3136 ($ (-1034))) (-15 -3953 ($ (-1070))) (-15 -3953 ($ (-589 (-1070)))) (-15 -2547 ($ (-1070))) (-15 -3423 ($)) (-15 -3423 ($ (-292 (-638)))) (-15 -3423 ($ (-292 (-640)))) (-15 -3423 ($ (-292 (-633)))) (-15 -3423 ($ (-292 (-355)))) (-15 -3423 ($ (-292 (-523)))) (-15 -3423 ($ (-292 (-155 (-355))))) (-15 -3649 ($ (-1086) $)) (-15 -3649 ($ (-1086) $ $)) (-15 -3122 ($ (-1087) (-1070))) (-15 -3122 ($ (-1087) (-292 (-640)))) (-15 -3122 ($ (-1087) (-292 (-638)))) (-15 -3122 ($ (-1087) (-292 (-633)))) (-15 -3122 ($ (-1087) (-629 (-640)))) (-15 -3122 ($ (-1087) (-629 (-638)))) (-15 -3122 ($ (-1087) (-629 (-633)))) (-15 -3122 ($ (-1087) (-1168 (-640)))) (-15 -3122 ($ (-1087) (-1168 (-638)))) (-15 -3122 ($ (-1087) (-1168 (-633)))) (-15 -3122 ($ (-1087) (-629 (-292 (-640))))) (-15 -3122 ($ (-1087) (-629 (-292 (-638))))) (-15 -3122 ($ (-1087) (-629 (-292 (-633))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-640))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-638))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-633))))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-640)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-638)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-633)))) (-15 -3122 ($ (-1087) (-292 (-523)))) (-15 -3122 ($ (-1087) (-292 (-355)))) (-15 -3122 ($ (-1087) (-292 (-155 (-355))))) (-15 -3122 ($ (-1087) (-629 (-292 (-523))))) (-15 -3122 ($ (-1087) (-629 (-292 (-355))))) (-15 -3122 ($ (-1087) (-629 (-292 (-155 (-355)))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-523))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-355))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-155 (-355)))))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-523)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-355)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-155 (-355))))) (-15 -3890 ($ (-589 $))) (-15 -3628 ($)) (-15 -2943 ($)) (-15 -1872 ($ (-589 (-794)))) (-15 -2337 ($ (-1087) (-589 (-1087)))) (-15 -3464 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3189 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1087)) (|:| |arrayIndex| (-589 (-883 (-523)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1086)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3883 (-108)) (|:| -1733 (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |blockBranch| (-589 $)) (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) (|:| |forBranch| (-2 (|:| -3499 (-1009 (-883 (-523)))) (|:| |span| (-883 (-523))) (|:| -3913 $))) (|:| |labelBranch| (-1034)) (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -3913 $))) (|:| |commonBranch| (-2 (|:| -4038 (-1087)) (|:| |contents| (-589 (-1087))))) (|:| |printBranch| (-589 (-794)))) $)) (-15 -3817 ((-1173) $)) (-15 -1541 ((-1020) $)) (-15 -1265 ((-1034) (-1034)))))) (T -306)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-306)))) (-3813 (*1 *1 *2 *1) (-12 (-5 *2 (-1009 (-883 (-523)))) (-5 *1 (-306)))) (-3813 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1009 (-883 (-523)))) (-5 *3 (-883 (-523))) (-5 *1 (-306)))) (-3690 (*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) (-1495 (*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) (-1242 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-306)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-306)))) (-2547 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-306)))) (-3423 (*1 *1) (-5 *1 (-306))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-292 (-638))) (-5 *1 (-306)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-292 (-640))) (-5 *1 (-306)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-292 (-633))) (-5 *1 (-306)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-306)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-306)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-292 (-155 (-355)))) (-5 *1 (-306)))) (-3649 (*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) (-3649 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1070)) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-640))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-638))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-633))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-640))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-638))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-633))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-640))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-638))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-633))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-640)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-638)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-633)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-640)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-638)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-633)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-640))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-638))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-633))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-523))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-355))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-155 (-355)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-523)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-355)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-155 (-355))))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-523)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-355)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-155 (-355))))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-523))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-355))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-155 (-355)))) (-5 *1 (-306)))) (-3890 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-5 *1 (-306)))) (-3628 (*1 *1) (-5 *1 (-306))) (-2943 (*1 *1) (-5 *1 (-306))) (-1872 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-306)))) (-2337 (*1 *1 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1087)) (-5 *1 (-306)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-306)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1087)) (|:| |arrayIndex| (-589 (-883 (-523)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1086)) (|:| |thenClause| (-306)) (|:| |elseClause| (-306)))) (|:| |returnBranch| (-2 (|:| -3883 (-108)) (|:| -1733 (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |blockBranch| (-589 (-306))) (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) (|:| |forBranch| (-2 (|:| -3499 (-1009 (-883 (-523)))) (|:| |span| (-883 (-523))) (|:| -3913 (-306)))) (|:| |labelBranch| (-1034)) (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -3913 (-306)))) (|:| |commonBranch| (-2 (|:| -4038 (-1087)) (|:| |contents| (-589 (-1087))))) (|:| |printBranch| (-589 (-794))))) (-5 *1 (-306)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-306)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-306)))) (-1265 (*1 *2 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306))))) -(-13 (-1016) (-10 -8 (-15 -1458 ((-794) $)) (-15 -3813 ($ (-1009 (-883 (-523))) $)) (-15 -3813 ($ (-1009 (-883 (-523))) (-883 (-523)) $)) (-15 -3690 ($ (-1086) $)) (-15 -1495 ($ (-1086) $)) (-15 -1242 ($ (-1034))) (-15 -3136 ($ (-1034))) (-15 -3953 ($ (-1070))) (-15 -3953 ($ (-589 (-1070)))) (-15 -2547 ($ (-1070))) (-15 -3423 ($)) (-15 -3423 ($ (-292 (-638)))) (-15 -3423 ($ (-292 (-640)))) (-15 -3423 ($ (-292 (-633)))) (-15 -3423 ($ (-292 (-355)))) (-15 -3423 ($ (-292 (-523)))) (-15 -3423 ($ (-292 (-155 (-355))))) (-15 -3649 ($ (-1086) $)) (-15 -3649 ($ (-1086) $ $)) (-15 -3122 ($ (-1087) (-1070))) (-15 -3122 ($ (-1087) (-292 (-640)))) (-15 -3122 ($ (-1087) (-292 (-638)))) (-15 -3122 ($ (-1087) (-292 (-633)))) (-15 -3122 ($ (-1087) (-629 (-640)))) (-15 -3122 ($ (-1087) (-629 (-638)))) (-15 -3122 ($ (-1087) (-629 (-633)))) (-15 -3122 ($ (-1087) (-1168 (-640)))) (-15 -3122 ($ (-1087) (-1168 (-638)))) (-15 -3122 ($ (-1087) (-1168 (-633)))) (-15 -3122 ($ (-1087) (-629 (-292 (-640))))) (-15 -3122 ($ (-1087) (-629 (-292 (-638))))) (-15 -3122 ($ (-1087) (-629 (-292 (-633))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-640))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-638))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-633))))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-640)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-638)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-633)))) (-15 -3122 ($ (-1087) (-292 (-523)))) (-15 -3122 ($ (-1087) (-292 (-355)))) (-15 -3122 ($ (-1087) (-292 (-155 (-355))))) (-15 -3122 ($ (-1087) (-629 (-292 (-523))))) (-15 -3122 ($ (-1087) (-629 (-292 (-355))))) (-15 -3122 ($ (-1087) (-629 (-292 (-155 (-355)))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-523))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-355))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-155 (-355)))))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-523)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-355)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-155 (-355))))) (-15 -3890 ($ (-589 $))) (-15 -3628 ($)) (-15 -2943 ($)) (-15 -1872 ($ (-589 (-794)))) (-15 -2337 ($ (-1087) (-589 (-1087)))) (-15 -3464 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3189 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1087)) (|:| |arrayIndex| (-589 (-883 (-523)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1086)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3883 (-108)) (|:| -1733 (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |blockBranch| (-589 $)) (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) (|:| |forBranch| (-2 (|:| -3499 (-1009 (-883 (-523)))) (|:| |span| (-883 (-523))) (|:| -3913 $))) (|:| |labelBranch| (-1034)) (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -3913 $))) (|:| |commonBranch| (-2 (|:| -4038 (-1087)) (|:| |contents| (-589 (-1087))))) (|:| |printBranch| (-589 (-794)))) $)) (-15 -3817 ((-1173) $)) (-15 -1541 ((-1020) $)) (-15 -1265 ((-1034) (-1034))))) -((-3924 (((-108) $ $) NIL)) (-2207 (((-108) $) 11)) (-3711 (($ |#1|) 8)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3767 (($ |#1|) 9)) (-1458 (((-794) $) 17)) (-2135 ((|#1| $) 12)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 19))) -(((-307 |#1|) (-13 (-786) (-10 -8 (-15 -3711 ($ |#1|)) (-15 -3767 ($ |#1|)) (-15 -2207 ((-108) $)) (-15 -2135 (|#1| $)))) (-786)) (T -307)) -((-3711 (*1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) (-3767 (*1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-307 *3)) (-4 *3 (-786)))) (-2135 (*1 *2 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786))))) -(-13 (-786) (-10 -8 (-15 -3711 ($ |#1|)) (-15 -3767 ($ |#1|)) (-15 -2207 ((-108) $)) (-15 -2135 (|#1| $)))) -((-3420 (((-306) (-1087) (-883 (-523))) 22)) (-3928 (((-306) (-1087) (-883 (-523))) 26)) (-1785 (((-306) (-1087) (-1009 (-883 (-523))) (-1009 (-883 (-523)))) 25) (((-306) (-1087) (-883 (-523)) (-883 (-523))) 23)) (-2469 (((-306) (-1087) (-883 (-523))) 30))) -(((-308) (-10 -7 (-15 -3420 ((-306) (-1087) (-883 (-523)))) (-15 -1785 ((-306) (-1087) (-883 (-523)) (-883 (-523)))) (-15 -1785 ((-306) (-1087) (-1009 (-883 (-523))) (-1009 (-883 (-523))))) (-15 -3928 ((-306) (-1087) (-883 (-523)))) (-15 -2469 ((-306) (-1087) (-883 (-523)))))) (T -308)) -((-2469 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) (-5 *1 (-308)))) (-3928 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) (-5 *1 (-308)))) (-1785 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-1009 (-883 (-523)))) (-5 *2 (-306)) (-5 *1 (-308)))) (-1785 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) (-5 *1 (-308)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) (-5 *1 (-308))))) -(-10 -7 (-15 -3420 ((-306) (-1087) (-883 (-523)))) (-15 -1785 ((-306) (-1087) (-883 (-523)) (-883 (-523)))) (-15 -1785 ((-306) (-1087) (-1009 (-883 (-523))) (-1009 (-883 (-523))))) (-15 -3928 ((-306) (-1087) (-883 (-523)))) (-15 -2469 ((-306) (-1087) (-883 (-523))))) -((-3612 (((-312 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-312 |#1| |#2| |#3| |#4|)) 31))) -(((-309 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3612 ((-312 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-312 |#1| |#2| |#3| |#4|)))) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|) (-339) (-1144 |#5|) (-1144 (-383 |#6|)) (-318 |#5| |#6| |#7|)) (T -309)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-312 *5 *6 *7 *8)) (-4 *5 (-339)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) (-4 *9 (-339)) (-4 *10 (-1144 *9)) (-4 *11 (-1144 (-383 *10))) (-5 *2 (-312 *9 *10 *11 *12)) (-5 *1 (-309 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-318 *9 *10 *11))))) -(-10 -7 (-15 -3612 ((-312 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-312 |#1| |#2| |#3| |#4|)))) -((-1894 (((-108) $) 14))) -(((-310 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1894 ((-108) |#1|))) (-311 |#2| |#3| |#4| |#5|) (-339) (-1144 |#2|) (-1144 (-383 |#3|)) (-318 |#2| |#3| |#4|)) (T -310)) -NIL -(-10 -8 (-15 -1894 ((-108) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2437 (($ $) 26)) (-1894 (((-108) $) 25)) (-3779 (((-1070) $) 9)) (-1485 (((-389 |#2| (-383 |#2|) |#3| |#4|) $) 32)) (-2783 (((-1034) $) 10)) (-3441 (((-3 |#4| "failed") $) 24)) (-3219 (($ (-389 |#2| (-383 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-523)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2274 (((-2 (|:| -3024 (-389 |#2| (-383 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20))) -(((-311 |#1| |#2| |#3| |#4|) (-129) (-339) (-1144 |t#1|) (-1144 (-383 |t#2|)) (-318 |t#1| |t#2| |t#3|)) (T -311)) -((-1485 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-5 *2 (-389 *4 (-383 *4) *5 *6)))) (-3219 (*1 *1 *2) (-12 (-5 *2 (-389 *4 (-383 *4) *5 *6)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-4 *3 (-339)) (-4 *1 (-311 *3 *4 *5 *6)))) (-3219 (*1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *1 (-311 *3 *4 *5 *2)) (-4 *2 (-318 *3 *4 *5)))) (-3219 (*1 *1 *2 *2) (-12 (-4 *2 (-339)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-383 *3))) (-4 *1 (-311 *2 *3 *4 *5)) (-4 *5 (-318 *2 *3 *4)))) (-3219 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-523)) (-4 *2 (-339)) (-4 *4 (-1144 *2)) (-4 *5 (-1144 (-383 *4))) (-4 *1 (-311 *2 *4 *5 *6)) (-4 *6 (-318 *2 *4 *5)))) (-2274 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-5 *2 (-2 (|:| -3024 (-389 *4 (-383 *4) *5 *6)) (|:| |principalPart| *6))))) (-2437 (*1 *1 *1) (-12 (-4 *1 (-311 *2 *3 *4 *5)) (-4 *2 (-339)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-383 *3))) (-4 *5 (-318 *2 *3 *4)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-5 *2 (-108)))) (-3441 (*1 *2 *1) (|partial| -12 (-4 *1 (-311 *3 *4 *5 *2)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *2 (-318 *3 *4 *5)))) (-3219 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-339)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-383 *3))) (-4 *1 (-311 *4 *3 *5 *2)) (-4 *2 (-318 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1485 ((-389 |t#2| (-383 |t#2|) |t#3| |t#4|) $)) (-15 -3219 ($ (-389 |t#2| (-383 |t#2|) |t#3| |t#4|))) (-15 -3219 ($ |t#4|)) (-15 -3219 ($ |t#1| |t#1|)) (-15 -3219 ($ |t#1| |t#1| (-523))) (-15 -2274 ((-2 (|:| -3024 (-389 |t#2| (-383 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2437 ($ $)) (-15 -1894 ((-108) $)) (-15 -3441 ((-3 |t#4| "failed") $)) (-15 -3219 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +((-3760 (*1 *2) (-12 (-4 *3 (-339)) (-5 *2 (-1169 *1)) (-4 *1 (-305 *3)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-852)) (-4 *4 (-339)) (-5 *2 (-1169 *1)) (-4 *1 (-305 *4)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1169 *3)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-305 *4)) (-4 *4 (-339)) (-5 *2 (-629 *4)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-339)) (-4 *1 (-305 *3)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1083 *3)))) (-2762 (*1 *2) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1083 *3)))) (-2151 (*1 *2) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-852)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-852)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-339)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-339)))) (-2887 (*1 *2 *1 *3) (-12 (-5 *3 (-852)) (-4 *4 (-344)) (-4 *4 (-339)) (-5 *2 (-1083 *1)) (-4 *1 (-305 *4)))) (-1863 (*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) (-1477 (*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) (-1614 (*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) (-3753 (*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-108)))) (-1621 (*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *1 (-305 *3)) (-4 *3 (-339)))) (-4183 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-1083 *3)))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-1083 *3)))) (-1455 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-1083 *3))))) +(-13 (-1186 |t#1|) (-964 |t#1|) (-10 -8 (-15 -3760 ((-1169 $))) (-15 -3760 ((-1169 $) (-852))) (-15 -2906 ((-1169 |t#1|) $)) (-15 -2906 ((-629 |t#1|) (-1169 $))) (-15 -2754 ($ (-1169 |t#1|))) (-15 -2887 ((-1083 |t#1|) $)) (-15 -2762 ((-1083 |t#1|))) (-15 -2151 ((-852))) (-15 -2640 ((-852) $)) (-15 -1863 (|t#1| $)) (-15 -1477 (|t#1| $)) (IF (|has| |t#1| (-344)) (PROGN (-6 (-325)) (-15 -2887 ((-1083 $) $ (-852))) (-15 -1863 ($ $ (-852))) (-15 -1477 ($ $ (-852))) (-15 -1614 ($)) (-15 -3753 ($)) (-15 -2706 ((-108) $)) (-15 -1621 ($)) (-15 -1605 ($ $ (-1083 |t#1|))) (-15 -4183 ((-1083 |t#1|) $)) (-15 -1455 ((-1083 |t#1|) $)) (-15 -1455 ((-3 (-1083 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3172 (|has| |#1| (-344)) (|has| |#1| (-134))) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-211) |has| |#1| (-344)) ((-221) . T) ((-267) . T) ((-284) . T) ((-1186 |#1|) . T) ((-339) . T) ((-378) -3172 (|has| |#1| (-344)) (|has| |#1| (-134))) ((-344) |has| |#1| (-344)) ((-325) |has| |#1| (-344)) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-964 |#1|) . T) ((-979 #0#) . T) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-344)) ((-1127) . T) ((-1176 |#1|) . T)) +((-1680 (((-108) $ $) NIL)) (-3645 (($ (-1086) $) 88)) (-1834 (($) 76)) (-3987 (((-1034) (-1034)) 11)) (-3544 (($) 77)) (-2874 (($) 90) (($ (-292 (-638))) 96) (($ (-292 (-640))) 93) (($ (-292 (-633))) 99) (($ (-292 (-355))) 105) (($ (-292 (-523))) 102) (($ (-292 (-155 (-355)))) 108)) (-1533 (($ (-1086) $) 89)) (-1878 (($ (-589 (-794))) 79)) (-2322 (((-1174) $) 73)) (-1516 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3721 (($ (-1034)) 45)) (-3728 (((-1020) $) 25)) (-2288 (($ (-1009 (-883 (-523))) $) 85) (($ (-1009 (-883 (-523))) (-883 (-523)) $) 86)) (-3793 (($ (-1034)) 87)) (-3711 (($ (-1086) $) 110) (($ (-1086) $ $) 111)) (-2867 (($ (-1087) (-589 (-1087))) 75)) (-2112 (($ (-1070)) 82) (($ (-589 (-1070))) 80)) (-1691 (((-794) $) 113)) (-2108 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1087)) (|:| |arrayIndex| (-589 (-883 (-523)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2685 (-794)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1086)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1777 (-108)) (|:| -3370 (-2 (|:| |ints2Floats?| (-108)) (|:| -2685 (-794)))))) (|:| |blockBranch| (-589 $)) (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) (|:| |forBranch| (-2 (|:| -2464 (-1009 (-883 (-523)))) (|:| |span| (-883 (-523))) (|:| -4039 $))) (|:| |labelBranch| (-1034)) (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -4039 $))) (|:| |commonBranch| (-2 (|:| -4198 (-1087)) (|:| |contents| (-589 (-1087))))) (|:| |printBranch| (-589 (-794)))) $) 37)) (-2599 (($ (-1070)) 182)) (-1843 (($ (-589 $)) 109)) (-1986 (($ (-1087) (-1070)) 115) (($ (-1087) (-292 (-640))) 155) (($ (-1087) (-292 (-638))) 156) (($ (-1087) (-292 (-633))) 157) (($ (-1087) (-629 (-640))) 118) (($ (-1087) (-629 (-638))) 121) (($ (-1087) (-629 (-633))) 124) (($ (-1087) (-1169 (-640))) 127) (($ (-1087) (-1169 (-638))) 130) (($ (-1087) (-1169 (-633))) 133) (($ (-1087) (-629 (-292 (-640)))) 136) (($ (-1087) (-629 (-292 (-638)))) 139) (($ (-1087) (-629 (-292 (-633)))) 142) (($ (-1087) (-1169 (-292 (-640)))) 145) (($ (-1087) (-1169 (-292 (-638)))) 148) (($ (-1087) (-1169 (-292 (-633)))) 151) (($ (-1087) (-589 (-883 (-523))) (-292 (-640))) 152) (($ (-1087) (-589 (-883 (-523))) (-292 (-638))) 153) (($ (-1087) (-589 (-883 (-523))) (-292 (-633))) 154) (($ (-1087) (-292 (-523))) 179) (($ (-1087) (-292 (-355))) 180) (($ (-1087) (-292 (-155 (-355)))) 181) (($ (-1087) (-629 (-292 (-523)))) 160) (($ (-1087) (-629 (-292 (-355)))) 163) (($ (-1087) (-629 (-292 (-155 (-355))))) 166) (($ (-1087) (-1169 (-292 (-523)))) 169) (($ (-1087) (-1169 (-292 (-355)))) 172) (($ (-1087) (-1169 (-292 (-155 (-355))))) 175) (($ (-1087) (-589 (-883 (-523))) (-292 (-523))) 176) (($ (-1087) (-589 (-883 (-523))) (-292 (-355))) 177) (($ (-1087) (-589 (-883 (-523))) (-292 (-155 (-355)))) 178)) (-3941 (((-108) $ $) NIL))) +(((-306) (-13 (-1016) (-10 -8 (-15 -1691 ((-794) $)) (-15 -2288 ($ (-1009 (-883 (-523))) $)) (-15 -2288 ($ (-1009 (-883 (-523))) (-883 (-523)) $)) (-15 -3645 ($ (-1086) $)) (-15 -1533 ($ (-1086) $)) (-15 -3721 ($ (-1034))) (-15 -3793 ($ (-1034))) (-15 -2112 ($ (-1070))) (-15 -2112 ($ (-589 (-1070)))) (-15 -2599 ($ (-1070))) (-15 -2874 ($)) (-15 -2874 ($ (-292 (-638)))) (-15 -2874 ($ (-292 (-640)))) (-15 -2874 ($ (-292 (-633)))) (-15 -2874 ($ (-292 (-355)))) (-15 -2874 ($ (-292 (-523)))) (-15 -2874 ($ (-292 (-155 (-355))))) (-15 -3711 ($ (-1086) $)) (-15 -3711 ($ (-1086) $ $)) (-15 -1986 ($ (-1087) (-1070))) (-15 -1986 ($ (-1087) (-292 (-640)))) (-15 -1986 ($ (-1087) (-292 (-638)))) (-15 -1986 ($ (-1087) (-292 (-633)))) (-15 -1986 ($ (-1087) (-629 (-640)))) (-15 -1986 ($ (-1087) (-629 (-638)))) (-15 -1986 ($ (-1087) (-629 (-633)))) (-15 -1986 ($ (-1087) (-1169 (-640)))) (-15 -1986 ($ (-1087) (-1169 (-638)))) (-15 -1986 ($ (-1087) (-1169 (-633)))) (-15 -1986 ($ (-1087) (-629 (-292 (-640))))) (-15 -1986 ($ (-1087) (-629 (-292 (-638))))) (-15 -1986 ($ (-1087) (-629 (-292 (-633))))) (-15 -1986 ($ (-1087) (-1169 (-292 (-640))))) (-15 -1986 ($ (-1087) (-1169 (-292 (-638))))) (-15 -1986 ($ (-1087) (-1169 (-292 (-633))))) (-15 -1986 ($ (-1087) (-589 (-883 (-523))) (-292 (-640)))) (-15 -1986 ($ (-1087) (-589 (-883 (-523))) (-292 (-638)))) (-15 -1986 ($ (-1087) (-589 (-883 (-523))) (-292 (-633)))) (-15 -1986 ($ (-1087) (-292 (-523)))) (-15 -1986 ($ (-1087) (-292 (-355)))) (-15 -1986 ($ (-1087) (-292 (-155 (-355))))) (-15 -1986 ($ (-1087) (-629 (-292 (-523))))) (-15 -1986 ($ (-1087) (-629 (-292 (-355))))) (-15 -1986 ($ (-1087) (-629 (-292 (-155 (-355)))))) (-15 -1986 ($ (-1087) (-1169 (-292 (-523))))) (-15 -1986 ($ (-1087) (-1169 (-292 (-355))))) (-15 -1986 ($ (-1087) (-1169 (-292 (-155 (-355)))))) (-15 -1986 ($ (-1087) (-589 (-883 (-523))) (-292 (-523)))) (-15 -1986 ($ (-1087) (-589 (-883 (-523))) (-292 (-355)))) (-15 -1986 ($ (-1087) (-589 (-883 (-523))) (-292 (-155 (-355))))) (-15 -1843 ($ (-589 $))) (-15 -1834 ($)) (-15 -3544 ($)) (-15 -1878 ($ (-589 (-794)))) (-15 -2867 ($ (-1087) (-589 (-1087)))) (-15 -1516 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2108 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1087)) (|:| |arrayIndex| (-589 (-883 (-523)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2685 (-794)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1086)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1777 (-108)) (|:| -3370 (-2 (|:| |ints2Floats?| (-108)) (|:| -2685 (-794)))))) (|:| |blockBranch| (-589 $)) (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) (|:| |forBranch| (-2 (|:| -2464 (-1009 (-883 (-523)))) (|:| |span| (-883 (-523))) (|:| -4039 $))) (|:| |labelBranch| (-1034)) (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -4039 $))) (|:| |commonBranch| (-2 (|:| -4198 (-1087)) (|:| |contents| (-589 (-1087))))) (|:| |printBranch| (-589 (-794)))) $)) (-15 -2322 ((-1174) $)) (-15 -3728 ((-1020) $)) (-15 -3987 ((-1034) (-1034)))))) (T -306)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-306)))) (-2288 (*1 *1 *2 *1) (-12 (-5 *2 (-1009 (-883 (-523)))) (-5 *1 (-306)))) (-2288 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1009 (-883 (-523)))) (-5 *3 (-883 (-523))) (-5 *1 (-306)))) (-3645 (*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) (-1533 (*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) (-3721 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306)))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-306)))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-306)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-306)))) (-2874 (*1 *1) (-5 *1 (-306))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-292 (-638))) (-5 *1 (-306)))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-292 (-640))) (-5 *1 (-306)))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-292 (-633))) (-5 *1 (-306)))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-306)))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-306)))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-292 (-155 (-355)))) (-5 *1 (-306)))) (-3711 (*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) (-3711 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1070)) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-640))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-638))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-633))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-640))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-638))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-633))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-640))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-638))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-633))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-640)))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-638)))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-633)))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-292 (-640)))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-292 (-638)))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-292 (-633)))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-640))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-638))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-633))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-523))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-355))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-155 (-355)))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-523)))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-355)))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-155 (-355))))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-292 (-523)))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-292 (-355)))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-292 (-155 (-355))))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-523))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-355))) (-5 *1 (-306)))) (-1986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-155 (-355)))) (-5 *1 (-306)))) (-1843 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-5 *1 (-306)))) (-1834 (*1 *1) (-5 *1 (-306))) (-3544 (*1 *1) (-5 *1 (-306))) (-1878 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-306)))) (-2867 (*1 *1 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1087)) (-5 *1 (-306)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-306)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1087)) (|:| |arrayIndex| (-589 (-883 (-523)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2685 (-794)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1086)) (|:| |thenClause| (-306)) (|:| |elseClause| (-306)))) (|:| |returnBranch| (-2 (|:| -1777 (-108)) (|:| -3370 (-2 (|:| |ints2Floats?| (-108)) (|:| -2685 (-794)))))) (|:| |blockBranch| (-589 (-306))) (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) (|:| |forBranch| (-2 (|:| -2464 (-1009 (-883 (-523)))) (|:| |span| (-883 (-523))) (|:| -4039 (-306)))) (|:| |labelBranch| (-1034)) (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -4039 (-306)))) (|:| |commonBranch| (-2 (|:| -4198 (-1087)) (|:| |contents| (-589 (-1087))))) (|:| |printBranch| (-589 (-794))))) (-5 *1 (-306)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-306)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-306)))) (-3987 (*1 *2 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306))))) +(-13 (-1016) (-10 -8 (-15 -1691 ((-794) $)) (-15 -2288 ($ (-1009 (-883 (-523))) $)) (-15 -2288 ($ (-1009 (-883 (-523))) (-883 (-523)) $)) (-15 -3645 ($ (-1086) $)) (-15 -1533 ($ (-1086) $)) (-15 -3721 ($ (-1034))) (-15 -3793 ($ (-1034))) (-15 -2112 ($ (-1070))) (-15 -2112 ($ (-589 (-1070)))) (-15 -2599 ($ (-1070))) (-15 -2874 ($)) (-15 -2874 ($ (-292 (-638)))) (-15 -2874 ($ (-292 (-640)))) (-15 -2874 ($ (-292 (-633)))) (-15 -2874 ($ (-292 (-355)))) (-15 -2874 ($ (-292 (-523)))) (-15 -2874 ($ (-292 (-155 (-355))))) (-15 -3711 ($ (-1086) $)) (-15 -3711 ($ (-1086) $ $)) (-15 -1986 ($ (-1087) (-1070))) (-15 -1986 ($ (-1087) (-292 (-640)))) (-15 -1986 ($ (-1087) (-292 (-638)))) (-15 -1986 ($ (-1087) (-292 (-633)))) (-15 -1986 ($ (-1087) (-629 (-640)))) (-15 -1986 ($ (-1087) (-629 (-638)))) (-15 -1986 ($ (-1087) (-629 (-633)))) (-15 -1986 ($ (-1087) (-1169 (-640)))) (-15 -1986 ($ (-1087) (-1169 (-638)))) (-15 -1986 ($ (-1087) (-1169 (-633)))) (-15 -1986 ($ (-1087) (-629 (-292 (-640))))) (-15 -1986 ($ (-1087) (-629 (-292 (-638))))) (-15 -1986 ($ (-1087) (-629 (-292 (-633))))) (-15 -1986 ($ (-1087) (-1169 (-292 (-640))))) (-15 -1986 ($ (-1087) (-1169 (-292 (-638))))) (-15 -1986 ($ (-1087) (-1169 (-292 (-633))))) (-15 -1986 ($ (-1087) (-589 (-883 (-523))) (-292 (-640)))) (-15 -1986 ($ (-1087) (-589 (-883 (-523))) (-292 (-638)))) (-15 -1986 ($ (-1087) (-589 (-883 (-523))) (-292 (-633)))) (-15 -1986 ($ (-1087) (-292 (-523)))) (-15 -1986 ($ (-1087) (-292 (-355)))) (-15 -1986 ($ (-1087) (-292 (-155 (-355))))) (-15 -1986 ($ (-1087) (-629 (-292 (-523))))) (-15 -1986 ($ (-1087) (-629 (-292 (-355))))) (-15 -1986 ($ (-1087) (-629 (-292 (-155 (-355)))))) (-15 -1986 ($ (-1087) (-1169 (-292 (-523))))) (-15 -1986 ($ (-1087) (-1169 (-292 (-355))))) (-15 -1986 ($ (-1087) (-1169 (-292 (-155 (-355)))))) (-15 -1986 ($ (-1087) (-589 (-883 (-523))) (-292 (-523)))) (-15 -1986 ($ (-1087) (-589 (-883 (-523))) (-292 (-355)))) (-15 -1986 ($ (-1087) (-589 (-883 (-523))) (-292 (-155 (-355))))) (-15 -1843 ($ (-589 $))) (-15 -1834 ($)) (-15 -3544 ($)) (-15 -1878 ($ (-589 (-794)))) (-15 -2867 ($ (-1087) (-589 (-1087)))) (-15 -1516 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2108 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1087)) (|:| |arrayIndex| (-589 (-883 (-523)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2685 (-794)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1086)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1777 (-108)) (|:| -3370 (-2 (|:| |ints2Floats?| (-108)) (|:| -2685 (-794)))))) (|:| |blockBranch| (-589 $)) (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) (|:| |forBranch| (-2 (|:| -2464 (-1009 (-883 (-523)))) (|:| |span| (-883 (-523))) (|:| -4039 $))) (|:| |labelBranch| (-1034)) (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -4039 $))) (|:| |commonBranch| (-2 (|:| -4198 (-1087)) (|:| |contents| (-589 (-1087))))) (|:| |printBranch| (-589 (-794)))) $)) (-15 -2322 ((-1174) $)) (-15 -3728 ((-1020) $)) (-15 -3987 ((-1034) (-1034))))) +((-1680 (((-108) $ $) NIL)) (-4123 (((-108) $) 11)) (-1260 (($ |#1|) 8)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1274 (($ |#1|) 9)) (-1691 (((-794) $) 17)) (-1572 ((|#1| $) 12)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 19))) +(((-307 |#1|) (-13 (-786) (-10 -8 (-15 -1260 ($ |#1|)) (-15 -1274 ($ |#1|)) (-15 -4123 ((-108) $)) (-15 -1572 (|#1| $)))) (-786)) (T -307)) +((-1260 (*1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) (-1274 (*1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-307 *3)) (-4 *3 (-786)))) (-1572 (*1 *2 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786))))) +(-13 (-786) (-10 -8 (-15 -1260 ($ |#1|)) (-15 -1274 ($ |#1|)) (-15 -4123 ((-108) $)) (-15 -1572 (|#1| $)))) +((-2841 (((-306) (-1087) (-883 (-523))) 22)) (-3998 (((-306) (-1087) (-883 (-523))) 26)) (-2300 (((-306) (-1087) (-1009 (-883 (-523))) (-1009 (-883 (-523)))) 25) (((-306) (-1087) (-883 (-523)) (-883 (-523))) 23)) (-1888 (((-306) (-1087) (-883 (-523))) 30))) +(((-308) (-10 -7 (-15 -2841 ((-306) (-1087) (-883 (-523)))) (-15 -2300 ((-306) (-1087) (-883 (-523)) (-883 (-523)))) (-15 -2300 ((-306) (-1087) (-1009 (-883 (-523))) (-1009 (-883 (-523))))) (-15 -3998 ((-306) (-1087) (-883 (-523)))) (-15 -1888 ((-306) (-1087) (-883 (-523)))))) (T -308)) +((-1888 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) (-5 *1 (-308)))) (-3998 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) (-5 *1 (-308)))) (-2300 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-1009 (-883 (-523)))) (-5 *2 (-306)) (-5 *1 (-308)))) (-2300 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) (-5 *1 (-308)))) (-2841 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) (-5 *1 (-308))))) +(-10 -7 (-15 -2841 ((-306) (-1087) (-883 (-523)))) (-15 -2300 ((-306) (-1087) (-883 (-523)) (-883 (-523)))) (-15 -2300 ((-306) (-1087) (-1009 (-883 (-523))) (-1009 (-883 (-523))))) (-15 -3998 ((-306) (-1087) (-883 (-523)))) (-15 -1888 ((-306) (-1087) (-883 (-523))))) +((-1345 (((-312 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-312 |#1| |#2| |#3| |#4|)) 31))) +(((-309 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1345 ((-312 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-312 |#1| |#2| |#3| |#4|)))) (-339) (-1145 |#1|) (-1145 (-383 |#2|)) (-318 |#1| |#2| |#3|) (-339) (-1145 |#5|) (-1145 (-383 |#6|)) (-318 |#5| |#6| |#7|)) (T -309)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-312 *5 *6 *7 *8)) (-4 *5 (-339)) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) (-4 *9 (-339)) (-4 *10 (-1145 *9)) (-4 *11 (-1145 (-383 *10))) (-5 *2 (-312 *9 *10 *11 *12)) (-5 *1 (-309 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-318 *9 *10 *11))))) +(-10 -7 (-15 -1345 ((-312 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-312 |#1| |#2| |#3| |#4|)))) +((-3878 (((-108) $) 14))) +(((-310 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3878 ((-108) |#1|))) (-311 |#2| |#3| |#4| |#5|) (-339) (-1145 |#2|) (-1145 (-383 |#3|)) (-318 |#2| |#3| |#4|)) (T -310)) +NIL +(-10 -8 (-15 -3878 ((-108) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2116 (($ $) 26)) (-3878 (((-108) $) 25)) (-2032 (((-1070) $) 9)) (-1433 (((-389 |#2| (-383 |#2|) |#3| |#4|) $) 32)) (-3951 (((-1034) $) 10)) (-1621 (((-3 |#4| "failed") $) 24)) (-3483 (($ (-389 |#2| (-383 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-523)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3530 (((-2 (|:| -3697 (-389 |#2| (-383 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1691 (((-794) $) 11)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20))) +(((-311 |#1| |#2| |#3| |#4|) (-129) (-339) (-1145 |t#1|) (-1145 (-383 |t#2|)) (-318 |t#1| |t#2| |t#3|)) (T -311)) +((-1433 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-5 *2 (-389 *4 (-383 *4) *5 *6)))) (-3483 (*1 *1 *2) (-12 (-5 *2 (-389 *4 (-383 *4) *5 *6)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-4 *3 (-339)) (-4 *1 (-311 *3 *4 *5 *6)))) (-3483 (*1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-4 *1 (-311 *3 *4 *5 *2)) (-4 *2 (-318 *3 *4 *5)))) (-3483 (*1 *1 *2 *2) (-12 (-4 *2 (-339)) (-4 *3 (-1145 *2)) (-4 *4 (-1145 (-383 *3))) (-4 *1 (-311 *2 *3 *4 *5)) (-4 *5 (-318 *2 *3 *4)))) (-3483 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-523)) (-4 *2 (-339)) (-4 *4 (-1145 *2)) (-4 *5 (-1145 (-383 *4))) (-4 *1 (-311 *2 *4 *5 *6)) (-4 *6 (-318 *2 *4 *5)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-5 *2 (-2 (|:| -3697 (-389 *4 (-383 *4) *5 *6)) (|:| |principalPart| *6))))) (-2116 (*1 *1 *1) (-12 (-4 *1 (-311 *2 *3 *4 *5)) (-4 *2 (-339)) (-4 *3 (-1145 *2)) (-4 *4 (-1145 (-383 *3))) (-4 *5 (-318 *2 *3 *4)))) (-3878 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-5 *2 (-108)))) (-1621 (*1 *2 *1) (|partial| -12 (-4 *1 (-311 *3 *4 *5 *2)) (-4 *3 (-339)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-4 *2 (-318 *3 *4 *5)))) (-3483 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-339)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 (-383 *3))) (-4 *1 (-311 *4 *3 *5 *2)) (-4 *2 (-318 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1433 ((-389 |t#2| (-383 |t#2|) |t#3| |t#4|) $)) (-15 -3483 ($ (-389 |t#2| (-383 |t#2|) |t#3| |t#4|))) (-15 -3483 ($ |t#4|)) (-15 -3483 ($ |t#1| |t#1|)) (-15 -3483 ($ |t#1| |t#1| (-523))) (-15 -3530 ((-2 (|:| -3697 (-389 |t#2| (-383 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2116 ($ $)) (-15 -3878 ((-108) $)) (-15 -1621 ((-3 |t#4| "failed") $)) (-15 -3483 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2437 (($ $) 32)) (-1894 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-1558 (((-1168 |#4|) $) 124)) (-1485 (((-389 |#2| (-383 |#2|) |#3| |#4|) $) 30)) (-2783 (((-1034) $) NIL)) (-3441 (((-3 |#4| "failed") $) 35)) (-3352 (((-1168 |#4|) $) 117)) (-3219 (($ (-389 |#2| (-383 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-523)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-2274 (((-2 (|:| -3024 (-389 |#2| (-383 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-1458 (((-794) $) 17)) (-2756 (($) 14 T CONST)) (-3983 (((-108) $ $) 20)) (-4087 (($ $) 27) (($ $ $) NIL)) (-4075 (($ $ $) 25)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 23))) -(((-312 |#1| |#2| |#3| |#4|) (-13 (-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3352 ((-1168 |#4|) $)) (-15 -1558 ((-1168 |#4|) $)))) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -312)) -((-3352 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-1168 *6)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *6 (-318 *3 *4 *5)))) (-1558 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-1168 *6)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *6 (-318 *3 *4 *5))))) -(-13 (-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3352 ((-1168 |#4|) $)) (-15 -1558 ((-1168 |#4|) $)))) -((-2679 (($ $ (-1087) |#2|) NIL) (($ $ (-589 (-1087)) (-589 |#2|)) 18) (($ $ (-589 (-271 |#2|))) 14) (($ $ (-271 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-589 |#2|) (-589 |#2|)) NIL)) (-3223 (($ $ |#2|) 11))) -(((-313 |#1| |#2|) (-10 -8 (-15 -3223 (|#1| |#1| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-271 |#2|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 |#2|))) (-15 -2679 (|#1| |#1| (-1087) |#2|))) (-314 |#2|) (-1016)) (T -313)) -NIL -(-10 -8 (-15 -3223 (|#1| |#1| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-271 |#2|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 |#2|))) (-15 -2679 (|#1| |#1| (-1087) |#2|))) -((-3612 (($ (-1 |#1| |#1|) $) 6)) (-2679 (($ $ (-1087) |#1|) 17 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 16 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-589 (-271 |#1|))) 15 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 14 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-286 |#1|))) (($ $ (-589 |#1|) (-589 |#1|)) 12 (|has| |#1| (-286 |#1|)))) (-3223 (($ $ |#1|) 11 (|has| |#1| (-263 |#1| |#1|))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-2116 (($ $) 32)) (-3878 (((-108) $) NIL)) (-2032 (((-1070) $) NIL)) (-3872 (((-1169 |#4|) $) 125)) (-1433 (((-389 |#2| (-383 |#2|) |#3| |#4|) $) 30)) (-3951 (((-1034) $) NIL)) (-1621 (((-3 |#4| "failed") $) 35)) (-3386 (((-1169 |#4|) $) 118)) (-3483 (($ (-389 |#2| (-383 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-523)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-3530 (((-2 (|:| -3697 (-389 |#2| (-383 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-1691 (((-794) $) 17)) (-1879 (($) 14 T CONST)) (-3941 (((-108) $ $) 20)) (-4060 (($ $) 27) (($ $ $) NIL)) (-4045 (($ $ $) 25)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 23))) +(((-312 |#1| |#2| |#3| |#4|) (-13 (-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3386 ((-1169 |#4|) $)) (-15 -3872 ((-1169 |#4|) $)))) (-339) (-1145 |#1|) (-1145 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -312)) +((-3386 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-1169 *6)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *6 (-318 *3 *4 *5)))) (-3872 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-1169 *6)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *6 (-318 *3 *4 *5))))) +(-13 (-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3386 ((-1169 |#4|) $)) (-15 -3872 ((-1169 |#4|) $)))) +((-2812 (($ $ (-1087) |#2|) NIL) (($ $ (-589 (-1087)) (-589 |#2|)) 18) (($ $ (-589 (-271 |#2|))) 14) (($ $ (-271 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-589 |#2|) (-589 |#2|)) NIL)) (-1937 (($ $ |#2|) 11))) +(((-313 |#1| |#2|) (-10 -8 (-15 -1937 (|#1| |#1| |#2|)) (-15 -2812 (|#1| |#1| (-589 |#2|) (-589 |#2|))) (-15 -2812 (|#1| |#1| |#2| |#2|)) (-15 -2812 (|#1| |#1| (-271 |#2|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 |#2|))) (-15 -2812 (|#1| |#1| (-1087) |#2|))) (-314 |#2|) (-1016)) (T -313)) +NIL +(-10 -8 (-15 -1937 (|#1| |#1| |#2|)) (-15 -2812 (|#1| |#1| (-589 |#2|) (-589 |#2|))) (-15 -2812 (|#1| |#1| |#2| |#2|)) (-15 -2812 (|#1| |#1| (-271 |#2|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 |#2|))) (-15 -2812 (|#1| |#1| (-1087) |#2|))) +((-1345 (($ (-1 |#1| |#1|) $) 6)) (-2812 (($ $ (-1087) |#1|) 17 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 16 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-589 (-271 |#1|))) 15 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 14 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-286 |#1|))) (($ $ (-589 |#1|) (-589 |#1|)) 12 (|has| |#1| (-286 |#1|)))) (-1937 (($ $ |#1|) 11 (|has| |#1| (-263 |#1| |#1|))))) (((-314 |#1|) (-129) (-1016)) (T -314)) -((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-314 *3)) (-4 *3 (-1016))))) -(-13 (-10 -8 (-15 -3612 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-263 |t#1| |t#1|)) (-6 (-263 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-286 |t#1|)) (-6 (-286 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-484 (-1087) |t#1|)) (-6 (-484 (-1087) |t#1|)) |%noBranch|))) +((-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-314 *3)) (-4 *3 (-1016))))) +(-13 (-10 -8 (-15 -1345 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-263 |t#1| |t#1|)) (-6 (-263 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-286 |t#1|)) (-6 (-286 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-484 (-1087) |t#1|)) (-6 (-484 (-1087) |t#1|)) |%noBranch|))) (((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1087)) $) NIL)) (-3639 (((-108)) 88) (((-108) (-108)) 89)) (-3072 (((-589 (-562 $)) $) NIL)) (-1769 (($ $) NIL)) (-3780 (($ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2955 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL)) (-1832 (($ $) NIL)) (-1744 (($ $) NIL)) (-3711 (($ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-562 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-292 |#3|)) 70) (((-3 $ "failed") (-1087)) 94) (((-3 $ "failed") (-292 (-523))) 57 (|has| |#3| (-964 (-523)))) (((-3 $ "failed") (-383 (-883 (-523)))) 63 (|has| |#3| (-964 (-523)))) (((-3 $ "failed") (-883 (-523))) 58 (|has| |#3| (-964 (-523)))) (((-3 $ "failed") (-292 (-355))) 75 (|has| |#3| (-964 (-355)))) (((-3 $ "failed") (-383 (-883 (-355)))) 81 (|has| |#3| (-964 (-355)))) (((-3 $ "failed") (-883 (-355))) 76 (|has| |#3| (-964 (-355))))) (-3474 (((-562 $) $) NIL) ((|#3| $) NIL) (($ (-292 |#3|)) 71) (($ (-1087)) 95) (($ (-292 (-523))) 59 (|has| |#3| (-964 (-523)))) (($ (-383 (-883 (-523)))) 64 (|has| |#3| (-964 (-523)))) (($ (-883 (-523))) 60 (|has| |#3| (-964 (-523)))) (($ (-292 (-355))) 77 (|has| |#3| (-964 (-355)))) (($ (-383 (-883 (-355)))) 82 (|has| |#3| (-964 (-355)))) (($ (-883 (-355))) 78 (|has| |#3| (-964 (-355))))) (-2121 (((-3 $ "failed") $) NIL)) (-2820 (($) 10)) (-2361 (($ $) NIL) (($ (-589 $)) NIL)) (-1444 (((-589 (-110)) $) NIL)) (-1403 (((-110) (-110)) NIL)) (-2023 (((-108) $) NIL)) (-1557 (((-108) $) NIL (|has| $ (-964 (-523))))) (-1483 (((-1083 $) (-562 $)) NIL (|has| $ (-973)))) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 $ $) (-562 $)) NIL)) (-1363 (((-3 (-562 $) "failed") $) NIL)) (-1574 (($ $) 91)) (-2384 (($ $) NIL)) (-3779 (((-1070) $) NIL)) (-1771 (((-589 (-562 $)) $) NIL)) (-2868 (($ (-110) $) 90) (($ (-110) (-589 $)) NIL)) (-3259 (((-108) $ (-110)) NIL) (((-108) $ (-1087)) NIL)) (-2510 (((-710) $) NIL)) (-2783 (((-1034) $) NIL)) (-2585 (((-108) $ $) NIL) (((-108) $ (-1087)) NIL)) (-1811 (($ $) NIL)) (-4104 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2679 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3223 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) NIL)) (-3957 (($ $) NIL) (($ $ $) NIL)) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL)) (-3727 (($ $) NIL (|has| $ (-973)))) (-1757 (($ $) NIL)) (-3767 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-562 $)) NIL) (($ |#3|) NIL) (($ (-523)) NIL) (((-292 |#3|) $) 93)) (-1621 (((-710)) NIL)) (-3822 (($ $) NIL) (($ (-589 $)) NIL)) (-1950 (((-108) (-110)) NIL)) (-3847 (($ $) NIL)) (-3828 (($ $) NIL)) (-3838 (($ $) NIL)) (-2619 (($ $) NIL)) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2756 (($) 92 T CONST)) (-2767 (($) 22 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL))) -(((-315 |#1| |#2| |#3|) (-13 (-279) (-37 |#3|) (-964 |#3|) (-831 (-1087)) (-10 -8 (-15 -3474 ($ (-292 |#3|))) (-15 -3517 ((-3 $ "failed") (-292 |#3|))) (-15 -3474 ($ (-1087))) (-15 -3517 ((-3 $ "failed") (-1087))) (-15 -1458 ((-292 |#3|) $)) (IF (|has| |#3| (-964 (-523))) (PROGN (-15 -3474 ($ (-292 (-523)))) (-15 -3517 ((-3 $ "failed") (-292 (-523)))) (-15 -3474 ($ (-383 (-883 (-523))))) (-15 -3517 ((-3 $ "failed") (-383 (-883 (-523))))) (-15 -3474 ($ (-883 (-523)))) (-15 -3517 ((-3 $ "failed") (-883 (-523))))) |%noBranch|) (IF (|has| |#3| (-964 (-355))) (PROGN (-15 -3474 ($ (-292 (-355)))) (-15 -3517 ((-3 $ "failed") (-292 (-355)))) (-15 -3474 ($ (-383 (-883 (-355))))) (-15 -3517 ((-3 $ "failed") (-383 (-883 (-355))))) (-15 -3474 ($ (-883 (-355)))) (-15 -3517 ((-3 $ "failed") (-883 (-355))))) |%noBranch|) (-15 -2619 ($ $)) (-15 -1832 ($ $)) (-15 -1811 ($ $)) (-15 -2384 ($ $)) (-15 -1574 ($ $)) (-15 -3711 ($ $)) (-15 -3767 ($ $)) (-15 -3780 ($ $)) (-15 -3828 ($ $)) (-15 -3838 ($ $)) (-15 -3847 ($ $)) (-15 -1744 ($ $)) (-15 -1757 ($ $)) (-15 -1769 ($ $)) (-15 -2820 ($)) (-15 -1957 ((-589 (-1087)) $)) (-15 -3639 ((-108))) (-15 -3639 ((-108) (-108))))) (-589 (-1087)) (-589 (-1087)) (-363)) (T -315)) -((-3474 (*1 *1 *2) (-12 (-5 *2 (-292 *5)) (-4 *5 (-363)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 *5)) (-4 *5 (-363)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 *2)) (-14 *4 (-589 *2)) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 *2)) (-14 *4 (-589 *2)) (-4 *5 (-363)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-292 *5)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-523))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-523)))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 (-883 (-523)))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-883 (-523))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-523))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-355)))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 (-883 (-355)))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-883 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-2619 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1832 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1811 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-2384 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1574 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3711 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3767 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3780 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3828 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3847 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1744 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1757 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1769 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-2820 (*1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-315 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-363)))) (-3639 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363))))) -(-13 (-279) (-37 |#3|) (-964 |#3|) (-831 (-1087)) (-10 -8 (-15 -3474 ($ (-292 |#3|))) (-15 -3517 ((-3 $ "failed") (-292 |#3|))) (-15 -3474 ($ (-1087))) (-15 -3517 ((-3 $ "failed") (-1087))) (-15 -1458 ((-292 |#3|) $)) (IF (|has| |#3| (-964 (-523))) (PROGN (-15 -3474 ($ (-292 (-523)))) (-15 -3517 ((-3 $ "failed") (-292 (-523)))) (-15 -3474 ($ (-383 (-883 (-523))))) (-15 -3517 ((-3 $ "failed") (-383 (-883 (-523))))) (-15 -3474 ($ (-883 (-523)))) (-15 -3517 ((-3 $ "failed") (-883 (-523))))) |%noBranch|) (IF (|has| |#3| (-964 (-355))) (PROGN (-15 -3474 ($ (-292 (-355)))) (-15 -3517 ((-3 $ "failed") (-292 (-355)))) (-15 -3474 ($ (-383 (-883 (-355))))) (-15 -3517 ((-3 $ "failed") (-383 (-883 (-355))))) (-15 -3474 ($ (-883 (-355)))) (-15 -3517 ((-3 $ "failed") (-883 (-355))))) |%noBranch|) (-15 -2619 ($ $)) (-15 -1832 ($ $)) (-15 -1811 ($ $)) (-15 -2384 ($ $)) (-15 -1574 ($ $)) (-15 -3711 ($ $)) (-15 -3767 ($ $)) (-15 -3780 ($ $)) (-15 -3828 ($ $)) (-15 -3838 ($ $)) (-15 -3847 ($ $)) (-15 -1744 ($ $)) (-15 -1757 ($ $)) (-15 -1769 ($ $)) (-15 -2820 ($)) (-15 -1957 ((-589 (-1087)) $)) (-15 -3639 ((-108))) (-15 -3639 ((-108) (-108))))) -((-3612 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-316 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3612 (|#8| (-1 |#5| |#1|) |#4|))) (-1126) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|) (-1126) (-1144 |#5|) (-1144 (-383 |#6|)) (-318 |#5| |#6| |#7|)) (T -316)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1126)) (-4 *8 (-1126)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *9 (-1144 *8)) (-4 *2 (-318 *8 *9 *10)) (-5 *1 (-316 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-318 *5 *6 *7)) (-4 *10 (-1144 (-383 *9)))))) -(-10 -7 (-15 -3612 (|#8| (-1 |#5| |#1|) |#4|))) -((-1207 (((-2 (|:| |num| (-1168 |#3|)) (|:| |den| |#3|)) $) 38)) (-3409 (($ (-1168 (-383 |#3|)) (-1168 $)) NIL) (($ (-1168 (-383 |#3|))) NIL) (($ (-1168 |#3|) |#3|) 159)) (-2851 (((-1168 $) (-1168 $)) 143)) (-4072 (((-589 (-589 |#2|))) 116)) (-1374 (((-108) |#2| |#2|) 72)) (-2528 (($ $) 137)) (-3552 (((-710)) 31)) (-1215 (((-1168 $) (-1168 $)) 196)) (-3844 (((-589 (-883 |#2|)) (-1087)) 109)) (-3613 (((-108) $) 156)) (-4181 (((-108) $) 24) (((-108) $ |#2|) 29) (((-108) $ |#3|) 200)) (-2779 (((-3 |#3| "failed")) 49)) (-3204 (((-710)) 168)) (-3223 ((|#2| $ |#2| |#2|) 130)) (-3308 (((-3 |#3| "failed")) 67)) (-3523 (($ $ (-1 (-383 |#3|) (-383 |#3|)) (-710)) NIL) (($ $ (-1 (-383 |#3|) (-383 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 204) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-4110 (((-1168 $) (-1168 $)) 149)) (-1451 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-1323 (((-108)) 33))) -(((-317 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -4072 ((-589 (-589 |#2|)))) (-15 -3844 ((-589 (-883 |#2|)) (-1087))) (-15 -1451 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2779 ((-3 |#3| "failed"))) (-15 -3308 ((-3 |#3| "failed"))) (-15 -3223 (|#2| |#1| |#2| |#2|)) (-15 -2528 (|#1| |#1|)) (-15 -3409 (|#1| (-1168 |#3|) |#3|)) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4181 ((-108) |#1| |#3|)) (-15 -4181 ((-108) |#1| |#2|)) (-15 -1207 ((-2 (|:| |num| (-1168 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2851 ((-1168 |#1|) (-1168 |#1|))) (-15 -1215 ((-1168 |#1|) (-1168 |#1|))) (-15 -4110 ((-1168 |#1|) (-1168 |#1|))) (-15 -4181 ((-108) |#1|)) (-15 -3613 ((-108) |#1|)) (-15 -1374 ((-108) |#2| |#2|)) (-15 -1323 ((-108))) (-15 -3204 ((-710))) (-15 -3552 ((-710))) (-15 -3523 (|#1| |#1| (-1 (-383 |#3|) (-383 |#3|)))) (-15 -3523 (|#1| |#1| (-1 (-383 |#3|) (-383 |#3|)) (-710))) (-15 -3409 (|#1| (-1168 (-383 |#3|)))) (-15 -3409 (|#1| (-1168 (-383 |#3|)) (-1168 |#1|)))) (-318 |#2| |#3| |#4|) (-1126) (-1144 |#2|) (-1144 (-383 |#3|))) (T -317)) -((-3552 (*1 *2) (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-710)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) (-3204 (*1 *2) (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-710)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) (-1323 (*1 *2) (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) (-1374 (*1 *2 *3 *3) (-12 (-4 *3 (-1126)) (-4 *5 (-1144 *3)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-108)) (-5 *1 (-317 *4 *3 *5 *6)) (-4 *4 (-318 *3 *5 *6)))) (-3308 (*1 *2) (|partial| -12 (-4 *4 (-1126)) (-4 *5 (-1144 (-383 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-317 *3 *4 *2 *5)) (-4 *3 (-318 *4 *2 *5)))) (-2779 (*1 *2) (|partial| -12 (-4 *4 (-1126)) (-4 *5 (-1144 (-383 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-317 *3 *4 *2 *5)) (-4 *3 (-318 *4 *2 *5)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *5 (-1126)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-5 *2 (-589 (-883 *5))) (-5 *1 (-317 *4 *5 *6 *7)) (-4 *4 (-318 *5 *6 *7)))) (-4072 (*1 *2) (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-589 (-589 *4))) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6))))) -(-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -4072 ((-589 (-589 |#2|)))) (-15 -3844 ((-589 (-883 |#2|)) (-1087))) (-15 -1451 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2779 ((-3 |#3| "failed"))) (-15 -3308 ((-3 |#3| "failed"))) (-15 -3223 (|#2| |#1| |#2| |#2|)) (-15 -2528 (|#1| |#1|)) (-15 -3409 (|#1| (-1168 |#3|) |#3|)) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4181 ((-108) |#1| |#3|)) (-15 -4181 ((-108) |#1| |#2|)) (-15 -1207 ((-2 (|:| |num| (-1168 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2851 ((-1168 |#1|) (-1168 |#1|))) (-15 -1215 ((-1168 |#1|) (-1168 |#1|))) (-15 -4110 ((-1168 |#1|) (-1168 |#1|))) (-15 -4181 ((-108) |#1|)) (-15 -3613 ((-108) |#1|)) (-15 -1374 ((-108) |#2| |#2|)) (-15 -1323 ((-108))) (-15 -3204 ((-710))) (-15 -3552 ((-710))) (-15 -3523 (|#1| |#1| (-1 (-383 |#3|) (-383 |#3|)))) (-15 -3523 (|#1| |#1| (-1 (-383 |#3|) (-383 |#3|)) (-710))) (-15 -3409 (|#1| (-1168 (-383 |#3|)))) (-15 -3409 (|#1| (-1168 (-383 |#3|)) (-1168 |#1|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1207 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) 196)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 93 (|has| (-383 |#2|) (-339)))) (-3345 (($ $) 94 (|has| (-383 |#2|) (-339)))) (-3331 (((-108) $) 96 (|has| (-383 |#2|) (-339)))) (-3750 (((-629 (-383 |#2|)) (-1168 $)) 46) (((-629 (-383 |#2|))) 61)) (-4187 (((-383 |#2|) $) 52)) (-2430 (((-1096 (-852) (-710)) (-523)) 147 (|has| (-383 |#2|) (-325)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 113 (|has| (-383 |#2|) (-339)))) (-3614 (((-394 $) $) 114 (|has| (-383 |#2|) (-339)))) (-1387 (((-108) $ $) 104 (|has| (-383 |#2|) (-339)))) (-1703 (((-710)) 87 (|has| (-383 |#2|) (-344)))) (-2957 (((-108)) 213)) (-2898 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 169 (|has| (-383 |#2|) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 167 (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-3 (-383 |#2|) "failed") $) 166)) (-3474 (((-523) $) 170 (|has| (-383 |#2|) (-964 (-523)))) (((-383 (-523)) $) 168 (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-383 |#2|) $) 165)) (-3409 (($ (-1168 (-383 |#2|)) (-1168 $)) 48) (($ (-1168 (-383 |#2|))) 64) (($ (-1168 |#2|) |#2|) 189)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-383 |#2|) (-325)))) (-3796 (($ $ $) 108 (|has| (-383 |#2|) (-339)))) (-4079 (((-629 (-383 |#2|)) $ (-1168 $)) 53) (((-629 (-383 |#2|)) $) 59)) (-2381 (((-629 (-523)) (-629 $)) 164 (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 163 (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-383 |#2|))) (|:| |vec| (-1168 (-383 |#2|)))) (-629 $) (-1168 $)) 162) (((-629 (-383 |#2|)) (-629 $)) 161)) (-2851 (((-1168 $) (-1168 $)) 201)) (-2437 (($ |#3|) 158) (((-3 $ "failed") (-383 |#3|)) 155 (|has| (-383 |#2|) (-339)))) (-2121 (((-3 $ "failed") $) 34)) (-4072 (((-589 (-589 |#1|))) 182 (|has| |#1| (-344)))) (-1374 (((-108) |#1| |#1|) 217)) (-1319 (((-852)) 54)) (-4032 (($) 90 (|has| (-383 |#2|) (-344)))) (-4189 (((-108)) 210)) (-2539 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-3769 (($ $ $) 107 (|has| (-383 |#2|) (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 102 (|has| (-383 |#2|) (-339)))) (-2528 (($ $) 188)) (-1996 (($) 149 (|has| (-383 |#2|) (-325)))) (-2155 (((-108) $) 150 (|has| (-383 |#2|) (-325)))) (-1991 (($ $ (-710)) 141 (|has| (-383 |#2|) (-325))) (($ $) 140 (|has| (-383 |#2|) (-325)))) (-2657 (((-108) $) 115 (|has| (-383 |#2|) (-339)))) (-1640 (((-852) $) 152 (|has| (-383 |#2|) (-325))) (((-772 (-852)) $) 138 (|has| (-383 |#2|) (-325)))) (-2023 (((-108) $) 31)) (-3552 (((-710)) 220)) (-1215 (((-1168 $) (-1168 $)) 202)) (-3892 (((-383 |#2|) $) 51)) (-3844 (((-589 (-883 |#1|)) (-1087)) 183 (|has| |#1| (-339)))) (-4058 (((-3 $ "failed") $) 142 (|has| (-383 |#2|) (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 111 (|has| (-383 |#2|) (-339)))) (-1397 ((|#3| $) 44 (|has| (-383 |#2|) (-339)))) (-2072 (((-852) $) 89 (|has| (-383 |#2|) (-344)))) (-2428 ((|#3| $) 156)) (-3244 (($ (-589 $)) 100 (|has| (-383 |#2|) (-339))) (($ $ $) 99 (|has| (-383 |#2|) (-339)))) (-3779 (((-1070) $) 9)) (-1467 (((-629 (-383 |#2|))) 197)) (-2860 (((-629 (-383 |#2|))) 199)) (-3738 (($ $) 116 (|has| (-383 |#2|) (-339)))) (-2764 (($ (-1168 |#2|) |#2|) 194)) (-1535 (((-629 (-383 |#2|))) 198)) (-3603 (((-629 (-383 |#2|))) 200)) (-3807 (((-2 (|:| |num| (-629 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-4077 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) 195)) (-3496 (((-1168 $)) 206)) (-4158 (((-1168 $)) 207)) (-3613 (((-108) $) 205)) (-4181 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-2262 (($) 143 (|has| (-383 |#2|) (-325)) CONST)) (-3878 (($ (-852)) 88 (|has| (-383 |#2|) (-344)))) (-2779 (((-3 |#2| "failed")) 185)) (-2783 (((-1034) $) 10)) (-3204 (((-710)) 219)) (-3441 (($) 160)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 101 (|has| (-383 |#2|) (-339)))) (-3278 (($ (-589 $)) 98 (|has| (-383 |#2|) (-339))) (($ $ $) 97 (|has| (-383 |#2|) (-339)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 146 (|has| (-383 |#2|) (-325)))) (-1820 (((-394 $) $) 112 (|has| (-383 |#2|) (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-383 |#2|) (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 109 (|has| (-383 |#2|) (-339)))) (-3746 (((-3 $ "failed") $ $) 92 (|has| (-383 |#2|) (-339)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 103 (|has| (-383 |#2|) (-339)))) (-1972 (((-710) $) 105 (|has| (-383 |#2|) (-339)))) (-3223 ((|#1| $ |#1| |#1|) 187)) (-3308 (((-3 |#2| "failed")) 186)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 106 (|has| (-383 |#2|) (-339)))) (-3549 (((-383 |#2|) (-1168 $)) 47) (((-383 |#2|)) 60)) (-2974 (((-710) $) 151 (|has| (-383 |#2|) (-325))) (((-3 (-710) "failed") $ $) 139 (|has| (-383 |#2|) (-325)))) (-3523 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) 123 (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) 122 (|has| (-383 |#2|) (-339))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-589 (-1087)) (-589 (-710))) 130 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-1087) (-710)) 131 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-589 (-1087))) 132 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-1087)) 133 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-710)) 135 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-211))) (-4099 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) 137 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-211))) (-4099 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-1976 (((-629 (-383 |#2|)) (-1168 $) (-1 (-383 |#2|) (-383 |#2|))) 154 (|has| (-383 |#2|) (-339)))) (-3727 ((|#3|) 159)) (-3425 (($) 148 (|has| (-383 |#2|) (-325)))) (-2966 (((-1168 (-383 |#2|)) $ (-1168 $)) 50) (((-629 (-383 |#2|)) (-1168 $) (-1168 $)) 49) (((-1168 (-383 |#2|)) $) 66) (((-629 (-383 |#2|)) (-1168 $)) 65)) (-3663 (((-1168 (-383 |#2|)) $) 63) (($ (-1168 (-383 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 145 (|has| (-383 |#2|) (-325)))) (-4110 (((-1168 $) (-1168 $)) 203)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 |#2|)) 37) (($ (-383 (-523))) 86 (-3262 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-964 (-383 (-523)))))) (($ $) 91 (|has| (-383 |#2|) (-339)))) (-3901 (($ $) 144 (|has| (-383 |#2|) (-325))) (((-3 $ "failed") $) 43 (|has| (-383 |#2|) (-134)))) (-1807 ((|#3| $) 45)) (-1621 (((-710)) 29)) (-2423 (((-108)) 216)) (-2691 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-4041 (((-1168 $)) 67)) (-1704 (((-108) $ $) 95 (|has| (-383 |#2|) (-339)))) (-1451 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-1323 (((-108)) 218)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 117 (|has| (-383 |#2|) (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) 125 (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) 124 (|has| (-383 |#2|) (-339))) (($ $ (-589 (-1087)) (-589 (-710))) 126 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-1087) (-710)) 127 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-589 (-1087))) 128 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-1087)) 129 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-710)) 134 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-211))) (-4099 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) 136 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-211))) (-4099 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 121 (|has| (-383 |#2|) (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 118 (|has| (-383 |#2|) (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 |#2|)) 39) (($ (-383 |#2|) $) 38) (($ (-383 (-523)) $) 120 (|has| (-383 |#2|) (-339))) (($ $ (-383 (-523))) 119 (|has| (-383 |#2|) (-339))))) -(((-318 |#1| |#2| |#3|) (-129) (-1126) (-1144 |t#1|) (-1144 (-383 |t#2|))) (T -318)) -((-3552 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-710)))) (-3204 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-710)))) (-1323 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-1374 (*1 *2 *3 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2423 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2691 (*1 *2 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2691 (*1 *2 *3) (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) (-2957 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2898 (*1 *2 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2898 (*1 *2 *3) (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) (-4189 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2539 (*1 *2 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2539 (*1 *2 *3) (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) (-4158 (*1 *2) (-12 (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)))) (-3496 (*1 *2) (-12 (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-4181 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-4110 (*1 *2 *2) (-12 (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))))) (-1215 (*1 *2 *2) (-12 (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))))) (-2851 (*1 *2 *2) (-12 (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))))) (-3603 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4))))) (-2860 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4))))) (-1535 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4))))) (-1467 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4))))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-2 (|:| |num| (-1168 *4)) (|:| |den| *4))))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-2 (|:| |num| (-1168 *4)) (|:| |den| *4))))) (-2764 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1144 *4)) (-4 *4 (-1126)) (-4 *1 (-318 *4 *3 *5)) (-4 *5 (-1144 (-383 *3))))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-318 *4 *5 *6)) (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-2 (|:| |num| (-629 *5)) (|:| |den| *5))))) (-4181 (*1 *2 *1 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-4181 (*1 *2 *1 *3) (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))))) (-3409 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1144 *4)) (-4 *4 (-1126)) (-4 *1 (-318 *4 *3 *5)) (-4 *5 (-1144 (-383 *3))))) (-2528 (*1 *1 *1) (-12 (-4 *1 (-318 *2 *3 *4)) (-4 *2 (-1126)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-383 *3))))) (-3223 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-318 *2 *3 *4)) (-4 *2 (-1126)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-383 *3))))) (-3308 (*1 *2) (|partial| -12 (-4 *1 (-318 *3 *2 *4)) (-4 *3 (-1126)) (-4 *4 (-1144 (-383 *2))) (-4 *2 (-1144 *3)))) (-2779 (*1 *2) (|partial| -12 (-4 *1 (-318 *3 *2 *4)) (-4 *3 (-1126)) (-4 *4 (-1144 (-383 *2))) (-4 *2 (-1144 *3)))) (-1451 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-1126)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-318 *4 *5 *6)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *1 (-318 *4 *5 *6)) (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-4 *4 (-339)) (-5 *2 (-589 (-883 *4))))) (-4072 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *3 (-344)) (-5 *2 (-589 (-589 *3)))))) -(-13 (-664 (-383 |t#2|) |t#3|) (-10 -8 (-15 -3552 ((-710))) (-15 -3204 ((-710))) (-15 -1323 ((-108))) (-15 -1374 ((-108) |t#1| |t#1|)) (-15 -2423 ((-108))) (-15 -2691 ((-108) |t#1|)) (-15 -2691 ((-108) |t#2|)) (-15 -2957 ((-108))) (-15 -2898 ((-108) |t#1|)) (-15 -2898 ((-108) |t#2|)) (-15 -4189 ((-108))) (-15 -2539 ((-108) |t#1|)) (-15 -2539 ((-108) |t#2|)) (-15 -4158 ((-1168 $))) (-15 -3496 ((-1168 $))) (-15 -3613 ((-108) $)) (-15 -4181 ((-108) $)) (-15 -4110 ((-1168 $) (-1168 $))) (-15 -1215 ((-1168 $) (-1168 $))) (-15 -2851 ((-1168 $) (-1168 $))) (-15 -3603 ((-629 (-383 |t#2|)))) (-15 -2860 ((-629 (-383 |t#2|)))) (-15 -1535 ((-629 (-383 |t#2|)))) (-15 -1467 ((-629 (-383 |t#2|)))) (-15 -1207 ((-2 (|:| |num| (-1168 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3409 ($ (-1168 |t#2|) |t#2|)) (-15 -4077 ((-2 (|:| |num| (-1168 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2764 ($ (-1168 |t#2|) |t#2|)) (-15 -3807 ((-2 (|:| |num| (-629 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4181 ((-108) $ |t#1|)) (-15 -4181 ((-108) $ |t#2|)) (-15 -3523 ($ $ (-1 |t#2| |t#2|))) (-15 -3409 ($ (-1168 |t#2|) |t#2|)) (-15 -2528 ($ $)) (-15 -3223 (|t#1| $ |t#1| |t#1|)) (-15 -3308 ((-3 |t#2| "failed"))) (-15 -2779 ((-3 |t#2| "failed"))) (-15 -1451 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-339)) (-15 -3844 ((-589 (-883 |t#1|)) (-1087))) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -4072 ((-589 (-589 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-37 #1=(-383 |#2|)) . T) ((-37 $) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-97) . T) ((-107 #0# #0#) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-134))) ((-136) |has| (-383 |#2|) (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 |#3|) . T) ((-209 #1#) |has| (-383 |#2|) (-339)) ((-211) -3262 (|has| (-383 |#2|) (-325)) (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339)))) ((-221) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-267) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-284) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-339) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-378) |has| (-383 |#2|) (-325)) ((-344) -3262 (|has| (-383 |#2|) (-344)) (|has| (-383 |#2|) (-325))) ((-325) |has| (-383 |#2|) (-325)) ((-346 #1# |#3|) . T) ((-385 #1# |#3|) . T) ((-353 #1#) . T) ((-387 #1#) . T) ((-427) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-515) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-591 #0#) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-591 #1#) . T) ((-591 $) . T) ((-585 #1#) . T) ((-585 (-523)) |has| (-383 |#2|) (-585 (-523))) ((-657 #0#) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-657 #1#) . T) ((-657 $) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-664 #1# |#3|) . T) ((-666) . T) ((-831 (-1087)) -12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) ((-851) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-964 (-383 (-523))) |has| (-383 |#2|) (-964 (-383 (-523)))) ((-964 #1#) . T) ((-964 (-523)) |has| (-383 |#2|) (-964 (-523))) ((-979 #0#) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-979 #1#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| (-383 |#2|) (-325)) ((-1126) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-841 |#1|) (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| (-841 |#1|) (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-841 |#1|) "failed") $) NIL)) (-3474 (((-841 |#1|) $) NIL)) (-3409 (($ (-1168 (-841 |#1|))) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-841 |#1|) (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-841 |#1|) (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| (-841 |#1|) (-344)))) (-2155 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344)))) (($ $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| (-841 |#1|) (-344))) (((-772 (-852)) $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| (-841 |#1|) (-344)))) (-2307 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-3892 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| (-841 |#1|) (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 (-841 |#1|)) $) NIL) (((-1083 $) $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2072 (((-852) $) NIL (|has| (-841 |#1|) (-344)))) (-3943 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344)))) (-2122 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-1083 (-841 |#1|)) "failed") $ $) NIL (|has| (-841 |#1|) (-344)))) (-3865 (($ $ (-1083 (-841 |#1|))) NIL (|has| (-841 |#1|) (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-841 |#1|) (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-1365 (((-888 (-1034))) NIL)) (-3441 (($) NIL (|has| (-841 |#1|) (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-841 |#1|) (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 (-841 |#1|))) NIL)) (-3425 (($) NIL (|has| (-841 |#1|) (-344)))) (-2749 (($) NIL (|has| (-841 |#1|) (-344)))) (-2966 (((-1168 (-841 |#1|)) $) NIL) (((-629 (-841 |#1|)) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| (-841 |#1|) (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-841 |#1|)) NIL)) (-3901 (($ $) NIL (|has| (-841 |#1|) (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2862 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ (-841 |#1|)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-841 |#1|)) NIL) (($ (-841 |#1|) $) NIL))) -(((-319 |#1| |#2|) (-13 (-305 (-841 |#1|)) (-10 -7 (-15 -1365 ((-888 (-1034)))))) (-852) (-852)) (T -319)) -((-1365 (*1 *2) (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-319 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852))))) -(-13 (-305 (-841 |#1|)) (-10 -7 (-15 -1365 ((-888 (-1034)))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 46)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) 43 (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 114)) (-3474 ((|#1| $) 85)) (-3409 (($ (-1168 |#1|)) 103)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) 97 (|has| |#1| (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) 129 (|has| |#1| (-344)))) (-2155 (((-108) $) 49 (|has| |#1| (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) 47 (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) 131 (|has| |#1| (-344)))) (-2307 (((-108) $) NIL (|has| |#1| (-344)))) (-3892 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 |#1|) $) 89) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2072 (((-852) $) 139 (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 146)) (-2262 (($) NIL (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) 70 (|has| |#1| (-344)))) (-1290 (((-108) $) 117)) (-2783 (((-1034) $) NIL)) (-1365 (((-888 (-1034))) 44)) (-3441 (($) 127 (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 92 (|has| |#1| (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) 67) (((-852)) 68)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) 130 (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) 124 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 |#1|)) 95)) (-3425 (($) 128 (|has| |#1| (-344)))) (-2749 (($) 136 (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) 59) (((-629 |#1|) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) 142) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 74)) (-3901 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) 138)) (-4041 (((-1168 $)) 116) (((-1168 $) (-852)) 72)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 32 T CONST)) (-2767 (($) 19 T CONST)) (-3454 (($ $) 80 (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2862 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3983 (((-108) $ $) 48)) (-4098 (($ $ $) 144) (($ $ |#1|) 145)) (-4087 (($ $) 126) (($ $ $) NIL)) (-4075 (($ $ $) 61)) (** (($ $ (-852)) 148) (($ $ (-710)) 149) (($ $ (-523)) 147)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 76) (($ $ $) 75) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) -(((-320 |#1| |#2|) (-13 (-305 |#1|) (-10 -7 (-15 -1365 ((-888 (-1034)))))) (-325) (-1083 |#1|)) (T -320)) -((-1365 (*1 *2) (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-320 *3 *4)) (-4 *3 (-325)) (-14 *4 (-1083 *3))))) -(-13 (-305 |#1|) (-10 -7 (-15 -1365 ((-888 (-1034)))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-3409 (($ (-1168 |#1|)) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| |#1| (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| |#1| (-344)))) (-2155 (((-108) $) NIL (|has| |#1| (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| |#1| (-344)))) (-2307 (((-108) $) NIL (|has| |#1| (-344)))) (-3892 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 |#1|) $) NIL) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-1365 (((-888 (-1034))) NIL)) (-3441 (($) NIL (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| |#1| (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 |#1|)) NIL)) (-3425 (($) NIL (|has| |#1| (-344)))) (-2749 (($) NIL (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) NIL) (((-629 |#1|) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) NIL)) (-3901 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2862 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-321 |#1| |#2|) (-13 (-305 |#1|) (-10 -7 (-15 -1365 ((-888 (-1034)))))) (-325) (-852)) (T -321)) -((-1365 (*1 *2) (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-321 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852))))) -(-13 (-305 |#1|) (-10 -7 (-15 -1365 ((-888 (-1034)))))) -((-1367 (((-710) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) 40)) (-1360 (((-888 (-1034)) (-1083 |#1|)) 85)) (-2394 (((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) (-1083 |#1|)) 78)) (-2373 (((-629 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) 86)) (-3834 (((-3 (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) "failed") (-852)) 10)) (-3783 (((-3 (-1083 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) (-852)) 15))) -(((-322 |#1|) (-10 -7 (-15 -1360 ((-888 (-1034)) (-1083 |#1|))) (-15 -2394 ((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) (-1083 |#1|))) (-15 -2373 ((-629 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -1367 ((-710) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -3834 ((-3 (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) "failed") (-852))) (-15 -3783 ((-3 (-1083 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) (-852)))) (-325)) (T -322)) -((-3783 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-3 (-1083 *4) (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034))))))) (-5 *1 (-322 *4)) (-4 *4 (-325)))) (-3834 (*1 *2 *3) (|partial| -12 (-5 *3 (-852)) (-5 *2 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) (-5 *1 (-322 *4)) (-4 *4 (-325)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) (-4 *4 (-325)) (-5 *2 (-710)) (-5 *1 (-322 *4)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) (-4 *4 (-325)) (-5 *2 (-629 *4)) (-5 *1 (-322 *4)))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) (-5 *1 (-322 *4)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-888 (-1034))) (-5 *1 (-322 *4))))) -(-10 -7 (-15 -1360 ((-888 (-1034)) (-1083 |#1|))) (-15 -2394 ((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) (-1083 |#1|))) (-15 -2373 ((-629 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -1367 ((-710) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -3834 ((-3 (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) "failed") (-852))) (-15 -3783 ((-3 (-1083 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) (-852)))) -((-1458 ((|#1| |#3|) 84) ((|#3| |#1|) 68))) -(((-323 |#1| |#2| |#3|) (-10 -7 (-15 -1458 (|#3| |#1|)) (-15 -1458 (|#1| |#3|))) (-305 |#2|) (-325) (-305 |#2|)) (T -323)) -((-1458 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *2 (-305 *4)) (-5 *1 (-323 *2 *4 *3)) (-4 *3 (-305 *4)))) (-1458 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *2 (-305 *4)) (-5 *1 (-323 *3 *4 *2)) (-4 *3 (-305 *4))))) -(-10 -7 (-15 -1458 (|#3| |#1|)) (-15 -1458 (|#1| |#3|))) -((-2155 (((-108) $) 51)) (-1640 (((-772 (-852)) $) 21) (((-852) $) 52)) (-4058 (((-3 $ "failed") $) 16)) (-2262 (($) 9)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 92)) (-2974 (((-3 (-710) "failed") $ $) 71) (((-710) $) 60)) (-3523 (($ $ (-710)) NIL) (($ $) 8)) (-3425 (($) 45)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 33)) (-3901 (((-3 $ "failed") $) 39) (($ $) 38))) -(((-324 |#1|) (-10 -8 (-15 -1640 ((-852) |#1|)) (-15 -2974 ((-710) |#1|)) (-15 -2155 ((-108) |#1|)) (-15 -3425 (|#1|)) (-15 -3391 ((-3 (-1168 |#1|) "failed") (-629 |#1|))) (-15 -3901 (|#1| |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -2974 ((-3 (-710) "failed") |#1| |#1|)) (-15 -1640 ((-772 (-852)) |#1|)) (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) (-325)) (T -324)) -NIL -(-10 -8 (-15 -1640 ((-852) |#1|)) (-15 -2974 ((-710) |#1|)) (-15 -2155 ((-108) |#1|)) (-15 -3425 (|#1|)) (-15 -3391 ((-3 (-1168 |#1|) "failed") (-629 |#1|))) (-15 -3901 (|#1| |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -2974 ((-3 (-710) "failed") |#1| |#1|)) (-15 -1640 ((-772 (-852)) |#1|)) (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-2430 (((-1096 (-852) (-710)) (-523)) 93)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1387 (((-108) $ $) 59)) (-1703 (((-710)) 103)) (-2518 (($) 17 T CONST)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-4032 (($) 106)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-1996 (($) 91)) (-2155 (((-108) $) 90)) (-1991 (($ $) 79) (($ $ (-710)) 78)) (-2657 (((-108) $) 71)) (-1640 (((-772 (-852)) $) 81) (((-852) $) 88)) (-2023 (((-108) $) 31)) (-4058 (((-3 $ "failed") $) 102)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-2072 (((-852) $) 105)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2262 (($) 101 T CONST)) (-3878 (($ (-852)) 104)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 94)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-2974 (((-3 (-710) "failed") $ $) 80) (((-710) $) 89)) (-3523 (($ $ (-710)) 99) (($ $) 97)) (-3425 (($) 92)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 95)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65)) (-3901 (((-3 $ "failed") $) 82) (($ $) 96)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-710)) 100) (($ $) 98)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 64)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1292 (((-589 (-1087)) $) NIL)) (-3197 (((-108)) 88) (((-108) (-108)) 89)) (-3643 (((-589 (-562 $)) $) NIL)) (-1462 (($ $) NIL)) (-1285 (($ $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1349 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL)) (-2437 (($ $) NIL)) (-1441 (($ $) NIL)) (-1260 (($ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-562 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-292 |#3|)) 70) (((-3 $ "failed") (-1087)) 94) (((-3 $ "failed") (-292 (-523))) 57 (|has| |#3| (-964 (-523)))) (((-3 $ "failed") (-383 (-883 (-523)))) 63 (|has| |#3| (-964 (-523)))) (((-3 $ "failed") (-883 (-523))) 58 (|has| |#3| (-964 (-523)))) (((-3 $ "failed") (-292 (-355))) 75 (|has| |#3| (-964 (-355)))) (((-3 $ "failed") (-383 (-883 (-355)))) 81 (|has| |#3| (-964 (-355)))) (((-3 $ "failed") (-883 (-355))) 76 (|has| |#3| (-964 (-355))))) (-3508 (((-562 $) $) NIL) ((|#3| $) NIL) (($ (-292 |#3|)) 71) (($ (-1087)) 95) (($ (-292 (-523))) 59 (|has| |#3| (-964 (-523)))) (($ (-383 (-883 (-523)))) 64 (|has| |#3| (-964 (-523)))) (($ (-883 (-523))) 60 (|has| |#3| (-964 (-523)))) (($ (-292 (-355))) 77 (|has| |#3| (-964 (-355)))) (($ (-383 (-883 (-355)))) 82 (|has| |#3| (-964 (-355)))) (($ (-883 (-355))) 78 (|has| |#3| (-964 (-355))))) (-1444 (((-3 $ "failed") $) NIL)) (-3352 (($) 10)) (-2055 (($ $) NIL) (($ (-589 $)) NIL)) (-2196 (((-589 (-110)) $) NIL)) (-2947 (((-110) (-110)) NIL)) (-2769 (((-108) $) NIL)) (-3860 (((-108) $) NIL (|has| $ (-964 (-523))))) (-1414 (((-1083 $) (-562 $)) NIL (|has| $ (-973)))) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-1345 (($ (-1 $ $) (-562 $)) NIL)) (-2577 (((-3 (-562 $) "failed") $) NIL)) (-1602 (($ $) 91)) (-2313 (($ $) NIL)) (-2032 (((-1070) $) NIL)) (-2378 (((-589 (-562 $)) $) NIL)) (-3396 (($ (-110) $) 90) (($ (-110) (-589 $)) NIL)) (-3739 (((-108) $ (-110)) NIL) (((-108) $ (-1087)) NIL)) (-1933 (((-710) $) NIL)) (-3951 (((-1034) $) NIL)) (-3536 (((-108) $ $) NIL) (((-108) $ (-1087)) NIL)) (-2922 (($ $) NIL)) (-3101 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2812 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-1937 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) NIL)) (-1303 (($ $) NIL) (($ $ $) NIL)) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL)) (-2762 (($ $) NIL (|has| $ (-973)))) (-1453 (($ $) NIL)) (-1274 (($ $) NIL)) (-1691 (((-794) $) NIL) (($ (-562 $)) NIL) (($ |#3|) NIL) (($ (-523)) NIL) (((-292 |#3|) $) 93)) (-3272 (((-710)) NIL)) (-2850 (($ $) NIL) (($ (-589 $)) NIL)) (-3198 (((-108) (-110)) NIL)) (-1401 (($ $) NIL)) (-1334 (($ $) NIL)) (-1346 (($ $) NIL)) (-2695 (($ $) NIL)) (-2423 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-1879 (($) 92 T CONST)) (-1891 (($) 22 T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) NIL)) (-4060 (($ $ $) NIL) (($ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL))) +(((-315 |#1| |#2| |#3|) (-13 (-279) (-37 |#3|) (-964 |#3|) (-831 (-1087)) (-10 -8 (-15 -3508 ($ (-292 |#3|))) (-15 -1220 ((-3 $ "failed") (-292 |#3|))) (-15 -3508 ($ (-1087))) (-15 -1220 ((-3 $ "failed") (-1087))) (-15 -1691 ((-292 |#3|) $)) (IF (|has| |#3| (-964 (-523))) (PROGN (-15 -3508 ($ (-292 (-523)))) (-15 -1220 ((-3 $ "failed") (-292 (-523)))) (-15 -3508 ($ (-383 (-883 (-523))))) (-15 -1220 ((-3 $ "failed") (-383 (-883 (-523))))) (-15 -3508 ($ (-883 (-523)))) (-15 -1220 ((-3 $ "failed") (-883 (-523))))) |%noBranch|) (IF (|has| |#3| (-964 (-355))) (PROGN (-15 -3508 ($ (-292 (-355)))) (-15 -1220 ((-3 $ "failed") (-292 (-355)))) (-15 -3508 ($ (-383 (-883 (-355))))) (-15 -1220 ((-3 $ "failed") (-383 (-883 (-355))))) (-15 -3508 ($ (-883 (-355)))) (-15 -1220 ((-3 $ "failed") (-883 (-355))))) |%noBranch|) (-15 -2695 ($ $)) (-15 -2437 ($ $)) (-15 -2922 ($ $)) (-15 -2313 ($ $)) (-15 -1602 ($ $)) (-15 -1260 ($ $)) (-15 -1274 ($ $)) (-15 -1285 ($ $)) (-15 -1334 ($ $)) (-15 -1346 ($ $)) (-15 -1401 ($ $)) (-15 -1441 ($ $)) (-15 -1453 ($ $)) (-15 -1462 ($ $)) (-15 -3352 ($)) (-15 -1292 ((-589 (-1087)) $)) (-15 -3197 ((-108))) (-15 -3197 ((-108) (-108))))) (-589 (-1087)) (-589 (-1087)) (-363)) (T -315)) +((-3508 (*1 *1 *2) (-12 (-5 *2 (-292 *5)) (-4 *5 (-363)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 *5)) (-4 *5 (-363)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 *2)) (-14 *4 (-589 *2)) (-4 *5 (-363)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 *2)) (-14 *4 (-589 *2)) (-4 *5 (-363)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-292 *5)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-523))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-523)))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 (-883 (-523)))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-883 (-523))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-523))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-355)))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 (-883 (-355)))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-883 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-2695 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-2437 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-2922 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-2313 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1602 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1260 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1274 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1285 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1334 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1346 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1401 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1441 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1453 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1462 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3352 (*1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-315 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-363)))) (-3197 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3197 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363))))) +(-13 (-279) (-37 |#3|) (-964 |#3|) (-831 (-1087)) (-10 -8 (-15 -3508 ($ (-292 |#3|))) (-15 -1220 ((-3 $ "failed") (-292 |#3|))) (-15 -3508 ($ (-1087))) (-15 -1220 ((-3 $ "failed") (-1087))) (-15 -1691 ((-292 |#3|) $)) (IF (|has| |#3| (-964 (-523))) (PROGN (-15 -3508 ($ (-292 (-523)))) (-15 -1220 ((-3 $ "failed") (-292 (-523)))) (-15 -3508 ($ (-383 (-883 (-523))))) (-15 -1220 ((-3 $ "failed") (-383 (-883 (-523))))) (-15 -3508 ($ (-883 (-523)))) (-15 -1220 ((-3 $ "failed") (-883 (-523))))) |%noBranch|) (IF (|has| |#3| (-964 (-355))) (PROGN (-15 -3508 ($ (-292 (-355)))) (-15 -1220 ((-3 $ "failed") (-292 (-355)))) (-15 -3508 ($ (-383 (-883 (-355))))) (-15 -1220 ((-3 $ "failed") (-383 (-883 (-355))))) (-15 -3508 ($ (-883 (-355)))) (-15 -1220 ((-3 $ "failed") (-883 (-355))))) |%noBranch|) (-15 -2695 ($ $)) (-15 -2437 ($ $)) (-15 -2922 ($ $)) (-15 -2313 ($ $)) (-15 -1602 ($ $)) (-15 -1260 ($ $)) (-15 -1274 ($ $)) (-15 -1285 ($ $)) (-15 -1334 ($ $)) (-15 -1346 ($ $)) (-15 -1401 ($ $)) (-15 -1441 ($ $)) (-15 -1453 ($ $)) (-15 -1462 ($ $)) (-15 -3352 ($)) (-15 -1292 ((-589 (-1087)) $)) (-15 -3197 ((-108))) (-15 -3197 ((-108) (-108))))) +((-1345 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-316 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1345 (|#8| (-1 |#5| |#1|) |#4|))) (-1127) (-1145 |#1|) (-1145 (-383 |#2|)) (-318 |#1| |#2| |#3|) (-1127) (-1145 |#5|) (-1145 (-383 |#6|)) (-318 |#5| |#6| |#7|)) (T -316)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1127)) (-4 *8 (-1127)) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-383 *6))) (-4 *9 (-1145 *8)) (-4 *2 (-318 *8 *9 *10)) (-5 *1 (-316 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-318 *5 *6 *7)) (-4 *10 (-1145 (-383 *9)))))) +(-10 -7 (-15 -1345 (|#8| (-1 |#5| |#1|) |#4|))) +((-1587 (((-2 (|:| |num| (-1169 |#3|)) (|:| |den| |#3|)) $) 37)) (-2754 (($ (-1169 (-383 |#3|)) (-1169 $)) NIL) (($ (-1169 (-383 |#3|))) NIL) (($ (-1169 |#3|) |#3|) 160)) (-1290 (((-1169 $) (-1169 $)) 144)) (-2865 (((-589 (-589 |#2|))) 117)) (-2672 (((-108) |#2| |#2|) 72)) (-1272 (($ $) 138)) (-1772 (((-710)) 30)) (-1666 (((-1169 $) (-1169 $)) 197)) (-2570 (((-589 (-883 |#2|)) (-1087)) 109)) (-4212 (((-108) $) 157)) (-3905 (((-108) $) 24) (((-108) $ |#2|) 28) (((-108) $ |#3|) 201)) (-1885 (((-3 |#3| "failed")) 49)) (-3327 (((-710)) 169)) (-1937 ((|#2| $ |#2| |#2|) 131)) (-1201 (((-3 |#3| "failed")) 67)) (-3984 (($ $ (-1 (-383 |#3|) (-383 |#3|)) (-710)) NIL) (($ $ (-1 (-383 |#3|) (-383 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 205) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-3153 (((-1169 $) (-1169 $)) 150)) (-2265 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-3336 (((-108)) 32))) +(((-317 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2865 ((-589 (-589 |#2|)))) (-15 -2570 ((-589 (-883 |#2|)) (-1087))) (-15 -2265 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1885 ((-3 |#3| "failed"))) (-15 -1201 ((-3 |#3| "failed"))) (-15 -1937 (|#2| |#1| |#2| |#2|)) (-15 -1272 (|#1| |#1|)) (-15 -2754 (|#1| (-1169 |#3|) |#3|)) (-15 -3984 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3905 ((-108) |#1| |#3|)) (-15 -3905 ((-108) |#1| |#2|)) (-15 -1587 ((-2 (|:| |num| (-1169 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1290 ((-1169 |#1|) (-1169 |#1|))) (-15 -1666 ((-1169 |#1|) (-1169 |#1|))) (-15 -3153 ((-1169 |#1|) (-1169 |#1|))) (-15 -3905 ((-108) |#1|)) (-15 -4212 ((-108) |#1|)) (-15 -2672 ((-108) |#2| |#2|)) (-15 -3336 ((-108))) (-15 -3327 ((-710))) (-15 -1772 ((-710))) (-15 -3984 (|#1| |#1| (-1 (-383 |#3|) (-383 |#3|)))) (-15 -3984 (|#1| |#1| (-1 (-383 |#3|) (-383 |#3|)) (-710))) (-15 -2754 (|#1| (-1169 (-383 |#3|)))) (-15 -2754 (|#1| (-1169 (-383 |#3|)) (-1169 |#1|)))) (-318 |#2| |#3| |#4|) (-1127) (-1145 |#2|) (-1145 (-383 |#3|))) (T -317)) +((-1772 (*1 *2) (-12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) (-5 *2 (-710)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) (-3327 (*1 *2) (-12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) (-5 *2 (-710)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) (-3336 (*1 *2) (-12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) (-2672 (*1 *2 *3 *3) (-12 (-4 *3 (-1127)) (-4 *5 (-1145 *3)) (-4 *6 (-1145 (-383 *5))) (-5 *2 (-108)) (-5 *1 (-317 *4 *3 *5 *6)) (-4 *4 (-318 *3 *5 *6)))) (-1201 (*1 *2) (|partial| -12 (-4 *4 (-1127)) (-4 *5 (-1145 (-383 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-317 *3 *4 *2 *5)) (-4 *3 (-318 *4 *2 *5)))) (-1885 (*1 *2) (|partial| -12 (-4 *4 (-1127)) (-4 *5 (-1145 (-383 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-317 *3 *4 *2 *5)) (-4 *3 (-318 *4 *2 *5)))) (-2570 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *5 (-1127)) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-383 *6))) (-5 *2 (-589 (-883 *5))) (-5 *1 (-317 *4 *5 *6 *7)) (-4 *4 (-318 *5 *6 *7)))) (-2865 (*1 *2) (-12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) (-5 *2 (-589 (-589 *4))) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6))))) +(-10 -8 (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2865 ((-589 (-589 |#2|)))) (-15 -2570 ((-589 (-883 |#2|)) (-1087))) (-15 -2265 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1885 ((-3 |#3| "failed"))) (-15 -1201 ((-3 |#3| "failed"))) (-15 -1937 (|#2| |#1| |#2| |#2|)) (-15 -1272 (|#1| |#1|)) (-15 -2754 (|#1| (-1169 |#3|) |#3|)) (-15 -3984 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3905 ((-108) |#1| |#3|)) (-15 -3905 ((-108) |#1| |#2|)) (-15 -1587 ((-2 (|:| |num| (-1169 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1290 ((-1169 |#1|) (-1169 |#1|))) (-15 -1666 ((-1169 |#1|) (-1169 |#1|))) (-15 -3153 ((-1169 |#1|) (-1169 |#1|))) (-15 -3905 ((-108) |#1|)) (-15 -4212 ((-108) |#1|)) (-15 -2672 ((-108) |#2| |#2|)) (-15 -3336 ((-108))) (-15 -3327 ((-710))) (-15 -1772 ((-710))) (-15 -3984 (|#1| |#1| (-1 (-383 |#3|) (-383 |#3|)))) (-15 -3984 (|#1| |#1| (-1 (-383 |#3|) (-383 |#3|)) (-710))) (-15 -2754 (|#1| (-1169 (-383 |#3|)))) (-15 -2754 (|#1| (-1169 (-383 |#3|)) (-1169 |#1|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1587 (((-2 (|:| |num| (-1169 |#2|)) (|:| |den| |#2|)) $) 196)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 93 (|has| (-383 |#2|) (-339)))) (-3306 (($ $) 94 (|has| (-383 |#2|) (-339)))) (-3174 (((-108) $) 96 (|has| (-383 |#2|) (-339)))) (-2959 (((-629 (-383 |#2|)) (-1169 $)) 46) (((-629 (-383 |#2|))) 61)) (-1477 (((-383 |#2|) $) 52)) (-1557 (((-1097 (-852) (-710)) (-523)) 147 (|has| (-383 |#2|) (-325)))) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 113 (|has| (-383 |#2|) (-339)))) (-4226 (((-394 $) $) 114 (|has| (-383 |#2|) (-339)))) (-2787 (((-108) $ $) 104 (|has| (-383 |#2|) (-339)))) (-2395 (((-710)) 87 (|has| (-383 |#2|) (-344)))) (-2816 (((-108)) 213)) (-3454 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-4189 (($) 17 T CONST)) (-1220 (((-3 (-523) "failed") $) 169 (|has| (-383 |#2|) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 167 (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-3 (-383 |#2|) "failed") $) 166)) (-3508 (((-523) $) 170 (|has| (-383 |#2|) (-964 (-523)))) (((-383 (-523)) $) 168 (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-383 |#2|) $) 165)) (-2754 (($ (-1169 (-383 |#2|)) (-1169 $)) 48) (($ (-1169 (-383 |#2|))) 64) (($ (-1169 |#2|) |#2|) 189)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-383 |#2|) (-325)))) (-4059 (($ $ $) 108 (|has| (-383 |#2|) (-339)))) (-2927 (((-629 (-383 |#2|)) $ (-1169 $)) 53) (((-629 (-383 |#2|)) $) 59)) (-2243 (((-629 (-523)) (-629 $)) 164 (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 163 (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-383 |#2|))) (|:| |vec| (-1169 (-383 |#2|)))) (-629 $) (-1169 $)) 162) (((-629 (-383 |#2|)) (-629 $)) 161)) (-1290 (((-1169 $) (-1169 $)) 201)) (-2116 (($ |#3|) 158) (((-3 $ "failed") (-383 |#3|)) 155 (|has| (-383 |#2|) (-339)))) (-1444 (((-3 $ "failed") $) 34)) (-2865 (((-589 (-589 |#1|))) 182 (|has| |#1| (-344)))) (-2672 (((-108) |#1| |#1|) 217)) (-3569 (((-852)) 54)) (-1631 (($) 90 (|has| (-383 |#2|) (-344)))) (-3991 (((-108)) 210)) (-1382 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-4032 (($ $ $) 107 (|has| (-383 |#2|) (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 102 (|has| (-383 |#2|) (-339)))) (-1272 (($ $) 188)) (-3665 (($) 149 (|has| (-383 |#2|) (-325)))) (-1766 (((-108) $) 150 (|has| (-383 |#2|) (-325)))) (-3610 (($ $ (-710)) 141 (|has| (-383 |#2|) (-325))) (($ $) 140 (|has| (-383 |#2|) (-325)))) (-3049 (((-108) $) 115 (|has| (-383 |#2|) (-339)))) (-3437 (((-852) $) 152 (|has| (-383 |#2|) (-325))) (((-772 (-852)) $) 138 (|has| (-383 |#2|) (-325)))) (-2769 (((-108) $) 31)) (-1772 (((-710)) 220)) (-1666 (((-1169 $) (-1169 $)) 202)) (-1863 (((-383 |#2|) $) 51)) (-2570 (((-589 (-883 |#1|)) (-1087)) 183 (|has| |#1| (-339)))) (-2738 (((-3 $ "failed") $) 142 (|has| (-383 |#2|) (-325)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 111 (|has| (-383 |#2|) (-339)))) (-2887 ((|#3| $) 44 (|has| (-383 |#2|) (-339)))) (-2060 (((-852) $) 89 (|has| (-383 |#2|) (-344)))) (-2104 ((|#3| $) 156)) (-3278 (($ (-589 $)) 100 (|has| (-383 |#2|) (-339))) (($ $ $) 99 (|has| (-383 |#2|) (-339)))) (-2032 (((-1070) $) 9)) (-2411 (((-629 (-383 |#2|))) 197)) (-1378 (((-629 (-383 |#2|))) 199)) (-1396 (($ $) 116 (|has| (-383 |#2|) (-339)))) (-1748 (($ (-1169 |#2|) |#2|) 194)) (-3658 (((-629 (-383 |#2|))) 198)) (-4103 (((-629 (-383 |#2|))) 200)) (-2239 (((-2 (|:| |num| (-629 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-2905 (((-2 (|:| |num| (-1169 |#2|)) (|:| |den| |#2|)) $) 195)) (-2429 (((-1169 $)) 206)) (-2496 (((-1169 $)) 207)) (-4212 (((-108) $) 205)) (-3905 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-2773 (($) 143 (|has| (-383 |#2|) (-325)) CONST)) (-4013 (($ (-852)) 88 (|has| (-383 |#2|) (-344)))) (-1885 (((-3 |#2| "failed")) 185)) (-3951 (((-1034) $) 10)) (-3327 (((-710)) 219)) (-1621 (($) 160)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 101 (|has| (-383 |#2|) (-339)))) (-3310 (($ (-589 $)) 98 (|has| (-383 |#2|) (-339))) (($ $ $) 97 (|has| (-383 |#2|) (-339)))) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) 146 (|has| (-383 |#2|) (-325)))) (-2424 (((-394 $) $) 112 (|has| (-383 |#2|) (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-383 |#2|) (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 109 (|has| (-383 |#2|) (-339)))) (-4007 (((-3 $ "failed") $ $) 92 (|has| (-383 |#2|) (-339)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 103 (|has| (-383 |#2|) (-339)))) (-3413 (((-710) $) 105 (|has| (-383 |#2|) (-339)))) (-1937 ((|#1| $ |#1| |#1|) 187)) (-1201 (((-3 |#2| "failed")) 186)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 106 (|has| (-383 |#2|) (-339)))) (-1744 (((-383 |#2|) (-1169 $)) 47) (((-383 |#2|)) 60)) (-2984 (((-710) $) 151 (|has| (-383 |#2|) (-325))) (((-3 (-710) "failed") $ $) 139 (|has| (-383 |#2|) (-325)))) (-3984 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) 123 (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) 122 (|has| (-383 |#2|) (-339))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-589 (-1087)) (-589 (-710))) 130 (-3172 (-3147 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-3147 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-1087) (-710)) 131 (-3172 (-3147 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-3147 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-589 (-1087))) 132 (-3172 (-3147 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-3147 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-1087)) 133 (-3172 (-3147 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-3147 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-710)) 135 (-3172 (-3147 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-211))) (-3147 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) 137 (-3172 (-3147 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-211))) (-3147 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-3456 (((-629 (-383 |#2|)) (-1169 $) (-1 (-383 |#2|) (-383 |#2|))) 154 (|has| (-383 |#2|) (-339)))) (-2762 ((|#3|) 159)) (-2893 (($) 148 (|has| (-383 |#2|) (-325)))) (-2906 (((-1169 (-383 |#2|)) $ (-1169 $)) 50) (((-629 (-383 |#2|)) (-1169 $) (-1169 $)) 49) (((-1169 (-383 |#2|)) $) 66) (((-629 (-383 |#2|)) (-1169 $)) 65)) (-1400 (((-1169 (-383 |#2|)) $) 63) (($ (-1169 (-383 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 145 (|has| (-383 |#2|) (-325)))) (-3153 (((-1169 $) (-1169 $)) 203)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ (-383 |#2|)) 37) (($ (-383 (-523))) 86 (-3172 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-964 (-383 (-523)))))) (($ $) 91 (|has| (-383 |#2|) (-339)))) (-1942 (($ $) 144 (|has| (-383 |#2|) (-325))) (((-3 $ "failed") $) 43 (|has| (-383 |#2|) (-134)))) (-1356 ((|#3| $) 45)) (-3272 (((-710)) 29)) (-1496 (((-108)) 216)) (-2188 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-3760 (((-1169 $)) 67)) (-2801 (((-108) $ $) 95 (|has| (-383 |#2|) (-339)))) (-2265 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-3336 (((-108)) 218)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 117 (|has| (-383 |#2|) (-339)))) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) 125 (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) 124 (|has| (-383 |#2|) (-339))) (($ $ (-589 (-1087)) (-589 (-710))) 126 (-3172 (-3147 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-3147 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-1087) (-710)) 127 (-3172 (-3147 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-3147 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-589 (-1087))) 128 (-3172 (-3147 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-3147 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-1087)) 129 (-3172 (-3147 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-3147 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-710)) 134 (-3172 (-3147 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-211))) (-3147 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) 136 (-3172 (-3147 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-211))) (-3147 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-3941 (((-108) $ $) 6)) (-4074 (($ $ $) 121 (|has| (-383 |#2|) (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 118 (|has| (-383 |#2|) (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 |#2|)) 39) (($ (-383 |#2|) $) 38) (($ (-383 (-523)) $) 120 (|has| (-383 |#2|) (-339))) (($ $ (-383 (-523))) 119 (|has| (-383 |#2|) (-339))))) +(((-318 |#1| |#2| |#3|) (-129) (-1127) (-1145 |t#1|) (-1145 (-383 |t#2|))) (T -318)) +((-1772 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-710)))) (-3327 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-710)))) (-3336 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108)))) (-2672 (*1 *2 *3 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108)))) (-1496 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108)))) (-2188 (*1 *2 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108)))) (-2188 (*1 *2 *3) (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 (-383 *3))) (-5 *2 (-108)))) (-2816 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108)))) (-3454 (*1 *2 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108)))) (-3454 (*1 *2 *3) (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 (-383 *3))) (-5 *2 (-108)))) (-3991 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108)))) (-1382 (*1 *2 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108)))) (-1382 (*1 *2 *3) (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 (-383 *3))) (-5 *2 (-108)))) (-2496 (*1 *2) (-12 (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-1169 *1)) (-4 *1 (-318 *3 *4 *5)))) (-2429 (*1 *2) (-12 (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-1169 *1)) (-4 *1 (-318 *3 *4 *5)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108)))) (-3153 (*1 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))))) (-1666 (*1 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))))) (-1290 (*1 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))))) (-4103 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-629 (-383 *4))))) (-1378 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-629 (-383 *4))))) (-3658 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-629 (-383 *4))))) (-2411 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-629 (-383 *4))))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-2 (|:| |num| (-1169 *4)) (|:| |den| *4))))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-2 (|:| |num| (-1169 *4)) (|:| |den| *4))))) (-1748 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1145 *4)) (-4 *4 (-1127)) (-4 *1 (-318 *4 *3 *5)) (-4 *5 (-1145 (-383 *3))))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-318 *4 *5 *6)) (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) (-5 *2 (-2 (|:| |num| (-629 *5)) (|:| |den| *5))))) (-3905 (*1 *2 *1 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108)))) (-3905 (*1 *2 *1 *3) (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 (-383 *3))) (-5 *2 (-108)))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))))) (-2754 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1145 *4)) (-4 *4 (-1127)) (-4 *1 (-318 *4 *3 *5)) (-4 *5 (-1145 (-383 *3))))) (-1272 (*1 *1 *1) (-12 (-4 *1 (-318 *2 *3 *4)) (-4 *2 (-1127)) (-4 *3 (-1145 *2)) (-4 *4 (-1145 (-383 *3))))) (-1937 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-318 *2 *3 *4)) (-4 *2 (-1127)) (-4 *3 (-1145 *2)) (-4 *4 (-1145 (-383 *3))))) (-1201 (*1 *2) (|partial| -12 (-4 *1 (-318 *3 *2 *4)) (-4 *3 (-1127)) (-4 *4 (-1145 (-383 *2))) (-4 *2 (-1145 *3)))) (-1885 (*1 *2) (|partial| -12 (-4 *1 (-318 *3 *2 *4)) (-4 *3 (-1127)) (-4 *4 (-1145 (-383 *2))) (-4 *2 (-1145 *3)))) (-2265 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-1127)) (-4 *6 (-1145 (-383 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-318 *4 *5 *6)))) (-2570 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *1 (-318 *4 *5 *6)) (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) (-4 *4 (-339)) (-5 *2 (-589 (-883 *4))))) (-2865 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) (-4 *3 (-344)) (-5 *2 (-589 (-589 *3)))))) +(-13 (-664 (-383 |t#2|) |t#3|) (-10 -8 (-15 -1772 ((-710))) (-15 -3327 ((-710))) (-15 -3336 ((-108))) (-15 -2672 ((-108) |t#1| |t#1|)) (-15 -1496 ((-108))) (-15 -2188 ((-108) |t#1|)) (-15 -2188 ((-108) |t#2|)) (-15 -2816 ((-108))) (-15 -3454 ((-108) |t#1|)) (-15 -3454 ((-108) |t#2|)) (-15 -3991 ((-108))) (-15 -1382 ((-108) |t#1|)) (-15 -1382 ((-108) |t#2|)) (-15 -2496 ((-1169 $))) (-15 -2429 ((-1169 $))) (-15 -4212 ((-108) $)) (-15 -3905 ((-108) $)) (-15 -3153 ((-1169 $) (-1169 $))) (-15 -1666 ((-1169 $) (-1169 $))) (-15 -1290 ((-1169 $) (-1169 $))) (-15 -4103 ((-629 (-383 |t#2|)))) (-15 -1378 ((-629 (-383 |t#2|)))) (-15 -3658 ((-629 (-383 |t#2|)))) (-15 -2411 ((-629 (-383 |t#2|)))) (-15 -1587 ((-2 (|:| |num| (-1169 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2754 ($ (-1169 |t#2|) |t#2|)) (-15 -2905 ((-2 (|:| |num| (-1169 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1748 ($ (-1169 |t#2|) |t#2|)) (-15 -2239 ((-2 (|:| |num| (-629 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3905 ((-108) $ |t#1|)) (-15 -3905 ((-108) $ |t#2|)) (-15 -3984 ($ $ (-1 |t#2| |t#2|))) (-15 -2754 ($ (-1169 |t#2|) |t#2|)) (-15 -1272 ($ $)) (-15 -1937 (|t#1| $ |t#1| |t#1|)) (-15 -1201 ((-3 |t#2| "failed"))) (-15 -1885 ((-3 |t#2| "failed"))) (-15 -2265 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-339)) (-15 -2570 ((-589 (-883 |t#1|)) (-1087))) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -2865 ((-589 (-589 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-37 #1=(-383 |#2|)) . T) ((-37 $) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-97) . T) ((-107 #0# #0#) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-134))) ((-136) |has| (-383 |#2|) (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 |#3|) . T) ((-209 #1#) |has| (-383 |#2|) (-339)) ((-211) -3172 (|has| (-383 |#2|) (-325)) (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339)))) ((-221) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-267) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-284) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-339) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-378) |has| (-383 |#2|) (-325)) ((-344) -3172 (|has| (-383 |#2|) (-344)) (|has| (-383 |#2|) (-325))) ((-325) |has| (-383 |#2|) (-325)) ((-346 #1# |#3|) . T) ((-385 #1# |#3|) . T) ((-353 #1#) . T) ((-387 #1#) . T) ((-427) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-515) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-591 #0#) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-591 #1#) . T) ((-591 $) . T) ((-585 #1#) . T) ((-585 (-523)) |has| (-383 |#2|) (-585 (-523))) ((-657 #0#) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-657 #1#) . T) ((-657 $) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-664 #1# |#3|) . T) ((-666) . T) ((-831 (-1087)) -12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) ((-851) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-964 (-383 (-523))) |has| (-383 |#2|) (-964 (-383 (-523)))) ((-964 #1#) . T) ((-964 (-523)) |has| (-383 |#2|) (-964 (-523))) ((-979 #0#) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-979 #1#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| (-383 |#2|) (-325)) ((-1127) -3172 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2803 (((-108) $) NIL)) (-3019 (((-710)) NIL)) (-1477 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-1557 (((-1097 (-852) (-710)) (-523)) NIL (|has| (-841 |#1|) (-344)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-2395 (((-710)) NIL (|has| (-841 |#1|) (-344)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-841 |#1|) "failed") $) NIL)) (-3508 (((-841 |#1|) $) NIL)) (-2754 (($ (-1169 (-841 |#1|))) NIL)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-841 |#1|) (-344)))) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| (-841 |#1|) (-344)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3665 (($) NIL (|has| (-841 |#1|) (-344)))) (-1766 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-3610 (($ $ (-710)) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344)))) (($ $) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3049 (((-108) $) NIL)) (-3437 (((-852) $) NIL (|has| (-841 |#1|) (-344))) (((-772 (-852)) $) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2769 (((-108) $) NIL)) (-3753 (($) NIL (|has| (-841 |#1|) (-344)))) (-2706 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-1863 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2738 (((-3 $ "failed") $) NIL (|has| (-841 |#1|) (-344)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2887 (((-1083 (-841 |#1|)) $) NIL) (((-1083 $) $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2060 (((-852) $) NIL (|has| (-841 |#1|) (-344)))) (-4183 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344)))) (-1455 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-1083 (-841 |#1|)) "failed") $ $) NIL (|has| (-841 |#1|) (-344)))) (-1605 (($ $ (-1083 (-841 |#1|))) NIL (|has| (-841 |#1|) (-344)))) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| (-841 |#1|) (-344)) CONST)) (-4013 (($ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-3026 (((-108) $) NIL)) (-3951 (((-1034) $) NIL)) (-2597 (((-888 (-1034))) NIL)) (-1621 (($) NIL (|has| (-841 |#1|) (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL (|has| (-841 |#1|) (-344)))) (-2424 (((-394 $) $) NIL)) (-2151 (((-772 (-852))) NIL) (((-852)) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2984 (((-710) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-710) "failed") $ $) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3314 (((-126)) NIL)) (-3984 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2640 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2762 (((-1083 (-841 |#1|))) NIL)) (-2893 (($) NIL (|has| (-841 |#1|) (-344)))) (-1614 (($) NIL (|has| (-841 |#1|) (-344)))) (-2906 (((-1169 (-841 |#1|)) $) NIL) (((-629 (-841 |#1|)) (-1169 $)) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| (-841 |#1|) (-344)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-841 |#1|)) NIL)) (-1942 (($ $) NIL (|has| (-841 |#1|) (-344))) (((-3 $ "failed") $) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3272 (((-710)) NIL)) (-3760 (((-1169 $)) NIL) (((-1169 $) (-852)) NIL)) (-2801 (((-108) $ $) NIL)) (-1747 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2009 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2909 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL) (($ $ (-841 |#1|)) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-841 |#1|)) NIL) (($ (-841 |#1|) $) NIL))) +(((-319 |#1| |#2|) (-13 (-305 (-841 |#1|)) (-10 -7 (-15 -2597 ((-888 (-1034)))))) (-852) (-852)) (T -319)) +((-2597 (*1 *2) (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-319 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852))))) +(-13 (-305 (-841 |#1|)) (-10 -7 (-15 -2597 ((-888 (-1034)))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 46)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2803 (((-108) $) NIL)) (-3019 (((-710)) NIL)) (-1477 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-1557 (((-1097 (-852) (-710)) (-523)) 43 (|has| |#1| (-344)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-2395 (((-710)) NIL (|has| |#1| (-344)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) 115)) (-3508 ((|#1| $) 86)) (-2754 (($ (-1169 |#1|)) 104)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-344)))) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) 98 (|has| |#1| (-344)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3665 (($) 130 (|has| |#1| (-344)))) (-1766 (((-108) $) 49 (|has| |#1| (-344)))) (-3610 (($ $ (-710)) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3049 (((-108) $) NIL)) (-3437 (((-852) $) 47 (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2769 (((-108) $) NIL)) (-3753 (($) 132 (|has| |#1| (-344)))) (-2706 (((-108) $) NIL (|has| |#1| (-344)))) (-1863 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2738 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2887 (((-1083 |#1|) $) 90) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2060 (((-852) $) 140 (|has| |#1| (-344)))) (-4183 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-1455 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-1605 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 147)) (-2773 (($) NIL (|has| |#1| (-344)) CONST)) (-4013 (($ (-852)) 71 (|has| |#1| (-344)))) (-3026 (((-108) $) 118)) (-3951 (((-1034) $) NIL)) (-2597 (((-888 (-1034))) 44)) (-1621 (($) 128 (|has| |#1| (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) 93 (|has| |#1| (-344)))) (-2424 (((-394 $) $) NIL)) (-2151 (((-772 (-852))) 67) (((-852)) 68)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2984 (((-710) $) 131 (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) 125 (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3314 (((-126)) NIL)) (-3984 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2640 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2762 (((-1083 |#1|)) 96)) (-2893 (($) 129 (|has| |#1| (-344)))) (-1614 (($) 137 (|has| |#1| (-344)))) (-2906 (((-1169 |#1|) $) 59) (((-629 |#1|) (-1169 $)) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1691 (((-794) $) 143) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 75)) (-1942 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3272 (((-710)) 139)) (-3760 (((-1169 $)) 117) (((-1169 $) (-852)) 73)) (-2801 (((-108) $ $) NIL)) (-1747 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 32 T CONST)) (-1891 (($) 19 T CONST)) (-2009 (($ $) 81 (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2909 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3941 (((-108) $ $) 48)) (-4074 (($ $ $) 145) (($ $ |#1|) 146)) (-4060 (($ $) 127) (($ $ $) NIL)) (-4045 (($ $ $) 61)) (** (($ $ (-852)) 149) (($ $ (-710)) 150) (($ $ (-523)) 148)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 77) (($ $ $) 76) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144))) +(((-320 |#1| |#2|) (-13 (-305 |#1|) (-10 -7 (-15 -2597 ((-888 (-1034)))))) (-325) (-1083 |#1|)) (T -320)) +((-2597 (*1 *2) (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-320 *3 *4)) (-4 *3 (-325)) (-14 *4 (-1083 *3))))) +(-13 (-305 |#1|) (-10 -7 (-15 -2597 ((-888 (-1034)))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2803 (((-108) $) NIL)) (-3019 (((-710)) NIL)) (-1477 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-1557 (((-1097 (-852) (-710)) (-523)) NIL (|has| |#1| (-344)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-2395 (((-710)) NIL (|has| |#1| (-344)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL)) (-3508 ((|#1| $) NIL)) (-2754 (($ (-1169 |#1|)) NIL)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| |#1| (-344)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3665 (($) NIL (|has| |#1| (-344)))) (-1766 (((-108) $) NIL (|has| |#1| (-344)))) (-3610 (($ $ (-710)) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3049 (((-108) $) NIL)) (-3437 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2769 (((-108) $) NIL)) (-3753 (($) NIL (|has| |#1| (-344)))) (-2706 (((-108) $) NIL (|has| |#1| (-344)))) (-1863 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2738 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2887 (((-1083 |#1|) $) NIL) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2060 (((-852) $) NIL (|has| |#1| (-344)))) (-4183 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-1455 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-1605 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| |#1| (-344)) CONST)) (-4013 (($ (-852)) NIL (|has| |#1| (-344)))) (-3026 (((-108) $) NIL)) (-3951 (((-1034) $) NIL)) (-2597 (((-888 (-1034))) NIL)) (-1621 (($) NIL (|has| |#1| (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL (|has| |#1| (-344)))) (-2424 (((-394 $) $) NIL)) (-2151 (((-772 (-852))) NIL) (((-852)) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2984 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3314 (((-126)) NIL)) (-3984 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2640 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2762 (((-1083 |#1|)) NIL)) (-2893 (($) NIL (|has| |#1| (-344)))) (-1614 (($) NIL (|has| |#1| (-344)))) (-2906 (((-1169 |#1|) $) NIL) (((-629 |#1|) (-1169 $)) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) NIL)) (-1942 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3272 (((-710)) NIL)) (-3760 (((-1169 $)) NIL) (((-1169 $) (-852)) NIL)) (-2801 (((-108) $ $) NIL)) (-1747 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2009 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2909 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-321 |#1| |#2|) (-13 (-305 |#1|) (-10 -7 (-15 -2597 ((-888 (-1034)))))) (-325) (-852)) (T -321)) +((-2597 (*1 *2) (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-321 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852))))) +(-13 (-305 |#1|) (-10 -7 (-15 -2597 ((-888 (-1034)))))) +((-2615 (((-710) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034)))))) 41)) (-2551 (((-888 (-1034)) (-1083 |#1|)) 85)) (-2338 (((-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))) (-1083 |#1|)) 78)) (-2158 (((-629 |#1|) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034)))))) 86)) (-2480 (((-3 (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))) "failed") (-852)) 10)) (-2051 (((-3 (-1083 |#1|) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034)))))) (-852)) 15))) +(((-322 |#1|) (-10 -7 (-15 -2551 ((-888 (-1034)) (-1083 |#1|))) (-15 -2338 ((-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))) (-1083 |#1|))) (-15 -2158 ((-629 |#1|) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))))) (-15 -2615 ((-710) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))))) (-15 -2480 ((-3 (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))) "failed") (-852))) (-15 -2051 ((-3 (-1083 |#1|) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034)))))) (-852)))) (-325)) (T -322)) +((-2051 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-3 (-1083 *4) (-1169 (-589 (-2 (|:| -3370 *4) (|:| -4013 (-1034))))))) (-5 *1 (-322 *4)) (-4 *4 (-325)))) (-2480 (*1 *2 *3) (|partial| -12 (-5 *3 (-852)) (-5 *2 (-1169 (-589 (-2 (|:| -3370 *4) (|:| -4013 (-1034)))))) (-5 *1 (-322 *4)) (-4 *4 (-325)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-1169 (-589 (-2 (|:| -3370 *4) (|:| -4013 (-1034)))))) (-4 *4 (-325)) (-5 *2 (-710)) (-5 *1 (-322 *4)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-1169 (-589 (-2 (|:| -3370 *4) (|:| -4013 (-1034)))))) (-4 *4 (-325)) (-5 *2 (-629 *4)) (-5 *1 (-322 *4)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-1169 (-589 (-2 (|:| -3370 *4) (|:| -4013 (-1034)))))) (-5 *1 (-322 *4)))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-888 (-1034))) (-5 *1 (-322 *4))))) +(-10 -7 (-15 -2551 ((-888 (-1034)) (-1083 |#1|))) (-15 -2338 ((-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))) (-1083 |#1|))) (-15 -2158 ((-629 |#1|) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))))) (-15 -2615 ((-710) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))))) (-15 -2480 ((-3 (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))) "failed") (-852))) (-15 -2051 ((-3 (-1083 |#1|) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034)))))) (-852)))) +((-1691 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-323 |#1| |#2| |#3|) (-10 -7 (-15 -1691 (|#3| |#1|)) (-15 -1691 (|#1| |#3|))) (-305 |#2|) (-325) (-305 |#2|)) (T -323)) +((-1691 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *2 (-305 *4)) (-5 *1 (-323 *2 *4 *3)) (-4 *3 (-305 *4)))) (-1691 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *2 (-305 *4)) (-5 *1 (-323 *3 *4 *2)) (-4 *3 (-305 *4))))) +(-10 -7 (-15 -1691 (|#3| |#1|)) (-15 -1691 (|#1| |#3|))) +((-1766 (((-108) $) 51)) (-3437 (((-772 (-852)) $) 21) (((-852) $) 52)) (-2738 (((-3 $ "failed") $) 16)) (-2773 (($) 9)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 92)) (-2984 (((-3 (-710) "failed") $ $) 71) (((-710) $) 60)) (-3984 (($ $ (-710)) NIL) (($ $) 8)) (-2893 (($) 45)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 33)) (-1942 (((-3 $ "failed") $) 39) (($ $) 38))) +(((-324 |#1|) (-10 -8 (-15 -3437 ((-852) |#1|)) (-15 -2984 ((-710) |#1|)) (-15 -1766 ((-108) |#1|)) (-15 -2893 (|#1|)) (-15 -2593 ((-3 (-1169 |#1|) "failed") (-629 |#1|))) (-15 -1942 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -2773 (|#1|)) (-15 -2738 ((-3 |#1| "failed") |#1|)) (-15 -2984 ((-3 (-710) "failed") |#1| |#1|)) (-15 -3437 ((-772 (-852)) |#1|)) (-15 -1942 ((-3 |#1| "failed") |#1|)) (-15 -3120 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) (-325)) (T -324)) +NIL +(-10 -8 (-15 -3437 ((-852) |#1|)) (-15 -2984 ((-710) |#1|)) (-15 -1766 ((-108) |#1|)) (-15 -2893 (|#1|)) (-15 -2593 ((-3 (-1169 |#1|) "failed") (-629 |#1|))) (-15 -1942 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -2773 (|#1|)) (-15 -2738 ((-3 |#1| "failed") |#1|)) (-15 -2984 ((-3 (-710) "failed") |#1| |#1|)) (-15 -3437 ((-772 (-852)) |#1|)) (-15 -1942 ((-3 |#1| "failed") |#1|)) (-15 -3120 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-1557 (((-1097 (-852) (-710)) (-523)) 93)) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 73)) (-4226 (((-394 $) $) 72)) (-2787 (((-108) $ $) 59)) (-2395 (((-710)) 103)) (-4189 (($) 17 T CONST)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-4059 (($ $ $) 55)) (-1444 (((-3 $ "failed") $) 34)) (-1631 (($) 106)) (-4032 (($ $ $) 56)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-3665 (($) 91)) (-1766 (((-108) $) 90)) (-3610 (($ $) 79) (($ $ (-710)) 78)) (-3049 (((-108) $) 71)) (-3437 (((-772 (-852)) $) 81) (((-852) $) 88)) (-2769 (((-108) $) 31)) (-2738 (((-3 $ "failed") $) 102)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-2060 (((-852) $) 105)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 70)) (-2773 (($) 101 T CONST)) (-4013 (($ (-852)) 104)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) 94)) (-2424 (((-394 $) $) 74)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-3413 (((-710) $) 58)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57)) (-2984 (((-3 (-710) "failed") $ $) 80) (((-710) $) 89)) (-3984 (($ $ (-710)) 99) (($ $) 97)) (-2893 (($) 92)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 95)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65)) (-1942 (((-3 $ "failed") $) 82) (($ $) 96)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-710)) 100) (($ $) 98)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ $) 64)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) (((-325) (-129)) (T -325)) -((-3901 (*1 *1 *1) (-4 *1 (-325))) (-3391 (*1 *2 *3) (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-325)) (-5 *2 (-1168 *1)))) (-3044 (*1 *2) (-12 (-4 *1 (-325)) (-5 *2 (-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))))) (-2430 (*1 *2 *3) (-12 (-4 *1 (-325)) (-5 *3 (-523)) (-5 *2 (-1096 (-852) (-710))))) (-3425 (*1 *1) (-4 *1 (-325))) (-1996 (*1 *1) (-4 *1 (-325))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-108)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-710)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-852)))) (-1572 (*1 *2) (-12 (-4 *1 (-325)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-378) (-344) (-1063) (-211) (-10 -8 (-15 -3901 ($ $)) (-15 -3391 ((-3 (-1168 $) "failed") (-629 $))) (-15 -3044 ((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523)))))) (-15 -2430 ((-1096 (-852) (-710)) (-523))) (-15 -3425 ($)) (-15 -1996 ($)) (-15 -2155 ((-108) $)) (-15 -2974 ((-710) $)) (-15 -1640 ((-852) $)) (-15 -1572 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-134) . T) ((-563 (-794)) . T) ((-158) . T) ((-211) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-378) . T) ((-344) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) . T) ((-1126) . T)) -((-4029 (((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) |#1|) 51)) (-4158 (((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))) 49))) -(((-326 |#1| |#2| |#3|) (-10 -7 (-15 -4158 ((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))))) (-15 -4029 ((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) |#1|))) (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $)))) (-1144 |#1|) (-385 |#1| |#2|)) (T -326)) -((-4029 (*1 *2 *3) (-12 (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *2 (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-326 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-4158 (*1 *2) (-12 (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *2 (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-326 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) -(-10 -7 (-15 -4158 ((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))))) (-15 -4029 ((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) |#1|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-841 |#1|) (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1367 (((-710)) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| (-841 |#1|) (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-841 |#1|) "failed") $) NIL)) (-3474 (((-841 |#1|) $) NIL)) (-3409 (($ (-1168 (-841 |#1|))) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-841 |#1|) (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-841 |#1|) (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| (-841 |#1|) (-344)))) (-2155 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344)))) (($ $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| (-841 |#1|) (-344))) (((-772 (-852)) $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| (-841 |#1|) (-344)))) (-2307 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-3892 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| (-841 |#1|) (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 (-841 |#1|)) $) NIL) (((-1083 $) $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2072 (((-852) $) NIL (|has| (-841 |#1|) (-344)))) (-3943 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344)))) (-2122 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-1083 (-841 |#1|)) "failed") $ $) NIL (|has| (-841 |#1|) (-344)))) (-3865 (($ $ (-1083 (-841 |#1|))) NIL (|has| (-841 |#1|) (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-841 |#1|) (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-4049 (((-1168 (-589 (-2 (|:| -1733 (-841 |#1|)) (|:| -3878 (-1034)))))) NIL)) (-3494 (((-629 (-841 |#1|))) NIL)) (-3441 (($) NIL (|has| (-841 |#1|) (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-841 |#1|) (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 (-841 |#1|))) NIL)) (-3425 (($) NIL (|has| (-841 |#1|) (-344)))) (-2749 (($) NIL (|has| (-841 |#1|) (-344)))) (-2966 (((-1168 (-841 |#1|)) $) NIL) (((-629 (-841 |#1|)) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| (-841 |#1|) (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-841 |#1|)) NIL)) (-3901 (($ $) NIL (|has| (-841 |#1|) (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2862 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ (-841 |#1|)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-841 |#1|)) NIL) (($ (-841 |#1|) $) NIL))) -(((-327 |#1| |#2|) (-13 (-305 (-841 |#1|)) (-10 -7 (-15 -4049 ((-1168 (-589 (-2 (|:| -1733 (-841 |#1|)) (|:| -3878 (-1034))))))) (-15 -3494 ((-629 (-841 |#1|)))) (-15 -1367 ((-710))))) (-852) (-852)) (T -327)) -((-4049 (*1 *2) (-12 (-5 *2 (-1168 (-589 (-2 (|:| -1733 (-841 *3)) (|:| -3878 (-1034)))))) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-3494 (*1 *2) (-12 (-5 *2 (-629 (-841 *3))) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-1367 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852))))) -(-13 (-305 (-841 |#1|)) (-10 -7 (-15 -4049 ((-1168 (-589 (-2 (|:| -1733 (-841 |#1|)) (|:| -3878 (-1034))))))) (-15 -3494 ((-629 (-841 |#1|)))) (-15 -1367 ((-710))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 75)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 ((|#1| $) 93) (($ $ (-852)) 91 (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) 149 (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1367 (((-710)) 90)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) 163 (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 112)) (-3474 ((|#1| $) 92)) (-3409 (($ (-1168 |#1|)) 56)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) 159 (|has| |#1| (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) 150 (|has| |#1| (-344)))) (-2155 (((-108) $) NIL (|has| |#1| (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) 98 (|has| |#1| (-344)))) (-2307 (((-108) $) 176 (|has| |#1| (-344)))) (-3892 ((|#1| $) 95) (($ $ (-852)) 94 (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 |#1|) $) 188) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2072 (((-852) $) 134 (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) 74 (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) 71 (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) 83 (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) 70 (|has| |#1| (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 191)) (-2262 (($) NIL (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) 137 (|has| |#1| (-344)))) (-1290 (((-108) $) 108)) (-2783 (((-1034) $) NIL)) (-4049 (((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) 84)) (-3494 (((-629 |#1|)) 88)) (-3441 (($) 97 (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 151 (|has| |#1| (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) 152)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) 63)) (-3727 (((-1083 |#1|)) 153)) (-3425 (($) 133 (|has| |#1| (-344)))) (-2749 (($) NIL (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) 106) (((-629 |#1|) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) 124) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 55)) (-3901 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) 157)) (-4041 (((-1168 $)) 173) (((-1168 $) (-852)) 101)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 29 T CONST)) (-2767 (($) 22 T CONST)) (-3454 (($ $) 107 (|has| |#1| (-344))) (($ $ (-710)) 99 (|has| |#1| (-344)))) (-2862 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3983 (((-108) $ $) 59)) (-4098 (($ $ $) 104) (($ $ |#1|) 105)) (-4087 (($ $) 178) (($ $ $) 182)) (-4075 (($ $ $) 180)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 138)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 185) (($ $ $) 143) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) -(((-328 |#1| |#2|) (-13 (-305 |#1|) (-10 -7 (-15 -4049 ((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -3494 ((-629 |#1|))) (-15 -1367 ((-710))))) (-325) (-3 (-1083 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (T -328)) -((-4049 (*1 *2) (-12 (-5 *2 (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034)))))) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) (-14 *4 (-3 (-1083 *3) *2)))) (-3494 (*1 *2) (-12 (-5 *2 (-629 *3)) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) (-14 *4 (-3 (-1083 *3) (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034))))))))) (-1367 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) (-14 *4 (-3 (-1083 *3) (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034)))))))))) -(-13 (-305 |#1|) (-10 -7 (-15 -4049 ((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -3494 ((-629 |#1|))) (-15 -1367 ((-710))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1367 (((-710)) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-3409 (($ (-1168 |#1|)) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| |#1| (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| |#1| (-344)))) (-2155 (((-108) $) NIL (|has| |#1| (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| |#1| (-344)))) (-2307 (((-108) $) NIL (|has| |#1| (-344)))) (-3892 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 |#1|) $) NIL) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-4049 (((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) NIL)) (-3494 (((-629 |#1|)) NIL)) (-3441 (($) NIL (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| |#1| (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 |#1|)) NIL)) (-3425 (($) NIL (|has| |#1| (-344)))) (-2749 (($) NIL (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) NIL) (((-629 |#1|) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) NIL)) (-3901 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2862 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-329 |#1| |#2|) (-13 (-305 |#1|) (-10 -7 (-15 -4049 ((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -3494 ((-629 |#1|))) (-15 -1367 ((-710))))) (-325) (-852)) (T -329)) -((-4049 (*1 *2) (-12 (-5 *2 (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034)))))) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852)))) (-3494 (*1 *2) (-12 (-5 *2 (-629 *3)) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852)))) (-1367 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852))))) -(-13 (-305 |#1|) (-10 -7 (-15 -4049 ((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -3494 ((-629 |#1|))) (-15 -1367 ((-710))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-841 |#1|) (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| (-841 |#1|) (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-841 |#1|) "failed") $) NIL)) (-3474 (((-841 |#1|) $) NIL)) (-3409 (($ (-1168 (-841 |#1|))) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-841 |#1|) (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-841 |#1|) (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| (-841 |#1|) (-344)))) (-2155 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344)))) (($ $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| (-841 |#1|) (-344))) (((-772 (-852)) $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| (-841 |#1|) (-344)))) (-2307 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-3892 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| (-841 |#1|) (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 (-841 |#1|)) $) NIL) (((-1083 $) $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2072 (((-852) $) NIL (|has| (-841 |#1|) (-344)))) (-3943 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344)))) (-2122 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-1083 (-841 |#1|)) "failed") $ $) NIL (|has| (-841 |#1|) (-344)))) (-3865 (($ $ (-1083 (-841 |#1|))) NIL (|has| (-841 |#1|) (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-841 |#1|) (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-3441 (($) NIL (|has| (-841 |#1|) (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-841 |#1|) (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 (-841 |#1|))) NIL)) (-3425 (($) NIL (|has| (-841 |#1|) (-344)))) (-2749 (($) NIL (|has| (-841 |#1|) (-344)))) (-2966 (((-1168 (-841 |#1|)) $) NIL) (((-629 (-841 |#1|)) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| (-841 |#1|) (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-841 |#1|)) NIL)) (-3901 (($ $) NIL (|has| (-841 |#1|) (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2862 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ (-841 |#1|)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-841 |#1|)) NIL) (($ (-841 |#1|) $) NIL))) +((-1942 (*1 *1 *1) (-4 *1 (-325))) (-2593 (*1 *2 *3) (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-325)) (-5 *2 (-1169 *1)))) (-2457 (*1 *2) (-12 (-4 *1 (-325)) (-5 *2 (-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))))) (-1557 (*1 *2 *3) (-12 (-4 *1 (-325)) (-5 *3 (-523)) (-5 *2 (-1097 (-852) (-710))))) (-2893 (*1 *1) (-4 *1 (-325))) (-3665 (*1 *1) (-4 *1 (-325))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-108)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-710)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-852)))) (-4021 (*1 *2) (-12 (-4 *1 (-325)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-378) (-344) (-1063) (-211) (-10 -8 (-15 -1942 ($ $)) (-15 -2593 ((-3 (-1169 $) "failed") (-629 $))) (-15 -2457 ((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523)))))) (-15 -1557 ((-1097 (-852) (-710)) (-523))) (-15 -2893 ($)) (-15 -3665 ($)) (-15 -1766 ((-108) $)) (-15 -2984 ((-710) $)) (-15 -3437 ((-852) $)) (-15 -4021 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-134) . T) ((-563 (-794)) . T) ((-158) . T) ((-211) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-378) . T) ((-344) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) . T) ((-1127) . T)) +((-3674 (((-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) |#1|) 51)) (-2496 (((-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))) 49))) +(((-326 |#1| |#2| |#3|) (-10 -7 (-15 -2496 ((-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))))) (-15 -3674 ((-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) |#1|))) (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $)))) (-1145 |#1|) (-385 |#1| |#2|)) (T -326)) +((-3674 (*1 *2 *3) (-12 (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) (-4 *4 (-1145 *3)) (-5 *2 (-2 (|:| -3760 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-326 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2496 (*1 *2) (-12 (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) (-4 *4 (-1145 *3)) (-5 *2 (-2 (|:| -3760 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-326 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) +(-10 -7 (-15 -2496 ((-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))))) (-15 -3674 ((-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) |#1|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2803 (((-108) $) NIL)) (-3019 (((-710)) NIL)) (-1477 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-1557 (((-1097 (-852) (-710)) (-523)) NIL (|has| (-841 |#1|) (-344)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2615 (((-710)) NIL)) (-2787 (((-108) $ $) NIL)) (-2395 (((-710)) NIL (|has| (-841 |#1|) (-344)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-841 |#1|) "failed") $) NIL)) (-3508 (((-841 |#1|) $) NIL)) (-2754 (($ (-1169 (-841 |#1|))) NIL)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-841 |#1|) (-344)))) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| (-841 |#1|) (-344)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3665 (($) NIL (|has| (-841 |#1|) (-344)))) (-1766 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-3610 (($ $ (-710)) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344)))) (($ $) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3049 (((-108) $) NIL)) (-3437 (((-852) $) NIL (|has| (-841 |#1|) (-344))) (((-772 (-852)) $) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2769 (((-108) $) NIL)) (-3753 (($) NIL (|has| (-841 |#1|) (-344)))) (-2706 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-1863 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2738 (((-3 $ "failed") $) NIL (|has| (-841 |#1|) (-344)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2887 (((-1083 (-841 |#1|)) $) NIL) (((-1083 $) $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2060 (((-852) $) NIL (|has| (-841 |#1|) (-344)))) (-4183 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344)))) (-1455 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-1083 (-841 |#1|)) "failed") $ $) NIL (|has| (-841 |#1|) (-344)))) (-1605 (($ $ (-1083 (-841 |#1|))) NIL (|has| (-841 |#1|) (-344)))) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| (-841 |#1|) (-344)) CONST)) (-4013 (($ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-3026 (((-108) $) NIL)) (-3951 (((-1034) $) NIL)) (-2662 (((-1169 (-589 (-2 (|:| -3370 (-841 |#1|)) (|:| -4013 (-1034)))))) NIL)) (-2408 (((-629 (-841 |#1|))) NIL)) (-1621 (($) NIL (|has| (-841 |#1|) (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL (|has| (-841 |#1|) (-344)))) (-2424 (((-394 $) $) NIL)) (-2151 (((-772 (-852))) NIL) (((-852)) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2984 (((-710) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-710) "failed") $ $) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3314 (((-126)) NIL)) (-3984 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2640 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2762 (((-1083 (-841 |#1|))) NIL)) (-2893 (($) NIL (|has| (-841 |#1|) (-344)))) (-1614 (($) NIL (|has| (-841 |#1|) (-344)))) (-2906 (((-1169 (-841 |#1|)) $) NIL) (((-629 (-841 |#1|)) (-1169 $)) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| (-841 |#1|) (-344)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-841 |#1|)) NIL)) (-1942 (($ $) NIL (|has| (-841 |#1|) (-344))) (((-3 $ "failed") $) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3272 (((-710)) NIL)) (-3760 (((-1169 $)) NIL) (((-1169 $) (-852)) NIL)) (-2801 (((-108) $ $) NIL)) (-1747 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2009 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2909 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL) (($ $ (-841 |#1|)) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-841 |#1|)) NIL) (($ (-841 |#1|) $) NIL))) +(((-327 |#1| |#2|) (-13 (-305 (-841 |#1|)) (-10 -7 (-15 -2662 ((-1169 (-589 (-2 (|:| -3370 (-841 |#1|)) (|:| -4013 (-1034))))))) (-15 -2408 ((-629 (-841 |#1|)))) (-15 -2615 ((-710))))) (-852) (-852)) (T -327)) +((-2662 (*1 *2) (-12 (-5 *2 (-1169 (-589 (-2 (|:| -3370 (-841 *3)) (|:| -4013 (-1034)))))) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-2408 (*1 *2) (-12 (-5 *2 (-629 (-841 *3))) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-2615 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852))))) +(-13 (-305 (-841 |#1|)) (-10 -7 (-15 -2662 ((-1169 (-589 (-2 (|:| -3370 (-841 |#1|)) (|:| -4013 (-1034))))))) (-15 -2408 ((-629 (-841 |#1|)))) (-15 -2615 ((-710))))) +((-1680 (((-108) $ $) 59)) (-2603 (((-108) $) 73)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2803 (((-108) $) NIL)) (-3019 (((-710)) NIL)) (-1477 ((|#1| $) 91) (($ $ (-852)) 89 (|has| |#1| (-344)))) (-1557 (((-1097 (-852) (-710)) (-523)) 148 (|has| |#1| (-344)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2615 (((-710)) 88)) (-2787 (((-108) $ $) NIL)) (-2395 (((-710)) 162 (|has| |#1| (-344)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) 111)) (-3508 ((|#1| $) 90)) (-2754 (($ (-1169 |#1|)) 56)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-344)))) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) 158 (|has| |#1| (-344)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3665 (($) 149 (|has| |#1| (-344)))) (-1766 (((-108) $) NIL (|has| |#1| (-344)))) (-3610 (($ $ (-710)) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3049 (((-108) $) NIL)) (-3437 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2769 (((-108) $) NIL)) (-3753 (($) 97 (|has| |#1| (-344)))) (-2706 (((-108) $) 175 (|has| |#1| (-344)))) (-1863 ((|#1| $) 93) (($ $ (-852)) 92 (|has| |#1| (-344)))) (-2738 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2887 (((-1083 |#1|) $) 189) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2060 (((-852) $) 133 (|has| |#1| (-344)))) (-4183 (((-1083 |#1|) $) 72 (|has| |#1| (-344)))) (-1455 (((-1083 |#1|) $) 69 (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) 81 (|has| |#1| (-344)))) (-1605 (($ $ (-1083 |#1|)) 68 (|has| |#1| (-344)))) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 192)) (-2773 (($) NIL (|has| |#1| (-344)) CONST)) (-4013 (($ (-852)) 136 (|has| |#1| (-344)))) (-3026 (((-108) $) 107)) (-3951 (((-1034) $) NIL)) (-2662 (((-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034)))))) 82)) (-2408 (((-629 |#1|)) 86)) (-1621 (($) 95 (|has| |#1| (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) 150 (|has| |#1| (-344)))) (-2424 (((-394 $) $) NIL)) (-2151 (((-772 (-852))) NIL) (((-852)) 151)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2984 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3314 (((-126)) NIL)) (-3984 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2640 (((-772 (-852)) $) NIL) (((-852) $) 61)) (-2762 (((-1083 |#1|)) 152)) (-2893 (($) 132 (|has| |#1| (-344)))) (-1614 (($) NIL (|has| |#1| (-344)))) (-2906 (((-1169 |#1|) $) 105) (((-629 |#1|) (-1169 $)) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1691 (((-794) $) 123) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 55)) (-1942 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3272 (((-710)) 156)) (-3760 (((-1169 $)) 172) (((-1169 $) (-852)) 100)) (-2801 (((-108) $ $) NIL)) (-1747 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 29 T CONST)) (-1891 (($) 22 T CONST)) (-2009 (($ $) 106 (|has| |#1| (-344))) (($ $ (-710)) 98 (|has| |#1| (-344)))) (-2909 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3941 (((-108) $ $) 183)) (-4074 (($ $ $) 103) (($ $ |#1|) 104)) (-4060 (($ $) 177) (($ $ $) 181)) (-4045 (($ $ $) 179)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 137)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 186) (($ $ $) 142) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 102))) +(((-328 |#1| |#2|) (-13 (-305 |#1|) (-10 -7 (-15 -2662 ((-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))))) (-15 -2408 ((-629 |#1|))) (-15 -2615 ((-710))))) (-325) (-3 (-1083 |#1|) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))))) (T -328)) +((-2662 (*1 *2) (-12 (-5 *2 (-1169 (-589 (-2 (|:| -3370 *3) (|:| -4013 (-1034)))))) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) (-14 *4 (-3 (-1083 *3) *2)))) (-2408 (*1 *2) (-12 (-5 *2 (-629 *3)) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) (-14 *4 (-3 (-1083 *3) (-1169 (-589 (-2 (|:| -3370 *3) (|:| -4013 (-1034))))))))) (-2615 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) (-14 *4 (-3 (-1083 *3) (-1169 (-589 (-2 (|:| -3370 *3) (|:| -4013 (-1034)))))))))) +(-13 (-305 |#1|) (-10 -7 (-15 -2662 ((-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))))) (-15 -2408 ((-629 |#1|))) (-15 -2615 ((-710))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2803 (((-108) $) NIL)) (-3019 (((-710)) NIL)) (-1477 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-1557 (((-1097 (-852) (-710)) (-523)) NIL (|has| |#1| (-344)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2615 (((-710)) NIL)) (-2787 (((-108) $ $) NIL)) (-2395 (((-710)) NIL (|has| |#1| (-344)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL)) (-3508 ((|#1| $) NIL)) (-2754 (($ (-1169 |#1|)) NIL)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| |#1| (-344)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3665 (($) NIL (|has| |#1| (-344)))) (-1766 (((-108) $) NIL (|has| |#1| (-344)))) (-3610 (($ $ (-710)) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3049 (((-108) $) NIL)) (-3437 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2769 (((-108) $) NIL)) (-3753 (($) NIL (|has| |#1| (-344)))) (-2706 (((-108) $) NIL (|has| |#1| (-344)))) (-1863 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2738 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2887 (((-1083 |#1|) $) NIL) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2060 (((-852) $) NIL (|has| |#1| (-344)))) (-4183 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-1455 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-1605 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| |#1| (-344)) CONST)) (-4013 (($ (-852)) NIL (|has| |#1| (-344)))) (-3026 (((-108) $) NIL)) (-3951 (((-1034) $) NIL)) (-2662 (((-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034)))))) NIL)) (-2408 (((-629 |#1|)) NIL)) (-1621 (($) NIL (|has| |#1| (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL (|has| |#1| (-344)))) (-2424 (((-394 $) $) NIL)) (-2151 (((-772 (-852))) NIL) (((-852)) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2984 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3314 (((-126)) NIL)) (-3984 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2640 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2762 (((-1083 |#1|)) NIL)) (-2893 (($) NIL (|has| |#1| (-344)))) (-1614 (($) NIL (|has| |#1| (-344)))) (-2906 (((-1169 |#1|) $) NIL) (((-629 |#1|) (-1169 $)) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) NIL)) (-1942 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3272 (((-710)) NIL)) (-3760 (((-1169 $)) NIL) (((-1169 $) (-852)) NIL)) (-2801 (((-108) $ $) NIL)) (-1747 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2009 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2909 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-329 |#1| |#2|) (-13 (-305 |#1|) (-10 -7 (-15 -2662 ((-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))))) (-15 -2408 ((-629 |#1|))) (-15 -2615 ((-710))))) (-325) (-852)) (T -329)) +((-2662 (*1 *2) (-12 (-5 *2 (-1169 (-589 (-2 (|:| -3370 *3) (|:| -4013 (-1034)))))) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852)))) (-2408 (*1 *2) (-12 (-5 *2 (-629 *3)) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852)))) (-2615 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852))))) +(-13 (-305 |#1|) (-10 -7 (-15 -2662 ((-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))))) (-15 -2408 ((-629 |#1|))) (-15 -2615 ((-710))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2803 (((-108) $) NIL)) (-3019 (((-710)) NIL)) (-1477 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-1557 (((-1097 (-852) (-710)) (-523)) NIL (|has| (-841 |#1|) (-344)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-2395 (((-710)) NIL (|has| (-841 |#1|) (-344)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-841 |#1|) "failed") $) NIL)) (-3508 (((-841 |#1|) $) NIL)) (-2754 (($ (-1169 (-841 |#1|))) NIL)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-841 |#1|) (-344)))) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| (-841 |#1|) (-344)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3665 (($) NIL (|has| (-841 |#1|) (-344)))) (-1766 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-3610 (($ $ (-710)) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344)))) (($ $) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3049 (((-108) $) NIL)) (-3437 (((-852) $) NIL (|has| (-841 |#1|) (-344))) (((-772 (-852)) $) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2769 (((-108) $) NIL)) (-3753 (($) NIL (|has| (-841 |#1|) (-344)))) (-2706 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-1863 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2738 (((-3 $ "failed") $) NIL (|has| (-841 |#1|) (-344)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2887 (((-1083 (-841 |#1|)) $) NIL) (((-1083 $) $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2060 (((-852) $) NIL (|has| (-841 |#1|) (-344)))) (-4183 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344)))) (-1455 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-1083 (-841 |#1|)) "failed") $ $) NIL (|has| (-841 |#1|) (-344)))) (-1605 (($ $ (-1083 (-841 |#1|))) NIL (|has| (-841 |#1|) (-344)))) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| (-841 |#1|) (-344)) CONST)) (-4013 (($ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-3026 (((-108) $) NIL)) (-3951 (((-1034) $) NIL)) (-1621 (($) NIL (|has| (-841 |#1|) (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL (|has| (-841 |#1|) (-344)))) (-2424 (((-394 $) $) NIL)) (-2151 (((-772 (-852))) NIL) (((-852)) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2984 (((-710) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-710) "failed") $ $) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3314 (((-126)) NIL)) (-3984 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2640 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2762 (((-1083 (-841 |#1|))) NIL)) (-2893 (($) NIL (|has| (-841 |#1|) (-344)))) (-1614 (($) NIL (|has| (-841 |#1|) (-344)))) (-2906 (((-1169 (-841 |#1|)) $) NIL) (((-629 (-841 |#1|)) (-1169 $)) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| (-841 |#1|) (-344)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-841 |#1|)) NIL)) (-1942 (($ $) NIL (|has| (-841 |#1|) (-344))) (((-3 $ "failed") $) NIL (-3172 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3272 (((-710)) NIL)) (-3760 (((-1169 $)) NIL) (((-1169 $) (-852)) NIL)) (-2801 (((-108) $ $) NIL)) (-1747 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2009 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2909 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL) (($ $ (-841 |#1|)) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-841 |#1|)) NIL) (($ (-841 |#1|) $) NIL))) (((-330 |#1| |#2|) (-305 (-841 |#1|)) (-852) (-852)) (T -330)) NIL (-305 (-841 |#1|)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) 119 (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) 139 (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 91)) (-3474 ((|#1| $) 88)) (-3409 (($ (-1168 |#1|)) 83)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) 80 (|has| |#1| (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) 39 (|has| |#1| (-344)))) (-2155 (((-108) $) NIL (|has| |#1| (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) 120 (|has| |#1| (-344)))) (-2307 (((-108) $) 72 (|has| |#1| (-344)))) (-3892 ((|#1| $) 38) (($ $ (-852)) 40 (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 |#1|) $) 62) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2072 (((-852) $) 95 (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) 93 (|has| |#1| (-344)))) (-1290 (((-108) $) 141)) (-2783 (((-1034) $) NIL)) (-3441 (($) 35 (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 113 (|has| |#1| (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) 138)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) 56)) (-3727 (((-1083 |#1|)) 86)) (-3425 (($) 125 (|has| |#1| (-344)))) (-2749 (($) NIL (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) 50) (((-629 |#1|) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) 137) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 85)) (-3901 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) 143)) (-4041 (((-1168 $)) 107) (((-1168 $) (-852)) 46)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 109 T CONST)) (-2767 (($) 31 T CONST)) (-3454 (($ $) 65 (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2862 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3983 (((-108) $ $) 105)) (-4098 (($ $ $) 97) (($ $ |#1|) 98)) (-4087 (($ $) 78) (($ $ $) 103)) (-4075 (($ $ $) 101)) (** (($ $ (-852)) NIL) (($ $ (-710)) 41) (($ $ (-523)) 129)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 76) (($ $ $) 53) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2803 (((-108) $) NIL)) (-3019 (((-710)) NIL)) (-1477 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-1557 (((-1097 (-852) (-710)) (-523)) 120 (|has| |#1| (-344)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-2395 (((-710)) 140 (|has| |#1| (-344)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) 92)) (-3508 ((|#1| $) 89)) (-2754 (($ (-1169 |#1|)) 84)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) 116 (|has| |#1| (-344)))) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) 81 (|has| |#1| (-344)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3665 (($) 41 (|has| |#1| (-344)))) (-1766 (((-108) $) NIL (|has| |#1| (-344)))) (-3610 (($ $ (-710)) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3049 (((-108) $) NIL)) (-3437 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2769 (((-108) $) NIL)) (-3753 (($) 121 (|has| |#1| (-344)))) (-2706 (((-108) $) 73 (|has| |#1| (-344)))) (-1863 ((|#1| $) 38) (($ $ (-852)) 42 (|has| |#1| (-344)))) (-2738 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2887 (((-1083 |#1|) $) 64) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2060 (((-852) $) 96 (|has| |#1| (-344)))) (-4183 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-1455 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-1605 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| |#1| (-344)) CONST)) (-4013 (($ (-852)) 94 (|has| |#1| (-344)))) (-3026 (((-108) $) 142)) (-3951 (((-1034) $) NIL)) (-1621 (($) 35 (|has| |#1| (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) 114 (|has| |#1| (-344)))) (-2424 (((-394 $) $) NIL)) (-2151 (((-772 (-852))) NIL) (((-852)) 139)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2984 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3314 (((-126)) NIL)) (-3984 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2640 (((-772 (-852)) $) NIL) (((-852) $) 58)) (-2762 (((-1083 |#1|)) 87)) (-2893 (($) 126 (|has| |#1| (-344)))) (-1614 (($) NIL (|has| |#1| (-344)))) (-2906 (((-1169 |#1|) $) 52) (((-629 |#1|) (-1169 $)) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1691 (((-794) $) 138) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 86)) (-1942 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3272 (((-710)) 144)) (-3760 (((-1169 $)) 108) (((-1169 $) (-852)) 48)) (-2801 (((-108) $ $) NIL)) (-1747 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 110 T CONST)) (-1891 (($) 31 T CONST)) (-2009 (($ $) 67 (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2909 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3941 (((-108) $ $) 106)) (-4074 (($ $ $) 98) (($ $ |#1|) 99)) (-4060 (($ $) 79) (($ $ $) 104)) (-4045 (($ $ $) 102)) (** (($ $ (-852)) NIL) (($ $ (-710)) 43) (($ $ (-523)) 130)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 77) (($ $ $) 55) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 75))) (((-331 |#1| |#2|) (-305 |#1|) (-325) (-1083 |#1|)) (T -331)) NIL (-305 |#1|) -((-2551 ((|#1| (-1083 |#2|)) 51))) -(((-332 |#1| |#2|) (-10 -7 (-15 -2551 (|#1| (-1083 |#2|)))) (-13 (-378) (-10 -7 (-15 -1458 (|#1| |#2|)) (-15 -2072 ((-852) |#1|)) (-15 -4041 ((-1168 |#1|) (-852))) (-15 -3454 (|#1| |#1|)))) (-325)) (T -332)) -((-2551 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-4 *2 (-13 (-378) (-10 -7 (-15 -1458 (*2 *4)) (-15 -2072 ((-852) *2)) (-15 -4041 ((-1168 *2) (-852))) (-15 -3454 (*2 *2))))) (-5 *1 (-332 *2 *4))))) -(-10 -7 (-15 -2551 (|#1| (-1083 |#2|)))) -((-1206 (((-888 (-1083 |#1|)) (-1083 |#1|)) 37)) (-4032 (((-1083 |#1|) (-852) (-852)) 110) (((-1083 |#1|) (-852)) 109)) (-2155 (((-108) (-1083 |#1|)) 82)) (-3196 (((-852) (-852)) 72)) (-2205 (((-852) (-852)) 74)) (-2184 (((-852) (-852)) 70)) (-2307 (((-108) (-1083 |#1|)) 86)) (-1243 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 98)) (-2634 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 101)) (-2314 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 100)) (-1350 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 99)) (-2834 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 95)) (-2545 (((-1083 |#1|) (-1083 |#1|)) 63)) (-2475 (((-1083 |#1|) (-852)) 104)) (-2554 (((-1083 |#1|) (-852)) 107)) (-2046 (((-1083 |#1|) (-852)) 106)) (-2534 (((-1083 |#1|) (-852)) 105)) (-1457 (((-1083 |#1|) (-852)) 102))) -(((-333 |#1|) (-10 -7 (-15 -2155 ((-108) (-1083 |#1|))) (-15 -2307 ((-108) (-1083 |#1|))) (-15 -2184 ((-852) (-852))) (-15 -3196 ((-852) (-852))) (-15 -2205 ((-852) (-852))) (-15 -1457 ((-1083 |#1|) (-852))) (-15 -2475 ((-1083 |#1|) (-852))) (-15 -2534 ((-1083 |#1|) (-852))) (-15 -2046 ((-1083 |#1|) (-852))) (-15 -2554 ((-1083 |#1|) (-852))) (-15 -2834 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -1243 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -1350 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -2314 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -2634 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -4032 ((-1083 |#1|) (-852))) (-15 -4032 ((-1083 |#1|) (-852) (-852))) (-15 -2545 ((-1083 |#1|) (-1083 |#1|))) (-15 -1206 ((-888 (-1083 |#1|)) (-1083 |#1|)))) (-325)) (T -333)) -((-1206 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-888 (-1083 *4))) (-5 *1 (-333 *4)) (-5 *3 (-1083 *4)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-4032 (*1 *2 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2634 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-2314 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-1350 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-1243 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-2834 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2046 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325)))) (-3196 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325)))) (-2184 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-333 *4)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-333 *4))))) -(-10 -7 (-15 -2155 ((-108) (-1083 |#1|))) (-15 -2307 ((-108) (-1083 |#1|))) (-15 -2184 ((-852) (-852))) (-15 -3196 ((-852) (-852))) (-15 -2205 ((-852) (-852))) (-15 -1457 ((-1083 |#1|) (-852))) (-15 -2475 ((-1083 |#1|) (-852))) (-15 -2534 ((-1083 |#1|) (-852))) (-15 -2046 ((-1083 |#1|) (-852))) (-15 -2554 ((-1083 |#1|) (-852))) (-15 -2834 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -1243 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -1350 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -2314 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -2634 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -4032 ((-1083 |#1|) (-852))) (-15 -4032 ((-1083 |#1|) (-852) (-852))) (-15 -2545 ((-1083 |#1|) (-1083 |#1|))) (-15 -1206 ((-888 (-1083 |#1|)) (-1083 |#1|)))) -((-3652 (((-3 (-589 |#3|) "failed") (-589 |#3|) |#3|) 34))) -(((-334 |#1| |#2| |#3|) (-10 -7 (-15 -3652 ((-3 (-589 |#3|) "failed") (-589 |#3|) |#3|))) (-325) (-1144 |#1|) (-1144 |#2|)) (T -334)) -((-3652 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-325)) (-5 *1 (-334 *4 *5 *3))))) -(-10 -7 (-15 -3652 ((-3 (-589 |#3|) "failed") (-589 |#3|) |#3|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-3409 (($ (-1168 |#1|)) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| |#1| (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| |#1| (-344)))) (-2155 (((-108) $) NIL (|has| |#1| (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| |#1| (-344)))) (-2307 (((-108) $) NIL (|has| |#1| (-344)))) (-3892 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 |#1|) $) NIL) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-3441 (($) NIL (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| |#1| (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 |#1|)) NIL)) (-3425 (($) NIL (|has| |#1| (-344)))) (-2749 (($) NIL (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) NIL) (((-629 |#1|) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) NIL)) (-3901 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2862 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-3226 ((|#1| (-1083 |#2|)) 52))) +(((-332 |#1| |#2|) (-10 -7 (-15 -3226 (|#1| (-1083 |#2|)))) (-13 (-378) (-10 -7 (-15 -1691 (|#1| |#2|)) (-15 -2060 ((-852) |#1|)) (-15 -3760 ((-1169 |#1|) (-852))) (-15 -2009 (|#1| |#1|)))) (-325)) (T -332)) +((-3226 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-4 *2 (-13 (-378) (-10 -7 (-15 -1691 (*2 *4)) (-15 -2060 ((-852) *2)) (-15 -3760 ((-1169 *2) (-852))) (-15 -2009 (*2 *2))))) (-5 *1 (-332 *2 *4))))) +(-10 -7 (-15 -3226 (|#1| (-1083 |#2|)))) +((-1575 (((-888 (-1083 |#1|)) (-1083 |#1|)) 36)) (-1631 (((-1083 |#1|) (-852) (-852)) 113) (((-1083 |#1|) (-852)) 112)) (-1766 (((-108) (-1083 |#1|)) 84)) (-3260 (((-852) (-852)) 71)) (-4098 (((-852) (-852)) 74)) (-3849 (((-852) (-852)) 69)) (-2706 (((-108) (-1083 |#1|)) 88)) (-3731 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 101)) (-2829 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 104)) (-2775 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 103)) (-3600 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 102)) (-4146 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 98)) (-3181 (((-1083 |#1|) (-1083 |#1|)) 62)) (-1945 (((-1083 |#1|) (-852)) 107)) (-3258 (((-1083 |#1|) (-852)) 110)) (-2968 (((-1083 |#1|) (-852)) 109)) (-1330 (((-1083 |#1|) (-852)) 108)) (-2331 (((-1083 |#1|) (-852)) 105))) +(((-333 |#1|) (-10 -7 (-15 -1766 ((-108) (-1083 |#1|))) (-15 -2706 ((-108) (-1083 |#1|))) (-15 -3849 ((-852) (-852))) (-15 -3260 ((-852) (-852))) (-15 -4098 ((-852) (-852))) (-15 -2331 ((-1083 |#1|) (-852))) (-15 -1945 ((-1083 |#1|) (-852))) (-15 -1330 ((-1083 |#1|) (-852))) (-15 -2968 ((-1083 |#1|) (-852))) (-15 -3258 ((-1083 |#1|) (-852))) (-15 -4146 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -3731 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -3600 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -2775 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -2829 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -1631 ((-1083 |#1|) (-852))) (-15 -1631 ((-1083 |#1|) (-852) (-852))) (-15 -3181 ((-1083 |#1|) (-1083 |#1|))) (-15 -1575 ((-888 (-1083 |#1|)) (-1083 |#1|)))) (-325)) (T -333)) +((-1575 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-888 (-1083 *4))) (-5 *1 (-333 *4)) (-5 *3 (-1083 *4)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-1631 (*1 *2 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-1631 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2829 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-2775 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-3600 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-3731 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-4146 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-4098 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-333 *4)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-333 *4))))) +(-10 -7 (-15 -1766 ((-108) (-1083 |#1|))) (-15 -2706 ((-108) (-1083 |#1|))) (-15 -3849 ((-852) (-852))) (-15 -3260 ((-852) (-852))) (-15 -4098 ((-852) (-852))) (-15 -2331 ((-1083 |#1|) (-852))) (-15 -1945 ((-1083 |#1|) (-852))) (-15 -1330 ((-1083 |#1|) (-852))) (-15 -2968 ((-1083 |#1|) (-852))) (-15 -3258 ((-1083 |#1|) (-852))) (-15 -4146 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -3731 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -3600 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -2775 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -2829 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -1631 ((-1083 |#1|) (-852))) (-15 -1631 ((-1083 |#1|) (-852) (-852))) (-15 -3181 ((-1083 |#1|) (-1083 |#1|))) (-15 -1575 ((-888 (-1083 |#1|)) (-1083 |#1|)))) +((-3302 (((-3 (-589 |#3|) "failed") (-589 |#3|) |#3|) 34))) +(((-334 |#1| |#2| |#3|) (-10 -7 (-15 -3302 ((-3 (-589 |#3|) "failed") (-589 |#3|) |#3|))) (-325) (-1145 |#1|) (-1145 |#2|)) (T -334)) +((-3302 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-325)) (-5 *1 (-334 *4 *5 *3))))) +(-10 -7 (-15 -3302 ((-3 (-589 |#3|) "failed") (-589 |#3|) |#3|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2803 (((-108) $) NIL)) (-3019 (((-710)) NIL)) (-1477 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-1557 (((-1097 (-852) (-710)) (-523)) NIL (|has| |#1| (-344)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-2395 (((-710)) NIL (|has| |#1| (-344)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL)) (-3508 ((|#1| $) NIL)) (-2754 (($ (-1169 |#1|)) NIL)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| |#1| (-344)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3665 (($) NIL (|has| |#1| (-344)))) (-1766 (((-108) $) NIL (|has| |#1| (-344)))) (-3610 (($ $ (-710)) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3049 (((-108) $) NIL)) (-3437 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2769 (((-108) $) NIL)) (-3753 (($) NIL (|has| |#1| (-344)))) (-2706 (((-108) $) NIL (|has| |#1| (-344)))) (-1863 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2738 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2887 (((-1083 |#1|) $) NIL) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2060 (((-852) $) NIL (|has| |#1| (-344)))) (-4183 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-1455 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-1605 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| |#1| (-344)) CONST)) (-4013 (($ (-852)) NIL (|has| |#1| (-344)))) (-3026 (((-108) $) NIL)) (-3951 (((-1034) $) NIL)) (-1621 (($) NIL (|has| |#1| (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL (|has| |#1| (-344)))) (-2424 (((-394 $) $) NIL)) (-2151 (((-772 (-852))) NIL) (((-852)) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2984 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3314 (((-126)) NIL)) (-3984 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2640 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2762 (((-1083 |#1|)) NIL)) (-2893 (($) NIL (|has| |#1| (-344)))) (-1614 (($) NIL (|has| |#1| (-344)))) (-2906 (((-1169 |#1|) $) NIL) (((-629 |#1|) (-1169 $)) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) NIL)) (-1942 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3272 (((-710)) NIL)) (-3760 (((-1169 $)) NIL) (((-1169 $) (-852)) NIL)) (-2801 (((-108) $ $) NIL)) (-1747 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2009 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2909 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-335 |#1| |#2|) (-305 |#1|) (-325) (-852)) (T -335)) NIL (-305 |#1|) -((-3249 (((-108) (-589 (-883 |#1|))) 32)) (-1896 (((-589 (-883 |#1|)) (-589 (-883 |#1|))) 43)) (-4095 (((-3 (-589 (-883 |#1|)) "failed") (-589 (-883 |#1|))) 39))) -(((-336 |#1| |#2|) (-10 -7 (-15 -3249 ((-108) (-589 (-883 |#1|)))) (-15 -4095 ((-3 (-589 (-883 |#1|)) "failed") (-589 (-883 |#1|)))) (-15 -1896 ((-589 (-883 |#1|)) (-589 (-883 |#1|))))) (-427) (-589 (-1087))) (T -336)) -((-1896 (*1 *2 *2) (-12 (-5 *2 (-589 (-883 *3))) (-4 *3 (-427)) (-5 *1 (-336 *3 *4)) (-14 *4 (-589 (-1087))))) (-4095 (*1 *2 *2) (|partial| -12 (-5 *2 (-589 (-883 *3))) (-4 *3 (-427)) (-5 *1 (-336 *3 *4)) (-14 *4 (-589 (-1087))))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-427)) (-5 *2 (-108)) (-5 *1 (-336 *4 *5)) (-14 *5 (-589 (-1087)))))) -(-10 -7 (-15 -3249 ((-108) (-589 (-883 |#1|)))) (-15 -4095 ((-3 (-589 (-883 |#1|)) "failed") (-589 (-883 |#1|)))) (-15 -1896 ((-589 (-883 |#1|)) (-589 (-883 |#1|))))) -((-3924 (((-108) $ $) NIL)) (-1703 (((-710) $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) 14)) (-2378 ((|#1| $ (-523)) NIL)) (-3731 (((-523) $ (-523)) NIL)) (-4093 (($ (-1 |#1| |#1|) $) 32)) (-2682 (($ (-1 (-523) (-523)) $) 24)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 26)) (-2783 (((-1034) $) NIL)) (-1979 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-523)))) $) 28)) (-3208 (($ $ $) NIL)) (-1714 (($ $ $) NIL)) (-1458 (((-794) $) 38) (($ |#1|) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2767 (($) 9 T CONST)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL) (($ |#1| (-523)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-337 |#1|) (-13 (-448) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-523))) (-15 -1703 ((-710) $)) (-15 -3731 ((-523) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -2682 ($ (-1 (-523) (-523)) $)) (-15 -4093 ($ (-1 |#1| |#1|) $)) (-15 -1979 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-523)))) $)))) (-1016)) (T -337)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-337 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-1016)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-337 *2)) (-4 *2 (-1016)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) (-3731 (*1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-337 *2)) (-4 *2 (-1016)))) (-2682 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-523) (-523))) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) (-4093 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-337 *3)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 (-523))))) (-5 *1 (-337 *3)) (-4 *3 (-1016))))) -(-13 (-448) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-523))) (-15 -1703 ((-710) $)) (-15 -3731 ((-523) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -2682 ($ (-1 (-523) (-523)) $)) (-15 -4093 ($ (-1 |#1| |#1|) $)) (-15 -1979 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-523)))) $)))) -((-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 13)) (-3345 (($ $) 14)) (-3614 (((-394 $) $) 30)) (-2657 (((-108) $) 26)) (-3738 (($ $) 19)) (-3278 (($ $ $) 23) (($ (-589 $)) NIL)) (-1820 (((-394 $) $) 31)) (-3746 (((-3 $ "failed") $ $) 22)) (-1972 (((-710) $) 25)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 35)) (-1704 (((-108) $ $) 16)) (-4098 (($ $ $) 33))) -(((-338 |#1|) (-10 -8 (-15 -4098 (|#1| |#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -2657 ((-108) |#1|)) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3462 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -1972 ((-710) |#1|)) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|)) (-15 -1704 ((-108) |#1| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -1669 ((-2 (|:| -3819 |#1|) (|:| -4231 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|))) (-339)) (T -338)) -NIL -(-10 -8 (-15 -4098 (|#1| |#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -2657 ((-108) |#1|)) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3462 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -1972 ((-710) |#1|)) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|)) (-15 -1704 ((-108) |#1| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -1669 ((-2 (|:| -3819 |#1|) (|:| -4231 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2657 (((-108) $) 71)) (-2023 (((-108) $) 31)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 64)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) +((-3746 (((-108) (-589 (-883 |#1|))) 32)) (-3901 (((-589 (-883 |#1|)) (-589 (-883 |#1|))) 43)) (-3032 (((-3 (-589 (-883 |#1|)) "failed") (-589 (-883 |#1|))) 39))) +(((-336 |#1| |#2|) (-10 -7 (-15 -3746 ((-108) (-589 (-883 |#1|)))) (-15 -3032 ((-3 (-589 (-883 |#1|)) "failed") (-589 (-883 |#1|)))) (-15 -3901 ((-589 (-883 |#1|)) (-589 (-883 |#1|))))) (-427) (-589 (-1087))) (T -336)) +((-3901 (*1 *2 *2) (-12 (-5 *2 (-589 (-883 *3))) (-4 *3 (-427)) (-5 *1 (-336 *3 *4)) (-14 *4 (-589 (-1087))))) (-3032 (*1 *2 *2) (|partial| -12 (-5 *2 (-589 (-883 *3))) (-4 *3 (-427)) (-5 *1 (-336 *3 *4)) (-14 *4 (-589 (-1087))))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-427)) (-5 *2 (-108)) (-5 *1 (-336 *4 *5)) (-14 *5 (-589 (-1087)))))) +(-10 -7 (-15 -3746 ((-108) (-589 (-883 |#1|)))) (-15 -3032 ((-3 (-589 (-883 |#1|)) "failed") (-589 (-883 |#1|)))) (-15 -3901 ((-589 (-883 |#1|)) (-589 (-883 |#1|))))) +((-1680 (((-108) $ $) NIL)) (-2395 (((-710) $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL)) (-3508 ((|#1| $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-2769 (((-108) $) 14)) (-2212 ((|#1| $ (-523)) NIL)) (-2800 (((-523) $ (-523)) NIL)) (-3015 (($ (-1 |#1| |#1|) $) 32)) (-2110 (($ (-1 (-523) (-523)) $) 24)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 26)) (-3951 (((-1034) $) NIL)) (-3491 (((-589 (-2 (|:| |gen| |#1|) (|:| -2922 (-523)))) $) 28)) (-3361 (($ $ $) NIL)) (-2892 (($ $ $) NIL)) (-1691 (((-794) $) 38) (($ |#1|) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1891 (($) 9 T CONST)) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL) (($ |#1| (-523)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-337 |#1|) (-13 (-448) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-523))) (-15 -2395 ((-710) $)) (-15 -2800 ((-523) $ (-523))) (-15 -2212 (|#1| $ (-523))) (-15 -2110 ($ (-1 (-523) (-523)) $)) (-15 -3015 ($ (-1 |#1| |#1|) $)) (-15 -3491 ((-589 (-2 (|:| |gen| |#1|) (|:| -2922 (-523)))) $)))) (-1016)) (T -337)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-337 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-1016)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-337 *2)) (-4 *2 (-1016)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) (-2800 (*1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-337 *2)) (-4 *2 (-1016)))) (-2110 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-523) (-523))) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) (-3015 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-337 *3)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -2922 (-523))))) (-5 *1 (-337 *3)) (-4 *3 (-1016))))) +(-13 (-448) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-523))) (-15 -2395 ((-710) $)) (-15 -2800 ((-523) $ (-523))) (-15 -2212 (|#1| $ (-523))) (-15 -2110 ($ (-1 (-523) (-523)) $)) (-15 -3015 ($ (-1 |#1| |#1|) $)) (-15 -3491 ((-589 (-2 (|:| |gen| |#1|) (|:| -2922 (-523)))) $)))) +((-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 13)) (-3306 (($ $) 14)) (-4226 (((-394 $) $) 30)) (-3049 (((-108) $) 26)) (-1396 (($ $) 19)) (-3310 (($ $ $) 23) (($ (-589 $)) NIL)) (-2424 (((-394 $) $) 31)) (-4007 (((-3 $ "failed") $ $) 22)) (-3413 (((-710) $) 25)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 35)) (-2801 (((-108) $ $) 16)) (-4074 (($ $ $) 33))) +(((-338 |#1|) (-10 -8 (-15 -4074 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1|)) (-15 -3049 ((-108) |#1|)) (-15 -4226 ((-394 |#1|) |#1|)) (-15 -2424 ((-394 |#1|) |#1|)) (-15 -2083 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -3413 ((-710) |#1|)) (-15 -3310 (|#1| (-589 |#1|))) (-15 -3310 (|#1| |#1| |#1|)) (-15 -2801 ((-108) |#1| |#1|)) (-15 -3306 (|#1| |#1|)) (-15 -2545 ((-2 (|:| -2345 |#1|) (|:| -4235 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#1|))) (-339)) (T -338)) +NIL +(-10 -8 (-15 -4074 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1|)) (-15 -3049 ((-108) |#1|)) (-15 -4226 ((-394 |#1|) |#1|)) (-15 -2424 ((-394 |#1|) |#1|)) (-15 -2083 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -3413 ((-710) |#1|)) (-15 -3310 (|#1| (-589 |#1|))) (-15 -3310 (|#1| |#1| |#1|)) (-15 -2801 ((-108) |#1| |#1|)) (-15 -3306 (|#1| |#1|)) (-15 -2545 ((-2 (|:| -2345 |#1|) (|:| -4235 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 73)) (-4226 (((-394 $) $) 72)) (-2787 (((-108) $ $) 59)) (-4189 (($) 17 T CONST)) (-4059 (($ $ $) 55)) (-1444 (((-3 $ "failed") $) 34)) (-4032 (($ $ $) 56)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-3049 (((-108) $) 71)) (-2769 (((-108) $) 31)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 70)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-2424 (((-394 $) $) 74)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-3413 (((-710) $) 58)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ $) 64)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) (((-339) (-129)) (T -339)) -((-4098 (*1 *1 *1 *1) (-4 *1 (-339)))) -(-13 (-284) (-1126) (-221) (-10 -8 (-15 -4098 ($ $ $)) (-6 -4242) (-6 -4236))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) -((-3924 (((-108) $ $) 7)) (-3715 ((|#2| $ |#2|) 13)) (-2647 (($ $ (-1070)) 18)) (-3114 ((|#2| $) 14)) (-2625 (($ |#1|) 20) (($ |#1| (-1070)) 19)) (-4038 ((|#1| $) 16)) (-3779 (((-1070) $) 9)) (-1998 (((-1070) $) 15)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-1685 (($ $) 17)) (-3983 (((-108) $ $) 6))) +((-4074 (*1 *1 *1 *1) (-4 *1 (-339)))) +(-13 (-284) (-1127) (-221) (-10 -8 (-15 -4074 ($ $ $)) (-6 -4246) (-6 -4240))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1127) . T)) +((-1680 (((-108) $ $) 7)) (-2674 ((|#2| $ |#2|) 13)) (-2949 (($ $ (-1070)) 18)) (-1928 ((|#2| $) 14)) (-2647 (($ |#1|) 20) (($ |#1| (-1070)) 19)) (-4198 ((|#1| $) 16)) (-2032 (((-1070) $) 9)) (-2541 (((-1070) $) 15)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-2667 (($ $) 17)) (-3941 (((-108) $ $) 6))) (((-340 |#1| |#2|) (-129) (-1016) (-1016)) (T -340)) -((-2625 (*1 *1 *2) (-12 (-4 *1 (-340 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-2625 (*1 *1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *1 (-340 *2 *4)) (-4 *2 (-1016)) (-4 *4 (-1016)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-340 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1685 (*1 *1 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-5 *2 (-1070)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-3715 (*1 *2 *1 *2) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) -(-13 (-1016) (-10 -8 (-15 -2625 ($ |t#1|)) (-15 -2625 ($ |t#1| (-1070))) (-15 -2647 ($ $ (-1070))) (-15 -1685 ($ $)) (-15 -4038 (|t#1| $)) (-15 -1998 ((-1070) $)) (-15 -3114 (|t#2| $)) (-15 -3715 (|t#2| $ |t#2|)))) +((-2647 (*1 *1 *2) (-12 (-4 *1 (-340 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-2647 (*1 *1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *1 (-340 *2 *4)) (-4 *2 (-1016)) (-4 *4 (-1016)))) (-2949 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-340 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-2667 (*1 *1 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-2541 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-5 *2 (-1070)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-2674 (*1 *2 *1 *2) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -2647 ($ |t#1|)) (-15 -2647 ($ |t#1| (-1070))) (-15 -2949 ($ $ (-1070))) (-15 -2667 ($ $)) (-15 -4198 (|t#1| $)) (-15 -2541 ((-1070) $)) (-15 -1928 (|t#2| $)) (-15 -2674 (|t#2| $ |t#2|)))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-3715 ((|#1| $ |#1|) 29)) (-2647 (($ $ (-1070)) 22)) (-4096 (((-3 |#1| "failed") $) 28)) (-3114 ((|#1| $) 26)) (-2625 (($ (-364)) 21) (($ (-364) (-1070)) 20)) (-4038 (((-364) $) 24)) (-3779 (((-1070) $) NIL)) (-1998 (((-1070) $) 25)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 19)) (-1685 (($ $) 23)) (-3983 (((-108) $ $) 18))) -(((-341 |#1|) (-13 (-340 (-364) |#1|) (-10 -8 (-15 -4096 ((-3 |#1| "failed") $)))) (-1016)) (T -341)) -((-4096 (*1 *2 *1) (|partial| -12 (-5 *1 (-341 *2)) (-4 *2 (-1016))))) -(-13 (-340 (-364) |#1|) (-10 -8 (-15 -4096 ((-3 |#1| "failed") $)))) -((-3115 (((-1168 (-629 |#2|)) (-1168 $)) 61)) (-1431 (((-629 |#2|) (-1168 $)) 119)) (-3744 ((|#2| $) 32)) (-2788 (((-629 |#2|) $ (-1168 $)) 123)) (-2532 (((-3 $ "failed") $) 75)) (-4212 ((|#2| $) 35)) (-1726 (((-1083 |#2|) $) 83)) (-2284 ((|#2| (-1168 $)) 106)) (-1778 (((-1083 |#2|) $) 28)) (-2117 (((-108)) 100)) (-3409 (($ (-1168 |#2|) (-1168 $)) 113)) (-2121 (((-3 $ "failed") $) 79)) (-1649 (((-108)) 95)) (-2956 (((-108)) 90)) (-2491 (((-108)) 53)) (-1504 (((-629 |#2|) (-1168 $)) 117)) (-3237 ((|#2| $) 31)) (-2139 (((-629 |#2|) $ (-1168 $)) 122)) (-1579 (((-3 $ "failed") $) 73)) (-4050 ((|#2| $) 34)) (-2553 (((-1083 |#2|) $) 82)) (-3002 ((|#2| (-1168 $)) 104)) (-2565 (((-1083 |#2|) $) 26)) (-1216 (((-108)) 99)) (-2345 (((-108)) 92)) (-1510 (((-108)) 51)) (-2871 (((-108)) 87)) (-2751 (((-108)) 101)) (-2966 (((-1168 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) (-1168 $) (-1168 $)) 111)) (-1673 (((-108)) 97)) (-3751 (((-589 (-1168 |#2|))) 86)) (-3120 (((-108)) 98)) (-1462 (((-108)) 96)) (-3366 (((-108)) 46)) (-2071 (((-108)) 102))) -(((-342 |#1| |#2|) (-10 -8 (-15 -1726 ((-1083 |#2|) |#1|)) (-15 -2553 ((-1083 |#2|) |#1|)) (-15 -3751 ((-589 (-1168 |#2|)))) (-15 -2532 ((-3 |#1| "failed") |#1|)) (-15 -1579 ((-3 |#1| "failed") |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 -2956 ((-108))) (-15 -2345 ((-108))) (-15 -1649 ((-108))) (-15 -1510 ((-108))) (-15 -2491 ((-108))) (-15 -2871 ((-108))) (-15 -2071 ((-108))) (-15 -2751 ((-108))) (-15 -2117 ((-108))) (-15 -1216 ((-108))) (-15 -3366 ((-108))) (-15 -3120 ((-108))) (-15 -1462 ((-108))) (-15 -1673 ((-108))) (-15 -1778 ((-1083 |#2|) |#1|)) (-15 -2565 ((-1083 |#2|) |#1|)) (-15 -1431 ((-629 |#2|) (-1168 |#1|))) (-15 -1504 ((-629 |#2|) (-1168 |#1|))) (-15 -2284 (|#2| (-1168 |#1|))) (-15 -3002 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -4212 (|#2| |#1|)) (-15 -4050 (|#2| |#1|)) (-15 -3744 (|#2| |#1|)) (-15 -3237 (|#2| |#1|)) (-15 -2788 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -2139 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -3115 ((-1168 (-629 |#2|)) (-1168 |#1|)))) (-343 |#2|) (-158)) (T -342)) -((-1673 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1462 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-3120 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-3366 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1216 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2117 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2751 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2071 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2871 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2491 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1510 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1649 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2345 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2956 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-3751 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-589 (-1168 *4))) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4))))) -(-10 -8 (-15 -1726 ((-1083 |#2|) |#1|)) (-15 -2553 ((-1083 |#2|) |#1|)) (-15 -3751 ((-589 (-1168 |#2|)))) (-15 -2532 ((-3 |#1| "failed") |#1|)) (-15 -1579 ((-3 |#1| "failed") |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 -2956 ((-108))) (-15 -2345 ((-108))) (-15 -1649 ((-108))) (-15 -1510 ((-108))) (-15 -2491 ((-108))) (-15 -2871 ((-108))) (-15 -2071 ((-108))) (-15 -2751 ((-108))) (-15 -2117 ((-108))) (-15 -1216 ((-108))) (-15 -3366 ((-108))) (-15 -3120 ((-108))) (-15 -1462 ((-108))) (-15 -1673 ((-108))) (-15 -1778 ((-1083 |#2|) |#1|)) (-15 -2565 ((-1083 |#2|) |#1|)) (-15 -1431 ((-629 |#2|) (-1168 |#1|))) (-15 -1504 ((-629 |#2|) (-1168 |#1|))) (-15 -2284 (|#2| (-1168 |#1|))) (-15 -3002 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -4212 (|#2| |#1|)) (-15 -4050 (|#2| |#1|)) (-15 -3744 (|#2| |#1|)) (-15 -3237 (|#2| |#1|)) (-15 -2788 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -2139 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -3115 ((-1168 (-629 |#2|)) (-1168 |#1|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3819 (((-3 $ "failed")) 37 (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) 19)) (-3115 (((-1168 (-629 |#1|)) (-1168 $)) 78)) (-2738 (((-1168 $)) 81)) (-2518 (($) 17 T CONST)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) 40 (|has| |#1| (-515)))) (-3545 (((-3 $ "failed")) 38 (|has| |#1| (-515)))) (-1431 (((-629 |#1|) (-1168 $)) 65)) (-3744 ((|#1| $) 74)) (-2788 (((-629 |#1|) $ (-1168 $)) 76)) (-2532 (((-3 $ "failed") $) 45 (|has| |#1| (-515)))) (-1970 (($ $ (-852)) 28)) (-4212 ((|#1| $) 72)) (-1726 (((-1083 |#1|) $) 42 (|has| |#1| (-515)))) (-2284 ((|#1| (-1168 $)) 67)) (-1778 (((-1083 |#1|) $) 63)) (-2117 (((-108)) 57)) (-3409 (($ (-1168 |#1|) (-1168 $)) 69)) (-2121 (((-3 $ "failed") $) 47 (|has| |#1| (-515)))) (-1319 (((-852)) 80)) (-1487 (((-108)) 54)) (-3650 (($ $ (-852)) 33)) (-1649 (((-108)) 50)) (-2956 (((-108)) 48)) (-2491 (((-108)) 52)) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) 41 (|has| |#1| (-515)))) (-1386 (((-3 $ "failed")) 39 (|has| |#1| (-515)))) (-1504 (((-629 |#1|) (-1168 $)) 66)) (-3237 ((|#1| $) 75)) (-2139 (((-629 |#1|) $ (-1168 $)) 77)) (-1579 (((-3 $ "failed") $) 46 (|has| |#1| (-515)))) (-1448 (($ $ (-852)) 29)) (-4050 ((|#1| $) 73)) (-2553 (((-1083 |#1|) $) 43 (|has| |#1| (-515)))) (-3002 ((|#1| (-1168 $)) 68)) (-2565 (((-1083 |#1|) $) 64)) (-1216 (((-108)) 58)) (-3779 (((-1070) $) 9)) (-2345 (((-108)) 49)) (-1510 (((-108)) 51)) (-2871 (((-108)) 53)) (-2783 (((-1034) $) 10)) (-2751 (((-108)) 56)) (-2966 (((-1168 |#1|) $ (-1168 $)) 71) (((-629 |#1|) (-1168 $) (-1168 $)) 70)) (-3863 (((-589 (-883 |#1|)) (-1168 $)) 79)) (-1714 (($ $ $) 25)) (-1673 (((-108)) 62)) (-1458 (((-794) $) 11)) (-3751 (((-589 (-1168 |#1|))) 44 (|has| |#1| (-515)))) (-2022 (($ $ $ $) 26)) (-3120 (((-108)) 60)) (-1995 (($ $ $) 24)) (-1462 (((-108)) 61)) (-3366 (((-108)) 59)) (-2071 (((-108)) 55)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-1680 (((-108) $ $) NIL)) (-2674 ((|#1| $ |#1|) 30)) (-2949 (($ $ (-1070)) 22)) (-3044 (((-3 |#1| "failed") $) 29)) (-1928 ((|#1| $) 27)) (-2647 (($ (-364)) 21) (($ (-364) (-1070)) 20)) (-4198 (((-364) $) 24)) (-2032 (((-1070) $) NIL)) (-2541 (((-1070) $) 25)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 19)) (-2667 (($ $) 23)) (-3941 (((-108) $ $) 18))) +(((-341 |#1|) (-13 (-340 (-364) |#1|) (-10 -8 (-15 -3044 ((-3 |#1| "failed") $)))) (-1016)) (T -341)) +((-3044 (*1 *2 *1) (|partial| -12 (-5 *1 (-341 *2)) (-4 *2 (-1016))))) +(-13 (-340 (-364) |#1|) (-10 -8 (-15 -3044 ((-3 |#1| "failed") $)))) +((-1939 (((-1169 (-629 |#2|)) (-1169 $)) 61)) (-2059 (((-629 |#2|) (-1169 $)) 119)) (-2920 ((|#2| $) 32)) (-1950 (((-629 |#2|) $ (-1169 $)) 123)) (-1307 (((-3 $ "failed") $) 75)) (-1223 ((|#2| $) 35)) (-2992 (((-1083 |#2|) $) 83)) (-3637 ((|#2| (-1169 $)) 106)) (-2242 (((-1083 |#2|) $) 28)) (-1404 (((-108)) 100)) (-2754 (($ (-1169 |#2|) (-1169 $)) 113)) (-1444 (((-3 $ "failed") $) 79)) (-3517 (((-108)) 95)) (-2804 (((-108)) 90)) (-3914 (((-108)) 53)) (-1612 (((-629 |#2|) (-1169 $)) 117)) (-3647 ((|#2| $) 31)) (-1613 (((-629 |#2|) $ (-1169 $)) 122)) (-4097 (((-3 $ "failed") $) 73)) (-2670 ((|#2| $) 34)) (-3248 (((-1083 |#2|) $) 82)) (-2085 ((|#2| (-1169 $)) 104)) (-3359 (((-1083 |#2|) $) 26)) (-1675 (((-108)) 99)) (-3041 (((-108)) 92)) (-1671 (((-108)) 51)) (-3194 (((-108)) 87)) (-1634 (((-108)) 101)) (-2906 (((-1169 |#2|) $ (-1169 $)) NIL) (((-629 |#2|) (-1169 $) (-1169 $)) 111)) (-2572 (((-108)) 97)) (-2969 (((-589 (-1169 |#2|))) 86)) (-1978 (((-108)) 98)) (-2367 (((-108)) 96)) (-3505 (((-108)) 46)) (-2050 (((-108)) 102))) +(((-342 |#1| |#2|) (-10 -8 (-15 -2992 ((-1083 |#2|) |#1|)) (-15 -3248 ((-1083 |#2|) |#1|)) (-15 -2969 ((-589 (-1169 |#2|)))) (-15 -1307 ((-3 |#1| "failed") |#1|)) (-15 -4097 ((-3 |#1| "failed") |#1|)) (-15 -1444 ((-3 |#1| "failed") |#1|)) (-15 -2804 ((-108))) (-15 -3041 ((-108))) (-15 -3517 ((-108))) (-15 -1671 ((-108))) (-15 -3914 ((-108))) (-15 -3194 ((-108))) (-15 -2050 ((-108))) (-15 -1634 ((-108))) (-15 -1404 ((-108))) (-15 -1675 ((-108))) (-15 -3505 ((-108))) (-15 -1978 ((-108))) (-15 -2367 ((-108))) (-15 -2572 ((-108))) (-15 -2242 ((-1083 |#2|) |#1|)) (-15 -3359 ((-1083 |#2|) |#1|)) (-15 -2059 ((-629 |#2|) (-1169 |#1|))) (-15 -1612 ((-629 |#2|) (-1169 |#1|))) (-15 -3637 (|#2| (-1169 |#1|))) (-15 -2085 (|#2| (-1169 |#1|))) (-15 -2754 (|#1| (-1169 |#2|) (-1169 |#1|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -1223 (|#2| |#1|)) (-15 -2670 (|#2| |#1|)) (-15 -2920 (|#2| |#1|)) (-15 -3647 (|#2| |#1|)) (-15 -1950 ((-629 |#2|) |#1| (-1169 |#1|))) (-15 -1613 ((-629 |#2|) |#1| (-1169 |#1|))) (-15 -1939 ((-1169 (-629 |#2|)) (-1169 |#1|)))) (-343 |#2|) (-158)) (T -342)) +((-2572 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2367 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1978 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-3505 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1675 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1404 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1634 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2050 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-3194 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-3914 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1671 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-3517 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-3041 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2804 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2969 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-589 (-1169 *4))) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4))))) +(-10 -8 (-15 -2992 ((-1083 |#2|) |#1|)) (-15 -3248 ((-1083 |#2|) |#1|)) (-15 -2969 ((-589 (-1169 |#2|)))) (-15 -1307 ((-3 |#1| "failed") |#1|)) (-15 -4097 ((-3 |#1| "failed") |#1|)) (-15 -1444 ((-3 |#1| "failed") |#1|)) (-15 -2804 ((-108))) (-15 -3041 ((-108))) (-15 -3517 ((-108))) (-15 -1671 ((-108))) (-15 -3914 ((-108))) (-15 -3194 ((-108))) (-15 -2050 ((-108))) (-15 -1634 ((-108))) (-15 -1404 ((-108))) (-15 -1675 ((-108))) (-15 -3505 ((-108))) (-15 -1978 ((-108))) (-15 -2367 ((-108))) (-15 -2572 ((-108))) (-15 -2242 ((-1083 |#2|) |#1|)) (-15 -3359 ((-1083 |#2|) |#1|)) (-15 -2059 ((-629 |#2|) (-1169 |#1|))) (-15 -1612 ((-629 |#2|) (-1169 |#1|))) (-15 -3637 (|#2| (-1169 |#1|))) (-15 -2085 (|#2| (-1169 |#1|))) (-15 -2754 (|#1| (-1169 |#2|) (-1169 |#1|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -1223 (|#2| |#1|)) (-15 -2670 (|#2| |#1|)) (-15 -2920 (|#2| |#1|)) (-15 -3647 (|#2| |#1|)) (-15 -1950 ((-629 |#2|) |#1| (-1169 |#1|))) (-15 -1613 ((-629 |#2|) |#1| (-1169 |#1|))) (-15 -1939 ((-1169 (-629 |#2|)) (-1169 |#1|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2345 (((-3 $ "failed")) 37 (|has| |#1| (-515)))) (-3405 (((-3 $ "failed") $ $) 19)) (-1939 (((-1169 (-629 |#1|)) (-1169 $)) 78)) (-1502 (((-1169 $)) 81)) (-4189 (($) 17 T CONST)) (-2314 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) 40 (|has| |#1| (-515)))) (-1722 (((-3 $ "failed")) 38 (|has| |#1| (-515)))) (-2059 (((-629 |#1|) (-1169 $)) 65)) (-2920 ((|#1| $) 74)) (-1950 (((-629 |#1|) $ (-1169 $)) 76)) (-1307 (((-3 $ "failed") $) 45 (|has| |#1| (-515)))) (-3402 (($ $ (-852)) 28)) (-1223 ((|#1| $) 72)) (-2992 (((-1083 |#1|) $) 42 (|has| |#1| (-515)))) (-3637 ((|#1| (-1169 $)) 67)) (-2242 (((-1083 |#1|) $) 63)) (-1404 (((-108)) 57)) (-2754 (($ (-1169 |#1|) (-1169 $)) 69)) (-1444 (((-3 $ "failed") $) 47 (|has| |#1| (-515)))) (-3569 (((-852)) 80)) (-1454 (((-108)) 54)) (-3291 (($ $ (-852)) 33)) (-3517 (((-108)) 50)) (-2804 (((-108)) 48)) (-3914 (((-108)) 52)) (-2065 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) 41 (|has| |#1| (-515)))) (-2778 (((-3 $ "failed")) 39 (|has| |#1| (-515)))) (-1612 (((-629 |#1|) (-1169 $)) 66)) (-3647 ((|#1| $) 75)) (-1613 (((-629 |#1|) $ (-1169 $)) 77)) (-4097 (((-3 $ "failed") $) 46 (|has| |#1| (-515)))) (-2237 (($ $ (-852)) 29)) (-2670 ((|#1| $) 73)) (-3248 (((-1083 |#1|) $) 43 (|has| |#1| (-515)))) (-2085 ((|#1| (-1169 $)) 68)) (-3359 (((-1083 |#1|) $) 64)) (-1675 (((-108)) 58)) (-2032 (((-1070) $) 9)) (-3041 (((-108)) 49)) (-1671 (((-108)) 51)) (-3194 (((-108)) 53)) (-3951 (((-1034) $) 10)) (-1634 (((-108)) 56)) (-2906 (((-1169 |#1|) $ (-1169 $)) 71) (((-629 |#1|) (-1169 $) (-1169 $)) 70)) (-1586 (((-589 (-883 |#1|)) (-1169 $)) 79)) (-2892 (($ $ $) 25)) (-2572 (((-108)) 62)) (-1691 (((-794) $) 11)) (-2969 (((-589 (-1169 |#1|))) 44 (|has| |#1| (-515)))) (-2760 (($ $ $ $) 26)) (-1978 (((-108)) 60)) (-3654 (($ $ $) 24)) (-2367 (((-108)) 61)) (-3505 (((-108)) 59)) (-2050 (((-108)) 55)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-343 |#1|) (-129) (-158)) (T -343)) -((-2738 (*1 *2) (-12 (-4 *3 (-158)) (-5 *2 (-1168 *1)) (-4 *1 (-343 *3)))) (-1319 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-852)))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-589 (-883 *4))))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-1168 (-629 *4))))) (-2139 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-2788 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-2966 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-1168 *4)))) (-2966 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-3409 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1168 *1)) (-4 *4 (-158)) (-4 *1 (-343 *4)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-1083 *3)))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-1083 *3)))) (-1673 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1462 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-3120 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-3366 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1216 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2117 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2751 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2071 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1487 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2871 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2491 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1510 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1649 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2345 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2956 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2121 (*1 *1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) (-1579 (*1 *1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) (-2532 (*1 *1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) (-3751 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) (-5 *2 (-589 (-1168 *3))))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) (-5 *2 (-1083 *3)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) (-5 *2 (-1083 *3)))) (-2362 (*1 *2) (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4041 (-589 *1)))) (-4 *1 (-343 *3)))) (-3486 (*1 *2) (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4041 (-589 *1)))) (-4 *1 (-343 *3)))) (-1386 (*1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158)))) (-3545 (*1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158)))) (-3819 (*1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158))))) -(-13 (-684 |t#1|) (-10 -8 (-15 -2738 ((-1168 $))) (-15 -1319 ((-852))) (-15 -3863 ((-589 (-883 |t#1|)) (-1168 $))) (-15 -3115 ((-1168 (-629 |t#1|)) (-1168 $))) (-15 -2139 ((-629 |t#1|) $ (-1168 $))) (-15 -2788 ((-629 |t#1|) $ (-1168 $))) (-15 -3237 (|t#1| $)) (-15 -3744 (|t#1| $)) (-15 -4050 (|t#1| $)) (-15 -4212 (|t#1| $)) (-15 -2966 ((-1168 |t#1|) $ (-1168 $))) (-15 -2966 ((-629 |t#1|) (-1168 $) (-1168 $))) (-15 -3409 ($ (-1168 |t#1|) (-1168 $))) (-15 -3002 (|t#1| (-1168 $))) (-15 -2284 (|t#1| (-1168 $))) (-15 -1504 ((-629 |t#1|) (-1168 $))) (-15 -1431 ((-629 |t#1|) (-1168 $))) (-15 -2565 ((-1083 |t#1|) $)) (-15 -1778 ((-1083 |t#1|) $)) (-15 -1673 ((-108))) (-15 -1462 ((-108))) (-15 -3120 ((-108))) (-15 -3366 ((-108))) (-15 -1216 ((-108))) (-15 -2117 ((-108))) (-15 -2751 ((-108))) (-15 -2071 ((-108))) (-15 -1487 ((-108))) (-15 -2871 ((-108))) (-15 -2491 ((-108))) (-15 -1510 ((-108))) (-15 -1649 ((-108))) (-15 -2345 ((-108))) (-15 -2956 ((-108))) (IF (|has| |t#1| (-515)) (PROGN (-15 -2121 ((-3 $ "failed") $)) (-15 -1579 ((-3 $ "failed") $)) (-15 -2532 ((-3 $ "failed") $)) (-15 -3751 ((-589 (-1168 |t#1|)))) (-15 -2553 ((-1083 |t#1|) $)) (-15 -1726 ((-1083 |t#1|) $)) (-15 -2362 ((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed"))) (-15 -3486 ((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed"))) (-15 -1386 ((-3 $ "failed"))) (-15 -3545 ((-3 $ "failed"))) (-15 -3819 ((-3 $ "failed"))) (-6 -4241)) |%noBranch|))) +((-1502 (*1 *2) (-12 (-4 *3 (-158)) (-5 *2 (-1169 *1)) (-4 *1 (-343 *3)))) (-3569 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-852)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-589 (-883 *4))))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-1169 (-629 *4))))) (-1613 (*1 *2 *1 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-1950 (*1 *2 *1 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-2920 (*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-1223 (*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-2906 (*1 *2 *1 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-1169 *4)))) (-2906 (*1 *2 *3 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-2754 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1169 *1)) (-4 *4 (-158)) (-4 *1 (-343 *4)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-1612 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-1083 *3)))) (-2242 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-1083 *3)))) (-2572 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2367 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1978 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-3505 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1675 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1404 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1634 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2050 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1454 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-3194 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-3914 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1671 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-3517 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-3041 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2804 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1444 (*1 *1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) (-4097 (*1 *1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) (-1307 (*1 *1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) (-2969 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) (-5 *2 (-589 (-1169 *3))))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) (-5 *2 (-1083 *3)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) (-5 *2 (-1083 *3)))) (-2065 (*1 *2) (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3760 (-589 *1)))) (-4 *1 (-343 *3)))) (-2314 (*1 *2) (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3760 (-589 *1)))) (-4 *1 (-343 *3)))) (-2778 (*1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158)))) (-1722 (*1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158)))) (-2345 (*1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158))))) +(-13 (-684 |t#1|) (-10 -8 (-15 -1502 ((-1169 $))) (-15 -3569 ((-852))) (-15 -1586 ((-589 (-883 |t#1|)) (-1169 $))) (-15 -1939 ((-1169 (-629 |t#1|)) (-1169 $))) (-15 -1613 ((-629 |t#1|) $ (-1169 $))) (-15 -1950 ((-629 |t#1|) $ (-1169 $))) (-15 -3647 (|t#1| $)) (-15 -2920 (|t#1| $)) (-15 -2670 (|t#1| $)) (-15 -1223 (|t#1| $)) (-15 -2906 ((-1169 |t#1|) $ (-1169 $))) (-15 -2906 ((-629 |t#1|) (-1169 $) (-1169 $))) (-15 -2754 ($ (-1169 |t#1|) (-1169 $))) (-15 -2085 (|t#1| (-1169 $))) (-15 -3637 (|t#1| (-1169 $))) (-15 -1612 ((-629 |t#1|) (-1169 $))) (-15 -2059 ((-629 |t#1|) (-1169 $))) (-15 -3359 ((-1083 |t#1|) $)) (-15 -2242 ((-1083 |t#1|) $)) (-15 -2572 ((-108))) (-15 -2367 ((-108))) (-15 -1978 ((-108))) (-15 -3505 ((-108))) (-15 -1675 ((-108))) (-15 -1404 ((-108))) (-15 -1634 ((-108))) (-15 -2050 ((-108))) (-15 -1454 ((-108))) (-15 -3194 ((-108))) (-15 -3914 ((-108))) (-15 -1671 ((-108))) (-15 -3517 ((-108))) (-15 -3041 ((-108))) (-15 -2804 ((-108))) (IF (|has| |t#1| (-515)) (PROGN (-15 -1444 ((-3 $ "failed") $)) (-15 -4097 ((-3 $ "failed") $)) (-15 -1307 ((-3 $ "failed") $)) (-15 -2969 ((-589 (-1169 |t#1|)))) (-15 -3248 ((-1083 |t#1|) $)) (-15 -2992 ((-1083 |t#1|) $)) (-15 -2065 ((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed"))) (-15 -2314 ((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed"))) (-15 -2778 ((-3 $ "failed"))) (-15 -1722 ((-3 $ "failed"))) (-15 -2345 ((-3 $ "failed"))) (-6 -4245)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-657 |#1|) . T) ((-660) . T) ((-684 |#1|) . T) ((-701) . T) ((-979 |#1|) . T) ((-1016) . T)) -((-3924 (((-108) $ $) 7)) (-1703 (((-710)) 16)) (-4032 (($) 13)) (-2072 (((-852) $) 14)) (-3779 (((-1070) $) 9)) (-3878 (($ (-852)) 15)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +((-1680 (((-108) $ $) 7)) (-2395 (((-710)) 16)) (-1631 (($) 13)) (-2060 (((-852) $) 14)) (-2032 (((-1070) $) 9)) (-4013 (($ (-852)) 15)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-3941 (((-108) $ $) 6))) (((-344) (-129)) (T -344)) -((-1703 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-710)))) (-3878 (*1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-344)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-852)))) (-4032 (*1 *1) (-4 *1 (-344)))) -(-13 (-1016) (-10 -8 (-15 -1703 ((-710))) (-15 -3878 ($ (-852))) (-15 -2072 ((-852) $)) (-15 -4032 ($)))) +((-2395 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-710)))) (-4013 (*1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-344)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-852)))) (-1631 (*1 *1) (-4 *1 (-344)))) +(-13 (-1016) (-10 -8 (-15 -2395 ((-710))) (-15 -4013 ($ (-852))) (-15 -2060 ((-852) $)) (-15 -1631 ($)))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3750 (((-629 |#2|) (-1168 $)) 40)) (-3409 (($ (-1168 |#2|) (-1168 $)) 35)) (-4079 (((-629 |#2|) $ (-1168 $)) 43)) (-3549 ((|#2| (-1168 $)) 13)) (-2966 (((-1168 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) (-1168 $) (-1168 $)) 25))) -(((-345 |#1| |#2| |#3|) (-10 -8 (-15 -3750 ((-629 |#2|) (-1168 |#1|))) (-15 -3549 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -4079 ((-629 |#2|) |#1| (-1168 |#1|)))) (-346 |#2| |#3|) (-158) (-1144 |#2|)) (T -345)) -NIL -(-10 -8 (-15 -3750 ((-629 |#2|) (-1168 |#1|))) (-15 -3549 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -4079 ((-629 |#2|) |#1| (-1168 |#1|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3750 (((-629 |#1|) (-1168 $)) 46)) (-4187 ((|#1| $) 52)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3409 (($ (-1168 |#1|) (-1168 $)) 48)) (-4079 (((-629 |#1|) $ (-1168 $)) 53)) (-2121 (((-3 $ "failed") $) 34)) (-1319 (((-852)) 54)) (-2023 (((-108) $) 31)) (-3892 ((|#1| $) 51)) (-1397 ((|#2| $) 44 (|has| |#1| (-339)))) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3549 ((|#1| (-1168 $)) 47)) (-2966 (((-1168 |#1|) $ (-1168 $)) 50) (((-629 |#1|) (-1168 $) (-1168 $)) 49)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37)) (-3901 (((-3 $ "failed") $) 43 (|has| |#1| (-134)))) (-1807 ((|#2| $) 45)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-346 |#1| |#2|) (-129) (-158) (-1144 |t#1|)) (T -346)) -((-1319 (*1 *2) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-852)))) (-4079 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-158)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-158)))) (-2966 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *4)))) (-2966 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) (-3409 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1168 *1)) (-4 *4 (-158)) (-4 *1 (-346 *4 *5)) (-4 *5 (-1144 *4)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *2 *4)) (-4 *4 (-1144 *2)) (-4 *2 (-158)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1144 *3)))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-158)) (-4 *3 (-339)) (-4 *2 (-1144 *3))))) -(-13 (-37 |t#1|) (-10 -8 (-15 -1319 ((-852))) (-15 -4079 ((-629 |t#1|) $ (-1168 $))) (-15 -4187 (|t#1| $)) (-15 -3892 (|t#1| $)) (-15 -2966 ((-1168 |t#1|) $ (-1168 $))) (-15 -2966 ((-629 |t#1|) (-1168 $) (-1168 $))) (-15 -3409 ($ (-1168 |t#1|) (-1168 $))) (-15 -3549 (|t#1| (-1168 $))) (-15 -3750 ((-629 |t#1|) (-1168 $))) (-15 -1807 (|t#2| $)) (IF (|has| |t#1| (-339)) (-15 -1397 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|))) +((-2959 (((-629 |#2|) (-1169 $)) 40)) (-2754 (($ (-1169 |#2|) (-1169 $)) 35)) (-2927 (((-629 |#2|) $ (-1169 $)) 43)) (-1744 ((|#2| (-1169 $)) 13)) (-2906 (((-1169 |#2|) $ (-1169 $)) NIL) (((-629 |#2|) (-1169 $) (-1169 $)) 25))) +(((-345 |#1| |#2| |#3|) (-10 -8 (-15 -2959 ((-629 |#2|) (-1169 |#1|))) (-15 -1744 (|#2| (-1169 |#1|))) (-15 -2754 (|#1| (-1169 |#2|) (-1169 |#1|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -2927 ((-629 |#2|) |#1| (-1169 |#1|)))) (-346 |#2| |#3|) (-158) (-1145 |#2|)) (T -345)) +NIL +(-10 -8 (-15 -2959 ((-629 |#2|) (-1169 |#1|))) (-15 -1744 (|#2| (-1169 |#1|))) (-15 -2754 (|#1| (-1169 |#2|) (-1169 |#1|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -2927 ((-629 |#2|) |#1| (-1169 |#1|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2959 (((-629 |#1|) (-1169 $)) 46)) (-1477 ((|#1| $) 52)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2754 (($ (-1169 |#1|) (-1169 $)) 48)) (-2927 (((-629 |#1|) $ (-1169 $)) 53)) (-1444 (((-3 $ "failed") $) 34)) (-3569 (((-852)) 54)) (-2769 (((-108) $) 31)) (-1863 ((|#1| $) 51)) (-2887 ((|#2| $) 44 (|has| |#1| (-339)))) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1744 ((|#1| (-1169 $)) 47)) (-2906 (((-1169 |#1|) $ (-1169 $)) 50) (((-629 |#1|) (-1169 $) (-1169 $)) 49)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37)) (-1942 (((-3 $ "failed") $) 43 (|has| |#1| (-134)))) (-1356 ((|#2| $) 45)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-346 |#1| |#2|) (-129) (-158) (-1145 |t#1|)) (T -346)) +((-3569 (*1 *2) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1145 *3)) (-5 *2 (-852)))) (-2927 (*1 *2 *1 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1145 *4)) (-5 *2 (-629 *4)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1145 *2)) (-4 *2 (-158)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1145 *2)) (-4 *2 (-158)))) (-2906 (*1 *2 *1 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1145 *4)) (-5 *2 (-1169 *4)))) (-2906 (*1 *2 *3 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1145 *4)) (-5 *2 (-629 *4)))) (-2754 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1169 *1)) (-4 *4 (-158)) (-4 *1 (-346 *4 *5)) (-4 *5 (-1145 *4)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-346 *2 *4)) (-4 *4 (-1145 *2)) (-4 *2 (-158)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1145 *4)) (-5 *2 (-629 *4)))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1145 *3)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-158)) (-4 *3 (-339)) (-4 *2 (-1145 *3))))) +(-13 (-37 |t#1|) (-10 -8 (-15 -3569 ((-852))) (-15 -2927 ((-629 |t#1|) $ (-1169 $))) (-15 -1477 (|t#1| $)) (-15 -1863 (|t#1| $)) (-15 -2906 ((-1169 |t#1|) $ (-1169 $))) (-15 -2906 ((-629 |t#1|) (-1169 $) (-1169 $))) (-15 -2754 ($ (-1169 |t#1|) (-1169 $))) (-15 -1744 (|t#1| (-1169 $))) (-15 -2959 ((-629 |t#1|) (-1169 $))) (-15 -1356 (|t#2| $)) (IF (|has| |t#1| (-339)) (-15 -2887 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) . T) ((-666) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-2837 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2437 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3612 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-347 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2437 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2837 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1122) (-349 |#1|) (-1122) (-349 |#3|)) (T -347)) -((-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-4 *2 (-349 *5)) (-5 *1 (-347 *6 *4 *5 *2)) (-4 *4 (-349 *6)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-347 *5 *4 *2 *6)) (-4 *4 (-349 *5)) (-4 *6 (-349 *2)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-349 *6)) (-5 *1 (-347 *5 *4 *6 *2)) (-4 *4 (-349 *5))))) -(-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2437 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2837 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1964 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-1506 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-3974 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-3631 (($ $) 25)) (-1479 (((-523) (-1 (-108) |#2|) $) NIL) (((-523) |#2| $) 11) (((-523) |#2| $ (-523)) NIL)) (-2178 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-348 |#1| |#2|) (-10 -8 (-15 -1506 (|#1| |#1|)) (-15 -1506 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1964 ((-108) |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -2178 (|#1| |#1| |#1|)) (-15 -1479 ((-523) |#2| |#1| (-523))) (-15 -1479 ((-523) |#2| |#1|)) (-15 -1479 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -1964 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3974 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -2178 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-349 |#2|) (-1122)) (T -348)) -NIL -(-10 -8 (-15 -1506 (|#1| |#1|)) (-15 -1506 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1964 ((-108) |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -2178 (|#1| |#1| |#1|)) (-15 -1479 ((-523) |#2| |#1| (-523))) (-15 -1479 ((-523) |#2| |#1|)) (-15 -1479 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -1964 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3974 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -2178 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4245))) (($ $) 88 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-2867 (($ $) 90 (|has| $ (-6 -4245)))) (-3631 (($ $) 100)) (-1773 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 51)) (-1479 (((-523) (-1 (-108) |#1|) $) 97) (((-523) |#1| $) 96 (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) 95 (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 87 (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 86 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 42 (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4203 (($ $ |#1|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1135 (-523))) 63)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 91 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 70)) (-2326 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 84 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 83 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4030 (((-108) $ $) 85 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 82 (|has| |#1| (-786)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-349 |#1|) (-129) (-1122)) (T -349)) -((-2178 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) (-3631 (*1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1122)))) (-3974 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) (-1964 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-349 *4)) (-4 *4 (-1122)) (-5 *2 (-108)))) (-1479 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-349 *4)) (-4 *4 (-1122)) (-5 *2 (-523)))) (-1479 (*1 *2 *3 *1) (-12 (-4 *1 (-349 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-523)))) (-1479 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-349 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)))) (-2178 (*1 *1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1122)) (-4 *2 (-786)))) (-3974 (*1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1122)) (-4 *2 (-786)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-349 *3)) (-4 *3 (-1122)) (-4 *3 (-786)) (-5 *2 (-108)))) (-3160 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-523)) (|has| *1 (-6 -4245)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) (-2867 (*1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-349 *2)) (-4 *2 (-1122)))) (-1506 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4245)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) (-1506 (*1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-349 *2)) (-4 *2 (-1122)) (-4 *2 (-786))))) -(-13 (-594 |t#1|) (-10 -8 (-6 -4244) (-15 -2178 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -3631 ($ $)) (-15 -3974 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -1964 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -1479 ((-523) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -1479 ((-523) |t#1| $)) (-15 -1479 ((-523) |t#1| $ (-523)))) |%noBranch|) (IF (|has| |t#1| (-786)) (PROGN (-6 (-786)) (-15 -2178 ($ $ $)) (-15 -3974 ($ $)) (-15 -1964 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4245)) (PROGN (-15 -3160 ($ $ $ (-523))) (-15 -2867 ($ $)) (-15 -1506 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-786)) (-15 -1506 ($ $)) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-97) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-786) |has| |#1| (-786)) ((-1016) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1122) . T)) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2061 (((-589 |#1|) $) 32)) (-3296 (($ $ (-710)) 33)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-4111 (((-1190 |#1| |#2|) (-1190 |#1| |#2|) $) 36)) (-1419 (($ $) 34)) (-2701 (((-1190 |#1| |#2|) (-1190 |#1| |#2|) $) 37)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2679 (($ $ |#1| $) 31) (($ $ (-589 |#1|) (-589 $)) 30)) (-2299 (((-710) $) 38)) (-1472 (($ $ $) 29)) (-1458 (((-794) $) 11) (($ |#1|) 41) (((-1181 |#1| |#2|) $) 40) (((-1190 |#1| |#2|) $) 39)) (-2935 ((|#2| (-1190 |#1| |#2|) $) 42)) (-2756 (($) 18 T CONST)) (-1484 (($ (-614 |#1|)) 35)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#2|) 28 (|has| |#2| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +((-4184 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2116 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1345 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-347 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1345 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2116 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1123) (-349 |#1|) (-1123) (-349 |#3|)) (T -347)) +((-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1123)) (-4 *5 (-1123)) (-4 *2 (-349 *5)) (-5 *1 (-347 *6 *4 *5 *2)) (-4 *4 (-349 *6)))) (-2116 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1123)) (-4 *2 (-1123)) (-5 *1 (-347 *5 *4 *2 *6)) (-4 *4 (-349 *5)) (-4 *6 (-349 *2)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-4 *2 (-349 *6)) (-5 *1 (-347 *5 *4 *6 *2)) (-4 *4 (-349 *5))))) +(-10 -7 (-15 -1345 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2116 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3337 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-1632 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-1581 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-3700 (($ $) 25)) (-3449 (((-523) (-1 (-108) |#2|) $) NIL) (((-523) |#2| $) 11) (((-523) |#2| $ (-523)) NIL)) (-3780 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-348 |#1| |#2|) (-10 -8 (-15 -1632 (|#1| |#1|)) (-15 -1632 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3337 ((-108) |#1|)) (-15 -1581 (|#1| |#1|)) (-15 -3780 (|#1| |#1| |#1|)) (-15 -3449 ((-523) |#2| |#1| (-523))) (-15 -3449 ((-523) |#2| |#1|)) (-15 -3449 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -3337 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1581 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -3780 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-349 |#2|) (-1123)) (T -348)) +NIL +(-10 -8 (-15 -1632 (|#1| |#1|)) (-15 -1632 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3337 ((-108) |#1|)) (-15 -1581 (|#1| |#1|)) (-15 -3780 (|#1| |#1| |#1|)) (-15 -3449 ((-523) |#2| |#1| (-523))) (-15 -3449 ((-523) |#2| |#1|)) (-15 -3449 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -3337 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1581 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -3780 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-4191 (((-1174) $ (-523) (-523)) 40 (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-786)))) (-1632 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4249))) (($ $) 88 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4249))))) (-1581 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-786)))) (-1620 (((-108) $ (-710)) 8)) (-1849 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) 58 (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-1426 (($ $) 90 (|has| $ (-6 -4249)))) (-3700 (($ $) 100)) (-2462 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) 51)) (-3449 (((-523) (-1 (-108) |#1|) $) 97) (((-523) |#1| $) 96 (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) 95 (|has| |#1| (-1016)))) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3733 (($ (-710) |#1|) 69)) (-3051 (((-108) $ (-710)) 9)) (-2965 (((-523) $) 43 (|has| (-523) (-786)))) (-3239 (($ $ $) 87 (|has| |#1| (-786)))) (-3780 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 44 (|has| (-523) (-786)))) (-3158 (($ $ $) 86 (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2912 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2536 (((-589 (-523)) $) 46)) (-2254 (((-108) (-523) $) 47)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2428 ((|#1| $) 42 (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4141 (($ $ |#1|) 41 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) 48)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1136 (-523))) 63)) (-1499 (($ $ (-523)) 62) (($ $ (-1136 (-523))) 61)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-4166 (($ $ $ (-523)) 91 (|has| $ (-6 -4249)))) (-1874 (($ $) 13)) (-1400 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 70)) (-2394 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) 84 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 83 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-3993 (((-108) $ $) 85 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 82 (|has| |#1| (-786)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-349 |#1|) (-129) (-1123)) (T -349)) +((-3780 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1123)))) (-3700 (*1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1123)))) (-1581 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1123)))) (-3337 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-349 *4)) (-4 *4 (-1123)) (-5 *2 (-108)))) (-3449 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-349 *4)) (-4 *4 (-1123)) (-5 *2 (-523)))) (-3449 (*1 *2 *3 *1) (-12 (-4 *1 (-349 *3)) (-4 *3 (-1123)) (-4 *3 (-1016)) (-5 *2 (-523)))) (-3449 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-349 *3)) (-4 *3 (-1123)) (-4 *3 (-1016)))) (-3780 (*1 *1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1123)) (-4 *2 (-786)))) (-1581 (*1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1123)) (-4 *2 (-786)))) (-3337 (*1 *2 *1) (-12 (-4 *1 (-349 *3)) (-4 *3 (-1123)) (-4 *3 (-786)) (-5 *2 (-108)))) (-4166 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-523)) (|has| *1 (-6 -4249)) (-4 *1 (-349 *3)) (-4 *3 (-1123)))) (-1426 (*1 *1 *1) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-349 *2)) (-4 *2 (-1123)))) (-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4249)) (-4 *1 (-349 *3)) (-4 *3 (-1123)))) (-1632 (*1 *1 *1) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-349 *2)) (-4 *2 (-1123)) (-4 *2 (-786))))) +(-13 (-594 |t#1|) (-10 -8 (-6 -4248) (-15 -3780 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -3700 ($ $)) (-15 -1581 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -3337 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -3449 ((-523) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -3449 ((-523) |t#1| $)) (-15 -3449 ((-523) |t#1| $ (-523)))) |%noBranch|) (IF (|has| |t#1| (-786)) (PROGN (-6 (-786)) (-15 -3780 ($ $ $)) (-15 -1581 ($ $)) (-15 -3337 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4249)) (PROGN (-15 -4166 ($ $ $ (-523))) (-15 -1426 ($ $)) (-15 -1632 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-786)) (-15 -1632 ($ $)) |%noBranch|)) |%noBranch|))) +(((-33) . T) ((-97) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-786) |has| |#1| (-786)) ((-1016) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1123) . T)) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2634 (((-589 |#1|) $) 32)) (-4111 (($ $ (-710)) 33)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-3166 (((-1191 |#1| |#2|) (-1191 |#1| |#2|) $) 36)) (-1965 (($ $) 34)) (-2278 (((-1191 |#1| |#2|) (-1191 |#1| |#2|) $) 37)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-2812 (($ $ |#1| $) 31) (($ $ (-589 |#1|) (-589 $)) 30)) (-2640 (((-710) $) 38)) (-1704 (($ $ $) 29)) (-1691 (((-794) $) 11) (($ |#1|) 41) (((-1182 |#1| |#2|) $) 40) (((-1191 |#1| |#2|) $) 39)) (-3474 ((|#2| (-1191 |#1| |#2|) $) 42)) (-1879 (($) 18 T CONST)) (-1423 (($ (-614 |#1|)) 35)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#2|) 28 (|has| |#2| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) (((-350 |#1| |#2|) (-129) (-786) (-158)) (T -350)) -((-2935 (*1 *2 *3 *1) (-12 (-5 *3 (-1190 *4 *2)) (-4 *1 (-350 *4 *2)) (-4 *4 (-786)) (-4 *2 (-158)))) (-1458 (*1 *1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *2 (-1181 *3 *4)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *2 (-1190 *3 *4)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *2 (-710)))) (-2701 (*1 *2 *2 *1) (-12 (-5 *2 (-1190 *3 *4)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-4111 (*1 *2 *2 *1) (-12 (-5 *2 (-1190 *3 *4)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-4 *1 (-350 *3 *4)) (-4 *4 (-158)))) (-1419 (*1 *1 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *2 (-589 *3)))) (-2679 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-786)) (-4 *5 (-158))))) -(-13 (-580 |t#2|) (-10 -8 (-15 -2935 (|t#2| (-1190 |t#1| |t#2|) $)) (-15 -1458 ($ |t#1|)) (-15 -1458 ((-1181 |t#1| |t#2|) $)) (-15 -1458 ((-1190 |t#1| |t#2|) $)) (-15 -2299 ((-710) $)) (-15 -2701 ((-1190 |t#1| |t#2|) (-1190 |t#1| |t#2|) $)) (-15 -4111 ((-1190 |t#1| |t#2|) (-1190 |t#1| |t#2|) $)) (-15 -1484 ($ (-614 |t#1|))) (-15 -1419 ($ $)) (-15 -3296 ($ $ (-710))) (-15 -2061 ((-589 |t#1|) $)) (-15 -2679 ($ $ |t#1| $)) (-15 -2679 ($ $ (-589 |t#1|) (-589 $))))) +((-3474 (*1 *2 *3 *1) (-12 (-5 *3 (-1191 *4 *2)) (-4 *1 (-350 *4 *2)) (-4 *4 (-786)) (-4 *2 (-158)))) (-1691 (*1 *1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) (-1691 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *2 (-1182 *3 *4)))) (-1691 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *2 (-1191 *3 *4)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *2 (-710)))) (-2278 (*1 *2 *2 *1) (-12 (-5 *2 (-1191 *3 *4)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-3166 (*1 *2 *2 *1) (-12 (-5 *2 (-1191 *3 *4)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-1423 (*1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-4 *1 (-350 *3 *4)) (-4 *4 (-158)))) (-1965 (*1 *1 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-2634 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *2 (-589 *3)))) (-2812 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) (-2812 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-786)) (-4 *5 (-158))))) +(-13 (-580 |t#2|) (-10 -8 (-15 -3474 (|t#2| (-1191 |t#1| |t#2|) $)) (-15 -1691 ($ |t#1|)) (-15 -1691 ((-1182 |t#1| |t#2|) $)) (-15 -1691 ((-1191 |t#1| |t#2|) $)) (-15 -2640 ((-710) $)) (-15 -2278 ((-1191 |t#1| |t#2|) (-1191 |t#1| |t#2|) $)) (-15 -3166 ((-1191 |t#1| |t#2|) (-1191 |t#1| |t#2|) $)) (-15 -1423 ($ (-614 |t#1|))) (-15 -1965 ($ $)) (-15 -4111 ($ $ (-710))) (-15 -2634 ((-589 |t#1|) $)) (-15 -2812 ($ $ |t#1| $)) (-15 -2812 ($ $ (-589 |t#1|) (-589 $))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#2|) . T) ((-580 |#2|) . T) ((-657 |#2|) . T) ((-979 |#2|) . T) ((-1016) . T)) -((-2725 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-3489 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 12)) (-2960 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 21))) -(((-351 |#1| |#2|) (-10 -7 (-15 -3489 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2960 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2725 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1122) (-13 (-349 |#1|) (-10 -7 (-6 -4245)))) (T -351)) -((-2725 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-351 *4 *2)) (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245)))))) (-2960 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-351 *4 *2)) (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245)))))) (-3489 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-351 *4 *2)) (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245))))))) -(-10 -7 (-15 -3489 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2960 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2725 (|#2| (-1 (-108) |#1| |#1|) |#2|))) -((-2381 (((-629 |#2|) (-629 $)) NIL) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 19) (((-629 (-523)) (-629 $)) 13))) -(((-352 |#1| |#2|) (-10 -8 (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 |#2|) (-629 |#1|)))) (-353 |#2|) (-973)) (T -352)) -NIL -(-10 -8 (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 |#2|) (-629 |#1|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2381 (((-629 |#1|) (-629 $)) 36) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 35) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 43 (|has| |#1| (-585 (-523)))) (((-629 (-523)) (-629 $)) 42 (|has| |#1| (-585 (-523))))) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-2521 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-2350 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 12)) (-2843 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 21))) +(((-351 |#1| |#2|) (-10 -7 (-15 -2350 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2843 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2521 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1123) (-13 (-349 |#1|) (-10 -7 (-6 -4249)))) (T -351)) +((-2521 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1123)) (-5 *1 (-351 *4 *2)) (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4249)))))) (-2843 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1123)) (-5 *1 (-351 *4 *2)) (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4249)))))) (-2350 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1123)) (-5 *1 (-351 *4 *2)) (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4249))))))) +(-10 -7 (-15 -2350 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2843 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2521 (|#2| (-1 (-108) |#1| |#1|) |#2|))) +((-2243 (((-629 |#2|) (-629 $)) NIL) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 19) (((-629 (-523)) (-629 $)) 13))) +(((-352 |#1| |#2|) (-10 -8 (-15 -2243 ((-629 (-523)) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-629 |#2|) (-629 |#1|)))) (-353 |#2|) (-973)) (T -352)) +NIL +(-10 -8 (-15 -2243 ((-629 (-523)) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-629 |#2|) (-629 |#1|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2243 (((-629 |#1|) (-629 $)) 36) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 35) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 43 (|has| |#1| (-585 (-523)))) (((-629 (-523)) (-629 $)) 42 (|has| |#1| (-585 (-523))))) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ (-523)) 28)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-353 |#1|) (-129) (-973)) (T -353)) NIL (-13 (-585 |t#1|) (-10 -7 (IF (|has| |t#1| (-585 (-523))) (-6 (-585 (-523))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-4178 (((-589 (-271 (-883 (-155 |#1|)))) (-271 (-383 (-883 (-155 (-523))))) |#1|) 50) (((-589 (-271 (-883 (-155 |#1|)))) (-383 (-883 (-155 (-523)))) |#1|) 49) (((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-271 (-383 (-883 (-155 (-523)))))) |#1|) 45) (((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-383 (-883 (-155 (-523))))) |#1|) 39)) (-1986 (((-589 (-589 (-155 |#1|))) (-589 (-383 (-883 (-155 (-523))))) (-589 (-1087)) |#1|) 27) (((-589 (-155 |#1|)) (-383 (-883 (-155 (-523)))) |#1|) 15))) -(((-354 |#1|) (-10 -7 (-15 -4178 ((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-383 (-883 (-155 (-523))))) |#1|)) (-15 -4178 ((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-271 (-383 (-883 (-155 (-523)))))) |#1|)) (-15 -4178 ((-589 (-271 (-883 (-155 |#1|)))) (-383 (-883 (-155 (-523)))) |#1|)) (-15 -4178 ((-589 (-271 (-883 (-155 |#1|)))) (-271 (-383 (-883 (-155 (-523))))) |#1|)) (-15 -1986 ((-589 (-155 |#1|)) (-383 (-883 (-155 (-523)))) |#1|)) (-15 -1986 ((-589 (-589 (-155 |#1|))) (-589 (-383 (-883 (-155 (-523))))) (-589 (-1087)) |#1|))) (-13 (-339) (-784))) (T -354)) -((-1986 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-383 (-883 (-155 (-523)))))) (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 (-155 *5)))) (-5 *1 (-354 *5)) (-4 *5 (-13 (-339) (-784))))) (-1986 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-155 (-523))))) (-5 *2 (-589 (-155 *4))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-271 (-383 (-883 (-155 (-523)))))) (-5 *2 (-589 (-271 (-883 (-155 *4))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-155 (-523))))) (-5 *2 (-589 (-271 (-883 (-155 *4))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-271 (-383 (-883 (-155 (-523))))))) (-5 *2 (-589 (-589 (-271 (-883 (-155 *4)))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 (-155 (-523)))))) (-5 *2 (-589 (-589 (-271 (-883 (-155 *4)))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784)))))) -(-10 -7 (-15 -4178 ((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-383 (-883 (-155 (-523))))) |#1|)) (-15 -4178 ((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-271 (-383 (-883 (-155 (-523)))))) |#1|)) (-15 -4178 ((-589 (-271 (-883 (-155 |#1|)))) (-383 (-883 (-155 (-523)))) |#1|)) (-15 -4178 ((-589 (-271 (-883 (-155 |#1|)))) (-271 (-383 (-883 (-155 (-523))))) |#1|)) (-15 -1986 ((-589 (-155 |#1|)) (-383 (-883 (-155 (-523)))) |#1|)) (-15 -1986 ((-589 (-589 (-155 |#1|))) (-589 (-383 (-883 (-155 (-523))))) (-589 (-1087)) |#1|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 33)) (-3458 (((-523) $) 55)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3984 (($ $) 110)) (-1769 (($ $) 82)) (-3780 (($ $) 71)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1832 (($ $) 44)) (-1387 (((-108) $ $) NIL)) (-1744 (($ $) 80)) (-3711 (($ $) 69)) (-3671 (((-523) $) 64)) (-2041 (($ $ (-523)) 62)) (-1793 (($ $) NIL)) (-3805 (($ $) NIL)) (-2518 (($) NIL T CONST)) (-1258 (($ $) 112)) (-3517 (((-3 (-523) "failed") $) 188) (((-3 (-383 (-523)) "failed") $) 184)) (-3474 (((-523) $) 186) (((-383 (-523)) $) 182)) (-3796 (($ $ $) NIL)) (-2298 (((-523) $ $) 102)) (-2121 (((-3 $ "failed") $) 114)) (-3193 (((-383 (-523)) $ (-710)) 189) (((-383 (-523)) $ (-710) (-710)) 181)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2685 (((-852)) 73) (((-852) (-852)) 98 (|has| $ (-6 -4235)))) (-2604 (((-108) $) 106)) (-2820 (($) 40)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL)) (-2872 (((-1173) (-710)) 151)) (-1698 (((-1173)) 156) (((-1173) (-710)) 157)) (-2208 (((-1173)) 158) (((-1173) (-710)) 159)) (-1584 (((-1173)) 154) (((-1173) (-710)) 155)) (-1640 (((-523) $) 58)) (-2023 (((-108) $) 104)) (-1420 (($ $ (-523)) NIL)) (-2018 (($ $) 48)) (-3892 (($ $) NIL)) (-4114 (((-108) $) 35)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL) (($) NIL (-12 (-3900 (|has| $ (-6 -4227))) (-3900 (|has| $ (-6 -4235)))))) (-2062 (($ $ $) NIL) (($) 99 (-12 (-3900 (|has| $ (-6 -4227))) (-3900 (|has| $ (-6 -4235)))))) (-1369 (((-523) $) 17)) (-4121 (($) 87) (($ $) 92)) (-1574 (($) 91) (($ $) 93)) (-2384 (($ $) 83)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 116)) (-3986 (((-852) (-523)) 43 (|has| $ (-6 -4235)))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) 53)) (-3722 (($ $) 109)) (-4092 (($ (-523) (-523)) 107) (($ (-523) (-523) (-852)) 108)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2735 (((-523) $) 19)) (-2094 (($) 94)) (-1811 (($ $) 79)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1617 (((-852)) 100) (((-852) (-852)) 101 (|has| $ (-6 -4235)))) (-3523 (($ $ (-710)) NIL) (($ $) 115)) (-3134 (((-852) (-523)) 47 (|has| $ (-6 -4235)))) (-1805 (($ $) NIL)) (-3816 (($ $) NIL)) (-1782 (($ $) NIL)) (-3793 (($ $) NIL)) (-1757 (($ $) 81)) (-3767 (($ $) 70)) (-3663 (((-355) $) 174) (((-203) $) 176) (((-823 (-355)) $) NIL) (((-1070) $) 161) (((-499) $) 172) (($ (-203)) 180)) (-1458 (((-794) $) 163) (($ (-523)) 185) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-523)) 185) (($ (-383 (-523))) NIL) (((-203) $) 177)) (-1621 (((-710)) NIL)) (-1886 (($ $) 111)) (-1329 (((-852)) 54) (((-852) (-852)) 66 (|has| $ (-6 -4235)))) (-3007 (((-852)) 103)) (-1839 (($ $) 86)) (-3847 (($ $) 46) (($ $ $) 52)) (-1704 (((-108) $ $) NIL)) (-1818 (($ $) 84)) (-3828 (($ $) 37)) (-1865 (($ $) NIL)) (-1719 (($ $) NIL)) (-2914 (($ $) NIL)) (-1731 (($ $) NIL)) (-1852 (($ $) NIL)) (-3859 (($ $) NIL)) (-1830 (($ $) 85)) (-3838 (($ $) 49)) (-2619 (($ $) 51)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 34 T CONST)) (-2767 (($) 38 T CONST)) (-3790 (((-1070) $) 27) (((-1070) $ (-108)) 29) (((-1173) (-761) $) 30) (((-1173) (-761) $ (-108)) 31)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 39)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 42)) (-4098 (($ $ $) 45) (($ $ (-523)) 41)) (-4087 (($ $) 36) (($ $ $) 50)) (-4075 (($ $ $) 61)) (** (($ $ (-852)) 67) (($ $ (-710)) NIL) (($ $ (-523)) 88) (($ $ (-383 (-523))) 125) (($ $ $) 117)) (* (($ (-852) $) 65) (($ (-710) $) NIL) (($ (-523) $) 68) (($ $ $) 60) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) -(((-355) (-13 (-380) (-211) (-564 (-1070)) (-767) (-563 (-203)) (-1108) (-564 (-499)) (-10 -8 (-15 -4098 ($ $ (-523))) (-15 ** ($ $ $)) (-15 -2018 ($ $)) (-15 -2298 ((-523) $ $)) (-15 -2041 ($ $ (-523))) (-15 -3193 ((-383 (-523)) $ (-710))) (-15 -3193 ((-383 (-523)) $ (-710) (-710))) (-15 -4121 ($)) (-15 -1574 ($)) (-15 -2094 ($)) (-15 -3847 ($ $ $)) (-15 -4121 ($ $)) (-15 -1574 ($ $)) (-15 -3663 ($ (-203))) (-15 -2208 ((-1173))) (-15 -2208 ((-1173) (-710))) (-15 -1584 ((-1173))) (-15 -1584 ((-1173) (-710))) (-15 -1698 ((-1173))) (-15 -1698 ((-1173) (-710))) (-15 -2872 ((-1173) (-710))) (-6 -4235) (-6 -4227)))) (T -355)) -((** (*1 *1 *1 *1) (-5 *1 (-355))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) (-2018 (*1 *1 *1) (-5 *1 (-355))) (-2298 (*1 *2 *1 *1) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) (-3193 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-355)))) (-3193 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-355)))) (-4121 (*1 *1) (-5 *1 (-355))) (-1574 (*1 *1) (-5 *1 (-355))) (-2094 (*1 *1) (-5 *1 (-355))) (-3847 (*1 *1 *1 *1) (-5 *1 (-355))) (-4121 (*1 *1 *1) (-5 *1 (-355))) (-1574 (*1 *1 *1) (-5 *1 (-355))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-355)))) (-2208 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-355)))) (-2208 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355)))) (-1584 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-355)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355)))) (-1698 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-355)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355))))) -(-13 (-380) (-211) (-564 (-1070)) (-767) (-563 (-203)) (-1108) (-564 (-499)) (-10 -8 (-15 -4098 ($ $ (-523))) (-15 ** ($ $ $)) (-15 -2018 ($ $)) (-15 -2298 ((-523) $ $)) (-15 -2041 ($ $ (-523))) (-15 -3193 ((-383 (-523)) $ (-710))) (-15 -3193 ((-383 (-523)) $ (-710) (-710))) (-15 -4121 ($)) (-15 -1574 ($)) (-15 -2094 ($)) (-15 -3847 ($ $ $)) (-15 -4121 ($ $)) (-15 -1574 ($ $)) (-15 -3663 ($ (-203))) (-15 -2208 ((-1173))) (-15 -2208 ((-1173) (-710))) (-15 -1584 ((-1173))) (-15 -1584 ((-1173) (-710))) (-15 -1698 ((-1173))) (-15 -1698 ((-1173) (-710))) (-15 -2872 ((-1173) (-710))) (-6 -4235) (-6 -4227))) -((-1940 (((-589 (-271 (-883 |#1|))) (-271 (-383 (-883 (-523)))) |#1|) 46) (((-589 (-271 (-883 |#1|))) (-383 (-883 (-523))) |#1|) 45) (((-589 (-589 (-271 (-883 |#1|)))) (-589 (-271 (-383 (-883 (-523))))) |#1|) 41) (((-589 (-589 (-271 (-883 |#1|)))) (-589 (-383 (-883 (-523)))) |#1|) 35)) (-2626 (((-589 |#1|) (-383 (-883 (-523))) |#1|) 19) (((-589 (-589 |#1|)) (-589 (-383 (-883 (-523)))) (-589 (-1087)) |#1|) 30))) -(((-356 |#1|) (-10 -7 (-15 -1940 ((-589 (-589 (-271 (-883 |#1|)))) (-589 (-383 (-883 (-523)))) |#1|)) (-15 -1940 ((-589 (-589 (-271 (-883 |#1|)))) (-589 (-271 (-383 (-883 (-523))))) |#1|)) (-15 -1940 ((-589 (-271 (-883 |#1|))) (-383 (-883 (-523))) |#1|)) (-15 -1940 ((-589 (-271 (-883 |#1|))) (-271 (-383 (-883 (-523)))) |#1|)) (-15 -2626 ((-589 (-589 |#1|)) (-589 (-383 (-883 (-523)))) (-589 (-1087)) |#1|)) (-15 -2626 ((-589 |#1|) (-383 (-883 (-523))) |#1|))) (-13 (-784) (-339))) (T -356)) -((-2626 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-523)))) (-5 *2 (-589 *4)) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) (-2626 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-383 (-883 (-523))))) (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 *5))) (-5 *1 (-356 *5)) (-4 *5 (-13 (-784) (-339))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-271 (-383 (-883 (-523))))) (-5 *2 (-589 (-271 (-883 *4)))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-523)))) (-5 *2 (-589 (-271 (-883 *4)))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-271 (-383 (-883 (-523)))))) (-5 *2 (-589 (-589 (-271 (-883 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 (-523))))) (-5 *2 (-589 (-589 (-271 (-883 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339)))))) -(-10 -7 (-15 -1940 ((-589 (-589 (-271 (-883 |#1|)))) (-589 (-383 (-883 (-523)))) |#1|)) (-15 -1940 ((-589 (-589 (-271 (-883 |#1|)))) (-589 (-271 (-383 (-883 (-523))))) |#1|)) (-15 -1940 ((-589 (-271 (-883 |#1|))) (-383 (-883 (-523))) |#1|)) (-15 -1940 ((-589 (-271 (-883 |#1|))) (-271 (-383 (-883 (-523)))) |#1|)) (-15 -2626 ((-589 (-589 |#1|)) (-589 (-383 (-883 (-523)))) (-589 (-1087)) |#1|)) (-15 -2626 ((-589 |#1|) (-383 (-883 (-523))) |#1|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) 25)) (-3474 ((|#2| $) 27)) (-3810 (($ $) NIL)) (-3554 (((-710) $) 10)) (-3679 (((-589 $) $) 20)) (-2620 (((-108) $) NIL)) (-2302 (($ |#2| |#1|) 18)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-4184 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3774 ((|#2| $) 15)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 44) (($ |#2|) 26)) (-1251 (((-589 |#1|) $) 17)) (-2365 ((|#1| $ |#2|) 46)) (-2756 (($) 28 T CONST)) (-1643 (((-589 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35))) +((-3881 (((-589 (-271 (-883 (-155 |#1|)))) (-271 (-383 (-883 (-155 (-523))))) |#1|) 49) (((-589 (-271 (-883 (-155 |#1|)))) (-383 (-883 (-155 (-523)))) |#1|) 48) (((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-271 (-383 (-883 (-155 (-523)))))) |#1|) 44) (((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-383 (-883 (-155 (-523))))) |#1|) 38)) (-3558 (((-589 (-589 (-155 |#1|))) (-589 (-383 (-883 (-155 (-523))))) (-589 (-1087)) |#1|) 26) (((-589 (-155 |#1|)) (-383 (-883 (-155 (-523)))) |#1|) 15))) +(((-354 |#1|) (-10 -7 (-15 -3881 ((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-383 (-883 (-155 (-523))))) |#1|)) (-15 -3881 ((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-271 (-383 (-883 (-155 (-523)))))) |#1|)) (-15 -3881 ((-589 (-271 (-883 (-155 |#1|)))) (-383 (-883 (-155 (-523)))) |#1|)) (-15 -3881 ((-589 (-271 (-883 (-155 |#1|)))) (-271 (-383 (-883 (-155 (-523))))) |#1|)) (-15 -3558 ((-589 (-155 |#1|)) (-383 (-883 (-155 (-523)))) |#1|)) (-15 -3558 ((-589 (-589 (-155 |#1|))) (-589 (-383 (-883 (-155 (-523))))) (-589 (-1087)) |#1|))) (-13 (-339) (-784))) (T -354)) +((-3558 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-383 (-883 (-155 (-523)))))) (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 (-155 *5)))) (-5 *1 (-354 *5)) (-4 *5 (-13 (-339) (-784))))) (-3558 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-155 (-523))))) (-5 *2 (-589 (-155 *4))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) (-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-271 (-383 (-883 (-155 (-523)))))) (-5 *2 (-589 (-271 (-883 (-155 *4))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) (-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-155 (-523))))) (-5 *2 (-589 (-271 (-883 (-155 *4))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) (-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-271 (-383 (-883 (-155 (-523))))))) (-5 *2 (-589 (-589 (-271 (-883 (-155 *4)))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) (-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 (-155 (-523)))))) (-5 *2 (-589 (-589 (-271 (-883 (-155 *4)))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784)))))) +(-10 -7 (-15 -3881 ((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-383 (-883 (-155 (-523))))) |#1|)) (-15 -3881 ((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-271 (-383 (-883 (-155 (-523)))))) |#1|)) (-15 -3881 ((-589 (-271 (-883 (-155 |#1|)))) (-383 (-883 (-155 (-523)))) |#1|)) (-15 -3881 ((-589 (-271 (-883 (-155 |#1|)))) (-271 (-383 (-883 (-155 (-523))))) |#1|)) (-15 -3558 ((-589 (-155 |#1|)) (-383 (-883 (-155 (-523)))) |#1|)) (-15 -3558 ((-589 (-589 (-155 |#1|))) (-589 (-383 (-883 (-155 (-523))))) (-589 (-1087)) |#1|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 33)) (-2046 (((-523) $) 55)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3276 (($ $) 110)) (-1462 (($ $) 82)) (-1285 (($ $) 71)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2437 (($ $) 44)) (-2787 (((-108) $ $) NIL)) (-1441 (($ $) 80)) (-1260 (($ $) 69)) (-3482 (((-523) $) 64)) (-2156 (($ $ (-523)) 62)) (-1481 (($ $) NIL)) (-1309 (($ $) NIL)) (-4189 (($) NIL T CONST)) (-3900 (($ $) 112)) (-1220 (((-3 (-523) "failed") $) 189) (((-3 (-383 (-523)) "failed") $) 185)) (-3508 (((-523) $) 187) (((-383 (-523)) $) 183)) (-4059 (($ $ $) NIL)) (-2631 (((-523) $ $) 102)) (-1444 (((-3 $ "failed") $) 114)) (-3240 (((-383 (-523)) $ (-710)) 190) (((-383 (-523)) $ (-710) (-710)) 182)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-2285 (((-852)) 73) (((-852) (-852)) 98 (|has| $ (-6 -4239)))) (-3712 (((-108) $) 106)) (-3352 (($) 40)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL)) (-3204 (((-1174) (-710)) 152)) (-2763 (((-1174)) 157) (((-1174) (-710)) 158)) (-4133 (((-1174)) 159) (((-1174) (-710)) 160)) (-4143 (((-1174)) 155) (((-1174) (-710)) 156)) (-3437 (((-523) $) 58)) (-2769 (((-108) $) 104)) (-1973 (($ $ (-523)) NIL)) (-2722 (($ $) 48)) (-1863 (($ $) NIL)) (-2057 (((-108) $) 35)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3239 (($ $ $) NIL) (($) NIL (-12 (-4179 (|has| $ (-6 -4231))) (-4179 (|has| $ (-6 -4239)))))) (-3158 (($ $ $) NIL) (($) 99 (-12 (-4179 (|has| $ (-6 -4231))) (-4179 (|has| $ (-6 -4239)))))) (-1512 (((-523) $) 17)) (-2128 (($) 87) (($ $) 92)) (-1602 (($) 91) (($ $) 93)) (-2313 (($ $) 83)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 116)) (-3297 (((-852) (-523)) 43 (|has| $ (-6 -4239)))) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4110 (($ $) 53)) (-2733 (($ $) 109)) (-4210 (($ (-523) (-523)) 107) (($ (-523) (-523) (-852)) 108)) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1475 (((-523) $) 19)) (-2287 (($) 94)) (-2922 (($ $) 79)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3229 (((-852)) 100) (((-852) (-852)) 101 (|has| $ (-6 -4239)))) (-3984 (($ $ (-710)) NIL) (($ $) 115)) (-3892 (((-852) (-523)) 47 (|has| $ (-6 -4239)))) (-2306 (($ $) NIL)) (-1322 (($ $) NIL)) (-1471 (($ $) NIL)) (-1295 (($ $) NIL)) (-1453 (($ $) 81)) (-1274 (($ $) 70)) (-1400 (((-355) $) 175) (((-203) $) 177) (((-823 (-355)) $) NIL) (((-1070) $) 162) (((-499) $) 173) (($ (-203)) 181)) (-1691 (((-794) $) 164) (($ (-523)) 186) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-523)) 186) (($ (-383 (-523))) NIL) (((-203) $) 178)) (-3272 (((-710)) NIL)) (-3809 (($ $) 111)) (-3401 (((-852)) 54) (((-852) (-852)) 66 (|has| $ (-6 -4239)))) (-1416 (((-852)) 103)) (-2341 (($ $) 86)) (-1401 (($ $) 46) (($ $ $) 52)) (-2801 (((-108) $ $) NIL)) (-2318 (($ $) 84)) (-1334 (($ $) 37)) (-2366 (($ $) NIL)) (-1421 (($ $) NIL)) (-2102 (($ $) NIL)) (-1431 (($ $) NIL)) (-2353 (($ $) NIL)) (-1413 (($ $) NIL)) (-2330 (($ $) 85)) (-1346 (($ $) 49)) (-2695 (($ $) 51)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 34 T CONST)) (-1891 (($) 38 T CONST)) (-2111 (((-1070) $) 27) (((-1070) $ (-108)) 29) (((-1174) (-761) $) 30) (((-1174) (-761) $ (-108)) 31)) (-2909 (($ $ (-710)) NIL) (($ $) NIL)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 39)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 42)) (-4074 (($ $ $) 45) (($ $ (-523)) 41)) (-4060 (($ $) 36) (($ $ $) 50)) (-4045 (($ $ $) 61)) (** (($ $ (-852)) 67) (($ $ (-710)) NIL) (($ $ (-523)) 88) (($ $ (-383 (-523))) 125) (($ $ $) 117)) (* (($ (-852) $) 65) (($ (-710) $) NIL) (($ (-523) $) 68) (($ $ $) 60) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-355) (-13 (-380) (-211) (-564 (-1070)) (-767) (-563 (-203)) (-1109) (-564 (-499)) (-10 -8 (-15 -4074 ($ $ (-523))) (-15 ** ($ $ $)) (-15 -2722 ($ $)) (-15 -2631 ((-523) $ $)) (-15 -2156 ($ $ (-523))) (-15 -3240 ((-383 (-523)) $ (-710))) (-15 -3240 ((-383 (-523)) $ (-710) (-710))) (-15 -2128 ($)) (-15 -1602 ($)) (-15 -2287 ($)) (-15 -1401 ($ $ $)) (-15 -2128 ($ $)) (-15 -1602 ($ $)) (-15 -1400 ($ (-203))) (-15 -4133 ((-1174))) (-15 -4133 ((-1174) (-710))) (-15 -4143 ((-1174))) (-15 -4143 ((-1174) (-710))) (-15 -2763 ((-1174))) (-15 -2763 ((-1174) (-710))) (-15 -3204 ((-1174) (-710))) (-6 -4239) (-6 -4231)))) (T -355)) +((** (*1 *1 *1 *1) (-5 *1 (-355))) (-4074 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) (-2722 (*1 *1 *1) (-5 *1 (-355))) (-2631 (*1 *2 *1 *1) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) (-3240 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-355)))) (-3240 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-355)))) (-2128 (*1 *1) (-5 *1 (-355))) (-1602 (*1 *1) (-5 *1 (-355))) (-2287 (*1 *1) (-5 *1 (-355))) (-1401 (*1 *1 *1 *1) (-5 *1 (-355))) (-2128 (*1 *1 *1) (-5 *1 (-355))) (-1602 (*1 *1 *1) (-5 *1 (-355))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-355)))) (-4133 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-355)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-355)))) (-4143 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-355)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-355)))) (-2763 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-355)))) (-2763 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-355)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-355))))) +(-13 (-380) (-211) (-564 (-1070)) (-767) (-563 (-203)) (-1109) (-564 (-499)) (-10 -8 (-15 -4074 ($ $ (-523))) (-15 ** ($ $ $)) (-15 -2722 ($ $)) (-15 -2631 ((-523) $ $)) (-15 -2156 ($ $ (-523))) (-15 -3240 ((-383 (-523)) $ (-710))) (-15 -3240 ((-383 (-523)) $ (-710) (-710))) (-15 -2128 ($)) (-15 -1602 ($)) (-15 -2287 ($)) (-15 -1401 ($ $ $)) (-15 -2128 ($ $)) (-15 -1602 ($ $)) (-15 -1400 ($ (-203))) (-15 -4133 ((-1174))) (-15 -4133 ((-1174) (-710))) (-15 -4143 ((-1174))) (-15 -4143 ((-1174) (-710))) (-15 -2763 ((-1174))) (-15 -2763 ((-1174) (-710))) (-15 -3204 ((-1174) (-710))) (-6 -4239) (-6 -4231))) +((-3112 (((-589 (-271 (-883 |#1|))) (-271 (-383 (-883 (-523)))) |#1|) 45) (((-589 (-271 (-883 |#1|))) (-383 (-883 (-523))) |#1|) 44) (((-589 (-589 (-271 (-883 |#1|)))) (-589 (-271 (-383 (-883 (-523))))) |#1|) 40) (((-589 (-589 (-271 (-883 |#1|)))) (-589 (-383 (-883 (-523)))) |#1|) 34)) (-2751 (((-589 |#1|) (-383 (-883 (-523))) |#1|) 19) (((-589 (-589 |#1|)) (-589 (-383 (-883 (-523)))) (-589 (-1087)) |#1|) 29))) +(((-356 |#1|) (-10 -7 (-15 -3112 ((-589 (-589 (-271 (-883 |#1|)))) (-589 (-383 (-883 (-523)))) |#1|)) (-15 -3112 ((-589 (-589 (-271 (-883 |#1|)))) (-589 (-271 (-383 (-883 (-523))))) |#1|)) (-15 -3112 ((-589 (-271 (-883 |#1|))) (-383 (-883 (-523))) |#1|)) (-15 -3112 ((-589 (-271 (-883 |#1|))) (-271 (-383 (-883 (-523)))) |#1|)) (-15 -2751 ((-589 (-589 |#1|)) (-589 (-383 (-883 (-523)))) (-589 (-1087)) |#1|)) (-15 -2751 ((-589 |#1|) (-383 (-883 (-523))) |#1|))) (-13 (-784) (-339))) (T -356)) +((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-523)))) (-5 *2 (-589 *4)) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-383 (-883 (-523))))) (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 *5))) (-5 *1 (-356 *5)) (-4 *5 (-13 (-784) (-339))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-271 (-383 (-883 (-523))))) (-5 *2 (-589 (-271 (-883 *4)))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-523)))) (-5 *2 (-589 (-271 (-883 *4)))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-271 (-383 (-883 (-523)))))) (-5 *2 (-589 (-589 (-271 (-883 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 (-523))))) (-5 *2 (-589 (-589 (-271 (-883 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339)))))) +(-10 -7 (-15 -3112 ((-589 (-589 (-271 (-883 |#1|)))) (-589 (-383 (-883 (-523)))) |#1|)) (-15 -3112 ((-589 (-589 (-271 (-883 |#1|)))) (-589 (-271 (-383 (-883 (-523))))) |#1|)) (-15 -3112 ((-589 (-271 (-883 |#1|))) (-383 (-883 (-523))) |#1|)) (-15 -3112 ((-589 (-271 (-883 |#1|))) (-271 (-383 (-883 (-523)))) |#1|)) (-15 -2751 ((-589 (-589 |#1|)) (-589 (-383 (-883 (-523)))) (-589 (-1087)) |#1|)) (-15 -2751 ((-589 |#1|) (-383 (-883 (-523))) |#1|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#2| "failed") $) 26)) (-3508 ((|#2| $) 28)) (-1457 (($ $) NIL)) (-1789 (((-710) $) 10)) (-3560 (((-589 $) $) 20)) (-2704 (((-108) $) NIL)) (-2836 (($ |#2| |#1|) 18)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-3940 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1427 ((|#2| $) 15)) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 45) (($ |#2|) 27)) (-3819 (((-589 |#1|) $) 17)) (-2084 ((|#1| $ |#2|) 47)) (-1879 (($) 29 T CONST)) (-3461 (((-589 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) (((-357 |#1| |#2|) (-13 (-358 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-973) (-786)) (T -357)) ((* (*1 *1 *2 *3) (-12 (-5 *1 (-357 *3 *2)) (-4 *3 (-973)) (-4 *2 (-786))))) (-13 (-358 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#2| "failed") $) 44)) (-3474 ((|#2| $) 43)) (-3810 (($ $) 30)) (-3554 (((-710) $) 34)) (-3679 (((-589 $) $) 35)) (-2620 (((-108) $) 38)) (-2302 (($ |#2| |#1|) 39)) (-3612 (($ (-1 |#1| |#1|) $) 40)) (-4184 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3774 ((|#2| $) 33)) (-3786 ((|#1| $) 32)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ |#2|) 45)) (-1251 (((-589 |#1|) $) 36)) (-2365 ((|#1| $ |#2|) 41)) (-2756 (($) 18 T CONST)) (-1643 (((-589 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1220 (((-3 |#2| "failed") $) 44)) (-3508 ((|#2| $) 43)) (-1457 (($ $) 30)) (-1789 (((-710) $) 34)) (-3560 (((-589 $) $) 35)) (-2704 (((-108) $) 38)) (-2836 (($ |#2| |#1|) 39)) (-1345 (($ (-1 |#1| |#1|) $) 40)) (-3940 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1427 ((|#2| $) 33)) (-1437 ((|#1| $) 32)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ |#2|) 45)) (-3819 (((-589 |#1|) $) 36)) (-2084 ((|#1| $ |#2|) 41)) (-1879 (($) 18 T CONST)) (-3461 (((-589 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) (((-358 |#1| |#2|) (-129) (-973) (-1016)) (T -358)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1016)))) (-2365 (*1 *2 *1 *3) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-973)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)))) (-2302 (*1 *1 *2 *3) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1016)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-108)))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-589 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-589 *3)))) (-3679 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-589 *1)) (-4 *1 (-358 *3 *4)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-710)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1016)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-973)))) (-4184 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1016))))) -(-13 (-107 |t#1| |t#1|) (-964 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2365 (|t#1| $ |t#2|)) (-15 -3612 ($ (-1 |t#1| |t#1|) $)) (-15 -2302 ($ |t#2| |t#1|)) (-15 -2620 ((-108) $)) (-15 -1643 ((-589 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1251 ((-589 |t#1|) $)) (-15 -3679 ((-589 $) $)) (-15 -3554 ((-710) $)) (-15 -3774 (|t#2| $)) (-15 -3786 (|t#1| $)) (-15 -4184 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3810 ($ $)) (IF (|has| |t#1| (-158)) (-6 (-657 |t#1|)) |%noBranch|))) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1016)))) (-2084 (*1 *2 *1 *3) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-973)))) (-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)))) (-2836 (*1 *1 *2 *3) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1016)))) (-2704 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-108)))) (-3461 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-589 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-589 *3)))) (-3560 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-589 *1)) (-4 *1 (-358 *3 *4)))) (-1789 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-710)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1016)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-973)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1457 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1016))))) +(-13 (-107 |t#1| |t#1|) (-964 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2084 (|t#1| $ |t#2|)) (-15 -1345 ($ (-1 |t#1| |t#1|) $)) (-15 -2836 ($ |t#2| |t#1|)) (-15 -2704 ((-108) $)) (-15 -3461 ((-589 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3819 ((-589 |t#1|) $)) (-15 -3560 ((-589 $) $)) (-15 -1789 ((-710) $)) (-15 -1427 (|t#2| $)) (-15 -1437 (|t#1| $)) (-15 -3940 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1457 ($ $)) (IF (|has| |t#1| (-158)) (-6 (-657 |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-657 |#1|) |has| |#1| (-158)) ((-964 |#2|) . T) ((-979 |#1|) . T) ((-1016) . T)) -((-3394 (((-1173) $) 7)) (-1458 (((-794) $) 8) (($ (-629 (-638))) 14) (($ (-589 (-306))) 13) (($ (-306)) 12) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 11))) +((-3826 (((-1174) $) 7)) (-1691 (((-794) $) 8) (($ (-629 (-638))) 14) (($ (-589 (-306))) 13) (($ (-306)) 12) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 11))) (((-359) (-129)) (T -359)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-629 (-638))) (-4 *1 (-359)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-359)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-359)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) (-4 *1 (-359))))) -(-13 (-371) (-10 -8 (-15 -1458 ($ (-629 (-638)))) (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-306))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))))) -(((-563 (-794)) . T) ((-371) . T) ((-1122) . T)) -((-3517 (((-3 $ "failed") (-629 (-292 (-355)))) 21) (((-3 $ "failed") (-629 (-292 (-523)))) 19) (((-3 $ "failed") (-629 (-883 (-355)))) 17) (((-3 $ "failed") (-629 (-883 (-523)))) 15) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 13) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 11)) (-3474 (($ (-629 (-292 (-355)))) 22) (($ (-629 (-292 (-523)))) 20) (($ (-629 (-883 (-355)))) 18) (($ (-629 (-883 (-523)))) 16) (($ (-629 (-383 (-883 (-355))))) 14) (($ (-629 (-383 (-883 (-523))))) 12)) (-3394 (((-1173) $) 7)) (-1458 (((-794) $) 8) (($ (-589 (-306))) 25) (($ (-306)) 24) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 23))) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-629 (-638))) (-4 *1 (-359)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-359)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-359)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) (-4 *1 (-359))))) +(-13 (-371) (-10 -8 (-15 -1691 ($ (-629 (-638)))) (-15 -1691 ($ (-589 (-306)))) (-15 -1691 ($ (-306))) (-15 -1691 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306)))))))) +(((-563 (-794)) . T) ((-371) . T) ((-1123) . T)) +((-1220 (((-3 $ "failed") (-629 (-292 (-355)))) 21) (((-3 $ "failed") (-629 (-292 (-523)))) 19) (((-3 $ "failed") (-629 (-883 (-355)))) 17) (((-3 $ "failed") (-629 (-883 (-523)))) 15) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 13) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 11)) (-3508 (($ (-629 (-292 (-355)))) 22) (($ (-629 (-292 (-523)))) 20) (($ (-629 (-883 (-355)))) 18) (($ (-629 (-883 (-523)))) 16) (($ (-629 (-383 (-883 (-355))))) 14) (($ (-629 (-383 (-883 (-523))))) 12)) (-3826 (((-1174) $) 7)) (-1691 (((-794) $) 8) (($ (-589 (-306))) 25) (($ (-306)) 24) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 23))) (((-360) (-129)) (T -360)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-360)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-360)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) (-4 *1 (-360)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-629 (-292 (-355)))) (-4 *1 (-360)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-292 (-355)))) (-4 *1 (-360)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-629 (-292 (-523)))) (-4 *1 (-360)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-292 (-523)))) (-4 *1 (-360)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-629 (-883 (-355)))) (-4 *1 (-360)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-883 (-355)))) (-4 *1 (-360)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-629 (-883 (-523)))) (-4 *1 (-360)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-883 (-523)))) (-4 *1 (-360)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-629 (-383 (-883 (-355))))) (-4 *1 (-360)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-383 (-883 (-355))))) (-4 *1 (-360)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-629 (-383 (-883 (-523))))) (-4 *1 (-360)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-383 (-883 (-523))))) (-4 *1 (-360))))) -(-13 (-371) (-10 -8 (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-306))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))) (-15 -3474 ($ (-629 (-292 (-355))))) (-15 -3517 ((-3 $ "failed") (-629 (-292 (-355))))) (-15 -3474 ($ (-629 (-292 (-523))))) (-15 -3517 ((-3 $ "failed") (-629 (-292 (-523))))) (-15 -3474 ($ (-629 (-883 (-355))))) (-15 -3517 ((-3 $ "failed") (-629 (-883 (-355))))) (-15 -3474 ($ (-629 (-883 (-523))))) (-15 -3517 ((-3 $ "failed") (-629 (-883 (-523))))) (-15 -3474 ($ (-629 (-383 (-883 (-355)))))) (-15 -3517 ((-3 $ "failed") (-629 (-383 (-883 (-355)))))) (-15 -3474 ($ (-629 (-383 (-883 (-523)))))) (-15 -3517 ((-3 $ "failed") (-629 (-383 (-883 (-523)))))))) -(((-563 (-794)) . T) ((-371) . T) ((-1122) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-1933 (($ |#1| |#2|) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-1953 ((|#2| $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 28)) (-2756 (($) 12 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-360)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-360)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) (-4 *1 (-360)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-629 (-292 (-355)))) (-4 *1 (-360)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-292 (-355)))) (-4 *1 (-360)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-629 (-292 (-523)))) (-4 *1 (-360)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-292 (-523)))) (-4 *1 (-360)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-629 (-883 (-355)))) (-4 *1 (-360)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-883 (-355)))) (-4 *1 (-360)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-629 (-883 (-523)))) (-4 *1 (-360)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-883 (-523)))) (-4 *1 (-360)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-629 (-383 (-883 (-355))))) (-4 *1 (-360)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-383 (-883 (-355))))) (-4 *1 (-360)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-629 (-383 (-883 (-523))))) (-4 *1 (-360)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-383 (-883 (-523))))) (-4 *1 (-360))))) +(-13 (-371) (-10 -8 (-15 -1691 ($ (-589 (-306)))) (-15 -1691 ($ (-306))) (-15 -1691 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306)))))) (-15 -3508 ($ (-629 (-292 (-355))))) (-15 -1220 ((-3 $ "failed") (-629 (-292 (-355))))) (-15 -3508 ($ (-629 (-292 (-523))))) (-15 -1220 ((-3 $ "failed") (-629 (-292 (-523))))) (-15 -3508 ($ (-629 (-883 (-355))))) (-15 -1220 ((-3 $ "failed") (-629 (-883 (-355))))) (-15 -3508 ($ (-629 (-883 (-523))))) (-15 -1220 ((-3 $ "failed") (-629 (-883 (-523))))) (-15 -3508 ($ (-629 (-383 (-883 (-355)))))) (-15 -1220 ((-3 $ "failed") (-629 (-383 (-883 (-355)))))) (-15 -3508 ($ (-629 (-383 (-883 (-523)))))) (-15 -1220 ((-3 $ "failed") (-629 (-383 (-883 (-523)))))))) +(((-563 (-794)) . T) ((-371) . T) ((-1123) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1457 (($ $) NIL)) (-1267 (($ |#1| |#2|) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-3225 ((|#2| $) NIL)) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 28)) (-1879 (($) 12 T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) (((-361 |#1| |#2|) (-13 (-107 |#1| |#1|) (-479 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-158)) (-6 (-657 |#1|)) |%noBranch|))) (-973) (-786)) (T -361)) NIL (-13 (-107 |#1| |#1|) (-479 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-158)) (-6 (-657 |#1|)) |%noBranch|))) -((-3924 (((-108) $ $) NIL)) (-1703 (((-710) $) 57)) (-2518 (($) NIL T CONST)) (-4111 (((-3 $ "failed") $ $) 59)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1655 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2023 (((-108) $) 14)) (-2378 ((|#1| $ (-523)) NIL)) (-3731 (((-710) $ (-523)) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-4093 (($ (-1 |#1| |#1|) $) 37)) (-2682 (($ (-1 (-710) (-710)) $) 34)) (-2701 (((-3 $ "failed") $ $) 50)) (-3779 (((-1070) $) NIL)) (-2259 (($ $ $) 25)) (-3206 (($ $ $) 23)) (-2783 (((-1034) $) NIL)) (-1979 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $) 31)) (-3462 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-1458 (((-794) $) 21) (($ |#1|) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2767 (($) 9 T CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 41)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) 61 (|has| |#1| (-786)))) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ |#1| (-710)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27))) -(((-362 |#1|) (-13 (-666) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-710))) (-15 -3206 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -2701 ((-3 $ "failed") $ $)) (-15 -4111 ((-3 $ "failed") $ $)) (-15 -3462 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1655 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1703 ((-710) $)) (-15 -1979 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $)) (-15 -3731 ((-710) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -2682 ($ (-1 (-710) (-710)) $)) (-15 -4093 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|))) (-1016)) (T -362)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-3206 (*1 *1 *1 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-2259 (*1 *1 *1 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-2701 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-4111 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-3462 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-362 *3)) (|:| |rm| (-362 *3)))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-1655 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-362 *3)) (|:| |mm| (-362 *3)) (|:| |rm| (-362 *3)))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 (-710))))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-710)) (-5 *1 (-362 *4)) (-4 *4 (-1016)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-2682 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-710) (-710))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-4093 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-362 *3))))) -(-13 (-666) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-710))) (-15 -3206 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -2701 ((-3 $ "failed") $ $)) (-15 -4111 ((-3 $ "failed") $ $)) (-15 -3462 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1655 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1703 ((-710) $)) (-15 -1979 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $)) (-15 -3731 ((-710) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -2682 ($ (-1 (-710) (-710)) $)) (-15 -4093 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 47)) (-3474 (((-523) $) 46)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-2454 (($ $ $) 54)) (-2062 (($ $ $) 53)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ $) 42)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-523)) 48)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 51)) (-4019 (((-108) $ $) 50)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 52)) (-4007 (((-108) $ $) 49)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-1680 (((-108) $ $) NIL)) (-2395 (((-710) $) 59)) (-4189 (($) NIL T CONST)) (-3166 (((-3 $ "failed") $ $) 61)) (-1220 (((-3 |#1| "failed") $) NIL)) (-3508 ((|#1| $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-3574 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2769 (((-108) $) 14)) (-2212 ((|#1| $ (-523)) NIL)) (-2800 (((-710) $ (-523)) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-3015 (($ (-1 |#1| |#1|) $) 37)) (-2110 (($ (-1 (-710) (-710)) $) 34)) (-2278 (((-3 $ "failed") $ $) 50)) (-2032 (((-1070) $) NIL)) (-3387 (($ $ $) 25)) (-3350 (($ $ $) 23)) (-3951 (((-1034) $) NIL)) (-3491 (((-589 (-2 (|:| |gen| |#1|) (|:| -2922 (-710)))) $) 31)) (-2083 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-1691 (((-794) $) 21) (($ |#1|) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1891 (($) 9 T CONST)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) 41)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) 63 (|has| |#1| (-786)))) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ |#1| (-710)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27))) +(((-362 |#1|) (-13 (-666) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-710))) (-15 -3350 ($ $ $)) (-15 -3387 ($ $ $)) (-15 -2278 ((-3 $ "failed") $ $)) (-15 -3166 ((-3 $ "failed") $ $)) (-15 -2083 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3574 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2395 ((-710) $)) (-15 -3491 ((-589 (-2 (|:| |gen| |#1|) (|:| -2922 (-710)))) $)) (-15 -2800 ((-710) $ (-523))) (-15 -2212 (|#1| $ (-523))) (-15 -2110 ($ (-1 (-710) (-710)) $)) (-15 -3015 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|))) (-1016)) (T -362)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-3350 (*1 *1 *1 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-3387 (*1 *1 *1 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-2278 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-3166 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-2083 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-362 *3)) (|:| |rm| (-362 *3)))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-3574 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-362 *3)) (|:| |mm| (-362 *3)) (|:| |rm| (-362 *3)))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -2922 (-710))))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-2800 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-710)) (-5 *1 (-362 *4)) (-4 *4 (-1016)))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-2110 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-710) (-710))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-3015 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-362 *3))))) +(-13 (-666) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-710))) (-15 -3350 ($ $ $)) (-15 -3387 ($ $ $)) (-15 -2278 ((-3 $ "failed") $ $)) (-15 -3166 ((-3 $ "failed") $ $)) (-15 -2083 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3574 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2395 ((-710) $)) (-15 -3491 ((-589 (-2 (|:| |gen| |#1|) (|:| -2922 (-710)))) $)) (-15 -2800 ((-710) $ (-523))) (-15 -2212 (|#1| $ (-523))) (-15 -2110 ($ (-1 (-710) (-710)) $)) (-15 -3015 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1220 (((-3 (-523) "failed") $) 47)) (-3508 (((-523) $) 46)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-3239 (($ $ $) 54)) (-3158 (($ $ $) 53)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-4007 (((-3 $ "failed") $ $) 42)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-523)) 48)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-4006 (((-108) $ $) 51)) (-3980 (((-108) $ $) 50)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 52)) (-3966 (((-108) $ $) 49)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-363) (-129)) (T -363)) NIL (-13 (-515) (-786) (-964 (-523))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-786) . T) ((-964 (-523)) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-3001 (((-108) $) 20)) (-2095 (((-108) $) 19)) (-3052 (($ (-1070) (-1070) (-1070)) 21)) (-4038 (((-1070) $) 16)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3680 (($ (-1070) (-1070) (-1070)) 14)) (-1683 (((-1070) $) 17)) (-4131 (((-108) $) 18)) (-2982 (((-1070) $) 15)) (-1458 (((-794) $) 12) (($ (-1070)) 13) (((-1070) $) 9)) (-3983 (((-108) $ $) 7))) +((-1680 (((-108) $ $) NIL)) (-2076 (((-108) $) 20)) (-2297 (((-108) $) 19)) (-3733 (($ (-1070) (-1070) (-1070)) 21)) (-4198 (((-1070) $) 16)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3807 (($ (-1070) (-1070) (-1070)) 14)) (-2657 (((-1070) $) 17)) (-2223 (((-108) $) 18)) (-3484 (((-1070) $) 15)) (-1691 (((-794) $) 12) (($ (-1070)) 13) (((-1070) $) 9)) (-3941 (((-108) $ $) 7))) (((-364) (-365)) (T -364)) NIL (-365) -((-3924 (((-108) $ $) 7)) (-3001 (((-108) $) 14)) (-2095 (((-108) $) 15)) (-3052 (($ (-1070) (-1070) (-1070)) 13)) (-4038 (((-1070) $) 18)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3680 (($ (-1070) (-1070) (-1070)) 20)) (-1683 (((-1070) $) 17)) (-4131 (((-108) $) 16)) (-2982 (((-1070) $) 19)) (-1458 (((-794) $) 11) (($ (-1070)) 22) (((-1070) $) 21)) (-3983 (((-108) $ $) 6))) +((-1680 (((-108) $ $) 7)) (-2076 (((-108) $) 14)) (-2297 (((-108) $) 15)) (-3733 (($ (-1070) (-1070) (-1070)) 13)) (-4198 (((-1070) $) 18)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3807 (($ (-1070) (-1070) (-1070)) 20)) (-2657 (((-1070) $) 17)) (-2223 (((-108) $) 16)) (-3484 (((-1070) $) 19)) (-1691 (((-794) $) 11) (($ (-1070)) 22) (((-1070) $) 21)) (-3941 (((-108) $ $) 6))) (((-365) (-129)) (T -365)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) (-3680 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108)))) (-2095 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108)))) (-3052 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365))))) -(-13 (-1016) (-10 -8 (-15 -1458 ($ (-1070))) (-15 -1458 ((-1070) $)) (-15 -3680 ($ (-1070) (-1070) (-1070))) (-15 -2982 ((-1070) $)) (-15 -4038 ((-1070) $)) (-15 -1683 ((-1070) $)) (-15 -4131 ((-108) $)) (-15 -2095 ((-108) $)) (-15 -3001 ((-108) $)) (-15 -3052 ($ (-1070) (-1070) (-1070))))) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365)))) (-1691 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) (-3807 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) (-2657 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108)))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108)))) (-3733 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365))))) +(-13 (-1016) (-10 -8 (-15 -1691 ($ (-1070))) (-15 -1691 ((-1070) $)) (-15 -3807 ($ (-1070) (-1070) (-1070))) (-15 -3484 ((-1070) $)) (-15 -4198 ((-1070) $)) (-15 -2657 ((-1070) $)) (-15 -2223 ((-108) $)) (-15 -2297 ((-108) $)) (-15 -2076 ((-108) $)) (-15 -3733 ($ (-1070) (-1070) (-1070))))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2493 (((-794) $) 50)) (-2518 (($) NIL T CONST)) (-1970 (($ $ (-852)) NIL)) (-3650 (($ $ (-852)) NIL)) (-1448 (($ $ (-852)) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3441 (($ (-710)) 26)) (-3203 (((-710)) 15)) (-1231 (((-794) $) 52)) (-1714 (($ $ $) NIL)) (-1458 (((-794) $) NIL)) (-2022 (($ $ $ $) NIL)) (-1995 (($ $ $) NIL)) (-2756 (($) 20 T CONST)) (-3983 (((-108) $ $) 28)) (-4087 (($ $) 34) (($ $ $) 36)) (-4075 (($ $ $) 37)) (** (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-366 |#1| |#2| |#3|) (-13 (-684 |#3|) (-10 -8 (-15 -3203 ((-710))) (-15 -1231 ((-794) $)) (-15 -2493 ((-794) $)) (-15 -3441 ($ (-710))))) (-710) (-710) (-158)) (T -366)) -((-3203 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-158)))) (-1231 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 (-710)) (-14 *4 (-710)) (-4 *5 (-158)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 (-710)) (-14 *4 (-710)) (-4 *5 (-158)))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-158))))) -(-13 (-684 |#3|) (-10 -8 (-15 -3203 ((-710))) (-15 -1231 ((-794) $)) (-15 -2493 ((-794) $)) (-15 -3441 ($ (-710))))) -((-3260 (((-1070)) 10)) (-3011 (((-1059 (-1070))) 28)) (-3371 (((-1173) (-1070)) 25) (((-1173) (-364)) 24)) (-3384 (((-1173)) 26)) (-4192 (((-1059 (-1070))) 27))) -(((-367) (-10 -7 (-15 -4192 ((-1059 (-1070)))) (-15 -3011 ((-1059 (-1070)))) (-15 -3384 ((-1173))) (-15 -3371 ((-1173) (-364))) (-15 -3371 ((-1173) (-1070))) (-15 -3260 ((-1070))))) (T -367)) -((-3260 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-367)))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-367)))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-364)) (-5 *2 (-1173)) (-5 *1 (-367)))) (-3384 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-367)))) (-3011 (*1 *2) (-12 (-5 *2 (-1059 (-1070))) (-5 *1 (-367)))) (-4192 (*1 *2) (-12 (-5 *2 (-1059 (-1070))) (-5 *1 (-367))))) -(-10 -7 (-15 -4192 ((-1059 (-1070)))) (-15 -3011 ((-1059 (-1070)))) (-15 -3384 ((-1173))) (-15 -3371 ((-1173) (-364))) (-15 -3371 ((-1173) (-1070))) (-15 -3260 ((-1070)))) -((-1640 (((-710) (-312 |#1| |#2| |#3| |#4|)) 16))) -(((-368 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1640 ((-710) (-312 |#1| |#2| |#3| |#4|)))) (-13 (-344) (-339)) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -368)) -((-1640 (*1 *2 *3) (-12 (-5 *3 (-312 *4 *5 *6 *7)) (-4 *4 (-13 (-344) (-339))) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-4 *7 (-318 *4 *5 *6)) (-5 *2 (-710)) (-5 *1 (-368 *4 *5 *6 *7))))) -(-10 -7 (-15 -1640 ((-710) (-312 |#1| |#2| |#3| |#4|)))) -((-1458 (((-370) |#1|) 11))) -(((-369 |#1|) (-10 -7 (-15 -1458 ((-370) |#1|))) (-1016)) (T -369)) -((-1458 (*1 *2 *3) (-12 (-5 *2 (-370)) (-5 *1 (-369 *3)) (-4 *3 (-1016))))) -(-10 -7 (-15 -1458 ((-370) |#1|))) -((-3924 (((-108) $ $) NIL)) (-4155 (((-589 (-1070)) $ (-589 (-1070))) 37)) (-3814 (((-589 (-1070)) $ (-589 (-1070))) 38)) (-2210 (((-589 (-1070)) $ (-589 (-1070))) 39)) (-2600 (((-589 (-1070)) $) 34)) (-3052 (($) 23)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2759 (((-589 (-1070)) $) 35)) (-3987 (((-589 (-1070)) $) 36)) (-3973 (((-1173) $ (-523)) 32) (((-1173) $) 33)) (-3663 (($ (-794) (-523)) 29)) (-1458 (((-794) $) 41) (($ (-794)) 25)) (-3983 (((-108) $ $) NIL))) -(((-370) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-794))) (-15 -3663 ($ (-794) (-523))) (-15 -3973 ((-1173) $ (-523))) (-15 -3973 ((-1173) $)) (-15 -3987 ((-589 (-1070)) $)) (-15 -2759 ((-589 (-1070)) $)) (-15 -3052 ($)) (-15 -2600 ((-589 (-1070)) $)) (-15 -2210 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -3814 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -4155 ((-589 (-1070)) $ (-589 (-1070))))))) (T -370)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-370)))) (-3663 (*1 *1 *2 *3) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-370)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-370)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-370)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-3052 (*1 *1) (-5 *1 (-370))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-2210 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-3814 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-4155 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370))))) -(-13 (-1016) (-10 -8 (-15 -1458 ($ (-794))) (-15 -3663 ($ (-794) (-523))) (-15 -3973 ((-1173) $ (-523))) (-15 -3973 ((-1173) $)) (-15 -3987 ((-589 (-1070)) $)) (-15 -2759 ((-589 (-1070)) $)) (-15 -3052 ($)) (-15 -2600 ((-589 (-1070)) $)) (-15 -2210 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -3814 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -4155 ((-589 (-1070)) $ (-589 (-1070)))))) -((-3394 (((-1173) $) 7)) (-1458 (((-794) $) 8))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3937 (((-794) $) 50)) (-4189 (($) NIL T CONST)) (-3402 (($ $ (-852)) NIL)) (-3291 (($ $ (-852)) NIL)) (-2237 (($ $ (-852)) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1621 (($ (-710)) 26)) (-3314 (((-710)) 15)) (-1823 (((-794) $) 52)) (-2892 (($ $ $) NIL)) (-1691 (((-794) $) NIL)) (-2760 (($ $ $ $) NIL)) (-3654 (($ $ $) NIL)) (-1879 (($) 20 T CONST)) (-3941 (((-108) $ $) 28)) (-4060 (($ $) 34) (($ $ $) 36)) (-4045 (($ $ $) 37)) (** (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-366 |#1| |#2| |#3|) (-13 (-684 |#3|) (-10 -8 (-15 -3314 ((-710))) (-15 -1823 ((-794) $)) (-15 -3937 ((-794) $)) (-15 -1621 ($ (-710))))) (-710) (-710) (-158)) (T -366)) +((-3314 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-158)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 (-710)) (-14 *4 (-710)) (-4 *5 (-158)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 (-710)) (-14 *4 (-710)) (-4 *5 (-158)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-158))))) +(-13 (-684 |#3|) (-10 -8 (-15 -3314 ((-710))) (-15 -1823 ((-794) $)) (-15 -3937 ((-794) $)) (-15 -1621 ($ (-710))))) +((-3748 (((-1070)) 10)) (-2161 (((-1059 (-1070))) 28)) (-3804 (((-1174) (-1070)) 25) (((-1174) (-364)) 24)) (-3813 (((-1174)) 26)) (-4018 (((-1059 (-1070))) 27))) +(((-367) (-10 -7 (-15 -4018 ((-1059 (-1070)))) (-15 -2161 ((-1059 (-1070)))) (-15 -3813 ((-1174))) (-15 -3804 ((-1174) (-364))) (-15 -3804 ((-1174) (-1070))) (-15 -3748 ((-1070))))) (T -367)) +((-3748 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-367)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-367)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-364)) (-5 *2 (-1174)) (-5 *1 (-367)))) (-3813 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-367)))) (-2161 (*1 *2) (-12 (-5 *2 (-1059 (-1070))) (-5 *1 (-367)))) (-4018 (*1 *2) (-12 (-5 *2 (-1059 (-1070))) (-5 *1 (-367))))) +(-10 -7 (-15 -4018 ((-1059 (-1070)))) (-15 -2161 ((-1059 (-1070)))) (-15 -3813 ((-1174))) (-15 -3804 ((-1174) (-364))) (-15 -3804 ((-1174) (-1070))) (-15 -3748 ((-1070)))) +((-3437 (((-710) (-312 |#1| |#2| |#3| |#4|)) 16))) +(((-368 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3437 ((-710) (-312 |#1| |#2| |#3| |#4|)))) (-13 (-344) (-339)) (-1145 |#1|) (-1145 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -368)) +((-3437 (*1 *2 *3) (-12 (-5 *3 (-312 *4 *5 *6 *7)) (-4 *4 (-13 (-344) (-339))) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) (-4 *7 (-318 *4 *5 *6)) (-5 *2 (-710)) (-5 *1 (-368 *4 *5 *6 *7))))) +(-10 -7 (-15 -3437 ((-710) (-312 |#1| |#2| |#3| |#4|)))) +((-1691 (((-370) |#1|) 11))) +(((-369 |#1|) (-10 -7 (-15 -1691 ((-370) |#1|))) (-1016)) (T -369)) +((-1691 (*1 *2 *3) (-12 (-5 *2 (-370)) (-5 *1 (-369 *3)) (-4 *3 (-1016))))) +(-10 -7 (-15 -1691 ((-370) |#1|))) +((-1680 (((-108) $ $) NIL)) (-2467 (((-589 (-1070)) $ (-589 (-1070))) 37)) (-2299 (((-589 (-1070)) $ (-589 (-1070))) 38)) (-4145 (((-589 (-1070)) $ (-589 (-1070))) 39)) (-3667 (((-589 (-1070)) $) 34)) (-3733 (($) 23)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2290 (((-589 (-1070)) $) 35)) (-3308 (((-589 (-1070)) $) 36)) (-1239 (((-1174) $ (-523)) 32) (((-1174) $) 33)) (-1400 (($ (-794) (-523)) 29)) (-1691 (((-794) $) 41) (($ (-794)) 25)) (-3941 (((-108) $ $) NIL))) +(((-370) (-13 (-1016) (-10 -8 (-15 -1691 ($ (-794))) (-15 -1400 ($ (-794) (-523))) (-15 -1239 ((-1174) $ (-523))) (-15 -1239 ((-1174) $)) (-15 -3308 ((-589 (-1070)) $)) (-15 -2290 ((-589 (-1070)) $)) (-15 -3733 ($)) (-15 -3667 ((-589 (-1070)) $)) (-15 -4145 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -2299 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -2467 ((-589 (-1070)) $ (-589 (-1070))))))) (T -370)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-370)))) (-1400 (*1 *1 *2 *3) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-370)))) (-1239 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-370)))) (-1239 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-370)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-3733 (*1 *1) (-5 *1 (-370))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-4145 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-2299 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-2467 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370))))) +(-13 (-1016) (-10 -8 (-15 -1691 ($ (-794))) (-15 -1400 ($ (-794) (-523))) (-15 -1239 ((-1174) $ (-523))) (-15 -1239 ((-1174) $)) (-15 -3308 ((-589 (-1070)) $)) (-15 -2290 ((-589 (-1070)) $)) (-15 -3733 ($)) (-15 -3667 ((-589 (-1070)) $)) (-15 -4145 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -2299 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -2467 ((-589 (-1070)) $ (-589 (-1070)))))) +((-3826 (((-1174) $) 7)) (-1691 (((-794) $) 8))) (((-371) (-129)) (T -371)) -((-3394 (*1 *2 *1) (-12 (-4 *1 (-371)) (-5 *2 (-1173))))) -(-13 (-1122) (-563 (-794)) (-10 -8 (-15 -3394 ((-1173) $)))) -(((-563 (-794)) . T) ((-1122) . T)) -((-3517 (((-3 $ "failed") (-292 (-355))) 21) (((-3 $ "failed") (-292 (-523))) 19) (((-3 $ "failed") (-883 (-355))) 17) (((-3 $ "failed") (-883 (-523))) 15) (((-3 $ "failed") (-383 (-883 (-355)))) 13) (((-3 $ "failed") (-383 (-883 (-523)))) 11)) (-3474 (($ (-292 (-355))) 22) (($ (-292 (-523))) 20) (($ (-883 (-355))) 18) (($ (-883 (-523))) 16) (($ (-383 (-883 (-355)))) 14) (($ (-383 (-883 (-523)))) 12)) (-3394 (((-1173) $) 7)) (-1458 (((-794) $) 8) (($ (-589 (-306))) 25) (($ (-306)) 24) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 23))) +((-3826 (*1 *2 *1) (-12 (-4 *1 (-371)) (-5 *2 (-1174))))) +(-13 (-1123) (-563 (-794)) (-10 -8 (-15 -3826 ((-1174) $)))) +(((-563 (-794)) . T) ((-1123) . T)) +((-1220 (((-3 $ "failed") (-292 (-355))) 21) (((-3 $ "failed") (-292 (-523))) 19) (((-3 $ "failed") (-883 (-355))) 17) (((-3 $ "failed") (-883 (-523))) 15) (((-3 $ "failed") (-383 (-883 (-355)))) 13) (((-3 $ "failed") (-383 (-883 (-523)))) 11)) (-3508 (($ (-292 (-355))) 22) (($ (-292 (-523))) 20) (($ (-883 (-355))) 18) (($ (-883 (-523))) 16) (($ (-383 (-883 (-355)))) 14) (($ (-383 (-883 (-523)))) 12)) (-3826 (((-1174) $) 7)) (-1691 (((-794) $) 8) (($ (-589 (-306))) 25) (($ (-306)) 24) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 23))) (((-372) (-129)) (T -372)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-372)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-372)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) (-4 *1 (-372)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-4 *1 (-372)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-355))) (-4 *1 (-372)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-4 *1 (-372)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-523))) (-4 *1 (-372)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-883 (-355))) (-4 *1 (-372)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-355))) (-4 *1 (-372)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-372)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-523))) (-4 *1 (-372)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-355)))) (-4 *1 (-372)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 (-883 (-355)))) (-4 *1 (-372)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-523)))) (-4 *1 (-372)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 (-883 (-523)))) (-4 *1 (-372))))) -(-13 (-371) (-10 -8 (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-306))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))) (-15 -3474 ($ (-292 (-355)))) (-15 -3517 ((-3 $ "failed") (-292 (-355)))) (-15 -3474 ($ (-292 (-523)))) (-15 -3517 ((-3 $ "failed") (-292 (-523)))) (-15 -3474 ($ (-883 (-355)))) (-15 -3517 ((-3 $ "failed") (-883 (-355)))) (-15 -3474 ($ (-883 (-523)))) (-15 -3517 ((-3 $ "failed") (-883 (-523)))) (-15 -3474 ($ (-383 (-883 (-355))))) (-15 -3517 ((-3 $ "failed") (-383 (-883 (-355))))) (-15 -3474 ($ (-383 (-883 (-523))))) (-15 -3517 ((-3 $ "failed") (-383 (-883 (-523))))))) -(((-563 (-794)) . T) ((-371) . T) ((-1122) . T)) -((-3964 (((-589 (-1070)) (-589 (-1070))) 8)) (-3394 (((-1173) (-364)) 27)) (-3485 (((-1020) (-1087) (-589 (-1087)) (-1090) (-589 (-1087))) 59) (((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)) (-1087)) 35) (((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087))) 34))) -(((-373) (-10 -7 (-15 -3485 ((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)))) (-15 -3485 ((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)) (-1087))) (-15 -3485 ((-1020) (-1087) (-589 (-1087)) (-1090) (-589 (-1087)))) (-15 -3394 ((-1173) (-364))) (-15 -3964 ((-589 (-1070)) (-589 (-1070)))))) (T -373)) -((-3964 (*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-373)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-364)) (-5 *2 (-1173)) (-5 *1 (-373)))) (-3485 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-589 (-1087))) (-5 *5 (-1090)) (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-373)))) (-3485 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-589 (-589 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-589 (-3 (|:| |array| (-589 *3)) (|:| |scalar| (-1087))))) (-5 *6 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-373)))) (-3485 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-589 (-589 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-589 (-3 (|:| |array| (-589 *3)) (|:| |scalar| (-1087))))) (-5 *6 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-373))))) -(-10 -7 (-15 -3485 ((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)))) (-15 -3485 ((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)) (-1087))) (-15 -3485 ((-1020) (-1087) (-589 (-1087)) (-1090) (-589 (-1087)))) (-15 -3394 ((-1173) (-364))) (-15 -3964 ((-589 (-1070)) (-589 (-1070))))) -((-3394 (((-1173) $) 37)) (-1458 (((-794) $) 89) (($ (-306)) 92) (($ (-589 (-306))) 91) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 88) (($ (-292 (-640))) 52) (($ (-292 (-638))) 66) (($ (-292 (-633))) 78) (($ (-271 (-292 (-640)))) 62) (($ (-271 (-292 (-638)))) 74) (($ (-271 (-292 (-633)))) 86) (($ (-292 (-523))) 96) (($ (-292 (-355))) 108) (($ (-292 (-155 (-355)))) 120) (($ (-271 (-292 (-523)))) 104) (($ (-271 (-292 (-355)))) 116) (($ (-271 (-292 (-155 (-355))))) 128))) -(((-374 |#1| |#2| |#3| |#4|) (-13 (-371) (-10 -8 (-15 -1458 ($ (-306))) (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))) (-15 -1458 ($ (-292 (-640)))) (-15 -1458 ($ (-292 (-638)))) (-15 -1458 ($ (-292 (-633)))) (-15 -1458 ($ (-271 (-292 (-640))))) (-15 -1458 ($ (-271 (-292 (-638))))) (-15 -1458 ($ (-271 (-292 (-633))))) (-15 -1458 ($ (-292 (-523)))) (-15 -1458 ($ (-292 (-355)))) (-15 -1458 ($ (-292 (-155 (-355))))) (-15 -1458 ($ (-271 (-292 (-523))))) (-15 -1458 ($ (-271 (-292 (-355))))) (-15 -1458 ($ (-271 (-292 (-155 (-355)))))))) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-1087)) (-1091)) (T -374)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-306)) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-292 (-640))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-292 (-638))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-292 (-633))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-640)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-638)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-633)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-292 (-155 (-355)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-523)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-355)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-155 (-355))))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091))))) -(-13 (-371) (-10 -8 (-15 -1458 ($ (-306))) (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))) (-15 -1458 ($ (-292 (-640)))) (-15 -1458 ($ (-292 (-638)))) (-15 -1458 ($ (-292 (-633)))) (-15 -1458 ($ (-271 (-292 (-640))))) (-15 -1458 ($ (-271 (-292 (-638))))) (-15 -1458 ($ (-271 (-292 (-633))))) (-15 -1458 ($ (-292 (-523)))) (-15 -1458 ($ (-292 (-355)))) (-15 -1458 ($ (-292 (-155 (-355))))) (-15 -1458 ($ (-271 (-292 (-523))))) (-15 -1458 ($ (-271 (-292 (-355))))) (-15 -1458 ($ (-271 (-292 (-155 (-355)))))))) -((-3924 (((-108) $ $) NIL)) (-3062 ((|#2| $) 36)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1543 (($ (-383 |#2|)) 84)) (-2591 (((-589 (-2 (|:| -2735 (-710)) (|:| -1288 |#2|) (|:| |num| |#2|))) $) 37)) (-3523 (($ $) 32) (($ $ (-710)) 34)) (-3663 (((-383 |#2|) $) 46)) (-1472 (($ (-589 (-2 (|:| -2735 (-710)) (|:| -1288 |#2|) (|:| |num| |#2|)))) 31)) (-1458 (((-794) $) 120)) (-2862 (($ $) 33) (($ $ (-710)) 35)) (-3983 (((-108) $ $) NIL)) (-4075 (($ |#2| $) 39))) -(((-375 |#1| |#2|) (-13 (-1016) (-564 (-383 |#2|)) (-10 -8 (-15 -4075 ($ |#2| $)) (-15 -1543 ($ (-383 |#2|))) (-15 -3062 (|#2| $)) (-15 -2591 ((-589 (-2 (|:| -2735 (-710)) (|:| -1288 |#2|) (|:| |num| |#2|))) $)) (-15 -1472 ($ (-589 (-2 (|:| -2735 (-710)) (|:| -1288 |#2|) (|:| |num| |#2|))))) (-15 -3523 ($ $)) (-15 -2862 ($ $)) (-15 -3523 ($ $ (-710))) (-15 -2862 ($ $ (-710))))) (-13 (-339) (-136)) (-1144 |#1|)) (T -375)) -((-4075 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *2)) (-4 *2 (-1144 *3)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-383 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)))) (-3062 (*1 *2 *1) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-375 *3 *2)) (-4 *3 (-13 (-339) (-136))))) (-2591 (*1 *2 *1) (-12 (-4 *3 (-13 (-339) (-136))) (-5 *2 (-589 (-2 (|:| -2735 (-710)) (|:| -1288 *4) (|:| |num| *4)))) (-5 *1 (-375 *3 *4)) (-4 *4 (-1144 *3)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -2735 (-710)) (|:| -1288 *4) (|:| |num| *4)))) (-4 *4 (-1144 *3)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)))) (-3523 (*1 *1 *1) (-12 (-4 *2 (-13 (-339) (-136))) (-5 *1 (-375 *2 *3)) (-4 *3 (-1144 *2)))) (-2862 (*1 *1 *1) (-12 (-4 *2 (-13 (-339) (-136))) (-5 *1 (-375 *2 *3)) (-4 *3 (-1144 *2)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)) (-4 *4 (-1144 *3)))) (-2862 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)) (-4 *4 (-1144 *3))))) -(-13 (-1016) (-564 (-383 |#2|)) (-10 -8 (-15 -4075 ($ |#2| $)) (-15 -1543 ($ (-383 |#2|))) (-15 -3062 (|#2| $)) (-15 -2591 ((-589 (-2 (|:| -2735 (-710)) (|:| -1288 |#2|) (|:| |num| |#2|))) $)) (-15 -1472 ($ (-589 (-2 (|:| -2735 (-710)) (|:| -1288 |#2|) (|:| |num| |#2|))))) (-15 -3523 ($ $)) (-15 -2862 ($ $)) (-15 -3523 ($ $ (-710))) (-15 -2862 ($ $ (-710))))) -((-3924 (((-108) $ $) 9 (-3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))))) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 15 (|has| |#1| (-817 (-355)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 14 (|has| |#1| (-817 (-523))))) (-3779 (((-1070) $) 13 (-3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))))) (-2783 (((-1034) $) 12 (-3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))))) (-1458 (((-794) $) 11 (-3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))))) (-3983 (((-108) $ $) 10 (-3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355))))))) -(((-376 |#1|) (-129) (-1122)) (T -376)) -NIL -(-13 (-1122) (-10 -7 (IF (|has| |t#1| (-817 (-523))) (-6 (-817 (-523))) |%noBranch|) (IF (|has| |t#1| (-817 (-355))) (-6 (-817 (-355))) |%noBranch|))) -(((-97) -3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))) ((-563 (-794)) -3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-1016) -3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))) ((-1122) . T)) -((-1991 (($ $) 10) (($ $ (-710)) 11))) -(((-377 |#1|) (-10 -8 (-15 -1991 (|#1| |#1| (-710))) (-15 -1991 (|#1| |#1|))) (-378)) (T -377)) -NIL -(-10 -8 (-15 -1991 (|#1| |#1| (-710))) (-15 -1991 (|#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-1991 (($ $) 79) (($ $ (-710)) 78)) (-2657 (((-108) $) 71)) (-1640 (((-772 (-852)) $) 81)) (-2023 (((-108) $) 31)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-2974 (((-3 (-710) "failed") $ $) 80)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65)) (-3901 (((-3 $ "failed") $) 82)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 64)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-372)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-372)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) (-4 *1 (-372)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-4 *1 (-372)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-355))) (-4 *1 (-372)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-4 *1 (-372)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-523))) (-4 *1 (-372)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-883 (-355))) (-4 *1 (-372)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-355))) (-4 *1 (-372)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-372)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-523))) (-4 *1 (-372)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-355)))) (-4 *1 (-372)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 (-883 (-355)))) (-4 *1 (-372)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-523)))) (-4 *1 (-372)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 (-883 (-523)))) (-4 *1 (-372))))) +(-13 (-371) (-10 -8 (-15 -1691 ($ (-589 (-306)))) (-15 -1691 ($ (-306))) (-15 -1691 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306)))))) (-15 -3508 ($ (-292 (-355)))) (-15 -1220 ((-3 $ "failed") (-292 (-355)))) (-15 -3508 ($ (-292 (-523)))) (-15 -1220 ((-3 $ "failed") (-292 (-523)))) (-15 -3508 ($ (-883 (-355)))) (-15 -1220 ((-3 $ "failed") (-883 (-355)))) (-15 -3508 ($ (-883 (-523)))) (-15 -1220 ((-3 $ "failed") (-883 (-523)))) (-15 -3508 ($ (-383 (-883 (-355))))) (-15 -1220 ((-3 $ "failed") (-383 (-883 (-355))))) (-15 -3508 ($ (-383 (-883 (-523))))) (-15 -1220 ((-3 $ "failed") (-383 (-883 (-523))))))) +(((-563 (-794)) . T) ((-371) . T) ((-1123) . T)) +((-1387 (((-589 (-1070)) (-589 (-1070))) 8)) (-3826 (((-1174) (-364)) 27)) (-2302 (((-1020) (-1087) (-589 (-1087)) (-1090) (-589 (-1087))) 59) (((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)) (-1087)) 35) (((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087))) 34))) +(((-373) (-10 -7 (-15 -2302 ((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)))) (-15 -2302 ((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)) (-1087))) (-15 -2302 ((-1020) (-1087) (-589 (-1087)) (-1090) (-589 (-1087)))) (-15 -3826 ((-1174) (-364))) (-15 -1387 ((-589 (-1070)) (-589 (-1070)))))) (T -373)) +((-1387 (*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-373)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-364)) (-5 *2 (-1174)) (-5 *1 (-373)))) (-2302 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-589 (-1087))) (-5 *5 (-1090)) (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-373)))) (-2302 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-589 (-589 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-589 (-3 (|:| |array| (-589 *3)) (|:| |scalar| (-1087))))) (-5 *6 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-373)))) (-2302 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-589 (-589 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-589 (-3 (|:| |array| (-589 *3)) (|:| |scalar| (-1087))))) (-5 *6 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-373))))) +(-10 -7 (-15 -2302 ((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)))) (-15 -2302 ((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)) (-1087))) (-15 -2302 ((-1020) (-1087) (-589 (-1087)) (-1090) (-589 (-1087)))) (-15 -3826 ((-1174) (-364))) (-15 -1387 ((-589 (-1070)) (-589 (-1070))))) +((-3826 (((-1174) $) 37)) (-1691 (((-794) $) 91) (($ (-306)) 94) (($ (-589 (-306))) 93) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 90) (($ (-292 (-640))) 52) (($ (-292 (-638))) 68) (($ (-292 (-633))) 80) (($ (-271 (-292 (-640)))) 64) (($ (-271 (-292 (-638)))) 76) (($ (-271 (-292 (-633)))) 88) (($ (-292 (-523))) 98) (($ (-292 (-355))) 110) (($ (-292 (-155 (-355)))) 122) (($ (-271 (-292 (-523)))) 106) (($ (-271 (-292 (-355)))) 118) (($ (-271 (-292 (-155 (-355))))) 130))) +(((-374 |#1| |#2| |#3| |#4|) (-13 (-371) (-10 -8 (-15 -1691 ($ (-306))) (-15 -1691 ($ (-589 (-306)))) (-15 -1691 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306)))))) (-15 -1691 ($ (-292 (-640)))) (-15 -1691 ($ (-292 (-638)))) (-15 -1691 ($ (-292 (-633)))) (-15 -1691 ($ (-271 (-292 (-640))))) (-15 -1691 ($ (-271 (-292 (-638))))) (-15 -1691 ($ (-271 (-292 (-633))))) (-15 -1691 ($ (-292 (-523)))) (-15 -1691 ($ (-292 (-355)))) (-15 -1691 ($ (-292 (-155 (-355))))) (-15 -1691 ($ (-271 (-292 (-523))))) (-15 -1691 ($ (-271 (-292 (-355))))) (-15 -1691 ($ (-271 (-292 (-155 (-355)))))))) (-1087) (-3 (|:| |fst| (-410)) (|:| -1495 "void")) (-589 (-1087)) (-1091)) (T -374)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-306)) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-292 (-640))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-292 (-638))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-292 (-633))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-640)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-638)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-633)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-292 (-155 (-355)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-523)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-355)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-155 (-355))))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091))))) +(-13 (-371) (-10 -8 (-15 -1691 ($ (-306))) (-15 -1691 ($ (-589 (-306)))) (-15 -1691 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306)))))) (-15 -1691 ($ (-292 (-640)))) (-15 -1691 ($ (-292 (-638)))) (-15 -1691 ($ (-292 (-633)))) (-15 -1691 ($ (-271 (-292 (-640))))) (-15 -1691 ($ (-271 (-292 (-638))))) (-15 -1691 ($ (-271 (-292 (-633))))) (-15 -1691 ($ (-292 (-523)))) (-15 -1691 ($ (-292 (-355)))) (-15 -1691 ($ (-292 (-155 (-355))))) (-15 -1691 ($ (-271 (-292 (-523))))) (-15 -1691 ($ (-271 (-292 (-355))))) (-15 -1691 ($ (-271 (-292 (-155 (-355)))))))) +((-1680 (((-108) $ $) NIL)) (-2604 ((|#2| $) 36)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3747 (($ (-383 |#2|)) 84)) (-3592 (((-589 (-2 (|:| -1475 (-710)) (|:| -3710 |#2|) (|:| |num| |#2|))) $) 37)) (-3984 (($ $) 32) (($ $ (-710)) 34)) (-1400 (((-383 |#2|) $) 46)) (-1704 (($ (-589 (-2 (|:| -1475 (-710)) (|:| -3710 |#2|) (|:| |num| |#2|)))) 31)) (-1691 (((-794) $) 120)) (-2909 (($ $) 33) (($ $ (-710)) 35)) (-3941 (((-108) $ $) NIL)) (-4045 (($ |#2| $) 39))) +(((-375 |#1| |#2|) (-13 (-1016) (-564 (-383 |#2|)) (-10 -8 (-15 -4045 ($ |#2| $)) (-15 -3747 ($ (-383 |#2|))) (-15 -2604 (|#2| $)) (-15 -3592 ((-589 (-2 (|:| -1475 (-710)) (|:| -3710 |#2|) (|:| |num| |#2|))) $)) (-15 -1704 ($ (-589 (-2 (|:| -1475 (-710)) (|:| -3710 |#2|) (|:| |num| |#2|))))) (-15 -3984 ($ $)) (-15 -2909 ($ $)) (-15 -3984 ($ $ (-710))) (-15 -2909 ($ $ (-710))))) (-13 (-339) (-136)) (-1145 |#1|)) (T -375)) +((-4045 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *2)) (-4 *2 (-1145 *3)))) (-3747 (*1 *1 *2) (-12 (-5 *2 (-383 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)))) (-2604 (*1 *2 *1) (-12 (-4 *2 (-1145 *3)) (-5 *1 (-375 *3 *2)) (-4 *3 (-13 (-339) (-136))))) (-3592 (*1 *2 *1) (-12 (-4 *3 (-13 (-339) (-136))) (-5 *2 (-589 (-2 (|:| -1475 (-710)) (|:| -3710 *4) (|:| |num| *4)))) (-5 *1 (-375 *3 *4)) (-4 *4 (-1145 *3)))) (-1704 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -1475 (-710)) (|:| -3710 *4) (|:| |num| *4)))) (-4 *4 (-1145 *3)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)))) (-3984 (*1 *1 *1) (-12 (-4 *2 (-13 (-339) (-136))) (-5 *1 (-375 *2 *3)) (-4 *3 (-1145 *2)))) (-2909 (*1 *1 *1) (-12 (-4 *2 (-13 (-339) (-136))) (-5 *1 (-375 *2 *3)) (-4 *3 (-1145 *2)))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)) (-4 *4 (-1145 *3)))) (-2909 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)) (-4 *4 (-1145 *3))))) +(-13 (-1016) (-564 (-383 |#2|)) (-10 -8 (-15 -4045 ($ |#2| $)) (-15 -3747 ($ (-383 |#2|))) (-15 -2604 (|#2| $)) (-15 -3592 ((-589 (-2 (|:| -1475 (-710)) (|:| -3710 |#2|) (|:| |num| |#2|))) $)) (-15 -1704 ($ (-589 (-2 (|:| -1475 (-710)) (|:| -3710 |#2|) (|:| |num| |#2|))))) (-15 -3984 ($ $)) (-15 -2909 ($ $)) (-15 -3984 ($ $ (-710))) (-15 -2909 ($ $ (-710))))) +((-1680 (((-108) $ $) 9 (-3172 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))))) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 15 (|has| |#1| (-817 (-355)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 14 (|has| |#1| (-817 (-523))))) (-2032 (((-1070) $) 13 (-3172 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))))) (-3951 (((-1034) $) 12 (-3172 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))))) (-1691 (((-794) $) 11 (-3172 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))))) (-3941 (((-108) $ $) 10 (-3172 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355))))))) +(((-376 |#1|) (-129) (-1123)) (T -376)) +NIL +(-13 (-1123) (-10 -7 (IF (|has| |t#1| (-817 (-523))) (-6 (-817 (-523))) |%noBranch|) (IF (|has| |t#1| (-817 (-355))) (-6 (-817 (-355))) |%noBranch|))) +(((-97) -3172 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))) ((-563 (-794)) -3172 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-1016) -3172 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))) ((-1123) . T)) +((-3610 (($ $) 10) (($ $ (-710)) 11))) +(((-377 |#1|) (-10 -8 (-15 -3610 (|#1| |#1| (-710))) (-15 -3610 (|#1| |#1|))) (-378)) (T -377)) +NIL +(-10 -8 (-15 -3610 (|#1| |#1| (-710))) (-15 -3610 (|#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 73)) (-4226 (((-394 $) $) 72)) (-2787 (((-108) $ $) 59)) (-4189 (($) 17 T CONST)) (-4059 (($ $ $) 55)) (-1444 (((-3 $ "failed") $) 34)) (-4032 (($ $ $) 56)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-3610 (($ $) 79) (($ $ (-710)) 78)) (-3049 (((-108) $) 71)) (-3437 (((-772 (-852)) $) 81)) (-2769 (((-108) $) 31)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 70)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-2424 (((-394 $) $) 74)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-3413 (((-710) $) 58)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57)) (-2984 (((-3 (-710) "failed") $ $) 80)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65)) (-1942 (((-3 $ "failed") $) 82)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ $) 64)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) (((-378) (-129)) (T -378)) -((-1640 (*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-772 (-852))))) (-2974 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-378)) (-5 *2 (-710)))) (-1991 (*1 *1 *1) (-4 *1 (-378))) (-1991 (*1 *1 *1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-710))))) -(-13 (-339) (-134) (-10 -8 (-15 -1640 ((-772 (-852)) $)) (-15 -2974 ((-3 (-710) "failed") $ $)) (-15 -1991 ($ $)) (-15 -1991 ($ $ (-710))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-134) . T) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) -((-4092 (($ (-523) (-523)) 11) (($ (-523) (-523) (-852)) NIL)) (-1617 (((-852)) 16) (((-852) (-852)) NIL))) -(((-379 |#1|) (-10 -8 (-15 -1617 ((-852) (-852))) (-15 -1617 ((-852))) (-15 -4092 (|#1| (-523) (-523) (-852))) (-15 -4092 (|#1| (-523) (-523)))) (-380)) (T -379)) -((-1617 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-379 *3)) (-4 *3 (-380)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-379 *3)) (-4 *3 (-380))))) -(-10 -8 (-15 -1617 ((-852) (-852))) (-15 -1617 ((-852))) (-15 -4092 (|#1| (-523) (-523) (-852))) (-15 -4092 (|#1| (-523) (-523)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3458 (((-523) $) 89)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3984 (($ $) 87)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1832 (($ $) 97)) (-1387 (((-108) $ $) 59)) (-3671 (((-523) $) 114)) (-2518 (($) 17 T CONST)) (-1258 (($ $) 86)) (-3517 (((-3 (-523) "failed") $) 102) (((-3 (-383 (-523)) "failed") $) 99)) (-3474 (((-523) $) 101) (((-383 (-523)) $) 98)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2657 (((-108) $) 71)) (-2685 (((-852)) 130) (((-852) (-852)) 127 (|has| $ (-6 -4235)))) (-2604 (((-108) $) 112)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 93)) (-1640 (((-523) $) 136)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 96)) (-3892 (($ $) 92)) (-4114 (((-108) $) 113)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-2454 (($ $ $) 111) (($) 124 (-12 (-3900 (|has| $ (-6 -4235))) (-3900 (|has| $ (-6 -4227)))))) (-2062 (($ $ $) 110) (($) 123 (-12 (-3900 (|has| $ (-6 -4235))) (-3900 (|has| $ (-6 -4227)))))) (-1369 (((-523) $) 133)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-3986 (((-852) (-523)) 126 (|has| $ (-6 -4235)))) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-2206 (($ $) 88)) (-3722 (($ $) 90)) (-4092 (($ (-523) (-523)) 138) (($ (-523) (-523) (-852)) 137)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-2735 (((-523) $) 134)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-1617 (((-852)) 131) (((-852) (-852)) 128 (|has| $ (-6 -4235)))) (-3134 (((-852) (-523)) 125 (|has| $ (-6 -4235)))) (-3663 (((-355) $) 105) (((-203) $) 104) (((-823 (-355)) $) 94)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ (-523)) 103) (($ (-383 (-523))) 100)) (-1621 (((-710)) 29)) (-1886 (($ $) 91)) (-1329 (((-852)) 132) (((-852) (-852)) 129 (|has| $ (-6 -4235)))) (-3007 (((-852)) 135)) (-1704 (((-108) $ $) 39)) (-2619 (($ $) 115)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 108)) (-4019 (((-108) $ $) 107)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 109)) (-4007 (((-108) $ $) 106)) (-4098 (($ $ $) 64)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68) (($ $ (-383 (-523))) 95)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) +((-3437 (*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-772 (-852))))) (-2984 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-378)) (-5 *2 (-710)))) (-3610 (*1 *1 *1) (-4 *1 (-378))) (-3610 (*1 *1 *1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-710))))) +(-13 (-339) (-134) (-10 -8 (-15 -3437 ((-772 (-852)) $)) (-15 -2984 ((-3 (-710) "failed") $ $)) (-15 -3610 ($ $)) (-15 -3610 ($ $ (-710))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-134) . T) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1127) . T)) +((-4210 (($ (-523) (-523)) 11) (($ (-523) (-523) (-852)) NIL)) (-3229 (((-852)) 16) (((-852) (-852)) NIL))) +(((-379 |#1|) (-10 -8 (-15 -3229 ((-852) (-852))) (-15 -3229 ((-852))) (-15 -4210 (|#1| (-523) (-523) (-852))) (-15 -4210 (|#1| (-523) (-523)))) (-380)) (T -379)) +((-3229 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-379 *3)) (-4 *3 (-380)))) (-3229 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-379 *3)) (-4 *3 (-380))))) +(-10 -8 (-15 -3229 ((-852) (-852))) (-15 -3229 ((-852))) (-15 -4210 (|#1| (-523) (-523) (-852))) (-15 -4210 (|#1| (-523) (-523)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2046 (((-523) $) 89)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3276 (($ $) 87)) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 73)) (-4226 (((-394 $) $) 72)) (-2437 (($ $) 97)) (-2787 (((-108) $ $) 59)) (-3482 (((-523) $) 114)) (-4189 (($) 17 T CONST)) (-3900 (($ $) 86)) (-1220 (((-3 (-523) "failed") $) 102) (((-3 (-383 (-523)) "failed") $) 99)) (-3508 (((-523) $) 101) (((-383 (-523)) $) 98)) (-4059 (($ $ $) 55)) (-1444 (((-3 $ "failed") $) 34)) (-4032 (($ $ $) 56)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-3049 (((-108) $) 71)) (-2285 (((-852)) 130) (((-852) (-852)) 127 (|has| $ (-6 -4239)))) (-3712 (((-108) $) 112)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 93)) (-3437 (((-523) $) 136)) (-2769 (((-108) $) 31)) (-1973 (($ $ (-523)) 96)) (-1863 (($ $) 92)) (-2057 (((-108) $) 113)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3239 (($ $ $) 111) (($) 124 (-12 (-4179 (|has| $ (-6 -4239))) (-4179 (|has| $ (-6 -4231)))))) (-3158 (($ $ $) 110) (($) 123 (-12 (-4179 (|has| $ (-6 -4239))) (-4179 (|has| $ (-6 -4231)))))) (-1512 (((-523) $) 133)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 70)) (-3297 (((-852) (-523)) 126 (|has| $ (-6 -4239)))) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-4110 (($ $) 88)) (-2733 (($ $) 90)) (-4210 (($ (-523) (-523)) 138) (($ (-523) (-523) (-852)) 137)) (-2424 (((-394 $) $) 74)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1475 (((-523) $) 134)) (-3413 (((-710) $) 58)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57)) (-3229 (((-852)) 131) (((-852) (-852)) 128 (|has| $ (-6 -4239)))) (-3892 (((-852) (-523)) 125 (|has| $ (-6 -4239)))) (-1400 (((-355) $) 105) (((-203) $) 104) (((-823 (-355)) $) 94)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ (-523)) 103) (($ (-383 (-523))) 100)) (-3272 (((-710)) 29)) (-3809 (($ $) 91)) (-3401 (((-852)) 132) (((-852) (-852)) 129 (|has| $ (-6 -4239)))) (-1416 (((-852)) 135)) (-2801 (((-108) $ $) 39)) (-2695 (($ $) 115)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-4006 (((-108) $ $) 108)) (-3980 (((-108) $ $) 107)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 109)) (-3966 (((-108) $ $) 106)) (-4074 (($ $ $) 64)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68) (($ $ (-383 (-523))) 95)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) (((-380) (-129)) (T -380)) -((-4092 (*1 *1 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-380)))) (-4092 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-852)) (-4 *1 (-380)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) (-3007 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) (-1329 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) (-1617 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) (-2685 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) (-1329 (*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4235)) (-4 *1 (-380)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4235)) (-4 *1 (-380)))) (-2685 (*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4235)) (-4 *1 (-380)))) (-3986 (*1 *2 *3) (-12 (-5 *3 (-523)) (|has| *1 (-6 -4235)) (-4 *1 (-380)) (-5 *2 (-852)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-523)) (|has| *1 (-6 -4235)) (-4 *1 (-380)) (-5 *2 (-852)))) (-2454 (*1 *1) (-12 (-4 *1 (-380)) (-3900 (|has| *1 (-6 -4235))) (-3900 (|has| *1 (-6 -4227))))) (-2062 (*1 *1) (-12 (-4 *1 (-380)) (-3900 (|has| *1 (-6 -4235))) (-3900 (|has| *1 (-6 -4227)))))) -(-13 (-982) (-10 -8 (-6 -2562) (-15 -4092 ($ (-523) (-523))) (-15 -4092 ($ (-523) (-523) (-852))) (-15 -1640 ((-523) $)) (-15 -3007 ((-852))) (-15 -2735 ((-523) $)) (-15 -1369 ((-523) $)) (-15 -1329 ((-852))) (-15 -1617 ((-852))) (-15 -2685 ((-852))) (IF (|has| $ (-6 -4235)) (PROGN (-15 -1329 ((-852) (-852))) (-15 -1617 ((-852) (-852))) (-15 -2685 ((-852) (-852))) (-15 -3986 ((-852) (-523))) (-15 -3134 ((-852) (-523)))) |%noBranch|) (IF (|has| $ (-6 -4227)) |%noBranch| (IF (|has| $ (-6 -4235)) |%noBranch| (PROGN (-15 -2454 ($)) (-15 -2062 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-158) . T) ((-564 (-203)) . T) ((-564 (-355)) . T) ((-564 (-823 (-355))) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-784) . T) ((-786) . T) ((-817 (-355)) . T) ((-851) . T) ((-930) . T) ((-949) . T) ((-982) . T) ((-964 (-383 (-523))) . T) ((-964 (-523)) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) -((-3612 (((-394 |#2|) (-1 |#2| |#1|) (-394 |#1|)) 20))) -(((-381 |#1| |#2|) (-10 -7 (-15 -3612 ((-394 |#2|) (-1 |#2| |#1|) (-394 |#1|)))) (-515) (-515)) (T -381)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-394 *5)) (-4 *5 (-515)) (-4 *6 (-515)) (-5 *2 (-394 *6)) (-5 *1 (-381 *5 *6))))) -(-10 -7 (-15 -3612 ((-394 |#2|) (-1 |#2| |#1|) (-394 |#1|)))) -((-3612 (((-383 |#2|) (-1 |#2| |#1|) (-383 |#1|)) 13))) -(((-382 |#1| |#2|) (-10 -7 (-15 -3612 ((-383 |#2|) (-1 |#2| |#1|) (-383 |#1|)))) (-515) (-515)) (T -382)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-383 *5)) (-4 *5 (-515)) (-4 *6 (-515)) (-5 *2 (-383 *6)) (-5 *1 (-382 *5 *6))))) -(-10 -7 (-15 -3612 ((-383 |#2|) (-1 |#2| |#1|) (-383 |#1|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 13)) (-3458 ((|#1| $) 21 (|has| |#1| (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| |#1| (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 17) (((-3 (-1087) "failed") $) NIL (|has| |#1| (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) 70 (|has| |#1| (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523))))) (-3474 ((|#1| $) 15) (((-1087) $) NIL (|has| |#1| (-964 (-1087)))) (((-383 (-523)) $) 67 (|has| |#1| (-964 (-523)))) (((-523) $) NIL (|has| |#1| (-964 (-523))))) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) 50)) (-4032 (($) NIL (|has| |#1| (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| |#1| (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| |#1| (-817 (-355))))) (-2023 (((-108) $) 64)) (-2531 (($ $) NIL)) (-2785 ((|#1| $) 71)) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-1063)))) (-4114 (((-108) $) NIL (|has| |#1| (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| |#1| (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 97)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| |#1| (-284)))) (-3722 ((|#1| $) 28 (|has| |#1| (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 133 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 129 (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|)))) (-1972 (((-710) $) NIL)) (-3223 (($ $ |#1|) NIL (|has| |#1| (-263 |#1| |#1|)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3414 (($ $) NIL)) (-2797 ((|#1| $) 73)) (-3663 (((-823 (-523)) $) NIL (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| |#1| (-564 (-823 (-355))))) (((-499) $) NIL (|has| |#1| (-564 (-499)))) (((-355) $) NIL (|has| |#1| (-949))) (((-203) $) NIL (|has| |#1| (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 113 (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 10) (($ (-1087)) NIL (|has| |#1| (-964 (-1087))))) (-3901 (((-3 $ "failed") $) 99 (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) 100)) (-1886 ((|#1| $) 26 (|has| |#1| (-508)))) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL (|has| |#1| (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 22 T CONST)) (-2767 (($) 8 T CONST)) (-3790 (((-1070) $) 43 (-12 (|has| |#1| (-508)) (|has| |#1| (-767)))) (((-1070) $ (-108)) 44 (-12 (|has| |#1| (-508)) (|has| |#1| (-767)))) (((-1173) (-761) $) 45 (-12 (|has| |#1| (-508)) (|has| |#1| (-767)))) (((-1173) (-761) $ (-108)) 46 (-12 (|has| |#1| (-508)) (|has| |#1| (-767))))) (-2862 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 56)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) 24 (|has| |#1| (-786)))) (-4098 (($ $ $) 124) (($ |#1| |#1|) 52)) (-4087 (($ $) 25) (($ $ $) 55)) (-4075 (($ $ $) 53)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 123)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 60) (($ $ $) 57) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-383 |#1|) (-13 (-921 |#1|) (-10 -7 (IF (|has| |#1| (-508)) (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (IF (|has| |#1| (-427)) (IF (|has| |#1| (-6 -4242)) (-6 -4231) |%noBranch|) |%noBranch|) |%noBranch|))) (-515)) (T -383)) -NIL -(-13 (-921 |#1|) (-10 -7 (IF (|has| |#1| (-508)) (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (IF (|has| |#1| (-427)) (IF (|has| |#1| (-6 -4242)) (-6 -4231) |%noBranch|) |%noBranch|) |%noBranch|))) -((-3750 (((-629 |#2|) (-1168 $)) NIL) (((-629 |#2|)) 18)) (-3409 (($ (-1168 |#2|) (-1168 $)) NIL) (($ (-1168 |#2|)) 26)) (-4079 (((-629 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) $) 22)) (-1397 ((|#3| $) 59)) (-3549 ((|#2| (-1168 $)) NIL) ((|#2|) 20)) (-2966 (((-1168 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) (-1168 $) (-1168 $)) NIL) (((-1168 |#2|) $) NIL) (((-629 |#2|) (-1168 $)) 24)) (-3663 (((-1168 |#2|) $) 11) (($ (-1168 |#2|)) 13)) (-1807 ((|#3| $) 51))) -(((-384 |#1| |#2| |#3|) (-10 -8 (-15 -4079 ((-629 |#2|) |#1|)) (-15 -3549 (|#2|)) (-15 -3750 ((-629 |#2|))) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -3409 (|#1| (-1168 |#2|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -1397 (|#3| |#1|)) (-15 -1807 (|#3| |#1|)) (-15 -3750 ((-629 |#2|) (-1168 |#1|))) (-15 -3549 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -4079 ((-629 |#2|) |#1| (-1168 |#1|)))) (-385 |#2| |#3|) (-158) (-1144 |#2|)) (T -384)) -((-3750 (*1 *2) (-12 (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)) (-5 *1 (-384 *3 *4 *5)) (-4 *3 (-385 *4 *5)))) (-3549 (*1 *2) (-12 (-4 *4 (-1144 *2)) (-4 *2 (-158)) (-5 *1 (-384 *3 *2 *4)) (-4 *3 (-385 *2 *4))))) -(-10 -8 (-15 -4079 ((-629 |#2|) |#1|)) (-15 -3549 (|#2|)) (-15 -3750 ((-629 |#2|))) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -3409 (|#1| (-1168 |#2|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -1397 (|#3| |#1|)) (-15 -1807 (|#3| |#1|)) (-15 -3750 ((-629 |#2|) (-1168 |#1|))) (-15 -3549 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -4079 ((-629 |#2|) |#1| (-1168 |#1|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3750 (((-629 |#1|) (-1168 $)) 46) (((-629 |#1|)) 61)) (-4187 ((|#1| $) 52)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3409 (($ (-1168 |#1|) (-1168 $)) 48) (($ (-1168 |#1|)) 64)) (-4079 (((-629 |#1|) $ (-1168 $)) 53) (((-629 |#1|) $) 59)) (-2121 (((-3 $ "failed") $) 34)) (-1319 (((-852)) 54)) (-2023 (((-108) $) 31)) (-3892 ((|#1| $) 51)) (-1397 ((|#2| $) 44 (|has| |#1| (-339)))) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3549 ((|#1| (-1168 $)) 47) ((|#1|) 60)) (-2966 (((-1168 |#1|) $ (-1168 $)) 50) (((-629 |#1|) (-1168 $) (-1168 $)) 49) (((-1168 |#1|) $) 66) (((-629 |#1|) (-1168 $)) 65)) (-3663 (((-1168 |#1|) $) 63) (($ (-1168 |#1|)) 62)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37)) (-3901 (((-3 $ "failed") $) 43 (|has| |#1| (-134)))) (-1807 ((|#2| $) 45)) (-1621 (((-710)) 29)) (-4041 (((-1168 $)) 67)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-385 |#1| |#2|) (-129) (-158) (-1144 |t#1|)) (T -385)) -((-4041 (*1 *2) (-12 (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-1168 *1)) (-4 *1 (-385 *3 *4)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-1168 *3)))) (-2966 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-385 *3 *4)) (-4 *4 (-1144 *3)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-1168 *3)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-385 *3 *4)) (-4 *4 (-1144 *3)))) (-3750 (*1 *2) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-629 *3)))) (-3549 (*1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-158)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-629 *3))))) -(-13 (-346 |t#1| |t#2|) (-10 -8 (-15 -4041 ((-1168 $))) (-15 -2966 ((-1168 |t#1|) $)) (-15 -2966 ((-629 |t#1|) (-1168 $))) (-15 -3409 ($ (-1168 |t#1|))) (-15 -3663 ((-1168 |t#1|) $)) (-15 -3663 ($ (-1168 |t#1|))) (-15 -3750 ((-629 |t#1|))) (-15 -3549 (|t#1|)) (-15 -4079 ((-629 |t#1|) $)))) +((-4210 (*1 *1 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-380)))) (-4210 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-852)) (-4 *1 (-380)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) (-1416 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) (-3401 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) (-3229 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) (-2285 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) (-3401 (*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4239)) (-4 *1 (-380)))) (-3229 (*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4239)) (-4 *1 (-380)))) (-2285 (*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4239)) (-4 *1 (-380)))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-523)) (|has| *1 (-6 -4239)) (-4 *1 (-380)) (-5 *2 (-852)))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-523)) (|has| *1 (-6 -4239)) (-4 *1 (-380)) (-5 *2 (-852)))) (-3239 (*1 *1) (-12 (-4 *1 (-380)) (-4179 (|has| *1 (-6 -4239))) (-4179 (|has| *1 (-6 -4231))))) (-3158 (*1 *1) (-12 (-4 *1 (-380)) (-4179 (|has| *1 (-6 -4239))) (-4179 (|has| *1 (-6 -4231)))))) +(-13 (-982) (-10 -8 (-6 -4108) (-15 -4210 ($ (-523) (-523))) (-15 -4210 ($ (-523) (-523) (-852))) (-15 -3437 ((-523) $)) (-15 -1416 ((-852))) (-15 -1475 ((-523) $)) (-15 -1512 ((-523) $)) (-15 -3401 ((-852))) (-15 -3229 ((-852))) (-15 -2285 ((-852))) (IF (|has| $ (-6 -4239)) (PROGN (-15 -3401 ((-852) (-852))) (-15 -3229 ((-852) (-852))) (-15 -2285 ((-852) (-852))) (-15 -3297 ((-852) (-523))) (-15 -3892 ((-852) (-523)))) |%noBranch|) (IF (|has| $ (-6 -4231)) |%noBranch| (IF (|has| $ (-6 -4239)) |%noBranch| (PROGN (-15 -3239 ($)) (-15 -3158 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-158) . T) ((-564 (-203)) . T) ((-564 (-355)) . T) ((-564 (-823 (-355))) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-784) . T) ((-786) . T) ((-817 (-355)) . T) ((-851) . T) ((-930) . T) ((-949) . T) ((-982) . T) ((-964 (-383 (-523))) . T) ((-964 (-523)) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1127) . T)) +((-1345 (((-394 |#2|) (-1 |#2| |#1|) (-394 |#1|)) 20))) +(((-381 |#1| |#2|) (-10 -7 (-15 -1345 ((-394 |#2|) (-1 |#2| |#1|) (-394 |#1|)))) (-515) (-515)) (T -381)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-394 *5)) (-4 *5 (-515)) (-4 *6 (-515)) (-5 *2 (-394 *6)) (-5 *1 (-381 *5 *6))))) +(-10 -7 (-15 -1345 ((-394 |#2|) (-1 |#2| |#1|) (-394 |#1|)))) +((-1345 (((-383 |#2|) (-1 |#2| |#1|) (-383 |#1|)) 13))) +(((-382 |#1| |#2|) (-10 -7 (-15 -1345 ((-383 |#2|) (-1 |#2| |#1|) (-383 |#1|)))) (-515) (-515)) (T -382)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-383 *5)) (-4 *5 (-515)) (-4 *6 (-515)) (-5 *2 (-383 *6)) (-5 *1 (-382 *5 *6))))) +(-10 -7 (-15 -1345 ((-383 |#2|) (-1 |#2| |#1|) (-383 |#1|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 13)) (-2046 ((|#1| $) 21 (|has| |#1| (-284)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL (|has| |#1| (-759)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) 17) (((-3 (-1087) "failed") $) NIL (|has| |#1| (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) 70 (|has| |#1| (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523))))) (-3508 ((|#1| $) 15) (((-1087) $) NIL (|has| |#1| (-964 (-1087)))) (((-383 (-523)) $) 67 (|has| |#1| (-964 (-523)))) (((-523) $) NIL (|has| |#1| (-964 (-523))))) (-4059 (($ $ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) 50)) (-1631 (($) NIL (|has| |#1| (-508)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-3712 (((-108) $) NIL (|has| |#1| (-759)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| |#1| (-817 (-355))))) (-2769 (((-108) $) 64)) (-1296 (($ $) NIL)) (-3316 ((|#1| $) 71)) (-2738 (((-3 $ "failed") $) NIL (|has| |#1| (-1063)))) (-2057 (((-108) $) NIL (|has| |#1| (-759)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| |#1| (-1063)) CONST)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 97)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4110 (($ $) NIL (|has| |#1| (-284)))) (-2733 ((|#1| $) 28 (|has| |#1| (-508)))) (-1708 (((-394 (-1083 $)) (-1083 $)) 133 (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) 129 (|has| |#1| (-840)))) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2812 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|)))) (-3413 (((-710) $) NIL)) (-1937 (($ $ |#1|) NIL (|has| |#1| (-263 |#1| |#1|)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3984 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2793 (($ $) NIL)) (-3329 ((|#1| $) 73)) (-1400 (((-823 (-523)) $) NIL (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| |#1| (-564 (-823 (-355))))) (((-499) $) NIL (|has| |#1| (-564 (-499)))) (((-355) $) NIL (|has| |#1| (-949))) (((-203) $) NIL (|has| |#1| (-949)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 113 (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 10) (($ (-1087)) NIL (|has| |#1| (-964 (-1087))))) (-1942 (((-3 $ "failed") $) 99 (-3172 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) 100)) (-3809 ((|#1| $) 26 (|has| |#1| (-508)))) (-2801 (((-108) $ $) NIL)) (-2695 (($ $) NIL (|has| |#1| (-759)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 22 T CONST)) (-1891 (($) 8 T CONST)) (-2111 (((-1070) $) 43 (-12 (|has| |#1| (-508)) (|has| |#1| (-767)))) (((-1070) $ (-108)) 44 (-12 (|has| |#1| (-508)) (|has| |#1| (-767)))) (((-1174) (-761) $) 45 (-12 (|has| |#1| (-508)) (|has| |#1| (-767)))) (((-1174) (-761) $ (-108)) 46 (-12 (|has| |#1| (-508)) (|has| |#1| (-767))))) (-2909 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) 56)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) 24 (|has| |#1| (-786)))) (-4074 (($ $ $) 124) (($ |#1| |#1|) 52)) (-4060 (($ $) 25) (($ $ $) 55)) (-4045 (($ $ $) 53)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 123)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 60) (($ $ $) 57) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-383 |#1|) (-13 (-921 |#1|) (-10 -7 (IF (|has| |#1| (-508)) (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4235)) (IF (|has| |#1| (-427)) (IF (|has| |#1| (-6 -4246)) (-6 -4235) |%noBranch|) |%noBranch|) |%noBranch|))) (-515)) (T -383)) +NIL +(-13 (-921 |#1|) (-10 -7 (IF (|has| |#1| (-508)) (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4235)) (IF (|has| |#1| (-427)) (IF (|has| |#1| (-6 -4246)) (-6 -4235) |%noBranch|) |%noBranch|) |%noBranch|))) +((-2959 (((-629 |#2|) (-1169 $)) NIL) (((-629 |#2|)) 18)) (-2754 (($ (-1169 |#2|) (-1169 $)) NIL) (($ (-1169 |#2|)) 26)) (-2927 (((-629 |#2|) $ (-1169 $)) NIL) (((-629 |#2|) $) 22)) (-2887 ((|#3| $) 59)) (-1744 ((|#2| (-1169 $)) NIL) ((|#2|) 20)) (-2906 (((-1169 |#2|) $ (-1169 $)) NIL) (((-629 |#2|) (-1169 $) (-1169 $)) NIL) (((-1169 |#2|) $) NIL) (((-629 |#2|) (-1169 $)) 24)) (-1400 (((-1169 |#2|) $) 11) (($ (-1169 |#2|)) 13)) (-1356 ((|#3| $) 51))) +(((-384 |#1| |#2| |#3|) (-10 -8 (-15 -2927 ((-629 |#2|) |#1|)) (-15 -1744 (|#2|)) (-15 -2959 ((-629 |#2|))) (-15 -1400 (|#1| (-1169 |#2|))) (-15 -1400 ((-1169 |#2|) |#1|)) (-15 -2754 (|#1| (-1169 |#2|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1|)) (-15 -2887 (|#3| |#1|)) (-15 -1356 (|#3| |#1|)) (-15 -2959 ((-629 |#2|) (-1169 |#1|))) (-15 -1744 (|#2| (-1169 |#1|))) (-15 -2754 (|#1| (-1169 |#2|) (-1169 |#1|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -2927 ((-629 |#2|) |#1| (-1169 |#1|)))) (-385 |#2| |#3|) (-158) (-1145 |#2|)) (T -384)) +((-2959 (*1 *2) (-12 (-4 *4 (-158)) (-4 *5 (-1145 *4)) (-5 *2 (-629 *4)) (-5 *1 (-384 *3 *4 *5)) (-4 *3 (-385 *4 *5)))) (-1744 (*1 *2) (-12 (-4 *4 (-1145 *2)) (-4 *2 (-158)) (-5 *1 (-384 *3 *2 *4)) (-4 *3 (-385 *2 *4))))) +(-10 -8 (-15 -2927 ((-629 |#2|) |#1|)) (-15 -1744 (|#2|)) (-15 -2959 ((-629 |#2|))) (-15 -1400 (|#1| (-1169 |#2|))) (-15 -1400 ((-1169 |#2|) |#1|)) (-15 -2754 (|#1| (-1169 |#2|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1|)) (-15 -2887 (|#3| |#1|)) (-15 -1356 (|#3| |#1|)) (-15 -2959 ((-629 |#2|) (-1169 |#1|))) (-15 -1744 (|#2| (-1169 |#1|))) (-15 -2754 (|#1| (-1169 |#2|) (-1169 |#1|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -2927 ((-629 |#2|) |#1| (-1169 |#1|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2959 (((-629 |#1|) (-1169 $)) 46) (((-629 |#1|)) 61)) (-1477 ((|#1| $) 52)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2754 (($ (-1169 |#1|) (-1169 $)) 48) (($ (-1169 |#1|)) 64)) (-2927 (((-629 |#1|) $ (-1169 $)) 53) (((-629 |#1|) $) 59)) (-1444 (((-3 $ "failed") $) 34)) (-3569 (((-852)) 54)) (-2769 (((-108) $) 31)) (-1863 ((|#1| $) 51)) (-2887 ((|#2| $) 44 (|has| |#1| (-339)))) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1744 ((|#1| (-1169 $)) 47) ((|#1|) 60)) (-2906 (((-1169 |#1|) $ (-1169 $)) 50) (((-629 |#1|) (-1169 $) (-1169 $)) 49) (((-1169 |#1|) $) 66) (((-629 |#1|) (-1169 $)) 65)) (-1400 (((-1169 |#1|) $) 63) (($ (-1169 |#1|)) 62)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37)) (-1942 (((-3 $ "failed") $) 43 (|has| |#1| (-134)))) (-1356 ((|#2| $) 45)) (-3272 (((-710)) 29)) (-3760 (((-1169 $)) 67)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-385 |#1| |#2|) (-129) (-158) (-1145 |t#1|)) (T -385)) +((-3760 (*1 *2) (-12 (-4 *3 (-158)) (-4 *4 (-1145 *3)) (-5 *2 (-1169 *1)) (-4 *1 (-385 *3 *4)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1145 *3)) (-5 *2 (-1169 *3)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1145 *4)) (-5 *2 (-629 *4)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-158)) (-4 *1 (-385 *3 *4)) (-4 *4 (-1145 *3)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1145 *3)) (-5 *2 (-1169 *3)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-158)) (-4 *1 (-385 *3 *4)) (-4 *4 (-1145 *3)))) (-2959 (*1 *2) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1145 *3)) (-5 *2 (-629 *3)))) (-1744 (*1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *3 (-1145 *2)) (-4 *2 (-158)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1145 *3)) (-5 *2 (-629 *3))))) +(-13 (-346 |t#1| |t#2|) (-10 -8 (-15 -3760 ((-1169 $))) (-15 -2906 ((-1169 |t#1|) $)) (-15 -2906 ((-629 |t#1|) (-1169 $))) (-15 -2754 ($ (-1169 |t#1|))) (-15 -1400 ((-1169 |t#1|) $)) (-15 -1400 ($ (-1169 |t#1|))) (-15 -2959 ((-629 |t#1|))) (-15 -1744 (|t#1|)) (-15 -2927 ((-629 |t#1|) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-346 |#1| |#2|) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) . T) ((-666) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) 27) (((-3 (-523) "failed") $) 19)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) 24) (((-523) $) 14)) (-1458 (($ |#2|) NIL) (($ (-383 (-523))) 22) (($ (-523)) 11))) -(((-386 |#1| |#2|) (-10 -8 (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -1458 (|#1| (-523))) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|))) (-387 |#2|) (-1122)) (T -386)) +((-1220 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) 27) (((-3 (-523) "failed") $) 19)) (-3508 ((|#2| $) NIL) (((-383 (-523)) $) 24) (((-523) $) 14)) (-1691 (($ |#2|) NIL) (($ (-383 (-523))) 22) (($ (-523)) 11))) +(((-386 |#1| |#2|) (-10 -8 (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -1691 (|#1| (-523))) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 (|#1| |#2|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -3508 (|#2| |#1|))) (-387 |#2|) (-1123)) (T -386)) NIL -(-10 -8 (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -1458 (|#1| (-523))) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|))) -((-3517 (((-3 |#1| "failed") $) 7) (((-3 (-383 (-523)) "failed") $) 16 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 13 (|has| |#1| (-964 (-523))))) (-3474 ((|#1| $) 8) (((-383 (-523)) $) 15 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 12 (|has| |#1| (-964 (-523))))) (-1458 (($ |#1|) 6) (($ (-383 (-523))) 17 (|has| |#1| (-964 (-383 (-523))))) (($ (-523)) 14 (|has| |#1| (-964 (-523)))))) -(((-387 |#1|) (-129) (-1122)) (T -387)) +(-10 -8 (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -1691 (|#1| (-523))) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 (|#1| |#2|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -3508 (|#2| |#1|))) +((-1220 (((-3 |#1| "failed") $) 7) (((-3 (-383 (-523)) "failed") $) 16 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 13 (|has| |#1| (-964 (-523))))) (-3508 ((|#1| $) 8) (((-383 (-523)) $) 15 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 12 (|has| |#1| (-964 (-523))))) (-1691 (($ |#1|) 6) (($ (-383 (-523))) 17 (|has| |#1| (-964 (-383 (-523))))) (($ (-523)) 14 (|has| |#1| (-964 (-523)))))) +(((-387 |#1|) (-129) (-1123)) (T -387)) NIL (-13 (-964 |t#1|) (-10 -7 (IF (|has| |t#1| (-964 (-523))) (-6 (-964 (-523))) |%noBranch|) (IF (|has| |t#1| (-964 (-383 (-523)))) (-6 (-964 (-383 (-523)))) |%noBranch|))) (((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T)) -((-3612 (((-389 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-389 |#1| |#2| |#3| |#4|)) 33))) -(((-388 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3612 ((-389 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-389 |#1| |#2| |#3| |#4|)))) (-284) (-921 |#1|) (-1144 |#2|) (-13 (-385 |#2| |#3|) (-964 |#2|)) (-284) (-921 |#5|) (-1144 |#6|) (-13 (-385 |#6| |#7|) (-964 |#6|))) (T -388)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-389 *5 *6 *7 *8)) (-4 *5 (-284)) (-4 *6 (-921 *5)) (-4 *7 (-1144 *6)) (-4 *8 (-13 (-385 *6 *7) (-964 *6))) (-4 *9 (-284)) (-4 *10 (-921 *9)) (-4 *11 (-1144 *10)) (-5 *2 (-389 *9 *10 *11 *12)) (-5 *1 (-388 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-385 *10 *11) (-964 *10)))))) -(-10 -7 (-15 -3612 ((-389 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-389 |#1| |#2| |#3| |#4|)))) -((-3924 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-3205 ((|#4| (-710) (-1168 |#4|)) 55)) (-2023 (((-108) $) NIL)) (-2785 (((-1168 |#4|) $) 17)) (-3892 ((|#2| $) 53)) (-2484 (($ $) 136)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 98)) (-1485 (($ (-1168 |#4|)) 97)) (-2783 (((-1034) $) NIL)) (-2797 ((|#1| $) 18)) (-3208 (($ $ $) NIL)) (-1714 (($ $ $) NIL)) (-1458 (((-794) $) 131)) (-4041 (((-1168 |#4|) $) 126)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2767 (($) 11 T CONST)) (-3983 (((-108) $ $) 39)) (-4098 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 119)) (* (($ $ $) 118))) -(((-389 |#1| |#2| |#3| |#4|) (-13 (-448) (-10 -8 (-15 -1485 ($ (-1168 |#4|))) (-15 -4041 ((-1168 |#4|) $)) (-15 -3892 (|#2| $)) (-15 -2785 ((-1168 |#4|) $)) (-15 -2797 (|#1| $)) (-15 -2484 ($ $)) (-15 -3205 (|#4| (-710) (-1168 |#4|))))) (-284) (-921 |#1|) (-1144 |#2|) (-13 (-385 |#2| |#3|) (-964 |#2|))) (T -389)) -((-1485 (*1 *1 *2) (-12 (-5 *2 (-1168 *6)) (-4 *6 (-13 (-385 *4 *5) (-964 *4))) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-4 *3 (-284)) (-5 *1 (-389 *3 *4 *5 *6)))) (-4041 (*1 *2 *1) (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *6)) (-5 *1 (-389 *3 *4 *5 *6)) (-4 *6 (-13 (-385 *4 *5) (-964 *4))))) (-3892 (*1 *2 *1) (-12 (-4 *4 (-1144 *2)) (-4 *2 (-921 *3)) (-5 *1 (-389 *3 *2 *4 *5)) (-4 *3 (-284)) (-4 *5 (-13 (-385 *2 *4) (-964 *2))))) (-2785 (*1 *2 *1) (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *6)) (-5 *1 (-389 *3 *4 *5 *6)) (-4 *6 (-13 (-385 *4 *5) (-964 *4))))) (-2797 (*1 *2 *1) (-12 (-4 *3 (-921 *2)) (-4 *4 (-1144 *3)) (-4 *2 (-284)) (-5 *1 (-389 *2 *3 *4 *5)) (-4 *5 (-13 (-385 *3 *4) (-964 *3))))) (-2484 (*1 *1 *1) (-12 (-4 *2 (-284)) (-4 *3 (-921 *2)) (-4 *4 (-1144 *3)) (-5 *1 (-389 *2 *3 *4 *5)) (-4 *5 (-13 (-385 *3 *4) (-964 *3))))) (-3205 (*1 *2 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-1168 *2)) (-4 *5 (-284)) (-4 *6 (-921 *5)) (-4 *2 (-13 (-385 *6 *7) (-964 *6))) (-5 *1 (-389 *5 *6 *7 *2)) (-4 *7 (-1144 *6))))) -(-13 (-448) (-10 -8 (-15 -1485 ($ (-1168 |#4|))) (-15 -4041 ((-1168 |#4|) $)) (-15 -3892 (|#2| $)) (-15 -2785 ((-1168 |#4|) $)) (-15 -2797 (|#1| $)) (-15 -2484 ($ $)) (-15 -3205 (|#4| (-710) (-1168 |#4|))))) -((-3924 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3892 ((|#2| $) 60)) (-3759 (($ (-1168 |#4|)) 25) (($ (-389 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-964 |#2|)))) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 34)) (-4041 (((-1168 |#4|) $) 26)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2767 (($) 23 T CONST)) (-3983 (((-108) $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ $ $) 72))) -(((-390 |#1| |#2| |#3| |#4| |#5|) (-13 (-666) (-10 -8 (-15 -4041 ((-1168 |#4|) $)) (-15 -3892 (|#2| $)) (-15 -3759 ($ (-1168 |#4|))) (IF (|has| |#4| (-964 |#2|)) (-15 -3759 ($ (-389 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-284) (-921 |#1|) (-1144 |#2|) (-385 |#2| |#3|) (-1168 |#4|)) (T -390)) -((-4041 (*1 *2 *1) (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *6)) (-5 *1 (-390 *3 *4 *5 *6 *7)) (-4 *6 (-385 *4 *5)) (-14 *7 *2))) (-3892 (*1 *2 *1) (-12 (-4 *4 (-1144 *2)) (-4 *2 (-921 *3)) (-5 *1 (-390 *3 *2 *4 *5 *6)) (-4 *3 (-284)) (-4 *5 (-385 *2 *4)) (-14 *6 (-1168 *5)))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-1168 *6)) (-4 *6 (-385 *4 *5)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-4 *3 (-284)) (-5 *1 (-390 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-389 *3 *4 *5 *6)) (-4 *6 (-964 *4)) (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-4 *6 (-385 *4 *5)) (-14 *7 (-1168 *6)) (-5 *1 (-390 *3 *4 *5 *6 *7))))) -(-13 (-666) (-10 -8 (-15 -4041 ((-1168 |#4|) $)) (-15 -3892 (|#2| $)) (-15 -3759 ($ (-1168 |#4|))) (IF (|has| |#4| (-964 |#2|)) (-15 -3759 ($ (-389 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-3612 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#3| (-1 |#4| |#2|) |#1|))) (-393 |#2|) (-158) (-393 |#4|) (-158)) (T -391)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) (-4 *2 (-393 *6)) (-5 *1 (-391 *4 *5 *2 *6)) (-4 *4 (-393 *5))))) -(-10 -7 (-15 -3612 (|#3| (-1 |#4| |#2|) |#1|))) -((-3819 (((-3 $ "failed")) 85)) (-3115 (((-1168 (-629 |#2|)) (-1168 $)) NIL) (((-1168 (-629 |#2|))) 90)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) 84)) (-3545 (((-3 $ "failed")) 83)) (-1431 (((-629 |#2|) (-1168 $)) NIL) (((-629 |#2|)) 101)) (-2788 (((-629 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) $) 109)) (-3138 (((-1083 (-883 |#2|))) 54)) (-2284 ((|#2| (-1168 $)) NIL) ((|#2|) 105)) (-3409 (($ (-1168 |#2|) (-1168 $)) NIL) (($ (-1168 |#2|)) 112)) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) 82)) (-1386 (((-3 $ "failed")) 74)) (-1504 (((-629 |#2|) (-1168 $)) NIL) (((-629 |#2|)) 99)) (-2139 (((-629 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) $) 107)) (-2525 (((-1083 (-883 |#2|))) 53)) (-3002 ((|#2| (-1168 $)) NIL) ((|#2|) 103)) (-2966 (((-1168 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) (-1168 $) (-1168 $)) NIL) (((-1168 |#2|) $) NIL) (((-629 |#2|) (-1168 $)) 111)) (-3663 (((-1168 |#2|) $) 95) (($ (-1168 |#2|)) 97)) (-3863 (((-589 (-883 |#2|)) (-1168 $)) NIL) (((-589 (-883 |#2|))) 93)) (-1677 (($ (-629 |#2|) $) 89))) -(((-392 |#1| |#2|) (-10 -8 (-15 -1677 (|#1| (-629 |#2|) |#1|)) (-15 -3138 ((-1083 (-883 |#2|)))) (-15 -2525 ((-1083 (-883 |#2|)))) (-15 -2788 ((-629 |#2|) |#1|)) (-15 -2139 ((-629 |#2|) |#1|)) (-15 -1431 ((-629 |#2|))) (-15 -1504 ((-629 |#2|))) (-15 -2284 (|#2|)) (-15 -3002 (|#2|)) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -3409 (|#1| (-1168 |#2|))) (-15 -3863 ((-589 (-883 |#2|)))) (-15 -3115 ((-1168 (-629 |#2|)))) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -3819 ((-3 |#1| "failed"))) (-15 -3545 ((-3 |#1| "failed"))) (-15 -1386 ((-3 |#1| "failed"))) (-15 -3486 ((-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed"))) (-15 -2362 ((-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed"))) (-15 -1431 ((-629 |#2|) (-1168 |#1|))) (-15 -1504 ((-629 |#2|) (-1168 |#1|))) (-15 -2284 (|#2| (-1168 |#1|))) (-15 -3002 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -2788 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -2139 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -3115 ((-1168 (-629 |#2|)) (-1168 |#1|))) (-15 -3863 ((-589 (-883 |#2|)) (-1168 |#1|)))) (-393 |#2|) (-158)) (T -392)) -((-3115 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-1168 (-629 *4))) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-3863 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-589 (-883 *4))) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-3002 (*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-392 *3 *2)) (-4 *3 (-393 *2)))) (-2284 (*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-392 *3 *2)) (-4 *3 (-393 *2)))) (-1504 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-629 *4)) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-1431 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-629 *4)) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-2525 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-1083 (-883 *4))) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-3138 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-1083 (-883 *4))) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4))))) -(-10 -8 (-15 -1677 (|#1| (-629 |#2|) |#1|)) (-15 -3138 ((-1083 (-883 |#2|)))) (-15 -2525 ((-1083 (-883 |#2|)))) (-15 -2788 ((-629 |#2|) |#1|)) (-15 -2139 ((-629 |#2|) |#1|)) (-15 -1431 ((-629 |#2|))) (-15 -1504 ((-629 |#2|))) (-15 -2284 (|#2|)) (-15 -3002 (|#2|)) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -3409 (|#1| (-1168 |#2|))) (-15 -3863 ((-589 (-883 |#2|)))) (-15 -3115 ((-1168 (-629 |#2|)))) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -3819 ((-3 |#1| "failed"))) (-15 -3545 ((-3 |#1| "failed"))) (-15 -1386 ((-3 |#1| "failed"))) (-15 -3486 ((-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed"))) (-15 -2362 ((-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed"))) (-15 -1431 ((-629 |#2|) (-1168 |#1|))) (-15 -1504 ((-629 |#2|) (-1168 |#1|))) (-15 -2284 (|#2| (-1168 |#1|))) (-15 -3002 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -2788 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -2139 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -3115 ((-1168 (-629 |#2|)) (-1168 |#1|))) (-15 -3863 ((-589 (-883 |#2|)) (-1168 |#1|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3819 (((-3 $ "failed")) 37 (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) 19)) (-3115 (((-1168 (-629 |#1|)) (-1168 $)) 78) (((-1168 (-629 |#1|))) 100)) (-2738 (((-1168 $)) 81)) (-2518 (($) 17 T CONST)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) 40 (|has| |#1| (-515)))) (-3545 (((-3 $ "failed")) 38 (|has| |#1| (-515)))) (-1431 (((-629 |#1|) (-1168 $)) 65) (((-629 |#1|)) 92)) (-3744 ((|#1| $) 74)) (-2788 (((-629 |#1|) $ (-1168 $)) 76) (((-629 |#1|) $) 90)) (-2532 (((-3 $ "failed") $) 45 (|has| |#1| (-515)))) (-3138 (((-1083 (-883 |#1|))) 88 (|has| |#1| (-339)))) (-1970 (($ $ (-852)) 28)) (-4212 ((|#1| $) 72)) (-1726 (((-1083 |#1|) $) 42 (|has| |#1| (-515)))) (-2284 ((|#1| (-1168 $)) 67) ((|#1|) 94)) (-1778 (((-1083 |#1|) $) 63)) (-2117 (((-108)) 57)) (-3409 (($ (-1168 |#1|) (-1168 $)) 69) (($ (-1168 |#1|)) 98)) (-2121 (((-3 $ "failed") $) 47 (|has| |#1| (-515)))) (-1319 (((-852)) 80)) (-1487 (((-108)) 54)) (-3650 (($ $ (-852)) 33)) (-1649 (((-108)) 50)) (-2956 (((-108)) 48)) (-2491 (((-108)) 52)) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) 41 (|has| |#1| (-515)))) (-1386 (((-3 $ "failed")) 39 (|has| |#1| (-515)))) (-1504 (((-629 |#1|) (-1168 $)) 66) (((-629 |#1|)) 93)) (-3237 ((|#1| $) 75)) (-2139 (((-629 |#1|) $ (-1168 $)) 77) (((-629 |#1|) $) 91)) (-1579 (((-3 $ "failed") $) 46 (|has| |#1| (-515)))) (-2525 (((-1083 (-883 |#1|))) 89 (|has| |#1| (-339)))) (-1448 (($ $ (-852)) 29)) (-4050 ((|#1| $) 73)) (-2553 (((-1083 |#1|) $) 43 (|has| |#1| (-515)))) (-3002 ((|#1| (-1168 $)) 68) ((|#1|) 95)) (-2565 (((-1083 |#1|) $) 64)) (-1216 (((-108)) 58)) (-3779 (((-1070) $) 9)) (-2345 (((-108)) 49)) (-1510 (((-108)) 51)) (-2871 (((-108)) 53)) (-2783 (((-1034) $) 10)) (-2751 (((-108)) 56)) (-3223 ((|#1| $ (-523)) 101)) (-2966 (((-1168 |#1|) $ (-1168 $)) 71) (((-629 |#1|) (-1168 $) (-1168 $)) 70) (((-1168 |#1|) $) 103) (((-629 |#1|) (-1168 $)) 102)) (-3663 (((-1168 |#1|) $) 97) (($ (-1168 |#1|)) 96)) (-3863 (((-589 (-883 |#1|)) (-1168 $)) 79) (((-589 (-883 |#1|))) 99)) (-1714 (($ $ $) 25)) (-1673 (((-108)) 62)) (-1458 (((-794) $) 11)) (-4041 (((-1168 $)) 104)) (-3751 (((-589 (-1168 |#1|))) 44 (|has| |#1| (-515)))) (-2022 (($ $ $ $) 26)) (-3120 (((-108)) 60)) (-1677 (($ (-629 |#1|) $) 87)) (-1995 (($ $ $) 24)) (-1462 (((-108)) 61)) (-3366 (((-108)) 59)) (-2071 (((-108)) 55)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-1345 (((-389 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-389 |#1| |#2| |#3| |#4|)) 33))) +(((-388 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1345 ((-389 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-389 |#1| |#2| |#3| |#4|)))) (-284) (-921 |#1|) (-1145 |#2|) (-13 (-385 |#2| |#3|) (-964 |#2|)) (-284) (-921 |#5|) (-1145 |#6|) (-13 (-385 |#6| |#7|) (-964 |#6|))) (T -388)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-389 *5 *6 *7 *8)) (-4 *5 (-284)) (-4 *6 (-921 *5)) (-4 *7 (-1145 *6)) (-4 *8 (-13 (-385 *6 *7) (-964 *6))) (-4 *9 (-284)) (-4 *10 (-921 *9)) (-4 *11 (-1145 *10)) (-5 *2 (-389 *9 *10 *11 *12)) (-5 *1 (-388 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-385 *10 *11) (-964 *10)))))) +(-10 -7 (-15 -1345 ((-389 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-389 |#1| |#2| |#3| |#4|)))) +((-1680 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) NIL)) (-3340 ((|#4| (-710) (-1169 |#4|)) 55)) (-2769 (((-108) $) NIL)) (-3316 (((-1169 |#4|) $) 17)) (-1863 ((|#2| $) 53)) (-3833 (($ $) 137)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 98)) (-1433 (($ (-1169 |#4|)) 97)) (-3951 (((-1034) $) NIL)) (-3329 ((|#1| $) 18)) (-3361 (($ $ $) NIL)) (-2892 (($ $ $) NIL)) (-1691 (((-794) $) 132)) (-3760 (((-1169 |#4|) $) 127)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1891 (($) 11 T CONST)) (-3941 (((-108) $ $) 39)) (-4074 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 120)) (* (($ $ $) 119))) +(((-389 |#1| |#2| |#3| |#4|) (-13 (-448) (-10 -8 (-15 -1433 ($ (-1169 |#4|))) (-15 -3760 ((-1169 |#4|) $)) (-15 -1863 (|#2| $)) (-15 -3316 ((-1169 |#4|) $)) (-15 -3329 (|#1| $)) (-15 -3833 ($ $)) (-15 -3340 (|#4| (-710) (-1169 |#4|))))) (-284) (-921 |#1|) (-1145 |#2|) (-13 (-385 |#2| |#3|) (-964 |#2|))) (T -389)) +((-1433 (*1 *1 *2) (-12 (-5 *2 (-1169 *6)) (-4 *6 (-13 (-385 *4 *5) (-964 *4))) (-4 *4 (-921 *3)) (-4 *5 (-1145 *4)) (-4 *3 (-284)) (-5 *1 (-389 *3 *4 *5 *6)))) (-3760 (*1 *2 *1) (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-1169 *6)) (-5 *1 (-389 *3 *4 *5 *6)) (-4 *6 (-13 (-385 *4 *5) (-964 *4))))) (-1863 (*1 *2 *1) (-12 (-4 *4 (-1145 *2)) (-4 *2 (-921 *3)) (-5 *1 (-389 *3 *2 *4 *5)) (-4 *3 (-284)) (-4 *5 (-13 (-385 *2 *4) (-964 *2))))) (-3316 (*1 *2 *1) (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-1169 *6)) (-5 *1 (-389 *3 *4 *5 *6)) (-4 *6 (-13 (-385 *4 *5) (-964 *4))))) (-3329 (*1 *2 *1) (-12 (-4 *3 (-921 *2)) (-4 *4 (-1145 *3)) (-4 *2 (-284)) (-5 *1 (-389 *2 *3 *4 *5)) (-4 *5 (-13 (-385 *3 *4) (-964 *3))))) (-3833 (*1 *1 *1) (-12 (-4 *2 (-284)) (-4 *3 (-921 *2)) (-4 *4 (-1145 *3)) (-5 *1 (-389 *2 *3 *4 *5)) (-4 *5 (-13 (-385 *3 *4) (-964 *3))))) (-3340 (*1 *2 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-1169 *2)) (-4 *5 (-284)) (-4 *6 (-921 *5)) (-4 *2 (-13 (-385 *6 *7) (-964 *6))) (-5 *1 (-389 *5 *6 *7 *2)) (-4 *7 (-1145 *6))))) +(-13 (-448) (-10 -8 (-15 -1433 ($ (-1169 |#4|))) (-15 -3760 ((-1169 |#4|) $)) (-15 -1863 (|#2| $)) (-15 -3316 ((-1169 |#4|) $)) (-15 -3329 (|#1| $)) (-15 -3833 ($ $)) (-15 -3340 (|#4| (-710) (-1169 |#4|))))) +((-1680 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) NIL)) (-2769 (((-108) $) NIL)) (-1863 ((|#2| $) 61)) (-3039 (($ (-1169 |#4|)) 25) (($ (-389 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-964 |#2|)))) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 34)) (-3760 (((-1169 |#4|) $) 26)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1891 (($) 23 T CONST)) (-3941 (((-108) $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ $ $) 72))) +(((-390 |#1| |#2| |#3| |#4| |#5|) (-13 (-666) (-10 -8 (-15 -3760 ((-1169 |#4|) $)) (-15 -1863 (|#2| $)) (-15 -3039 ($ (-1169 |#4|))) (IF (|has| |#4| (-964 |#2|)) (-15 -3039 ($ (-389 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-284) (-921 |#1|) (-1145 |#2|) (-385 |#2| |#3|) (-1169 |#4|)) (T -390)) +((-3760 (*1 *2 *1) (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-1169 *6)) (-5 *1 (-390 *3 *4 *5 *6 *7)) (-4 *6 (-385 *4 *5)) (-14 *7 *2))) (-1863 (*1 *2 *1) (-12 (-4 *4 (-1145 *2)) (-4 *2 (-921 *3)) (-5 *1 (-390 *3 *2 *4 *5 *6)) (-4 *3 (-284)) (-4 *5 (-385 *2 *4)) (-14 *6 (-1169 *5)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-1169 *6)) (-4 *6 (-385 *4 *5)) (-4 *4 (-921 *3)) (-4 *5 (-1145 *4)) (-4 *3 (-284)) (-5 *1 (-390 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-389 *3 *4 *5 *6)) (-4 *6 (-964 *4)) (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1145 *4)) (-4 *6 (-385 *4 *5)) (-14 *7 (-1169 *6)) (-5 *1 (-390 *3 *4 *5 *6 *7))))) +(-13 (-666) (-10 -8 (-15 -3760 ((-1169 |#4|) $)) (-15 -1863 (|#2| $)) (-15 -3039 ($ (-1169 |#4|))) (IF (|has| |#4| (-964 |#2|)) (-15 -3039 ($ (-389 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-1345 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1345 (|#3| (-1 |#4| |#2|) |#1|))) (-393 |#2|) (-158) (-393 |#4|) (-158)) (T -391)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) (-4 *2 (-393 *6)) (-5 *1 (-391 *4 *5 *2 *6)) (-4 *4 (-393 *5))))) +(-10 -7 (-15 -1345 (|#3| (-1 |#4| |#2|) |#1|))) +((-2345 (((-3 $ "failed")) 85)) (-1939 (((-1169 (-629 |#2|)) (-1169 $)) NIL) (((-1169 (-629 |#2|))) 90)) (-2314 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) 84)) (-1722 (((-3 $ "failed")) 83)) (-2059 (((-629 |#2|) (-1169 $)) NIL) (((-629 |#2|)) 101)) (-1950 (((-629 |#2|) $ (-1169 $)) NIL) (((-629 |#2|) $) 109)) (-3927 (((-1083 (-883 |#2|))) 54)) (-3637 ((|#2| (-1169 $)) NIL) ((|#2|) 105)) (-2754 (($ (-1169 |#2|) (-1169 $)) NIL) (($ (-1169 |#2|)) 112)) (-2065 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) 82)) (-2778 (((-3 $ "failed")) 74)) (-1612 (((-629 |#2|) (-1169 $)) NIL) (((-629 |#2|)) 99)) (-1613 (((-629 |#2|) $ (-1169 $)) NIL) (((-629 |#2|) $) 107)) (-1233 (((-1083 (-883 |#2|))) 53)) (-2085 ((|#2| (-1169 $)) NIL) ((|#2|) 103)) (-2906 (((-1169 |#2|) $ (-1169 $)) NIL) (((-629 |#2|) (-1169 $) (-1169 $)) NIL) (((-1169 |#2|) $) NIL) (((-629 |#2|) (-1169 $)) 111)) (-1400 (((-1169 |#2|) $) 95) (($ (-1169 |#2|)) 97)) (-1586 (((-589 (-883 |#2|)) (-1169 $)) NIL) (((-589 (-883 |#2|))) 93)) (-2372 (($ (-629 |#2|) $) 89))) +(((-392 |#1| |#2|) (-10 -8 (-15 -2372 (|#1| (-629 |#2|) |#1|)) (-15 -3927 ((-1083 (-883 |#2|)))) (-15 -1233 ((-1083 (-883 |#2|)))) (-15 -1950 ((-629 |#2|) |#1|)) (-15 -1613 ((-629 |#2|) |#1|)) (-15 -2059 ((-629 |#2|))) (-15 -1612 ((-629 |#2|))) (-15 -3637 (|#2|)) (-15 -2085 (|#2|)) (-15 -1400 (|#1| (-1169 |#2|))) (-15 -1400 ((-1169 |#2|) |#1|)) (-15 -2754 (|#1| (-1169 |#2|))) (-15 -1586 ((-589 (-883 |#2|)))) (-15 -1939 ((-1169 (-629 |#2|)))) (-15 -2906 ((-629 |#2|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1|)) (-15 -2345 ((-3 |#1| "failed"))) (-15 -1722 ((-3 |#1| "failed"))) (-15 -2778 ((-3 |#1| "failed"))) (-15 -2314 ((-3 (-2 (|:| |particular| |#1|) (|:| -3760 (-589 |#1|))) "failed"))) (-15 -2065 ((-3 (-2 (|:| |particular| |#1|) (|:| -3760 (-589 |#1|))) "failed"))) (-15 -2059 ((-629 |#2|) (-1169 |#1|))) (-15 -1612 ((-629 |#2|) (-1169 |#1|))) (-15 -3637 (|#2| (-1169 |#1|))) (-15 -2085 (|#2| (-1169 |#1|))) (-15 -2754 (|#1| (-1169 |#2|) (-1169 |#1|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -1950 ((-629 |#2|) |#1| (-1169 |#1|))) (-15 -1613 ((-629 |#2|) |#1| (-1169 |#1|))) (-15 -1939 ((-1169 (-629 |#2|)) (-1169 |#1|))) (-15 -1586 ((-589 (-883 |#2|)) (-1169 |#1|)))) (-393 |#2|) (-158)) (T -392)) +((-1939 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-1169 (-629 *4))) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-1586 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-589 (-883 *4))) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-2085 (*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-392 *3 *2)) (-4 *3 (-393 *2)))) (-3637 (*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-392 *3 *2)) (-4 *3 (-393 *2)))) (-1612 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-629 *4)) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-2059 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-629 *4)) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-1233 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-1083 (-883 *4))) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-3927 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-1083 (-883 *4))) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4))))) +(-10 -8 (-15 -2372 (|#1| (-629 |#2|) |#1|)) (-15 -3927 ((-1083 (-883 |#2|)))) (-15 -1233 ((-1083 (-883 |#2|)))) (-15 -1950 ((-629 |#2|) |#1|)) (-15 -1613 ((-629 |#2|) |#1|)) (-15 -2059 ((-629 |#2|))) (-15 -1612 ((-629 |#2|))) (-15 -3637 (|#2|)) (-15 -2085 (|#2|)) (-15 -1400 (|#1| (-1169 |#2|))) (-15 -1400 ((-1169 |#2|) |#1|)) (-15 -2754 (|#1| (-1169 |#2|))) (-15 -1586 ((-589 (-883 |#2|)))) (-15 -1939 ((-1169 (-629 |#2|)))) (-15 -2906 ((-629 |#2|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1|)) (-15 -2345 ((-3 |#1| "failed"))) (-15 -1722 ((-3 |#1| "failed"))) (-15 -2778 ((-3 |#1| "failed"))) (-15 -2314 ((-3 (-2 (|:| |particular| |#1|) (|:| -3760 (-589 |#1|))) "failed"))) (-15 -2065 ((-3 (-2 (|:| |particular| |#1|) (|:| -3760 (-589 |#1|))) "failed"))) (-15 -2059 ((-629 |#2|) (-1169 |#1|))) (-15 -1612 ((-629 |#2|) (-1169 |#1|))) (-15 -3637 (|#2| (-1169 |#1|))) (-15 -2085 (|#2| (-1169 |#1|))) (-15 -2754 (|#1| (-1169 |#2|) (-1169 |#1|))) (-15 -2906 ((-629 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -2906 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -1950 ((-629 |#2|) |#1| (-1169 |#1|))) (-15 -1613 ((-629 |#2|) |#1| (-1169 |#1|))) (-15 -1939 ((-1169 (-629 |#2|)) (-1169 |#1|))) (-15 -1586 ((-589 (-883 |#2|)) (-1169 |#1|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2345 (((-3 $ "failed")) 37 (|has| |#1| (-515)))) (-3405 (((-3 $ "failed") $ $) 19)) (-1939 (((-1169 (-629 |#1|)) (-1169 $)) 78) (((-1169 (-629 |#1|))) 100)) (-1502 (((-1169 $)) 81)) (-4189 (($) 17 T CONST)) (-2314 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) 40 (|has| |#1| (-515)))) (-1722 (((-3 $ "failed")) 38 (|has| |#1| (-515)))) (-2059 (((-629 |#1|) (-1169 $)) 65) (((-629 |#1|)) 92)) (-2920 ((|#1| $) 74)) (-1950 (((-629 |#1|) $ (-1169 $)) 76) (((-629 |#1|) $) 90)) (-1307 (((-3 $ "failed") $) 45 (|has| |#1| (-515)))) (-3927 (((-1083 (-883 |#1|))) 88 (|has| |#1| (-339)))) (-3402 (($ $ (-852)) 28)) (-1223 ((|#1| $) 72)) (-2992 (((-1083 |#1|) $) 42 (|has| |#1| (-515)))) (-3637 ((|#1| (-1169 $)) 67) ((|#1|) 94)) (-2242 (((-1083 |#1|) $) 63)) (-1404 (((-108)) 57)) (-2754 (($ (-1169 |#1|) (-1169 $)) 69) (($ (-1169 |#1|)) 98)) (-1444 (((-3 $ "failed") $) 47 (|has| |#1| (-515)))) (-3569 (((-852)) 80)) (-1454 (((-108)) 54)) (-3291 (($ $ (-852)) 33)) (-3517 (((-108)) 50)) (-2804 (((-108)) 48)) (-3914 (((-108)) 52)) (-2065 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) 41 (|has| |#1| (-515)))) (-2778 (((-3 $ "failed")) 39 (|has| |#1| (-515)))) (-1612 (((-629 |#1|) (-1169 $)) 66) (((-629 |#1|)) 93)) (-3647 ((|#1| $) 75)) (-1613 (((-629 |#1|) $ (-1169 $)) 77) (((-629 |#1|) $) 91)) (-4097 (((-3 $ "failed") $) 46 (|has| |#1| (-515)))) (-1233 (((-1083 (-883 |#1|))) 89 (|has| |#1| (-339)))) (-2237 (($ $ (-852)) 29)) (-2670 ((|#1| $) 73)) (-3248 (((-1083 |#1|) $) 43 (|has| |#1| (-515)))) (-2085 ((|#1| (-1169 $)) 68) ((|#1|) 95)) (-3359 (((-1083 |#1|) $) 64)) (-1675 (((-108)) 58)) (-2032 (((-1070) $) 9)) (-3041 (((-108)) 49)) (-1671 (((-108)) 51)) (-3194 (((-108)) 53)) (-3951 (((-1034) $) 10)) (-1634 (((-108)) 56)) (-1937 ((|#1| $ (-523)) 101)) (-2906 (((-1169 |#1|) $ (-1169 $)) 71) (((-629 |#1|) (-1169 $) (-1169 $)) 70) (((-1169 |#1|) $) 103) (((-629 |#1|) (-1169 $)) 102)) (-1400 (((-1169 |#1|) $) 97) (($ (-1169 |#1|)) 96)) (-1586 (((-589 (-883 |#1|)) (-1169 $)) 79) (((-589 (-883 |#1|))) 99)) (-2892 (($ $ $) 25)) (-2572 (((-108)) 62)) (-1691 (((-794) $) 11)) (-3760 (((-1169 $)) 104)) (-2969 (((-589 (-1169 |#1|))) 44 (|has| |#1| (-515)))) (-2760 (($ $ $ $) 26)) (-1978 (((-108)) 60)) (-2372 (($ (-629 |#1|) $) 87)) (-3654 (($ $ $) 24)) (-2367 (((-108)) 61)) (-3505 (((-108)) 59)) (-2050 (((-108)) 55)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-393 |#1|) (-129) (-158)) (T -393)) -((-4041 (*1 *2) (-12 (-4 *3 (-158)) (-5 *2 (-1168 *1)) (-4 *1 (-393 *3)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1168 *3)))) (-2966 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-393 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-393 *2)) (-4 *2 (-158)))) (-3115 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1168 (-629 *3))))) (-3863 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-589 (-883 *3))))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-393 *3)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1168 *3)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-393 *3)))) (-3002 (*1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-158)))) (-2284 (*1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-158)))) (-1504 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3)))) (-1431 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3)))) (-2788 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3)))) (-2525 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-4 *3 (-339)) (-5 *2 (-1083 (-883 *3))))) (-3138 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-4 *3 (-339)) (-5 *2 (-1083 (-883 *3))))) (-1677 (*1 *1 *2 *1) (-12 (-5 *2 (-629 *3)) (-4 *1 (-393 *3)) (-4 *3 (-158))))) -(-13 (-343 |t#1|) (-10 -8 (-15 -4041 ((-1168 $))) (-15 -2966 ((-1168 |t#1|) $)) (-15 -2966 ((-629 |t#1|) (-1168 $))) (-15 -3223 (|t#1| $ (-523))) (-15 -3115 ((-1168 (-629 |t#1|)))) (-15 -3863 ((-589 (-883 |t#1|)))) (-15 -3409 ($ (-1168 |t#1|))) (-15 -3663 ((-1168 |t#1|) $)) (-15 -3663 ($ (-1168 |t#1|))) (-15 -3002 (|t#1|)) (-15 -2284 (|t#1|)) (-15 -1504 ((-629 |t#1|))) (-15 -1431 ((-629 |t#1|))) (-15 -2139 ((-629 |t#1|) $)) (-15 -2788 ((-629 |t#1|) $)) (IF (|has| |t#1| (-339)) (PROGN (-15 -2525 ((-1083 (-883 |t#1|)))) (-15 -3138 ((-1083 (-883 |t#1|))))) |%noBranch|) (-15 -1677 ($ (-629 |t#1|) $)))) +((-3760 (*1 *2) (-12 (-4 *3 (-158)) (-5 *2 (-1169 *1)) (-4 *1 (-393 *3)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1169 *3)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-393 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-393 *2)) (-4 *2 (-158)))) (-1939 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1169 (-629 *3))))) (-1586 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-589 (-883 *3))))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-158)) (-4 *1 (-393 *3)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1169 *3)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-158)) (-4 *1 (-393 *3)))) (-2085 (*1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-158)))) (-3637 (*1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-158)))) (-1612 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3)))) (-2059 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3)))) (-1233 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-4 *3 (-339)) (-5 *2 (-1083 (-883 *3))))) (-3927 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-4 *3 (-339)) (-5 *2 (-1083 (-883 *3))))) (-2372 (*1 *1 *2 *1) (-12 (-5 *2 (-629 *3)) (-4 *1 (-393 *3)) (-4 *3 (-158))))) +(-13 (-343 |t#1|) (-10 -8 (-15 -3760 ((-1169 $))) (-15 -2906 ((-1169 |t#1|) $)) (-15 -2906 ((-629 |t#1|) (-1169 $))) (-15 -1937 (|t#1| $ (-523))) (-15 -1939 ((-1169 (-629 |t#1|)))) (-15 -1586 ((-589 (-883 |t#1|)))) (-15 -2754 ($ (-1169 |t#1|))) (-15 -1400 ((-1169 |t#1|) $)) (-15 -1400 ($ (-1169 |t#1|))) (-15 -2085 (|t#1|)) (-15 -3637 (|t#1|)) (-15 -1612 ((-629 |t#1|))) (-15 -2059 ((-629 |t#1|))) (-15 -1613 ((-629 |t#1|) $)) (-15 -1950 ((-629 |t#1|) $)) (IF (|has| |t#1| (-339)) (PROGN (-15 -1233 ((-1083 (-883 |t#1|)))) (-15 -3927 ((-1083 (-883 |t#1|))))) |%noBranch|) (-15 -2372 ($ (-629 |t#1|) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-343 |#1|) . T) ((-591 |#1|) . T) ((-657 |#1|) . T) ((-660) . T) ((-684 |#1|) . T) ((-701) . T) ((-979 |#1|) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 41)) (-2640 (($ $) 56)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 143)) (-3345 (($ $) NIL)) (-3331 (((-108) $) 35)) (-3819 ((|#1| $) 12)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-1126)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-1126)))) (-2592 (($ |#1| (-523)) 30)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 113)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 54)) (-2121 (((-3 $ "failed") $) 128)) (-3346 (((-3 (-383 (-523)) "failed") $) 62 (|has| |#1| (-508)))) (-1292 (((-108) $) 58 (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) 60 (|has| |#1| (-508)))) (-3116 (($ |#1| (-523)) 32)) (-2657 (((-108) $) 149 (|has| |#1| (-1126)))) (-2023 (((-108) $) 42)) (-1767 (((-710) $) 37)) (-2519 (((-3 "nil" "sqfr" "irred" "prime") $ (-523)) 134)) (-2378 ((|#1| $ (-523)) 133)) (-3742 (((-523) $ (-523)) 132)) (-3700 (($ |#1| (-523)) 29)) (-3612 (($ (-1 |#1| |#1|) $) 140)) (-1396 (($ |#1| (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523))))) 57)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-2371 (($ |#1| (-523)) 31)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) 144 (|has| |#1| (-427)))) (-2429 (($ |#1| (-523) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-1979 (((-589 (-2 (|:| -1820 |#1|) (|:| -2735 (-523)))) $) 53)) (-3624 (((-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))) $) 11)) (-1820 (((-394 $) $) NIL (|has| |#1| (-1126)))) (-3746 (((-3 $ "failed") $ $) 135)) (-2735 (((-523) $) 129)) (-3686 ((|#1| $) 55)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 77 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 82 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) $) NIL (|has| |#1| (-484 (-1087) $))) (($ $ (-589 (-1087)) (-589 $)) 83 (|has| |#1| (-484 (-1087) $))) (($ $ (-589 (-271 $))) 79 (|has| |#1| (-286 $))) (($ $ (-271 $)) NIL (|has| |#1| (-286 $))) (($ $ $ $) NIL (|has| |#1| (-286 $))) (($ $ (-589 $) (-589 $)) NIL (|has| |#1| (-286 $)))) (-3223 (($ $ |#1|) 69 (|has| |#1| (-263 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-263 $ $)))) (-3523 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-3663 (((-499) $) 26 (|has| |#1| (-564 (-499)))) (((-355) $) 89 (|has| |#1| (-949))) (((-203) $) 92 (|has| |#1| (-949)))) (-1458 (((-794) $) 111) (($ (-523)) 45) (($ $) NIL) (($ |#1|) 44) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523)))))) (-1621 (((-710)) 47)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 39 T CONST)) (-2767 (($) 38 T CONST)) (-2862 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3983 (((-108) $ $) 93)) (-4087 (($ $) 125) (($ $ $) NIL)) (-4075 (($ $ $) 137)) (** (($ $ (-852)) NIL) (($ $ (-710)) 99)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 49) (($ $ $) 48) (($ |#1| $) 50) (($ $ |#1|) NIL))) -(((-394 |#1|) (-13 (-515) (-209 |#1|) (-37 |#1|) (-314 |#1|) (-387 |#1|) (-10 -8 (-15 -3686 (|#1| $)) (-15 -2735 ((-523) $)) (-15 -1396 ($ |#1| (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))))) (-15 -3624 ((-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))) $)) (-15 -3700 ($ |#1| (-523))) (-15 -1979 ((-589 (-2 (|:| -1820 |#1|) (|:| -2735 (-523)))) $)) (-15 -2371 ($ |#1| (-523))) (-15 -3742 ((-523) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -2519 ((-3 "nil" "sqfr" "irred" "prime") $ (-523))) (-15 -1767 ((-710) $)) (-15 -3116 ($ |#1| (-523))) (-15 -2592 ($ |#1| (-523))) (-15 -2429 ($ |#1| (-523) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3819 (|#1| $)) (-15 -2640 ($ $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-427)) (-6 (-427)) |%noBranch|) (IF (|has| |#1| (-949)) (-6 (-949)) |%noBranch|) (IF (|has| |#1| (-1126)) (-6 (-1126)) |%noBranch|) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-263 $ $)) (-6 (-263 $ $)) |%noBranch|) (IF (|has| |#1| (-286 $)) (-6 (-286 $)) |%noBranch|) (IF (|has| |#1| (-484 (-1087) $)) (-6 (-484 (-1087) $)) |%noBranch|))) (-515)) (T -394)) -((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-515)) (-5 *1 (-394 *3)))) (-3686 (*1 *2 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-1396 (*1 *1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-523))))) (-4 *2 (-515)) (-5 *1 (-394 *2)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-523))))) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-3700 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| -1820 *3) (|:| -2735 (-523))))) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-2371 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-3742 (*1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2519 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-394 *4)) (-4 *4 (-515)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-3116 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2592 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2429 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-523)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-3819 (*1 *2 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2640 (*1 *1 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-394 *3)) (-4 *3 (-508)) (-4 *3 (-515)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-394 *3)) (-4 *3 (-508)) (-4 *3 (-515)))) (-3346 (*1 *2 *1) (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-394 *3)) (-4 *3 (-508)) (-4 *3 (-515))))) -(-13 (-515) (-209 |#1|) (-37 |#1|) (-314 |#1|) (-387 |#1|) (-10 -8 (-15 -3686 (|#1| $)) (-15 -2735 ((-523) $)) (-15 -1396 ($ |#1| (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))))) (-15 -3624 ((-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))) $)) (-15 -3700 ($ |#1| (-523))) (-15 -1979 ((-589 (-2 (|:| -1820 |#1|) (|:| -2735 (-523)))) $)) (-15 -2371 ($ |#1| (-523))) (-15 -3742 ((-523) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -2519 ((-3 "nil" "sqfr" "irred" "prime") $ (-523))) (-15 -1767 ((-710) $)) (-15 -3116 ($ |#1| (-523))) (-15 -2592 ($ |#1| (-523))) (-15 -2429 ($ |#1| (-523) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3819 (|#1| $)) (-15 -2640 ($ $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-427)) (-6 (-427)) |%noBranch|) (IF (|has| |#1| (-949)) (-6 (-949)) |%noBranch|) (IF (|has| |#1| (-1126)) (-6 (-1126)) |%noBranch|) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-263 $ $)) (-6 (-263 $ $)) |%noBranch|) (IF (|has| |#1| (-286 $)) (-6 (-286 $)) |%noBranch|) (IF (|has| |#1| (-484 (-1087) $)) (-6 (-484 (-1087) $)) |%noBranch|))) -((-3747 (((-394 |#1|) (-394 |#1|) (-1 (-394 |#1|) |#1|)) 20)) (-2217 (((-394 |#1|) (-394 |#1|) (-394 |#1|)) 15))) -(((-395 |#1|) (-10 -7 (-15 -3747 ((-394 |#1|) (-394 |#1|) (-1 (-394 |#1|) |#1|))) (-15 -2217 ((-394 |#1|) (-394 |#1|) (-394 |#1|)))) (-515)) (T -395)) -((-2217 (*1 *2 *2 *2) (-12 (-5 *2 (-394 *3)) (-4 *3 (-515)) (-5 *1 (-395 *3)))) (-3747 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-394 *4) *4)) (-4 *4 (-515)) (-5 *2 (-394 *4)) (-5 *1 (-395 *4))))) -(-10 -7 (-15 -3747 ((-394 |#1|) (-394 |#1|) (-1 (-394 |#1|) |#1|))) (-15 -2217 ((-394 |#1|) (-394 |#1|) (-394 |#1|)))) -((-2219 ((|#2| |#2|) 161)) (-1554 (((-3 (|:| |%expansion| (-289 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108)) 55))) -(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1554 ((-3 (|:| |%expansion| (-289 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108))) (-15 -2219 (|#2| |#2|))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|)) (-1087) |#2|) (T -396)) -((-2219 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-396 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1108) (-406 *3))) (-14 *4 (-1087)) (-14 *5 *2))) (-1554 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |%expansion| (-289 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) (-5 *1 (-396 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) (-14 *6 (-1087)) (-14 *7 *3)))) -(-10 -7 (-15 -1554 ((-3 (|:| |%expansion| (-289 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108))) (-15 -2219 (|#2| |#2|))) -((-3612 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-973) (-786)) (-406 |#1|) (-13 (-973) (-786)) (-406 |#3|)) (T -397)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-973) (-786))) (-4 *6 (-13 (-973) (-786))) (-4 *2 (-406 *6)) (-5 *1 (-397 *5 *4 *6 *2)) (-4 *4 (-406 *5))))) -(-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|))) -((-2219 ((|#2| |#2|) 88)) (-1213 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070)) 46)) (-3851 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070)) 153))) -(((-398 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1213 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070))) (-15 -3851 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070))) (-15 -2219 (|#2| |#2|))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|) (-10 -8 (-15 -1458 ($ |#3|)))) (-784) (-13 (-1146 |#2| |#3|) (-339) (-1108) (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $)))) (-912 |#4|) (-1087)) (T -398)) -((-2219 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-4 *2 (-13 (-27) (-1108) (-406 *3) (-10 -8 (-15 -1458 ($ *4))))) (-4 *4 (-784)) (-4 *5 (-13 (-1146 *2 *4) (-339) (-1108) (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $))))) (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *6 (-912 *5)) (-14 *7 (-1087)))) (-3851 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-4 *3 (-13 (-27) (-1108) (-406 *6) (-10 -8 (-15 -1458 ($ *7))))) (-4 *7 (-784)) (-4 *8 (-13 (-1146 *3 *7) (-339) (-1108) (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) (-5 *1 (-398 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1070)) (-4 *9 (-912 *8)) (-14 *10 (-1087)))) (-1213 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-4 *3 (-13 (-27) (-1108) (-406 *6) (-10 -8 (-15 -1458 ($ *7))))) (-4 *7 (-784)) (-4 *8 (-13 (-1146 *3 *7) (-339) (-1108) (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) (-5 *1 (-398 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1070)) (-4 *9 (-912 *8)) (-14 *10 (-1087))))) -(-10 -7 (-15 -1213 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070))) (-15 -3851 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070))) (-15 -2219 (|#2| |#2|))) -((-2837 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2437 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3612 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-399 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2437 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2837 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1016) (-401 |#1|) (-1016) (-401 |#3|)) (T -399)) -((-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1016)) (-4 *5 (-1016)) (-4 *2 (-401 *5)) (-5 *1 (-399 *6 *4 *5 *2)) (-4 *4 (-401 *6)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) (-5 *1 (-399 *5 *4 *2 *6)) (-4 *4 (-401 *5)) (-4 *6 (-401 *2)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-401 *6)) (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-401 *5))))) -(-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2437 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2837 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2919 (($) 44)) (-3288 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1922 (($ $ $) 39)) (-3471 (((-108) $ $) 28)) (-1703 (((-710)) 47)) (-4086 (($ (-589 |#2|)) 20) (($) NIL)) (-4032 (($) 53)) (-2454 ((|#2| $) 61)) (-2062 ((|#2| $) 59)) (-2072 (((-852) $) 55)) (-1309 (($ $ $) 35)) (-3878 (($ (-852)) 50)) (-3682 (($ $ |#2|) NIL) (($ $ $) 38)) (-2792 (((-710) (-1 (-108) |#2|) $) NIL) (((-710) |#2| $) 26)) (-1472 (($ (-589 |#2|)) 24)) (-2059 (($ $) 46)) (-1458 (((-794) $) 33)) (-3398 (((-710) $) 21)) (-1684 (($ (-589 |#2|)) 19) (($) NIL)) (-3983 (((-108) $ $) 16)) (-4007 (((-108) $ $) 13))) -(((-400 |#1| |#2|) (-10 -8 (-15 -1703 ((-710))) (-15 -3878 (|#1| (-852))) (-15 -2072 ((-852) |#1|)) (-15 -4032 (|#1|)) (-15 -2454 (|#2| |#1|)) (-15 -2062 (|#2| |#1|)) (-15 -2919 (|#1|)) (-15 -2059 (|#1| |#1|)) (-15 -3398 ((-710) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -1684 (|#1|)) (-15 -1684 (|#1| (-589 |#2|))) (-15 -4086 (|#1|)) (-15 -4086 (|#1| (-589 |#2|))) (-15 -1309 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#2|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -3471 ((-108) |#1| |#1|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -3288 (|#1| |#1| |#2|)) (-15 -3288 (|#1| |#2| |#1|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|))) (-401 |#2|) (-1016)) (T -400)) -((-1703 (*1 *2) (-12 (-4 *4 (-1016)) (-5 *2 (-710)) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4))))) -(-10 -8 (-15 -1703 ((-710))) (-15 -3878 (|#1| (-852))) (-15 -2072 ((-852) |#1|)) (-15 -4032 (|#1|)) (-15 -2454 (|#2| |#1|)) (-15 -2062 (|#2| |#1|)) (-15 -2919 (|#1|)) (-15 -2059 (|#1| |#1|)) (-15 -3398 ((-710) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -1684 (|#1|)) (-15 -1684 (|#1| (-589 |#2|))) (-15 -4086 (|#1|)) (-15 -4086 (|#1| (-589 |#2|))) (-15 -1309 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#2|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -3471 ((-108) |#1| |#1|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -3288 (|#1| |#1| |#2|)) (-15 -3288 (|#1| |#2| |#1|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|))) -((-3924 (((-108) $ $) 19)) (-2919 (($) 67 (|has| |#1| (-344)))) (-3288 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1922 (($ $ $) 78)) (-3471 (((-108) $ $) 79)) (-3079 (((-108) $ (-710)) 8)) (-1703 (((-710)) 61 (|has| |#1| (-344)))) (-4086 (($ (-589 |#1|)) 74) (($) 73)) (-3387 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-1773 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4244)))) (-4032 (($) 64 (|has| |#1| (-344)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2454 ((|#1| $) 65 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2062 ((|#1| $) 66 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2072 (((-852) $) 63 (|has| |#1| (-344)))) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22)) (-1309 (($ $ $) 75)) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-3878 (($ (-852)) 62 (|has| |#1| (-344)))) (-2783 (((-1034) $) 21)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3682 (($ $ |#1|) 77) (($ $ $) 76)) (-3433 (($) 49) (($ (-589 |#1|)) 48)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 50)) (-2059 (($ $) 68 (|has| |#1| (-344)))) (-1458 (((-794) $) 18)) (-3398 (((-710) $) 69)) (-1684 (($ (-589 |#1|)) 72) (($) 71)) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20)) (-4007 (((-108) $ $) 70)) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 42)) (-2890 (($ $) 57)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 144)) (-3306 (($ $) NIL)) (-3174 (((-108) $) 36)) (-2345 ((|#1| $) 12)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL (|has| |#1| (-1127)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-1127)))) (-3602 (($ |#1| (-523)) 31)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 114)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 55)) (-1444 (((-3 $ "failed") $) 129)) (-3317 (((-3 (-383 (-523)) "failed") $) 63 (|has| |#1| (-508)))) (-3045 (((-108) $) 59 (|has| |#1| (-508)))) (-1682 (((-383 (-523)) $) 61 (|has| |#1| (-508)))) (-1947 (($ |#1| (-523)) 33)) (-3049 (((-108) $) 150 (|has| |#1| (-1127)))) (-2769 (((-108) $) 43)) (-2170 (((-710) $) 38)) (-4201 (((-3 "nil" "sqfr" "irred" "prime") $ (-523)) 135)) (-2212 ((|#1| $ (-523)) 134)) (-2900 (((-523) $ (-523)) 133)) (-3724 (($ |#1| (-523)) 30)) (-1345 (($ (-1 |#1| |#1|) $) 141)) (-2878 (($ |#1| (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523))))) 58)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2032 (((-1070) $) NIL)) (-2136 (($ |#1| (-523)) 32)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) 145 (|has| |#1| (-427)))) (-1549 (($ |#1| (-523) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-3491 (((-589 (-2 (|:| -2424 |#1|) (|:| -1475 (-523)))) $) 54)) (-1320 (((-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))) $) 11)) (-2424 (((-394 $) $) NIL (|has| |#1| (-1127)))) (-4007 (((-3 $ "failed") $ $) 136)) (-1475 (((-523) $) 130)) (-1870 ((|#1| $) 56)) (-2812 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 78 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 83 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) $) NIL (|has| |#1| (-484 (-1087) $))) (($ $ (-589 (-1087)) (-589 $)) 84 (|has| |#1| (-484 (-1087) $))) (($ $ (-589 (-271 $))) 80 (|has| |#1| (-286 $))) (($ $ (-271 $)) NIL (|has| |#1| (-286 $))) (($ $ $ $) NIL (|has| |#1| (-286 $))) (($ $ (-589 $) (-589 $)) NIL (|has| |#1| (-286 $)))) (-1937 (($ $ |#1|) 70 (|has| |#1| (-263 |#1| |#1|))) (($ $ $) 71 (|has| |#1| (-263 $ $)))) (-3984 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) 140)) (-1400 (((-499) $) 27 (|has| |#1| (-564 (-499)))) (((-355) $) 90 (|has| |#1| (-949))) (((-203) $) 93 (|has| |#1| (-949)))) (-1691 (((-794) $) 112) (($ (-523)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523)))))) (-3272 (((-710)) 48)) (-2801 (((-108) $ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 40 T CONST)) (-1891 (($) 39 T CONST)) (-2909 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3941 (((-108) $ $) 94)) (-4060 (($ $) 126) (($ $ $) NIL)) (-4045 (($ $ $) 138)) (** (($ $ (-852)) NIL) (($ $ (-710)) 100)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) +(((-394 |#1|) (-13 (-515) (-209 |#1|) (-37 |#1|) (-314 |#1|) (-387 |#1|) (-10 -8 (-15 -1870 (|#1| $)) (-15 -1475 ((-523) $)) (-15 -2878 ($ |#1| (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))))) (-15 -1320 ((-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))) $)) (-15 -3724 ($ |#1| (-523))) (-15 -3491 ((-589 (-2 (|:| -2424 |#1|) (|:| -1475 (-523)))) $)) (-15 -2136 ($ |#1| (-523))) (-15 -2900 ((-523) $ (-523))) (-15 -2212 (|#1| $ (-523))) (-15 -4201 ((-3 "nil" "sqfr" "irred" "prime") $ (-523))) (-15 -2170 ((-710) $)) (-15 -1947 ($ |#1| (-523))) (-15 -3602 ($ |#1| (-523))) (-15 -1549 ($ |#1| (-523) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2345 (|#1| $)) (-15 -2890 ($ $)) (-15 -1345 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-427)) (-6 (-427)) |%noBranch|) (IF (|has| |#1| (-949)) (-6 (-949)) |%noBranch|) (IF (|has| |#1| (-1127)) (-6 (-1127)) |%noBranch|) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -3045 ((-108) $)) (-15 -1682 ((-383 (-523)) $)) (-15 -3317 ((-3 (-383 (-523)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-263 $ $)) (-6 (-263 $ $)) |%noBranch|) (IF (|has| |#1| (-286 $)) (-6 (-286 $)) |%noBranch|) (IF (|has| |#1| (-484 (-1087) $)) (-6 (-484 (-1087) $)) |%noBranch|))) (-515)) (T -394)) +((-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-515)) (-5 *1 (-394 *3)))) (-1870 (*1 *2 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-2878 (*1 *1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-523))))) (-4 *2 (-515)) (-5 *1 (-394 *2)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-523))))) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-3724 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| -2424 *3) (|:| -1475 (-523))))) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-2136 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2900 (*1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-4201 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-394 *4)) (-4 *4 (-515)))) (-2170 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-1947 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-3602 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-1549 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-523)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2345 (*1 *2 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2890 (*1 *1 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-394 *3)) (-4 *3 (-508)) (-4 *3 (-515)))) (-1682 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-394 *3)) (-4 *3 (-508)) (-4 *3 (-515)))) (-3317 (*1 *2 *1) (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-394 *3)) (-4 *3 (-508)) (-4 *3 (-515))))) +(-13 (-515) (-209 |#1|) (-37 |#1|) (-314 |#1|) (-387 |#1|) (-10 -8 (-15 -1870 (|#1| $)) (-15 -1475 ((-523) $)) (-15 -2878 ($ |#1| (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))))) (-15 -1320 ((-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))) $)) (-15 -3724 ($ |#1| (-523))) (-15 -3491 ((-589 (-2 (|:| -2424 |#1|) (|:| -1475 (-523)))) $)) (-15 -2136 ($ |#1| (-523))) (-15 -2900 ((-523) $ (-523))) (-15 -2212 (|#1| $ (-523))) (-15 -4201 ((-3 "nil" "sqfr" "irred" "prime") $ (-523))) (-15 -2170 ((-710) $)) (-15 -1947 ($ |#1| (-523))) (-15 -3602 ($ |#1| (-523))) (-15 -1549 ($ |#1| (-523) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2345 (|#1| $)) (-15 -2890 ($ $)) (-15 -1345 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-427)) (-6 (-427)) |%noBranch|) (IF (|has| |#1| (-949)) (-6 (-949)) |%noBranch|) (IF (|has| |#1| (-1127)) (-6 (-1127)) |%noBranch|) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -3045 ((-108) $)) (-15 -1682 ((-383 (-523)) $)) (-15 -3317 ((-3 (-383 (-523)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-263 $ $)) (-6 (-263 $ $)) |%noBranch|) (IF (|has| |#1| (-286 $)) (-6 (-286 $)) |%noBranch|) (IF (|has| |#1| (-484 (-1087) $)) (-6 (-484 (-1087) $)) |%noBranch|))) +((-2941 (((-394 |#1|) (-394 |#1|) (-1 (-394 |#1|) |#1|)) 20)) (-1202 (((-394 |#1|) (-394 |#1|) (-394 |#1|)) 15))) +(((-395 |#1|) (-10 -7 (-15 -2941 ((-394 |#1|) (-394 |#1|) (-1 (-394 |#1|) |#1|))) (-15 -1202 ((-394 |#1|) (-394 |#1|) (-394 |#1|)))) (-515)) (T -395)) +((-1202 (*1 *2 *2 *2) (-12 (-5 *2 (-394 *3)) (-4 *3 (-515)) (-5 *1 (-395 *3)))) (-2941 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-394 *4) *4)) (-4 *4 (-515)) (-5 *2 (-394 *4)) (-5 *1 (-395 *4))))) +(-10 -7 (-15 -2941 ((-394 |#1|) (-394 |#1|) (-1 (-394 |#1|) |#1|))) (-15 -1202 ((-394 |#1|) (-394 |#1|) (-394 |#1|)))) +((-1226 ((|#2| |#2|) 161)) (-3824 (((-3 (|:| |%expansion| (-289 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108)) 55))) +(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-3 (|:| |%expansion| (-289 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108))) (-15 -1226 (|#2| |#2|))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1109) (-406 |#1|)) (-1087) |#2|) (T -396)) +((-1226 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-396 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1109) (-406 *3))) (-14 *4 (-1087)) (-14 *5 *2))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |%expansion| (-289 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) (-5 *1 (-396 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1109) (-406 *5))) (-14 *6 (-1087)) (-14 *7 *3)))) +(-10 -7 (-15 -3824 ((-3 (|:| |%expansion| (-289 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108))) (-15 -1226 (|#2| |#2|))) +((-1345 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1345 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-973) (-786)) (-406 |#1|) (-13 (-973) (-786)) (-406 |#3|)) (T -397)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-973) (-786))) (-4 *6 (-13 (-973) (-786))) (-4 *2 (-406 *6)) (-5 *1 (-397 *5 *4 *6 *2)) (-4 *4 (-406 *5))))) +(-10 -7 (-15 -1345 (|#4| (-1 |#3| |#1|) |#2|))) +((-1226 ((|#2| |#2|) 88)) (-1646 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070)) 46)) (-1492 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070)) 153))) +(((-398 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1646 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070))) (-15 -1492 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070))) (-15 -1226 (|#2| |#2|))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1109) (-406 |#1|) (-10 -8 (-15 -1691 ($ |#3|)))) (-784) (-13 (-1147 |#2| |#3|) (-339) (-1109) (-10 -8 (-15 -3984 ($ $)) (-15 -2814 ($ $)))) (-912 |#4|) (-1087)) (T -398)) +((-1226 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-4 *2 (-13 (-27) (-1109) (-406 *3) (-10 -8 (-15 -1691 ($ *4))))) (-4 *4 (-784)) (-4 *5 (-13 (-1147 *2 *4) (-339) (-1109) (-10 -8 (-15 -3984 ($ $)) (-15 -2814 ($ $))))) (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *6 (-912 *5)) (-14 *7 (-1087)))) (-1492 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-4 *3 (-13 (-27) (-1109) (-406 *6) (-10 -8 (-15 -1691 ($ *7))))) (-4 *7 (-784)) (-4 *8 (-13 (-1147 *3 *7) (-339) (-1109) (-10 -8 (-15 -3984 ($ $)) (-15 -2814 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) (-5 *1 (-398 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1070)) (-4 *9 (-912 *8)) (-14 *10 (-1087)))) (-1646 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-4 *3 (-13 (-27) (-1109) (-406 *6) (-10 -8 (-15 -1691 ($ *7))))) (-4 *7 (-784)) (-4 *8 (-13 (-1147 *3 *7) (-339) (-1109) (-10 -8 (-15 -3984 ($ $)) (-15 -2814 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) (-5 *1 (-398 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1070)) (-4 *9 (-912 *8)) (-14 *10 (-1087))))) +(-10 -7 (-15 -1646 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070))) (-15 -1492 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070))) (-15 -1226 (|#2| |#2|))) +((-4184 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2116 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1345 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-399 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1345 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2116 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1016) (-401 |#1|) (-1016) (-401 |#3|)) (T -399)) +((-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1016)) (-4 *5 (-1016)) (-4 *2 (-401 *5)) (-5 *1 (-399 *6 *4 *5 *2)) (-4 *4 (-401 *6)))) (-2116 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) (-5 *1 (-399 *5 *4 *2 *6)) (-4 *4 (-401 *5)) (-4 *6 (-401 *2)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-401 *6)) (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-401 *5))))) +(-10 -7 (-15 -1345 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2116 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3662 (($) 44)) (-3321 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-4199 (($ $ $) 39)) (-2172 (((-108) $ $) 28)) (-2395 (((-710)) 47)) (-1365 (($ (-589 |#2|)) 20) (($) NIL)) (-1631 (($) 53)) (-3239 ((|#2| $) 61)) (-3158 ((|#2| $) 59)) (-2060 (((-852) $) 55)) (-3196 (($ $ $) 35)) (-4013 (($ (-852)) 50)) (-3582 (($ $ |#2|) NIL) (($ $ $) 38)) (-3977 (((-710) (-1 (-108) |#2|) $) NIL) (((-710) |#2| $) 26)) (-1704 (($ (-589 |#2|)) 24)) (-1966 (($ $) 46)) (-1691 (((-794) $) 33)) (-2649 (((-710) $) 21)) (-3324 (($ (-589 |#2|)) 19) (($) NIL)) (-3941 (((-108) $ $) 16)) (-3966 (((-108) $ $) 13))) +(((-400 |#1| |#2|) (-10 -8 (-15 -2395 ((-710))) (-15 -4013 (|#1| (-852))) (-15 -2060 ((-852) |#1|)) (-15 -1631 (|#1|)) (-15 -3239 (|#2| |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3662 (|#1|)) (-15 -1966 (|#1| |#1|)) (-15 -2649 ((-710) |#1|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -1691 ((-794) |#1|)) (-15 -3966 ((-108) |#1| |#1|)) (-15 -3324 (|#1|)) (-15 -3324 (|#1| (-589 |#2|))) (-15 -1365 (|#1|)) (-15 -1365 (|#1| (-589 |#2|))) (-15 -3196 (|#1| |#1| |#1|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3582 (|#1| |#1| |#2|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -2172 ((-108) |#1| |#1|)) (-15 -3321 (|#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| |#2|)) (-15 -3321 (|#1| |#2| |#1|)) (-15 -1704 (|#1| (-589 |#2|))) (-15 -3977 ((-710) |#2| |#1|)) (-15 -3977 ((-710) (-1 (-108) |#2|) |#1|))) (-401 |#2|) (-1016)) (T -400)) +((-2395 (*1 *2) (-12 (-4 *4 (-1016)) (-5 *2 (-710)) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4))))) +(-10 -8 (-15 -2395 ((-710))) (-15 -4013 (|#1| (-852))) (-15 -2060 ((-852) |#1|)) (-15 -1631 (|#1|)) (-15 -3239 (|#2| |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3662 (|#1|)) (-15 -1966 (|#1| |#1|)) (-15 -2649 ((-710) |#1|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -1691 ((-794) |#1|)) (-15 -3966 ((-108) |#1| |#1|)) (-15 -3324 (|#1|)) (-15 -3324 (|#1| (-589 |#2|))) (-15 -1365 (|#1|)) (-15 -1365 (|#1| (-589 |#2|))) (-15 -3196 (|#1| |#1| |#1|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3582 (|#1| |#1| |#2|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -2172 ((-108) |#1| |#1|)) (-15 -3321 (|#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| |#2|)) (-15 -3321 (|#1| |#2| |#1|)) (-15 -1704 (|#1| (-589 |#2|))) (-15 -3977 ((-710) |#2| |#1|)) (-15 -3977 ((-710) (-1 (-108) |#2|) |#1|))) +((-1680 (((-108) $ $) 19)) (-3662 (($) 67 (|has| |#1| (-344)))) (-3321 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-4199 (($ $ $) 78)) (-2172 (((-108) $ $) 79)) (-1620 (((-108) $ (-710)) 8)) (-2395 (((-710)) 61 (|has| |#1| (-344)))) (-1365 (($ (-589 |#1|)) 74) (($) 73)) (-3703 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-2462 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3286 (($ |#1| $) 47 (|has| $ (-6 -4248))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4248)))) (-2514 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4248)))) (-1631 (($) 64 (|has| |#1| (-344)))) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-3239 ((|#1| $) 65 (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3158 ((|#1| $) 66 (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-2060 (((-852) $) 63 (|has| |#1| (-344)))) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22)) (-3196 (($ $ $) 75)) (-1293 ((|#1| $) 39)) (-3108 (($ |#1| $) 40)) (-4013 (($ (-852)) 62 (|has| |#1| (-344)))) (-3951 (((-1034) $) 21)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3048 ((|#1| $) 41)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-3582 (($ $ |#1|) 77) (($ $ $) 76)) (-2963 (($) 49) (($ (-589 |#1|)) 48)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1400 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 50)) (-1966 (($ $) 68 (|has| |#1| (-344)))) (-1691 (((-794) $) 18)) (-2649 (((-710) $) 69)) (-3324 (($ (-589 |#1|)) 72) (($) 71)) (-2417 (($ (-589 |#1|)) 42)) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20)) (-3966 (((-108) $ $) 70)) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-401 |#1|) (-129) (-1016)) (T -401)) -((-3398 (*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-1016)) (-5 *2 (-710)))) (-2059 (*1 *1 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-344)))) (-2919 (*1 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-344)) (-4 *2 (-1016)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-786)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-786))))) -(-13 (-207 |t#1|) (-1014 |t#1|) (-10 -8 (-6 -4244) (-15 -3398 ((-710) $)) (IF (|has| |t#1| (-344)) (PROGN (-6 (-344)) (-15 -2059 ($ $)) (-15 -2919 ($))) |%noBranch|) (IF (|has| |t#1| (-786)) (PROGN (-15 -2062 (|t#1| $)) (-15 -2454 (|t#1| $))) |%noBranch|))) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-207 |#1|) . T) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-344) |has| |#1| (-344)) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1014 |#1|) . T) ((-1016) . T) ((-1122) . T)) -((-1432 (((-540 |#2|) |#2| (-1087)) 35)) (-2737 (((-540 |#2|) |#2| (-1087)) 19)) (-1533 ((|#2| |#2| (-1087)) 24))) -(((-402 |#1| |#2|) (-10 -7 (-15 -2737 ((-540 |#2|) |#2| (-1087))) (-15 -1432 ((-540 |#2|) |#2| (-1087))) (-15 -1533 (|#2| |#2| (-1087)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-29 |#1|))) (T -402)) -((-1533 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *1 (-402 *4 *2)) (-4 *2 (-13 (-1108) (-29 *4))))) (-1432 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-402 *5 *3)) (-4 *3 (-13 (-1108) (-29 *5))))) (-2737 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-402 *5 *3)) (-4 *3 (-13 (-1108) (-29 *5)))))) -(-10 -7 (-15 -2737 ((-540 |#2|) |#2| (-1087))) (-15 -1432 ((-540 |#2|) |#2| (-1087))) (-15 -1533 (|#2| |#2| (-1087)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3198 (($ |#2| |#1|) 35)) (-3162 (($ |#2| |#1|) 33)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-307 |#2|)) 25)) (-1621 (((-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 10 T CONST)) (-2767 (($) 16 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 34)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-403 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4231)) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|) |%noBranch|) (-15 -1458 ($ |#1|)) (-15 -1458 ($ (-307 |#2|))) (-15 -3198 ($ |#2| |#1|)) (-15 -3162 ($ |#2| |#1|)))) (-13 (-158) (-37 (-383 (-523)))) (-13 (-786) (-21))) (T -403)) -((-1458 (*1 *1 *2) (-12 (-5 *1 (-403 *2 *3)) (-4 *2 (-13 (-158) (-37 (-383 (-523))))) (-4 *3 (-13 (-786) (-21))))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-307 *4)) (-4 *4 (-13 (-786) (-21))) (-5 *1 (-403 *3 *4)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))))) (-3198 (*1 *1 *2 *3) (-12 (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))) (-4 *2 (-13 (-786) (-21))))) (-3162 (*1 *1 *2 *3) (-12 (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))) (-4 *2 (-13 (-786) (-21)))))) -(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4231)) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|) |%noBranch|) (-15 -1458 ($ |#1|)) (-15 -1458 ($ (-307 |#2|))) (-15 -3198 ($ |#2| |#1|)) (-15 -3162 ($ |#2| |#1|)))) -((-3417 (((-3 |#2| (-589 |#2|)) |#2| (-1087)) 105))) -(((-404 |#1| |#2|) (-10 -7 (-15 -3417 ((-3 |#2| (-589 |#2|)) |#2| (-1087)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-889) (-29 |#1|))) (T -404)) -((-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 *3 (-589 *3))) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1108) (-889) (-29 *5)))))) -(-10 -7 (-15 -3417 ((-3 |#2| (-589 |#2|)) |#2| (-1087)))) -((-1957 (((-589 (-1087)) $) 72)) (-1786 (((-383 (-1083 $)) $ (-562 $)) 269)) (-2955 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-589 (-562 $)) (-589 $)) 234)) (-3517 (((-3 (-562 $) "failed") $) NIL) (((-3 (-1087) "failed") $) 75) (((-3 (-523) "failed") $) NIL) (((-3 |#2| "failed") $) 230) (((-3 (-383 (-883 |#2|)) "failed") $) 320) (((-3 (-883 |#2|) "failed") $) 232) (((-3 (-383 (-523)) "failed") $) NIL)) (-3474 (((-562 $) $) NIL) (((-1087) $) 30) (((-523) $) NIL) ((|#2| $) 228) (((-383 (-883 |#2|)) $) 301) (((-883 |#2|) $) 229) (((-383 (-523)) $) NIL)) (-1403 (((-110) (-110)) 47)) (-2531 (($ $) 87)) (-1363 (((-3 (-562 $) "failed") $) 225)) (-1771 (((-589 (-562 $)) $) 226)) (-3226 (((-3 (-589 $) "failed") $) 244)) (-1295 (((-3 (-2 (|:| |val| $) (|:| -2735 (-523))) "failed") $) 251)) (-4006 (((-3 (-589 $) "failed") $) 242)) (-2492 (((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 $))) "failed") $) 260)) (-2630 (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $) 248) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-110)) 215) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-1087)) 217)) (-3749 (((-108) $) 19)) (-3760 ((|#2| $) 21)) (-2679 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) 233) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) 96) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1087)) 57) (($ $ (-589 (-1087))) 237) (($ $) 238) (($ $ (-110) $ (-1087)) 60) (($ $ (-589 (-110)) (-589 $) (-1087)) 67) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $))) 107) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $)))) 239) (($ $ (-1087) (-710) (-1 $ (-589 $))) 94) (($ $ (-1087) (-710) (-1 $ $)) 93)) (-3223 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) 106)) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) 235)) (-3414 (($ $) 280)) (-3663 (((-823 (-523)) $) 254) (((-823 (-355)) $) 257) (($ (-394 $)) 316) (((-499) $) NIL)) (-1458 (((-794) $) 236) (($ (-562 $)) 84) (($ (-1087)) 26) (($ |#2|) NIL) (($ (-1039 |#2| (-562 $))) NIL) (($ (-383 |#2|)) 285) (($ (-883 (-383 |#2|))) 325) (($ (-383 (-883 (-383 |#2|)))) 297) (($ (-383 (-883 |#2|))) 291) (($ $) NIL) (($ (-883 |#2|)) 184) (($ (-383 (-523))) 330) (($ (-523)) NIL)) (-1621 (((-710)) 79)) (-1950 (((-108) (-110)) 41)) (-2523 (($ (-1087) $) 33) (($ (-1087) $ $) 34) (($ (-1087) $ $ $) 35) (($ (-1087) $ $ $ $) 36) (($ (-1087) (-589 $)) 39)) (* (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ |#2| $) 262) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL))) -(((-405 |#1| |#2|) (-10 -8 (-15 * (|#1| (-852) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1621 ((-710))) (-15 -1458 (|#1| (-523))) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3663 ((-499) |#1|)) (-15 -3474 ((-883 |#2|) |#1|)) (-15 -3517 ((-3 (-883 |#2|) "failed") |#1|)) (-15 -1458 (|#1| (-883 |#2|))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1458 (|#1| |#1|)) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -3474 ((-383 (-883 |#2|)) |#1|)) (-15 -3517 ((-3 (-383 (-883 |#2|)) "failed") |#1|)) (-15 -1458 (|#1| (-383 (-883 |#2|)))) (-15 -1786 ((-383 (-1083 |#1|)) |#1| (-562 |#1|))) (-15 -1458 (|#1| (-383 (-883 (-383 |#2|))))) (-15 -1458 (|#1| (-883 (-383 |#2|)))) (-15 -1458 (|#1| (-383 |#2|))) (-15 -3414 (|#1| |#1|)) (-15 -3663 (|#1| (-394 |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-710) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-710) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-710)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-710)) (-589 (-1 |#1| |#1|)))) (-15 -1295 ((-3 (-2 (|:| |val| |#1|) (|:| -2735 (-523))) "failed") |#1|)) (-15 -2630 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -2735 (-523))) "failed") |#1| (-1087))) (-15 -2630 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -2735 (-523))) "failed") |#1| (-110))) (-15 -2531 (|#1| |#1|)) (-15 -1458 (|#1| (-1039 |#2| (-562 |#1|)))) (-15 -2492 ((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 |#1|))) "failed") |#1|)) (-15 -4006 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -2630 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -2735 (-523))) "failed") |#1|)) (-15 -3226 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 |#1|) (-1087))) (-15 -2679 (|#1| |#1| (-110) |#1| (-1087))) (-15 -2679 (|#1| |#1|)) (-15 -2679 (|#1| |#1| (-589 (-1087)))) (-15 -2679 (|#1| |#1| (-1087))) (-15 -2523 (|#1| (-1087) (-589 |#1|))) (-15 -2523 (|#1| (-1087) |#1| |#1| |#1| |#1|)) (-15 -2523 (|#1| (-1087) |#1| |#1| |#1|)) (-15 -2523 (|#1| (-1087) |#1| |#1|)) (-15 -2523 (|#1| (-1087) |#1|)) (-15 -1957 ((-589 (-1087)) |#1|)) (-15 -3760 (|#2| |#1|)) (-15 -3749 ((-108) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3474 ((-1087) |#1|)) (-15 -3517 ((-3 (-1087) "failed") |#1|)) (-15 -1458 (|#1| (-1087))) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| |#1|)))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| |#1|)))) (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -1771 ((-589 (-562 |#1|)) |#1|)) (-15 -1363 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -2955 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2955 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2955 (|#1| |#1| (-271 |#1|))) (-15 -3223 (|#1| (-110) (-589 |#1|))) (-15 -3223 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2679 (|#1| |#1| (-562 |#1|) |#1|)) (-15 -3474 ((-562 |#1|) |#1|)) (-15 -3517 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -1458 (|#1| (-562 |#1|))) (-15 -1458 ((-794) |#1|))) (-406 |#2|) (-786)) (T -405)) -((-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-786)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-405 *4 *5)) (-4 *4 (-406 *5)))) (-1621 (*1 *2) (-12 (-4 *4 (-786)) (-5 *2 (-710)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4))))) -(-10 -8 (-15 * (|#1| (-852) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1621 ((-710))) (-15 -1458 (|#1| (-523))) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3663 ((-499) |#1|)) (-15 -3474 ((-883 |#2|) |#1|)) (-15 -3517 ((-3 (-883 |#2|) "failed") |#1|)) (-15 -1458 (|#1| (-883 |#2|))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1458 (|#1| |#1|)) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -3474 ((-383 (-883 |#2|)) |#1|)) (-15 -3517 ((-3 (-383 (-883 |#2|)) "failed") |#1|)) (-15 -1458 (|#1| (-383 (-883 |#2|)))) (-15 -1786 ((-383 (-1083 |#1|)) |#1| (-562 |#1|))) (-15 -1458 (|#1| (-383 (-883 (-383 |#2|))))) (-15 -1458 (|#1| (-883 (-383 |#2|)))) (-15 -1458 (|#1| (-383 |#2|))) (-15 -3414 (|#1| |#1|)) (-15 -3663 (|#1| (-394 |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-710) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-710) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-710)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-710)) (-589 (-1 |#1| |#1|)))) (-15 -1295 ((-3 (-2 (|:| |val| |#1|) (|:| -2735 (-523))) "failed") |#1|)) (-15 -2630 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -2735 (-523))) "failed") |#1| (-1087))) (-15 -2630 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -2735 (-523))) "failed") |#1| (-110))) (-15 -2531 (|#1| |#1|)) (-15 -1458 (|#1| (-1039 |#2| (-562 |#1|)))) (-15 -2492 ((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 |#1|))) "failed") |#1|)) (-15 -4006 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -2630 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -2735 (-523))) "failed") |#1|)) (-15 -3226 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 |#1|) (-1087))) (-15 -2679 (|#1| |#1| (-110) |#1| (-1087))) (-15 -2679 (|#1| |#1|)) (-15 -2679 (|#1| |#1| (-589 (-1087)))) (-15 -2679 (|#1| |#1| (-1087))) (-15 -2523 (|#1| (-1087) (-589 |#1|))) (-15 -2523 (|#1| (-1087) |#1| |#1| |#1| |#1|)) (-15 -2523 (|#1| (-1087) |#1| |#1| |#1|)) (-15 -2523 (|#1| (-1087) |#1| |#1|)) (-15 -2523 (|#1| (-1087) |#1|)) (-15 -1957 ((-589 (-1087)) |#1|)) (-15 -3760 (|#2| |#1|)) (-15 -3749 ((-108) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3474 ((-1087) |#1|)) (-15 -3517 ((-3 (-1087) "failed") |#1|)) (-15 -1458 (|#1| (-1087))) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| |#1|)))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| |#1|)))) (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -1771 ((-589 (-562 |#1|)) |#1|)) (-15 -1363 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -2955 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2955 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2955 (|#1| |#1| (-271 |#1|))) (-15 -3223 (|#1| (-110) (-589 |#1|))) (-15 -3223 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2679 (|#1| |#1| (-562 |#1|) |#1|)) (-15 -3474 ((-562 |#1|) |#1|)) (-15 -3517 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -1458 (|#1| (-562 |#1|))) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 116 (|has| |#1| (-25)))) (-1957 (((-589 (-1087)) $) 203)) (-1786 (((-383 (-1083 $)) $ (-562 $)) 171 (|has| |#1| (-515)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 143 (|has| |#1| (-515)))) (-3345 (($ $) 144 (|has| |#1| (-515)))) (-3331 (((-108) $) 146 (|has| |#1| (-515)))) (-3072 (((-589 (-562 $)) $) 44)) (-3212 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2955 (($ $ (-271 $)) 56) (($ $ (-589 (-271 $))) 55) (($ $ (-589 (-562 $)) (-589 $)) 54)) (-2291 (($ $) 163 (|has| |#1| (-515)))) (-3614 (((-394 $) $) 164 (|has| |#1| (-515)))) (-1387 (((-108) $ $) 154 (|has| |#1| (-515)))) (-2518 (($) 102 (-3262 (|has| |#1| (-1028)) (|has| |#1| (-25))) CONST)) (-3517 (((-3 (-562 $) "failed") $) 69) (((-3 (-1087) "failed") $) 216) (((-3 (-523) "failed") $) 209 (|has| |#1| (-964 (-523)))) (((-3 |#1| "failed") $) 207) (((-3 (-383 (-883 |#1|)) "failed") $) 169 (|has| |#1| (-515))) (((-3 (-883 |#1|) "failed") $) 123 (|has| |#1| (-973))) (((-3 (-383 (-523)) "failed") $) 95 (-3262 (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523))))))) (-3474 (((-562 $) $) 68) (((-1087) $) 215) (((-523) $) 210 (|has| |#1| (-964 (-523)))) ((|#1| $) 206) (((-383 (-883 |#1|)) $) 168 (|has| |#1| (-515))) (((-883 |#1|) $) 122 (|has| |#1| (-973))) (((-383 (-523)) $) 94 (-3262 (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523))))))) (-3796 (($ $ $) 158 (|has| |#1| (-515)))) (-2381 (((-629 (-523)) (-629 $)) 137 (-4099 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 136 (-4099 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 135 (|has| |#1| (-973))) (((-629 |#1|) (-629 $)) 134 (|has| |#1| (-973)))) (-2121 (((-3 $ "failed") $) 105 (|has| |#1| (-1028)))) (-3769 (($ $ $) 157 (|has| |#1| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 152 (|has| |#1| (-515)))) (-2657 (((-108) $) 165 (|has| |#1| (-515)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 212 (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 211 (|has| |#1| (-817 (-355))))) (-2361 (($ $) 51) (($ (-589 $)) 50)) (-1444 (((-589 (-110)) $) 43)) (-1403 (((-110) (-110)) 42)) (-2023 (((-108) $) 103 (|has| |#1| (-1028)))) (-1557 (((-108) $) 22 (|has| $ (-964 (-523))))) (-2531 (($ $) 186 (|has| |#1| (-973)))) (-2785 (((-1039 |#1| (-562 $)) $) 187 (|has| |#1| (-973)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 161 (|has| |#1| (-515)))) (-1483 (((-1083 $) (-562 $)) 25 (|has| $ (-973)))) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3612 (($ (-1 $ $) (-562 $)) 36)) (-1363 (((-3 (-562 $) "failed") $) 46)) (-3244 (($ (-589 $)) 150 (|has| |#1| (-515))) (($ $ $) 149 (|has| |#1| (-515)))) (-3779 (((-1070) $) 9)) (-1771 (((-589 (-562 $)) $) 45)) (-2868 (($ (-110) $) 38) (($ (-110) (-589 $)) 37)) (-3226 (((-3 (-589 $) "failed") $) 192 (|has| |#1| (-1028)))) (-1295 (((-3 (-2 (|:| |val| $) (|:| -2735 (-523))) "failed") $) 183 (|has| |#1| (-973)))) (-4006 (((-3 (-589 $) "failed") $) 190 (|has| |#1| (-25)))) (-2492 (((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2630 (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $) 191 (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-110)) 185 (|has| |#1| (-973))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-1087)) 184 (|has| |#1| (-973)))) (-3259 (((-108) $ (-110)) 40) (((-108) $ (-1087)) 39)) (-3738 (($ $) 107 (-3262 (|has| |#1| (-448)) (|has| |#1| (-515))))) (-2510 (((-710) $) 47)) (-2783 (((-1034) $) 10)) (-3749 (((-108) $) 205)) (-3760 ((|#1| $) 204)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 151 (|has| |#1| (-515)))) (-3278 (($ (-589 $)) 148 (|has| |#1| (-515))) (($ $ $) 147 (|has| |#1| (-515)))) (-2585 (((-108) $ $) 35) (((-108) $ (-1087)) 34)) (-1820 (((-394 $) $) 162 (|has| |#1| (-515)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-515))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 159 (|has| |#1| (-515)))) (-3746 (((-3 $ "failed") $ $) 142 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 153 (|has| |#1| (-515)))) (-4104 (((-108) $) 23 (|has| $ (-964 (-523))))) (-2679 (($ $ (-562 $) $) 67) (($ $ (-589 (-562 $)) (-589 $)) 66) (($ $ (-589 (-271 $))) 65) (($ $ (-271 $)) 64) (($ $ $ $) 63) (($ $ (-589 $) (-589 $)) 62) (($ $ (-589 (-1087)) (-589 (-1 $ $))) 33) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) 32) (($ $ (-1087) (-1 $ (-589 $))) 31) (($ $ (-1087) (-1 $ $)) 30) (($ $ (-589 (-110)) (-589 (-1 $ $))) 29) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) 28) (($ $ (-110) (-1 $ (-589 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1087)) 197 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087))) 196 (|has| |#1| (-564 (-499)))) (($ $) 195 (|has| |#1| (-564 (-499)))) (($ $ (-110) $ (-1087)) 194 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-110)) (-589 $) (-1087)) 193 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $))) 182 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $)))) 181 (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ (-589 $))) 180 (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ $)) 179 (|has| |#1| (-973)))) (-1972 (((-710) $) 155 (|has| |#1| (-515)))) (-3223 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-589 $)) 57)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 156 (|has| |#1| (-515)))) (-3957 (($ $) 49) (($ $ $) 48)) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) 128 (|has| |#1| (-973))) (($ $ (-1087) (-710)) 127 (|has| |#1| (-973))) (($ $ (-589 (-1087))) 126 (|has| |#1| (-973))) (($ $ (-1087)) 125 (|has| |#1| (-973)))) (-3414 (($ $) 176 (|has| |#1| (-515)))) (-2797 (((-1039 |#1| (-562 $)) $) 177 (|has| |#1| (-515)))) (-3727 (($ $) 24 (|has| $ (-973)))) (-3663 (((-823 (-523)) $) 214 (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) 213 (|has| |#1| (-564 (-823 (-355))))) (($ (-394 $)) 178 (|has| |#1| (-515))) (((-499) $) 97 (|has| |#1| (-564 (-499))))) (-3208 (($ $ $) 111 (|has| |#1| (-448)))) (-1714 (($ $ $) 112 (|has| |#1| (-448)))) (-1458 (((-794) $) 11) (($ (-562 $)) 70) (($ (-1087)) 217) (($ |#1|) 208) (($ (-1039 |#1| (-562 $))) 188 (|has| |#1| (-973))) (($ (-383 |#1|)) 174 (|has| |#1| (-515))) (($ (-883 (-383 |#1|))) 173 (|has| |#1| (-515))) (($ (-383 (-883 (-383 |#1|)))) 172 (|has| |#1| (-515))) (($ (-383 (-883 |#1|))) 170 (|has| |#1| (-515))) (($ $) 141 (|has| |#1| (-515))) (($ (-883 |#1|)) 124 (|has| |#1| (-973))) (($ (-383 (-523))) 96 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523)))))) (($ (-523)) 93 (-3262 (|has| |#1| (-973)) (|has| |#1| (-964 (-523)))))) (-3901 (((-3 $ "failed") $) 138 (|has| |#1| (-134)))) (-1621 (((-710)) 133 (|has| |#1| (-973)))) (-3822 (($ $) 53) (($ (-589 $)) 52)) (-1950 (((-108) (-110)) 41)) (-1704 (((-108) $ $) 145 (|has| |#1| (-515)))) (-2523 (($ (-1087) $) 202) (($ (-1087) $ $) 201) (($ (-1087) $ $ $) 200) (($ (-1087) $ $ $ $) 199) (($ (-1087) (-589 $)) 198)) (-2364 (($ $ (-523)) 110 (-3262 (|has| |#1| (-448)) (|has| |#1| (-515)))) (($ $ (-710)) 104 (|has| |#1| (-1028))) (($ $ (-852)) 100 (|has| |#1| (-1028)))) (-2756 (($) 115 (|has| |#1| (-25)) CONST)) (-2767 (($) 101 (|has| |#1| (-1028)) CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) 132 (|has| |#1| (-973))) (($ $ (-1087) (-710)) 131 (|has| |#1| (-973))) (($ $ (-589 (-1087))) 130 (|has| |#1| (-973))) (($ $ (-1087)) 129 (|has| |#1| (-973)))) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4098 (($ (-1039 |#1| (-562 $)) (-1039 |#1| (-562 $))) 175 (|has| |#1| (-515))) (($ $ $) 108 (-3262 (|has| |#1| (-448)) (|has| |#1| (-515))))) (-4087 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-4075 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-523)) 109 (-3262 (|has| |#1| (-448)) (|has| |#1| (-515)))) (($ $ (-710)) 106 (|has| |#1| (-1028))) (($ $ (-852)) 99 (|has| |#1| (-1028)))) (* (($ (-383 (-523)) $) 167 (|has| |#1| (-515))) (($ $ (-383 (-523))) 166 (|has| |#1| (-515))) (($ |#1| $) 140 (|has| |#1| (-158))) (($ $ |#1|) 139 (|has| |#1| (-158))) (($ (-523) $) 121 (|has| |#1| (-21))) (($ (-710) $) 117 (|has| |#1| (-25))) (($ (-852) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1028))))) +((-2649 (*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-1016)) (-5 *2 (-710)))) (-1966 (*1 *1 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-344)))) (-3662 (*1 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-344)) (-4 *2 (-1016)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-786)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-786))))) +(-13 (-207 |t#1|) (-1014 |t#1|) (-10 -8 (-6 -4248) (-15 -2649 ((-710) $)) (IF (|has| |t#1| (-344)) (PROGN (-6 (-344)) (-15 -1966 ($ $)) (-15 -3662 ($))) |%noBranch|) (IF (|has| |t#1| (-786)) (PROGN (-15 -3158 (|t#1| $)) (-15 -3239 (|t#1| $))) |%noBranch|))) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-207 |#1|) . T) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-344) |has| |#1| (-344)) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1014 |#1|) . T) ((-1016) . T) ((-1123) . T)) +((-2069 (((-540 |#2|) |#2| (-1087)) 35)) (-1493 (((-540 |#2|) |#2| (-1087)) 19)) (-1872 ((|#2| |#2| (-1087)) 24))) +(((-402 |#1| |#2|) (-10 -7 (-15 -1493 ((-540 |#2|) |#2| (-1087))) (-15 -2069 ((-540 |#2|) |#2| (-1087))) (-15 -1872 (|#2| |#2| (-1087)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1109) (-29 |#1|))) (T -402)) +((-1872 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *1 (-402 *4 *2)) (-4 *2 (-13 (-1109) (-29 *4))))) (-2069 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-402 *5 *3)) (-4 *3 (-13 (-1109) (-29 *5))))) (-1493 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-402 *5 *3)) (-4 *3 (-13 (-1109) (-29 *5)))))) +(-10 -7 (-15 -1493 ((-540 |#2|) |#2| (-1087))) (-15 -2069 ((-540 |#2|) |#2| (-1087))) (-15 -1872 (|#2| |#2| (-1087)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) NIL)) (-2769 (((-108) $) NIL)) (-3270 (($ |#2| |#1|) 35)) (-4190 (($ |#2| |#1|) 33)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-307 |#2|)) 25)) (-3272 (((-710)) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 10 T CONST)) (-1891 (($) 16 T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 34)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-403 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4235)) (IF (|has| |#1| (-6 -4235)) (-6 -4235) |%noBranch|) |%noBranch|) (-15 -1691 ($ |#1|)) (-15 -1691 ($ (-307 |#2|))) (-15 -3270 ($ |#2| |#1|)) (-15 -4190 ($ |#2| |#1|)))) (-13 (-158) (-37 (-383 (-523)))) (-13 (-786) (-21))) (T -403)) +((-1691 (*1 *1 *2) (-12 (-5 *1 (-403 *2 *3)) (-4 *2 (-13 (-158) (-37 (-383 (-523))))) (-4 *3 (-13 (-786) (-21))))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-307 *4)) (-4 *4 (-13 (-786) (-21))) (-5 *1 (-403 *3 *4)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))))) (-3270 (*1 *1 *2 *3) (-12 (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))) (-4 *2 (-13 (-786) (-21))))) (-4190 (*1 *1 *2 *3) (-12 (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))) (-4 *2 (-13 (-786) (-21)))))) +(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4235)) (IF (|has| |#1| (-6 -4235)) (-6 -4235) |%noBranch|) |%noBranch|) (-15 -1691 ($ |#1|)) (-15 -1691 ($ (-307 |#2|))) (-15 -3270 ($ |#2| |#1|)) (-15 -4190 ($ |#2| |#1|)))) +((-2814 (((-3 |#2| (-589 |#2|)) |#2| (-1087)) 105))) +(((-404 |#1| |#2|) (-10 -7 (-15 -2814 ((-3 |#2| (-589 |#2|)) |#2| (-1087)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1109) (-889) (-29 |#1|))) (T -404)) +((-2814 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 *3 (-589 *3))) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1109) (-889) (-29 *5)))))) +(-10 -7 (-15 -2814 ((-3 |#2| (-589 |#2|)) |#2| (-1087)))) +((-1292 (((-589 (-1087)) $) 72)) (-2389 (((-383 (-1083 $)) $ (-562 $)) 270)) (-1349 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-589 (-562 $)) (-589 $)) 235)) (-1220 (((-3 (-562 $) "failed") $) NIL) (((-3 (-1087) "failed") $) 75) (((-3 (-523) "failed") $) NIL) (((-3 |#2| "failed") $) 231) (((-3 (-383 (-883 |#2|)) "failed") $) 321) (((-3 (-883 |#2|) "failed") $) 233) (((-3 (-383 (-523)) "failed") $) NIL)) (-3508 (((-562 $) $) NIL) (((-1087) $) 30) (((-523) $) NIL) ((|#2| $) 229) (((-383 (-883 |#2|)) $) 302) (((-883 |#2|) $) 230) (((-383 (-523)) $) NIL)) (-2947 (((-110) (-110)) 47)) (-1296 (($ $) 87)) (-2577 (((-3 (-562 $) "failed") $) 226)) (-2378 (((-589 (-562 $)) $) 227)) (-3538 (((-3 (-589 $) "failed") $) 245)) (-3064 (((-3 (-2 (|:| |val| $) (|:| -1475 (-523))) "failed") $) 252)) (-3478 (((-3 (-589 $) "failed") $) 243)) (-3925 (((-3 (-2 (|:| -3474 (-523)) (|:| |var| (-562 $))) "failed") $) 261)) (-2790 (((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $) 249) (((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $ (-110)) 215) (((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $ (-1087)) 217)) (-1408 (((-108) $) 19)) (-1419 ((|#2| $) 21)) (-2812 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) 234) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) 96) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1087)) 57) (($ $ (-589 (-1087))) 238) (($ $) 239) (($ $ (-110) $ (-1087)) 60) (($ $ (-589 (-110)) (-589 $) (-1087)) 67) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $))) 107) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $)))) 240) (($ $ (-1087) (-710) (-1 $ (-589 $))) 94) (($ $ (-1087) (-710) (-1 $ $)) 93)) (-1937 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) 106)) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) 236)) (-2793 (($ $) 281)) (-1400 (((-823 (-523)) $) 255) (((-823 (-355)) $) 258) (($ (-394 $)) 317) (((-499) $) NIL)) (-1691 (((-794) $) 237) (($ (-562 $)) 84) (($ (-1087)) 26) (($ |#2|) NIL) (($ (-1039 |#2| (-562 $))) NIL) (($ (-383 |#2|)) 286) (($ (-883 (-383 |#2|))) 326) (($ (-383 (-883 (-383 |#2|)))) 298) (($ (-383 (-883 |#2|))) 292) (($ $) NIL) (($ (-883 |#2|)) 184) (($ (-383 (-523))) 331) (($ (-523)) NIL)) (-3272 (((-710)) 79)) (-3198 (((-108) (-110)) 41)) (-2971 (($ (-1087) $) 33) (($ (-1087) $ $) 34) (($ (-1087) $ $ $) 35) (($ (-1087) $ $ $ $) 36) (($ (-1087) (-589 $)) 39)) (* (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ |#2| $) 263) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL))) +(((-405 |#1| |#2|) (-10 -8 (-15 * (|#1| (-852) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3272 ((-710))) (-15 -1691 (|#1| (-523))) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1400 ((-499) |#1|)) (-15 -3508 ((-883 |#2|) |#1|)) (-15 -1220 ((-3 (-883 |#2|) "failed") |#1|)) (-15 -1691 (|#1| (-883 |#2|))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -3508 ((-383 (-883 |#2|)) |#1|)) (-15 -1220 ((-3 (-383 (-883 |#2|)) "failed") |#1|)) (-15 -1691 (|#1| (-383 (-883 |#2|)))) (-15 -2389 ((-383 (-1083 |#1|)) |#1| (-562 |#1|))) (-15 -1691 (|#1| (-383 (-883 (-383 |#2|))))) (-15 -1691 (|#1| (-883 (-383 |#2|)))) (-15 -1691 (|#1| (-383 |#2|))) (-15 -2793 (|#1| |#1|)) (-15 -1400 (|#1| (-394 |#1|))) (-15 -2812 (|#1| |#1| (-1087) (-710) (-1 |#1| |#1|))) (-15 -2812 (|#1| |#1| (-1087) (-710) (-1 |#1| (-589 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 (-710)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 (-710)) (-589 (-1 |#1| |#1|)))) (-15 -3064 ((-3 (-2 (|:| |val| |#1|) (|:| -1475 (-523))) "failed") |#1|)) (-15 -2790 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -1475 (-523))) "failed") |#1| (-1087))) (-15 -2790 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -1475 (-523))) "failed") |#1| (-110))) (-15 -1296 (|#1| |#1|)) (-15 -1691 (|#1| (-1039 |#2| (-562 |#1|)))) (-15 -3925 ((-3 (-2 (|:| -3474 (-523)) (|:| |var| (-562 |#1|))) "failed") |#1|)) (-15 -3478 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -2790 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -1475 (-523))) "failed") |#1|)) (-15 -3538 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -2812 (|#1| |#1| (-589 (-110)) (-589 |#1|) (-1087))) (-15 -2812 (|#1| |#1| (-110) |#1| (-1087))) (-15 -2812 (|#1| |#1|)) (-15 -2812 (|#1| |#1| (-589 (-1087)))) (-15 -2812 (|#1| |#1| (-1087))) (-15 -2971 (|#1| (-1087) (-589 |#1|))) (-15 -2971 (|#1| (-1087) |#1| |#1| |#1| |#1|)) (-15 -2971 (|#1| (-1087) |#1| |#1| |#1|)) (-15 -2971 (|#1| (-1087) |#1| |#1|)) (-15 -2971 (|#1| (-1087) |#1|)) (-15 -1292 ((-589 (-1087)) |#1|)) (-15 -1419 (|#2| |#1|)) (-15 -1408 ((-108) |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1400 ((-823 (-355)) |#1|)) (-15 -1400 ((-823 (-523)) |#1|)) (-15 -3508 ((-1087) |#1|)) (-15 -1220 ((-3 (-1087) "failed") |#1|)) (-15 -1691 (|#1| (-1087))) (-15 -2812 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2812 (|#1| |#1| (-110) (-1 |#1| (-589 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2812 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| |#1|)))) (-15 -2812 (|#1| |#1| (-1087) (-1 |#1| |#1|))) (-15 -2812 (|#1| |#1| (-1087) (-1 |#1| (-589 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| |#1|)))) (-15 -3198 ((-108) (-110))) (-15 -2947 ((-110) (-110))) (-15 -2378 ((-589 (-562 |#1|)) |#1|)) (-15 -2577 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -1349 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -1349 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -1349 (|#1| |#1| (-271 |#1|))) (-15 -1937 (|#1| (-110) (-589 |#1|))) (-15 -1937 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -1937 (|#1| (-110) |#1| |#1| |#1|)) (-15 -1937 (|#1| (-110) |#1| |#1|)) (-15 -1937 (|#1| (-110) |#1|)) (-15 -2812 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| (-271 |#1|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2812 (|#1| |#1| (-562 |#1|) |#1|)) (-15 -3508 ((-562 |#1|) |#1|)) (-15 -1220 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -1691 (|#1| (-562 |#1|))) (-15 -1691 ((-794) |#1|))) (-406 |#2|) (-786)) (T -405)) +((-2947 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-786)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-405 *4 *5)) (-4 *4 (-406 *5)))) (-3272 (*1 *2) (-12 (-4 *4 (-786)) (-5 *2 (-710)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4))))) +(-10 -8 (-15 * (|#1| (-852) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3272 ((-710))) (-15 -1691 (|#1| (-523))) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1400 ((-499) |#1|)) (-15 -3508 ((-883 |#2|) |#1|)) (-15 -1220 ((-3 (-883 |#2|) "failed") |#1|)) (-15 -1691 (|#1| (-883 |#2|))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -3508 ((-383 (-883 |#2|)) |#1|)) (-15 -1220 ((-3 (-383 (-883 |#2|)) "failed") |#1|)) (-15 -1691 (|#1| (-383 (-883 |#2|)))) (-15 -2389 ((-383 (-1083 |#1|)) |#1| (-562 |#1|))) (-15 -1691 (|#1| (-383 (-883 (-383 |#2|))))) (-15 -1691 (|#1| (-883 (-383 |#2|)))) (-15 -1691 (|#1| (-383 |#2|))) (-15 -2793 (|#1| |#1|)) (-15 -1400 (|#1| (-394 |#1|))) (-15 -2812 (|#1| |#1| (-1087) (-710) (-1 |#1| |#1|))) (-15 -2812 (|#1| |#1| (-1087) (-710) (-1 |#1| (-589 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 (-710)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 (-710)) (-589 (-1 |#1| |#1|)))) (-15 -3064 ((-3 (-2 (|:| |val| |#1|) (|:| -1475 (-523))) "failed") |#1|)) (-15 -2790 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -1475 (-523))) "failed") |#1| (-1087))) (-15 -2790 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -1475 (-523))) "failed") |#1| (-110))) (-15 -1296 (|#1| |#1|)) (-15 -1691 (|#1| (-1039 |#2| (-562 |#1|)))) (-15 -3925 ((-3 (-2 (|:| -3474 (-523)) (|:| |var| (-562 |#1|))) "failed") |#1|)) (-15 -3478 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -2790 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -1475 (-523))) "failed") |#1|)) (-15 -3538 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -2812 (|#1| |#1| (-589 (-110)) (-589 |#1|) (-1087))) (-15 -2812 (|#1| |#1| (-110) |#1| (-1087))) (-15 -2812 (|#1| |#1|)) (-15 -2812 (|#1| |#1| (-589 (-1087)))) (-15 -2812 (|#1| |#1| (-1087))) (-15 -2971 (|#1| (-1087) (-589 |#1|))) (-15 -2971 (|#1| (-1087) |#1| |#1| |#1| |#1|)) (-15 -2971 (|#1| (-1087) |#1| |#1| |#1|)) (-15 -2971 (|#1| (-1087) |#1| |#1|)) (-15 -2971 (|#1| (-1087) |#1|)) (-15 -1292 ((-589 (-1087)) |#1|)) (-15 -1419 (|#2| |#1|)) (-15 -1408 ((-108) |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1400 ((-823 (-355)) |#1|)) (-15 -1400 ((-823 (-523)) |#1|)) (-15 -3508 ((-1087) |#1|)) (-15 -1220 ((-3 (-1087) "failed") |#1|)) (-15 -1691 (|#1| (-1087))) (-15 -2812 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2812 (|#1| |#1| (-110) (-1 |#1| (-589 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2812 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| |#1|)))) (-15 -2812 (|#1| |#1| (-1087) (-1 |#1| |#1|))) (-15 -2812 (|#1| |#1| (-1087) (-1 |#1| (-589 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2812 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| |#1|)))) (-15 -3198 ((-108) (-110))) (-15 -2947 ((-110) (-110))) (-15 -2378 ((-589 (-562 |#1|)) |#1|)) (-15 -2577 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -1349 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -1349 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -1349 (|#1| |#1| (-271 |#1|))) (-15 -1937 (|#1| (-110) (-589 |#1|))) (-15 -1937 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -1937 (|#1| (-110) |#1| |#1| |#1|)) (-15 -1937 (|#1| (-110) |#1| |#1|)) (-15 -1937 (|#1| (-110) |#1|)) (-15 -2812 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| (-271 |#1|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2812 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2812 (|#1| |#1| (-562 |#1|) |#1|)) (-15 -3508 ((-562 |#1|) |#1|)) (-15 -1220 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -1691 (|#1| (-562 |#1|))) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 116 (|has| |#1| (-25)))) (-1292 (((-589 (-1087)) $) 203)) (-2389 (((-383 (-1083 $)) $ (-562 $)) 171 (|has| |#1| (-515)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 143 (|has| |#1| (-515)))) (-3306 (($ $) 144 (|has| |#1| (-515)))) (-3174 (((-108) $) 146 (|has| |#1| (-515)))) (-3643 (((-589 (-562 $)) $) 44)) (-3405 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1349 (($ $ (-271 $)) 56) (($ $ (-589 (-271 $))) 55) (($ $ (-589 (-562 $)) (-589 $)) 54)) (-3718 (($ $) 163 (|has| |#1| (-515)))) (-4226 (((-394 $) $) 164 (|has| |#1| (-515)))) (-2787 (((-108) $ $) 154 (|has| |#1| (-515)))) (-4189 (($) 102 (-3172 (|has| |#1| (-1028)) (|has| |#1| (-25))) CONST)) (-1220 (((-3 (-562 $) "failed") $) 69) (((-3 (-1087) "failed") $) 216) (((-3 (-523) "failed") $) 209 (|has| |#1| (-964 (-523)))) (((-3 |#1| "failed") $) 207) (((-3 (-383 (-883 |#1|)) "failed") $) 169 (|has| |#1| (-515))) (((-3 (-883 |#1|) "failed") $) 123 (|has| |#1| (-973))) (((-3 (-383 (-523)) "failed") $) 95 (-3172 (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523))))))) (-3508 (((-562 $) $) 68) (((-1087) $) 215) (((-523) $) 210 (|has| |#1| (-964 (-523)))) ((|#1| $) 206) (((-383 (-883 |#1|)) $) 168 (|has| |#1| (-515))) (((-883 |#1|) $) 122 (|has| |#1| (-973))) (((-383 (-523)) $) 94 (-3172 (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523))))))) (-4059 (($ $ $) 158 (|has| |#1| (-515)))) (-2243 (((-629 (-523)) (-629 $)) 137 (-3147 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 136 (-3147 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 135 (|has| |#1| (-973))) (((-629 |#1|) (-629 $)) 134 (|has| |#1| (-973)))) (-1444 (((-3 $ "failed") $) 105 (|has| |#1| (-1028)))) (-4032 (($ $ $) 157 (|has| |#1| (-515)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 152 (|has| |#1| (-515)))) (-3049 (((-108) $) 165 (|has| |#1| (-515)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 212 (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 211 (|has| |#1| (-817 (-355))))) (-2055 (($ $) 51) (($ (-589 $)) 50)) (-2196 (((-589 (-110)) $) 43)) (-2947 (((-110) (-110)) 42)) (-2769 (((-108) $) 103 (|has| |#1| (-1028)))) (-3860 (((-108) $) 22 (|has| $ (-964 (-523))))) (-1296 (($ $) 186 (|has| |#1| (-973)))) (-3316 (((-1039 |#1| (-562 $)) $) 187 (|has| |#1| (-973)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 161 (|has| |#1| (-515)))) (-1414 (((-1083 $) (-562 $)) 25 (|has| $ (-973)))) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-1345 (($ (-1 $ $) (-562 $)) 36)) (-2577 (((-3 (-562 $) "failed") $) 46)) (-3278 (($ (-589 $)) 150 (|has| |#1| (-515))) (($ $ $) 149 (|has| |#1| (-515)))) (-2032 (((-1070) $) 9)) (-2378 (((-589 (-562 $)) $) 45)) (-3396 (($ (-110) $) 38) (($ (-110) (-589 $)) 37)) (-3538 (((-3 (-589 $) "failed") $) 192 (|has| |#1| (-1028)))) (-3064 (((-3 (-2 (|:| |val| $) (|:| -1475 (-523))) "failed") $) 183 (|has| |#1| (-973)))) (-3478 (((-3 (-589 $) "failed") $) 190 (|has| |#1| (-25)))) (-3925 (((-3 (-2 (|:| -3474 (-523)) (|:| |var| (-562 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2790 (((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $) 191 (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $ (-110)) 185 (|has| |#1| (-973))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $ (-1087)) 184 (|has| |#1| (-973)))) (-3739 (((-108) $ (-110)) 40) (((-108) $ (-1087)) 39)) (-1396 (($ $) 107 (-3172 (|has| |#1| (-448)) (|has| |#1| (-515))))) (-1933 (((-710) $) 47)) (-3951 (((-1034) $) 10)) (-1408 (((-108) $) 205)) (-1419 ((|#1| $) 204)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 151 (|has| |#1| (-515)))) (-3310 (($ (-589 $)) 148 (|has| |#1| (-515))) (($ $ $) 147 (|has| |#1| (-515)))) (-3536 (((-108) $ $) 35) (((-108) $ (-1087)) 34)) (-2424 (((-394 $) $) 162 (|has| |#1| (-515)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-515))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 159 (|has| |#1| (-515)))) (-4007 (((-3 $ "failed") $ $) 142 (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 153 (|has| |#1| (-515)))) (-3101 (((-108) $) 23 (|has| $ (-964 (-523))))) (-2812 (($ $ (-562 $) $) 67) (($ $ (-589 (-562 $)) (-589 $)) 66) (($ $ (-589 (-271 $))) 65) (($ $ (-271 $)) 64) (($ $ $ $) 63) (($ $ (-589 $) (-589 $)) 62) (($ $ (-589 (-1087)) (-589 (-1 $ $))) 33) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) 32) (($ $ (-1087) (-1 $ (-589 $))) 31) (($ $ (-1087) (-1 $ $)) 30) (($ $ (-589 (-110)) (-589 (-1 $ $))) 29) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) 28) (($ $ (-110) (-1 $ (-589 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1087)) 197 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087))) 196 (|has| |#1| (-564 (-499)))) (($ $) 195 (|has| |#1| (-564 (-499)))) (($ $ (-110) $ (-1087)) 194 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-110)) (-589 $) (-1087)) 193 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $))) 182 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $)))) 181 (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ (-589 $))) 180 (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ $)) 179 (|has| |#1| (-973)))) (-3413 (((-710) $) 155 (|has| |#1| (-515)))) (-1937 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-589 $)) 57)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 156 (|has| |#1| (-515)))) (-1303 (($ $) 49) (($ $ $) 48)) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) 128 (|has| |#1| (-973))) (($ $ (-1087) (-710)) 127 (|has| |#1| (-973))) (($ $ (-589 (-1087))) 126 (|has| |#1| (-973))) (($ $ (-1087)) 125 (|has| |#1| (-973)))) (-2793 (($ $) 176 (|has| |#1| (-515)))) (-3329 (((-1039 |#1| (-562 $)) $) 177 (|has| |#1| (-515)))) (-2762 (($ $) 24 (|has| $ (-973)))) (-1400 (((-823 (-523)) $) 214 (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) 213 (|has| |#1| (-564 (-823 (-355))))) (($ (-394 $)) 178 (|has| |#1| (-515))) (((-499) $) 97 (|has| |#1| (-564 (-499))))) (-3361 (($ $ $) 111 (|has| |#1| (-448)))) (-2892 (($ $ $) 112 (|has| |#1| (-448)))) (-1691 (((-794) $) 11) (($ (-562 $)) 70) (($ (-1087)) 217) (($ |#1|) 208) (($ (-1039 |#1| (-562 $))) 188 (|has| |#1| (-973))) (($ (-383 |#1|)) 174 (|has| |#1| (-515))) (($ (-883 (-383 |#1|))) 173 (|has| |#1| (-515))) (($ (-383 (-883 (-383 |#1|)))) 172 (|has| |#1| (-515))) (($ (-383 (-883 |#1|))) 170 (|has| |#1| (-515))) (($ $) 141 (|has| |#1| (-515))) (($ (-883 |#1|)) 124 (|has| |#1| (-973))) (($ (-383 (-523))) 96 (-3172 (|has| |#1| (-515)) (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523)))))) (($ (-523)) 93 (-3172 (|has| |#1| (-973)) (|has| |#1| (-964 (-523)))))) (-1942 (((-3 $ "failed") $) 138 (|has| |#1| (-134)))) (-3272 (((-710)) 133 (|has| |#1| (-973)))) (-2850 (($ $) 53) (($ (-589 $)) 52)) (-3198 (((-108) (-110)) 41)) (-2801 (((-108) $ $) 145 (|has| |#1| (-515)))) (-2971 (($ (-1087) $) 202) (($ (-1087) $ $) 201) (($ (-1087) $ $ $) 200) (($ (-1087) $ $ $ $) 199) (($ (-1087) (-589 $)) 198)) (-2423 (($ $ (-523)) 110 (-3172 (|has| |#1| (-448)) (|has| |#1| (-515)))) (($ $ (-710)) 104 (|has| |#1| (-1028))) (($ $ (-852)) 100 (|has| |#1| (-1028)))) (-1879 (($) 115 (|has| |#1| (-25)) CONST)) (-1891 (($) 101 (|has| |#1| (-1028)) CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) 132 (|has| |#1| (-973))) (($ $ (-1087) (-710)) 131 (|has| |#1| (-973))) (($ $ (-589 (-1087))) 130 (|has| |#1| (-973))) (($ $ (-1087)) 129 (|has| |#1| (-973)))) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18)) (-4074 (($ (-1039 |#1| (-562 $)) (-1039 |#1| (-562 $))) 175 (|has| |#1| (-515))) (($ $ $) 108 (-3172 (|has| |#1| (-448)) (|has| |#1| (-515))))) (-4060 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-4045 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-523)) 109 (-3172 (|has| |#1| (-448)) (|has| |#1| (-515)))) (($ $ (-710)) 106 (|has| |#1| (-1028))) (($ $ (-852)) 99 (|has| |#1| (-1028)))) (* (($ (-383 (-523)) $) 167 (|has| |#1| (-515))) (($ $ (-383 (-523))) 166 (|has| |#1| (-515))) (($ |#1| $) 140 (|has| |#1| (-158))) (($ $ |#1|) 139 (|has| |#1| (-158))) (($ (-523) $) 121 (|has| |#1| (-21))) (($ (-710) $) 117 (|has| |#1| (-25))) (($ (-852) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1028))))) (((-406 |#1|) (-129) (-786)) (T -406)) -((-3749 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-786)) (-5 *2 (-108)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-786)) (-5 *2 (-589 (-1087))))) (-2523 (*1 *1 *2 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) (-2523 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) (-2523 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) (-2523 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) (-2523 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 *1)) (-4 *1 (-406 *4)) (-4 *4 (-786)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-564 (-499))))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1087))) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-564 (-499))))) (-2679 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-564 (-499))))) (-2679 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1087)) (-4 *1 (-406 *4)) (-4 *4 (-786)) (-4 *4 (-564 (-499))))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-110))) (-5 *3 (-589 *1)) (-5 *4 (-1087)) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-564 (-499))))) (-3226 (*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-406 *3)))) (-2630 (*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-786)) (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -2735 (-523)))) (-4 *1 (-406 *3)))) (-4006 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-406 *3)))) (-2492 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-786)) (-5 *2 (-2 (|:| -2935 (-523)) (|:| |var| (-562 *1)))) (-4 *1 (-406 *3)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1039 *3 (-562 *1))) (-4 *3 (-973)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-2785 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *3 (-786)) (-5 *2 (-1039 *3 (-562 *1))) (-4 *1 (-406 *3)))) (-2531 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-973)))) (-2630 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-973)) (-4 *4 (-786)) (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -2735 (-523)))) (-4 *1 (-406 *4)))) (-2630 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1087)) (-4 *4 (-973)) (-4 *4 (-786)) (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -2735 (-523)))) (-4 *1 (-406 *4)))) (-1295 (*1 *2 *1) (|partial| -12 (-4 *3 (-973)) (-4 *3 (-786)) (-5 *2 (-2 (|:| |val| *1) (|:| -2735 (-523)))) (-4 *1 (-406 *3)))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-710))) (-5 *4 (-589 (-1 *1 *1))) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-710))) (-5 *4 (-589 (-1 *1 (-589 *1)))) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *4 (-1 *1 (-589 *1))) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *4 (-1 *1 *1)) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-394 *1)) (-4 *1 (-406 *3)) (-4 *3 (-515)) (-4 *3 (-786)))) (-2797 (*1 *2 *1) (-12 (-4 *3 (-515)) (-4 *3 (-786)) (-5 *2 (-1039 *3 (-562 *1))) (-4 *1 (-406 *3)))) (-3414 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-515)))) (-4098 (*1 *1 *2 *2) (-12 (-5 *2 (-1039 *3 (-562 *1))) (-4 *3 (-515)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-383 *3)) (-4 *3 (-515)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-883 (-383 *3))) (-4 *3 (-515)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-383 *3)))) (-4 *3 (-515)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-562 *1)) (-4 *1 (-406 *4)) (-4 *4 (-786)) (-4 *4 (-515)) (-5 *2 (-383 (-1083 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-1028))))) -(-13 (-279) (-964 (-1087)) (-815 |t#1|) (-376 |t#1|) (-387 |t#1|) (-10 -8 (-15 -3749 ((-108) $)) (-15 -3760 (|t#1| $)) (-15 -1957 ((-589 (-1087)) $)) (-15 -2523 ($ (-1087) $)) (-15 -2523 ($ (-1087) $ $)) (-15 -2523 ($ (-1087) $ $ $)) (-15 -2523 ($ (-1087) $ $ $ $)) (-15 -2523 ($ (-1087) (-589 $))) (IF (|has| |t#1| (-564 (-499))) (PROGN (-6 (-564 (-499))) (-15 -2679 ($ $ (-1087))) (-15 -2679 ($ $ (-589 (-1087)))) (-15 -2679 ($ $)) (-15 -2679 ($ $ (-110) $ (-1087))) (-15 -2679 ($ $ (-589 (-110)) (-589 $) (-1087)))) |%noBranch|) (IF (|has| |t#1| (-1028)) (PROGN (-6 (-666)) (-15 ** ($ $ (-710))) (-15 -3226 ((-3 (-589 $) "failed") $)) (-15 -2630 ((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-448)) (-6 (-448)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4006 ((-3 (-589 $) "failed") $)) (-15 -2492 ((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-973)) (PROGN (-6 (-973)) (-6 (-964 (-883 |t#1|))) (-6 (-831 (-1087))) (-6 (-353 |t#1|)) (-15 -1458 ($ (-1039 |t#1| (-562 $)))) (-15 -2785 ((-1039 |t#1| (-562 $)) $)) (-15 -2531 ($ $)) (-15 -2630 ((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-110))) (-15 -2630 ((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-1087))) (-15 -1295 ((-3 (-2 (|:| |val| $) (|:| -2735 (-523))) "failed") $)) (-15 -2679 ($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $)))) (-15 -2679 ($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $))))) (-15 -2679 ($ $ (-1087) (-710) (-1 $ (-589 $)))) (-15 -2679 ($ $ (-1087) (-710) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-158)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-6 (-339)) (-6 (-964 (-383 (-883 |t#1|)))) (-15 -3663 ($ (-394 $))) (-15 -2797 ((-1039 |t#1| (-562 $)) $)) (-15 -3414 ($ $)) (-15 -4098 ($ (-1039 |t#1| (-562 $)) (-1039 |t#1| (-562 $)))) (-15 -1458 ($ (-383 |t#1|))) (-15 -1458 ($ (-883 (-383 |t#1|)))) (-15 -1458 ($ (-383 (-883 (-383 |t#1|))))) (-15 -1786 ((-383 (-1083 $)) $ (-562 $))) (IF (|has| |t#1| (-964 (-523))) (-6 (-964 (-383 (-523)))) |%noBranch|)) |%noBranch|))) -(((-21) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#1| (-21))) ((-23) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-383 (-523))) |has| |#1| (-515)) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-515)) ((-107 |#1| |#1|) |has| |#1| (-158)) ((-107 $ $) |has| |#1| (-515)) ((-124) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#1| (-21))) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) |has| |#1| (-515)) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523)))) ((-221) |has| |#1| (-515)) ((-267) |has| |#1| (-515)) ((-284) |has| |#1| (-515)) ((-286 $) . T) ((-279) . T) ((-339) |has| |#1| (-515)) ((-353 |#1|) |has| |#1| (-973)) ((-376 |#1|) . T) ((-387 |#1|) . T) ((-427) |has| |#1| (-515)) ((-448) |has| |#1| (-448)) ((-484 (-562 $) $) . T) ((-484 $ $) . T) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-515)) ((-591 |#1|) |has| |#1| (-158)) ((-591 $) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-585 (-523)) -12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) ((-585 |#1|) |has| |#1| (-973)) ((-657 #0#) |has| |#1| (-515)) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) -3262 (|has| |#1| (-1028)) (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-448)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-786) . T) ((-831 (-1087)) |has| |#1| (-973)) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-815 |#1|) . T) ((-851) |has| |#1| (-515)) ((-964 (-383 (-523))) -3262 (|has| |#1| (-964 (-383 (-523)))) (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) ((-964 (-383 (-883 |#1|))) |has| |#1| (-515)) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 (-562 $)) . T) ((-964 (-883 |#1|)) |has| |#1| (-973)) ((-964 (-1087)) . T) ((-964 |#1|) . T) ((-979 #0#) |has| |#1| (-515)) ((-979 |#1|) |has| |#1| (-158)) ((-979 $) |has| |#1| (-515)) ((-973) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-980) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-1028) -3262 (|has| |#1| (-1028)) (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-448)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-1016) . T) ((-1122) . T) ((-1126) |has| |#1| (-515))) -((-2789 ((|#2| |#2| |#2|) 33)) (-1403 (((-110) (-110)) 44)) (-1587 ((|#2| |#2|) 66)) (-1445 ((|#2| |#2|) 69)) (-2710 ((|#2| |#2|) 32)) (-2322 ((|#2| |#2| |#2|) 35)) (-4102 ((|#2| |#2| |#2|) 37)) (-3254 ((|#2| |#2| |#2|) 34)) (-1325 ((|#2| |#2| |#2|) 36)) (-1950 (((-108) (-110)) 42)) (-3728 ((|#2| |#2|) 39)) (-2320 ((|#2| |#2|) 38)) (-2619 ((|#2| |#2|) 27)) (-2033 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3599 ((|#2| |#2| |#2|) 31))) -(((-407 |#1| |#2|) (-10 -7 (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -2619 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -2033 (|#2| |#2| |#2|)) (-15 -3599 (|#2| |#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2789 (|#2| |#2| |#2|)) (-15 -3254 (|#2| |#2| |#2|)) (-15 -2322 (|#2| |#2| |#2|)) (-15 -1325 (|#2| |#2| |#2|)) (-15 -4102 (|#2| |#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -3728 (|#2| |#2|)) (-15 -1445 (|#2| |#2|)) (-15 -1587 (|#2| |#2|))) (-13 (-786) (-515)) (-406 |#1|)) (T -407)) -((-1587 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-1445 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-3728 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-4102 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-1325 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2322 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-3254 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2789 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-3599 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2033 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2619 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *4)) (-4 *4 (-406 *3)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-407 *4 *5)) (-4 *5 (-406 *4))))) -(-10 -7 (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -2619 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -2033 (|#2| |#2| |#2|)) (-15 -3599 (|#2| |#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2789 (|#2| |#2| |#2|)) (-15 -3254 (|#2| |#2| |#2|)) (-15 -2322 (|#2| |#2| |#2|)) (-15 -1325 (|#2| |#2| |#2|)) (-15 -4102 (|#2| |#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -3728 (|#2| |#2|)) (-15 -1445 (|#2| |#2|)) (-15 -1587 (|#2| |#2|))) -((-1996 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-589 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-589 |#2|)) 58))) -(((-408 |#1| |#2|) (-10 -7 (-15 -1996 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-589 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-589 |#2|))) (IF (|has| |#2| (-27)) (-15 -1996 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-515) (-786) (-136)) (-406 |#1|)) (T -408)) -((-1996 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-515) (-786) (-136))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1083 *3)) (|:| |pol2| (-1083 *3)) (|:| |prim| (-1083 *3)))) (-5 *1 (-408 *4 *3)) (-4 *3 (-27)) (-4 *3 (-406 *4)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-589 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-515) (-786) (-136))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-589 (-1083 *5))) (|:| |prim| (-1083 *5)))) (-5 *1 (-408 *4 *5))))) -(-10 -7 (-15 -1996 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-589 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-589 |#2|))) (IF (|has| |#2| (-27)) (-15 -1996 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|)) |%noBranch|)) -((-2875 (((-1173)) 18)) (-3880 (((-1083 (-383 (-523))) |#2| (-562 |#2|)) 40) (((-383 (-523)) |#2|) 23))) -(((-409 |#1| |#2|) (-10 -7 (-15 -3880 ((-383 (-523)) |#2|)) (-15 -3880 ((-1083 (-383 (-523))) |#2| (-562 |#2|))) (-15 -2875 ((-1173)))) (-13 (-786) (-515) (-964 (-523))) (-406 |#1|)) (T -409)) -((-2875 (*1 *2) (-12 (-4 *3 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-1173)) (-5 *1 (-409 *3 *4)) (-4 *4 (-406 *3)))) (-3880 (*1 *2 *3 *4) (-12 (-5 *4 (-562 *3)) (-4 *3 (-406 *5)) (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-409 *5 *3)))) (-3880 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-383 (-523))) (-5 *1 (-409 *4 *3)) (-4 *3 (-406 *4))))) -(-10 -7 (-15 -3880 ((-383 (-523)) |#2|)) (-15 -3880 ((-1083 (-383 (-523))) |#2| (-562 |#2|))) (-15 -2875 ((-1173)))) -((-3623 (((-108) $) 28)) (-1936 (((-108) $) 30)) (-1538 (((-108) $) 31)) (-2607 (((-108) $) 34)) (-2434 (((-108) $) 29)) (-3800 (((-108) $) 33)) (-1458 (((-794) $) 18) (($ (-1070)) 27) (($ (-1087)) 23) (((-1087) $) 22) (((-1020) $) 21)) (-1788 (((-108) $) 32)) (-3983 (((-108) $ $) 15))) -(((-410) (-13 (-563 (-794)) (-10 -8 (-15 -1458 ($ (-1070))) (-15 -1458 ($ (-1087))) (-15 -1458 ((-1087) $)) (-15 -1458 ((-1020) $)) (-15 -3623 ((-108) $)) (-15 -2434 ((-108) $)) (-15 -1538 ((-108) $)) (-15 -3800 ((-108) $)) (-15 -2607 ((-108) $)) (-15 -1788 ((-108) $)) (-15 -1936 ((-108) $)) (-15 -3983 ((-108) $ $))))) (T -410)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-410)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-410)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-410)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-410)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-3983 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) -(-13 (-563 (-794)) (-10 -8 (-15 -1458 ($ (-1070))) (-15 -1458 ($ (-1087))) (-15 -1458 ((-1087) $)) (-15 -1458 ((-1020) $)) (-15 -3623 ((-108) $)) (-15 -2434 ((-108) $)) (-15 -1538 ((-108) $)) (-15 -3800 ((-108) $)) (-15 -2607 ((-108) $)) (-15 -1788 ((-108) $)) (-15 -1936 ((-108) $)) (-15 -3983 ((-108) $ $)))) -((-4204 (((-3 (-394 (-1083 (-383 (-523)))) "failed") |#3|) 69)) (-3491 (((-394 |#3|) |#3|) 33)) (-3036 (((-3 (-394 (-1083 (-47))) "failed") |#3|) 27 (|has| |#2| (-964 (-47))))) (-3210 (((-3 (|:| |overq| (-1083 (-383 (-523)))) (|:| |overan| (-1083 (-47))) (|:| -2494 (-108))) |#3|) 35))) -(((-411 |#1| |#2| |#3|) (-10 -7 (-15 -3491 ((-394 |#3|) |#3|)) (-15 -4204 ((-3 (-394 (-1083 (-383 (-523)))) "failed") |#3|)) (-15 -3210 ((-3 (|:| |overq| (-1083 (-383 (-523)))) (|:| |overan| (-1083 (-47))) (|:| -2494 (-108))) |#3|)) (IF (|has| |#2| (-964 (-47))) (-15 -3036 ((-3 (-394 (-1083 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-515) (-786) (-964 (-523))) (-406 |#1|) (-1144 |#2|)) (T -411)) -((-3036 (*1 *2 *3) (|partial| -12 (-4 *5 (-964 (-47))) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-394 (-1083 (-47)))) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5)))) (-3210 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-3 (|:| |overq| (-1083 (-383 (-523)))) (|:| |overan| (-1083 (-47))) (|:| -2494 (-108)))) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5)))) (-4204 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-394 (-1083 (-383 (-523))))) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5)))) (-3491 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-394 *3)) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5))))) -(-10 -7 (-15 -3491 ((-394 |#3|) |#3|)) (-15 -4204 ((-3 (-394 (-1083 (-383 (-523)))) "failed") |#3|)) (-15 -3210 ((-3 (|:| |overq| (-1083 (-383 (-523)))) (|:| |overan| (-1083 (-47))) (|:| -2494 (-108))) |#3|)) (IF (|has| |#2| (-964 (-47))) (-15 -3036 ((-3 (-394 (-1083 (-47))) "failed") |#3|)) |%noBranch|)) -((-3924 (((-108) $ $) NIL)) (-3715 (((-1070) $ (-1070)) NIL)) (-2647 (($ $ (-1070)) NIL)) (-3114 (((-1070) $) NIL)) (-1446 (((-364) (-364) (-364)) 17) (((-364) (-364)) 15)) (-2625 (($ (-364)) NIL) (($ (-364) (-1070)) NIL)) (-4038 (((-364) $) NIL)) (-3779 (((-1070) $) NIL)) (-1998 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2300 (((-1173) (-1070)) 9)) (-2908 (((-1173) (-1070)) 10)) (-3968 (((-1173)) 11)) (-1458 (((-794) $) NIL)) (-1685 (($ $) 35)) (-3983 (((-108) $ $) NIL))) -(((-412) (-13 (-340 (-364) (-1070)) (-10 -7 (-15 -1446 ((-364) (-364) (-364))) (-15 -1446 ((-364) (-364))) (-15 -2300 ((-1173) (-1070))) (-15 -2908 ((-1173) (-1070))) (-15 -3968 ((-1173)))))) (T -412)) -((-1446 (*1 *2 *2 *2) (-12 (-5 *2 (-364)) (-5 *1 (-412)))) (-1446 (*1 *2 *2) (-12 (-5 *2 (-364)) (-5 *1 (-412)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-412)))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-412)))) (-3968 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-412))))) -(-13 (-340 (-364) (-1070)) (-10 -7 (-15 -1446 ((-364) (-364) (-364))) (-15 -1446 ((-364) (-364))) (-15 -2300 ((-1173) (-1070))) (-15 -2908 ((-1173) (-1070))) (-15 -3968 ((-1173))))) -((-3924 (((-108) $ $) NIL)) (-3820 (((-3 (|:| |fst| (-410)) (|:| -3853 "void")) $) 10)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-4088 (($) 31)) (-4223 (($) 37)) (-2043 (($) 33)) (-1204 (($) 35)) (-3401 (($) 32)) (-4186 (($) 34)) (-1870 (($) 36)) (-2809 (((-108) $) 8)) (-3339 (((-589 (-883 (-523))) $) 16)) (-1472 (($ (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-1087)) (-108)) 25) (($ (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-883 (-523))) (-108)) 26)) (-1458 (((-794) $) 21) (($ (-410)) 28)) (-3983 (((-108) $ $) NIL))) -(((-413) (-13 (-1016) (-10 -8 (-15 -1458 ((-794) $)) (-15 -1458 ($ (-410))) (-15 -3820 ((-3 (|:| |fst| (-410)) (|:| -3853 "void")) $)) (-15 -3339 ((-589 (-883 (-523))) $)) (-15 -2809 ((-108) $)) (-15 -1472 ($ (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-1087)) (-108))) (-15 -1472 ($ (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-883 (-523))) (-108))) (-15 -4088 ($)) (-15 -3401 ($)) (-15 -2043 ($)) (-15 -4223 ($)) (-15 -4186 ($)) (-15 -1204 ($)) (-15 -1870 ($))))) (T -413)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-413)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-410)) (-5 *1 (-413)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *1 (-413)))) (-3339 (*1 *2 *1) (-12 (-5 *2 (-589 (-883 (-523)))) (-5 *1 (-413)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-413)))) (-1472 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *3 (-589 (-1087))) (-5 *4 (-108)) (-5 *1 (-413)))) (-1472 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-108)) (-5 *1 (-413)))) (-4088 (*1 *1) (-5 *1 (-413))) (-3401 (*1 *1) (-5 *1 (-413))) (-2043 (*1 *1) (-5 *1 (-413))) (-4223 (*1 *1) (-5 *1 (-413))) (-4186 (*1 *1) (-5 *1 (-413))) (-1204 (*1 *1) (-5 *1 (-413))) (-1870 (*1 *1) (-5 *1 (-413)))) -(-13 (-1016) (-10 -8 (-15 -1458 ((-794) $)) (-15 -1458 ($ (-410))) (-15 -3820 ((-3 (|:| |fst| (-410)) (|:| -3853 "void")) $)) (-15 -3339 ((-589 (-883 (-523))) $)) (-15 -2809 ((-108) $)) (-15 -1472 ($ (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-1087)) (-108))) (-15 -1472 ($ (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-883 (-523))) (-108))) (-15 -4088 ($)) (-15 -3401 ($)) (-15 -2043 ($)) (-15 -4223 ($)) (-15 -4186 ($)) (-15 -1204 ($)) (-15 -1870 ($)))) -((-3924 (((-108) $ $) NIL)) (-4038 (((-1087) $) 8)) (-3779 (((-1070) $) 16)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 13))) -(((-414 |#1|) (-13 (-1016) (-10 -8 (-15 -4038 ((-1087) $)))) (-1087)) (T -414)) -((-4038 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-414 *3)) (-14 *3 *2)))) -(-13 (-1016) (-10 -8 (-15 -4038 ((-1087) $)))) -((-3394 (((-1173) $) 7)) (-1458 (((-794) $) 8) (($ (-1168 (-638))) 14) (($ (-589 (-306))) 13) (($ (-306)) 12) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 11))) +((-1408 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-786)) (-5 *2 (-108)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-786)) (-5 *2 (-589 (-1087))))) (-2971 (*1 *1 *2 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) (-2971 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) (-2971 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) (-2971 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 *1)) (-4 *1 (-406 *4)) (-4 *4 (-786)))) (-2812 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-564 (-499))))) (-2812 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1087))) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-564 (-499))))) (-2812 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-564 (-499))))) (-2812 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1087)) (-4 *1 (-406 *4)) (-4 *4 (-786)) (-4 *4 (-564 (-499))))) (-2812 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-110))) (-5 *3 (-589 *1)) (-5 *4 (-1087)) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-564 (-499))))) (-3538 (*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-406 *3)))) (-2790 (*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-786)) (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -1475 (-523)))) (-4 *1 (-406 *3)))) (-3478 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-406 *3)))) (-3925 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-786)) (-5 *2 (-2 (|:| -3474 (-523)) (|:| |var| (-562 *1)))) (-4 *1 (-406 *3)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1039 *3 (-562 *1))) (-4 *3 (-973)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-3316 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *3 (-786)) (-5 *2 (-1039 *3 (-562 *1))) (-4 *1 (-406 *3)))) (-1296 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-973)))) (-2790 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-973)) (-4 *4 (-786)) (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -1475 (-523)))) (-4 *1 (-406 *4)))) (-2790 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1087)) (-4 *4 (-973)) (-4 *4 (-786)) (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -1475 (-523)))) (-4 *1 (-406 *4)))) (-3064 (*1 *2 *1) (|partial| -12 (-4 *3 (-973)) (-4 *3 (-786)) (-5 *2 (-2 (|:| |val| *1) (|:| -1475 (-523)))) (-4 *1 (-406 *3)))) (-2812 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-710))) (-5 *4 (-589 (-1 *1 *1))) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) (-2812 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-710))) (-5 *4 (-589 (-1 *1 (-589 *1)))) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) (-2812 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *4 (-1 *1 (-589 *1))) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) (-2812 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *4 (-1 *1 *1)) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-394 *1)) (-4 *1 (-406 *3)) (-4 *3 (-515)) (-4 *3 (-786)))) (-3329 (*1 *2 *1) (-12 (-4 *3 (-515)) (-4 *3 (-786)) (-5 *2 (-1039 *3 (-562 *1))) (-4 *1 (-406 *3)))) (-2793 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-515)))) (-4074 (*1 *1 *2 *2) (-12 (-5 *2 (-1039 *3 (-562 *1))) (-4 *3 (-515)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-383 *3)) (-4 *3 (-515)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-883 (-383 *3))) (-4 *3 (-515)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-383 *3)))) (-4 *3 (-515)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-2389 (*1 *2 *1 *3) (-12 (-5 *3 (-562 *1)) (-4 *1 (-406 *4)) (-4 *4 (-786)) (-4 *4 (-515)) (-5 *2 (-383 (-1083 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-1028))))) +(-13 (-279) (-964 (-1087)) (-815 |t#1|) (-376 |t#1|) (-387 |t#1|) (-10 -8 (-15 -1408 ((-108) $)) (-15 -1419 (|t#1| $)) (-15 -1292 ((-589 (-1087)) $)) (-15 -2971 ($ (-1087) $)) (-15 -2971 ($ (-1087) $ $)) (-15 -2971 ($ (-1087) $ $ $)) (-15 -2971 ($ (-1087) $ $ $ $)) (-15 -2971 ($ (-1087) (-589 $))) (IF (|has| |t#1| (-564 (-499))) (PROGN (-6 (-564 (-499))) (-15 -2812 ($ $ (-1087))) (-15 -2812 ($ $ (-589 (-1087)))) (-15 -2812 ($ $)) (-15 -2812 ($ $ (-110) $ (-1087))) (-15 -2812 ($ $ (-589 (-110)) (-589 $) (-1087)))) |%noBranch|) (IF (|has| |t#1| (-1028)) (PROGN (-6 (-666)) (-15 ** ($ $ (-710))) (-15 -3538 ((-3 (-589 $) "failed") $)) (-15 -2790 ((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-448)) (-6 (-448)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3478 ((-3 (-589 $) "failed") $)) (-15 -3925 ((-3 (-2 (|:| -3474 (-523)) (|:| |var| (-562 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-973)) (PROGN (-6 (-973)) (-6 (-964 (-883 |t#1|))) (-6 (-831 (-1087))) (-6 (-353 |t#1|)) (-15 -1691 ($ (-1039 |t#1| (-562 $)))) (-15 -3316 ((-1039 |t#1| (-562 $)) $)) (-15 -1296 ($ $)) (-15 -2790 ((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $ (-110))) (-15 -2790 ((-3 (-2 (|:| |var| (-562 $)) (|:| -1475 (-523))) "failed") $ (-1087))) (-15 -3064 ((-3 (-2 (|:| |val| $) (|:| -1475 (-523))) "failed") $)) (-15 -2812 ($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $)))) (-15 -2812 ($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $))))) (-15 -2812 ($ $ (-1087) (-710) (-1 $ (-589 $)))) (-15 -2812 ($ $ (-1087) (-710) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-158)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-6 (-339)) (-6 (-964 (-383 (-883 |t#1|)))) (-15 -1400 ($ (-394 $))) (-15 -3329 ((-1039 |t#1| (-562 $)) $)) (-15 -2793 ($ $)) (-15 -4074 ($ (-1039 |t#1| (-562 $)) (-1039 |t#1| (-562 $)))) (-15 -1691 ($ (-383 |t#1|))) (-15 -1691 ($ (-883 (-383 |t#1|)))) (-15 -1691 ($ (-383 (-883 (-383 |t#1|))))) (-15 -2389 ((-383 (-1083 $)) $ (-562 $))) (IF (|has| |t#1| (-964 (-523))) (-6 (-964 (-383 (-523)))) |%noBranch|)) |%noBranch|))) +(((-21) -3172 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#1| (-21))) ((-23) -3172 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3172 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-383 (-523))) |has| |#1| (-515)) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-515)) ((-107 |#1| |#1|) |has| |#1| (-158)) ((-107 $ $) |has| |#1| (-515)) ((-124) -3172 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#1| (-21))) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) |has| |#1| (-515)) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523)))) ((-221) |has| |#1| (-515)) ((-267) |has| |#1| (-515)) ((-284) |has| |#1| (-515)) ((-286 $) . T) ((-279) . T) ((-339) |has| |#1| (-515)) ((-353 |#1|) |has| |#1| (-973)) ((-376 |#1|) . T) ((-387 |#1|) . T) ((-427) |has| |#1| (-515)) ((-448) |has| |#1| (-448)) ((-484 (-562 $) $) . T) ((-484 $ $) . T) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-515)) ((-591 |#1|) |has| |#1| (-158)) ((-591 $) -3172 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-585 (-523)) -12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) ((-585 |#1|) |has| |#1| (-973)) ((-657 #0#) |has| |#1| (-515)) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) -3172 (|has| |#1| (-1028)) (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-448)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-786) . T) ((-831 (-1087)) |has| |#1| (-973)) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-815 |#1|) . T) ((-851) |has| |#1| (-515)) ((-964 (-383 (-523))) -3172 (|has| |#1| (-964 (-383 (-523)))) (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) ((-964 (-383 (-883 |#1|))) |has| |#1| (-515)) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 (-562 $)) . T) ((-964 (-883 |#1|)) |has| |#1| (-973)) ((-964 (-1087)) . T) ((-964 |#1|) . T) ((-979 #0#) |has| |#1| (-515)) ((-979 |#1|) |has| |#1| (-158)) ((-979 $) |has| |#1| (-515)) ((-973) -3172 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-980) -3172 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-1028) -3172 (|has| |#1| (-1028)) (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-448)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-1016) . T) ((-1123) . T) ((-1127) |has| |#1| (-515))) +((-1960 ((|#2| |#2| |#2|) 33)) (-2947 (((-110) (-110)) 44)) (-4180 ((|#2| |#2|) 66)) (-2206 ((|#2| |#2|) 69)) (-2370 ((|#2| |#2|) 32)) (-2842 ((|#2| |#2| |#2|) 35)) (-3083 ((|#2| |#2| |#2|) 37)) (-3789 ((|#2| |#2| |#2|) 34)) (-3357 ((|#2| |#2| |#2|) 36)) (-3198 (((-108) (-110)) 42)) (-2771 ((|#2| |#2|) 39)) (-2823 ((|#2| |#2|) 38)) (-2695 ((|#2| |#2|) 27)) (-2846 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-4056 ((|#2| |#2| |#2|) 31))) +(((-407 |#1| |#2|) (-10 -7 (-15 -3198 ((-108) (-110))) (-15 -2947 ((-110) (-110))) (-15 -2695 (|#2| |#2|)) (-15 -2846 (|#2| |#2|)) (-15 -2846 (|#2| |#2| |#2|)) (-15 -4056 (|#2| |#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -1960 (|#2| |#2| |#2|)) (-15 -3789 (|#2| |#2| |#2|)) (-15 -2842 (|#2| |#2| |#2|)) (-15 -3357 (|#2| |#2| |#2|)) (-15 -3083 (|#2| |#2| |#2|)) (-15 -2823 (|#2| |#2|)) (-15 -2771 (|#2| |#2|)) (-15 -2206 (|#2| |#2|)) (-15 -4180 (|#2| |#2|))) (-13 (-786) (-515)) (-406 |#1|)) (T -407)) +((-4180 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2206 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2771 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2823 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-3083 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-3357 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2842 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-3789 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-1960 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-4056 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2846 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2846 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2947 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *4)) (-4 *4 (-406 *3)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-407 *4 *5)) (-4 *5 (-406 *4))))) +(-10 -7 (-15 -3198 ((-108) (-110))) (-15 -2947 ((-110) (-110))) (-15 -2695 (|#2| |#2|)) (-15 -2846 (|#2| |#2|)) (-15 -2846 (|#2| |#2| |#2|)) (-15 -4056 (|#2| |#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -1960 (|#2| |#2| |#2|)) (-15 -3789 (|#2| |#2| |#2|)) (-15 -2842 (|#2| |#2| |#2|)) (-15 -3357 (|#2| |#2| |#2|)) (-15 -3083 (|#2| |#2| |#2|)) (-15 -2823 (|#2| |#2|)) (-15 -2771 (|#2| |#2|)) (-15 -2206 (|#2| |#2|)) (-15 -4180 (|#2| |#2|))) +((-3665 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-589 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-589 |#2|)) 58))) +(((-408 |#1| |#2|) (-10 -7 (-15 -3665 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-589 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-589 |#2|))) (IF (|has| |#2| (-27)) (-15 -3665 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-515) (-786) (-136)) (-406 |#1|)) (T -408)) +((-3665 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-515) (-786) (-136))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1083 *3)) (|:| |pol2| (-1083 *3)) (|:| |prim| (-1083 *3)))) (-5 *1 (-408 *4 *3)) (-4 *3 (-27)) (-4 *3 (-406 *4)))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-589 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-515) (-786) (-136))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-589 (-1083 *5))) (|:| |prim| (-1083 *5)))) (-5 *1 (-408 *4 *5))))) +(-10 -7 (-15 -3665 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-589 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-589 |#2|))) (IF (|has| |#2| (-27)) (-15 -3665 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3222 (((-1174)) 18)) (-1749 (((-1083 (-383 (-523))) |#2| (-562 |#2|)) 40) (((-383 (-523)) |#2|) 23))) +(((-409 |#1| |#2|) (-10 -7 (-15 -1749 ((-383 (-523)) |#2|)) (-15 -1749 ((-1083 (-383 (-523))) |#2| (-562 |#2|))) (-15 -3222 ((-1174)))) (-13 (-786) (-515) (-964 (-523))) (-406 |#1|)) (T -409)) +((-3222 (*1 *2) (-12 (-4 *3 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-1174)) (-5 *1 (-409 *3 *4)) (-4 *4 (-406 *3)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *4 (-562 *3)) (-4 *3 (-406 *5)) (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-409 *5 *3)))) (-1749 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-383 (-523))) (-5 *1 (-409 *4 *3)) (-4 *3 (-406 *4))))) +(-10 -7 (-15 -1749 ((-383 (-523)) |#2|)) (-15 -1749 ((-1083 (-383 (-523))) |#2| (-562 |#2|))) (-15 -3222 ((-1174)))) +((-1308 (((-108) $) 28)) (-1319 (((-108) $) 30)) (-3690 (((-108) $) 31)) (-3744 (((-108) $) 34)) (-1589 (((-108) $) 29)) (-2179 (((-108) $) 33)) (-1691 (((-794) $) 18) (($ (-1070)) 27) (($ (-1087)) 23) (((-1087) $) 22) (((-1020) $) 21)) (-2311 (((-108) $) 32)) (-3941 (((-108) $ $) 15))) +(((-410) (-13 (-563 (-794)) (-10 -8 (-15 -1691 ($ (-1070))) (-15 -1691 ($ (-1087))) (-15 -1691 ((-1087) $)) (-15 -1691 ((-1020) $)) (-15 -1308 ((-108) $)) (-15 -1589 ((-108) $)) (-15 -3690 ((-108) $)) (-15 -2179 ((-108) $)) (-15 -3744 ((-108) $)) (-15 -2311 ((-108) $)) (-15 -1319 ((-108) $)) (-15 -3941 ((-108) $ $))))) (T -410)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-410)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-410)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-410)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-410)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-3941 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) +(-13 (-563 (-794)) (-10 -8 (-15 -1691 ($ (-1070))) (-15 -1691 ($ (-1087))) (-15 -1691 ((-1087) $)) (-15 -1691 ((-1020) $)) (-15 -1308 ((-108) $)) (-15 -1589 ((-108) $)) (-15 -3690 ((-108) $)) (-15 -2179 ((-108) $)) (-15 -3744 ((-108) $)) (-15 -2311 ((-108) $)) (-15 -1319 ((-108) $)) (-15 -3941 ((-108) $ $)))) +((-4154 (((-3 (-394 (-1083 (-383 (-523)))) "failed") |#3|) 68)) (-2373 (((-394 |#3|) |#3|) 33)) (-2385 (((-3 (-394 (-1083 (-47))) "failed") |#3|) 27 (|has| |#2| (-964 (-47))))) (-3383 (((-3 (|:| |overq| (-1083 (-383 (-523)))) (|:| |overan| (-1083 (-47))) (|:| -2453 (-108))) |#3|) 35))) +(((-411 |#1| |#2| |#3|) (-10 -7 (-15 -2373 ((-394 |#3|) |#3|)) (-15 -4154 ((-3 (-394 (-1083 (-383 (-523)))) "failed") |#3|)) (-15 -3383 ((-3 (|:| |overq| (-1083 (-383 (-523)))) (|:| |overan| (-1083 (-47))) (|:| -2453 (-108))) |#3|)) (IF (|has| |#2| (-964 (-47))) (-15 -2385 ((-3 (-394 (-1083 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-515) (-786) (-964 (-523))) (-406 |#1|) (-1145 |#2|)) (T -411)) +((-2385 (*1 *2 *3) (|partial| -12 (-4 *5 (-964 (-47))) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-394 (-1083 (-47)))) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1145 *5)))) (-3383 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-3 (|:| |overq| (-1083 (-383 (-523)))) (|:| |overan| (-1083 (-47))) (|:| -2453 (-108)))) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1145 *5)))) (-4154 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-394 (-1083 (-383 (-523))))) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1145 *5)))) (-2373 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-394 *3)) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1145 *5))))) +(-10 -7 (-15 -2373 ((-394 |#3|) |#3|)) (-15 -4154 ((-3 (-394 (-1083 (-383 (-523)))) "failed") |#3|)) (-15 -3383 ((-3 (|:| |overq| (-1083 (-383 (-523)))) (|:| |overan| (-1083 (-47))) (|:| -2453 (-108))) |#3|)) (IF (|has| |#2| (-964 (-47))) (-15 -2385 ((-3 (-394 (-1083 (-47))) "failed") |#3|)) |%noBranch|)) +((-1680 (((-108) $ $) NIL)) (-2674 (((-1070) $ (-1070)) NIL)) (-2949 (($ $ (-1070)) NIL)) (-1928 (((-1070) $) NIL)) (-2216 (((-364) (-364) (-364)) 17) (((-364) (-364)) 15)) (-2647 (($ (-364)) NIL) (($ (-364) (-1070)) NIL)) (-4198 (((-364) $) NIL)) (-2032 (((-1070) $) NIL)) (-2541 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2650 (((-1174) (-1070)) 9)) (-3566 (((-1174) (-1070)) 10)) (-1425 (((-1174)) 11)) (-1691 (((-794) $) NIL)) (-2667 (($ $) 35)) (-3941 (((-108) $ $) NIL))) +(((-412) (-13 (-340 (-364) (-1070)) (-10 -7 (-15 -2216 ((-364) (-364) (-364))) (-15 -2216 ((-364) (-364))) (-15 -2650 ((-1174) (-1070))) (-15 -3566 ((-1174) (-1070))) (-15 -1425 ((-1174)))))) (T -412)) +((-2216 (*1 *2 *2 *2) (-12 (-5 *2 (-364)) (-5 *1 (-412)))) (-2216 (*1 *2 *2) (-12 (-5 *2 (-364)) (-5 *1 (-412)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-412)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-412)))) (-1425 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-412))))) +(-13 (-340 (-364) (-1070)) (-10 -7 (-15 -2216 ((-364) (-364) (-364))) (-15 -2216 ((-364) (-364))) (-15 -2650 ((-1174) (-1070))) (-15 -3566 ((-1174) (-1070))) (-15 -1425 ((-1174))))) +((-1680 (((-108) $ $) NIL)) (-2357 (((-3 (|:| |fst| (-410)) (|:| -1495 "void")) $) 10)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2985 (($) 31)) (-1342 (($) 37)) (-2939 (($) 33)) (-1555 (($) 35)) (-2678 (($) 32)) (-3964 (($) 34)) (-1854 (($) 36)) (-3933 (((-108) $) 8)) (-3242 (((-589 (-883 (-523))) $) 16)) (-1704 (($ (-3 (|:| |fst| (-410)) (|:| -1495 "void")) (-589 (-1087)) (-108)) 25) (($ (-3 (|:| |fst| (-410)) (|:| -1495 "void")) (-589 (-883 (-523))) (-108)) 26)) (-1691 (((-794) $) 21) (($ (-410)) 28)) (-3941 (((-108) $ $) NIL))) +(((-413) (-13 (-1016) (-10 -8 (-15 -1691 ((-794) $)) (-15 -1691 ($ (-410))) (-15 -2357 ((-3 (|:| |fst| (-410)) (|:| -1495 "void")) $)) (-15 -3242 ((-589 (-883 (-523))) $)) (-15 -3933 ((-108) $)) (-15 -1704 ($ (-3 (|:| |fst| (-410)) (|:| -1495 "void")) (-589 (-1087)) (-108))) (-15 -1704 ($ (-3 (|:| |fst| (-410)) (|:| -1495 "void")) (-589 (-883 (-523))) (-108))) (-15 -2985 ($)) (-15 -2678 ($)) (-15 -2939 ($)) (-15 -1342 ($)) (-15 -3964 ($)) (-15 -1555 ($)) (-15 -1854 ($))))) (T -413)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-413)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-410)) (-5 *1 (-413)))) (-2357 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-5 *1 (-413)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-589 (-883 (-523)))) (-5 *1 (-413)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-413)))) (-1704 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-5 *3 (-589 (-1087))) (-5 *4 (-108)) (-5 *1 (-413)))) (-1704 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-108)) (-5 *1 (-413)))) (-2985 (*1 *1) (-5 *1 (-413))) (-2678 (*1 *1) (-5 *1 (-413))) (-2939 (*1 *1) (-5 *1 (-413))) (-1342 (*1 *1) (-5 *1 (-413))) (-3964 (*1 *1) (-5 *1 (-413))) (-1555 (*1 *1) (-5 *1 (-413))) (-1854 (*1 *1) (-5 *1 (-413)))) +(-13 (-1016) (-10 -8 (-15 -1691 ((-794) $)) (-15 -1691 ($ (-410))) (-15 -2357 ((-3 (|:| |fst| (-410)) (|:| -1495 "void")) $)) (-15 -3242 ((-589 (-883 (-523))) $)) (-15 -3933 ((-108) $)) (-15 -1704 ($ (-3 (|:| |fst| (-410)) (|:| -1495 "void")) (-589 (-1087)) (-108))) (-15 -1704 ($ (-3 (|:| |fst| (-410)) (|:| -1495 "void")) (-589 (-883 (-523))) (-108))) (-15 -2985 ($)) (-15 -2678 ($)) (-15 -2939 ($)) (-15 -1342 ($)) (-15 -3964 ($)) (-15 -1555 ($)) (-15 -1854 ($)))) +((-1680 (((-108) $ $) NIL)) (-4198 (((-1087) $) 8)) (-2032 (((-1070) $) 16)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 11)) (-3941 (((-108) $ $) 13))) +(((-414 |#1|) (-13 (-1016) (-10 -8 (-15 -4198 ((-1087) $)))) (-1087)) (T -414)) +((-4198 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-414 *3)) (-14 *3 *2)))) +(-13 (-1016) (-10 -8 (-15 -4198 ((-1087) $)))) +((-3826 (((-1174) $) 7)) (-1691 (((-794) $) 8) (($ (-1169 (-638))) 14) (($ (-589 (-306))) 13) (($ (-306)) 12) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 11))) (((-415) (-129)) (T -415)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-638))) (-4 *1 (-415)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-415)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-415)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) (-4 *1 (-415))))) -(-13 (-371) (-10 -8 (-15 -1458 ($ (-1168 (-638)))) (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-306))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))))) -(((-563 (-794)) . T) ((-371) . T) ((-1122) . T)) -((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 21) (((-3 $ "failed") (-1168 (-292 (-523)))) 19) (((-3 $ "failed") (-1168 (-883 (-355)))) 17) (((-3 $ "failed") (-1168 (-883 (-523)))) 15) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 13) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 11)) (-3474 (($ (-1168 (-292 (-355)))) 22) (($ (-1168 (-292 (-523)))) 20) (($ (-1168 (-883 (-355)))) 18) (($ (-1168 (-883 (-523)))) 16) (($ (-1168 (-383 (-883 (-355))))) 14) (($ (-1168 (-383 (-883 (-523))))) 12)) (-3394 (((-1173) $) 7)) (-1458 (((-794) $) 8) (($ (-589 (-306))) 25) (($ (-306)) 24) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 23))) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-638))) (-4 *1 (-415)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-415)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-415)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) (-4 *1 (-415))))) +(-13 (-371) (-10 -8 (-15 -1691 ($ (-1169 (-638)))) (-15 -1691 ($ (-589 (-306)))) (-15 -1691 ($ (-306))) (-15 -1691 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306)))))))) +(((-563 (-794)) . T) ((-371) . T) ((-1123) . T)) +((-1220 (((-3 $ "failed") (-1169 (-292 (-355)))) 21) (((-3 $ "failed") (-1169 (-292 (-523)))) 19) (((-3 $ "failed") (-1169 (-883 (-355)))) 17) (((-3 $ "failed") (-1169 (-883 (-523)))) 15) (((-3 $ "failed") (-1169 (-383 (-883 (-355))))) 13) (((-3 $ "failed") (-1169 (-383 (-883 (-523))))) 11)) (-3508 (($ (-1169 (-292 (-355)))) 22) (($ (-1169 (-292 (-523)))) 20) (($ (-1169 (-883 (-355)))) 18) (($ (-1169 (-883 (-523)))) 16) (($ (-1169 (-383 (-883 (-355))))) 14) (($ (-1169 (-383 (-883 (-523))))) 12)) (-3826 (((-1174) $) 7)) (-1691 (((-794) $) 8) (($ (-589 (-306))) 25) (($ (-306)) 24) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) 23))) (((-416) (-129)) (T -416)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-416)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-416)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) (-4 *1 (-416)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1168 (-292 (-355)))) (-4 *1 (-416)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168 (-292 (-355)))) (-4 *1 (-416)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1168 (-292 (-523)))) (-4 *1 (-416)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168 (-292 (-523)))) (-4 *1 (-416)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1168 (-883 (-355)))) (-4 *1 (-416)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168 (-883 (-355)))) (-4 *1 (-416)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1168 (-883 (-523)))) (-4 *1 (-416)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168 (-883 (-523)))) (-4 *1 (-416)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1168 (-383 (-883 (-355))))) (-4 *1 (-416)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168 (-383 (-883 (-355))))) (-4 *1 (-416)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1168 (-383 (-883 (-523))))) (-4 *1 (-416)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168 (-383 (-883 (-523))))) (-4 *1 (-416))))) -(-13 (-371) (-10 -8 (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-306))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))) (-15 -3474 ($ (-1168 (-292 (-355))))) (-15 -3517 ((-3 $ "failed") (-1168 (-292 (-355))))) (-15 -3474 ($ (-1168 (-292 (-523))))) (-15 -3517 ((-3 $ "failed") (-1168 (-292 (-523))))) (-15 -3474 ($ (-1168 (-883 (-355))))) (-15 -3517 ((-3 $ "failed") (-1168 (-883 (-355))))) (-15 -3474 ($ (-1168 (-883 (-523))))) (-15 -3517 ((-3 $ "failed") (-1168 (-883 (-523))))) (-15 -3474 ($ (-1168 (-383 (-883 (-355)))))) (-15 -3517 ((-3 $ "failed") (-1168 (-383 (-883 (-355)))))) (-15 -3474 ($ (-1168 (-383 (-883 (-523)))))) (-15 -3517 ((-3 $ "failed") (-1168 (-383 (-883 (-523)))))))) -(((-563 (-794)) . T) ((-371) . T) ((-1122) . T)) -((-2182 (((-108)) 17)) (-3860 (((-108) (-108)) 18)) (-1562 (((-108)) 13)) (-2453 (((-108) (-108)) 14)) (-1779 (((-108)) 15)) (-3839 (((-108) (-108)) 16)) (-3875 (((-852) (-852)) 21) (((-852)) 20)) (-1767 (((-710) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523))))) 42)) (-2317 (((-852) (-852)) 23) (((-852)) 22)) (-4103 (((-2 (|:| -3287 (-523)) (|:| -1979 (-589 |#1|))) |#1|) 62)) (-1396 (((-394 |#1|) (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523))))))) 124)) (-2550 (((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108)) 150)) (-3906 (((-394 |#1|) |#1| (-710) (-710)) 163) (((-394 |#1|) |#1| (-589 (-710)) (-710)) 160) (((-394 |#1|) |#1| (-589 (-710))) 162) (((-394 |#1|) |#1| (-710)) 161) (((-394 |#1|) |#1|) 159)) (-3872 (((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710) (-108)) 165) (((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710)) 166) (((-3 |#1| "failed") (-852) |#1| (-589 (-710))) 168) (((-3 |#1| "failed") (-852) |#1| (-710)) 167) (((-3 |#1| "failed") (-852) |#1|) 169)) (-1820 (((-394 |#1|) |#1| (-710) (-710)) 158) (((-394 |#1|) |#1| (-589 (-710)) (-710)) 154) (((-394 |#1|) |#1| (-589 (-710))) 156) (((-394 |#1|) |#1| (-710)) 155) (((-394 |#1|) |#1|) 153)) (-3286 (((-108) |#1|) 37)) (-1966 (((-677 (-710)) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523))))) 67)) (-1637 (((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108) (-1018 (-710)) (-710)) 152))) -(((-417 |#1|) (-10 -7 (-15 -1396 ((-394 |#1|) (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))))) (-15 -1966 ((-677 (-710)) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))))) (-15 -2317 ((-852))) (-15 -2317 ((-852) (-852))) (-15 -3875 ((-852))) (-15 -3875 ((-852) (-852))) (-15 -1767 ((-710) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))))) (-15 -4103 ((-2 (|:| -3287 (-523)) (|:| -1979 (-589 |#1|))) |#1|)) (-15 -2182 ((-108))) (-15 -3860 ((-108) (-108))) (-15 -1562 ((-108))) (-15 -2453 ((-108) (-108))) (-15 -3286 ((-108) |#1|)) (-15 -1779 ((-108))) (-15 -3839 ((-108) (-108))) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -1820 ((-394 |#1|) |#1| (-710))) (-15 -1820 ((-394 |#1|) |#1| (-589 (-710)))) (-15 -1820 ((-394 |#1|) |#1| (-589 (-710)) (-710))) (-15 -1820 ((-394 |#1|) |#1| (-710) (-710))) (-15 -3906 ((-394 |#1|) |#1|)) (-15 -3906 ((-394 |#1|) |#1| (-710))) (-15 -3906 ((-394 |#1|) |#1| (-589 (-710)))) (-15 -3906 ((-394 |#1|) |#1| (-589 (-710)) (-710))) (-15 -3906 ((-394 |#1|) |#1| (-710) (-710))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1|)) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-710))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710) (-108))) (-15 -2550 ((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108))) (-15 -1637 ((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108) (-1018 (-710)) (-710)))) (-1144 (-523))) (T -417)) -((-1637 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1018 (-710))) (-5 *6 (-710)) (-5 *2 (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-2550 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3872 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *6 (-108)) (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) (-3872 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) (-3872 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) (-3872 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-852)) (-5 *4 (-710)) (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) (-3872 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-852)) (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) (-3906 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3906 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3906 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-710))) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3906 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3906 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1820 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1820 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-710))) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1820 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1779 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3286 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-2453 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1562 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3860 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-2182 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-4103 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3287 (-523)) (|:| -1979 (-589 *3)))) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -1820 *4) (|:| -2299 (-523))))) (-4 *4 (-1144 (-523))) (-5 *2 (-710)) (-5 *1 (-417 *4)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3875 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-2317 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -1820 *4) (|:| -2299 (-523))))) (-4 *4 (-1144 (-523))) (-5 *2 (-677 (-710))) (-5 *1 (-417 *4)))) (-1396 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| *4) (|:| -1227 (-523))))))) (-4 *4 (-1144 (-523))) (-5 *2 (-394 *4)) (-5 *1 (-417 *4))))) -(-10 -7 (-15 -1396 ((-394 |#1|) (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))))) (-15 -1966 ((-677 (-710)) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))))) (-15 -2317 ((-852))) (-15 -2317 ((-852) (-852))) (-15 -3875 ((-852))) (-15 -3875 ((-852) (-852))) (-15 -1767 ((-710) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))))) (-15 -4103 ((-2 (|:| -3287 (-523)) (|:| -1979 (-589 |#1|))) |#1|)) (-15 -2182 ((-108))) (-15 -3860 ((-108) (-108))) (-15 -1562 ((-108))) (-15 -2453 ((-108) (-108))) (-15 -3286 ((-108) |#1|)) (-15 -1779 ((-108))) (-15 -3839 ((-108) (-108))) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -1820 ((-394 |#1|) |#1| (-710))) (-15 -1820 ((-394 |#1|) |#1| (-589 (-710)))) (-15 -1820 ((-394 |#1|) |#1| (-589 (-710)) (-710))) (-15 -1820 ((-394 |#1|) |#1| (-710) (-710))) (-15 -3906 ((-394 |#1|) |#1|)) (-15 -3906 ((-394 |#1|) |#1| (-710))) (-15 -3906 ((-394 |#1|) |#1| (-589 (-710)))) (-15 -3906 ((-394 |#1|) |#1| (-589 (-710)) (-710))) (-15 -3906 ((-394 |#1|) |#1| (-710) (-710))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1|)) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-710))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710) (-108))) (-15 -2550 ((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108))) (-15 -1637 ((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108) (-1018 (-710)) (-710)))) -((-3585 (((-523) |#2|) 48) (((-523) |#2| (-710)) 47)) (-2827 (((-523) |#2|) 55)) (-2559 ((|#3| |#2|) 25)) (-3892 ((|#3| |#2| (-852)) 14)) (-2996 ((|#3| |#2|) 15)) (-1913 ((|#3| |#2|) 9)) (-2510 ((|#3| |#2|) 10)) (-3480 ((|#3| |#2| (-852)) 62) ((|#3| |#2|) 30)) (-2564 (((-523) |#2|) 57))) -(((-418 |#1| |#2| |#3|) (-10 -7 (-15 -2564 ((-523) |#2|)) (-15 -3480 (|#3| |#2|)) (-15 -3480 (|#3| |#2| (-852))) (-15 -2827 ((-523) |#2|)) (-15 -3585 ((-523) |#2| (-710))) (-15 -3585 ((-523) |#2|)) (-15 -3892 (|#3| |#2| (-852))) (-15 -2559 (|#3| |#2|)) (-15 -1913 (|#3| |#2|)) (-15 -2510 (|#3| |#2|)) (-15 -2996 (|#3| |#2|))) (-973) (-1144 |#1|) (-13 (-380) (-964 |#1|) (-339) (-1108) (-261))) (T -418)) -((-2996 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-1913 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-2559 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-3892 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-4 *5 (-973)) (-4 *2 (-13 (-380) (-964 *5) (-339) (-1108) (-261))) (-5 *1 (-418 *5 *3 *2)) (-4 *3 (-1144 *5)))) (-3585 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) (-4 *3 (-1144 *4)) (-4 *5 (-13 (-380) (-964 *4) (-339) (-1108) (-261))))) (-3585 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *5 *3 *6)) (-4 *3 (-1144 *5)) (-4 *6 (-13 (-380) (-964 *5) (-339) (-1108) (-261))))) (-2827 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) (-4 *3 (-1144 *4)) (-4 *5 (-13 (-380) (-964 *4) (-339) (-1108) (-261))))) (-3480 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-4 *5 (-973)) (-4 *2 (-13 (-380) (-964 *5) (-339) (-1108) (-261))) (-5 *1 (-418 *5 *3 *2)) (-4 *3 (-1144 *5)))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-2564 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) (-4 *3 (-1144 *4)) (-4 *5 (-13 (-380) (-964 *4) (-339) (-1108) (-261)))))) -(-10 -7 (-15 -2564 ((-523) |#2|)) (-15 -3480 (|#3| |#2|)) (-15 -3480 (|#3| |#2| (-852))) (-15 -2827 ((-523) |#2|)) (-15 -3585 ((-523) |#2| (-710))) (-15 -3585 ((-523) |#2|)) (-15 -3892 (|#3| |#2| (-852))) (-15 -2559 (|#3| |#2|)) (-15 -1913 (|#3| |#2|)) (-15 -2510 (|#3| |#2|)) (-15 -2996 (|#3| |#2|))) -((-1898 ((|#2| (-1168 |#1|)) 36)) (-2962 ((|#2| |#2| |#1|) 49)) (-2572 ((|#2| |#2| |#1|) 41)) (-3631 ((|#2| |#2|) 38)) (-2132 (((-108) |#2|) 30)) (-1474 (((-589 |#2|) (-852) (-394 |#2|)) 16)) (-3872 ((|#2| (-852) (-394 |#2|)) 21)) (-1966 (((-677 (-710)) (-394 |#2|)) 25))) -(((-419 |#1| |#2|) (-10 -7 (-15 -2132 ((-108) |#2|)) (-15 -1898 (|#2| (-1168 |#1|))) (-15 -3631 (|#2| |#2|)) (-15 -2572 (|#2| |#2| |#1|)) (-15 -2962 (|#2| |#2| |#1|)) (-15 -1966 ((-677 (-710)) (-394 |#2|))) (-15 -3872 (|#2| (-852) (-394 |#2|))) (-15 -1474 ((-589 |#2|) (-852) (-394 |#2|)))) (-973) (-1144 |#1|)) (T -419)) -((-1474 (*1 *2 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-394 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-973)) (-5 *2 (-589 *6)) (-5 *1 (-419 *5 *6)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-394 *2)) (-4 *2 (-1144 *5)) (-5 *1 (-419 *5 *2)) (-4 *5 (-973)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-394 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-973)) (-5 *2 (-677 (-710))) (-5 *1 (-419 *4 *5)))) (-2962 (*1 *2 *2 *3) (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1144 *3)))) (-2572 (*1 *2 *2 *3) (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1144 *3)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1144 *3)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-973)) (-4 *2 (-1144 *4)) (-5 *1 (-419 *4 *2)))) (-2132 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-108)) (-5 *1 (-419 *4 *3)) (-4 *3 (-1144 *4))))) -(-10 -7 (-15 -2132 ((-108) |#2|)) (-15 -1898 (|#2| (-1168 |#1|))) (-15 -3631 (|#2| |#2|)) (-15 -2572 (|#2| |#2| |#1|)) (-15 -2962 (|#2| |#2| |#1|)) (-15 -1966 ((-677 (-710)) (-394 |#2|))) (-15 -3872 (|#2| (-852) (-394 |#2|))) (-15 -1474 ((-589 |#2|) (-852) (-394 |#2|)))) -((-3669 (((-710)) 41)) (-1317 (((-710)) 23 (|has| |#1| (-380))) (((-710) (-710)) 22 (|has| |#1| (-380)))) (-3222 (((-523) |#1|) 18 (|has| |#1| (-380)))) (-2328 (((-523) |#1|) 20 (|has| |#1| (-380)))) (-1803 (((-710)) 40) (((-710) (-710)) 39)) (-3646 ((|#1| (-710) (-523)) 29)) (-4024 (((-1173)) 43))) -(((-420 |#1|) (-10 -7 (-15 -3646 (|#1| (-710) (-523))) (-15 -1803 ((-710) (-710))) (-15 -1803 ((-710))) (-15 -3669 ((-710))) (-15 -4024 ((-1173))) (IF (|has| |#1| (-380)) (PROGN (-15 -2328 ((-523) |#1|)) (-15 -3222 ((-523) |#1|)) (-15 -1317 ((-710) (-710))) (-15 -1317 ((-710)))) |%noBranch|)) (-973)) (T -420)) -((-1317 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) (-1317 (*1 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) (-3222 (*1 *2 *3) (-12 (-5 *2 (-523)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) (-2328 (*1 *2 *3) (-12 (-5 *2 (-523)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) (-4024 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) (-3669 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) (-1803 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) (-3646 (*1 *2 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-523)) (-5 *1 (-420 *2)) (-4 *2 (-973))))) -(-10 -7 (-15 -3646 (|#1| (-710) (-523))) (-15 -1803 ((-710) (-710))) (-15 -1803 ((-710))) (-15 -3669 ((-710))) (-15 -4024 ((-1173))) (IF (|has| |#1| (-380)) (PROGN (-15 -2328 ((-523) |#1|)) (-15 -3222 ((-523) |#1|)) (-15 -1317 ((-710) (-710))) (-15 -1317 ((-710)))) |%noBranch|)) -((-3970 (((-589 (-523)) (-523)) 59)) (-2657 (((-108) (-155 (-523))) 63)) (-1820 (((-394 (-155 (-523))) (-155 (-523))) 58))) -(((-421) (-10 -7 (-15 -1820 ((-394 (-155 (-523))) (-155 (-523)))) (-15 -3970 ((-589 (-523)) (-523))) (-15 -2657 ((-108) (-155 (-523)))))) (T -421)) -((-2657 (*1 *2 *3) (-12 (-5 *3 (-155 (-523))) (-5 *2 (-108)) (-5 *1 (-421)))) (-3970 (*1 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-421)) (-5 *3 (-523)))) (-1820 (*1 *2 *3) (-12 (-5 *2 (-394 (-155 (-523)))) (-5 *1 (-421)) (-5 *3 (-155 (-523)))))) -(-10 -7 (-15 -1820 ((-394 (-155 (-523))) (-155 (-523)))) (-15 -3970 ((-589 (-523)) (-523))) (-15 -2657 ((-108) (-155 (-523))))) -((-3777 ((|#4| |#4| (-589 |#4|)) 59)) (-2343 (((-589 |#4|) (-589 |#4|) (-1070) (-1070)) 17) (((-589 |#4|) (-589 |#4|) (-1070)) 16) (((-589 |#4|) (-589 |#4|)) 11))) -(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3777 (|#4| |#4| (-589 |#4|))) (-15 -2343 ((-589 |#4|) (-589 |#4|))) (-15 -2343 ((-589 |#4|) (-589 |#4|) (-1070))) (-15 -2343 ((-589 |#4|) (-589 |#4|) (-1070) (-1070)))) (-284) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -422)) -((-2343 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-422 *4 *5 *6 *7)))) (-2343 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-422 *4 *5 *6 *7)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-422 *3 *4 *5 *6)))) (-3777 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-422 *4 *5 *6 *2))))) -(-10 -7 (-15 -3777 (|#4| |#4| (-589 |#4|))) (-15 -2343 ((-589 |#4|) (-589 |#4|))) (-15 -2343 ((-589 |#4|) (-589 |#4|) (-1070))) (-15 -2343 ((-589 |#4|) (-589 |#4|) (-1070) (-1070)))) -((-2242 (((-589 (-589 |#4|)) (-589 |#4|) (-108)) 71) (((-589 (-589 |#4|)) (-589 |#4|)) 70) (((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|) (-108)) 64) (((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|)) 65)) (-2938 (((-589 (-589 |#4|)) (-589 |#4|) (-108)) 41) (((-589 (-589 |#4|)) (-589 |#4|)) 61))) -(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2938 ((-589 (-589 |#4|)) (-589 |#4|))) (-15 -2938 ((-589 (-589 |#4|)) (-589 |#4|) (-108))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|) (-108))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|) (-108)))) (-13 (-284) (-136)) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -423)) -((-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) (-2242 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2242 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) (-2242 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2938 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) (-2938 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) -(-10 -7 (-15 -2938 ((-589 (-589 |#4|)) (-589 |#4|))) (-15 -2938 ((-589 (-589 |#4|)) (-589 |#4|) (-108))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|) (-108))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|) (-108)))) -((-3315 (((-710) |#4|) 12)) (-1282 (((-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|))) |#4| (-710) (-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|)))) 31)) (-2846 (((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2920 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-3740 ((|#4| |#4| (-589 |#4|)) 40)) (-2677 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-589 |#4|)) 69)) (-2772 (((-1173) |#4|) 42)) (-2102 (((-1173) (-589 |#4|)) 51)) (-1999 (((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523)) 48)) (-1488 (((-1173) (-523)) 77)) (-3361 (((-589 |#4|) (-589 |#4|)) 75)) (-1658 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|)) |#4| (-710)) 25)) (-2190 (((-523) |#4|) 76)) (-4195 ((|#4| |#4|) 29)) (-3954 (((-589 |#4|) (-589 |#4|) (-523) (-523)) 55)) (-3857 (((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523) (-523)) 87)) (-2185 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3306 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-3670 (((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-2487 (((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3866 (((-108) |#2| |#2|) 56)) (-1493 (((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1300 (((-108) |#2| |#2| |#2| |#2|) 59)) (-3667 ((|#4| |#4| (-589 |#4|)) 70))) -(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3667 (|#4| |#4| (-589 |#4|))) (-15 -3740 (|#4| |#4| (-589 |#4|))) (-15 -3954 ((-589 |#4|) (-589 |#4|) (-523) (-523))) (-15 -3306 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3866 ((-108) |#2| |#2|)) (-15 -1300 ((-108) |#2| |#2| |#2| |#2|)) (-15 -1493 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2487 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3670 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2677 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-589 |#4|))) (-15 -4195 (|#4| |#4|)) (-15 -1282 ((-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|))) |#4| (-710) (-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|))))) (-15 -2920 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2846 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3361 ((-589 |#4|) (-589 |#4|))) (-15 -2190 ((-523) |#4|)) (-15 -2772 ((-1173) |#4|)) (-15 -1999 ((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523))) (-15 -3857 ((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523) (-523))) (-15 -2102 ((-1173) (-589 |#4|))) (-15 -1488 ((-1173) (-523))) (-15 -2185 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1658 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|)) |#4| (-710))) (-15 -3315 ((-710) |#4|))) (-427) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -424)) -((-3315 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-710)) (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-1658 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-710)) (|:| -1480 *4))) (-5 *5 (-710)) (-4 *4 (-880 *6 *7 *8)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-424 *6 *7 *8 *4)))) (-2185 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-732)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-424 *4 *5 *6 *7)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-523)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1173)) (-5 *1 (-424 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1173)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3857 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-710)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-732)) (-4 *4 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *4)))) (-1999 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-710)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-732)) (-4 *4 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *4)))) (-2772 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1173)) (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-2190 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-523)) (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *6)))) (-2846 (*1 *2 *2 *2) (-12 (-5 *2 (-589 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-710)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-732)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *6)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-732)) (-4 *2 (-880 *4 *5 *6)) (-5 *1 (-424 *4 *5 *6 *2)) (-4 *4 (-427)) (-4 *6 (-786)))) (-1282 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 *3)))) (-5 *4 (-710)) (-4 *3 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *3)))) (-4195 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-424 *5 *6 *7 *3)))) (-3670 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-710)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-732)) (-4 *6 (-880 *4 *3 *5)) (-4 *4 (-427)) (-4 *5 (-786)) (-5 *1 (-424 *4 *3 *5 *6)))) (-2487 (*1 *2 *2) (-12 (-5 *2 (-589 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-710)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-732)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *6)))) (-1493 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-732)) (-4 *3 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *3)))) (-1300 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-427)) (-4 *3 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-424 *4 *3 *5 *6)) (-4 *6 (-880 *4 *3 *5)))) (-3866 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *3 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-424 *4 *3 *5 *6)) (-4 *6 (-880 *4 *3 *5)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-732)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3954 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-523)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3740 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *2)))) (-3667 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *2))))) -(-10 -7 (-15 -3667 (|#4| |#4| (-589 |#4|))) (-15 -3740 (|#4| |#4| (-589 |#4|))) (-15 -3954 ((-589 |#4|) (-589 |#4|) (-523) (-523))) (-15 -3306 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3866 ((-108) |#2| |#2|)) (-15 -1300 ((-108) |#2| |#2| |#2| |#2|)) (-15 -1493 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2487 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3670 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2677 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-589 |#4|))) (-15 -4195 (|#4| |#4|)) (-15 -1282 ((-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|))) |#4| (-710) (-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|))))) (-15 -2920 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2846 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3361 ((-589 |#4|) (-589 |#4|))) (-15 -2190 ((-523) |#4|)) (-15 -2772 ((-1173) |#4|)) (-15 -1999 ((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523))) (-15 -3857 ((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523) (-523))) (-15 -2102 ((-1173) (-589 |#4|))) (-15 -1488 ((-1173) (-523))) (-15 -2185 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1658 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|)) |#4| (-710))) (-15 -3315 ((-710) |#4|))) -((-4078 ((|#4| |#4| (-589 |#4|)) 22 (|has| |#1| (-339)))) (-1896 (((-589 |#4|) (-589 |#4|) (-1070) (-1070)) 42) (((-589 |#4|) (-589 |#4|) (-1070)) 41) (((-589 |#4|) (-589 |#4|)) 36))) -(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1896 ((-589 |#4|) (-589 |#4|))) (-15 -1896 ((-589 |#4|) (-589 |#4|) (-1070))) (-15 -1896 ((-589 |#4|) (-589 |#4|) (-1070) (-1070))) (IF (|has| |#1| (-339)) (-15 -4078 (|#4| |#4| (-589 |#4|))) |%noBranch|)) (-427) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -425)) -((-4078 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-339)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-425 *4 *5 *6 *2)))) (-1896 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-425 *4 *5 *6 *7)))) (-1896 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-425 *4 *5 *6 *7)))) (-1896 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-425 *3 *4 *5 *6))))) -(-10 -7 (-15 -1896 ((-589 |#4|) (-589 |#4|))) (-15 -1896 ((-589 |#4|) (-589 |#4|) (-1070))) (-15 -1896 ((-589 |#4|) (-589 |#4|) (-1070) (-1070))) (IF (|has| |#1| (-339)) (-15 -4078 (|#4| |#4| (-589 |#4|))) |%noBranch|)) -((-3244 (($ $ $) 14) (($ (-589 $)) 21)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 41)) (-3278 (($ $ $) NIL) (($ (-589 $)) 22))) -(((-426 |#1|) (-10 -8 (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3244 (|#1| (-589 |#1|))) (-15 -3244 (|#1| |#1| |#1|)) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|))) (-427)) (T -426)) -NIL -(-10 -8 (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3244 (|#1| (-589 |#1|))) (-15 -3244 (|#1| |#1| |#1|)) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-3746 (((-3 $ "failed") $ $) 42)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-416)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-416)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) (-4 *1 (-416)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-1169 (-292 (-355)))) (-4 *1 (-416)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169 (-292 (-355)))) (-4 *1 (-416)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-1169 (-292 (-523)))) (-4 *1 (-416)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169 (-292 (-523)))) (-4 *1 (-416)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-1169 (-883 (-355)))) (-4 *1 (-416)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169 (-883 (-355)))) (-4 *1 (-416)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-1169 (-883 (-523)))) (-4 *1 (-416)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169 (-883 (-523)))) (-4 *1 (-416)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-1169 (-383 (-883 (-355))))) (-4 *1 (-416)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169 (-383 (-883 (-355))))) (-4 *1 (-416)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-1169 (-383 (-883 (-523))))) (-4 *1 (-416)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169 (-383 (-883 (-523))))) (-4 *1 (-416))))) +(-13 (-371) (-10 -8 (-15 -1691 ($ (-589 (-306)))) (-15 -1691 ($ (-306))) (-15 -1691 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306)))))) (-15 -3508 ($ (-1169 (-292 (-355))))) (-15 -1220 ((-3 $ "failed") (-1169 (-292 (-355))))) (-15 -3508 ($ (-1169 (-292 (-523))))) (-15 -1220 ((-3 $ "failed") (-1169 (-292 (-523))))) (-15 -3508 ($ (-1169 (-883 (-355))))) (-15 -1220 ((-3 $ "failed") (-1169 (-883 (-355))))) (-15 -3508 ($ (-1169 (-883 (-523))))) (-15 -1220 ((-3 $ "failed") (-1169 (-883 (-523))))) (-15 -3508 ($ (-1169 (-383 (-883 (-355)))))) (-15 -1220 ((-3 $ "failed") (-1169 (-383 (-883 (-355)))))) (-15 -3508 ($ (-1169 (-383 (-883 (-523)))))) (-15 -1220 ((-3 $ "failed") (-1169 (-383 (-883 (-523)))))))) +(((-563 (-794)) . T) ((-371) . T) ((-1123) . T)) +((-3825 (((-108)) 17)) (-1562 (((-108) (-108)) 18)) (-3918 (((-108)) 13)) (-1762 (((-108) (-108)) 14)) (-2251 (((-108)) 15)) (-2522 (((-108) (-108)) 16)) (-1706 (((-852) (-852)) 21) (((-852)) 20)) (-2170 (((-710) (-589 (-2 (|:| -2424 |#1|) (|:| -2640 (-523))))) 42)) (-2792 (((-852) (-852)) 23) (((-852)) 22)) (-3091 (((-2 (|:| -4022 (-523)) (|:| -3491 (-589 |#1|))) |#1|) 62)) (-2878 (((-394 |#1|) (-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| |#1|) (|:| -1787 (-523))))))) 124)) (-3218 (((-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| |#1|) (|:| -1787 (-523)))))) |#1| (-108)) 150)) (-1982 (((-394 |#1|) |#1| (-710) (-710)) 163) (((-394 |#1|) |#1| (-589 (-710)) (-710)) 160) (((-394 |#1|) |#1| (-589 (-710))) 162) (((-394 |#1|) |#1| (-710)) 161) (((-394 |#1|) |#1|) 159)) (-1673 (((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710) (-108)) 165) (((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710)) 166) (((-3 |#1| "failed") (-852) |#1| (-589 (-710))) 168) (((-3 |#1| "failed") (-852) |#1| (-710)) 167) (((-3 |#1| "failed") (-852) |#1|) 169)) (-2424 (((-394 |#1|) |#1| (-710) (-710)) 158) (((-394 |#1|) |#1| (-589 (-710)) (-710)) 154) (((-394 |#1|) |#1| (-589 (-710))) 156) (((-394 |#1|) |#1| (-710)) 155) (((-394 |#1|) |#1|) 153)) (-4010 (((-108) |#1|) 37)) (-3358 (((-677 (-710)) (-589 (-2 (|:| -2424 |#1|) (|:| -2640 (-523))))) 67)) (-3417 (((-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| |#1|) (|:| -1787 (-523)))))) |#1| (-108) (-1018 (-710)) (-710)) 152))) +(((-417 |#1|) (-10 -7 (-15 -2878 ((-394 |#1|) (-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| |#1|) (|:| -1787 (-523)))))))) (-15 -3358 ((-677 (-710)) (-589 (-2 (|:| -2424 |#1|) (|:| -2640 (-523)))))) (-15 -2792 ((-852))) (-15 -2792 ((-852) (-852))) (-15 -1706 ((-852))) (-15 -1706 ((-852) (-852))) (-15 -2170 ((-710) (-589 (-2 (|:| -2424 |#1|) (|:| -2640 (-523)))))) (-15 -3091 ((-2 (|:| -4022 (-523)) (|:| -3491 (-589 |#1|))) |#1|)) (-15 -3825 ((-108))) (-15 -1562 ((-108) (-108))) (-15 -3918 ((-108))) (-15 -1762 ((-108) (-108))) (-15 -4010 ((-108) |#1|)) (-15 -2251 ((-108))) (-15 -2522 ((-108) (-108))) (-15 -2424 ((-394 |#1|) |#1|)) (-15 -2424 ((-394 |#1|) |#1| (-710))) (-15 -2424 ((-394 |#1|) |#1| (-589 (-710)))) (-15 -2424 ((-394 |#1|) |#1| (-589 (-710)) (-710))) (-15 -2424 ((-394 |#1|) |#1| (-710) (-710))) (-15 -1982 ((-394 |#1|) |#1|)) (-15 -1982 ((-394 |#1|) |#1| (-710))) (-15 -1982 ((-394 |#1|) |#1| (-589 (-710)))) (-15 -1982 ((-394 |#1|) |#1| (-589 (-710)) (-710))) (-15 -1982 ((-394 |#1|) |#1| (-710) (-710))) (-15 -1673 ((-3 |#1| "failed") (-852) |#1|)) (-15 -1673 ((-3 |#1| "failed") (-852) |#1| (-710))) (-15 -1673 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)))) (-15 -1673 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710))) (-15 -1673 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710) (-108))) (-15 -3218 ((-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| |#1|) (|:| -1787 (-523)))))) |#1| (-108))) (-15 -3417 ((-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| |#1|) (|:| -1787 (-523)))))) |#1| (-108) (-1018 (-710)) (-710)))) (-1145 (-523))) (T -417)) +((-3417 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1018 (-710))) (-5 *6 (-710)) (-5 *2 (-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| *3) (|:| -1787 (-523))))))) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| *3) (|:| -1787 (-523))))))) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-1673 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *6 (-108)) (-5 *1 (-417 *2)) (-4 *2 (-1145 (-523))))) (-1673 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *1 (-417 *2)) (-4 *2 (-1145 (-523))))) (-1673 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *1 (-417 *2)) (-4 *2 (-1145 (-523))))) (-1673 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-852)) (-5 *4 (-710)) (-5 *1 (-417 *2)) (-4 *2 (-1145 (-523))))) (-1673 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-852)) (-5 *1 (-417 *2)) (-4 *2 (-1145 (-523))))) (-1982 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-1982 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-1982 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-710))) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-1982 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-1982 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-2424 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-2424 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-710))) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-2424 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-2522 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-2251 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-4010 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-1762 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-3918 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-3825 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-3091 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4022 (-523)) (|:| -3491 (-589 *3)))) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -2424 *4) (|:| -2640 (-523))))) (-4 *4 (-1145 (-523))) (-5 *2 (-710)) (-5 *1 (-417 *4)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-1706 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-2792 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-2792 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -2424 *4) (|:| -2640 (-523))))) (-4 *4 (-1145 (-523))) (-5 *2 (-677 (-710))) (-5 *1 (-417 *4)))) (-2878 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| *4) (|:| -1787 (-523))))))) (-4 *4 (-1145 (-523))) (-5 *2 (-394 *4)) (-5 *1 (-417 *4))))) +(-10 -7 (-15 -2878 ((-394 |#1|) (-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| |#1|) (|:| -1787 (-523)))))))) (-15 -3358 ((-677 (-710)) (-589 (-2 (|:| -2424 |#1|) (|:| -2640 (-523)))))) (-15 -2792 ((-852))) (-15 -2792 ((-852) (-852))) (-15 -1706 ((-852))) (-15 -1706 ((-852) (-852))) (-15 -2170 ((-710) (-589 (-2 (|:| -2424 |#1|) (|:| -2640 (-523)))))) (-15 -3091 ((-2 (|:| -4022 (-523)) (|:| -3491 (-589 |#1|))) |#1|)) (-15 -3825 ((-108))) (-15 -1562 ((-108) (-108))) (-15 -3918 ((-108))) (-15 -1762 ((-108) (-108))) (-15 -4010 ((-108) |#1|)) (-15 -2251 ((-108))) (-15 -2522 ((-108) (-108))) (-15 -2424 ((-394 |#1|) |#1|)) (-15 -2424 ((-394 |#1|) |#1| (-710))) (-15 -2424 ((-394 |#1|) |#1| (-589 (-710)))) (-15 -2424 ((-394 |#1|) |#1| (-589 (-710)) (-710))) (-15 -2424 ((-394 |#1|) |#1| (-710) (-710))) (-15 -1982 ((-394 |#1|) |#1|)) (-15 -1982 ((-394 |#1|) |#1| (-710))) (-15 -1982 ((-394 |#1|) |#1| (-589 (-710)))) (-15 -1982 ((-394 |#1|) |#1| (-589 (-710)) (-710))) (-15 -1982 ((-394 |#1|) |#1| (-710) (-710))) (-15 -1673 ((-3 |#1| "failed") (-852) |#1|)) (-15 -1673 ((-3 |#1| "failed") (-852) |#1| (-710))) (-15 -1673 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)))) (-15 -1673 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710))) (-15 -1673 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710) (-108))) (-15 -3218 ((-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| |#1|) (|:| -1787 (-523)))))) |#1| (-108))) (-15 -3417 ((-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| |#1|) (|:| -1787 (-523)))))) |#1| (-108) (-1018 (-710)) (-710)))) +((-3880 (((-523) |#2|) 48) (((-523) |#2| (-710)) 47)) (-4090 (((-523) |#2|) 55)) (-3301 ((|#3| |#2|) 25)) (-1863 ((|#3| |#2| (-852)) 14)) (-2616 ((|#3| |#2|) 15)) (-4104 ((|#3| |#2|) 9)) (-1933 ((|#3| |#2|) 10)) (-2252 ((|#3| |#2| (-852)) 62) ((|#3| |#2|) 30)) (-3348 (((-523) |#2|) 57))) +(((-418 |#1| |#2| |#3|) (-10 -7 (-15 -3348 ((-523) |#2|)) (-15 -2252 (|#3| |#2|)) (-15 -2252 (|#3| |#2| (-852))) (-15 -4090 ((-523) |#2|)) (-15 -3880 ((-523) |#2| (-710))) (-15 -3880 ((-523) |#2|)) (-15 -1863 (|#3| |#2| (-852))) (-15 -3301 (|#3| |#2|)) (-15 -4104 (|#3| |#2|)) (-15 -1933 (|#3| |#2|)) (-15 -2616 (|#3| |#2|))) (-973) (-1145 |#1|) (-13 (-380) (-964 |#1|) (-339) (-1109) (-261))) (T -418)) +((-2616 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1109) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1145 *4)))) (-1933 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1109) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1145 *4)))) (-4104 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1109) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1145 *4)))) (-3301 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1109) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1145 *4)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-4 *5 (-973)) (-4 *2 (-13 (-380) (-964 *5) (-339) (-1109) (-261))) (-5 *1 (-418 *5 *3 *2)) (-4 *3 (-1145 *5)))) (-3880 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) (-4 *3 (-1145 *4)) (-4 *5 (-13 (-380) (-964 *4) (-339) (-1109) (-261))))) (-3880 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *5 *3 *6)) (-4 *3 (-1145 *5)) (-4 *6 (-13 (-380) (-964 *5) (-339) (-1109) (-261))))) (-4090 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) (-4 *3 (-1145 *4)) (-4 *5 (-13 (-380) (-964 *4) (-339) (-1109) (-261))))) (-2252 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-4 *5 (-973)) (-4 *2 (-13 (-380) (-964 *5) (-339) (-1109) (-261))) (-5 *1 (-418 *5 *3 *2)) (-4 *3 (-1145 *5)))) (-2252 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1109) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1145 *4)))) (-3348 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) (-4 *3 (-1145 *4)) (-4 *5 (-13 (-380) (-964 *4) (-339) (-1109) (-261)))))) +(-10 -7 (-15 -3348 ((-523) |#2|)) (-15 -2252 (|#3| |#2|)) (-15 -2252 (|#3| |#2| (-852))) (-15 -4090 ((-523) |#2|)) (-15 -3880 ((-523) |#2| (-710))) (-15 -3880 ((-523) |#2|)) (-15 -1863 (|#3| |#2| (-852))) (-15 -3301 (|#3| |#2|)) (-15 -4104 (|#3| |#2|)) (-15 -1933 (|#3| |#2|)) (-15 -2616 (|#3| |#2|))) +((-3924 ((|#2| (-1169 |#1|)) 36)) (-2866 ((|#2| |#2| |#1|) 49)) (-3424 ((|#2| |#2| |#1|) 41)) (-3700 ((|#2| |#2|) 38)) (-1543 (((-108) |#2|) 30)) (-1325 (((-589 |#2|) (-852) (-394 |#2|)) 16)) (-1673 ((|#2| (-852) (-394 |#2|)) 21)) (-3358 (((-677 (-710)) (-394 |#2|)) 25))) +(((-419 |#1| |#2|) (-10 -7 (-15 -1543 ((-108) |#2|)) (-15 -3924 (|#2| (-1169 |#1|))) (-15 -3700 (|#2| |#2|)) (-15 -3424 (|#2| |#2| |#1|)) (-15 -2866 (|#2| |#2| |#1|)) (-15 -3358 ((-677 (-710)) (-394 |#2|))) (-15 -1673 (|#2| (-852) (-394 |#2|))) (-15 -1325 ((-589 |#2|) (-852) (-394 |#2|)))) (-973) (-1145 |#1|)) (T -419)) +((-1325 (*1 *2 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-394 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-973)) (-5 *2 (-589 *6)) (-5 *1 (-419 *5 *6)))) (-1673 (*1 *2 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-394 *2)) (-4 *2 (-1145 *5)) (-5 *1 (-419 *5 *2)) (-4 *5 (-973)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-394 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-973)) (-5 *2 (-677 (-710))) (-5 *1 (-419 *4 *5)))) (-2866 (*1 *2 *2 *3) (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1145 *3)))) (-3424 (*1 *2 *2 *3) (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1145 *3)))) (-3700 (*1 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1145 *3)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-973)) (-4 *2 (-1145 *4)) (-5 *1 (-419 *4 *2)))) (-1543 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-108)) (-5 *1 (-419 *4 *3)) (-4 *3 (-1145 *4))))) +(-10 -7 (-15 -1543 ((-108) |#2|)) (-15 -3924 (|#2| (-1169 |#1|))) (-15 -3700 (|#2| |#2|)) (-15 -3424 (|#2| |#2| |#1|)) (-15 -2866 (|#2| |#2| |#1|)) (-15 -3358 ((-677 (-710)) (-394 |#2|))) (-15 -1673 (|#2| (-852) (-394 |#2|))) (-15 -1325 ((-589 |#2|) (-852) (-394 |#2|)))) +((-3458 (((-710)) 41)) (-3277 (((-710)) 23 (|has| |#1| (-380))) (((-710) (-710)) 22 (|has| |#1| (-380)))) (-3504 (((-523) |#1|) 18 (|has| |#1| (-380)))) (-2894 (((-523) |#1|) 20 (|has| |#1| (-380)))) (-2463 (((-710)) 40) (((-710) (-710)) 39)) (-3259 ((|#1| (-710) (-523)) 29)) (-3627 (((-1174)) 43))) +(((-420 |#1|) (-10 -7 (-15 -3259 (|#1| (-710) (-523))) (-15 -2463 ((-710) (-710))) (-15 -2463 ((-710))) (-15 -3458 ((-710))) (-15 -3627 ((-1174))) (IF (|has| |#1| (-380)) (PROGN (-15 -2894 ((-523) |#1|)) (-15 -3504 ((-523) |#1|)) (-15 -3277 ((-710) (-710))) (-15 -3277 ((-710)))) |%noBranch|)) (-973)) (T -420)) +((-3277 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) (-3277 (*1 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) (-3504 (*1 *2 *3) (-12 (-5 *2 (-523)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) (-2894 (*1 *2 *3) (-12 (-5 *2 (-523)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) (-3627 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) (-3458 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) (-2463 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) (-2463 (*1 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) (-3259 (*1 *2 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-523)) (-5 *1 (-420 *2)) (-4 *2 (-973))))) +(-10 -7 (-15 -3259 (|#1| (-710) (-523))) (-15 -2463 ((-710) (-710))) (-15 -2463 ((-710))) (-15 -3458 ((-710))) (-15 -3627 ((-1174))) (IF (|has| |#1| (-380)) (PROGN (-15 -2894 ((-523) |#1|)) (-15 -3504 ((-523) |#1|)) (-15 -3277 ((-710) (-710))) (-15 -3277 ((-710)))) |%noBranch|)) +((-1435 (((-589 (-523)) (-523)) 61)) (-3049 (((-108) (-155 (-523))) 65)) (-2424 (((-394 (-155 (-523))) (-155 (-523))) 60))) +(((-421) (-10 -7 (-15 -2424 ((-394 (-155 (-523))) (-155 (-523)))) (-15 -1435 ((-589 (-523)) (-523))) (-15 -3049 ((-108) (-155 (-523)))))) (T -421)) +((-3049 (*1 *2 *3) (-12 (-5 *3 (-155 (-523))) (-5 *2 (-108)) (-5 *1 (-421)))) (-1435 (*1 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-421)) (-5 *3 (-523)))) (-2424 (*1 *2 *3) (-12 (-5 *2 (-394 (-155 (-523)))) (-5 *1 (-421)) (-5 *3 (-155 (-523)))))) +(-10 -7 (-15 -2424 ((-394 (-155 (-523))) (-155 (-523)))) (-15 -1435 ((-589 (-523)) (-523))) (-15 -3049 ((-108) (-155 (-523))))) +((-2013 ((|#4| |#4| (-589 |#4|)) 61)) (-3023 (((-589 |#4|) (-589 |#4|) (-1070) (-1070)) 17) (((-589 |#4|) (-589 |#4|) (-1070)) 16) (((-589 |#4|) (-589 |#4|)) 11))) +(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2013 (|#4| |#4| (-589 |#4|))) (-15 -3023 ((-589 |#4|) (-589 |#4|))) (-15 -3023 ((-589 |#4|) (-589 |#4|) (-1070))) (-15 -3023 ((-589 |#4|) (-589 |#4|) (-1070) (-1070)))) (-284) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -422)) +((-3023 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-422 *4 *5 *6 *7)))) (-3023 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-422 *4 *5 *6 *7)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-422 *3 *4 *5 *6)))) (-2013 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-422 *4 *5 *6 *2))))) +(-10 -7 (-15 -2013 (|#4| |#4| (-589 |#4|))) (-15 -3023 ((-589 |#4|) (-589 |#4|))) (-15 -3023 ((-589 |#4|) (-589 |#4|) (-1070))) (-15 -3023 ((-589 |#4|) (-589 |#4|) (-1070) (-1070)))) +((-3220 (((-589 (-589 |#4|)) (-589 |#4|) (-108)) 72) (((-589 (-589 |#4|)) (-589 |#4|)) 71) (((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|) (-108)) 65) (((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|)) 66)) (-2671 (((-589 (-589 |#4|)) (-589 |#4|) (-108)) 42) (((-589 (-589 |#4|)) (-589 |#4|)) 62))) +(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2671 ((-589 (-589 |#4|)) (-589 |#4|))) (-15 -2671 ((-589 (-589 |#4|)) (-589 |#4|) (-108))) (-15 -3220 ((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|))) (-15 -3220 ((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|) (-108))) (-15 -3220 ((-589 (-589 |#4|)) (-589 |#4|))) (-15 -3220 ((-589 (-589 |#4|)) (-589 |#4|) (-108)))) (-13 (-284) (-136)) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -423)) +((-3220 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) (-3220 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-3220 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) (-3220 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2671 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) (-2671 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) +(-10 -7 (-15 -2671 ((-589 (-589 |#4|)) (-589 |#4|))) (-15 -2671 ((-589 (-589 |#4|)) (-589 |#4|) (-108))) (-15 -3220 ((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|))) (-15 -3220 ((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|) (-108))) (-15 -3220 ((-589 (-589 |#4|)) (-589 |#4|))) (-15 -3220 ((-589 (-589 |#4|)) (-589 |#4|) (-108)))) +((-1277 (((-710) |#4|) 12)) (-4197 (((-589 (-2 (|:| |totdeg| (-710)) (|:| -1385 |#4|))) |#4| (-710) (-589 (-2 (|:| |totdeg| (-710)) (|:| -1385 |#4|)))) 31)) (-1240 (((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-3673 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-2880 ((|#4| |#4| (-589 |#4|)) 40)) (-2071 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-589 |#4|)) 70)) (-1813 (((-1174) |#4|) 42)) (-2379 (((-1174) (-589 |#4|)) 51)) (-2552 (((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523)) 48)) (-1463 (((-1174) (-523)) 79)) (-3451 (((-589 |#4|) (-589 |#4|)) 77)) (-3605 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-710)) (|:| -1385 |#4|)) |#4| (-710)) 25)) (-3919 (((-523) |#4|) 78)) (-4057 ((|#4| |#4|) 29)) (-1265 (((-589 |#4|) (-589 |#4|) (-523) (-523)) 56)) (-1544 (((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523) (-523)) 89)) (-3861 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-4205 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-3468 (((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-3869 (((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1615 (((-108) |#2| |#2|) 57)) (-1510 (((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3111 (((-108) |#2| |#2| |#2| |#2|) 60)) (-3434 ((|#4| |#4| (-589 |#4|)) 71))) +(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3434 (|#4| |#4| (-589 |#4|))) (-15 -2880 (|#4| |#4| (-589 |#4|))) (-15 -1265 ((-589 |#4|) (-589 |#4|) (-523) (-523))) (-15 -4205 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1615 ((-108) |#2| |#2|)) (-15 -3111 ((-108) |#2| |#2| |#2| |#2|)) (-15 -1510 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3869 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3468 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2071 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-589 |#4|))) (-15 -4057 (|#4| |#4|)) (-15 -4197 ((-589 (-2 (|:| |totdeg| (-710)) (|:| -1385 |#4|))) |#4| (-710) (-589 (-2 (|:| |totdeg| (-710)) (|:| -1385 |#4|))))) (-15 -3673 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1240 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3451 ((-589 |#4|) (-589 |#4|))) (-15 -3919 ((-523) |#4|)) (-15 -1813 ((-1174) |#4|)) (-15 -2552 ((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523))) (-15 -1544 ((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523) (-523))) (-15 -2379 ((-1174) (-589 |#4|))) (-15 -1463 ((-1174) (-523))) (-15 -3861 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3605 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-710)) (|:| -1385 |#4|)) |#4| (-710))) (-15 -1277 ((-710) |#4|))) (-427) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -424)) +((-1277 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-710)) (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-3605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-710)) (|:| -1385 *4))) (-5 *5 (-710)) (-4 *4 (-880 *6 *7 *8)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-424 *6 *7 *8 *4)))) (-3861 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-732)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-424 *4 *5 *6 *7)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-523)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1174)) (-5 *1 (-424 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1174)) (-5 *1 (-424 *4 *5 *6 *7)))) (-1544 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-710)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-732)) (-4 *4 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *4)))) (-2552 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-710)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-732)) (-4 *4 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *4)))) (-1813 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1174)) (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-523)) (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-3451 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *6)))) (-1240 (*1 *2 *2 *2) (-12 (-5 *2 (-589 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-710)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-732)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *6)))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-732)) (-4 *2 (-880 *4 *5 *6)) (-5 *1 (-424 *4 *5 *6 *2)) (-4 *4 (-427)) (-4 *6 (-786)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-589 (-2 (|:| |totdeg| (-710)) (|:| -1385 *3)))) (-5 *4 (-710)) (-4 *3 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *3)))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5)))) (-2071 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-424 *5 *6 *7 *3)))) (-3468 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-710)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-732)) (-4 *6 (-880 *4 *3 *5)) (-4 *4 (-427)) (-4 *5 (-786)) (-5 *1 (-424 *4 *3 *5 *6)))) (-3869 (*1 *2 *2) (-12 (-5 *2 (-589 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-710)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-732)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *6)))) (-1510 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-732)) (-4 *3 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *3)))) (-3111 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-427)) (-4 *3 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-424 *4 *3 *5 *6)) (-4 *6 (-880 *4 *3 *5)))) (-1615 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *3 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-424 *4 *3 *5 *6)) (-4 *6 (-880 *4 *3 *5)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-732)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-424 *4 *5 *6 *7)))) (-1265 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-523)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *7)))) (-2880 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *2)))) (-3434 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *2))))) +(-10 -7 (-15 -3434 (|#4| |#4| (-589 |#4|))) (-15 -2880 (|#4| |#4| (-589 |#4|))) (-15 -1265 ((-589 |#4|) (-589 |#4|) (-523) (-523))) (-15 -4205 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1615 ((-108) |#2| |#2|)) (-15 -3111 ((-108) |#2| |#2| |#2| |#2|)) (-15 -1510 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3869 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3468 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2071 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-589 |#4|))) (-15 -4057 (|#4| |#4|)) (-15 -4197 ((-589 (-2 (|:| |totdeg| (-710)) (|:| -1385 |#4|))) |#4| (-710) (-589 (-2 (|:| |totdeg| (-710)) (|:| -1385 |#4|))))) (-15 -3673 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1240 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3451 ((-589 |#4|) (-589 |#4|))) (-15 -3919 ((-523) |#4|)) (-15 -1813 ((-1174) |#4|)) (-15 -2552 ((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523))) (-15 -1544 ((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523) (-523))) (-15 -2379 ((-1174) (-589 |#4|))) (-15 -1463 ((-1174) (-523))) (-15 -3861 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3605 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-710)) (|:| -1385 |#4|)) |#4| (-710))) (-15 -1277 ((-710) |#4|))) +((-2917 ((|#4| |#4| (-589 |#4|)) 22 (|has| |#1| (-339)))) (-3901 (((-589 |#4|) (-589 |#4|) (-1070) (-1070)) 41) (((-589 |#4|) (-589 |#4|) (-1070)) 40) (((-589 |#4|) (-589 |#4|)) 35))) +(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3901 ((-589 |#4|) (-589 |#4|))) (-15 -3901 ((-589 |#4|) (-589 |#4|) (-1070))) (-15 -3901 ((-589 |#4|) (-589 |#4|) (-1070) (-1070))) (IF (|has| |#1| (-339)) (-15 -2917 (|#4| |#4| (-589 |#4|))) |%noBranch|)) (-427) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -425)) +((-2917 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-339)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-425 *4 *5 *6 *2)))) (-3901 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-425 *4 *5 *6 *7)))) (-3901 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-425 *4 *5 *6 *7)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-425 *3 *4 *5 *6))))) +(-10 -7 (-15 -3901 ((-589 |#4|) (-589 |#4|))) (-15 -3901 ((-589 |#4|) (-589 |#4|) (-1070))) (-15 -3901 ((-589 |#4|) (-589 |#4|) (-1070) (-1070))) (IF (|has| |#1| (-339)) (-15 -2917 (|#4| |#4| (-589 |#4|))) |%noBranch|)) +((-3278 (($ $ $) 14) (($ (-589 $)) 21)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 41)) (-3310 (($ $ $) NIL) (($ (-589 $)) 22))) +(((-426 |#1|) (-10 -8 (-15 -3120 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3310 (|#1| (-589 |#1|))) (-15 -3310 (|#1| |#1| |#1|))) (-427)) (T -426)) +NIL +(-10 -8 (-15 -3120 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3310 (|#1| (-589 |#1|))) (-15 -3310 (|#1| |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-4007 (((-3 $ "failed") $ $) 42)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-427) (-129)) (T -427)) -((-3278 (*1 *1 *1 *1) (-4 *1 (-427))) (-3278 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-427)))) (-3244 (*1 *1 *1 *1) (-4 *1 (-427))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-427)))) (-2667 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-427))))) -(-13 (-515) (-10 -8 (-15 -3278 ($ $ $)) (-15 -3278 ($ (-589 $))) (-15 -3244 ($ $ $)) (-15 -3244 ($ (-589 $))) (-15 -2667 ((-1083 $) (-1083 $) (-1083 $))))) +((-3310 (*1 *1 *1 *1) (-4 *1 (-427))) (-3310 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-427)))) (-3278 (*1 *1 *1 *1) (-4 *1 (-427))) (-3278 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-427)))) (-3120 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-427))))) +(-13 (-515) (-10 -8 (-15 -3310 ($ $ $)) (-15 -3310 ($ (-589 $))) (-15 -3278 ($ $ $)) (-15 -3278 ($ (-589 $))) (-15 -3120 ((-1083 $) (-1083 $) (-1083 $))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3819 (((-3 $ "failed")) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3115 (((-1168 (-629 (-383 (-883 |#1|)))) (-1168 $)) NIL) (((-1168 (-629 (-383 (-883 |#1|))))) NIL)) (-2738 (((-1168 $)) NIL)) (-2518 (($) NIL T CONST)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL)) (-3545 (((-3 $ "failed")) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-1431 (((-629 (-383 (-883 |#1|))) (-1168 $)) NIL) (((-629 (-383 (-883 |#1|)))) NIL)) (-3744 (((-383 (-883 |#1|)) $) NIL)) (-2788 (((-629 (-383 (-883 |#1|))) $ (-1168 $)) NIL) (((-629 (-383 (-883 |#1|))) $) NIL)) (-2532 (((-3 $ "failed") $) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-3138 (((-1083 (-883 (-383 (-883 |#1|))))) NIL (|has| (-383 (-883 |#1|)) (-339))) (((-1083 (-383 (-883 |#1|)))) 79 (|has| |#1| (-515)))) (-1970 (($ $ (-852)) NIL)) (-4212 (((-383 (-883 |#1|)) $) NIL)) (-1726 (((-1083 (-383 (-883 |#1|))) $) 77 (|has| (-383 (-883 |#1|)) (-515)))) (-2284 (((-383 (-883 |#1|)) (-1168 $)) NIL) (((-383 (-883 |#1|))) NIL)) (-1778 (((-1083 (-383 (-883 |#1|))) $) NIL)) (-2117 (((-108)) NIL)) (-3409 (($ (-1168 (-383 (-883 |#1|))) (-1168 $)) 97) (($ (-1168 (-383 (-883 |#1|)))) NIL)) (-2121 (((-3 $ "failed") $) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-1319 (((-852)) NIL)) (-1487 (((-108)) NIL)) (-3650 (($ $ (-852)) NIL)) (-1649 (((-108)) NIL)) (-2956 (((-108)) NIL)) (-2491 (((-108)) NIL)) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL)) (-1386 (((-3 $ "failed")) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-1504 (((-629 (-383 (-883 |#1|))) (-1168 $)) NIL) (((-629 (-383 (-883 |#1|)))) NIL)) (-3237 (((-383 (-883 |#1|)) $) NIL)) (-2139 (((-629 (-383 (-883 |#1|))) $ (-1168 $)) NIL) (((-629 (-383 (-883 |#1|))) $) NIL)) (-1579 (((-3 $ "failed") $) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-2525 (((-1083 (-883 (-383 (-883 |#1|))))) NIL (|has| (-383 (-883 |#1|)) (-339))) (((-1083 (-383 (-883 |#1|)))) 78 (|has| |#1| (-515)))) (-1448 (($ $ (-852)) NIL)) (-4050 (((-383 (-883 |#1|)) $) NIL)) (-2553 (((-1083 (-383 (-883 |#1|))) $) 72 (|has| (-383 (-883 |#1|)) (-515)))) (-3002 (((-383 (-883 |#1|)) (-1168 $)) NIL) (((-383 (-883 |#1|))) NIL)) (-2565 (((-1083 (-383 (-883 |#1|))) $) NIL)) (-1216 (((-108)) NIL)) (-3779 (((-1070) $) NIL)) (-2345 (((-108)) NIL)) (-1510 (((-108)) NIL)) (-2871 (((-108)) NIL)) (-2783 (((-1034) $) NIL)) (-3571 (((-383 (-883 |#1|)) $ $) 66 (|has| |#1| (-515)))) (-3960 (((-383 (-883 |#1|)) $) 65 (|has| |#1| (-515)))) (-3327 (((-383 (-883 |#1|)) $) 89 (|has| |#1| (-515)))) (-1254 (((-1083 (-383 (-883 |#1|))) $) 83 (|has| |#1| (-515)))) (-1873 (((-383 (-883 |#1|))) 67 (|has| |#1| (-515)))) (-2942 (((-383 (-883 |#1|)) $ $) 54 (|has| |#1| (-515)))) (-3418 (((-383 (-883 |#1|)) $) 53 (|has| |#1| (-515)))) (-3183 (((-383 (-883 |#1|)) $) 88 (|has| |#1| (-515)))) (-3048 (((-1083 (-383 (-883 |#1|))) $) 82 (|has| |#1| (-515)))) (-3070 (((-383 (-883 |#1|))) 64 (|has| |#1| (-515)))) (-3147 (($) 95) (($ (-1087)) 101) (($ (-1168 (-1087))) 100) (($ (-1168 $)) 90) (($ (-1087) (-1168 $)) 99) (($ (-1168 (-1087)) (-1168 $)) 98)) (-2751 (((-108)) NIL)) (-3223 (((-383 (-883 |#1|)) $ (-523)) NIL)) (-2966 (((-1168 (-383 (-883 |#1|))) $ (-1168 $)) 92) (((-629 (-383 (-883 |#1|))) (-1168 $) (-1168 $)) NIL) (((-1168 (-383 (-883 |#1|))) $) 37) (((-629 (-383 (-883 |#1|))) (-1168 $)) NIL)) (-3663 (((-1168 (-383 (-883 |#1|))) $) NIL) (($ (-1168 (-383 (-883 |#1|)))) 34)) (-3863 (((-589 (-883 (-383 (-883 |#1|)))) (-1168 $)) NIL) (((-589 (-883 (-383 (-883 |#1|))))) NIL) (((-589 (-883 |#1|)) (-1168 $)) 93 (|has| |#1| (-515))) (((-589 (-883 |#1|))) 94 (|has| |#1| (-515)))) (-1714 (($ $ $) NIL)) (-1673 (((-108)) NIL)) (-1458 (((-794) $) NIL) (($ (-1168 (-383 (-883 |#1|)))) NIL)) (-4041 (((-1168 $)) 56)) (-3751 (((-589 (-1168 (-383 (-883 |#1|))))) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-2022 (($ $ $ $) NIL)) (-3120 (((-108)) NIL)) (-1677 (($ (-629 (-383 (-883 |#1|))) $) NIL)) (-1995 (($ $ $) NIL)) (-1462 (((-108)) NIL)) (-3366 (((-108)) NIL)) (-2071 (((-108)) NIL)) (-2756 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) 91)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 52) (($ $ (-383 (-883 |#1|))) NIL) (($ (-383 (-883 |#1|)) $) NIL) (($ (-1054 |#2| (-383 (-883 |#1|))) $) NIL))) -(((-428 |#1| |#2| |#3| |#4|) (-13 (-393 (-383 (-883 |#1|))) (-591 (-1054 |#2| (-383 (-883 |#1|)))) (-10 -8 (-15 -1458 ($ (-1168 (-383 (-883 |#1|))))) (-15 -2362 ((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed"))) (-15 -3486 ((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed"))) (-15 -3147 ($)) (-15 -3147 ($ (-1087))) (-15 -3147 ($ (-1168 (-1087)))) (-15 -3147 ($ (-1168 $))) (-15 -3147 ($ (-1087) (-1168 $))) (-15 -3147 ($ (-1168 (-1087)) (-1168 $))) (IF (|has| |#1| (-515)) (PROGN (-15 -2525 ((-1083 (-383 (-883 |#1|))))) (-15 -3048 ((-1083 (-383 (-883 |#1|))) $)) (-15 -3418 ((-383 (-883 |#1|)) $)) (-15 -3183 ((-383 (-883 |#1|)) $)) (-15 -3138 ((-1083 (-383 (-883 |#1|))))) (-15 -1254 ((-1083 (-383 (-883 |#1|))) $)) (-15 -3960 ((-383 (-883 |#1|)) $)) (-15 -3327 ((-383 (-883 |#1|)) $)) (-15 -2942 ((-383 (-883 |#1|)) $ $)) (-15 -3070 ((-383 (-883 |#1|)))) (-15 -3571 ((-383 (-883 |#1|)) $ $)) (-15 -1873 ((-383 (-883 |#1|)))) (-15 -3863 ((-589 (-883 |#1|)) (-1168 $))) (-15 -3863 ((-589 (-883 |#1|))))) |%noBranch|))) (-158) (-852) (-589 (-1087)) (-1168 (-629 |#1|))) (T -428)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-383 (-883 *3)))) (-4 *3 (-158)) (-14 *6 (-1168 (-629 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))))) (-2362 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-428 *3 *4 *5 *6)) (|:| -4041 (-589 (-428 *3 *4 *5 *6))))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3486 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-428 *3 *4 *5 *6)) (|:| -4041 (-589 (-428 *3 *4 *5 *6))))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3147 (*1 *1) (-12 (-5 *1 (-428 *2 *3 *4 *5)) (-4 *2 (-158)) (-14 *3 (-852)) (-14 *4 (-589 (-1087))) (-14 *5 (-1168 (-629 *2))))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 *2)) (-14 *6 (-1168 (-629 *3))))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-1168 (-1087))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-1168 (-428 *3 *4 *5 *6))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3147 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-428 *4 *5 *6 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-158)) (-14 *5 (-852)) (-14 *6 (-589 *2)) (-14 *7 (-1168 (-629 *4))))) (-3147 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 (-1087))) (-5 *3 (-1168 (-428 *4 *5 *6 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-158)) (-14 *5 (-852)) (-14 *6 (-589 (-1087))) (-14 *7 (-1168 (-629 *4))))) (-2525 (*1 *2) (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3138 (*1 *2) (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-1254 (*1 *2 *1) (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-2942 (*1 *2 *1 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3070 (*1 *2) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3571 (*1 *2 *1 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-1873 (*1 *2) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-1168 (-428 *4 *5 *6 *7))) (-5 *2 (-589 (-883 *4))) (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-515)) (-4 *4 (-158)) (-14 *5 (-852)) (-14 *6 (-589 (-1087))) (-14 *7 (-1168 (-629 *4))))) (-3863 (*1 *2) (-12 (-5 *2 (-589 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(-13 (-393 (-383 (-883 |#1|))) (-591 (-1054 |#2| (-383 (-883 |#1|)))) (-10 -8 (-15 -1458 ($ (-1168 (-383 (-883 |#1|))))) (-15 -2362 ((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed"))) (-15 -3486 ((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed"))) (-15 -3147 ($)) (-15 -3147 ($ (-1087))) (-15 -3147 ($ (-1168 (-1087)))) (-15 -3147 ($ (-1168 $))) (-15 -3147 ($ (-1087) (-1168 $))) (-15 -3147 ($ (-1168 (-1087)) (-1168 $))) (IF (|has| |#1| (-515)) (PROGN (-15 -2525 ((-1083 (-383 (-883 |#1|))))) (-15 -3048 ((-1083 (-383 (-883 |#1|))) $)) (-15 -3418 ((-383 (-883 |#1|)) $)) (-15 -3183 ((-383 (-883 |#1|)) $)) (-15 -3138 ((-1083 (-383 (-883 |#1|))))) (-15 -1254 ((-1083 (-383 (-883 |#1|))) $)) (-15 -3960 ((-383 (-883 |#1|)) $)) (-15 -3327 ((-383 (-883 |#1|)) $)) (-15 -2942 ((-383 (-883 |#1|)) $ $)) (-15 -3070 ((-383 (-883 |#1|)))) (-15 -3571 ((-383 (-883 |#1|)) $ $)) (-15 -1873 ((-383 (-883 |#1|)))) (-15 -3863 ((-589 (-883 |#1|)) (-1168 $))) (-15 -3863 ((-589 (-883 |#1|))))) |%noBranch|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 13)) (-1957 (((-589 (-796 |#1|)) $) 74)) (-1786 (((-1083 $) $ (-796 |#1|)) 46) (((-1083 |#2|) $) 116)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3345 (($ $) NIL (|has| |#2| (-515)))) (-3331 (((-108) $) NIL (|has| |#2| (-515)))) (-3893 (((-710) $) 21) (((-710) $ (-589 (-796 |#1|))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2291 (($ $) NIL (|has| |#2| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) 44) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-796 |#1|) "failed") $) NIL)) (-3474 ((|#2| $) 42) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-796 |#1|) $) NIL)) (-3078 (($ $ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3806 (($ $ (-589 (-523))) 79)) (-3810 (($ $) 68)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#2| (-840)))) (-1284 (($ $ |#2| |#3| $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) 58)) (-1945 (($ (-1083 |#2|) (-796 |#1|)) 121) (($ (-1083 $) (-796 |#1|)) 52)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) 59)) (-1933 (($ |#2| |#3|) 28) (($ $ (-796 |#1|) (-710)) 30) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-796 |#1|)) NIL)) (-1575 ((|#3| $) NIL) (((-710) $ (-796 |#1|)) 50) (((-589 (-710)) $ (-589 (-796 |#1|))) 57)) (-2454 (($ $ $) NIL (|has| |#2| (-786)))) (-2062 (($ $ $) NIL (|has| |#2| (-786)))) (-3782 (($ (-1 |#3| |#3|) $) NIL)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2520 (((-3 (-796 |#1|) "failed") $) 39)) (-3774 (($ $) NIL)) (-3786 ((|#2| $) 41)) (-3244 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-796 |#1|)) (|:| -2735 (-710))) "failed") $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) 40)) (-3760 ((|#2| $) 114)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) 126 (|has| |#2| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#2| (-840)))) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-796 |#1|) |#2|) 86) (($ $ (-589 (-796 |#1|)) (-589 |#2|)) 89) (($ $ (-796 |#1|) $) 84) (($ $ (-589 (-796 |#1|)) (-589 $)) 105)) (-3549 (($ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3523 (($ $ (-796 |#1|)) 53) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2299 ((|#3| $) 67) (((-710) $ (-796 |#1|)) 37) (((-589 (-710)) $ (-589 (-796 |#1|))) 56)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-796 |#1|) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-2438 ((|#2| $) 123 (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1458 (((-794) $) 142) (($ (-523)) NIL) (($ |#2|) 85) (($ (-796 |#1|)) 31) (($ (-383 (-523))) NIL (-3262 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#2| (-515)))) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ |#3|) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 16 T CONST)) (-2767 (($) 25 T CONST)) (-2862 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4098 (($ $ |#2|) 64 (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 110)) (** (($ $ (-852)) NIL) (($ $ (-710)) 108)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 29) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-429 |#1| |#2| |#3|) (-13 (-880 |#2| |#3| (-796 |#1|)) (-10 -8 (-15 -3806 ($ $ (-589 (-523)))))) (-589 (-1087)) (-973) (-216 (-2676 |#1|) (-710))) (T -429)) -((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-14 *3 (-589 (-1087))) (-5 *1 (-429 *3 *4 *5)) (-4 *4 (-973)) (-4 *5 (-216 (-2676 *3) (-710)))))) -(-13 (-880 |#2| |#3| (-796 |#1|)) (-10 -8 (-15 -3806 ($ $ (-589 (-523)))))) -((-2810 (((-108) |#1| (-589 |#2|)) 66)) (-3365 (((-3 (-1168 (-589 |#2|)) "failed") (-710) |#1| (-589 |#2|)) 75)) (-3428 (((-3 (-589 |#2|) "failed") |#2| |#1| (-1168 (-589 |#2|))) 77)) (-2227 ((|#2| |#2| |#1|) 28)) (-2382 (((-710) |#2| (-589 |#2|)) 20))) -(((-430 |#1| |#2|) (-10 -7 (-15 -2227 (|#2| |#2| |#1|)) (-15 -2382 ((-710) |#2| (-589 |#2|))) (-15 -3365 ((-3 (-1168 (-589 |#2|)) "failed") (-710) |#1| (-589 |#2|))) (-15 -3428 ((-3 (-589 |#2|) "failed") |#2| |#1| (-1168 (-589 |#2|)))) (-15 -2810 ((-108) |#1| (-589 |#2|)))) (-284) (-1144 |#1|)) (T -430)) -((-2810 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *5)) (-4 *5 (-1144 *3)) (-4 *3 (-284)) (-5 *2 (-108)) (-5 *1 (-430 *3 *5)))) (-3428 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1168 (-589 *3))) (-4 *4 (-284)) (-5 *2 (-589 *3)) (-5 *1 (-430 *4 *3)) (-4 *3 (-1144 *4)))) (-3365 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-710)) (-4 *4 (-284)) (-4 *6 (-1144 *4)) (-5 *2 (-1168 (-589 *6))) (-5 *1 (-430 *4 *6)) (-5 *5 (-589 *6)))) (-2382 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-284)) (-5 *2 (-710)) (-5 *1 (-430 *5 *3)))) (-2227 (*1 *2 *2 *3) (-12 (-4 *3 (-284)) (-5 *1 (-430 *3 *2)) (-4 *2 (-1144 *3))))) -(-10 -7 (-15 -2227 (|#2| |#2| |#1|)) (-15 -2382 ((-710) |#2| (-589 |#2|))) (-15 -3365 ((-3 (-1168 (-589 |#2|)) "failed") (-710) |#1| (-589 |#2|))) (-15 -3428 ((-3 (-589 |#2|) "failed") |#2| |#1| (-1168 (-589 |#2|)))) (-15 -2810 ((-108) |#1| (-589 |#2|)))) -((-1820 (((-394 |#5|) |#5|) 24))) -(((-431 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1820 ((-394 |#5|) |#5|))) (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087))))) (-732) (-515) (-515) (-880 |#4| |#2| |#1|)) (T -431)) -((-1820 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-4 *5 (-732)) (-4 *7 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-431 *4 *5 *6 *7 *3)) (-4 *6 (-515)) (-4 *3 (-880 *7 *5 *4))))) -(-10 -7 (-15 -1820 ((-394 |#5|) |#5|))) -((-3625 ((|#3|) 36)) (-2667 (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 32))) -(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2667 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3625 (|#3|))) (-732) (-786) (-840) (-880 |#3| |#1| |#2|)) (T -432)) -((-3625 (*1 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-840)) (-5 *1 (-432 *3 *4 *2 *5)) (-4 *5 (-880 *2 *3 *4)))) (-2667 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-840)) (-5 *1 (-432 *3 *4 *5 *6))))) -(-10 -7 (-15 -2667 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3625 (|#3|))) -((-1820 (((-394 (-1083 |#1|)) (-1083 |#1|)) 41))) -(((-433 |#1|) (-10 -7 (-15 -1820 ((-394 (-1083 |#1|)) (-1083 |#1|)))) (-284)) (T -433)) -((-1820 (*1 *2 *3) (-12 (-4 *4 (-284)) (-5 *2 (-394 (-1083 *4))) (-5 *1 (-433 *4)) (-5 *3 (-1083 *4))))) -(-10 -7 (-15 -1820 ((-394 (-1083 |#1|)) (-1083 |#1|)))) -((-2015 (((-51) |#2| (-1087) (-271 |#2|) (-1135 (-710))) 42) (((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-710))) 41) (((-51) |#2| (-1087) (-271 |#2|)) 35) (((-51) (-1 |#2| (-523)) (-271 |#2|)) 27)) (-2417 (((-51) |#2| (-1087) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523))) 80) (((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523))) 79) (((-51) |#2| (-1087) (-271 |#2|) (-1135 (-523))) 78) (((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-523))) 77) (((-51) |#2| (-1087) (-271 |#2|)) 72) (((-51) (-1 |#2| (-523)) (-271 |#2|)) 71)) (-3717 (((-51) |#2| (-1087) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523))) 66) (((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523))) 64)) (-2028 (((-51) |#2| (-1087) (-271 |#2|) (-1135 (-523))) 48) (((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-523))) 47))) -(((-434 |#1| |#2|) (-10 -7 (-15 -2015 ((-51) (-1 |#2| (-523)) (-271 |#2|))) (-15 -2015 ((-51) |#2| (-1087) (-271 |#2|))) (-15 -2015 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-710)))) (-15 -2015 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-710)))) (-15 -2028 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-523)))) (-15 -2028 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-523)))) (-15 -3717 ((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523)))) (-15 -3717 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523)))) (-15 -2417 ((-51) (-1 |#2| (-523)) (-271 |#2|))) (-15 -2417 ((-51) |#2| (-1087) (-271 |#2|))) (-15 -2417 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-523)))) (-15 -2417 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-523)))) (-15 -2417 ((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523)))) (-15 -2417 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523))))) (-13 (-515) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -434)) -((-2417 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-383 (-523)))) (-5 *7 (-383 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *8))) (-4 *8 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *8 *3)))) (-2417 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-383 (-523)))) (-5 *4 (-271 *8)) (-5 *5 (-1135 (-383 (-523)))) (-5 *6 (-383 (-523))) (-4 *8 (-13 (-27) (-1108) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *8)))) (-2417 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) (-2417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1135 (-523))) (-4 *7 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) (-2417 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *3)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-523))) (-5 *4 (-271 *6)) (-4 *6 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *5 *6)))) (-3717 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-383 (-523)))) (-5 *7 (-383 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *8))) (-4 *8 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *8 *3)))) (-3717 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-383 (-523)))) (-5 *4 (-271 *8)) (-5 *5 (-1135 (-383 (-523)))) (-5 *6 (-383 (-523))) (-4 *8 (-13 (-27) (-1108) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *8)))) (-2028 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) (-2028 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1135 (-523))) (-4 *7 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) (-2015 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-710))) (-4 *3 (-13 (-27) (-1108) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) (-2015 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1135 (-710))) (-4 *7 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) (-2015 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *3)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-523))) (-5 *4 (-271 *6)) (-4 *6 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *5 *6))))) -(-10 -7 (-15 -2015 ((-51) (-1 |#2| (-523)) (-271 |#2|))) (-15 -2015 ((-51) |#2| (-1087) (-271 |#2|))) (-15 -2015 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-710)))) (-15 -2015 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-710)))) (-15 -2028 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-523)))) (-15 -2028 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-523)))) (-15 -3717 ((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523)))) (-15 -3717 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523)))) (-15 -2417 ((-51) (-1 |#2| (-523)) (-271 |#2|))) (-15 -2417 ((-51) |#2| (-1087) (-271 |#2|))) (-15 -2417 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-523)))) (-15 -2417 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-523)))) (-15 -2417 ((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523)))) (-15 -2417 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523))))) -((-2227 ((|#2| |#2| |#1|) 15)) (-4106 (((-589 |#2|) |#2| (-589 |#2|) |#1| (-852)) 69)) (-3302 (((-2 (|:| |plist| (-589 |#2|)) (|:| |modulo| |#1|)) |#2| (-589 |#2|) |#1| (-852)) 60))) -(((-435 |#1| |#2|) (-10 -7 (-15 -3302 ((-2 (|:| |plist| (-589 |#2|)) (|:| |modulo| |#1|)) |#2| (-589 |#2|) |#1| (-852))) (-15 -4106 ((-589 |#2|) |#2| (-589 |#2|) |#1| (-852))) (-15 -2227 (|#2| |#2| |#1|))) (-284) (-1144 |#1|)) (T -435)) -((-2227 (*1 *2 *2 *3) (-12 (-4 *3 (-284)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1144 *3)))) (-4106 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-589 *3)) (-5 *5 (-852)) (-4 *3 (-1144 *4)) (-4 *4 (-284)) (-5 *1 (-435 *4 *3)))) (-3302 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-852)) (-4 *5 (-284)) (-4 *3 (-1144 *5)) (-5 *2 (-2 (|:| |plist| (-589 *3)) (|:| |modulo| *5))) (-5 *1 (-435 *5 *3)) (-5 *4 (-589 *3))))) -(-10 -7 (-15 -3302 ((-2 (|:| |plist| (-589 |#2|)) (|:| |modulo| |#1|)) |#2| (-589 |#2|) |#1| (-852))) (-15 -4106 ((-589 |#2|) |#2| (-589 |#2|) |#1| (-852))) (-15 -2227 (|#2| |#2| |#1|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 28)) (-1890 (($ |#3|) 25)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3810 (($ $) 32)) (-3270 (($ |#2| |#4| $) 33)) (-1933 (($ |#2| (-653 |#3| |#4| |#5|)) 24)) (-3774 (((-653 |#3| |#4| |#5|) $) 15)) (-2836 ((|#3| $) 19)) (-3891 ((|#4| $) 17)) (-3786 ((|#2| $) 29)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-4174 (($ |#2| |#3| |#4|) 26)) (-2756 (($) 36 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 34)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-436 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-657 |#6|) (-657 |#2|) (-10 -8 (-15 -3786 (|#2| $)) (-15 -3774 ((-653 |#3| |#4| |#5|) $)) (-15 -3891 (|#4| $)) (-15 -2836 (|#3| $)) (-15 -3810 ($ $)) (-15 -1933 ($ |#2| (-653 |#3| |#4| |#5|))) (-15 -1890 ($ |#3|)) (-15 -4174 ($ |#2| |#3| |#4|)) (-15 -3270 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-589 (-1087)) (-158) (-786) (-216 (-2676 |#1|) (-710)) (-1 (-108) (-2 (|:| -3878 |#3|) (|:| -2735 |#4|)) (-2 (|:| -3878 |#3|) (|:| -2735 |#4|))) (-880 |#2| |#4| (-796 |#1|))) (T -436)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-4 *6 (-216 (-2676 *3) (-710))) (-14 *7 (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *6)) (-2 (|:| -3878 *5) (|:| -2735 *6)))) (-5 *1 (-436 *3 *4 *5 *6 *7 *2)) (-4 *5 (-786)) (-4 *2 (-880 *4 *6 (-796 *3))))) (-3786 (*1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *5 (-216 (-2676 *3) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -3878 *4) (|:| -2735 *5)) (-2 (|:| -3878 *4) (|:| -2735 *5)))) (-4 *2 (-158)) (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *4 (-786)) (-4 *7 (-880 *2 *5 (-796 *3))))) (-3774 (*1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-4 *6 (-216 (-2676 *3) (-710))) (-14 *7 (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *6)) (-2 (|:| -3878 *5) (|:| -2735 *6)))) (-5 *2 (-653 *5 *6 *7)) (-5 *1 (-436 *3 *4 *5 *6 *7 *8)) (-4 *5 (-786)) (-4 *8 (-880 *4 *6 (-796 *3))))) (-3891 (*1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-14 *6 (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *2)) (-2 (|:| -3878 *5) (|:| -2735 *2)))) (-4 *2 (-216 (-2676 *3) (-710))) (-5 *1 (-436 *3 *4 *5 *2 *6 *7)) (-4 *5 (-786)) (-4 *7 (-880 *4 *2 (-796 *3))))) (-2836 (*1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-4 *5 (-216 (-2676 *3) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *5)) (-2 (|:| -3878 *2) (|:| -2735 *5)))) (-4 *2 (-786)) (-5 *1 (-436 *3 *4 *2 *5 *6 *7)) (-4 *7 (-880 *4 *5 (-796 *3))))) (-3810 (*1 *1 *1) (-12 (-14 *2 (-589 (-1087))) (-4 *3 (-158)) (-4 *5 (-216 (-2676 *2) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -3878 *4) (|:| -2735 *5)) (-2 (|:| -3878 *4) (|:| -2735 *5)))) (-5 *1 (-436 *2 *3 *4 *5 *6 *7)) (-4 *4 (-786)) (-4 *7 (-880 *3 *5 (-796 *2))))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-653 *5 *6 *7)) (-4 *5 (-786)) (-4 *6 (-216 (-2676 *4) (-710))) (-14 *7 (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *6)) (-2 (|:| -3878 *5) (|:| -2735 *6)))) (-14 *4 (-589 (-1087))) (-4 *2 (-158)) (-5 *1 (-436 *4 *2 *5 *6 *7 *8)) (-4 *8 (-880 *2 *6 (-796 *4))))) (-1890 (*1 *1 *2) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-4 *5 (-216 (-2676 *3) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *5)) (-2 (|:| -3878 *2) (|:| -2735 *5)))) (-5 *1 (-436 *3 *4 *2 *5 *6 *7)) (-4 *2 (-786)) (-4 *7 (-880 *4 *5 (-796 *3))))) (-4174 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-589 (-1087))) (-4 *2 (-158)) (-4 *4 (-216 (-2676 *5) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -3878 *3) (|:| -2735 *4)) (-2 (|:| -3878 *3) (|:| -2735 *4)))) (-5 *1 (-436 *5 *2 *3 *4 *6 *7)) (-4 *3 (-786)) (-4 *7 (-880 *2 *4 (-796 *5))))) (-3270 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-589 (-1087))) (-4 *2 (-158)) (-4 *3 (-216 (-2676 *4) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *3)) (-2 (|:| -3878 *5) (|:| -2735 *3)))) (-5 *1 (-436 *4 *2 *5 *3 *6 *7)) (-4 *5 (-786)) (-4 *7 (-880 *2 *3 (-796 *4)))))) -(-13 (-657 |#6|) (-657 |#2|) (-10 -8 (-15 -3786 (|#2| $)) (-15 -3774 ((-653 |#3| |#4| |#5|) $)) (-15 -3891 (|#4| $)) (-15 -2836 (|#3| $)) (-15 -3810 ($ $)) (-15 -1933 ($ |#2| (-653 |#3| |#4| |#5|))) (-15 -1890 ($ |#3|)) (-15 -4174 ($ |#2| |#3| |#4|)) (-15 -3270 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2597 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35))) -(((-437 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2597 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-732) (-786) (-515) (-880 |#3| |#1| |#2|) (-13 (-964 (-383 (-523))) (-339) (-10 -8 (-15 -1458 ($ |#4|)) (-15 -2785 (|#4| $)) (-15 -2797 (|#4| $))))) (T -437)) -((-2597 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-786)) (-4 *5 (-732)) (-4 *6 (-515)) (-4 *7 (-880 *6 *5 *3)) (-5 *1 (-437 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-964 (-383 (-523))) (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $)))))))) -(-10 -7 (-15 -2597 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-3924 (((-108) $ $) NIL)) (-1957 (((-589 |#3|) $) 41)) (-2100 (((-108) $) NIL)) (-2376 (((-108) $) NIL (|has| |#1| (-515)))) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-3724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-3595 (((-108) $) NIL (|has| |#1| (-515)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3225 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3393 (((-108) $) NIL (|has| |#1| (-515)))) (-3956 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 47)) (-3474 (($ (-589 |#4|)) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2557 (($ |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4244)))) (-1666 (((-589 |#4|) $) 18 (|has| $ (-6 -4244)))) (-2907 ((|#3| $) 45)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#4|) $) 14 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2852 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 21)) (-4055 (((-589 |#3|) $) NIL)) (-1357 (((-108) |#3| $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2783 (((-1034) $) NIL)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1327 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 39)) (-3988 (($) 17)) (-2792 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) 16)) (-3663 (((-499) $) NIL (|has| |#4| (-564 (-499)))) (($ (-589 |#4|)) 49)) (-1472 (($ (-589 |#4|)) 13)) (-2621 (($ $ |#3|) NIL)) (-2624 (($ $ |#3|) NIL)) (-3076 (($ $ |#3|) NIL)) (-1458 (((-794) $) 38) (((-589 |#4|) $) 48)) (-2096 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 30)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-438 |#1| |#2| |#3| |#4|) (-13 (-905 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3663 ($ (-589 |#4|))) (-6 -4244) (-6 -4245))) (-973) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -438)) -((-3663 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-438 *3 *4 *5 *6))))) -(-13 (-905 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3663 ($ (-589 |#4|))) (-6 -4244) (-6 -4245))) -((-2756 (($) 11)) (-2767 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-439 |#1| |#2| |#3|) (-10 -8 (-15 -2767 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2756 (|#1|))) (-440 |#2| |#3|) (-158) (-23)) (T -439)) -NIL -(-10 -8 (-15 -2767 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2756 (|#1|))) -((-3924 (((-108) $ $) 7)) (-3517 (((-3 |#1| "failed") $) 26)) (-3474 ((|#1| $) 25)) (-1656 (($ $ $) 23)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2299 ((|#2| $) 19)) (-1458 (((-794) $) 11) (($ |#1|) 27)) (-2756 (($) 18 T CONST)) (-2767 (($) 24 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 15) (($ $ $) 13)) (-4075 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2345 (((-3 $ "failed")) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-1939 (((-1169 (-629 (-383 (-883 |#1|)))) (-1169 $)) NIL) (((-1169 (-629 (-383 (-883 |#1|))))) NIL)) (-1502 (((-1169 $)) NIL)) (-4189 (($) NIL T CONST)) (-2314 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) NIL)) (-1722 (((-3 $ "failed")) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-2059 (((-629 (-383 (-883 |#1|))) (-1169 $)) NIL) (((-629 (-383 (-883 |#1|)))) NIL)) (-2920 (((-383 (-883 |#1|)) $) NIL)) (-1950 (((-629 (-383 (-883 |#1|))) $ (-1169 $)) NIL) (((-629 (-383 (-883 |#1|))) $) NIL)) (-1307 (((-3 $ "failed") $) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-3927 (((-1083 (-883 (-383 (-883 |#1|))))) NIL (|has| (-383 (-883 |#1|)) (-339))) (((-1083 (-383 (-883 |#1|)))) 79 (|has| |#1| (-515)))) (-3402 (($ $ (-852)) NIL)) (-1223 (((-383 (-883 |#1|)) $) NIL)) (-2992 (((-1083 (-383 (-883 |#1|))) $) 77 (|has| (-383 (-883 |#1|)) (-515)))) (-3637 (((-383 (-883 |#1|)) (-1169 $)) NIL) (((-383 (-883 |#1|))) NIL)) (-2242 (((-1083 (-383 (-883 |#1|))) $) NIL)) (-1404 (((-108)) NIL)) (-2754 (($ (-1169 (-383 (-883 |#1|))) (-1169 $)) 97) (($ (-1169 (-383 (-883 |#1|)))) NIL)) (-1444 (((-3 $ "failed") $) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-3569 (((-852)) NIL)) (-1454 (((-108)) NIL)) (-3291 (($ $ (-852)) NIL)) (-3517 (((-108)) NIL)) (-2804 (((-108)) NIL)) (-3914 (((-108)) NIL)) (-2065 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) NIL)) (-2778 (((-3 $ "failed")) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-1612 (((-629 (-383 (-883 |#1|))) (-1169 $)) NIL) (((-629 (-383 (-883 |#1|)))) NIL)) (-3647 (((-383 (-883 |#1|)) $) NIL)) (-1613 (((-629 (-383 (-883 |#1|))) $ (-1169 $)) NIL) (((-629 (-383 (-883 |#1|))) $) NIL)) (-4097 (((-3 $ "failed") $) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-1233 (((-1083 (-883 (-383 (-883 |#1|))))) NIL (|has| (-383 (-883 |#1|)) (-339))) (((-1083 (-383 (-883 |#1|)))) 78 (|has| |#1| (-515)))) (-2237 (($ $ (-852)) NIL)) (-2670 (((-383 (-883 |#1|)) $) NIL)) (-3248 (((-1083 (-383 (-883 |#1|))) $) 72 (|has| (-383 (-883 |#1|)) (-515)))) (-2085 (((-383 (-883 |#1|)) (-1169 $)) NIL) (((-383 (-883 |#1|))) NIL)) (-3359 (((-1083 (-383 (-883 |#1|))) $) NIL)) (-1675 (((-108)) NIL)) (-2032 (((-1070) $) NIL)) (-3041 (((-108)) NIL)) (-1671 (((-108)) NIL)) (-3194 (((-108)) NIL)) (-3951 (((-1034) $) NIL)) (-1936 (((-383 (-883 |#1|)) $ $) 66 (|has| |#1| (-515)))) (-1339 (((-383 (-883 |#1|)) $) 65 (|has| |#1| (-515)))) (-3132 (((-383 (-883 |#1|)) $) 89 (|has| |#1| (-515)))) (-3853 (((-1083 (-383 (-883 |#1|))) $) 83 (|has| |#1| (-515)))) (-1889 (((-383 (-883 |#1|))) 67 (|has| |#1| (-515)))) (-2708 (((-383 (-883 |#1|)) $ $) 54 (|has| |#1| (-515)))) (-2822 (((-383 (-883 |#1|)) $) 53 (|has| |#1| (-515)))) (-1412 (((-383 (-883 |#1|)) $) 88 (|has| |#1| (-515)))) (-2495 (((-1083 (-383 (-883 |#1|))) $) 82 (|has| |#1| (-515)))) (-1541 (((-383 (-883 |#1|))) 64 (|has| |#1| (-515)))) (-4030 (($) 95) (($ (-1087)) 101) (($ (-1169 (-1087))) 100) (($ (-1169 $)) 90) (($ (-1087) (-1169 $)) 99) (($ (-1169 (-1087)) (-1169 $)) 98)) (-1634 (((-108)) NIL)) (-1937 (((-383 (-883 |#1|)) $ (-523)) NIL)) (-2906 (((-1169 (-383 (-883 |#1|))) $ (-1169 $)) 92) (((-629 (-383 (-883 |#1|))) (-1169 $) (-1169 $)) NIL) (((-1169 (-383 (-883 |#1|))) $) 37) (((-629 (-383 (-883 |#1|))) (-1169 $)) NIL)) (-1400 (((-1169 (-383 (-883 |#1|))) $) NIL) (($ (-1169 (-383 (-883 |#1|)))) 34)) (-1586 (((-589 (-883 (-383 (-883 |#1|)))) (-1169 $)) NIL) (((-589 (-883 (-383 (-883 |#1|))))) NIL) (((-589 (-883 |#1|)) (-1169 $)) 93 (|has| |#1| (-515))) (((-589 (-883 |#1|))) 94 (|has| |#1| (-515)))) (-2892 (($ $ $) NIL)) (-2572 (((-108)) NIL)) (-1691 (((-794) $) NIL) (($ (-1169 (-383 (-883 |#1|)))) NIL)) (-3760 (((-1169 $)) 56)) (-2969 (((-589 (-1169 (-383 (-883 |#1|))))) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-2760 (($ $ $ $) NIL)) (-1978 (((-108)) NIL)) (-2372 (($ (-629 (-383 (-883 |#1|))) $) NIL)) (-3654 (($ $ $) NIL)) (-2367 (((-108)) NIL)) (-3505 (((-108)) NIL)) (-2050 (((-108)) NIL)) (-1879 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) 91)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 52) (($ $ (-383 (-883 |#1|))) NIL) (($ (-383 (-883 |#1|)) $) NIL) (($ (-1054 |#2| (-383 (-883 |#1|))) $) NIL))) +(((-428 |#1| |#2| |#3| |#4|) (-13 (-393 (-383 (-883 |#1|))) (-591 (-1054 |#2| (-383 (-883 |#1|)))) (-10 -8 (-15 -1691 ($ (-1169 (-383 (-883 |#1|))))) (-15 -2065 ((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed"))) (-15 -2314 ((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed"))) (-15 -4030 ($)) (-15 -4030 ($ (-1087))) (-15 -4030 ($ (-1169 (-1087)))) (-15 -4030 ($ (-1169 $))) (-15 -4030 ($ (-1087) (-1169 $))) (-15 -4030 ($ (-1169 (-1087)) (-1169 $))) (IF (|has| |#1| (-515)) (PROGN (-15 -1233 ((-1083 (-383 (-883 |#1|))))) (-15 -2495 ((-1083 (-383 (-883 |#1|))) $)) (-15 -2822 ((-383 (-883 |#1|)) $)) (-15 -1412 ((-383 (-883 |#1|)) $)) (-15 -3927 ((-1083 (-383 (-883 |#1|))))) (-15 -3853 ((-1083 (-383 (-883 |#1|))) $)) (-15 -1339 ((-383 (-883 |#1|)) $)) (-15 -3132 ((-383 (-883 |#1|)) $)) (-15 -2708 ((-383 (-883 |#1|)) $ $)) (-15 -1541 ((-383 (-883 |#1|)))) (-15 -1936 ((-383 (-883 |#1|)) $ $)) (-15 -1889 ((-383 (-883 |#1|)))) (-15 -1586 ((-589 (-883 |#1|)) (-1169 $))) (-15 -1586 ((-589 (-883 |#1|))))) |%noBranch|))) (-158) (-852) (-589 (-1087)) (-1169 (-629 |#1|))) (T -428)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1169 (-383 (-883 *3)))) (-4 *3 (-158)) (-14 *6 (-1169 (-629 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))))) (-2065 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-428 *3 *4 *5 *6)) (|:| -3760 (-589 (-428 *3 *4 *5 *6))))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-2314 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-428 *3 *4 *5 *6)) (|:| -3760 (-589 (-428 *3 *4 *5 *6))))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-4030 (*1 *1) (-12 (-5 *1 (-428 *2 *3 *4 *5)) (-4 *2 (-158)) (-14 *3 (-852)) (-14 *4 (-589 (-1087))) (-14 *5 (-1169 (-629 *2))))) (-4030 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 *2)) (-14 *6 (-1169 (-629 *3))))) (-4030 (*1 *1 *2) (-12 (-5 *2 (-1169 (-1087))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-4030 (*1 *1 *2) (-12 (-5 *2 (-1169 (-428 *3 *4 *5 *6))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-4030 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-428 *4 *5 *6 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-158)) (-14 *5 (-852)) (-14 *6 (-589 *2)) (-14 *7 (-1169 (-629 *4))))) (-4030 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 (-1087))) (-5 *3 (-1169 (-428 *4 *5 *6 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-158)) (-14 *5 (-852)) (-14 *6 (-589 (-1087))) (-14 *7 (-1169 (-629 *4))))) (-1233 (*1 *2) (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-3927 (*1 *2) (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-2708 (*1 *2 *1 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-1541 (*1 *2) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-1936 (*1 *2 *1 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-1889 (*1 *2) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-1169 (-428 *4 *5 *6 *7))) (-5 *2 (-589 (-883 *4))) (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-515)) (-4 *4 (-158)) (-14 *5 (-852)) (-14 *6 (-589 (-1087))) (-14 *7 (-1169 (-629 *4))))) (-1586 (*1 *2) (-12 (-5 *2 (-589 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(-13 (-393 (-383 (-883 |#1|))) (-591 (-1054 |#2| (-383 (-883 |#1|)))) (-10 -8 (-15 -1691 ($ (-1169 (-383 (-883 |#1|))))) (-15 -2065 ((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed"))) (-15 -2314 ((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed"))) (-15 -4030 ($)) (-15 -4030 ($ (-1087))) (-15 -4030 ($ (-1169 (-1087)))) (-15 -4030 ($ (-1169 $))) (-15 -4030 ($ (-1087) (-1169 $))) (-15 -4030 ($ (-1169 (-1087)) (-1169 $))) (IF (|has| |#1| (-515)) (PROGN (-15 -1233 ((-1083 (-383 (-883 |#1|))))) (-15 -2495 ((-1083 (-383 (-883 |#1|))) $)) (-15 -2822 ((-383 (-883 |#1|)) $)) (-15 -1412 ((-383 (-883 |#1|)) $)) (-15 -3927 ((-1083 (-383 (-883 |#1|))))) (-15 -3853 ((-1083 (-383 (-883 |#1|))) $)) (-15 -1339 ((-383 (-883 |#1|)) $)) (-15 -3132 ((-383 (-883 |#1|)) $)) (-15 -2708 ((-383 (-883 |#1|)) $ $)) (-15 -1541 ((-383 (-883 |#1|)))) (-15 -1936 ((-383 (-883 |#1|)) $ $)) (-15 -1889 ((-383 (-883 |#1|)))) (-15 -1586 ((-589 (-883 |#1|)) (-1169 $))) (-15 -1586 ((-589 (-883 |#1|))))) |%noBranch|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 13)) (-1292 (((-589 (-796 |#1|)) $) 75)) (-2389 (((-1083 $) $ (-796 |#1|)) 46) (((-1083 |#2|) $) 118)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3306 (($ $) NIL (|has| |#2| (-515)))) (-3174 (((-108) $) NIL (|has| |#2| (-515)))) (-1877 (((-710) $) 21) (((-710) $ (-589 (-796 |#1|))) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3718 (($ $) NIL (|has| |#2| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#2| "failed") $) 44) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-796 |#1|) "failed") $) NIL)) (-3508 ((|#2| $) 42) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-796 |#1|) $) NIL)) (-1611 (($ $ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-2229 (($ $ (-589 (-523))) 80)) (-1457 (($ $) 68)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#2| (-840)))) (-4222 (($ $ |#2| |#3| $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) 58)) (-1280 (($ (-1083 |#2|) (-796 |#1|)) 123) (($ (-1083 $) (-796 |#1|)) 52)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) 59)) (-1267 (($ |#2| |#3|) 28) (($ $ (-796 |#1|) (-710)) 30) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ (-796 |#1|)) NIL)) (-4047 ((|#3| $) NIL) (((-710) $ (-796 |#1|)) 50) (((-589 (-710)) $ (-589 (-796 |#1|))) 57)) (-3239 (($ $ $) NIL (|has| |#2| (-786)))) (-3158 (($ $ $) NIL (|has| |#2| (-786)))) (-2041 (($ (-1 |#3| |#3|) $) NIL)) (-1345 (($ (-1 |#2| |#2|) $) NIL)) (-4213 (((-3 (-796 |#1|) "failed") $) 39)) (-1427 (($ $) NIL)) (-1437 ((|#2| $) 41)) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-2032 (((-1070) $) NIL)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| (-796 |#1|)) (|:| -1475 (-710))) "failed") $) NIL)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) 40)) (-1419 ((|#2| $) 116)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) 128 (|has| |#2| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#2| (-840)))) (-4007 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-796 |#1|) |#2|) 87) (($ $ (-589 (-796 |#1|)) (-589 |#2|)) 90) (($ $ (-796 |#1|) $) 85) (($ $ (-589 (-796 |#1|)) (-589 $)) 106)) (-1744 (($ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3984 (($ $ (-796 |#1|)) 53) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2640 ((|#3| $) 67) (((-710) $ (-796 |#1|)) 37) (((-589 (-710)) $ (-589 (-796 |#1|))) 56)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-796 |#1|) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-1618 ((|#2| $) 125 (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1691 (((-794) $) 145) (($ (-523)) NIL) (($ |#2|) 86) (($ (-796 |#1|)) 31) (($ (-383 (-523))) NIL (-3172 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#2| (-515)))) (-3819 (((-589 |#2|) $) NIL)) (-2084 ((|#2| $ |#3|) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 16 T CONST)) (-1891 (($) 25 T CONST)) (-2909 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-4006 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4074 (($ $ |#2|) 64 (|has| |#2| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 111)) (** (($ $ (-852)) NIL) (($ $ (-710)) 109)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 29) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-429 |#1| |#2| |#3|) (-13 (-880 |#2| |#3| (-796 |#1|)) (-10 -8 (-15 -2229 ($ $ (-589 (-523)))))) (-589 (-1087)) (-973) (-216 (-2810 |#1|) (-710))) (T -429)) +((-2229 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-14 *3 (-589 (-1087))) (-5 *1 (-429 *3 *4 *5)) (-4 *4 (-973)) (-4 *5 (-216 (-2810 *3) (-710)))))) +(-13 (-880 |#2| |#3| (-796 |#1|)) (-10 -8 (-15 -2229 ($ $ (-589 (-523)))))) +((-3945 (((-108) |#1| (-589 |#2|)) 69)) (-3497 (((-3 (-1169 (-589 |#2|)) "failed") (-710) |#1| (-589 |#2|)) 78)) (-2925 (((-3 (-589 |#2|) "failed") |#2| |#1| (-1169 (-589 |#2|))) 80)) (-1327 ((|#2| |#2| |#1|) 28)) (-2253 (((-710) |#2| (-589 |#2|)) 20))) +(((-430 |#1| |#2|) (-10 -7 (-15 -1327 (|#2| |#2| |#1|)) (-15 -2253 ((-710) |#2| (-589 |#2|))) (-15 -3497 ((-3 (-1169 (-589 |#2|)) "failed") (-710) |#1| (-589 |#2|))) (-15 -2925 ((-3 (-589 |#2|) "failed") |#2| |#1| (-1169 (-589 |#2|)))) (-15 -3945 ((-108) |#1| (-589 |#2|)))) (-284) (-1145 |#1|)) (T -430)) +((-3945 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *5)) (-4 *5 (-1145 *3)) (-4 *3 (-284)) (-5 *2 (-108)) (-5 *1 (-430 *3 *5)))) (-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1169 (-589 *3))) (-4 *4 (-284)) (-5 *2 (-589 *3)) (-5 *1 (-430 *4 *3)) (-4 *3 (-1145 *4)))) (-3497 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-710)) (-4 *4 (-284)) (-4 *6 (-1145 *4)) (-5 *2 (-1169 (-589 *6))) (-5 *1 (-430 *4 *6)) (-5 *5 (-589 *6)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-284)) (-5 *2 (-710)) (-5 *1 (-430 *5 *3)))) (-1327 (*1 *2 *2 *3) (-12 (-4 *3 (-284)) (-5 *1 (-430 *3 *2)) (-4 *2 (-1145 *3))))) +(-10 -7 (-15 -1327 (|#2| |#2| |#1|)) (-15 -2253 ((-710) |#2| (-589 |#2|))) (-15 -3497 ((-3 (-1169 (-589 |#2|)) "failed") (-710) |#1| (-589 |#2|))) (-15 -2925 ((-3 (-589 |#2|) "failed") |#2| |#1| (-1169 (-589 |#2|)))) (-15 -3945 ((-108) |#1| (-589 |#2|)))) +((-2424 (((-394 |#5|) |#5|) 24))) +(((-431 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2424 ((-394 |#5|) |#5|))) (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)) (-15 -2724 ((-3 $ "failed") (-1087))))) (-732) (-515) (-515) (-880 |#4| |#2| |#1|)) (T -431)) +((-2424 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)) (-15 -2724 ((-3 $ "failed") (-1087)))))) (-4 *5 (-732)) (-4 *7 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-431 *4 *5 *6 *7 *3)) (-4 *6 (-515)) (-4 *3 (-880 *7 *5 *4))))) +(-10 -7 (-15 -2424 ((-394 |#5|) |#5|))) +((-1333 ((|#3|) 37)) (-3120 (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 33))) +(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3120 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -1333 (|#3|))) (-732) (-786) (-840) (-880 |#3| |#1| |#2|)) (T -432)) +((-1333 (*1 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-840)) (-5 *1 (-432 *3 *4 *2 *5)) (-4 *5 (-880 *2 *3 *4)))) (-3120 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-840)) (-5 *1 (-432 *3 *4 *5 *6))))) +(-10 -7 (-15 -3120 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -1333 (|#3|))) +((-2424 (((-394 (-1083 |#1|)) (-1083 |#1|)) 41))) +(((-433 |#1|) (-10 -7 (-15 -2424 ((-394 (-1083 |#1|)) (-1083 |#1|)))) (-284)) (T -433)) +((-2424 (*1 *2 *3) (-12 (-4 *4 (-284)) (-5 *2 (-394 (-1083 *4))) (-5 *1 (-433 *4)) (-5 *3 (-1083 *4))))) +(-10 -7 (-15 -2424 ((-394 (-1083 |#1|)) (-1083 |#1|)))) +((-1355 (((-51) |#2| (-1087) (-271 |#2|) (-1136 (-710))) 42) (((-51) (-1 |#2| (-523)) (-271 |#2|) (-1136 (-710))) 41) (((-51) |#2| (-1087) (-271 |#2|)) 35) (((-51) (-1 |#2| (-523)) (-271 |#2|)) 27)) (-3199 (((-51) |#2| (-1087) (-271 |#2|) (-1136 (-383 (-523))) (-383 (-523))) 80) (((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1136 (-383 (-523))) (-383 (-523))) 79) (((-51) |#2| (-1087) (-271 |#2|) (-1136 (-523))) 78) (((-51) (-1 |#2| (-523)) (-271 |#2|) (-1136 (-523))) 77) (((-51) |#2| (-1087) (-271 |#2|)) 72) (((-51) (-1 |#2| (-523)) (-271 |#2|)) 71)) (-1380 (((-51) |#2| (-1087) (-271 |#2|) (-1136 (-383 (-523))) (-383 (-523))) 66) (((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1136 (-383 (-523))) (-383 (-523))) 64)) (-1369 (((-51) |#2| (-1087) (-271 |#2|) (-1136 (-523))) 48) (((-51) (-1 |#2| (-523)) (-271 |#2|) (-1136 (-523))) 47))) +(((-434 |#1| |#2|) (-10 -7 (-15 -1355 ((-51) (-1 |#2| (-523)) (-271 |#2|))) (-15 -1355 ((-51) |#2| (-1087) (-271 |#2|))) (-15 -1355 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1136 (-710)))) (-15 -1355 ((-51) |#2| (-1087) (-271 |#2|) (-1136 (-710)))) (-15 -1369 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1136 (-523)))) (-15 -1369 ((-51) |#2| (-1087) (-271 |#2|) (-1136 (-523)))) (-15 -1380 ((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1136 (-383 (-523))) (-383 (-523)))) (-15 -1380 ((-51) |#2| (-1087) (-271 |#2|) (-1136 (-383 (-523))) (-383 (-523)))) (-15 -3199 ((-51) (-1 |#2| (-523)) (-271 |#2|))) (-15 -3199 ((-51) |#2| (-1087) (-271 |#2|))) (-15 -3199 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1136 (-523)))) (-15 -3199 ((-51) |#2| (-1087) (-271 |#2|) (-1136 (-523)))) (-15 -3199 ((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1136 (-383 (-523))) (-383 (-523)))) (-15 -3199 ((-51) |#2| (-1087) (-271 |#2|) (-1136 (-383 (-523))) (-383 (-523))))) (-13 (-515) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1109) (-406 |#1|))) (T -434)) +((-3199 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1136 (-383 (-523)))) (-5 *7 (-383 (-523))) (-4 *3 (-13 (-27) (-1109) (-406 *8))) (-4 *8 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *8 *3)))) (-3199 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-383 (-523)))) (-5 *4 (-271 *8)) (-5 *5 (-1136 (-383 (-523)))) (-5 *6 (-383 (-523))) (-4 *8 (-13 (-27) (-1109) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *8)))) (-3199 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1136 (-523))) (-4 *3 (-13 (-27) (-1109) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) (-3199 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1136 (-523))) (-4 *7 (-13 (-27) (-1109) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) (-3199 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *3)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-523))) (-5 *4 (-271 *6)) (-4 *6 (-13 (-27) (-1109) (-406 *5))) (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *5 *6)))) (-1380 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1136 (-383 (-523)))) (-5 *7 (-383 (-523))) (-4 *3 (-13 (-27) (-1109) (-406 *8))) (-4 *8 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *8 *3)))) (-1380 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-383 (-523)))) (-5 *4 (-271 *8)) (-5 *5 (-1136 (-383 (-523)))) (-5 *6 (-383 (-523))) (-4 *8 (-13 (-27) (-1109) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *8)))) (-1369 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1136 (-523))) (-4 *3 (-13 (-27) (-1109) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) (-1369 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1136 (-523))) (-4 *7 (-13 (-27) (-1109) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) (-1355 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1136 (-710))) (-4 *3 (-13 (-27) (-1109) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) (-1355 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1136 (-710))) (-4 *7 (-13 (-27) (-1109) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) (-1355 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *3)))) (-1355 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-523))) (-5 *4 (-271 *6)) (-4 *6 (-13 (-27) (-1109) (-406 *5))) (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *5 *6))))) +(-10 -7 (-15 -1355 ((-51) (-1 |#2| (-523)) (-271 |#2|))) (-15 -1355 ((-51) |#2| (-1087) (-271 |#2|))) (-15 -1355 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1136 (-710)))) (-15 -1355 ((-51) |#2| (-1087) (-271 |#2|) (-1136 (-710)))) (-15 -1369 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1136 (-523)))) (-15 -1369 ((-51) |#2| (-1087) (-271 |#2|) (-1136 (-523)))) (-15 -1380 ((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1136 (-383 (-523))) (-383 (-523)))) (-15 -1380 ((-51) |#2| (-1087) (-271 |#2|) (-1136 (-383 (-523))) (-383 (-523)))) (-15 -3199 ((-51) (-1 |#2| (-523)) (-271 |#2|))) (-15 -3199 ((-51) |#2| (-1087) (-271 |#2|))) (-15 -3199 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1136 (-523)))) (-15 -3199 ((-51) |#2| (-1087) (-271 |#2|) (-1136 (-523)))) (-15 -3199 ((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1136 (-383 (-523))) (-383 (-523)))) (-15 -3199 ((-51) |#2| (-1087) (-271 |#2|) (-1136 (-383 (-523))) (-383 (-523))))) +((-1327 ((|#2| |#2| |#1|) 15)) (-3117 (((-589 |#2|) |#2| (-589 |#2|) |#1| (-852)) 69)) (-4169 (((-2 (|:| |plist| (-589 |#2|)) (|:| |modulo| |#1|)) |#2| (-589 |#2|) |#1| (-852)) 60))) +(((-435 |#1| |#2|) (-10 -7 (-15 -4169 ((-2 (|:| |plist| (-589 |#2|)) (|:| |modulo| |#1|)) |#2| (-589 |#2|) |#1| (-852))) (-15 -3117 ((-589 |#2|) |#2| (-589 |#2|) |#1| (-852))) (-15 -1327 (|#2| |#2| |#1|))) (-284) (-1145 |#1|)) (T -435)) +((-1327 (*1 *2 *2 *3) (-12 (-4 *3 (-284)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1145 *3)))) (-3117 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-589 *3)) (-5 *5 (-852)) (-4 *3 (-1145 *4)) (-4 *4 (-284)) (-5 *1 (-435 *4 *3)))) (-4169 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-852)) (-4 *5 (-284)) (-4 *3 (-1145 *5)) (-5 *2 (-2 (|:| |plist| (-589 *3)) (|:| |modulo| *5))) (-5 *1 (-435 *5 *3)) (-5 *4 (-589 *3))))) +(-10 -7 (-15 -4169 ((-2 (|:| |plist| (-589 |#2|)) (|:| |modulo| |#1|)) |#2| (-589 |#2|) |#1| (-852))) (-15 -3117 ((-589 |#2|) |#2| (-589 |#2|) |#1| (-852))) (-15 -1327 (|#2| |#2| |#1|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 28)) (-3845 (($ |#3|) 25)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1457 (($ $) 32)) (-3850 (($ |#2| |#4| $) 33)) (-1267 (($ |#2| (-653 |#3| |#4| |#5|)) 24)) (-1427 (((-653 |#3| |#4| |#5|) $) 15)) (-4171 ((|#3| $) 19)) (-1851 ((|#4| $) 17)) (-1437 ((|#2| $) 29)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-2623 (($ |#2| |#3| |#4|) 26)) (-1879 (($) 36 T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 34)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-436 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-657 |#6|) (-657 |#2|) (-10 -8 (-15 -1437 (|#2| $)) (-15 -1427 ((-653 |#3| |#4| |#5|) $)) (-15 -1851 (|#4| $)) (-15 -4171 (|#3| $)) (-15 -1457 ($ $)) (-15 -1267 ($ |#2| (-653 |#3| |#4| |#5|))) (-15 -3845 ($ |#3|)) (-15 -2623 ($ |#2| |#3| |#4|)) (-15 -3850 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-589 (-1087)) (-158) (-786) (-216 (-2810 |#1|) (-710)) (-1 (-108) (-2 (|:| -4013 |#3|) (|:| -1475 |#4|)) (-2 (|:| -4013 |#3|) (|:| -1475 |#4|))) (-880 |#2| |#4| (-796 |#1|))) (T -436)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-4 *6 (-216 (-2810 *3) (-710))) (-14 *7 (-1 (-108) (-2 (|:| -4013 *5) (|:| -1475 *6)) (-2 (|:| -4013 *5) (|:| -1475 *6)))) (-5 *1 (-436 *3 *4 *5 *6 *7 *2)) (-4 *5 (-786)) (-4 *2 (-880 *4 *6 (-796 *3))))) (-1437 (*1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *5 (-216 (-2810 *3) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -4013 *4) (|:| -1475 *5)) (-2 (|:| -4013 *4) (|:| -1475 *5)))) (-4 *2 (-158)) (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *4 (-786)) (-4 *7 (-880 *2 *5 (-796 *3))))) (-1427 (*1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-4 *6 (-216 (-2810 *3) (-710))) (-14 *7 (-1 (-108) (-2 (|:| -4013 *5) (|:| -1475 *6)) (-2 (|:| -4013 *5) (|:| -1475 *6)))) (-5 *2 (-653 *5 *6 *7)) (-5 *1 (-436 *3 *4 *5 *6 *7 *8)) (-4 *5 (-786)) (-4 *8 (-880 *4 *6 (-796 *3))))) (-1851 (*1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-14 *6 (-1 (-108) (-2 (|:| -4013 *5) (|:| -1475 *2)) (-2 (|:| -4013 *5) (|:| -1475 *2)))) (-4 *2 (-216 (-2810 *3) (-710))) (-5 *1 (-436 *3 *4 *5 *2 *6 *7)) (-4 *5 (-786)) (-4 *7 (-880 *4 *2 (-796 *3))))) (-4171 (*1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-4 *5 (-216 (-2810 *3) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -4013 *2) (|:| -1475 *5)) (-2 (|:| -4013 *2) (|:| -1475 *5)))) (-4 *2 (-786)) (-5 *1 (-436 *3 *4 *2 *5 *6 *7)) (-4 *7 (-880 *4 *5 (-796 *3))))) (-1457 (*1 *1 *1) (-12 (-14 *2 (-589 (-1087))) (-4 *3 (-158)) (-4 *5 (-216 (-2810 *2) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -4013 *4) (|:| -1475 *5)) (-2 (|:| -4013 *4) (|:| -1475 *5)))) (-5 *1 (-436 *2 *3 *4 *5 *6 *7)) (-4 *4 (-786)) (-4 *7 (-880 *3 *5 (-796 *2))))) (-1267 (*1 *1 *2 *3) (-12 (-5 *3 (-653 *5 *6 *7)) (-4 *5 (-786)) (-4 *6 (-216 (-2810 *4) (-710))) (-14 *7 (-1 (-108) (-2 (|:| -4013 *5) (|:| -1475 *6)) (-2 (|:| -4013 *5) (|:| -1475 *6)))) (-14 *4 (-589 (-1087))) (-4 *2 (-158)) (-5 *1 (-436 *4 *2 *5 *6 *7 *8)) (-4 *8 (-880 *2 *6 (-796 *4))))) (-3845 (*1 *1 *2) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-4 *5 (-216 (-2810 *3) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -4013 *2) (|:| -1475 *5)) (-2 (|:| -4013 *2) (|:| -1475 *5)))) (-5 *1 (-436 *3 *4 *2 *5 *6 *7)) (-4 *2 (-786)) (-4 *7 (-880 *4 *5 (-796 *3))))) (-2623 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-589 (-1087))) (-4 *2 (-158)) (-4 *4 (-216 (-2810 *5) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -4013 *3) (|:| -1475 *4)) (-2 (|:| -4013 *3) (|:| -1475 *4)))) (-5 *1 (-436 *5 *2 *3 *4 *6 *7)) (-4 *3 (-786)) (-4 *7 (-880 *2 *4 (-796 *5))))) (-3850 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-589 (-1087))) (-4 *2 (-158)) (-4 *3 (-216 (-2810 *4) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -4013 *5) (|:| -1475 *3)) (-2 (|:| -4013 *5) (|:| -1475 *3)))) (-5 *1 (-436 *4 *2 *5 *3 *6 *7)) (-4 *5 (-786)) (-4 *7 (-880 *2 *3 (-796 *4)))))) +(-13 (-657 |#6|) (-657 |#2|) (-10 -8 (-15 -1437 (|#2| $)) (-15 -1427 ((-653 |#3| |#4| |#5|) $)) (-15 -1851 (|#4| $)) (-15 -4171 (|#3| $)) (-15 -1457 ($ $)) (-15 -1267 ($ |#2| (-653 |#3| |#4| |#5|))) (-15 -3845 ($ |#3|)) (-15 -2623 ($ |#2| |#3| |#4|)) (-15 -3850 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-3646 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35))) +(((-437 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3646 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-732) (-786) (-515) (-880 |#3| |#1| |#2|) (-13 (-964 (-383 (-523))) (-339) (-10 -8 (-15 -1691 ($ |#4|)) (-15 -3316 (|#4| $)) (-15 -3329 (|#4| $))))) (T -437)) +((-3646 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-786)) (-4 *5 (-732)) (-4 *6 (-515)) (-4 *7 (-880 *6 *5 *3)) (-5 *1 (-437 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-964 (-383 (-523))) (-339) (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $)))))))) +(-10 -7 (-15 -3646 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-1680 (((-108) $ $) NIL)) (-1292 (((-589 |#3|) $) 41)) (-2356 (((-108) $) NIL)) (-2192 (((-108) $) NIL (|has| |#1| (-515)))) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |#3|) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1903 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-4002 (((-108) $) NIL (|has| |#1| (-515)))) (-3577 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3527 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2611 (((-108) $) NIL (|has| |#1| (-515)))) (-1291 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-1804 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-1220 (((-3 $ "failed") (-589 |#4|)) 47)) (-3508 (($ (-589 |#4|)) NIL)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-2514 (($ |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-3969 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2116 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4248))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4248)))) (-1871 (((-589 |#4|) $) 18 (|has| $ (-6 -4248)))) (-3556 ((|#3| $) 45)) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#4|) $) 14 (|has| $ (-6 -4248)))) (-3423 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-2043 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#4| |#4|) $) 21)) (-2709 (((-589 |#3|) $) NIL)) (-2528 (((-108) |#3| $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-3473 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-3951 (((-1034) $) NIL)) (-2509 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3379 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 39)) (-3320 (($) 17)) (-3977 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) 16)) (-1400 (((-499) $) NIL (|has| |#4| (-564 (-499)))) (($ (-589 |#4|)) 49)) (-1704 (($ (-589 |#4|)) 13)) (-2712 (($ $ |#3|) NIL)) (-2742 (($ $ |#3|) NIL)) (-1591 (($ $ |#3|) NIL)) (-1691 (((-794) $) 38) (((-589 |#4|) $) 48)) (-2308 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 30)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-438 |#1| |#2| |#3| |#4|) (-13 (-905 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1400 ($ (-589 |#4|))) (-6 -4248) (-6 -4249))) (-973) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -438)) +((-1400 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-438 *3 *4 *5 *6))))) +(-13 (-905 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1400 ($ (-589 |#4|))) (-6 -4248) (-6 -4249))) +((-1879 (($) 11)) (-1891 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-439 |#1| |#2| |#3|) (-10 -8 (-15 -1891 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1879 (|#1|))) (-440 |#2| |#3|) (-158) (-23)) (T -439)) +NIL +(-10 -8 (-15 -1891 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1879 (|#1|))) +((-1680 (((-108) $ $) 7)) (-1220 (((-3 |#1| "failed") $) 26)) (-3508 ((|#1| $) 25)) (-3584 (($ $ $) 23)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-2640 ((|#2| $) 19)) (-1691 (((-794) $) 11) (($ |#1|) 27)) (-1879 (($) 18 T CONST)) (-1891 (($) 24 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 15) (($ $ $) 13)) (-4045 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-440 |#1| |#2|) (-129) (-158) (-23)) (T -440)) -((-2767 (*1 *1) (-12 (-4 *1 (-440 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (-1656 (*1 *1 *1 *1) (-12 (-4 *1 (-440 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23))))) -(-13 (-445 |t#1| |t#2|) (-964 |t#1|) (-10 -8 (-15 (-2767) ($) -3059) (-15 -1656 ($ $ $)))) +((-1891 (*1 *1) (-12 (-4 *1 (-440 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (-3584 (*1 *1 *1 *1) (-12 (-4 *1 (-440 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23))))) +(-13 (-445 |t#1| |t#2|) (-964 |t#1|) (-10 -8 (-15 (-1891) ($) -2501) (-15 -3584 ($ $ $)))) (((-97) . T) ((-563 (-794)) . T) ((-445 |#1| |#2|) . T) ((-964 |#1|) . T) ((-1016) . T)) -((-2754 (((-1168 (-1168 (-523))) (-1168 (-1168 (-523))) (-852)) 18)) (-2466 (((-1168 (-1168 (-523))) (-852)) 16))) -(((-441) (-10 -7 (-15 -2754 ((-1168 (-1168 (-523))) (-1168 (-1168 (-523))) (-852))) (-15 -2466 ((-1168 (-1168 (-523))) (-852))))) (T -441)) -((-2466 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1168 (-1168 (-523)))) (-5 *1 (-441)))) (-2754 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 (-1168 (-523)))) (-5 *3 (-852)) (-5 *1 (-441))))) -(-10 -7 (-15 -2754 ((-1168 (-1168 (-523))) (-1168 (-1168 (-523))) (-852))) (-15 -2466 ((-1168 (-1168 (-523))) (-852)))) -((-1214 (((-523) (-523)) 30) (((-523)) 22)) (-1790 (((-523) (-523)) 26) (((-523)) 18)) (-3229 (((-523) (-523)) 28) (((-523)) 20)) (-2319 (((-108) (-108)) 12) (((-108)) 10)) (-3497 (((-108) (-108)) 11) (((-108)) 9)) (-2386 (((-108) (-108)) 24) (((-108)) 15))) -(((-442) (-10 -7 (-15 -3497 ((-108))) (-15 -2319 ((-108))) (-15 -3497 ((-108) (-108))) (-15 -2319 ((-108) (-108))) (-15 -2386 ((-108))) (-15 -3229 ((-523))) (-15 -1790 ((-523))) (-15 -1214 ((-523))) (-15 -2386 ((-108) (-108))) (-15 -3229 ((-523) (-523))) (-15 -1790 ((-523) (-523))) (-15 -1214 ((-523) (-523))))) (T -442)) -((-1214 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-1790 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-3229 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-1214 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-1790 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-3229 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-2386 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-2319 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-2319 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-3497 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442))))) -(-10 -7 (-15 -3497 ((-108))) (-15 -2319 ((-108))) (-15 -3497 ((-108) (-108))) (-15 -2319 ((-108) (-108))) (-15 -2386 ((-108))) (-15 -3229 ((-523))) (-15 -1790 ((-523))) (-15 -1214 ((-523))) (-15 -2386 ((-108) (-108))) (-15 -3229 ((-523) (-523))) (-15 -1790 ((-523) (-523))) (-15 -1214 ((-523) (-523)))) -((-3924 (((-108) $ $) NIL)) (-3142 (((-589 (-355)) $) 27) (((-589 (-355)) $ (-589 (-355))) 91)) (-4051 (((-589 (-1011 (-355))) $) 14) (((-589 (-1011 (-355))) $ (-589 (-1011 (-355)))) 88)) (-1411 (((-589 (-589 (-874 (-203)))) (-589 (-589 (-874 (-203)))) (-589 (-805))) 42)) (-1951 (((-589 (-589 (-874 (-203)))) $) 84)) (-2388 (((-1173) $ (-874 (-203)) (-805)) 104)) (-3119 (($ $) 83) (($ (-589 (-589 (-874 (-203))))) 94) (($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852))) 93) (($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)) (-589 (-240))) 95)) (-3779 (((-1070) $) NIL)) (-1853 (((-523) $) 66)) (-2783 (((-1034) $) NIL)) (-2702 (($) 92)) (-4105 (((-589 (-203)) (-589 (-589 (-874 (-203))))) 52)) (-3914 (((-1173) $ (-589 (-874 (-203))) (-805) (-805) (-852)) 98) (((-1173) $ (-874 (-203))) 100) (((-1173) $ (-874 (-203)) (-805) (-805) (-852)) 99)) (-1458 (((-794) $) 110) (($ (-589 (-589 (-874 (-203))))) 105)) (-3681 (((-1173) $ (-874 (-203))) 103)) (-3983 (((-108) $ $) NIL))) -(((-443) (-13 (-1016) (-10 -8 (-15 -2702 ($)) (-15 -3119 ($ $)) (-15 -3119 ($ (-589 (-589 (-874 (-203)))))) (-15 -3119 ($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)))) (-15 -3119 ($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)) (-589 (-240)))) (-15 -1951 ((-589 (-589 (-874 (-203)))) $)) (-15 -1853 ((-523) $)) (-15 -4051 ((-589 (-1011 (-355))) $)) (-15 -4051 ((-589 (-1011 (-355))) $ (-589 (-1011 (-355))))) (-15 -3142 ((-589 (-355)) $)) (-15 -3142 ((-589 (-355)) $ (-589 (-355)))) (-15 -3914 ((-1173) $ (-589 (-874 (-203))) (-805) (-805) (-852))) (-15 -3914 ((-1173) $ (-874 (-203)))) (-15 -3914 ((-1173) $ (-874 (-203)) (-805) (-805) (-852))) (-15 -3681 ((-1173) $ (-874 (-203)))) (-15 -2388 ((-1173) $ (-874 (-203)) (-805))) (-15 -1458 ($ (-589 (-589 (-874 (-203)))))) (-15 -1458 ((-794) $)) (-15 -1411 ((-589 (-589 (-874 (-203)))) (-589 (-589 (-874 (-203)))) (-589 (-805)))) (-15 -4105 ((-589 (-203)) (-589 (-589 (-874 (-203))))))))) (T -443)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-443)))) (-2702 (*1 *1) (-5 *1 (-443))) (-3119 (*1 *1 *1) (-5 *1 (-443))) (-3119 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) (-3119 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) (-5 *4 (-589 (-852))) (-5 *1 (-443)))) (-3119 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) (-5 *4 (-589 (-852))) (-5 *5 (-589 (-240))) (-5 *1 (-443)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-443)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-443)))) (-4051 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-443)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-443)))) (-3142 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-443)))) (-3914 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *4 (-805)) (-5 *5 (-852)) (-5 *2 (-1173)) (-5 *1 (-443)))) (-3914 (*1 *2 *1 *3) (-12 (-5 *3 (-874 (-203))) (-5 *2 (-1173)) (-5 *1 (-443)))) (-3914 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-874 (-203))) (-5 *4 (-805)) (-5 *5 (-852)) (-5 *2 (-1173)) (-5 *1 (-443)))) (-3681 (*1 *2 *1 *3) (-12 (-5 *3 (-874 (-203))) (-5 *2 (-1173)) (-5 *1 (-443)))) (-2388 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874 (-203))) (-5 *4 (-805)) (-5 *2 (-1173)) (-5 *1 (-443)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) (-1411 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) (-5 *1 (-443)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-589 (-203))) (-5 *1 (-443))))) -(-13 (-1016) (-10 -8 (-15 -2702 ($)) (-15 -3119 ($ $)) (-15 -3119 ($ (-589 (-589 (-874 (-203)))))) (-15 -3119 ($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)))) (-15 -3119 ($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)) (-589 (-240)))) (-15 -1951 ((-589 (-589 (-874 (-203)))) $)) (-15 -1853 ((-523) $)) (-15 -4051 ((-589 (-1011 (-355))) $)) (-15 -4051 ((-589 (-1011 (-355))) $ (-589 (-1011 (-355))))) (-15 -3142 ((-589 (-355)) $)) (-15 -3142 ((-589 (-355)) $ (-589 (-355)))) (-15 -3914 ((-1173) $ (-589 (-874 (-203))) (-805) (-805) (-852))) (-15 -3914 ((-1173) $ (-874 (-203)))) (-15 -3914 ((-1173) $ (-874 (-203)) (-805) (-805) (-852))) (-15 -3681 ((-1173) $ (-874 (-203)))) (-15 -2388 ((-1173) $ (-874 (-203)) (-805))) (-15 -1458 ($ (-589 (-589 (-874 (-203)))))) (-15 -1458 ((-794) $)) (-15 -1411 ((-589 (-589 (-874 (-203)))) (-589 (-589 (-874 (-203)))) (-589 (-805)))) (-15 -4105 ((-589 (-203)) (-589 (-589 (-874 (-203)))))))) -((-4087 (($ $) NIL) (($ $ $) 11))) -(((-444 |#1| |#2| |#3|) (-10 -8 (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|))) (-445 |#2| |#3|) (-158) (-23)) (T -444)) -NIL -(-10 -8 (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2299 ((|#2| $) 19)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 15) (($ $ $) 13)) (-4075 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-1664 (((-1169 (-1169 (-523))) (-1169 (-1169 (-523))) (-852)) 18)) (-1855 (((-1169 (-1169 (-523))) (-852)) 16))) +(((-441) (-10 -7 (-15 -1664 ((-1169 (-1169 (-523))) (-1169 (-1169 (-523))) (-852))) (-15 -1855 ((-1169 (-1169 (-523))) (-852))))) (T -441)) +((-1855 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1169 (-1169 (-523)))) (-5 *1 (-441)))) (-1664 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 (-1169 (-523)))) (-5 *3 (-852)) (-5 *1 (-441))))) +(-10 -7 (-15 -1664 ((-1169 (-1169 (-523))) (-1169 (-1169 (-523))) (-852))) (-15 -1855 ((-1169 (-1169 (-523))) (-852)))) +((-1657 (((-523) (-523)) 30) (((-523)) 22)) (-2336 (((-523) (-523)) 26) (((-523)) 18)) (-3572 (((-523) (-523)) 28) (((-523)) 20)) (-2813 (((-108) (-108)) 12) (((-108)) 10)) (-2443 (((-108) (-108)) 11) (((-108)) 9)) (-2271 (((-108) (-108)) 24) (((-108)) 15))) +(((-442) (-10 -7 (-15 -2443 ((-108))) (-15 -2813 ((-108))) (-15 -2443 ((-108) (-108))) (-15 -2813 ((-108) (-108))) (-15 -2271 ((-108))) (-15 -3572 ((-523))) (-15 -2336 ((-523))) (-15 -1657 ((-523))) (-15 -2271 ((-108) (-108))) (-15 -3572 ((-523) (-523))) (-15 -2336 ((-523) (-523))) (-15 -1657 ((-523) (-523))))) (T -442)) +((-1657 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-2336 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-3572 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-2271 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-1657 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-2336 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-3572 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-2271 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-2813 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-2443 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-2813 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-2443 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442))))) +(-10 -7 (-15 -2443 ((-108))) (-15 -2813 ((-108))) (-15 -2443 ((-108) (-108))) (-15 -2813 ((-108) (-108))) (-15 -2271 ((-108))) (-15 -3572 ((-523))) (-15 -2336 ((-523))) (-15 -1657 ((-523))) (-15 -2271 ((-108) (-108))) (-15 -3572 ((-523) (-523))) (-15 -2336 ((-523) (-523))) (-15 -1657 ((-523) (-523)))) +((-1680 (((-108) $ $) NIL)) (-2061 (((-589 (-355)) $) 27) (((-589 (-355)) $ (-589 (-355))) 93)) (-2680 (((-589 (-1011 (-355))) $) 14) (((-589 (-1011 (-355))) $ (-589 (-1011 (-355)))) 90)) (-1905 (((-589 (-589 (-874 (-203)))) (-589 (-589 (-874 (-203)))) (-589 (-805))) 42)) (-3207 (((-589 (-589 (-874 (-203)))) $) 86)) (-3171 (((-1174) $ (-874 (-203)) (-805)) 106)) (-1972 (($ $) 85) (($ (-589 (-589 (-874 (-203))))) 96) (($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852))) 95) (($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)) (-589 (-240))) 97)) (-2032 (((-1070) $) NIL)) (-3772 (((-523) $) 67)) (-3951 (((-1034) $) NIL)) (-2289 (($) 94)) (-3110 (((-589 (-203)) (-589 (-589 (-874 (-203))))) 52)) (-3851 (((-1174) $ (-589 (-874 (-203))) (-805) (-805) (-852)) 100) (((-1174) $ (-874 (-203))) 102) (((-1174) $ (-874 (-203)) (-805) (-805) (-852)) 101)) (-1691 (((-794) $) 112) (($ (-589 (-589 (-874 (-203))))) 107)) (-3570 (((-1174) $ (-874 (-203))) 105)) (-3941 (((-108) $ $) NIL))) +(((-443) (-13 (-1016) (-10 -8 (-15 -2289 ($)) (-15 -1972 ($ $)) (-15 -1972 ($ (-589 (-589 (-874 (-203)))))) (-15 -1972 ($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)))) (-15 -1972 ($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)) (-589 (-240)))) (-15 -3207 ((-589 (-589 (-874 (-203)))) $)) (-15 -3772 ((-523) $)) (-15 -2680 ((-589 (-1011 (-355))) $)) (-15 -2680 ((-589 (-1011 (-355))) $ (-589 (-1011 (-355))))) (-15 -2061 ((-589 (-355)) $)) (-15 -2061 ((-589 (-355)) $ (-589 (-355)))) (-15 -3851 ((-1174) $ (-589 (-874 (-203))) (-805) (-805) (-852))) (-15 -3851 ((-1174) $ (-874 (-203)))) (-15 -3851 ((-1174) $ (-874 (-203)) (-805) (-805) (-852))) (-15 -3570 ((-1174) $ (-874 (-203)))) (-15 -3171 ((-1174) $ (-874 (-203)) (-805))) (-15 -1691 ($ (-589 (-589 (-874 (-203)))))) (-15 -1691 ((-794) $)) (-15 -1905 ((-589 (-589 (-874 (-203)))) (-589 (-589 (-874 (-203)))) (-589 (-805)))) (-15 -3110 ((-589 (-203)) (-589 (-589 (-874 (-203))))))))) (T -443)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-443)))) (-2289 (*1 *1) (-5 *1 (-443))) (-1972 (*1 *1 *1) (-5 *1 (-443))) (-1972 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) (-1972 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) (-5 *4 (-589 (-852))) (-5 *1 (-443)))) (-1972 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) (-5 *4 (-589 (-852))) (-5 *5 (-589 (-240))) (-5 *1 (-443)))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-443)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-443)))) (-2680 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-443)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-443)))) (-2061 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-443)))) (-3851 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *4 (-805)) (-5 *5 (-852)) (-5 *2 (-1174)) (-5 *1 (-443)))) (-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-874 (-203))) (-5 *2 (-1174)) (-5 *1 (-443)))) (-3851 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-874 (-203))) (-5 *4 (-805)) (-5 *5 (-852)) (-5 *2 (-1174)) (-5 *1 (-443)))) (-3570 (*1 *2 *1 *3) (-12 (-5 *3 (-874 (-203))) (-5 *2 (-1174)) (-5 *1 (-443)))) (-3171 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874 (-203))) (-5 *4 (-805)) (-5 *2 (-1174)) (-5 *1 (-443)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) (-1905 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) (-5 *1 (-443)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-589 (-203))) (-5 *1 (-443))))) +(-13 (-1016) (-10 -8 (-15 -2289 ($)) (-15 -1972 ($ $)) (-15 -1972 ($ (-589 (-589 (-874 (-203)))))) (-15 -1972 ($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)))) (-15 -1972 ($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)) (-589 (-240)))) (-15 -3207 ((-589 (-589 (-874 (-203)))) $)) (-15 -3772 ((-523) $)) (-15 -2680 ((-589 (-1011 (-355))) $)) (-15 -2680 ((-589 (-1011 (-355))) $ (-589 (-1011 (-355))))) (-15 -2061 ((-589 (-355)) $)) (-15 -2061 ((-589 (-355)) $ (-589 (-355)))) (-15 -3851 ((-1174) $ (-589 (-874 (-203))) (-805) (-805) (-852))) (-15 -3851 ((-1174) $ (-874 (-203)))) (-15 -3851 ((-1174) $ (-874 (-203)) (-805) (-805) (-852))) (-15 -3570 ((-1174) $ (-874 (-203)))) (-15 -3171 ((-1174) $ (-874 (-203)) (-805))) (-15 -1691 ($ (-589 (-589 (-874 (-203)))))) (-15 -1691 ((-794) $)) (-15 -1905 ((-589 (-589 (-874 (-203)))) (-589 (-589 (-874 (-203)))) (-589 (-805)))) (-15 -3110 ((-589 (-203)) (-589 (-589 (-874 (-203)))))))) +((-4060 (($ $) NIL) (($ $ $) 11))) +(((-444 |#1| |#2| |#3|) (-10 -8 (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|))) (-445 |#2| |#3|) (-158) (-23)) (T -444)) +NIL +(-10 -8 (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-2640 ((|#2| $) 19)) (-1691 (((-794) $) 11)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 15) (($ $ $) 13)) (-4045 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-445 |#1| |#2|) (-129) (-158) (-23)) (T -445)) -((-2299 (*1 *2 *1) (-12 (-4 *1 (-445 *3 *2)) (-4 *3 (-158)) (-4 *2 (-23)))) (-2756 (*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (-4087 (*1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (-4075 (*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (-4087 (*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23))))) -(-13 (-1016) (-10 -8 (-15 -2299 (|t#2| $)) (-15 (-2756) ($) -3059) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4087 ($ $)) (-15 -4075 ($ $ $)) (-15 -4087 ($ $ $)))) +((-2640 (*1 *2 *1) (-12 (-4 *1 (-445 *3 *2)) (-4 *3 (-158)) (-4 *2 (-23)))) (-1879 (*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (-4060 (*1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (-4045 (*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (-4060 (*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23))))) +(-13 (-1016) (-10 -8 (-15 -2640 (|t#2| $)) (-15 (-1879) ($) -2501) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4060 ($ $)) (-15 -4045 ($ $ $)) (-15 -4060 ($ $ $)))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-2791 (((-3 (-589 (-455 |#1| |#2|)) "failed") (-589 (-455 |#1| |#2|)) (-589 (-796 |#1|))) 90)) (-2020 (((-589 (-589 (-225 |#1| |#2|))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|))) 88)) (-3102 (((-2 (|:| |dpolys| (-589 (-225 |#1| |#2|))) (|:| |coords| (-589 (-523)))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|))) 58))) -(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -2020 ((-589 (-589 (-225 |#1| |#2|))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|)))) (-15 -2791 ((-3 (-589 (-455 |#1| |#2|)) "failed") (-589 (-455 |#1| |#2|)) (-589 (-796 |#1|)))) (-15 -3102 ((-2 (|:| |dpolys| (-589 (-225 |#1| |#2|))) (|:| |coords| (-589 (-523)))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|))))) (-589 (-1087)) (-427) (-427)) (T -446)) -((-3102 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-796 *5))) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-2 (|:| |dpolys| (-589 (-225 *5 *6))) (|:| |coords| (-589 (-523))))) (-5 *1 (-446 *5 *6 *7)) (-5 *3 (-589 (-225 *5 *6))) (-4 *7 (-427)))) (-2791 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-455 *4 *5))) (-5 *3 (-589 (-796 *4))) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-446 *4 *5 *6)) (-4 *6 (-427)))) (-2020 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-796 *5))) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-589 (-589 (-225 *5 *6)))) (-5 *1 (-446 *5 *6 *7)) (-5 *3 (-589 (-225 *5 *6))) (-4 *7 (-427))))) -(-10 -7 (-15 -2020 ((-589 (-589 (-225 |#1| |#2|))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|)))) (-15 -2791 ((-3 (-589 (-455 |#1| |#2|)) "failed") (-589 (-455 |#1| |#2|)) (-589 (-796 |#1|)))) (-15 -3102 ((-2 (|:| |dpolys| (-589 (-225 |#1| |#2|))) (|:| |coords| (-589 (-523)))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|))))) -((-2121 (((-3 $ "failed") $) 11)) (-3208 (($ $ $) 20)) (-1714 (($ $ $) 21)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 14)) (-4098 (($ $ $) 9)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 19))) -(((-447 |#1|) (-10 -8 (-15 -1714 (|#1| |#1| |#1|)) (-15 -3208 (|#1| |#1| |#1|)) (-15 -2364 (|#1| |#1| (-523))) (-15 ** (|#1| |#1| (-523))) (-15 -4098 (|#1| |#1| |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 -2364 (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2364 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) (-448)) (T -447)) -NIL -(-10 -8 (-15 -1714 (|#1| |#1| |#1|)) (-15 -3208 (|#1| |#1| |#1|)) (-15 -2364 (|#1| |#1| (-523))) (-15 ** (|#1| |#1| (-523))) (-15 -4098 (|#1| |#1| |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 -2364 (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2364 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) -((-3924 (((-108) $ $) 7)) (-2518 (($) 20 T CONST)) (-2121 (((-3 $ "failed") $) 16)) (-2023 (((-108) $) 19)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 27)) (-2783 (((-1034) $) 10)) (-3208 (($ $ $) 23)) (-1714 (($ $ $) 22)) (-1458 (((-794) $) 11)) (-2364 (($ $ (-852)) 13) (($ $ (-710)) 17) (($ $ (-523)) 24)) (-2767 (($) 21 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 26)) (** (($ $ (-852)) 14) (($ $ (-710)) 18) (($ $ (-523)) 25)) (* (($ $ $) 15))) +((-1976 (((-3 (-589 (-455 |#1| |#2|)) "failed") (-589 (-455 |#1| |#2|)) (-589 (-796 |#1|))) 90)) (-2740 (((-589 (-589 (-225 |#1| |#2|))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|))) 88)) (-1827 (((-2 (|:| |dpolys| (-589 (-225 |#1| |#2|))) (|:| |coords| (-589 (-523)))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|))) 58))) +(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -2740 ((-589 (-589 (-225 |#1| |#2|))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|)))) (-15 -1976 ((-3 (-589 (-455 |#1| |#2|)) "failed") (-589 (-455 |#1| |#2|)) (-589 (-796 |#1|)))) (-15 -1827 ((-2 (|:| |dpolys| (-589 (-225 |#1| |#2|))) (|:| |coords| (-589 (-523)))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|))))) (-589 (-1087)) (-427) (-427)) (T -446)) +((-1827 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-796 *5))) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-2 (|:| |dpolys| (-589 (-225 *5 *6))) (|:| |coords| (-589 (-523))))) (-5 *1 (-446 *5 *6 *7)) (-5 *3 (-589 (-225 *5 *6))) (-4 *7 (-427)))) (-1976 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-455 *4 *5))) (-5 *3 (-589 (-796 *4))) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-446 *4 *5 *6)) (-4 *6 (-427)))) (-2740 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-796 *5))) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-589 (-589 (-225 *5 *6)))) (-5 *1 (-446 *5 *6 *7)) (-5 *3 (-589 (-225 *5 *6))) (-4 *7 (-427))))) +(-10 -7 (-15 -2740 ((-589 (-589 (-225 |#1| |#2|))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|)))) (-15 -1976 ((-3 (-589 (-455 |#1| |#2|)) "failed") (-589 (-455 |#1| |#2|)) (-589 (-796 |#1|)))) (-15 -1827 ((-2 (|:| |dpolys| (-589 (-225 |#1| |#2|))) (|:| |coords| (-589 (-523)))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|))))) +((-1444 (((-3 $ "failed") $) 11)) (-3361 (($ $ $) 20)) (-2892 (($ $ $) 21)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 14)) (-4074 (($ $ $) 9)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 19))) +(((-447 |#1|) (-10 -8 (-15 -2892 (|#1| |#1| |#1|)) (-15 -3361 (|#1| |#1| |#1|)) (-15 -2423 (|#1| |#1| (-523))) (-15 ** (|#1| |#1| (-523))) (-15 -4074 (|#1| |#1| |#1|)) (-15 -1444 ((-3 |#1| "failed") |#1|)) (-15 -2423 (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2423 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) (-448)) (T -447)) +NIL +(-10 -8 (-15 -2892 (|#1| |#1| |#1|)) (-15 -3361 (|#1| |#1| |#1|)) (-15 -2423 (|#1| |#1| (-523))) (-15 ** (|#1| |#1| (-523))) (-15 -4074 (|#1| |#1| |#1|)) (-15 -1444 ((-3 |#1| "failed") |#1|)) (-15 -2423 (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2423 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) +((-1680 (((-108) $ $) 7)) (-4189 (($) 20 T CONST)) (-1444 (((-3 $ "failed") $) 16)) (-2769 (((-108) $) 19)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 27)) (-3951 (((-1034) $) 10)) (-3361 (($ $ $) 23)) (-2892 (($ $ $) 22)) (-1691 (((-794) $) 11)) (-2423 (($ $ (-852)) 13) (($ $ (-710)) 17) (($ $ (-523)) 24)) (-1891 (($) 21 T CONST)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ $) 26)) (** (($ $ (-852)) 14) (($ $ (-710)) 18) (($ $ (-523)) 25)) (* (($ $ $) 15))) (((-448) (-129)) (T -448)) -((-3738 (*1 *1 *1) (-4 *1 (-448))) (-4098 (*1 *1 *1 *1) (-4 *1 (-448))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-448)) (-5 *2 (-523)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-448)) (-5 *2 (-523)))) (-3208 (*1 *1 *1 *1) (-4 *1 (-448))) (-1714 (*1 *1 *1 *1) (-4 *1 (-448)))) -(-13 (-666) (-10 -8 (-15 -3738 ($ $)) (-15 -4098 ($ $ $)) (-15 ** ($ $ (-523))) (-15 -2364 ($ $ (-523))) (-6 -4241) (-15 -3208 ($ $ $)) (-15 -1714 ($ $ $)))) +((-1396 (*1 *1 *1) (-4 *1 (-448))) (-4074 (*1 *1 *1 *1) (-4 *1 (-448))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-448)) (-5 *2 (-523)))) (-2423 (*1 *1 *1 *2) (-12 (-4 *1 (-448)) (-5 *2 (-523)))) (-3361 (*1 *1 *1 *1) (-4 *1 (-448))) (-2892 (*1 *1 *1 *1) (-4 *1 (-448)))) +(-13 (-666) (-10 -8 (-15 -1396 ($ $)) (-15 -4074 ($ $ $)) (-15 ** ($ $ (-523))) (-15 -2423 ($ $ (-523))) (-6 -4245) (-15 -3361 ($ $ $)) (-15 -2892 ($ $ $)))) (((-97) . T) ((-563 (-794)) . T) ((-666) . T) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 17)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) NIL) (($ $ (-383 (-523)) (-383 (-523))) NIL)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) NIL) (((-383 (-523)) $ (-383 (-523))) NIL)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) NIL) (($ $ (-383 (-523))) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-383 (-523))) NIL) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) 22)) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3417 (($ $) 26 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 33 (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 27 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) NIL)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) NIL) (($ $ $) NIL (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) 25 (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $ (-1164 |#2|)) 15)) (-2299 (((-383 (-523)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1164 |#2|)) NIL) (($ (-1153 |#1| |#2| |#3|)) 9) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 18)) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) 24)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-449 |#1| |#2| |#3|) (-13 (-1149 |#1|) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -1458 ($ (-1153 |#1| |#2| |#3|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -449)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1153 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-449 *3 *4 *5)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) -(-13 (-1149 |#1|) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -1458 ($ (-1153 |#1| |#2| |#3|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) -((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#2| $ |#1| |#2|) 18)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) 19)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) 16)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1330 (((-589 |#1|) $) NIL)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2412 (((-589 |#1|) $) NIL)) (-4135 (((-108) |#1| $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-450 |#1| |#2| |#3| |#4|) (-1099 |#1| |#2|) (-1016) (-1016) (-1099 |#1| |#2|) |#2|) (T -450)) -NIL -(-1099 |#1| |#2|) -((-3924 (((-108) $ $) NIL)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) NIL)) (-3846 (((-589 $) (-589 |#4|)) NIL)) (-1957 (((-589 |#3|) $) NIL)) (-2100 (((-108) $) NIL)) (-2376 (((-108) $) NIL (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2308 ((|#4| |#4| $) NIL)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-3724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2518 (($) NIL T CONST)) (-3595 (((-108) $) 26 (|has| |#1| (-515)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3225 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3393 (((-108) $) NIL (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3956 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) NIL)) (-3474 (($ (-589 |#4|)) NIL)) (-1751 (((-3 $ "failed") $) 39)) (-4014 ((|#4| |#4| $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2557 (($ |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2636 ((|#4| |#4| $) NIL)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) NIL)) (-1666 (((-589 |#4|) $) 16 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2907 ((|#3| $) 33)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#4|) $) 17 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2852 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 21)) (-4055 (((-589 |#3|) $) NIL)) (-1357 (((-108) |#3| $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2579 (((-3 |#4| "failed") $) 37)) (-2404 (((-589 |#4|) $) NIL)) (-2112 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2648 ((|#4| |#4| $) NIL)) (-2391 (((-108) $ $) NIL)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1398 ((|#4| |#4| $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-3 |#4| "failed") $) 35)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2890 (((-3 $ "failed") $ |#4|) 47)) (-4097 (($ $ |#4|) NIL)) (-1327 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 15)) (-3988 (($) 13)) (-2299 (((-710) $) NIL)) (-2792 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) 12)) (-3663 (((-499) $) NIL (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 20)) (-2621 (($ $ |#3|) 42)) (-2624 (($ $ |#3|) 44)) (-1824 (($ $) NIL)) (-3076 (($ $ |#3|) NIL)) (-1458 (((-794) $) 31) (((-589 |#4|) $) 40)) (-1395 (((-710) $) NIL (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) NIL)) (-2096 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) NIL)) (-2153 (((-108) |#3| $) NIL)) (-3983 (((-108) $ $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-451 |#1| |#2| |#3| |#4|) (-1116 |#1| |#2| |#3| |#4|) (-515) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -451)) -NIL -(-1116 |#1| |#2| |#3| |#4|) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL)) (-3474 (((-523) $) NIL) (((-383 (-523)) $) NIL)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2820 (($) 18)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3663 (((-355) $) 22) (((-203) $) 25) (((-383 (-1083 (-523))) $) 19) (((-499) $) 53)) (-1458 (((-794) $) 51) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (((-203) $) 24) (((-355) $) 21)) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 36 T CONST)) (-2767 (($) 11 T CONST)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) -(((-452) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))) (-949) (-563 (-203)) (-563 (-355)) (-564 (-383 (-1083 (-523)))) (-564 (-499)) (-10 -8 (-15 -2820 ($))))) (T -452)) -((-2820 (*1 *1) (-5 *1 (-452)))) -(-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))) (-949) (-563 (-203)) (-563 (-355)) (-564 (-383 (-1083 (-523)))) (-564 (-499)) (-10 -8 (-15 -2820 ($)))) -((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#2| $ |#1| |#2|) 16)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) 20)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) 18)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1330 (((-589 |#1|) $) 13)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2412 (((-589 |#1|) $) NIL)) (-4135 (((-108) |#1| $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 19)) (-3223 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 11 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2676 (((-710) $) 15 (|has| $ (-6 -4244))))) -(((-453 |#1| |#2| |#3|) (-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) (-1016) (-1016) (-1070)) (T -453)) -NIL -(-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) -((-1801 (((-523) (-523) (-523)) 7)) (-3702 (((-108) (-523) (-523) (-523) (-523)) 11)) (-3655 (((-1168 (-589 (-523))) (-710) (-710)) 23))) -(((-454) (-10 -7 (-15 -1801 ((-523) (-523) (-523))) (-15 -3702 ((-108) (-523) (-523) (-523) (-523))) (-15 -3655 ((-1168 (-589 (-523))) (-710) (-710))))) (T -454)) -((-3655 (*1 *2 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1168 (-589 (-523)))) (-5 *1 (-454)))) (-3702 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-108)) (-5 *1 (-454)))) (-1801 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-454))))) -(-10 -7 (-15 -1801 ((-523) (-523) (-523))) (-15 -3702 ((-108) (-523) (-523) (-523) (-523))) (-15 -3655 ((-1168 (-589 (-523))) (-710) (-710)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-796 |#1|)) $) NIL)) (-1786 (((-1083 $) $ (-796 |#1|)) NIL) (((-1083 |#2|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3345 (($ $) NIL (|has| |#2| (-515)))) (-3331 (((-108) $) NIL (|has| |#2| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-796 |#1|))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2291 (($ $) NIL (|has| |#2| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-796 |#1|) "failed") $) NIL)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-796 |#1|) $) NIL)) (-3078 (($ $ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3806 (($ $ (-589 (-523))) NIL)) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#2| (-840)))) (-1284 (($ $ |#2| (-456 (-2676 |#1|) (-710)) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#2|) (-796 |#1|)) NIL) (($ (-1083 $) (-796 |#1|)) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#2| (-456 (-2676 |#1|) (-710))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-796 |#1|)) NIL)) (-1575 (((-456 (-2676 |#1|) (-710)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-2454 (($ $ $) NIL (|has| |#2| (-786)))) (-2062 (($ $ $) NIL (|has| |#2| (-786)))) (-3782 (($ (-1 (-456 (-2676 |#1|) (-710)) (-456 (-2676 |#1|) (-710))) $) NIL)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2520 (((-3 (-796 |#1|) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#2| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-796 |#1|)) (|:| -2735 (-710))) "failed") $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#2| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#2| (-840)))) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-796 |#1|) |#2|) NIL) (($ $ (-589 (-796 |#1|)) (-589 |#2|)) NIL) (($ $ (-796 |#1|) $) NIL) (($ $ (-589 (-796 |#1|)) (-589 $)) NIL)) (-3549 (($ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3523 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2299 (((-456 (-2676 |#1|) (-710)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-796 |#1|) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-2438 ((|#2| $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-796 |#1|)) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#2| (-515)))) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-456 (-2676 |#1|) (-710))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-455 |#1| |#2|) (-13 (-880 |#2| (-456 (-2676 |#1|) (-710)) (-796 |#1|)) (-10 -8 (-15 -3806 ($ $ (-589 (-523)))))) (-589 (-1087)) (-973)) (T -455)) -((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-455 *3 *4)) (-14 *3 (-589 (-1087))) (-4 *4 (-973))))) -(-13 (-880 |#2| (-456 (-2676 |#1|) (-710)) (-796 |#1|)) (-10 -8 (-15 -3806 ($ $ (-589 (-523)))))) -((-3924 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-2295 (((-108) $) NIL (|has| |#2| (-124)))) (-1890 (($ (-852)) NIL (|has| |#2| (-973)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-3596 (($ $ $) NIL (|has| |#2| (-732)))) (-3212 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| |#2| (-344)))) (-3671 (((-523) $) NIL (|has| |#2| (-784)))) (-1641 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1016)))) (-3474 (((-523) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((|#2| $) NIL (|has| |#2| (-1016)))) (-2381 (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL (|has| |#2| (-973))) (((-629 |#2|) (-629 $)) NIL (|has| |#2| (-973)))) (-2121 (((-3 $ "failed") $) NIL (|has| |#2| (-973)))) (-4032 (($) NIL (|has| |#2| (-344)))) (-2863 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ (-523)) 11)) (-2604 (((-108) $) NIL (|has| |#2| (-784)))) (-1666 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL (|has| |#2| (-973)))) (-4114 (((-108) $) NIL (|has| |#2| (-784)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2136 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2852 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#2| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#2| (-1016)))) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-3878 (($ (-852)) NIL (|has| |#2| (-344)))) (-2783 (((-1034) $) NIL (|has| |#2| (-1016)))) (-1738 ((|#2| $) NIL (|has| (-523) (-786)))) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-523)) NIL)) (-3269 ((|#2| $ $) NIL (|has| |#2| (-973)))) (-1868 (($ (-1168 |#2|)) NIL)) (-3203 (((-126)) NIL (|has| |#2| (-339)))) (-3523 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-2792 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1168 |#2|) $) NIL) (($ (-523)) NIL (-3262 (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (|has| |#2| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (($ |#2|) NIL (|has| |#2| (-1016))) (((-794) $) NIL (|has| |#2| (-563 (-794))))) (-1621 (((-710)) NIL (|has| |#2| (-973)))) (-2096 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2619 (($ $) NIL (|has| |#2| (-784)))) (-2364 (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (-2756 (($) NIL (|has| |#2| (-124)) CONST)) (-2767 (($) NIL (|has| |#2| (-973)) CONST)) (-2862 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-4043 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3983 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-4030 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4007 (((-108) $ $) 15 (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $ $) NIL (|has| |#2| (-973))) (($ $) NIL (|has| |#2| (-973)))) (-4075 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (* (($ $ $) NIL (|has| |#2| (-973))) (($ (-523) $) NIL (|has| |#2| (-973))) (($ $ |#2|) NIL (|has| |#2| (-666))) (($ |#2| $) NIL (|has| |#2| (-666))) (($ (-710) $) NIL (|has| |#2| (-124))) (($ (-852) $) NIL (|has| |#2| (-25)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1292 (((-589 (-1001)) $) NIL)) (-2724 (((-1087) $) 17)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-3276 (($ $ (-383 (-523))) NIL) (($ $ (-383 (-523)) (-383 (-523))) NIL)) (-1552 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL (|has| |#1| (-339)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2437 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1441 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3199 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) NIL)) (-1481 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) NIL T CONST)) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-3049 (((-108) $) NIL (|has| |#1| (-339)))) (-2589 (((-108) $) NIL)) (-3352 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-383 (-523)) $) NIL) (((-383 (-523)) $ (-383 (-523))) NIL)) (-2769 (((-108) $) NIL)) (-1973 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3590 (($ $ (-852)) NIL) (($ $ (-383 (-523))) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-383 (-523))) NIL) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-1345 (($ (-1 |#1| |#1|) $) 22)) (-2313 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-339)))) (-2814 (($ $) 26 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 33 (-3172 (-12 (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1109))))) (($ $ (-1165 |#2|)) 27 (|has| |#1| (-37 (-383 (-523)))))) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-3053 (($ $ (-383 (-523))) NIL)) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2922 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-3413 (((-710) $) NIL (|has| |#1| (-339)))) (-1937 ((|#1| $ (-383 (-523))) NIL) (($ $ $) NIL (|has| (-383 (-523)) (-1028)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) 25 (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $ (-1165 |#2|)) 15)) (-2640 (((-383 (-523)) $) NIL)) (-2306 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1165 |#2|)) NIL) (($ (-1154 |#1| |#2| |#3|)) 9) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2084 ((|#1| $ (-383 (-523))) NIL)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-3710 ((|#1| $) 18)) (-2341 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2318 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-383 (-523))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) 24)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-449 |#1| |#2| |#3|) (-13 (-1150 |#1|) (-10 -8 (-15 -1691 ($ (-1165 |#2|))) (-15 -1691 ($ (-1154 |#1| |#2| |#3|))) (-15 -3984 ($ $ (-1165 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -449)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1154 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-449 *3 *4 *5)))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-2814 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1150 |#1|) (-10 -8 (-15 -1691 ($ (-1165 |#2|))) (-15 -1691 ($ (-1154 |#1| |#2| |#3|))) (-15 -3984 ($ $ (-1165 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) +((-1680 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3723 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-4191 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#2| $ |#1| |#2|) 18)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-4216 (((-3 |#2| "failed") |#1| $) 19)) (-4189 (($) NIL T CONST)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-3286 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-3 |#2| "failed") |#1| $) 16)) (-2514 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#2| $ |#1|) NIL)) (-1871 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 ((|#1| $) NIL (|has| |#1| (-786)))) (-1584 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-2567 ((|#1| $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4249))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1255 (((-589 |#1|) $) NIL)) (-1862 (((-108) |#1| $) NIL)) (-1293 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3108 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-2536 (((-589 |#1|) $) NIL)) (-2254 (((-108) |#1| $) NIL)) (-3951 (((-1034) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2428 ((|#2| $) NIL (|has| |#1| (-786)))) (-2509 (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL)) (-4141 (($ $ |#2|) NIL (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3973 (((-589 |#2|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2963 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-1691 (((-794) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2417 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-450 |#1| |#2| |#3| |#4|) (-1100 |#1| |#2|) (-1016) (-1016) (-1100 |#1| |#2|) |#2|) (T -450)) +NIL +(-1100 |#1| |#2|) +((-1680 (((-108) $ $) NIL)) (-3385 (((-589 (-2 (|:| -1214 $) (|:| -2647 (-589 |#4|)))) (-589 |#4|)) NIL)) (-2591 (((-589 $) (-589 |#4|)) NIL)) (-1292 (((-589 |#3|) $) NIL)) (-2356 (((-108) $) NIL)) (-2192 (((-108) $) NIL (|has| |#1| (-515)))) (-2219 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2717 ((|#4| |#4| $) NIL)) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |#3|) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1903 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4189 (($) NIL T CONST)) (-4002 (((-108) $) 26 (|has| |#1| (-515)))) (-3577 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3527 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2611 (((-108) $) NIL (|has| |#1| (-515)))) (-3586 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1291 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-1804 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-1220 (((-3 $ "failed") (-589 |#4|)) NIL)) (-3508 (($ (-589 |#4|)) NIL)) (-2441 (((-3 $ "failed") $) 39)) (-3546 ((|#4| |#4| $) NIL)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-2514 (($ |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-3969 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-3087 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2848 ((|#4| |#4| $) NIL)) (-2116 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4248))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4248))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2860 (((-2 (|:| -1214 (-589 |#4|)) (|:| -2647 (-589 |#4|))) $) NIL)) (-1871 (((-589 |#4|) $) 16 (|has| $ (-6 -4248)))) (-2605 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3556 ((|#3| $) 33)) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#4|) $) 17 (|has| $ (-6 -4248)))) (-3423 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-2043 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#4| |#4|) $) 21)) (-2709 (((-589 |#3|) $) NIL)) (-2528 (((-108) |#3| $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-2535 (((-3 |#4| "failed") $) 37)) (-2455 (((-589 |#4|) $) NIL)) (-2490 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2960 ((|#4| |#4| $) NIL)) (-2303 (((-108) $ $) NIL)) (-3473 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2569 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2897 ((|#4| |#4| $) NIL)) (-3951 (((-1034) $) NIL)) (-2428 (((-3 |#4| "failed") $) 35)) (-2509 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3367 (((-3 $ "failed") $ |#4|) 47)) (-3053 (($ $ |#4|) NIL)) (-3379 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 15)) (-3320 (($) 13)) (-2640 (((-710) $) NIL)) (-3977 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) 12)) (-1400 (((-499) $) NIL (|has| |#4| (-564 (-499))))) (-1704 (($ (-589 |#4|)) 20)) (-2712 (($ $ |#3|) 42)) (-2742 (($ $ |#3|) 44)) (-1494 (($ $) NIL)) (-1591 (($ $ |#3|) NIL)) (-1691 (((-794) $) 31) (((-589 |#4|) $) 40)) (-2868 (((-710) $) NIL (|has| |#3| (-344)))) (-1645 (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3684 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) NIL)) (-2308 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-1574 (((-589 |#3|) $) NIL)) (-1747 (((-108) |#3| $) NIL)) (-3941 (((-108) $ $) NIL)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-451 |#1| |#2| |#3| |#4|) (-1117 |#1| |#2| |#3| |#4|) (-515) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -451)) +NIL +(-1117 |#1| |#2| |#3| |#4|) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL)) (-3508 (((-523) $) NIL) (((-383 (-523)) $) NIL)) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-3352 (($) 18)) (-2769 (((-108) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-1400 (((-355) $) 22) (((-203) $) 25) (((-383 (-1083 (-523))) $) 19) (((-499) $) 52)) (-1691 (((-794) $) 50) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (((-203) $) 24) (((-355) $) 21)) (-3272 (((-710)) NIL)) (-2801 (((-108) $ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 36 T CONST)) (-1891 (($) 11 T CONST)) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-452) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))) (-949) (-563 (-203)) (-563 (-355)) (-564 (-383 (-1083 (-523)))) (-564 (-499)) (-10 -8 (-15 -3352 ($))))) (T -452)) +((-3352 (*1 *1) (-5 *1 (-452)))) +(-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))) (-949) (-563 (-203)) (-563 (-355)) (-564 (-383 (-1083 (-523)))) (-564 (-499)) (-10 -8 (-15 -3352 ($)))) +((-1680 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3723 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-4191 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#2| $ |#1| |#2|) 16)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-4216 (((-3 |#2| "failed") |#1| $) 20)) (-4189 (($) NIL T CONST)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-3286 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-3 |#2| "failed") |#1| $) 18)) (-2514 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#2| $ |#1|) NIL)) (-1871 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 ((|#1| $) NIL (|has| |#1| (-786)))) (-1584 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-2567 ((|#1| $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4249))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1255 (((-589 |#1|) $) 13)) (-1862 (((-108) |#1| $) NIL)) (-1293 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3108 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-2536 (((-589 |#1|) $) NIL)) (-2254 (((-108) |#1| $) NIL)) (-3951 (((-1034) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2428 ((|#2| $) NIL (|has| |#1| (-786)))) (-2509 (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL)) (-4141 (($ $ |#2|) NIL (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3973 (((-589 |#2|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) 19)) (-1937 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2963 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-1691 (((-794) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2417 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 11 (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2810 (((-710) $) 15 (|has| $ (-6 -4248))))) +(((-453 |#1| |#2| |#3|) (-13 (-1100 |#1| |#2|) (-10 -7 (-6 -4248))) (-1016) (-1016) (-1070)) (T -453)) +NIL +(-13 (-1100 |#1| |#2|) (-10 -7 (-6 -4248))) +((-2440 (((-523) (-523) (-523)) 7)) (-3745 (((-108) (-523) (-523) (-523) (-523)) 11)) (-1838 (((-1169 (-589 (-523))) (-710) (-710)) 23))) +(((-454) (-10 -7 (-15 -2440 ((-523) (-523) (-523))) (-15 -3745 ((-108) (-523) (-523) (-523) (-523))) (-15 -1838 ((-1169 (-589 (-523))) (-710) (-710))))) (T -454)) +((-1838 (*1 *2 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1169 (-589 (-523)))) (-5 *1 (-454)))) (-3745 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-108)) (-5 *1 (-454)))) (-2440 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-454))))) +(-10 -7 (-15 -2440 ((-523) (-523) (-523))) (-15 -3745 ((-108) (-523) (-523) (-523) (-523))) (-15 -1838 ((-1169 (-589 (-523))) (-710) (-710)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1292 (((-589 (-796 |#1|)) $) NIL)) (-2389 (((-1083 $) $ (-796 |#1|)) NIL) (((-1083 |#2|) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3306 (($ $) NIL (|has| |#2| (-515)))) (-3174 (((-108) $) NIL (|has| |#2| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 (-796 |#1|))) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3718 (($ $) NIL (|has| |#2| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-796 |#1|) "failed") $) NIL)) (-3508 ((|#2| $) NIL) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-796 |#1|) $) NIL)) (-1611 (($ $ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-2229 (($ $ (-589 (-523))) NIL)) (-1457 (($ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#2| (-840)))) (-4222 (($ $ |#2| (-456 (-2810 |#1|) (-710)) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-1280 (($ (-1083 |#2|) (-796 |#1|)) NIL) (($ (-1083 $) (-796 |#1|)) NIL)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#2| (-456 (-2810 |#1|) (-710))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ (-796 |#1|)) NIL)) (-4047 (((-456 (-2810 |#1|) (-710)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-3239 (($ $ $) NIL (|has| |#2| (-786)))) (-3158 (($ $ $) NIL (|has| |#2| (-786)))) (-2041 (($ (-1 (-456 (-2810 |#1|) (-710)) (-456 (-2810 |#1|) (-710))) $) NIL)) (-1345 (($ (-1 |#2| |#2|) $) NIL)) (-4213 (((-3 (-796 |#1|) "failed") $) NIL)) (-1427 (($ $) NIL)) (-1437 ((|#2| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-2032 (((-1070) $) NIL)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| (-796 |#1|)) (|:| -1475 (-710))) "failed") $) NIL)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) NIL)) (-1419 ((|#2| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#2| (-840)))) (-4007 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-796 |#1|) |#2|) NIL) (($ $ (-589 (-796 |#1|)) (-589 |#2|)) NIL) (($ $ (-796 |#1|) $) NIL) (($ $ (-589 (-796 |#1|)) (-589 $)) NIL)) (-1744 (($ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3984 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2640 (((-456 (-2810 |#1|) (-710)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-796 |#1|) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-1618 ((|#2| $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-796 |#1|)) NIL) (($ (-383 (-523))) NIL (-3172 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#2| (-515)))) (-3819 (((-589 |#2|) $) NIL)) (-2084 ((|#2| $ (-456 (-2810 |#1|) (-710))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-4006 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4074 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-455 |#1| |#2|) (-13 (-880 |#2| (-456 (-2810 |#1|) (-710)) (-796 |#1|)) (-10 -8 (-15 -2229 ($ $ (-589 (-523)))))) (-589 (-1087)) (-973)) (T -455)) +((-2229 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-455 *3 *4)) (-14 *3 (-589 (-1087))) (-4 *4 (-973))))) +(-13 (-880 |#2| (-456 (-2810 |#1|) (-710)) (-796 |#1|)) (-10 -8 (-15 -2229 ($ $ (-589 (-523)))))) +((-1680 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-2603 (((-108) $) NIL (|has| |#2| (-124)))) (-3845 (($ (-852)) NIL (|has| |#2| (-973)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-4016 (($ $ $) NIL (|has| |#2| (-732)))) (-3405 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-1620 (((-108) $ (-710)) NIL)) (-2395 (((-710)) NIL (|has| |#2| (-344)))) (-3482 (((-523) $) NIL (|has| |#2| (-784)))) (-1849 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1016)))) (-3508 (((-523) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((|#2| $) NIL (|has| |#2| (-1016)))) (-2243 (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL (|has| |#2| (-973))) (((-629 |#2|) (-629 $)) NIL (|has| |#2| (-973)))) (-1444 (((-3 $ "failed") $) NIL (|has| |#2| (-973)))) (-1631 (($) NIL (|has| |#2| (-344)))) (-2053 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#2| $ (-523)) 11)) (-3712 (((-108) $) NIL (|has| |#2| (-784)))) (-1871 (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-2769 (((-108) $) NIL (|has| |#2| (-973)))) (-2057 (((-108) $) NIL (|has| |#2| (-784)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-1584 (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2043 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#2| |#2|) $) NIL)) (-2060 (((-852) $) NIL (|has| |#2| (-344)))) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#2| (-1016)))) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-4013 (($ (-852)) NIL (|has| |#2| (-344)))) (-3951 (((-1034) $) NIL (|has| |#2| (-1016)))) (-2428 ((|#2| $) NIL (|has| (-523) (-786)))) (-4141 (($ $ |#2|) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3973 (((-589 |#2|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-523)) NIL)) (-3839 ((|#2| $ $) NIL (|has| |#2| (-973)))) (-2469 (($ (-1169 |#2|)) NIL)) (-3314 (((-126)) NIL (|has| |#2| (-339)))) (-3984 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-3977 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-1169 |#2|) $) NIL) (($ (-523)) NIL (-3172 (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (|has| |#2| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (($ |#2|) NIL (|has| |#2| (-1016))) (((-794) $) NIL (|has| |#2| (-563 (-794))))) (-3272 (((-710)) NIL (|has| |#2| (-973)))) (-2308 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2695 (($ $) NIL (|has| |#2| (-784)))) (-2423 (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (-1879 (($) NIL (|has| |#2| (-124)) CONST)) (-1891 (($) NIL (|has| |#2| (-973)) CONST)) (-2909 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-4006 (((-108) $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3980 (((-108) $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3941 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-3993 (((-108) $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3966 (((-108) $ $) 15 (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4074 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4060 (($ $ $) NIL (|has| |#2| (-973))) (($ $) NIL (|has| |#2| (-973)))) (-4045 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (* (($ $ $) NIL (|has| |#2| (-973))) (($ (-523) $) NIL (|has| |#2| (-973))) (($ $ |#2|) NIL (|has| |#2| (-666))) (($ |#2| $) NIL (|has| |#2| (-666))) (($ (-710) $) NIL (|has| |#2| (-124))) (($ (-852) $) NIL (|has| |#2| (-25)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) (((-456 |#1| |#2|) (-216 |#1| |#2|) (-710) (-732)) (T -456)) NIL (-216 |#1| |#2|) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) NIL)) (-2518 (($) NIL T CONST)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2158 (($ $ $) 32)) (-2178 (($ $ $) 31)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2062 ((|#1| $) 26)) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1934 ((|#1| $) 27)) (-3450 (($ |#1| $) 10)) (-1274 (($ (-589 |#1|)) 12)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3761 ((|#1| $) 23)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 9)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 29)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) 21 (|has| $ (-6 -4244))))) -(((-457 |#1|) (-13 (-898 |#1|) (-10 -8 (-15 -1274 ($ (-589 |#1|))))) (-786)) (T -457)) -((-1274 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-457 *3))))) -(-13 (-898 |#1|) (-10 -8 (-15 -1274 ($ (-589 |#1|))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2437 (($ $) 69)) (-1894 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-1485 (((-389 |#2| (-383 |#2|) |#3| |#4|) $) 43)) (-2783 (((-1034) $) NIL)) (-3441 (((-3 |#4| "failed") $) 105)) (-3219 (($ (-389 |#2| (-383 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-523)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-2274 (((-2 (|:| -3024 (-389 |#2| (-383 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-1458 (((-794) $) 100)) (-2756 (($) 33 T CONST)) (-3983 (((-108) $ $) 107)) (-4087 (($ $) 72) (($ $ $) NIL)) (-4075 (($ $ $) 70)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 73))) -(((-458 |#1| |#2| |#3| |#4|) (-311 |#1| |#2| |#3| |#4|) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -458)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) NIL)) (-4189 (($) NIL T CONST)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-1793 (($ $ $) 32)) (-3780 (($ $ $) 31)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3158 ((|#1| $) 26)) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1293 ((|#1| $) 27)) (-3108 (($ |#1| $) 10)) (-4102 (($ (-589 |#1|)) 12)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3048 ((|#1| $) 23)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) 9)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2417 (($ (-589 |#1|)) 29)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2810 (((-710) $) 21 (|has| $ (-6 -4248))))) +(((-457 |#1|) (-13 (-898 |#1|) (-10 -8 (-15 -4102 ($ (-589 |#1|))))) (-786)) (T -457)) +((-4102 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-457 *3))))) +(-13 (-898 |#1|) (-10 -8 (-15 -4102 ($ (-589 |#1|))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-2116 (($ $) 69)) (-3878 (((-108) $) NIL)) (-2032 (((-1070) $) NIL)) (-1433 (((-389 |#2| (-383 |#2|) |#3| |#4|) $) 43)) (-3951 (((-1034) $) NIL)) (-1621 (((-3 |#4| "failed") $) 107)) (-3483 (($ (-389 |#2| (-383 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-523)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3530 (((-2 (|:| -3697 (-389 |#2| (-383 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-1691 (((-794) $) 102)) (-1879 (($) 33 T CONST)) (-3941 (((-108) $ $) 109)) (-4060 (($ $) 72) (($ $ $) NIL)) (-4045 (($ $ $) 70)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 73))) +(((-458 |#1| |#2| |#3| |#4|) (-311 |#1| |#2| |#3| |#4|) (-339) (-1145 |#1|) (-1145 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -458)) NIL (-311 |#1| |#2| |#3| |#4|) -((-1491 (((-523) (-589 (-523))) 30)) (-3894 ((|#1| (-589 |#1|)) 56)) (-3912 (((-589 |#1|) (-589 |#1|)) 57)) (-2967 (((-589 |#1|) (-589 |#1|)) 59)) (-3278 ((|#1| (-589 |#1|)) 58)) (-2438 (((-589 (-523)) (-589 |#1|)) 33))) -(((-459 |#1|) (-10 -7 (-15 -3278 (|#1| (-589 |#1|))) (-15 -3894 (|#1| (-589 |#1|))) (-15 -2967 ((-589 |#1|) (-589 |#1|))) (-15 -3912 ((-589 |#1|) (-589 |#1|))) (-15 -2438 ((-589 (-523)) (-589 |#1|))) (-15 -1491 ((-523) (-589 (-523))))) (-1144 (-523))) (T -459)) -((-1491 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-523)) (-5 *1 (-459 *4)) (-4 *4 (-1144 *2)))) (-2438 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-1144 (-523))) (-5 *2 (-589 (-523))) (-5 *1 (-459 *4)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1144 (-523))) (-5 *1 (-459 *3)))) (-2967 (*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1144 (-523))) (-5 *1 (-459 *3)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-459 *2)) (-4 *2 (-1144 (-523))))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-459 *2)) (-4 *2 (-1144 (-523)))))) -(-10 -7 (-15 -3278 (|#1| (-589 |#1|))) (-15 -3894 (|#1| (-589 |#1|))) (-15 -2967 ((-589 |#1|) (-589 |#1|))) (-15 -3912 ((-589 |#1|) (-589 |#1|))) (-15 -2438 ((-589 (-523)) (-589 |#1|))) (-15 -1491 ((-523) (-589 (-523))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-523) $) NIL (|has| (-523) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-523) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-523) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-523) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-523) (-964 (-523))))) (-3474 (((-523) $) NIL) (((-1087) $) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-523) (-964 (-523)))) (((-523) $) NIL (|has| (-523) (-964 (-523))))) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-523) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| (-523) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-523) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-523) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-523) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| (-523) (-1063)))) (-4114 (((-108) $) NIL (|has| (-523) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-523) (-786)))) (-3612 (($ (-1 (-523) (-523)) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-523) (-1063)) CONST)) (-2646 (($ (-383 (-523))) 8)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-523) (-284))) (((-383 (-523)) $) NIL)) (-3722 (((-523) $) NIL (|has| (-523) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-523)) (-589 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-523) (-523)) NIL (|has| (-523) (-286 (-523)))) (($ $ (-271 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-271 (-523)))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-1087)) (-589 (-523))) NIL (|has| (-523) (-484 (-1087) (-523)))) (($ $ (-1087) (-523)) NIL (|has| (-523) (-484 (-1087) (-523))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-523)) NIL (|has| (-523) (-263 (-523) (-523))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-523) $) NIL)) (-3663 (((-823 (-523)) $) NIL (|has| (-523) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-523) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-523) (-564 (-499)))) (((-355) $) NIL (|has| (-523) (-949))) (((-203) $) NIL (|has| (-523) (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-523) (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 7) (($ (-523)) NIL) (($ (-1087)) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL) (((-932 16) $) 9)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-523) (-840))) (|has| (-523) (-134))))) (-1621 (((-710)) NIL)) (-1886 (((-523) $) NIL (|has| (-523) (-508)))) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL (|has| (-523) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4098 (($ $ $) NIL) (($ (-523) (-523)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-523) $) NIL) (($ $ (-523)) NIL))) -(((-460) (-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -1458 ((-932 16) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -2646 ($ (-383 (-523))))))) (T -460)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-932 16)) (-5 *1 (-460)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460)))) (-2646 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460))))) -(-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -1458 ((-932 16) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -2646 ($ (-383 (-523)))))) -((-2136 (((-589 |#2|) $) 22)) (-1973 (((-108) |#2| $) 27)) (-1327 (((-108) (-1 (-108) |#2|) $) 20)) (-2679 (($ $ (-589 (-271 |#2|))) 12) (($ $ (-271 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-589 |#2|) (-589 |#2|)) NIL)) (-2792 (((-710) (-1 (-108) |#2|) $) 21) (((-710) |#2| $) 25)) (-1458 (((-794) $) 36)) (-2096 (((-108) (-1 (-108) |#2|) $) 19)) (-3983 (((-108) $ $) 30)) (-2676 (((-710) $) 16))) -(((-461 |#1| |#2|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-271 |#2|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -1973 ((-108) |#2| |#1|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2136 ((-589 |#2|) |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2676 ((-710) |#1|))) (-462 |#2|) (-1122)) (T -461)) -NIL -(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-271 |#2|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -1973 ((-108) |#2| |#1|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2136 ((-589 |#2|) |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2676 ((-710) |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-462 |#1|) (-129) (-1122)) (T -462)) -((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-462 *3)) (-4 *3 (-1122)))) (-2852 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4245)) (-4 *1 (-462 *3)) (-4 *3 (-1122)))) (-2096 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4244)) (-4 *1 (-462 *4)) (-4 *4 (-1122)) (-5 *2 (-108)))) (-1327 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4244)) (-4 *1 (-462 *4)) (-4 *4 (-1122)) (-5 *2 (-108)))) (-2792 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4244)) (-4 *1 (-462 *4)) (-4 *4 (-1122)) (-5 *2 (-710)))) (-1666 (*1 *2 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) (-5 *2 (-589 *3)))) (-2136 (*1 *2 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) (-5 *2 (-589 *3)))) (-2792 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-710)))) (-1973 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-108))))) -(-13 (-33) (-10 -8 (IF (|has| |t#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (IF (|has| |t#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |t#1| (-1016)) (IF (|has| |t#1| (-286 |t#1|)) (-6 (-286 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3612 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4245)) (-15 -2852 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4244)) (PROGN (-15 -2096 ((-108) (-1 (-108) |t#1|) $)) (-15 -1327 ((-108) (-1 (-108) |t#1|) $)) (-15 -2792 ((-710) (-1 (-108) |t#1|) $)) (-15 -1666 ((-589 |t#1|) $)) (-15 -2136 ((-589 |t#1|) $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -2792 ((-710) |t#1| $)) (-15 -1973 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-1769 (($ $) 15)) (-1744 (($ $) 24)) (-1793 (($ $) 12)) (-1805 (($ $) 10)) (-1782 (($ $) 17)) (-1757 (($ $) 22))) -(((-463 |#1|) (-10 -8 (-15 -1757 (|#1| |#1|)) (-15 -1782 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1769 (|#1| |#1|))) (-464)) (T -463)) -NIL -(-10 -8 (-15 -1757 (|#1| |#1|)) (-15 -1782 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1769 (|#1| |#1|))) -((-1769 (($ $) 11)) (-1744 (($ $) 10)) (-1793 (($ $) 9)) (-1805 (($ $) 8)) (-1782 (($ $) 7)) (-1757 (($ $) 6))) +((-1490 (((-523) (-589 (-523))) 30)) (-1886 ((|#1| (-589 |#1|)) 56)) (-3840 (((-589 |#1|) (-589 |#1|)) 57)) (-2916 (((-589 |#1|) (-589 |#1|)) 59)) (-3310 ((|#1| (-589 |#1|)) 58)) (-1618 (((-589 (-523)) (-589 |#1|)) 33))) +(((-459 |#1|) (-10 -7 (-15 -3310 (|#1| (-589 |#1|))) (-15 -1886 (|#1| (-589 |#1|))) (-15 -2916 ((-589 |#1|) (-589 |#1|))) (-15 -3840 ((-589 |#1|) (-589 |#1|))) (-15 -1618 ((-589 (-523)) (-589 |#1|))) (-15 -1490 ((-523) (-589 (-523))))) (-1145 (-523))) (T -459)) +((-1490 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-523)) (-5 *1 (-459 *4)) (-4 *4 (-1145 *2)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-1145 (-523))) (-5 *2 (-589 (-523))) (-5 *1 (-459 *4)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1145 (-523))) (-5 *1 (-459 *3)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1145 (-523))) (-5 *1 (-459 *3)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-459 *2)) (-4 *2 (-1145 (-523))))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-459 *2)) (-4 *2 (-1145 (-523)))))) +(-10 -7 (-15 -3310 (|#1| (-589 |#1|))) (-15 -1886 (|#1| (-589 |#1|))) (-15 -2916 ((-589 |#1|) (-589 |#1|))) (-15 -3840 ((-589 |#1|) (-589 |#1|))) (-15 -1618 ((-589 (-523)) (-589 |#1|))) (-15 -1490 ((-523) (-589 (-523))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2046 (((-523) $) NIL (|has| (-523) (-284)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL (|has| (-523) (-759)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-523) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-523) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-523) (-964 (-523))))) (-3508 (((-523) $) NIL) (((-1087) $) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-523) (-964 (-523)))) (((-523) $) NIL (|has| (-523) (-964 (-523))))) (-4059 (($ $ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| (-523) (-508)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-3712 (((-108) $) NIL (|has| (-523) (-759)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-523) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-523) (-817 (-355))))) (-2769 (((-108) $) NIL)) (-1296 (($ $) NIL)) (-3316 (((-523) $) NIL)) (-2738 (((-3 $ "failed") $) NIL (|has| (-523) (-1063)))) (-2057 (((-108) $) NIL (|has| (-523) (-759)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3239 (($ $ $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| (-523) (-786)))) (-1345 (($ (-1 (-523) (-523)) $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| (-523) (-1063)) CONST)) (-2940 (($ (-383 (-523))) 8)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4110 (($ $) NIL (|has| (-523) (-284))) (((-383 (-523)) $) NIL)) (-2733 (((-523) $) NIL (|has| (-523) (-508)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2812 (($ $ (-589 (-523)) (-589 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-523) (-523)) NIL (|has| (-523) (-286 (-523)))) (($ $ (-271 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-271 (-523)))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-1087)) (-589 (-523))) NIL (|has| (-523) (-484 (-1087) (-523)))) (($ $ (-1087) (-523)) NIL (|has| (-523) (-484 (-1087) (-523))))) (-3413 (((-710) $) NIL)) (-1937 (($ $ (-523)) NIL (|has| (-523) (-263 (-523) (-523))))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3984 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-2793 (($ $) NIL)) (-3329 (((-523) $) NIL)) (-1400 (((-823 (-523)) $) NIL (|has| (-523) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-523) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-523) (-564 (-499)))) (((-355) $) NIL (|has| (-523) (-949))) (((-203) $) NIL (|has| (-523) (-949)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-523) (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 7) (($ (-523)) NIL) (($ (-1087)) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL) (((-932 16) $) 9)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| (-523) (-840))) (|has| (-523) (-134))))) (-3272 (((-710)) NIL)) (-3809 (((-523) $) NIL (|has| (-523) (-508)))) (-2801 (((-108) $ $) NIL)) (-2695 (($ $) NIL (|has| (-523) (-759)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-4006 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3980 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3966 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4074 (($ $ $) NIL) (($ (-523) (-523)) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-523) $) NIL) (($ $ (-523)) NIL))) +(((-460) (-13 (-921 (-523)) (-10 -8 (-15 -1691 ((-383 (-523)) $)) (-15 -1691 ((-932 16) $)) (-15 -4110 ((-383 (-523)) $)) (-15 -2940 ($ (-383 (-523))))))) (T -460)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-932 16)) (-5 *1 (-460)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460))))) +(-13 (-921 (-523)) (-10 -8 (-15 -1691 ((-383 (-523)) $)) (-15 -1691 ((-932 16) $)) (-15 -4110 ((-383 (-523)) $)) (-15 -2940 ($ (-383 (-523)))))) +((-1584 (((-589 |#2|) $) 22)) (-3423 (((-108) |#2| $) 27)) (-3379 (((-108) (-1 (-108) |#2|) $) 20)) (-2812 (($ $ (-589 (-271 |#2|))) 12) (($ $ (-271 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-589 |#2|) (-589 |#2|)) NIL)) (-3977 (((-710) (-1 (-108) |#2|) $) 21) (((-710) |#2| $) 25)) (-1691 (((-794) $) 36)) (-2308 (((-108) (-1 (-108) |#2|) $) 19)) (-3941 (((-108) $ $) 30)) (-2810 (((-710) $) 16))) +(((-461 |#1| |#2|) (-10 -8 (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -2812 (|#1| |#1| (-589 |#2|) (-589 |#2|))) (-15 -2812 (|#1| |#1| |#2| |#2|)) (-15 -2812 (|#1| |#1| (-271 |#2|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -3423 ((-108) |#2| |#1|)) (-15 -3977 ((-710) |#2| |#1|)) (-15 -1584 ((-589 |#2|) |#1|)) (-15 -3977 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -3379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2308 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2810 ((-710) |#1|))) (-462 |#2|) (-1123)) (T -461)) +NIL +(-10 -8 (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -2812 (|#1| |#1| (-589 |#2|) (-589 |#2|))) (-15 -2812 (|#1| |#1| |#2| |#2|)) (-15 -2812 (|#1| |#1| (-271 |#2|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -3423 ((-108) |#2| |#1|)) (-15 -3977 ((-710) |#2| |#1|)) (-15 -1584 ((-589 |#2|) |#1|)) (-15 -3977 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -3379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2308 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2810 ((-710) |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) 8)) (-4189 (($) 7 T CONST)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-462 |#1|) (-129) (-1123)) (T -462)) +((-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-462 *3)) (-4 *3 (-1123)))) (-2043 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4249)) (-4 *1 (-462 *3)) (-4 *3 (-1123)))) (-2308 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4248)) (-4 *1 (-462 *4)) (-4 *4 (-1123)) (-5 *2 (-108)))) (-3379 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4248)) (-4 *1 (-462 *4)) (-4 *4 (-1123)) (-5 *2 (-108)))) (-3977 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4248)) (-4 *1 (-462 *4)) (-4 *4 (-1123)) (-5 *2 (-710)))) (-1871 (*1 *2 *1) (-12 (|has| *1 (-6 -4248)) (-4 *1 (-462 *3)) (-4 *3 (-1123)) (-5 *2 (-589 *3)))) (-1584 (*1 *2 *1) (-12 (|has| *1 (-6 -4248)) (-4 *1 (-462 *3)) (-4 *3 (-1123)) (-5 *2 (-589 *3)))) (-3977 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4248)) (-4 *1 (-462 *3)) (-4 *3 (-1123)) (-4 *3 (-1016)) (-5 *2 (-710)))) (-3423 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4248)) (-4 *1 (-462 *3)) (-4 *3 (-1123)) (-4 *3 (-1016)) (-5 *2 (-108))))) +(-13 (-33) (-10 -8 (IF (|has| |t#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (IF (|has| |t#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |t#1| (-1016)) (IF (|has| |t#1| (-286 |t#1|)) (-6 (-286 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1345 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4249)) (-15 -2043 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4248)) (PROGN (-15 -2308 ((-108) (-1 (-108) |t#1|) $)) (-15 -3379 ((-108) (-1 (-108) |t#1|) $)) (-15 -3977 ((-710) (-1 (-108) |t#1|) $)) (-15 -1871 ((-589 |t#1|) $)) (-15 -1584 ((-589 |t#1|) $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -3977 ((-710) |t#1| $)) (-15 -3423 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-1462 (($ $) 15)) (-1441 (($ $) 24)) (-1481 (($ $) 12)) (-2306 (($ $) 10)) (-1471 (($ $) 17)) (-1453 (($ $) 22))) +(((-463 |#1|) (-10 -8 (-15 -1453 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -2306 (|#1| |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1462 (|#1| |#1|))) (-464)) (T -463)) +NIL +(-10 -8 (-15 -1453 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -2306 (|#1| |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1462 (|#1| |#1|))) +((-1462 (($ $) 11)) (-1441 (($ $) 10)) (-1481 (($ $) 9)) (-2306 (($ $) 8)) (-1471 (($ $) 7)) (-1453 (($ $) 6))) (((-464) (-129)) (T -464)) -((-1769 (*1 *1 *1) (-4 *1 (-464))) (-1744 (*1 *1 *1) (-4 *1 (-464))) (-1793 (*1 *1 *1) (-4 *1 (-464))) (-1805 (*1 *1 *1) (-4 *1 (-464))) (-1782 (*1 *1 *1) (-4 *1 (-464))) (-1757 (*1 *1 *1) (-4 *1 (-464)))) -(-13 (-10 -8 (-15 -1757 ($ $)) (-15 -1782 ($ $)) (-15 -1805 ($ $)) (-15 -1793 ($ $)) (-15 -1744 ($ $)) (-15 -1769 ($ $)))) -((-1820 (((-394 |#4|) |#4| (-1 (-394 |#2|) |#2|)) 42))) -(((-465 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 |#4|) |#4| (-1 (-394 |#2|) |#2|)))) (-339) (-1144 |#1|) (-13 (-339) (-136) (-664 |#1| |#2|)) (-1144 |#3|)) (T -465)) -((-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-4 *7 (-13 (-339) (-136) (-664 *5 *6))) (-5 *2 (-394 *3)) (-5 *1 (-465 *5 *6 *7 *3)) (-4 *3 (-1144 *7))))) -(-10 -7 (-15 -1820 ((-394 |#4|) |#4| (-1 (-394 |#2|) |#2|)))) -((-3924 (((-108) $ $) NIL)) (-1728 (((-589 $) (-1083 $) (-1087)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-883 $)) NIL)) (-2488 (($ (-1083 $) (-1087)) NIL) (($ (-1083 $)) NIL) (($ (-883 $)) NIL)) (-2295 (((-108) $) 37)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2521 (((-108) $ $) 63)) (-3072 (((-589 (-562 $)) $) 47)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2955 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1832 (($ $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-1694 (((-589 $) (-1083 $) (-1087)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-883 $)) NIL)) (-3313 (($ (-1083 $) (-1087)) NIL) (($ (-1083 $)) NIL) (($ (-883 $)) NIL)) (-3517 (((-3 (-562 $) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL)) (-3474 (((-562 $) $) NIL) (((-523) $) NIL) (((-383 (-523)) $) 49)) (-3796 (($ $ $) NIL)) (-2381 (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-383 (-523)))) (|:| |vec| (-1168 (-383 (-523))))) (-629 $) (-1168 $)) NIL) (((-629 (-383 (-523))) (-629 $)) NIL)) (-2437 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2361 (($ $) NIL) (($ (-589 $)) NIL)) (-1444 (((-589 (-110)) $) NIL)) (-1403 (((-110) (-110)) NIL)) (-2023 (((-108) $) 40)) (-1557 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2785 (((-1039 (-523) (-562 $)) $) 35)) (-1420 (($ $ (-523)) NIL)) (-3892 (((-1083 $) (-1083 $) (-562 $)) 78) (((-1083 $) (-1083 $) (-589 (-562 $))) 54) (($ $ (-562 $)) 67) (($ $ (-589 (-562 $))) 68)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1483 (((-1083 $) (-562 $)) 65 (|has| $ (-973)))) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 $ $) (-562 $)) NIL)) (-1363 (((-3 (-562 $) "failed") $) NIL)) (-3244 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-1771 (((-589 (-562 $)) $) NIL)) (-2868 (($ (-110) $) NIL) (($ (-110) (-589 $)) NIL)) (-3259 (((-108) $ (-110)) NIL) (((-108) $ (-1087)) NIL)) (-3738 (($ $) NIL)) (-2510 (((-710) $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-2585 (((-108) $ $) NIL) (((-108) $ (-1087)) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4104 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2679 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-1972 (((-710) $) NIL)) (-3223 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3957 (($ $) NIL) (($ $ $) NIL)) (-3523 (($ $ (-710)) NIL) (($ $) 34)) (-2797 (((-1039 (-523) (-562 $)) $) 18)) (-3727 (($ $) NIL (|has| $ (-973)))) (-3663 (((-355) $) 92) (((-203) $) 100) (((-155 (-355)) $) 108)) (-1458 (((-794) $) NIL) (($ (-562 $)) NIL) (($ (-383 (-523))) NIL) (($ $) NIL) (($ (-523)) NIL) (($ (-1039 (-523) (-562 $))) 19)) (-1621 (((-710)) NIL)) (-3822 (($ $) NIL) (($ (-589 $)) NIL)) (-1950 (((-108) (-110)) 84)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-523)) NIL) (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2756 (($) 9 T CONST)) (-2767 (($) 20 T CONST)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 22)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4098 (($ $ $) 42)) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-383 (-523))) NIL) (($ $ (-523)) 45) (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ $ $) 25) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL))) -(((-466) (-13 (-279) (-27) (-964 (-523)) (-964 (-383 (-523))) (-585 (-523)) (-949) (-585 (-383 (-523))) (-136) (-564 (-155 (-355))) (-211) (-10 -8 (-15 -1458 ($ (-1039 (-523) (-562 $)))) (-15 -2785 ((-1039 (-523) (-562 $)) $)) (-15 -2797 ((-1039 (-523) (-562 $)) $)) (-15 -2437 ($ $)) (-15 -2521 ((-108) $ $)) (-15 -3892 ((-1083 $) (-1083 $) (-562 $))) (-15 -3892 ((-1083 $) (-1083 $) (-589 (-562 $)))) (-15 -3892 ($ $ (-562 $))) (-15 -3892 ($ $ (-589 (-562 $))))))) (T -466)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) (-2437 (*1 *1 *1) (-5 *1 (-466))) (-2521 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-466)))) (-3892 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-466))) (-5 *3 (-562 (-466))) (-5 *1 (-466)))) (-3892 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-466))) (-5 *3 (-589 (-562 (-466)))) (-5 *1 (-466)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-562 (-466))) (-5 *1 (-466)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-562 (-466)))) (-5 *1 (-466))))) -(-13 (-279) (-27) (-964 (-523)) (-964 (-383 (-523))) (-585 (-523)) (-949) (-585 (-383 (-523))) (-136) (-564 (-155 (-355))) (-211) (-10 -8 (-15 -1458 ($ (-1039 (-523) (-562 $)))) (-15 -2785 ((-1039 (-523) (-562 $)) $)) (-15 -2797 ((-1039 (-523) (-562 $)) $)) (-15 -2437 ($ $)) (-15 -2521 ((-108) $ $)) (-15 -3892 ((-1083 $) (-1083 $) (-562 $))) (-15 -3892 ((-1083 $) (-1083 $) (-589 (-562 $)))) (-15 -3892 ($ $ (-562 $))) (-15 -3892 ($ $ (-589 (-562 $)))))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) |#1|) 25 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 22 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 21)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 14)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 12 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) 23 (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) 10 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 13)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) 24) (($ $ (-1135 (-523))) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) 9 (|has| $ (-6 -4244))))) -(((-467 |#1| |#2|) (-19 |#1|) (-1122) (-523)) (T -467)) +((-1462 (*1 *1 *1) (-4 *1 (-464))) (-1441 (*1 *1 *1) (-4 *1 (-464))) (-1481 (*1 *1 *1) (-4 *1 (-464))) (-2306 (*1 *1 *1) (-4 *1 (-464))) (-1471 (*1 *1 *1) (-4 *1 (-464))) (-1453 (*1 *1 *1) (-4 *1 (-464)))) +(-13 (-10 -8 (-15 -1453 ($ $)) (-15 -1471 ($ $)) (-15 -2306 ($ $)) (-15 -1481 ($ $)) (-15 -1441 ($ $)) (-15 -1462 ($ $)))) +((-2424 (((-394 |#4|) |#4| (-1 (-394 |#2|) |#2|)) 42))) +(((-465 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2424 ((-394 |#4|) |#4| (-1 (-394 |#2|) |#2|)))) (-339) (-1145 |#1|) (-13 (-339) (-136) (-664 |#1| |#2|)) (-1145 |#3|)) (T -465)) +((-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1145 *5)) (-4 *5 (-339)) (-4 *7 (-13 (-339) (-136) (-664 *5 *6))) (-5 *2 (-394 *3)) (-5 *1 (-465 *5 *6 *7 *3)) (-4 *3 (-1145 *7))))) +(-10 -7 (-15 -2424 ((-394 |#4|) |#4| (-1 (-394 |#2|) |#2|)))) +((-1680 (((-108) $ $) NIL)) (-3012 (((-589 $) (-1083 $) (-1087)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-883 $)) NIL)) (-3879 (($ (-1083 $) (-1087)) NIL) (($ (-1083 $)) NIL) (($ (-883 $)) NIL)) (-2603 (((-108) $) 37)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-4225 (((-108) $ $) 63)) (-3643 (((-589 (-562 $)) $) 47)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1349 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2437 (($ $) NIL)) (-2787 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-2734 (((-589 $) (-1083 $) (-1087)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-883 $)) NIL)) (-1264 (($ (-1083 $) (-1087)) NIL) (($ (-1083 $)) NIL) (($ (-883 $)) NIL)) (-1220 (((-3 (-562 $) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL)) (-3508 (((-562 $) $) NIL) (((-523) $) NIL) (((-383 (-523)) $) 49)) (-4059 (($ $ $) NIL)) (-2243 (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL) (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -2600 (-629 (-383 (-523)))) (|:| |vec| (-1169 (-383 (-523))))) (-629 $) (-1169 $)) NIL) (((-629 (-383 (-523))) (-629 $)) NIL)) (-2116 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-2055 (($ $) NIL) (($ (-589 $)) NIL)) (-2196 (((-589 (-110)) $) NIL)) (-2947 (((-110) (-110)) NIL)) (-2769 (((-108) $) 40)) (-3860 (((-108) $) NIL (|has| $ (-964 (-523))))) (-3316 (((-1039 (-523) (-562 $)) $) 35)) (-1973 (($ $ (-523)) NIL)) (-1863 (((-1083 $) (-1083 $) (-562 $)) 78) (((-1083 $) (-1083 $) (-589 (-562 $))) 54) (($ $ (-562 $)) 67) (($ $ (-589 (-562 $))) 68)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1414 (((-1083 $) (-562 $)) 65 (|has| $ (-973)))) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-1345 (($ (-1 $ $) (-562 $)) NIL)) (-2577 (((-3 (-562 $) "failed") $) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-2378 (((-589 (-562 $)) $) NIL)) (-3396 (($ (-110) $) NIL) (($ (-110) (-589 $)) NIL)) (-3739 (((-108) $ (-110)) NIL) (((-108) $ (-1087)) NIL)) (-1396 (($ $) NIL)) (-1933 (((-710) $) NIL)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3536 (((-108) $ $) NIL) (((-108) $ (-1087)) NIL)) (-2424 (((-394 $) $) NIL)) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3101 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2812 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3413 (((-710) $) NIL)) (-1937 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-1303 (($ $) NIL) (($ $ $) NIL)) (-3984 (($ $ (-710)) NIL) (($ $) 34)) (-3329 (((-1039 (-523) (-562 $)) $) 18)) (-2762 (($ $) NIL (|has| $ (-973)))) (-1400 (((-355) $) 92) (((-203) $) 100) (((-155 (-355)) $) 108)) (-1691 (((-794) $) NIL) (($ (-562 $)) NIL) (($ (-383 (-523))) NIL) (($ $) NIL) (($ (-523)) NIL) (($ (-1039 (-523) (-562 $))) 19)) (-3272 (((-710)) NIL)) (-2850 (($ $) NIL) (($ (-589 $)) NIL)) (-3198 (((-108) (-110)) 84)) (-2801 (((-108) $ $) NIL)) (-2423 (($ $ (-523)) NIL) (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-1879 (($) 9 T CONST)) (-1891 (($) 20 T CONST)) (-2909 (($ $ (-710)) NIL) (($ $) NIL)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 22)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) NIL)) (-4074 (($ $ $) 42)) (-4060 (($ $ $) NIL) (($ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-383 (-523))) NIL) (($ $ (-523)) 45) (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ $ $) 25) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL))) +(((-466) (-13 (-279) (-27) (-964 (-523)) (-964 (-383 (-523))) (-585 (-523)) (-949) (-585 (-383 (-523))) (-136) (-564 (-155 (-355))) (-211) (-10 -8 (-15 -1691 ($ (-1039 (-523) (-562 $)))) (-15 -3316 ((-1039 (-523) (-562 $)) $)) (-15 -3329 ((-1039 (-523) (-562 $)) $)) (-15 -2116 ($ $)) (-15 -4225 ((-108) $ $)) (-15 -1863 ((-1083 $) (-1083 $) (-562 $))) (-15 -1863 ((-1083 $) (-1083 $) (-589 (-562 $)))) (-15 -1863 ($ $ (-562 $))) (-15 -1863 ($ $ (-589 (-562 $))))))) (T -466)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) (-3329 (*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) (-2116 (*1 *1 *1) (-5 *1 (-466))) (-4225 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-466)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-466))) (-5 *3 (-562 (-466))) (-5 *1 (-466)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-466))) (-5 *3 (-589 (-562 (-466)))) (-5 *1 (-466)))) (-1863 (*1 *1 *1 *2) (-12 (-5 *2 (-562 (-466))) (-5 *1 (-466)))) (-1863 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-562 (-466)))) (-5 *1 (-466))))) +(-13 (-279) (-27) (-964 (-523)) (-964 (-383 (-523))) (-585 (-523)) (-949) (-585 (-383 (-523))) (-136) (-564 (-155 (-355))) (-211) (-10 -8 (-15 -1691 ($ (-1039 (-523) (-562 $)))) (-15 -3316 ((-1039 (-523) (-562 $)) $)) (-15 -3329 ((-1039 (-523) (-562 $)) $)) (-15 -2116 ($ $)) (-15 -4225 ((-108) $ $)) (-15 -1863 ((-1083 $) (-1083 $) (-562 $))) (-15 -1863 ((-1083 $) (-1083 $) (-589 (-562 $)))) (-15 -1863 ($ $ (-562 $))) (-15 -1863 ($ $ (-589 (-562 $)))))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1632 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4249))) (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| |#1| (-786))))) (-1581 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#1| $ (-523) |#1|) 25 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) NIL (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) 22 (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) 21)) (-3449 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3733 (($ (-710) |#1|) 14)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) 12 (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3780 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-523) $) 23 (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2912 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2428 ((|#1| $) NIL (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4141 (($ $ |#1|) 10 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) 13)) (-1937 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) 24) (($ $ (-1136 (-523))) NIL)) (-1499 (($ $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) NIL)) (-2394 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2810 (((-710) $) 9 (|has| $ (-6 -4248))))) +(((-467 |#1| |#2|) (-19 |#1|) (-1123) (-523)) (T -467)) NIL (-19 |#1|) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) (-523) |#1|) NIL)) (-3787 (($ $ (-523) (-467 |#1| |#3|)) NIL)) (-3617 (($ $ (-523) (-467 |#1| |#2|)) NIL)) (-2518 (($) NIL T CONST)) (-2031 (((-467 |#1| |#3|) $ (-523)) NIL)) (-2863 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2795 ((|#1| $ (-523) (-523)) NIL)) (-1666 (((-589 |#1|) $) NIL)) (-2803 (((-710) $) NIL)) (-3052 (($ (-710) (-710) |#1|) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-3871 (((-523) $) NIL)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3338 (((-523) $) NIL)) (-2347 (((-523) $) NIL)) (-2852 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1595 (((-467 |#1| |#2|) $ (-523)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-468 |#1| |#2| |#3|) (-55 |#1| (-467 |#1| |#3|) (-467 |#1| |#2|)) (-1122) (-523) (-523)) (T -468)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2080 (($ $ (-523) (-467 |#1| |#3|)) NIL)) (-1232 (($ $ (-523) (-467 |#1| |#2|)) NIL)) (-4189 (($) NIL T CONST)) (-2827 (((-467 |#1| |#3|) $ (-523)) NIL)) (-2053 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2000 ((|#1| $ (-523) (-523)) NIL)) (-1871 (((-589 |#1|) $) NIL)) (-1357 (((-710) $) NIL)) (-3733 (($ (-710) (-710) |#1|) NIL)) (-1370 (((-710) $) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-1665 (((-523) $) NIL)) (-2082 (((-523) $) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3231 (((-523) $) NIL)) (-3060 (((-523) $) NIL)) (-2043 (($ (-1 |#1| |#1|) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4141 (($ $ |#1|) NIL)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1249 (((-467 |#1| |#2|) $ (-523)) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-468 |#1| |#2| |#3|) (-55 |#1| (-467 |#1| |#3|) (-467 |#1| |#2|)) (-1123) (-523) (-523)) (T -468)) NIL (-55 |#1| (-467 |#1| |#3|) (-467 |#1| |#2|)) -((-2639 (((-589 (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-710) (-710)) 27)) (-3624 (((-589 (-1083 |#1|)) |#1| (-710) (-710) (-710)) 34)) (-3169 (((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-589 |#3|) (-589 (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-710)) 84))) -(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -3624 ((-589 (-1083 |#1|)) |#1| (-710) (-710) (-710))) (-15 -2639 ((-589 (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-710) (-710))) (-15 -3169 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-589 |#3|) (-589 (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-710)))) (-325) (-1144 |#1|) (-1144 |#2|)) (T -469)) -((-3169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-2 (|:| -4041 (-629 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-629 *7))))) (-5 *5 (-710)) (-4 *8 (-1144 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-325)) (-5 *2 (-2 (|:| -4041 (-629 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-629 *7)))) (-5 *1 (-469 *6 *7 *8)))) (-2639 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-710)) (-4 *5 (-325)) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-2 (|:| -4041 (-629 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-629 *6))))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-2 (|:| -4041 (-629 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-629 *6)))) (-4 *7 (-1144 *6)))) (-3624 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-710)) (-4 *3 (-325)) (-4 *5 (-1144 *3)) (-5 *2 (-589 (-1083 *3))) (-5 *1 (-469 *3 *5 *6)) (-4 *6 (-1144 *5))))) -(-10 -7 (-15 -3624 ((-589 (-1083 |#1|)) |#1| (-710) (-710) (-710))) (-15 -2639 ((-589 (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-710) (-710))) (-15 -3169 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-589 |#3|) (-589 (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-710)))) -((-3963 (((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))) 60)) (-2596 ((|#1| (-629 |#1|) |#1| (-710)) 25)) (-2707 (((-710) (-710) (-710)) 30)) (-1442 (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 42)) (-2091 (((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|) 50) (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 47)) (-2906 ((|#1| (-629 |#1|) (-629 |#1|) |#1| (-523)) 29)) (-3804 ((|#1| (-629 |#1|)) 18))) -(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -3804 (|#1| (-629 |#1|))) (-15 -2596 (|#1| (-629 |#1|) |#1| (-710))) (-15 -2906 (|#1| (-629 |#1|) (-629 |#1|) |#1| (-523))) (-15 -2707 ((-710) (-710) (-710))) (-15 -2091 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2091 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -1442 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3963 ((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))))) (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $)))) (-1144 |#1|) (-385 |#1| |#2|)) (T -470)) -((-3963 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-1442 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2091 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2091 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2707 (*1 *2 *2 *2) (-12 (-5 *2 (-710)) (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2906 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-629 *2)) (-5 *4 (-523)) (-4 *2 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *5 (-1144 *2)) (-5 *1 (-470 *2 *5 *6)) (-4 *6 (-385 *2 *5)))) (-2596 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-629 *2)) (-5 *4 (-710)) (-4 *2 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *5 (-1144 *2)) (-5 *1 (-470 *2 *5 *6)) (-4 *6 (-385 *2 *5)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *4 (-1144 *2)) (-4 *2 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-5 *1 (-470 *2 *4 *5)) (-4 *5 (-385 *2 *4))))) -(-10 -7 (-15 -3804 (|#1| (-629 |#1|))) (-15 -2596 (|#1| (-629 |#1|) |#1| (-710))) (-15 -2906 (|#1| (-629 |#1|) (-629 |#1|) |#1| (-523))) (-15 -2707 ((-710) (-710) (-710))) (-15 -2091 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2091 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -1442 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3963 ((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))))) -((-3924 (((-108) $ $) NIL)) (-2573 (($ $) NIL)) (-1983 (($ $ $) 35)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) $) NIL (|has| (-108) (-786))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1506 (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| (-108) (-786)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4245)))) (-3974 (($ $) NIL (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1641 (((-108) $ (-1135 (-523)) (-108)) NIL (|has| $ (-6 -4245))) (((-108) $ (-523) (-108)) 36 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-2557 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-2437 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-2863 (((-108) $ (-523) (-108)) NIL (|has| $ (-6 -4245)))) (-2795 (((-108) $ (-523)) NIL)) (-1479 (((-523) (-108) $ (-523)) NIL (|has| (-108) (-1016))) (((-523) (-108) $) NIL (|has| (-108) (-1016))) (((-523) (-1 (-108) (-108)) $) NIL)) (-1666 (((-589 (-108)) $) NIL (|has| $ (-6 -4244)))) (-4090 (($ $ $) 33)) (-3900 (($ $) NIL)) (-3368 (($ $ $) NIL)) (-3052 (($ (-710) (-108)) 23)) (-3370 (($ $ $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 8 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL)) (-2178 (($ $ $) NIL (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-2136 (((-589 (-108)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL)) (-2852 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2847 (($ $ $ (-523)) NIL) (($ (-108) $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-108) $) NIL (|has| (-523) (-786)))) (-2114 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-4203 (($ $ (-108)) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-108)) (-589 (-108))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-271 (-108))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-589 (-271 (-108)))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-1264 (((-589 (-108)) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 24)) (-3223 (($ $ (-1135 (-523))) NIL) (((-108) $ (-523)) 18) (((-108) $ (-523) (-108)) NIL)) (-1469 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-2792 (((-710) (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016)))) (((-710) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) 25)) (-3663 (((-499) $) NIL (|has| (-108) (-564 (-499))))) (-1472 (($ (-589 (-108))) NIL)) (-2326 (($ (-589 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-1458 (((-794) $) 22)) (-2096 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-4099 (($ $ $) 31)) (-2364 (($ $) NIL)) (-3651 (($ $ $) NIL)) (-2856 (($ $ $) 39)) (-1628 (($ $) 37)) (-2844 (($ $ $) 38)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 26)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 27)) (-3640 (($ $ $) NIL)) (-2676 (((-710) $) 10 (|has| $ (-6 -4244))))) -(((-471 |#1|) (-13 (-119) (-10 -8 (-15 -1628 ($ $)) (-15 -2856 ($ $ $)) (-15 -2844 ($ $ $)))) (-523)) (T -471)) -((-1628 (*1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) (-2856 (*1 *1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) (-2844 (*1 *1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523))))) -(-13 (-119) (-10 -8 (-15 -1628 ($ $)) (-15 -2856 ($ $ $)) (-15 -2844 ($ $ $)))) -((-3867 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1083 |#4|)) 35)) (-3106 (((-1083 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1083 |#4|)) 22)) (-2120 (((-3 (-629 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-629 (-1083 |#4|))) 46)) (-2368 (((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#2| (-1 |#1| |#4|) (-1083 |#4|))) (-15 -3106 ((-1083 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3867 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1083 |#4|))) (-15 -2120 ((-3 (-629 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-629 (-1083 |#4|)))) (-15 -2368 ((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|))) (-973) (-1144 |#1|) (-1144 |#2|) (-973)) (T -472)) -((-2368 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-973)) (-4 *7 (-973)) (-4 *6 (-1144 *5)) (-5 *2 (-1083 (-1083 *7))) (-5 *1 (-472 *5 *6 *4 *7)) (-4 *4 (-1144 *6)))) (-2120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-629 (-1083 *8))) (-4 *5 (-973)) (-4 *8 (-973)) (-4 *6 (-1144 *5)) (-5 *2 (-629 *6)) (-5 *1 (-472 *5 *6 *7 *8)) (-4 *7 (-1144 *6)))) (-3867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1083 *7)) (-4 *5 (-973)) (-4 *7 (-973)) (-4 *2 (-1144 *5)) (-5 *1 (-472 *5 *2 *6 *7)) (-4 *6 (-1144 *2)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-973)) (-4 *7 (-973)) (-4 *4 (-1144 *5)) (-5 *2 (-1083 *7)) (-5 *1 (-472 *5 *4 *6 *7)) (-4 *6 (-1144 *4)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1083 *7)) (-4 *5 (-973)) (-4 *7 (-973)) (-4 *2 (-1144 *5)) (-5 *1 (-472 *5 *2 *6 *7)) (-4 *6 (-1144 *2))))) -(-10 -7 (-15 -3106 (|#2| (-1 |#1| |#4|) (-1083 |#4|))) (-15 -3106 ((-1083 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3867 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1083 |#4|))) (-15 -2120 ((-3 (-629 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-629 (-1083 |#4|)))) (-15 -2368 ((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|))) -((-3924 (((-108) $ $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2823 (((-1173) $) 18)) (-3223 (((-1070) $ (-1087)) 22)) (-3973 (((-1173) $) 14)) (-1458 (((-794) $) 20) (($ (-1070)) 19)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 8)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 7))) -(((-473) (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $)) (-15 -1458 ($ (-1070)))))) (T -473)) -((-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1070)) (-5 *1 (-473)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-473)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-473)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-473))))) -(-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $)) (-15 -1458 ($ (-1070))))) -((-1199 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3616 ((|#1| |#4|) 10)) (-3604 ((|#3| |#4|) 17))) -(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3616 (|#1| |#4|)) (-15 -3604 (|#3| |#4|)) (-15 -1199 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-515) (-921 |#1|) (-349 |#1|) (-349 |#2|)) (T -474)) -((-1199 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *6 (-349 *4)) (-4 *3 (-349 *5)))) (-3604 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-4 *2 (-349 *4)) (-5 *1 (-474 *4 *5 *2 *3)) (-4 *3 (-349 *5)))) (-3616 (*1 *2 *3) (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-474 *2 *4 *5 *3)) (-4 *5 (-349 *2)) (-4 *3 (-349 *4))))) -(-10 -7 (-15 -3616 (|#1| |#4|)) (-15 -3604 (|#3| |#4|)) (-15 -1199 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-3924 (((-108) $ $) NIL)) (-3537 (((-108) $ (-589 |#3|)) 103) (((-108) $) 104)) (-2295 (((-108) $) 146)) (-3629 (($ $ |#4|) 95) (($ $ |#4| (-589 |#3|)) 99)) (-2439 (((-1077 (-589 (-883 |#1|)) (-589 (-271 (-883 |#1|)))) (-589 |#4|)) 139 (|has| |#3| (-564 (-1087))))) (-3445 (($ $ $) 89) (($ $ |#4|) 87)) (-2023 (((-108) $) 145)) (-2946 (($ $) 107)) (-3779 (((-1070) $) NIL)) (-1309 (($ $ $) 81) (($ (-589 $)) 83)) (-1679 (((-108) |#4| $) 106)) (-3224 (((-108) $ $) 70)) (-1485 (($ (-589 |#4|)) 88)) (-2783 (((-1034) $) NIL)) (-1577 (($ (-589 |#4|)) 143)) (-3850 (((-108) $) 144)) (-1896 (($ $) 72)) (-2773 (((-589 |#4|) $) 56)) (-1686 (((-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)) $ (-589 |#3|)) NIL)) (-1681 (((-108) |#4| $) 75)) (-3203 (((-523) $ (-589 |#3|)) 108) (((-523) $) 109)) (-1458 (((-794) $) 142) (($ (-589 |#4|)) 84)) (-1293 (($ (-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $))) NIL)) (-3983 (((-108) $ $) 71)) (-4075 (($ $ $) 91)) (** (($ $ (-710)) 94)) (* (($ $ $) 93))) -(((-475 |#1| |#2| |#3| |#4|) (-13 (-1016) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-710))) (-15 -4075 ($ $ $)) (-15 -2023 ((-108) $)) (-15 -2295 ((-108) $)) (-15 -1681 ((-108) |#4| $)) (-15 -3224 ((-108) $ $)) (-15 -1679 ((-108) |#4| $)) (-15 -3537 ((-108) $ (-589 |#3|))) (-15 -3537 ((-108) $)) (-15 -1309 ($ $ $)) (-15 -1309 ($ (-589 $))) (-15 -3445 ($ $ $)) (-15 -3445 ($ $ |#4|)) (-15 -1896 ($ $)) (-15 -1686 ((-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)) $ (-589 |#3|))) (-15 -1293 ($ (-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)))) (-15 -3203 ((-523) $ (-589 |#3|))) (-15 -3203 ((-523) $)) (-15 -2946 ($ $)) (-15 -1485 ($ (-589 |#4|))) (-15 -1577 ($ (-589 |#4|))) (-15 -3850 ((-108) $)) (-15 -2773 ((-589 |#4|) $)) (-15 -1458 ($ (-589 |#4|))) (-15 -3629 ($ $ |#4|)) (-15 -3629 ($ $ |#4| (-589 |#3|))) (IF (|has| |#3| (-564 (-1087))) (-15 -2439 ((-1077 (-589 (-883 |#1|)) (-589 (-271 (-883 |#1|)))) (-589 |#4|))) |%noBranch|))) (-339) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -475)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-4075 (*1 *1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-2023 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-2295 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-1681 (*1 *2 *3 *1) (-12 (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-3224 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-1679 (*1 *2 *3 *1) (-12 (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) (-3537 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-1309 (*1 *1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-1309 (*1 *1 *2) (-12 (-5 *2 (-589 (-475 *3 *4 *5 *6))) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-3445 (*1 *1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-3445 (*1 *1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5)))) (-1896 (*1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-1686 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) (-5 *2 (-2 (|:| |mval| (-629 *4)) (|:| |invmval| (-629 *4)) (|:| |genIdeal| (-475 *4 *5 *6 *7)))) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) (-1293 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-629 *3)) (|:| |invmval| (-629 *3)) (|:| |genIdeal| (-475 *3 *4 *5 *6)))) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-3203 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) (-5 *2 (-523)) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) (-3203 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-523)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-2946 (*1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-1485 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)))) (-1577 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)))) (-3850 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-2773 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *6)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)))) (-3629 (*1 *1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5)))) (-3629 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) (-5 *1 (-475 *4 *5 *6 *2)) (-4 *2 (-880 *4 *5 *6)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *6 (-564 (-1087))) (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1077 (-589 (-883 *4)) (-589 (-271 (-883 *4))))) (-5 *1 (-475 *4 *5 *6 *7))))) -(-13 (-1016) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-710))) (-15 -4075 ($ $ $)) (-15 -2023 ((-108) $)) (-15 -2295 ((-108) $)) (-15 -1681 ((-108) |#4| $)) (-15 -3224 ((-108) $ $)) (-15 -1679 ((-108) |#4| $)) (-15 -3537 ((-108) $ (-589 |#3|))) (-15 -3537 ((-108) $)) (-15 -1309 ($ $ $)) (-15 -1309 ($ (-589 $))) (-15 -3445 ($ $ $)) (-15 -3445 ($ $ |#4|)) (-15 -1896 ($ $)) (-15 -1686 ((-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)) $ (-589 |#3|))) (-15 -1293 ($ (-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)))) (-15 -3203 ((-523) $ (-589 |#3|))) (-15 -3203 ((-523) $)) (-15 -2946 ($ $)) (-15 -1485 ($ (-589 |#4|))) (-15 -1577 ($ (-589 |#4|))) (-15 -3850 ((-108) $)) (-15 -2773 ((-589 |#4|) $)) (-15 -1458 ($ (-589 |#4|))) (-15 -3629 ($ $ |#4|)) (-15 -3629 ($ $ |#4| (-589 |#3|))) (IF (|has| |#3| (-564 (-1087))) (-15 -2439 ((-1077 (-589 (-883 |#1|)) (-589 (-271 (-883 |#1|)))) (-589 |#4|))) |%noBranch|))) -((-3153 (((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) 146)) (-2892 (((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) 147)) (-3243 (((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) 105)) (-2657 (((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) NIL)) (-2196 (((-589 (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) 149)) (-3503 (((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-589 (-796 |#1|))) 161))) -(((-476 |#1| |#2|) (-10 -7 (-15 -3153 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2892 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2657 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3243 ((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2196 ((-589 (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3503 ((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-589 (-796 |#1|))))) (-589 (-1087)) (-710)) (T -476)) -((-3503 (*1 *2 *2 *3) (-12 (-5 *2 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))) (-5 *3 (-589 (-796 *4))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *1 (-476 *4 *5)))) (-2196 (*1 *2 *3) (-12 (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-589 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523)))))) (-5 *1 (-476 *4 *5)) (-5 *3 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))))) (-3243 (*1 *2 *2) (-12 (-5 *2 (-475 (-383 (-523)) (-218 *4 (-710)) (-796 *3) (-225 *3 (-383 (-523))))) (-14 *3 (-589 (-1087))) (-14 *4 (-710)) (-5 *1 (-476 *3 *4)))) (-2657 (*1 *2 *3) (-12 (-5 *3 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) (-5 *1 (-476 *4 *5)))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) (-5 *1 (-476 *4 *5)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) (-5 *1 (-476 *4 *5))))) -(-10 -7 (-15 -3153 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2892 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2657 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3243 ((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2196 ((-589 (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3503 ((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-589 (-796 |#1|))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-1933 (($ |#1| |#2|) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-1953 ((|#2| $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-2756 (($) 12 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) 11) (($ $ $) 24)) (-4075 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 19))) +((-2881 (((-589 (-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-710) (-710)) 27)) (-1320 (((-589 (-1083 |#1|)) |#1| (-710) (-710) (-710)) 34)) (-1244 (((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-589 |#3|) (-589 (-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-710)) 84))) +(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -1320 ((-589 (-1083 |#1|)) |#1| (-710) (-710) (-710))) (-15 -2881 ((-589 (-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-710) (-710))) (-15 -1244 ((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-589 |#3|) (-589 (-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-710)))) (-325) (-1145 |#1|) (-1145 |#2|)) (T -469)) +((-1244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-2 (|:| -3760 (-629 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-629 *7))))) (-5 *5 (-710)) (-4 *8 (-1145 *7)) (-4 *7 (-1145 *6)) (-4 *6 (-325)) (-5 *2 (-2 (|:| -3760 (-629 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-629 *7)))) (-5 *1 (-469 *6 *7 *8)))) (-2881 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-710)) (-4 *5 (-325)) (-4 *6 (-1145 *5)) (-5 *2 (-589 (-2 (|:| -3760 (-629 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-629 *6))))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-2 (|:| -3760 (-629 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-629 *6)))) (-4 *7 (-1145 *6)))) (-1320 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-710)) (-4 *3 (-325)) (-4 *5 (-1145 *3)) (-5 *2 (-589 (-1083 *3))) (-5 *1 (-469 *3 *5 *6)) (-4 *6 (-1145 *5))))) +(-10 -7 (-15 -1320 ((-589 (-1083 |#1|)) |#1| (-710) (-710) (-710))) (-15 -2881 ((-589 (-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-710) (-710))) (-15 -1244 ((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-589 |#3|) (-589 (-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-710)))) +((-1379 (((-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))) 61)) (-3633 ((|#1| (-629 |#1|) |#1| (-710)) 25)) (-2333 (((-710) (-710) (-710)) 30)) (-2175 (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 42)) (-2257 (((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|) 50) (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 47)) (-3545 ((|#1| (-629 |#1|) (-629 |#1|) |#1| (-523)) 29)) (-2218 ((|#1| (-629 |#1|)) 18))) +(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -2218 (|#1| (-629 |#1|))) (-15 -3633 (|#1| (-629 |#1|) |#1| (-710))) (-15 -3545 (|#1| (-629 |#1|) (-629 |#1|) |#1| (-523))) (-15 -2333 ((-710) (-710) (-710))) (-15 -2257 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2257 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -2175 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1379 ((-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))))) (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $)))) (-1145 |#1|) (-385 |#1| |#2|)) (T -470)) +((-1379 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3760 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) (-4 *4 (-1145 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2175 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) (-4 *4 (-1145 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2257 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) (-4 *4 (-1145 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2257 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) (-4 *4 (-1145 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2333 (*1 *2 *2 *2) (-12 (-5 *2 (-710)) (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) (-4 *4 (-1145 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-3545 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-629 *2)) (-5 *4 (-523)) (-4 *2 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) (-4 *5 (-1145 *2)) (-5 *1 (-470 *2 *5 *6)) (-4 *6 (-385 *2 *5)))) (-3633 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-629 *2)) (-5 *4 (-710)) (-4 *2 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) (-4 *5 (-1145 *2)) (-5 *1 (-470 *2 *5 *6)) (-4 *6 (-385 *2 *5)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *4 (-1145 *2)) (-4 *2 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) (-5 *1 (-470 *2 *4 *5)) (-4 *5 (-385 *2 *4))))) +(-10 -7 (-15 -2218 (|#1| (-629 |#1|))) (-15 -3633 (|#1| (-629 |#1|) |#1| (-710))) (-15 -3545 (|#1| (-629 |#1|) (-629 |#1|) |#1| (-523))) (-15 -2333 ((-710) (-710) (-710))) (-15 -2257 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2257 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -2175 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1379 ((-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -3760 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))))) +((-1680 (((-108) $ $) NIL)) (-2602 (($ $) NIL)) (-2544 (($ $ $) 35)) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) $) NIL (|has| (-108) (-786))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1632 (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| (-108) (-786)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4249)))) (-1581 (($ $) NIL (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1849 (((-108) $ (-1136 (-523)) (-108)) NIL (|has| $ (-6 -4249))) (((-108) $ (-523) (-108)) 36 (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016))))) (-2514 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4248))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016))))) (-2116 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016))))) (-2053 (((-108) $ (-523) (-108)) NIL (|has| $ (-6 -4249)))) (-2000 (((-108) $ (-523)) NIL)) (-3449 (((-523) (-108) $ (-523)) NIL (|has| (-108) (-1016))) (((-523) (-108) $) NIL (|has| (-108) (-1016))) (((-523) (-1 (-108) (-108)) $) NIL)) (-1871 (((-589 (-108)) $) NIL (|has| $ (-6 -4248)))) (-3135 (($ $ $) 33)) (-4179 (($ $) NIL)) (-3518 (($ $ $) NIL)) (-3733 (($ (-710) (-108)) 23)) (-3543 (($ $ $) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) 8 (|has| (-523) (-786)))) (-3239 (($ $ $) NIL)) (-3780 (($ $ $) NIL (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-1584 (((-589 (-108)) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL)) (-2043 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-2912 (($ $ $ (-523)) NIL) (($ (-108) $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL)) (-2428 (((-108) $) NIL (|has| (-523) (-786)))) (-2509 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-4141 (($ $ (-108)) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-108)) (-589 (-108))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-271 (-108))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-589 (-271 (-108)))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016))))) (-3973 (((-589 (-108)) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) 24)) (-1937 (($ $ (-1136 (-523))) NIL) (((-108) $ (-523)) 18) (((-108) $ (-523) (-108)) NIL)) (-1499 (($ $ (-1136 (-523))) NIL) (($ $ (-523)) NIL)) (-3977 (((-710) (-108) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-108) (-1016)))) (((-710) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4248)))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) 25)) (-1400 (((-499) $) NIL (|has| (-108) (-564 (-499))))) (-1704 (($ (-589 (-108))) NIL)) (-2394 (($ (-589 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-1691 (((-794) $) 22)) (-2308 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4248)))) (-3147 (($ $ $) 31)) (-2423 (($ $) NIL)) (-1269 (($ $ $) NIL)) (-1742 (($ $ $) 39)) (-1752 (($ $) 37)) (-1731 (($ $ $) 38)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 26)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 27)) (-1257 (($ $ $) NIL)) (-2810 (((-710) $) 10 (|has| $ (-6 -4248))))) +(((-471 |#1|) (-13 (-119) (-10 -8 (-15 -1752 ($ $)) (-15 -1742 ($ $ $)) (-15 -1731 ($ $ $)))) (-523)) (T -471)) +((-1752 (*1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) (-1742 (*1 *1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) (-1731 (*1 *1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523))))) +(-13 (-119) (-10 -8 (-15 -1752 ($ $)) (-15 -1742 ($ $ $)) (-15 -1731 ($ $ $)))) +((-1625 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1083 |#4|)) 35)) (-1858 (((-1083 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1083 |#4|)) 22)) (-1434 (((-3 (-629 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-629 (-1083 |#4|))) 46)) (-2113 (((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1858 (|#2| (-1 |#1| |#4|) (-1083 |#4|))) (-15 -1858 ((-1083 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1625 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1083 |#4|))) (-15 -1434 ((-3 (-629 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-629 (-1083 |#4|)))) (-15 -2113 ((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|))) (-973) (-1145 |#1|) (-1145 |#2|) (-973)) (T -472)) +((-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-973)) (-4 *7 (-973)) (-4 *6 (-1145 *5)) (-5 *2 (-1083 (-1083 *7))) (-5 *1 (-472 *5 *6 *4 *7)) (-4 *4 (-1145 *6)))) (-1434 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-629 (-1083 *8))) (-4 *5 (-973)) (-4 *8 (-973)) (-4 *6 (-1145 *5)) (-5 *2 (-629 *6)) (-5 *1 (-472 *5 *6 *7 *8)) (-4 *7 (-1145 *6)))) (-1625 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1083 *7)) (-4 *5 (-973)) (-4 *7 (-973)) (-4 *2 (-1145 *5)) (-5 *1 (-472 *5 *2 *6 *7)) (-4 *6 (-1145 *2)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-973)) (-4 *7 (-973)) (-4 *4 (-1145 *5)) (-5 *2 (-1083 *7)) (-5 *1 (-472 *5 *4 *6 *7)) (-4 *6 (-1145 *4)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1083 *7)) (-4 *5 (-973)) (-4 *7 (-973)) (-4 *2 (-1145 *5)) (-5 *1 (-472 *5 *2 *6 *7)) (-4 *6 (-1145 *2))))) +(-10 -7 (-15 -1858 (|#2| (-1 |#1| |#4|) (-1083 |#4|))) (-15 -1858 ((-1083 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1625 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1083 |#4|))) (-15 -1434 ((-3 (-629 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-629 (-1083 |#4|)))) (-15 -2113 ((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|))) +((-1680 (((-108) $ $) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-4048 (((-1174) $) 18)) (-1937 (((-1070) $ (-1087)) 22)) (-1239 (((-1174) $) 14)) (-1691 (((-794) $) 20) (($ (-1070)) 19)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 8)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 7))) +(((-473) (-13 (-786) (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 ((-1174) $)) (-15 -4048 ((-1174) $)) (-15 -1691 ($ (-1070)))))) (T -473)) +((-1937 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1070)) (-5 *1 (-473)))) (-1239 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-473)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-473)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-473))))) +(-13 (-786) (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 ((-1174) $)) (-15 -4048 ((-1174) $)) (-15 -1691 ($ (-1070))))) +((-1505 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1222 ((|#1| |#4|) 10)) (-4117 ((|#3| |#4|) 17))) +(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1222 (|#1| |#4|)) (-15 -4117 (|#3| |#4|)) (-15 -1505 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-515) (-921 |#1|) (-349 |#1|) (-349 |#2|)) (T -474)) +((-1505 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *6 (-349 *4)) (-4 *3 (-349 *5)))) (-4117 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-4 *2 (-349 *4)) (-5 *1 (-474 *4 *5 *2 *3)) (-4 *3 (-349 *5)))) (-1222 (*1 *2 *3) (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-474 *2 *4 *5 *3)) (-4 *5 (-349 *2)) (-4 *3 (-349 *4))))) +(-10 -7 (-15 -1222 (|#1| |#4|)) (-15 -4117 (|#3| |#4|)) (-15 -1505 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-1680 (((-108) $ $) NIL)) (-1649 (((-108) $ (-589 |#3|)) 104) (((-108) $) 105)) (-2603 (((-108) $) 148)) (-1372 (($ $ |#4|) 96) (($ $ |#4| (-589 |#3|)) 100)) (-1628 (((-1077 (-589 (-883 |#1|)) (-589 (-271 (-883 |#1|)))) (-589 |#4|)) 141 (|has| |#3| (-564 (-1087))))) (-3070 (($ $ $) 90) (($ $ |#4|) 88)) (-2769 (((-108) $) 147)) (-2737 (($ $) 108)) (-2032 (((-1070) $) NIL)) (-3196 (($ $ $) 82) (($ (-589 $)) 84)) (-2620 (((-108) |#4| $) 107)) (-3516 (((-108) $ $) 71)) (-1433 (($ (-589 |#4|)) 89)) (-3951 (((-1034) $) NIL)) (-4075 (($ (-589 |#4|)) 145)) (-1485 (((-108) $) 146)) (-3901 (($ $) 73)) (-1821 (((-589 |#4|) $) 57)) (-2677 (((-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)) $ (-589 |#3|)) NIL)) (-2638 (((-108) |#4| $) 76)) (-3314 (((-523) $ (-589 |#3|)) 109) (((-523) $) 110)) (-1691 (((-794) $) 144) (($ (-589 |#4|)) 85)) (-3054 (($ (-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $))) NIL)) (-3941 (((-108) $ $) 72)) (-4045 (($ $ $) 92)) (** (($ $ (-710)) 95)) (* (($ $ $) 94))) +(((-475 |#1| |#2| |#3| |#4|) (-13 (-1016) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-710))) (-15 -4045 ($ $ $)) (-15 -2769 ((-108) $)) (-15 -2603 ((-108) $)) (-15 -2638 ((-108) |#4| $)) (-15 -3516 ((-108) $ $)) (-15 -2620 ((-108) |#4| $)) (-15 -1649 ((-108) $ (-589 |#3|))) (-15 -1649 ((-108) $)) (-15 -3196 ($ $ $)) (-15 -3196 ($ (-589 $))) (-15 -3070 ($ $ $)) (-15 -3070 ($ $ |#4|)) (-15 -3901 ($ $)) (-15 -2677 ((-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)) $ (-589 |#3|))) (-15 -3054 ($ (-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)))) (-15 -3314 ((-523) $ (-589 |#3|))) (-15 -3314 ((-523) $)) (-15 -2737 ($ $)) (-15 -1433 ($ (-589 |#4|))) (-15 -4075 ($ (-589 |#4|))) (-15 -1485 ((-108) $)) (-15 -1821 ((-589 |#4|) $)) (-15 -1691 ($ (-589 |#4|))) (-15 -1372 ($ $ |#4|)) (-15 -1372 ($ $ |#4| (-589 |#3|))) (IF (|has| |#3| (-564 (-1087))) (-15 -1628 ((-1077 (-589 (-883 |#1|)) (-589 (-271 (-883 |#1|)))) (-589 |#4|))) |%noBranch|))) (-339) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -475)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-4045 (*1 *1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-2769 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-2603 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-2638 (*1 *2 *3 *1) (-12 (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-3516 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-2620 (*1 *2 *3 *1) (-12 (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-1649 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) (-1649 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-3196 (*1 *1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-3196 (*1 *1 *2) (-12 (-5 *2 (-589 (-475 *3 *4 *5 *6))) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-3070 (*1 *1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-3070 (*1 *1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5)))) (-3901 (*1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-2677 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) (-5 *2 (-2 (|:| |mval| (-629 *4)) (|:| |invmval| (-629 *4)) (|:| |genIdeal| (-475 *4 *5 *6 *7)))) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) (-3054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-629 *3)) (|:| |invmval| (-629 *3)) (|:| |genIdeal| (-475 *3 *4 *5 *6)))) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-3314 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) (-5 *2 (-523)) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) (-3314 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-523)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-2737 (*1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-1433 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)))) (-4075 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)))) (-1485 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-1821 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *6)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)))) (-1372 (*1 *1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5)))) (-1372 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) (-5 *1 (-475 *4 *5 *6 *2)) (-4 *2 (-880 *4 *5 *6)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *6 (-564 (-1087))) (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1077 (-589 (-883 *4)) (-589 (-271 (-883 *4))))) (-5 *1 (-475 *4 *5 *6 *7))))) +(-13 (-1016) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-710))) (-15 -4045 ($ $ $)) (-15 -2769 ((-108) $)) (-15 -2603 ((-108) $)) (-15 -2638 ((-108) |#4| $)) (-15 -3516 ((-108) $ $)) (-15 -2620 ((-108) |#4| $)) (-15 -1649 ((-108) $ (-589 |#3|))) (-15 -1649 ((-108) $)) (-15 -3196 ($ $ $)) (-15 -3196 ($ (-589 $))) (-15 -3070 ($ $ $)) (-15 -3070 ($ $ |#4|)) (-15 -3901 ($ $)) (-15 -2677 ((-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)) $ (-589 |#3|))) (-15 -3054 ($ (-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)))) (-15 -3314 ((-523) $ (-589 |#3|))) (-15 -3314 ((-523) $)) (-15 -2737 ($ $)) (-15 -1433 ($ (-589 |#4|))) (-15 -4075 ($ (-589 |#4|))) (-15 -1485 ((-108) $)) (-15 -1821 ((-589 |#4|) $)) (-15 -1691 ($ (-589 |#4|))) (-15 -1372 ($ $ |#4|)) (-15 -1372 ($ $ |#4| (-589 |#3|))) (IF (|has| |#3| (-564 (-1087))) (-15 -1628 ((-1077 (-589 (-883 |#1|)) (-589 (-271 (-883 |#1|)))) (-589 |#4|))) |%noBranch|))) +((-4095 (((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) 148)) (-3388 (((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) 149)) (-2210 (((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) 107)) (-3049 (((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) NIL)) (-3981 (((-589 (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) 151)) (-2503 (((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-589 (-796 |#1|))) 163))) +(((-476 |#1| |#2|) (-10 -7 (-15 -4095 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3388 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3049 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2210 ((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3981 ((-589 (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2503 ((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-589 (-796 |#1|))))) (-589 (-1087)) (-710)) (T -476)) +((-2503 (*1 *2 *2 *3) (-12 (-5 *2 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))) (-5 *3 (-589 (-796 *4))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *1 (-476 *4 *5)))) (-3981 (*1 *2 *3) (-12 (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-589 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523)))))) (-5 *1 (-476 *4 *5)) (-5 *3 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))))) (-2210 (*1 *2 *2) (-12 (-5 *2 (-475 (-383 (-523)) (-218 *4 (-710)) (-796 *3) (-225 *3 (-383 (-523))))) (-14 *3 (-589 (-1087))) (-14 *4 (-710)) (-5 *1 (-476 *3 *4)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) (-5 *1 (-476 *4 *5)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) (-5 *1 (-476 *4 *5)))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) (-5 *1 (-476 *4 *5))))) +(-10 -7 (-15 -4095 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3388 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3049 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2210 ((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3981 ((-589 (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2503 ((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-589 (-796 |#1|))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1457 (($ $) NIL)) (-1267 (($ |#1| |#2|) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-3225 ((|#2| $) NIL)) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-1879 (($) 12 T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) 11) (($ $ $) 24)) (-4045 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 18))) (((-477 |#1| |#2|) (-13 (-21) (-479 |#1| |#2|)) (-21) (-786)) (T -477)) NIL (-13 (-21) (-479 |#1| |#2|)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 12)) (-2518 (($) NIL T CONST)) (-3810 (($ $) 27)) (-1933 (($ |#1| |#2|) 24)) (-3612 (($ (-1 |#1| |#1|) $) 26)) (-1953 ((|#2| $) NIL)) (-3786 ((|#1| $) 28)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-2756 (($) 10 T CONST)) (-3983 (((-108) $ $) NIL)) (-4075 (($ $ $) 18)) (* (($ (-852) $) NIL) (($ (-710) $) 23))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 12)) (-4189 (($) NIL T CONST)) (-1457 (($ $) 28)) (-1267 (($ |#1| |#2|) 25)) (-1345 (($ (-1 |#1| |#1|) $) 27)) (-3225 ((|#2| $) NIL)) (-1437 ((|#1| $) 29)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-1879 (($) 10 T CONST)) (-3941 (((-108) $ $) NIL)) (-4045 (($ $ $) 18)) (* (($ (-852) $) NIL) (($ (-710) $) 23))) (((-478 |#1| |#2|) (-13 (-23) (-479 |#1| |#2|)) (-23) (-786)) (T -478)) NIL (-13 (-23) (-479 |#1| |#2|)) -((-3924 (((-108) $ $) 7)) (-3810 (($ $) 13)) (-1933 (($ |#1| |#2|) 16)) (-3612 (($ (-1 |#1| |#1|) $) 17)) (-1953 ((|#2| $) 14)) (-3786 ((|#1| $) 15)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +((-1680 (((-108) $ $) 7)) (-1457 (($ $) 13)) (-1267 (($ |#1| |#2|) 16)) (-1345 (($ (-1 |#1| |#1|) $) 17)) (-3225 ((|#2| $) 14)) (-1437 ((|#1| $) 15)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-3941 (((-108) $ $) 6))) (((-479 |#1| |#2|) (-129) (-1016) (-786)) (T -479)) -((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-479 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-786)))) (-1933 (*1 *1 *2 *3) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-786)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1016)))) (-1953 (*1 *2 *1) (-12 (-4 *1 (-479 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-786)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-786))))) -(-13 (-1016) (-10 -8 (-15 -3612 ($ (-1 |t#1| |t#1|) $)) (-15 -1933 ($ |t#1| |t#2|)) (-15 -3786 (|t#1| $)) (-15 -1953 (|t#2| $)) (-15 -3810 ($ $)))) +((-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-479 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-786)))) (-1267 (*1 *1 *2 *3) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-786)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1016)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-479 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-786)))) (-1457 (*1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-786))))) +(-13 (-1016) (-10 -8 (-15 -1345 ($ (-1 |t#1| |t#1|) $)) (-15 -1267 ($ |t#1| |t#2|)) (-15 -1437 (|t#1| $)) (-15 -3225 (|t#2| $)) (-15 -1457 ($ $)))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-1933 (($ |#1| |#2|) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-1953 ((|#2| $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-2756 (($) NIL T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 13)) (-4075 (($ $ $) NIL)) (* (($ (-710) $) NIL) (($ (-852) $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-4189 (($) NIL T CONST)) (-1457 (($ $) NIL)) (-1267 (($ |#1| |#2|) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-3225 ((|#2| $) NIL)) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-1879 (($) NIL T CONST)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 13)) (-4045 (($ $ $) NIL)) (* (($ (-710) $) NIL) (($ (-852) $) NIL))) (((-480 |#1| |#2|) (-13 (-731) (-479 |#1| |#2|)) (-731) (-786)) (T -480)) NIL (-13 (-731) (-479 |#1| |#2|)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3596 (($ $ $) 16)) (-3212 (((-3 $ "failed") $ $) 13)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-1933 (($ |#1| |#2|) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-1953 ((|#2| $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-2756 (($) NIL T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (* (($ (-710) $) NIL) (($ (-852) $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-4016 (($ $ $) 16)) (-3405 (((-3 $ "failed") $ $) 13)) (-4189 (($) NIL T CONST)) (-1457 (($ $) NIL)) (-1267 (($ |#1| |#2|) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-3225 ((|#2| $) NIL)) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL)) (-1879 (($) NIL T CONST)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) NIL)) (-4045 (($ $ $) NIL)) (* (($ (-710) $) NIL) (($ (-852) $) NIL))) (((-481 |#1| |#2|) (-13 (-732) (-479 |#1| |#2|)) (-732) (-786)) (T -481)) NIL (-13 (-732) (-479 |#1| |#2|)) -((-3924 (((-108) $ $) NIL)) (-3810 (($ $) 25)) (-1933 (($ |#1| |#2|) 22)) (-3612 (($ (-1 |#1| |#1|) $) 24)) (-1953 ((|#2| $) 27)) (-3786 ((|#1| $) 26)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 21)) (-3983 (((-108) $ $) 14))) +((-1680 (((-108) $ $) NIL)) (-1457 (($ $) 25)) (-1267 (($ |#1| |#2|) 22)) (-1345 (($ (-1 |#1| |#1|) $) 24)) (-3225 ((|#2| $) 27)) (-1437 ((|#1| $) 26)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 21)) (-3941 (((-108) $ $) 14))) (((-482 |#1| |#2|) (-479 |#1| |#2|) (-1016) (-786)) (T -482)) NIL (-479 |#1| |#2|) -((-2679 (($ $ (-589 |#2|) (-589 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-483 |#1| |#2| |#3|) (-10 -8 (-15 -2679 (|#1| |#1| |#2| |#3|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#3|)))) (-484 |#2| |#3|) (-1016) (-1122)) (T -483)) -NIL -(-10 -8 (-15 -2679 (|#1| |#1| |#2| |#3|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#3|)))) -((-2679 (($ $ (-589 |#1|) (-589 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-484 |#1| |#2|) (-129) (-1016) (-1122)) (T -484)) -((-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 *5)) (-4 *1 (-484 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1122)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1122))))) -(-13 (-10 -8 (-15 -2679 ($ $ |t#1| |t#2|)) (-15 -2679 ($ $ (-589 |t#1|) (-589 |t#2|))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 16)) (-2133 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))) $) 18)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1703 (((-710) $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-2378 ((|#1| $ (-523)) 23)) (-4126 ((|#2| $ (-523)) 21)) (-4093 (($ (-1 |#1| |#1|) $) 46)) (-1620 (($ (-1 |#2| |#2|) $) 43)) (-3779 (((-1070) $) NIL)) (-3887 (($ $ $) 53 (|has| |#2| (-731)))) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 42) (($ |#1|) NIL)) (-2365 ((|#2| |#1| $) 49)) (-2756 (($) 11 T CONST)) (-3983 (((-108) $ $) 29)) (-4075 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-852) $) NIL) (($ (-710) $) 36) (($ |#2| |#1|) 31))) +((-2812 (($ $ (-589 |#2|) (-589 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-483 |#1| |#2| |#3|) (-10 -8 (-15 -2812 (|#1| |#1| |#2| |#3|)) (-15 -2812 (|#1| |#1| (-589 |#2|) (-589 |#3|)))) (-484 |#2| |#3|) (-1016) (-1123)) (T -483)) +NIL +(-10 -8 (-15 -2812 (|#1| |#1| |#2| |#3|)) (-15 -2812 (|#1| |#1| (-589 |#2|) (-589 |#3|)))) +((-2812 (($ $ (-589 |#1|) (-589 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-484 |#1| |#2|) (-129) (-1016) (-1123)) (T -484)) +((-2812 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 *5)) (-4 *1 (-484 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1123)))) (-2812 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1123))))) +(-13 (-10 -8 (-15 -2812 ($ $ |t#1| |t#2|)) (-15 -2812 ($ $ (-589 |t#1|) (-589 |t#2|))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 16)) (-1552 (((-589 (-2 (|:| |gen| |#1|) (|:| -2922 |#2|))) $) 18)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2395 (((-710) $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL)) (-3508 ((|#1| $) NIL)) (-2212 ((|#1| $ (-523)) 23)) (-2173 ((|#2| $ (-523)) 21)) (-3015 (($ (-1 |#1| |#1|) $) 46)) (-3261 (($ (-1 |#2| |#2|) $) 43)) (-2032 (((-1070) $) NIL)) (-1812 (($ $ $) 53 (|has| |#2| (-731)))) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 42) (($ |#1|) NIL)) (-2084 ((|#2| |#1| $) 49)) (-1879 (($) 11 T CONST)) (-3941 (((-108) $ $) 29)) (-4045 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-852) $) NIL) (($ (-710) $) 36) (($ |#2| |#1|) 31))) (((-485 |#1| |#2| |#3|) (-299 |#1| |#2|) (-1016) (-124) |#2|) (T -485)) NIL (-299 |#1| |#2|) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-4159 (((-108) (-108)) 24)) (-1641 ((|#1| $ (-523) |#1|) 27 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) |#1|) $) 51)) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-3941 (($ $) 55 (|has| |#1| (-1016)))) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) 43)) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-2277 (($ $ (-523)) 13)) (-2128 (((-710) $) 11)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 22)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 20 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2158 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) 34)) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) 19 (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3450 (($ $ $ (-523)) 50) (($ |#1| $ (-523)) 36)) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3837 (($ (-589 |#1|)) 28)) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) 18 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 39)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 14)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) 32) (($ $ (-1135 (-523))) NIL)) (-2753 (($ $ (-1135 (-523))) 49) (($ $ (-523)) 44)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) 40 (|has| $ (-6 -4245)))) (-1664 (($ $) 31)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-1746 (($ $ $) 41) (($ $ |#1|) 38)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) 15 (|has| $ (-6 -4244))))) -(((-486 |#1| |#2|) (-13 (-19 |#1|) (-259 |#1|) (-10 -8 (-15 -3837 ($ (-589 |#1|))) (-15 -2128 ((-710) $)) (-15 -2277 ($ $ (-523))) (-15 -4159 ((-108) (-108))))) (-1122) (-523)) (T -486)) -((-3837 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-486 *3 *4)) (-14 *4 (-523)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1122)) (-14 *4 (-523)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1122)) (-14 *4 *2))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1122)) (-14 *4 (-523))))) -(-13 (-19 |#1|) (-259 |#1|) (-10 -8 (-15 -3837 ($ (-589 |#1|))) (-15 -2128 ((-710) $)) (-15 -2277 ($ $ (-523))) (-15 -4159 ((-108) (-108))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 (((-536 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-536 |#1|) (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-536 |#1|) (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| (-536 |#1|) (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-536 |#1|) "failed") $) NIL)) (-3474 (((-536 |#1|) $) NIL)) (-3409 (($ (-1168 (-536 |#1|))) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-536 |#1|) (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-536 |#1|) (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| (-536 |#1|) (-344)))) (-2155 (((-108) $) NIL (|has| (-536 |#1|) (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344)))) (($ $) NIL (-3262 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| (-536 |#1|) (-344))) (((-772 (-852)) $) NIL (-3262 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| (-536 |#1|) (-344)))) (-2307 (((-108) $) NIL (|has| (-536 |#1|) (-344)))) (-3892 (((-536 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-536 |#1|) (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| (-536 |#1|) (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 (-536 |#1|)) $) NIL) (((-1083 $) $ (-852)) NIL (|has| (-536 |#1|) (-344)))) (-2072 (((-852) $) NIL (|has| (-536 |#1|) (-344)))) (-3943 (((-1083 (-536 |#1|)) $) NIL (|has| (-536 |#1|) (-344)))) (-2122 (((-1083 (-536 |#1|)) $) NIL (|has| (-536 |#1|) (-344))) (((-3 (-1083 (-536 |#1|)) "failed") $ $) NIL (|has| (-536 |#1|) (-344)))) (-3865 (($ $ (-1083 (-536 |#1|))) NIL (|has| (-536 |#1|) (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-536 |#1|) (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| (-536 |#1|) (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-3441 (($) NIL (|has| (-536 |#1|) (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-536 |#1|) (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| (-536 |#1|) (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| (-536 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-536 |#1|) (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 (-536 |#1|))) NIL)) (-3425 (($) NIL (|has| (-536 |#1|) (-344)))) (-2749 (($) NIL (|has| (-536 |#1|) (-344)))) (-2966 (((-1168 (-536 |#1|)) $) NIL) (((-629 (-536 |#1|)) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| (-536 |#1|) (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-536 |#1|)) NIL)) (-3901 (($ $) NIL (|has| (-536 |#1|) (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| (-536 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-536 |#1|) (-344)))) (-2862 (($ $) NIL (|has| (-536 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-536 |#1|) (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ (-536 |#1|)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-536 |#1|)) NIL) (($ (-536 |#1|) $) NIL))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1632 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4249))) (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| |#1| (-786))))) (-1581 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-1620 (((-108) $ (-710)) NIL)) (-2506 (((-108) (-108)) 24)) (-1849 ((|#1| $ (-523) |#1|) 27 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) NIL (|has| $ (-6 -4249)))) (-3703 (($ (-1 (-108) |#1|) $) 51)) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-4160 (($ $) 55 (|has| |#1| (-1016)))) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3286 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) 43)) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) NIL)) (-3449 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-3563 (($ $ (-523)) 13)) (-1511 (((-710) $) 11)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3733 (($ (-710) |#1|) 22)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) 20 (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-1793 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) 34)) (-3780 (($ (-1 (-108) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-523) $) 19 (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3108 (($ $ $ (-523)) 50) (($ |#1| $ (-523)) 36)) (-2912 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2510 (($ (-589 |#1|)) 28)) (-2428 ((|#1| $) NIL (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4141 (($ $ |#1|) 18 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 39)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) 14)) (-1937 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) 32) (($ $ (-1136 (-523))) NIL)) (-1655 (($ $ (-1136 (-523))) 49) (($ $ (-523)) 44)) (-1499 (($ $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-4166 (($ $ $ (-523)) 40 (|has| $ (-6 -4249)))) (-1874 (($ $) 31)) (-1400 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) NIL)) (-2001 (($ $ $) 41) (($ $ |#1|) 38)) (-2394 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2810 (((-710) $) 15 (|has| $ (-6 -4248))))) +(((-486 |#1| |#2|) (-13 (-19 |#1|) (-259 |#1|) (-10 -8 (-15 -2510 ($ (-589 |#1|))) (-15 -1511 ((-710) $)) (-15 -3563 ($ $ (-523))) (-15 -2506 ((-108) (-108))))) (-1123) (-523)) (T -486)) +((-2510 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-486 *3 *4)) (-14 *4 (-523)))) (-1511 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1123)) (-14 *4 (-523)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1123)) (-14 *4 *2))) (-2506 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1123)) (-14 *4 (-523))))) +(-13 (-19 |#1|) (-259 |#1|) (-10 -8 (-15 -2510 ($ (-589 |#1|))) (-15 -1511 ((-710) $)) (-15 -3563 ($ $ (-523))) (-15 -2506 ((-108) (-108))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2803 (((-108) $) NIL)) (-3019 (((-710)) NIL)) (-1477 (((-536 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-536 |#1|) (-344)))) (-1557 (((-1097 (-852) (-710)) (-523)) NIL (|has| (-536 |#1|) (-344)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-2395 (((-710)) NIL (|has| (-536 |#1|) (-344)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-536 |#1|) "failed") $) NIL)) (-3508 (((-536 |#1|) $) NIL)) (-2754 (($ (-1169 (-536 |#1|))) NIL)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-536 |#1|) (-344)))) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| (-536 |#1|) (-344)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3665 (($) NIL (|has| (-536 |#1|) (-344)))) (-1766 (((-108) $) NIL (|has| (-536 |#1|) (-344)))) (-3610 (($ $ (-710)) NIL (-3172 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344)))) (($ $) NIL (-3172 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344))))) (-3049 (((-108) $) NIL)) (-3437 (((-852) $) NIL (|has| (-536 |#1|) (-344))) (((-772 (-852)) $) NIL (-3172 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344))))) (-2769 (((-108) $) NIL)) (-3753 (($) NIL (|has| (-536 |#1|) (-344)))) (-2706 (((-108) $) NIL (|has| (-536 |#1|) (-344)))) (-1863 (((-536 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-536 |#1|) (-344)))) (-2738 (((-3 $ "failed") $) NIL (|has| (-536 |#1|) (-344)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2887 (((-1083 (-536 |#1|)) $) NIL) (((-1083 $) $ (-852)) NIL (|has| (-536 |#1|) (-344)))) (-2060 (((-852) $) NIL (|has| (-536 |#1|) (-344)))) (-4183 (((-1083 (-536 |#1|)) $) NIL (|has| (-536 |#1|) (-344)))) (-1455 (((-1083 (-536 |#1|)) $) NIL (|has| (-536 |#1|) (-344))) (((-3 (-1083 (-536 |#1|)) "failed") $ $) NIL (|has| (-536 |#1|) (-344)))) (-1605 (($ $ (-1083 (-536 |#1|))) NIL (|has| (-536 |#1|) (-344)))) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| (-536 |#1|) (-344)) CONST)) (-4013 (($ (-852)) NIL (|has| (-536 |#1|) (-344)))) (-3026 (((-108) $) NIL)) (-3951 (((-1034) $) NIL)) (-1621 (($) NIL (|has| (-536 |#1|) (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL (|has| (-536 |#1|) (-344)))) (-2424 (((-394 $) $) NIL)) (-2151 (((-772 (-852))) NIL) (((-852)) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2984 (((-710) $) NIL (|has| (-536 |#1|) (-344))) (((-3 (-710) "failed") $ $) NIL (-3172 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344))))) (-3314 (((-126)) NIL)) (-3984 (($ $) NIL (|has| (-536 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-536 |#1|) (-344)))) (-2640 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2762 (((-1083 (-536 |#1|))) NIL)) (-2893 (($) NIL (|has| (-536 |#1|) (-344)))) (-1614 (($) NIL (|has| (-536 |#1|) (-344)))) (-2906 (((-1169 (-536 |#1|)) $) NIL) (((-629 (-536 |#1|)) (-1169 $)) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| (-536 |#1|) (-344)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-536 |#1|)) NIL)) (-1942 (($ $) NIL (|has| (-536 |#1|) (-344))) (((-3 $ "failed") $) NIL (-3172 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344))))) (-3272 (((-710)) NIL)) (-3760 (((-1169 $)) NIL) (((-1169 $) (-852)) NIL)) (-2801 (((-108) $ $) NIL)) (-1747 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2009 (($ $) NIL (|has| (-536 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-536 |#1|) (-344)))) (-2909 (($ $) NIL (|has| (-536 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-536 |#1|) (-344)))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL) (($ $ (-536 |#1|)) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-536 |#1|)) NIL) (($ (-536 |#1|) $) NIL))) (((-487 |#1| |#2|) (-305 (-536 |#1|)) (-852) (-852)) (T -487)) NIL (-305 (-536 |#1|)) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) (-523) |#1|) 33)) (-3787 (($ $ (-523) |#4|) NIL)) (-3617 (($ $ (-523) |#5|) NIL)) (-2518 (($) NIL T CONST)) (-2031 ((|#4| $ (-523)) NIL)) (-2863 ((|#1| $ (-523) (-523) |#1|) 32)) (-2795 ((|#1| $ (-523) (-523)) 30)) (-1666 (((-589 |#1|) $) NIL)) (-2803 (((-710) $) 26)) (-3052 (($ (-710) (-710) |#1|) 23)) (-2813 (((-710) $) 28)) (-2346 (((-108) $ (-710)) NIL)) (-3871 (((-523) $) 24)) (-1758 (((-523) $) 25)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3338 (((-523) $) 27)) (-2347 (((-523) $) 29)) (-2852 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) 36 (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 14)) (-3988 (($) 15)) (-3223 ((|#1| $ (-523) (-523)) 31) ((|#1| $ (-523) (-523) |#1|) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1595 ((|#5| $ (-523)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-488 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1122) (-523) (-523) (-349 |#1|) (-349 |#1|)) (T -488)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#1| $ (-523) (-523) |#1|) 33)) (-2080 (($ $ (-523) |#4|) NIL)) (-1232 (($ $ (-523) |#5|) NIL)) (-4189 (($) NIL T CONST)) (-2827 ((|#4| $ (-523)) NIL)) (-2053 ((|#1| $ (-523) (-523) |#1|) 32)) (-2000 ((|#1| $ (-523) (-523)) 30)) (-1871 (((-589 |#1|) $) NIL)) (-1357 (((-710) $) 26)) (-3733 (($ (-710) (-710) |#1|) 23)) (-1370 (((-710) $) 28)) (-3051 (((-108) $ (-710)) NIL)) (-1665 (((-523) $) 24)) (-2082 (((-523) $) 25)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3231 (((-523) $) 27)) (-3060 (((-523) $) 29)) (-2043 (($ (-1 |#1| |#1|) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) 36 (|has| |#1| (-1016)))) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4141 (($ $ |#1|) NIL)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 14)) (-3320 (($) 15)) (-1937 ((|#1| $ (-523) (-523)) 31) ((|#1| $ (-523) (-523) |#1|) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1249 ((|#5| $ (-523)) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-488 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1123) (-523) (-523) (-349 |#1|) (-349 |#1|)) (T -488)) NIL (-55 |#1| |#4| |#5|) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) NIL)) (-1546 ((|#1| $) NIL)) (-4039 (($ $) NIL)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) 58 (|has| $ (-6 -4245)))) (-1964 (((-108) $) NIL (|has| |#1| (-786))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1506 (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786)))) (($ (-1 (-108) |#1| |#1|) $) 56 (|has| $ (-6 -4245)))) (-3974 (($ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-2110 (($ $ $) 23 (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) 21 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4245))) (($ $ "rest" $) 24 (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) |#1|) $) NIL)) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-1532 ((|#1| $) NIL)) (-2518 (($) NIL T CONST)) (-2867 (($ $) 28 (|has| $ (-6 -4245)))) (-3631 (($ $) 29)) (-1751 (($ $) 18) (($ $ (-710)) 32)) (-3941 (($ $) 54 (|has| |#1| (-1016)))) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) NIL)) (-2557 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1232 (((-108) $) NIL)) (-1479 (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016))) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) (-1 (-108) |#1|) $) NIL)) (-1666 (((-589 |#1|) $) 27 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 31 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2158 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) 57)) (-2178 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 52 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3992 (($ |#1|) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) NIL)) (-3779 (((-1070) $) 51 (|has| |#1| (-1016)))) (-2579 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-3450 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2847 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) 13) (($ $ (-710)) NIL)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-2402 (((-108) $) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 12)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) 17)) (-3988 (($) 16)) (-3223 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1135 (-523))) NIL) ((|#1| $ (-523)) NIL) ((|#1| $ (-523) |#1|) NIL)) (-1549 (((-523) $ $) NIL)) (-2753 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-1469 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-2524 (((-108) $) 34)) (-2732 (($ $) NIL)) (-2363 (($ $) NIL (|has| $ (-6 -4245)))) (-2316 (((-710) $) NIL)) (-3562 (($ $) 36)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) 35)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 26)) (-1746 (($ $ $) 53) (($ $ |#1|) NIL)) (-2326 (($ $ $) NIL) (($ |#1| $) 10) (($ (-589 $)) NIL) (($ $ |#1|) NIL)) (-1458 (((-794) $) 46 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 48 (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) 9 (|has| $ (-6 -4244))))) -(((-489 |#1| |#2|) (-609 |#1|) (-1122) (-523)) (T -489)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3370 ((|#1| $) NIL)) (-2176 ((|#1| $) NIL)) (-2227 (($ $) NIL)) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-2856 (($ $ (-523)) 59 (|has| $ (-6 -4249)))) (-3337 (((-108) $) NIL (|has| |#1| (-786))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1632 (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| |#1| (-786)))) (($ (-1 (-108) |#1| |#1|) $) 57 (|has| $ (-6 -4249)))) (-1581 (($ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1487 ((|#1| $ |#1|) NIL (|has| $ (-6 -4249)))) (-2470 (($ $ $) 23 (|has| $ (-6 -4249)))) (-2622 ((|#1| $ |#1|) NIL (|has| $ (-6 -4249)))) (-2027 ((|#1| $ |#1|) 21 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4249))) (($ $ "rest" $) 24 (|has| $ (-6 -4249))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) NIL (|has| $ (-6 -4249)))) (-3703 (($ (-1 (-108) |#1|) $) NIL)) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2165 ((|#1| $) NIL)) (-4189 (($) NIL T CONST)) (-1426 (($ $) 28 (|has| $ (-6 -4249)))) (-3700 (($ $) 29)) (-2441 (($ $) 18) (($ $ (-710)) 32)) (-4160 (($ $) 55 (|has| |#1| (-1016)))) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3286 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) NIL)) (-2514 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2053 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) NIL)) (-1833 (((-108) $) NIL)) (-3449 (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016))) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) (-1 (-108) |#1|) $) NIL)) (-1871 (((-589 |#1|) $) 27 (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) NIL)) (-3675 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3733 (($ (-710) |#1|) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) 31 (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-1793 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) 58)) (-3780 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 53 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2301 (($ |#1|) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-1701 (((-589 |#1|) $) NIL)) (-1799 (((-108) $) NIL)) (-2032 (((-1070) $) 51 (|has| |#1| (-1016)))) (-2535 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-3108 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2912 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2428 ((|#1| $) 13) (($ $ (-710)) NIL)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4141 (($ $ |#1|) NIL (|has| $ (-6 -4249)))) (-2430 (((-108) $) NIL)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 12)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) 17)) (-3320 (($) 16)) (-1937 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1136 (-523))) NIL) ((|#1| $ (-523)) NIL) ((|#1| $ (-523) |#1|) NIL)) (-3766 (((-523) $ $) NIL)) (-1655 (($ $ (-1136 (-523))) NIL) (($ $ (-523)) NIL)) (-1499 (($ $ (-1136 (-523))) NIL) (($ $ (-523)) NIL)) (-1221 (((-108) $) 34)) (-2582 (($ $) NIL)) (-2075 (($ $) NIL (|has| $ (-6 -4249)))) (-2784 (((-710) $) NIL)) (-1867 (($ $) 36)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) 35)) (-1400 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 26)) (-2001 (($ $ $) 54) (($ $ |#1|) NIL)) (-2394 (($ $ $) NIL) (($ |#1| $) 10) (($ (-589 $)) NIL) (($ $ |#1|) NIL)) (-1691 (((-794) $) 46 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) NIL)) (-3313 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) 48 (|has| |#1| (-1016)))) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2810 (((-710) $) 9 (|has| $ (-6 -4248))))) +(((-489 |#1| |#2|) (-609 |#1|) (-1123) (-523)) (T -489)) NIL (-609 |#1|) -((-2445 ((|#4| |#4|) 26)) (-1319 (((-710) |#4|) 31)) (-1867 (((-710) |#4|) 32)) (-3498 (((-589 |#3|) |#4|) 38 (|has| |#3| (-6 -4245)))) (-3698 (((-3 |#4| "failed") |#4|) 48)) (-1463 ((|#4| |#4|) 41)) (-2310 ((|#1| |#4|) 40))) -(((-490 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2445 (|#4| |#4|)) (-15 -1319 ((-710) |#4|)) (-15 -1867 ((-710) |#4|)) (IF (|has| |#3| (-6 -4245)) (-15 -3498 ((-589 |#3|) |#4|)) |%noBranch|) (-15 -2310 (|#1| |#4|)) (-15 -1463 (|#4| |#4|)) (-15 -3698 ((-3 |#4| "failed") |#4|))) (-339) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|)) (T -490)) -((-3698 (*1 *2 *2) (|partial| -12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-1463 (*1 *2 *2) (-12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2310 (*1 *2 *3) (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-339)) (-5 *1 (-490 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3498 (*1 *2 *3) (-12 (|has| *6 (-6 -4245)) (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-589 *6)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1867 (*1 *2 *3) (-12 (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1319 (*1 *2 *3) (-12 (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -(-10 -7 (-15 -2445 (|#4| |#4|)) (-15 -1319 ((-710) |#4|)) (-15 -1867 ((-710) |#4|)) (IF (|has| |#3| (-6 -4245)) (-15 -3498 ((-589 |#3|) |#4|)) |%noBranch|) (-15 -2310 (|#1| |#4|)) (-15 -1463 (|#4| |#4|)) (-15 -3698 ((-3 |#4| "failed") |#4|))) -((-2445 ((|#8| |#4|) 20)) (-3498 (((-589 |#3|) |#4|) 29 (|has| |#7| (-6 -4245)))) (-3698 (((-3 |#8| "failed") |#4|) 23))) -(((-491 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2445 (|#8| |#4|)) (-15 -3698 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4245)) (-15 -3498 ((-589 |#3|) |#4|)) |%noBranch|)) (-515) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|) (-921 |#1|) (-349 |#5|) (-349 |#5|) (-627 |#5| |#6| |#7|)) (T -491)) -((-3498 (*1 *2 *3) (-12 (|has| *9 (-6 -4245)) (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-4 *7 (-921 *4)) (-4 *8 (-349 *7)) (-4 *9 (-349 *7)) (-5 *2 (-589 *6)) (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) (-4 *10 (-627 *7 *8 *9)))) (-3698 (*1 *2 *3) (|partial| -12 (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-4 *7 (-921 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-349 *7)) (-4 *9 (-349 *7)))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-4 *7 (-921 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-349 *7)) (-4 *9 (-349 *7))))) -(-10 -7 (-15 -2445 (|#8| |#4|)) (-15 -3698 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4245)) (-15 -3498 ((-589 |#3|) |#4|)) |%noBranch|)) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2821 (($ (-710) (-710)) NIL)) (-1911 (($ $ $) NIL)) (-4190 (($ (-554 |#1| |#3|)) NIL) (($ $) NIL)) (-2606 (((-108) $) NIL)) (-2637 (($ $ (-523) (-523)) 12)) (-3276 (($ $ (-523) (-523)) NIL)) (-2934 (($ $ (-523) (-523) (-523) (-523)) NIL)) (-3858 (($ $) NIL)) (-2651 (((-108) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1494 (($ $ (-523) (-523) $) NIL)) (-1641 ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523)) $) NIL)) (-3787 (($ $ (-523) (-554 |#1| |#3|)) NIL)) (-3617 (($ $ (-523) (-554 |#1| |#2|)) NIL)) (-1421 (($ (-710) |#1|) NIL)) (-2518 (($) NIL T CONST)) (-2445 (($ $) 19 (|has| |#1| (-284)))) (-2031 (((-554 |#1| |#3|) $ (-523)) NIL)) (-1319 (((-710) $) 22 (|has| |#1| (-515)))) (-2863 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2795 ((|#1| $ (-523) (-523)) NIL)) (-1666 (((-589 |#1|) $) NIL)) (-1867 (((-710) $) 24 (|has| |#1| (-515)))) (-3498 (((-589 (-554 |#1| |#2|)) $) 27 (|has| |#1| (-515)))) (-2803 (((-710) $) NIL)) (-3052 (($ (-710) (-710) |#1|) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-1925 ((|#1| $) 17 (|has| |#1| (-6 (-4246 "*"))))) (-3871 (((-523) $) 10)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3338 (((-523) $) 11)) (-2347 (((-523) $) NIL)) (-3068 (($ (-589 (-589 |#1|))) NIL)) (-2852 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2289 (((-589 (-589 |#1|)) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3698 (((-3 $ "failed") $) 31 (|has| |#1| (-339)))) (-3945 (($ $ $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523))) NIL)) (-3739 (($ (-589 |#1|)) NIL) (($ (-589 $)) NIL)) (-3117 (((-108) $) NIL)) (-2310 ((|#1| $) 15 (|has| |#1| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1595 (((-554 |#1| |#2|) $ (-523)) NIL)) (-1458 (($ (-554 |#1| |#2|)) NIL) (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2175 (((-108) $) NIL)) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-523) $) NIL) (((-554 |#1| |#2|) $ (-554 |#1| |#2|)) NIL) (((-554 |#1| |#3|) (-554 |#1| |#3|) $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +((-1678 ((|#4| |#4|) 27)) (-3569 (((-710) |#4|) 32)) (-1835 (((-710) |#4|) 33)) (-2454 (((-589 |#3|) |#4|) 40 (|has| |#3| (-6 -4249)))) (-3713 (((-3 |#4| "failed") |#4|) 51)) (-2377 ((|#4| |#4|) 44)) (-2736 ((|#1| |#4|) 43))) +(((-490 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1678 (|#4| |#4|)) (-15 -3569 ((-710) |#4|)) (-15 -1835 ((-710) |#4|)) (IF (|has| |#3| (-6 -4249)) (-15 -2454 ((-589 |#3|) |#4|)) |%noBranch|) (-15 -2736 (|#1| |#4|)) (-15 -2377 (|#4| |#4|)) (-15 -3713 ((-3 |#4| "failed") |#4|))) (-339) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|)) (T -490)) +((-3713 (*1 *2 *2) (|partial| -12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2377 (*1 *2 *2) (-12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2736 (*1 *2 *3) (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-339)) (-5 *1 (-490 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-2454 (*1 *2 *3) (-12 (|has| *6 (-6 -4249)) (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-589 *6)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1835 (*1 *2 *3) (-12 (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(-10 -7 (-15 -1678 (|#4| |#4|)) (-15 -3569 ((-710) |#4|)) (-15 -1835 ((-710) |#4|)) (IF (|has| |#3| (-6 -4249)) (-15 -2454 ((-589 |#3|) |#4|)) |%noBranch|) (-15 -2736 (|#1| |#4|)) (-15 -2377 (|#4| |#4|)) (-15 -3713 ((-3 |#4| "failed") |#4|))) +((-1678 ((|#8| |#4|) 20)) (-2454 (((-589 |#3|) |#4|) 29 (|has| |#7| (-6 -4249)))) (-3713 (((-3 |#8| "failed") |#4|) 23))) +(((-491 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1678 (|#8| |#4|)) (-15 -3713 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4249)) (-15 -2454 ((-589 |#3|) |#4|)) |%noBranch|)) (-515) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|) (-921 |#1|) (-349 |#5|) (-349 |#5|) (-627 |#5| |#6| |#7|)) (T -491)) +((-2454 (*1 *2 *3) (-12 (|has| *9 (-6 -4249)) (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-4 *7 (-921 *4)) (-4 *8 (-349 *7)) (-4 *9 (-349 *7)) (-5 *2 (-589 *6)) (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) (-4 *10 (-627 *7 *8 *9)))) (-3713 (*1 *2 *3) (|partial| -12 (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-4 *7 (-921 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-349 *7)) (-4 *9 (-349 *7)))) (-1678 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-4 *7 (-921 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-349 *7)) (-4 *9 (-349 *7))))) +(-10 -7 (-15 -1678 (|#8| |#4|)) (-15 -3713 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4249)) (-15 -2454 ((-589 |#3|) |#4|)) |%noBranch|)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1709 (($ (-710) (-710)) NIL)) (-4081 (($ $ $) NIL)) (-4005 (($ (-554 |#1| |#3|)) NIL) (($ $) NIL)) (-3735 (((-108) $) NIL)) (-2859 (($ $ (-523) (-523)) 12)) (-3909 (($ $ (-523) (-523)) NIL)) (-2641 (($ $ (-523) (-523) (-523) (-523)) NIL)) (-1553 (($ $) NIL)) (-2989 (((-108) $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1522 (($ $ (-523) (-523) $) NIL)) (-1849 ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523)) $) NIL)) (-2080 (($ $ (-523) (-554 |#1| |#3|)) NIL)) (-1232 (($ $ (-523) (-554 |#1| |#2|)) NIL)) (-1979 (($ (-710) |#1|) NIL)) (-4189 (($) NIL T CONST)) (-1678 (($ $) 19 (|has| |#1| (-284)))) (-2827 (((-554 |#1| |#3|) $ (-523)) NIL)) (-3569 (((-710) $) 22 (|has| |#1| (-515)))) (-2053 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2000 ((|#1| $ (-523) (-523)) NIL)) (-1871 (((-589 |#1|) $) NIL)) (-1835 (((-710) $) 24 (|has| |#1| (-515)))) (-2454 (((-589 (-554 |#1| |#2|)) $) 27 (|has| |#1| (-515)))) (-1357 (((-710) $) NIL)) (-3733 (($ (-710) (-710) |#1|) NIL)) (-1370 (((-710) $) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-4224 ((|#1| $) 17 (|has| |#1| (-6 (-4250 "*"))))) (-1665 (((-523) $) 10)) (-2082 (((-523) $) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3231 (((-523) $) 11)) (-3060 (((-523) $) NIL)) (-3648 (($ (-589 (-589 |#1|))) NIL)) (-2043 (($ (-1 |#1| |#1|) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3692 (((-589 (-589 |#1|)) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3713 (((-3 $ "failed") $) 31 (|has| |#1| (-339)))) (-4207 (($ $ $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4141 (($ $ |#1|) NIL)) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523))) NIL)) (-2870 (($ (-589 |#1|)) NIL) (($ (-589 $)) NIL)) (-1956 (((-108) $) NIL)) (-2736 ((|#1| $) 15 (|has| |#1| (-6 (-4250 "*"))))) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1249 (((-554 |#1| |#2|) $ (-523)) NIL)) (-1691 (($ (-554 |#1| |#2|)) NIL) (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3749 (((-108) $) NIL)) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $ $) NIL) (($ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-523) $) NIL) (((-554 |#1| |#2|) $ (-554 |#1| |#2|)) NIL) (((-554 |#1| |#3|) (-554 |#1| |#3|) $) NIL)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) (((-492 |#1| |#2| |#3|) (-627 |#1| (-554 |#1| |#3|) (-554 |#1| |#2|)) (-973) (-523) (-523)) (T -492)) NIL (-627 |#1| (-554 |#1| |#3|) (-554 |#1| |#2|)) -((-3155 (((-1083 |#1|) (-710)) 75)) (-4187 (((-1168 |#1|) (-1168 |#1|) (-852)) 68)) (-1416 (((-1173) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) |#1|) 83)) (-2415 (((-1168 |#1|) (-1168 |#1|) (-710)) 36)) (-4032 (((-1168 |#1|) (-852)) 70)) (-4074 (((-1168 |#1|) (-1168 |#1|) (-523)) 24)) (-1480 (((-1083 |#1|) (-1168 |#1|)) 76)) (-1881 (((-1168 |#1|) (-852)) 94)) (-2307 (((-108) (-1168 |#1|)) 79)) (-3892 (((-1168 |#1|) (-1168 |#1|) (-852)) 61)) (-1397 (((-1083 |#1|) (-1168 |#1|)) 88)) (-2072 (((-852) (-1168 |#1|)) 58)) (-3738 (((-1168 |#1|) (-1168 |#1|)) 30)) (-3878 (((-1168 |#1|) (-852) (-852)) 96)) (-1943 (((-1168 |#1|) (-1168 |#1|) (-1034) (-1034)) 23)) (-3936 (((-1168 |#1|) (-1168 |#1|) (-710) (-1034)) 37)) (-4041 (((-1168 (-1168 |#1|)) (-852)) 93)) (-4098 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 80)) (** (((-1168 |#1|) (-1168 |#1|) (-523)) 45)) (* (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 25))) -(((-493 |#1|) (-10 -7 (-15 -1416 ((-1173) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) |#1|)) (-15 -4032 ((-1168 |#1|) (-852))) (-15 -3878 ((-1168 |#1|) (-852) (-852))) (-15 -1480 ((-1083 |#1|) (-1168 |#1|))) (-15 -3155 ((-1083 |#1|) (-710))) (-15 -3936 ((-1168 |#1|) (-1168 |#1|) (-710) (-1034))) (-15 -2415 ((-1168 |#1|) (-1168 |#1|) (-710))) (-15 -1943 ((-1168 |#1|) (-1168 |#1|) (-1034) (-1034))) (-15 -4074 ((-1168 |#1|) (-1168 |#1|) (-523))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-523))) (-15 * ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -4098 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3892 ((-1168 |#1|) (-1168 |#1|) (-852))) (-15 -4187 ((-1168 |#1|) (-1168 |#1|) (-852))) (-15 -3738 ((-1168 |#1|) (-1168 |#1|))) (-15 -2072 ((-852) (-1168 |#1|))) (-15 -2307 ((-108) (-1168 |#1|))) (-15 -4041 ((-1168 (-1168 |#1|)) (-852))) (-15 -1881 ((-1168 |#1|) (-852))) (-15 -1397 ((-1083 |#1|) (-1168 |#1|)))) (-325)) (T -493)) -((-1397 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-1083 *4)) (-5 *1 (-493 *4)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1168 *4)) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1168 (-1168 *4))) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-493 *4)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-852)) (-5 *1 (-493 *4)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) (-4187 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-852)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-3892 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-852)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-4098 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-523)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-4074 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-523)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-1943 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1034)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-2415 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-3936 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1168 *5)) (-5 *3 (-710)) (-5 *4 (-1034)) (-4 *5 (-325)) (-5 *1 (-493 *5)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1083 *4)) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-1083 *4)) (-5 *1 (-493 *4)))) (-3878 (*1 *2 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1168 *4)) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1168 *4)) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-1416 (*1 *2 *3 *4) (-12 (-5 *3 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) (-4 *4 (-325)) (-5 *2 (-1173)) (-5 *1 (-493 *4))))) -(-10 -7 (-15 -1416 ((-1173) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) |#1|)) (-15 -4032 ((-1168 |#1|) (-852))) (-15 -3878 ((-1168 |#1|) (-852) (-852))) (-15 -1480 ((-1083 |#1|) (-1168 |#1|))) (-15 -3155 ((-1083 |#1|) (-710))) (-15 -3936 ((-1168 |#1|) (-1168 |#1|) (-710) (-1034))) (-15 -2415 ((-1168 |#1|) (-1168 |#1|) (-710))) (-15 -1943 ((-1168 |#1|) (-1168 |#1|) (-1034) (-1034))) (-15 -4074 ((-1168 |#1|) (-1168 |#1|) (-523))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-523))) (-15 * ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -4098 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3892 ((-1168 |#1|) (-1168 |#1|) (-852))) (-15 -4187 ((-1168 |#1|) (-1168 |#1|) (-852))) (-15 -3738 ((-1168 |#1|) (-1168 |#1|))) (-15 -2072 ((-852) (-1168 |#1|))) (-15 -2307 ((-108) (-1168 |#1|))) (-15 -4041 ((-1168 (-1168 |#1|)) (-852))) (-15 -1881 ((-1168 |#1|) (-852))) (-15 -1397 ((-1083 |#1|) (-1168 |#1|)))) -((-3674 (((-1 |#1| |#1|) |#1|) 11)) (-3378 (((-1 |#1| |#1|)) 10))) -(((-494 |#1|) (-10 -7 (-15 -3378 ((-1 |#1| |#1|))) (-15 -3674 ((-1 |#1| |#1|) |#1|))) (-13 (-666) (-25))) (T -494)) -((-3674 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-494 *3)) (-4 *3 (-13 (-666) (-25))))) (-3378 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-494 *3)) (-4 *3 (-13 (-666) (-25)))))) -(-10 -7 (-15 -3378 ((-1 |#1| |#1|))) (-15 -3674 ((-1 |#1| |#1|) |#1|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3596 (($ $ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-1933 (($ (-710) |#1|) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 (-710) (-710)) $) NIL)) (-1953 ((|#1| $) NIL)) (-3786 (((-710) $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 20)) (-2756 (($) NIL T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (* (($ (-710) $) NIL) (($ (-852) $) NIL))) +((-4119 (((-1083 |#1|) (-710)) 76)) (-1477 (((-1169 |#1|) (-1169 |#1|) (-852)) 69)) (-1940 (((-1174) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))) |#1|) 84)) (-1429 (((-1169 |#1|) (-1169 |#1|) (-710)) 36)) (-1631 (((-1169 |#1|) (-852)) 71)) (-2885 (((-1169 |#1|) (-1169 |#1|) (-523)) 24)) (-1385 (((-1083 |#1|) (-1169 |#1|)) 77)) (-3753 (((-1169 |#1|) (-852)) 95)) (-2706 (((-108) (-1169 |#1|)) 80)) (-1863 (((-1169 |#1|) (-1169 |#1|) (-852)) 62)) (-2887 (((-1083 |#1|) (-1169 |#1|)) 89)) (-2060 (((-852) (-1169 |#1|)) 59)) (-1396 (((-1169 |#1|) (-1169 |#1|)) 30)) (-4013 (((-1169 |#1|) (-852) (-852)) 97)) (-3138 (((-1169 |#1|) (-1169 |#1|) (-1034) (-1034)) 23)) (-4101 (((-1169 |#1|) (-1169 |#1|) (-710) (-1034)) 37)) (-3760 (((-1169 (-1169 |#1|)) (-852)) 94)) (-4074 (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 81)) (** (((-1169 |#1|) (-1169 |#1|) (-523)) 45)) (* (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 25))) +(((-493 |#1|) (-10 -7 (-15 -1940 ((-1174) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))) |#1|)) (-15 -1631 ((-1169 |#1|) (-852))) (-15 -4013 ((-1169 |#1|) (-852) (-852))) (-15 -1385 ((-1083 |#1|) (-1169 |#1|))) (-15 -4119 ((-1083 |#1|) (-710))) (-15 -4101 ((-1169 |#1|) (-1169 |#1|) (-710) (-1034))) (-15 -1429 ((-1169 |#1|) (-1169 |#1|) (-710))) (-15 -3138 ((-1169 |#1|) (-1169 |#1|) (-1034) (-1034))) (-15 -2885 ((-1169 |#1|) (-1169 |#1|) (-523))) (-15 ** ((-1169 |#1|) (-1169 |#1|) (-523))) (-15 * ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -4074 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -1863 ((-1169 |#1|) (-1169 |#1|) (-852))) (-15 -1477 ((-1169 |#1|) (-1169 |#1|) (-852))) (-15 -1396 ((-1169 |#1|) (-1169 |#1|))) (-15 -2060 ((-852) (-1169 |#1|))) (-15 -2706 ((-108) (-1169 |#1|))) (-15 -3760 ((-1169 (-1169 |#1|)) (-852))) (-15 -3753 ((-1169 |#1|) (-852))) (-15 -2887 ((-1083 |#1|) (-1169 |#1|)))) (-325)) (T -493)) +((-2887 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-325)) (-5 *2 (-1083 *4)) (-5 *1 (-493 *4)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1169 *4)) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1169 (-1169 *4))) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-493 *4)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-325)) (-5 *2 (-852)) (-5 *1 (-493 *4)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) (-1477 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-852)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-852)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-4074 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-523)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-2885 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-523)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-3138 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1034)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-1429 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-4101 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1169 *5)) (-5 *3 (-710)) (-5 *4 (-1034)) (-4 *5 (-325)) (-5 *1 (-493 *5)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1083 *4)) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-325)) (-5 *2 (-1083 *4)) (-5 *1 (-493 *4)))) (-4013 (*1 *2 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1169 *4)) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-1631 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1169 *4)) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 (-589 (-2 (|:| -3370 *4) (|:| -4013 (-1034)))))) (-4 *4 (-325)) (-5 *2 (-1174)) (-5 *1 (-493 *4))))) +(-10 -7 (-15 -1940 ((-1174) (-1169 (-589 (-2 (|:| -3370 |#1|) (|:| -4013 (-1034))))) |#1|)) (-15 -1631 ((-1169 |#1|) (-852))) (-15 -4013 ((-1169 |#1|) (-852) (-852))) (-15 -1385 ((-1083 |#1|) (-1169 |#1|))) (-15 -4119 ((-1083 |#1|) (-710))) (-15 -4101 ((-1169 |#1|) (-1169 |#1|) (-710) (-1034))) (-15 -1429 ((-1169 |#1|) (-1169 |#1|) (-710))) (-15 -3138 ((-1169 |#1|) (-1169 |#1|) (-1034) (-1034))) (-15 -2885 ((-1169 |#1|) (-1169 |#1|) (-523))) (-15 ** ((-1169 |#1|) (-1169 |#1|) (-523))) (-15 * ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -4074 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -1863 ((-1169 |#1|) (-1169 |#1|) (-852))) (-15 -1477 ((-1169 |#1|) (-1169 |#1|) (-852))) (-15 -1396 ((-1169 |#1|) (-1169 |#1|))) (-15 -2060 ((-852) (-1169 |#1|))) (-15 -2706 ((-108) (-1169 |#1|))) (-15 -3760 ((-1169 (-1169 |#1|)) (-852))) (-15 -3753 ((-1169 |#1|) (-852))) (-15 -2887 ((-1083 |#1|) (-1169 |#1|)))) +((-1859 (((-1 |#1| |#1|) |#1|) 11)) (-3615 (((-1 |#1| |#1|)) 10))) +(((-494 |#1|) (-10 -7 (-15 -3615 ((-1 |#1| |#1|))) (-15 -1859 ((-1 |#1| |#1|) |#1|))) (-13 (-666) (-25))) (T -494)) +((-1859 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-494 *3)) (-4 *3 (-13 (-666) (-25))))) (-3615 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-494 *3)) (-4 *3 (-13 (-666) (-25)))))) +(-10 -7 (-15 -3615 ((-1 |#1| |#1|))) (-15 -1859 ((-1 |#1| |#1|) |#1|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-4016 (($ $ $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1457 (($ $) NIL)) (-1267 (($ (-710) |#1|) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-1345 (($ (-1 (-710) (-710)) $) NIL)) (-3225 ((|#1| $) NIL)) (-1437 (((-710) $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 20)) (-1879 (($) NIL T CONST)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) NIL)) (-4045 (($ $ $) NIL)) (* (($ (-710) $) NIL) (($ (-852) $) NIL))) (((-495 |#1|) (-13 (-732) (-479 (-710) |#1|)) (-786)) (T -495)) NIL (-13 (-732) (-479 (-710) |#1|)) -((-1795 (((-589 |#2|) (-1083 |#1|) |#3|) 83)) (-2973 (((-589 (-2 (|:| |outval| |#2|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#2|))))) (-629 |#1|) |#3| (-1 (-394 (-1083 |#1|)) (-1083 |#1|))) 99)) (-3876 (((-1083 |#1|) (-629 |#1|)) 95))) -(((-496 |#1| |#2| |#3|) (-10 -7 (-15 -3876 ((-1083 |#1|) (-629 |#1|))) (-15 -1795 ((-589 |#2|) (-1083 |#1|) |#3|)) (-15 -2973 ((-589 (-2 (|:| |outval| |#2|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#2|))))) (-629 |#1|) |#3| (-1 (-394 (-1083 |#1|)) (-1083 |#1|))))) (-339) (-339) (-13 (-339) (-784))) (T -496)) -((-2973 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *6)) (-5 *5 (-1 (-394 (-1083 *6)) (-1083 *6))) (-4 *6 (-339)) (-5 *2 (-589 (-2 (|:| |outval| *7) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 *7)))))) (-5 *1 (-496 *6 *7 *4)) (-4 *7 (-339)) (-4 *4 (-13 (-339) (-784))))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *5)) (-4 *5 (-339)) (-5 *2 (-589 *6)) (-5 *1 (-496 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784))))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-339)) (-5 *2 (-1083 *4)) (-5 *1 (-496 *4 *5 *6)) (-4 *5 (-339)) (-4 *6 (-13 (-339) (-784)))))) -(-10 -7 (-15 -3876 ((-1083 |#1|) (-629 |#1|))) (-15 -1795 ((-589 |#2|) (-1083 |#1|) |#3|)) (-15 -2973 ((-589 (-2 (|:| |outval| |#2|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#2|))))) (-629 |#1|) |#3| (-1 (-394 (-1083 |#1|)) (-1083 |#1|))))) -((-1891 (((-779 (-523))) 11)) (-1903 (((-779 (-523))) 13)) (-2833 (((-772 (-523))) 8))) -(((-497) (-10 -7 (-15 -2833 ((-772 (-523)))) (-15 -1891 ((-779 (-523)))) (-15 -1903 ((-779 (-523)))))) (T -497)) -((-1903 (*1 *2) (-12 (-5 *2 (-779 (-523))) (-5 *1 (-497)))) (-1891 (*1 *2) (-12 (-5 *2 (-779 (-523))) (-5 *1 (-497)))) (-2833 (*1 *2) (-12 (-5 *2 (-772 (-523))) (-5 *1 (-497))))) -(-10 -7 (-15 -2833 ((-772 (-523)))) (-15 -1891 ((-779 (-523)))) (-15 -1903 ((-779 (-523))))) -((-2546 (((-499) (-1087)) 15)) (-2711 ((|#1| (-499)) 20))) -(((-498 |#1|) (-10 -7 (-15 -2546 ((-499) (-1087))) (-15 -2711 (|#1| (-499)))) (-1122)) (T -498)) -((-2711 (*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-498 *2)) (-4 *2 (-1122)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-499)) (-5 *1 (-498 *4)) (-4 *4 (-1122))))) -(-10 -7 (-15 -2546 ((-499) (-1087))) (-15 -2711 (|#1| (-499)))) -((-3924 (((-108) $ $) NIL)) (-2246 (((-1070) $) 46)) (-3129 (((-108) $) 43)) (-3335 (((-1087) $) 44)) (-3708 (((-108) $) 41)) (-3207 (((-1070) $) 42)) (-3021 (((-108) $) NIL)) (-1888 (((-108) $) NIL)) (-1749 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-2661 (($ $ (-589 (-1087))) 20)) (-2711 (((-51) $) 22)) (-1538 (((-108) $) NIL)) (-3356 (((-523) $) NIL)) (-2783 (((-1034) $) NIL)) (-3121 (($ $ (-589 (-1087)) (-1087)) 58)) (-3264 (((-108) $) NIL)) (-4092 (((-203) $) NIL)) (-1689 (($ $) 38)) (-2659 (((-794) $) NIL)) (-1710 (((-108) $ $) NIL)) (-3223 (($ $ (-523)) NIL) (($ $ (-589 (-523))) NIL)) (-1887 (((-589 $) $) 28)) (-3303 (((-1087) (-589 $)) 47)) (-3663 (($ (-589 $)) 51) (($ (-1070)) NIL) (($ (-1087)) 18) (($ (-523)) 8) (($ (-203)) 25) (($ (-794)) NIL) (((-1020) $) 11) (($ (-1020)) 12)) (-4176 (((-1087) (-1087) (-589 $)) 50)) (-1458 (((-794) $) NIL)) (-1627 (($ $) 49)) (-4003 (($ $) 48)) (-2716 (($ $ (-589 $)) 55)) (-1308 (((-108) $) 27)) (-2756 (($) 9 T CONST)) (-2767 (($) 10 T CONST)) (-3983 (((-108) $ $) 59)) (-4098 (($ $ $) 64)) (-4075 (($ $ $) 60)) (** (($ $ (-710)) 63) (($ $ (-523)) 62)) (* (($ $ $) 61)) (-2676 (((-523) $) NIL))) -(((-499) (-13 (-1019 (-1070) (-1087) (-523) (-203) (-794)) (-564 (-1020)) (-10 -8 (-15 -2711 ((-51) $)) (-15 -3663 ($ (-1020))) (-15 -2716 ($ $ (-589 $))) (-15 -3121 ($ $ (-589 (-1087)) (-1087))) (-15 -2661 ($ $ (-589 (-1087)))) (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 -4098 ($ $ $)) (-15 ** ($ $ (-710))) (-15 ** ($ $ (-523))) (-15 0 ($) -3059) (-15 1 ($) -3059) (-15 -1689 ($ $)) (-15 -2246 ((-1070) $)) (-15 -3303 ((-1087) (-589 $))) (-15 -4176 ((-1087) (-1087) (-589 $)))))) (T -499)) -((-2711 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-499)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-499)))) (-2716 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-499))) (-5 *1 (-499)))) (-3121 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-1087)) (-5 *1 (-499)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-499)))) (-4075 (*1 *1 *1 *1) (-5 *1 (-499))) (* (*1 *1 *1 *1) (-5 *1 (-499))) (-4098 (*1 *1 *1 *1) (-5 *1 (-499))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-499)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-499)))) (-2756 (*1 *1) (-5 *1 (-499))) (-2767 (*1 *1) (-5 *1 (-499))) (-1689 (*1 *1 *1) (-5 *1 (-499))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-499)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-589 (-499))) (-5 *2 (-1087)) (-5 *1 (-499)))) (-4176 (*1 *2 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-499))) (-5 *1 (-499))))) -(-13 (-1019 (-1070) (-1087) (-523) (-203) (-794)) (-564 (-1020)) (-10 -8 (-15 -2711 ((-51) $)) (-15 -3663 ($ (-1020))) (-15 -2716 ($ $ (-589 $))) (-15 -3121 ($ $ (-589 (-1087)) (-1087))) (-15 -2661 ($ $ (-589 (-1087)))) (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 -4098 ($ $ $)) (-15 ** ($ $ (-710))) (-15 ** ($ $ (-523))) (-15 (-2756) ($) -3059) (-15 (-2767) ($) -3059) (-15 -1689 ($ $)) (-15 -2246 ((-1070) $)) (-15 -3303 ((-1087) (-589 $))) (-15 -4176 ((-1087) (-1087) (-589 $))))) -((-3173 ((|#2| |#2|) 17)) (-1379 ((|#2| |#2|) 13)) (-1333 ((|#2| |#2| (-523) (-523)) 20)) (-1425 ((|#2| |#2|) 15))) -(((-500 |#1| |#2|) (-10 -7 (-15 -1379 (|#2| |#2|)) (-15 -1425 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -1333 (|#2| |#2| (-523) (-523)))) (-13 (-515) (-136)) (-1159 |#1|)) (T -500)) -((-1333 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-523)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-500 *4 *2)) (-4 *2 (-1159 *4)))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) (-4 *2 (-1159 *3)))) (-1425 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) (-4 *2 (-1159 *3)))) (-1379 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) (-4 *2 (-1159 *3))))) -(-10 -7 (-15 -1379 (|#2| |#2|)) (-15 -1425 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -1333 (|#2| |#2| (-523) (-523)))) -((-3053 (((-589 (-271 (-883 |#2|))) (-589 |#2|) (-589 (-1087))) 32)) (-1652 (((-589 |#2|) (-883 |#1|) |#3|) 53) (((-589 |#2|) (-1083 |#1|) |#3|) 52)) (-4091 (((-589 (-589 |#2|)) (-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)) |#3|) 87))) -(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -1652 ((-589 |#2|) (-1083 |#1|) |#3|)) (-15 -1652 ((-589 |#2|) (-883 |#1|) |#3|)) (-15 -4091 ((-589 (-589 |#2|)) (-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)) |#3|)) (-15 -3053 ((-589 (-271 (-883 |#2|))) (-589 |#2|) (-589 (-1087))))) (-427) (-339) (-13 (-339) (-784))) (T -501)) -((-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-1087))) (-4 *6 (-339)) (-5 *2 (-589 (-271 (-883 *6)))) (-5 *1 (-501 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-13 (-339) (-784))))) (-4091 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-589 (-589 *7))) (-5 *1 (-501 *6 *7 *5)) (-4 *7 (-339)) (-4 *5 (-13 (-339) (-784))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-4 *5 (-427)) (-5 *2 (-589 *6)) (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *5)) (-4 *5 (-427)) (-5 *2 (-589 *6)) (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784)))))) -(-10 -7 (-15 -1652 ((-589 |#2|) (-1083 |#1|) |#3|)) (-15 -1652 ((-589 |#2|) (-883 |#1|) |#3|)) (-15 -4091 ((-589 (-589 |#2|)) (-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)) |#3|)) (-15 -3053 ((-589 (-271 (-883 |#2|))) (-589 |#2|) (-589 (-1087))))) -((-2227 ((|#2| |#2| |#1|) 17)) (-2765 ((|#2| (-589 |#2|)) 27)) (-3884 ((|#2| (-589 |#2|)) 46))) -(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2765 (|#2| (-589 |#2|))) (-15 -3884 (|#2| (-589 |#2|))) (-15 -2227 (|#2| |#2| |#1|))) (-284) (-1144 |#1|) |#1| (-1 |#1| |#1| (-710))) (T -502)) -((-2227 (*1 *2 *2 *3) (-12 (-4 *3 (-284)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-710))) (-5 *1 (-502 *3 *2 *4 *5)) (-4 *2 (-1144 *3)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-502 *4 *2 *5 *6)) (-4 *4 (-284)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-710))))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-502 *4 *2 *5 *6)) (-4 *4 (-284)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-710)))))) -(-10 -7 (-15 -2765 (|#2| (-589 |#2|))) (-15 -3884 (|#2| (-589 |#2|))) (-15 -2227 (|#2| |#2| |#1|))) -((-1820 (((-394 (-1083 |#4|)) (-1083 |#4|) (-1 (-394 (-1083 |#3|)) (-1083 |#3|))) 79) (((-394 |#4|) |#4| (-1 (-394 (-1083 |#3|)) (-1083 |#3|))) 166))) -(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 |#4|) |#4| (-1 (-394 (-1083 |#3|)) (-1083 |#3|)))) (-15 -1820 ((-394 (-1083 |#4|)) (-1083 |#4|) (-1 (-394 (-1083 |#3|)) (-1083 |#3|))))) (-786) (-732) (-13 (-284) (-136)) (-880 |#3| |#2| |#1|)) (T -503)) -((-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-284) (-136))) (-4 *5 (-786)) (-4 *6 (-732)) (-4 *8 (-880 *7 *6 *5)) (-5 *2 (-394 (-1083 *8))) (-5 *1 (-503 *5 *6 *7 *8)) (-5 *3 (-1083 *8)))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-284) (-136))) (-4 *5 (-786)) (-4 *6 (-732)) (-5 *2 (-394 *3)) (-5 *1 (-503 *5 *6 *7 *3)) (-4 *3 (-880 *7 *6 *5))))) -(-10 -7 (-15 -1820 ((-394 |#4|) |#4| (-1 (-394 (-1083 |#3|)) (-1083 |#3|)))) (-15 -1820 ((-394 (-1083 |#4|)) (-1083 |#4|) (-1 (-394 (-1083 |#3|)) (-1083 |#3|))))) -((-3173 ((|#4| |#4|) 74)) (-1379 ((|#4| |#4|) 70)) (-1333 ((|#4| |#4| (-523) (-523)) 76)) (-1425 ((|#4| |#4|) 72))) -(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1379 (|#4| |#4|)) (-15 -1425 (|#4| |#4|)) (-15 -3173 (|#4| |#4|)) (-15 -1333 (|#4| |#4| (-523) (-523)))) (-13 (-339) (-344) (-564 (-523))) (-1144 |#1|) (-664 |#1| |#2|) (-1159 |#3|)) (T -504)) -((-1333 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-523)) (-4 *4 (-13 (-339) (-344) (-564 *3))) (-4 *5 (-1144 *4)) (-4 *6 (-664 *4 *5)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-1159 *6)))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1144 *3)) (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1159 *5)))) (-1425 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1144 *3)) (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1159 *5)))) (-1379 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1144 *3)) (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1159 *5))))) -(-10 -7 (-15 -1379 (|#4| |#4|)) (-15 -1425 (|#4| |#4|)) (-15 -3173 (|#4| |#4|)) (-15 -1333 (|#4| |#4| (-523) (-523)))) -((-3173 ((|#2| |#2|) 27)) (-1379 ((|#2| |#2|) 23)) (-1333 ((|#2| |#2| (-523) (-523)) 29)) (-1425 ((|#2| |#2|) 25))) -(((-505 |#1| |#2|) (-10 -7 (-15 -1379 (|#2| |#2|)) (-15 -1425 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -1333 (|#2| |#2| (-523) (-523)))) (-13 (-339) (-344) (-564 (-523))) (-1159 |#1|)) (T -505)) -((-1333 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-523)) (-4 *4 (-13 (-339) (-344) (-564 *3))) (-5 *1 (-505 *4 *2)) (-4 *2 (-1159 *4)))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) (-4 *2 (-1159 *3)))) (-1425 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) (-4 *2 (-1159 *3)))) (-1379 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) (-4 *2 (-1159 *3))))) -(-10 -7 (-15 -1379 (|#2| |#2|)) (-15 -1425 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -1333 (|#2| |#2| (-523) (-523)))) -((-2769 (((-3 (-523) "failed") |#2| |#1| (-1 (-3 (-523) "failed") |#1|)) 14) (((-3 (-523) "failed") |#2| |#1| (-523) (-1 (-3 (-523) "failed") |#1|)) 13) (((-3 (-523) "failed") |#2| (-523) (-1 (-3 (-523) "failed") |#1|)) 26))) -(((-506 |#1| |#2|) (-10 -7 (-15 -2769 ((-3 (-523) "failed") |#2| (-523) (-1 (-3 (-523) "failed") |#1|))) (-15 -2769 ((-3 (-523) "failed") |#2| |#1| (-523) (-1 (-3 (-523) "failed") |#1|))) (-15 -2769 ((-3 (-523) "failed") |#2| |#1| (-1 (-3 (-523) "failed") |#1|)))) (-973) (-1144 |#1|)) (T -506)) -((-2769 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-523) "failed") *4)) (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-506 *4 *3)) (-4 *3 (-1144 *4)))) (-2769 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-523) "failed") *4)) (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-506 *4 *3)) (-4 *3 (-1144 *4)))) (-2769 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-523) "failed") *5)) (-4 *5 (-973)) (-5 *2 (-523)) (-5 *1 (-506 *5 *3)) (-4 *3 (-1144 *5))))) -(-10 -7 (-15 -2769 ((-3 (-523) "failed") |#2| (-523) (-1 (-3 (-523) "failed") |#1|))) (-15 -2769 ((-3 (-523) "failed") |#2| |#1| (-523) (-1 (-3 (-523) "failed") |#1|))) (-15 -2769 ((-3 (-523) "failed") |#2| |#1| (-1 (-3 (-523) "failed") |#1|)))) -((-2312 (($ $ $) 79)) (-3614 (((-394 $) $) 47)) (-3517 (((-3 (-523) "failed") $) 59)) (-3474 (((-523) $) 37)) (-3346 (((-3 (-383 (-523)) "failed") $) 74)) (-1292 (((-108) $) 24)) (-2146 (((-383 (-523)) $) 72)) (-2657 (((-108) $) 50)) (-2819 (($ $ $ $) 86)) (-2604 (((-108) $) 16)) (-3654 (($ $ $) 57)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 69)) (-4058 (((-3 $ "failed") $) 64)) (-1647 (($ $) 23)) (-3305 (($ $ $) 84)) (-2262 (($) 60)) (-3217 (($ $) 53)) (-1820 (((-394 $) $) 45)) (-4104 (((-108) $) 14)) (-1972 (((-710) $) 28)) (-3523 (($ $ (-710)) NIL) (($ $) 10)) (-1664 (($ $) 17)) (-3663 (((-523) $) NIL) (((-499) $) 36) (((-823 (-523)) $) 40) (((-355) $) 31) (((-203) $) 33)) (-1621 (((-710)) 8)) (-1981 (((-108) $ $) 20)) (-2574 (($ $ $) 55))) -(((-507 |#1|) (-10 -8 (-15 -3305 (|#1| |#1| |#1|)) (-15 -2819 (|#1| |#1| |#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1664 (|#1| |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -2312 (|#1| |#1| |#1|)) (-15 -1981 ((-108) |#1| |#1|)) (-15 -4104 ((-108) |#1|)) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -3663 ((-203) |#1|)) (-15 -3663 ((-355) |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -2574 (|#1| |#1| |#1|)) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3663 ((-523) |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -2604 ((-108) |#1|)) (-15 -1972 ((-710) |#1|)) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2657 ((-108) |#1|)) (-15 -1621 ((-710)))) (-508)) (T -507)) -((-1621 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-507 *3)) (-4 *3 (-508))))) -(-10 -8 (-15 -3305 (|#1| |#1| |#1|)) (-15 -2819 (|#1| |#1| |#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1664 (|#1| |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -2312 (|#1| |#1| |#1|)) (-15 -1981 ((-108) |#1| |#1|)) (-15 -4104 ((-108) |#1|)) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -3663 ((-203) |#1|)) (-15 -3663 ((-355) |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -2574 (|#1| |#1| |#1|)) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3663 ((-523) |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -2604 ((-108) |#1|)) (-15 -1972 ((-710) |#1|)) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2657 ((-108) |#1|)) (-15 -1621 ((-710)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-2312 (($ $ $) 85)) (-3212 (((-3 $ "failed") $ $) 19)) (-1808 (($ $ $ $) 73)) (-2291 (($ $) 51)) (-3614 (((-394 $) $) 52)) (-1387 (((-108) $ $) 125)) (-3671 (((-523) $) 114)) (-2041 (($ $ $) 88)) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 106)) (-3474 (((-523) $) 105)) (-3796 (($ $ $) 129)) (-2381 (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 104) (((-629 (-523)) (-629 $)) 103)) (-2121 (((-3 $ "failed") $) 34)) (-3346 (((-3 (-383 (-523)) "failed") $) 82)) (-1292 (((-108) $) 84)) (-2146 (((-383 (-523)) $) 83)) (-4032 (($) 81) (($ $) 80)) (-3769 (($ $ $) 128)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 123)) (-2657 (((-108) $) 53)) (-2819 (($ $ $ $) 71)) (-1980 (($ $ $) 86)) (-2604 (((-108) $) 116)) (-3654 (($ $ $) 97)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 100)) (-2023 (((-108) $) 31)) (-1557 (((-108) $) 92)) (-4058 (((-3 $ "failed") $) 94)) (-4114 (((-108) $) 115)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 132)) (-4183 (($ $ $ $) 72)) (-2454 (($ $ $) 117)) (-2062 (($ $ $) 118)) (-1647 (($ $) 75)) (-2996 (($ $) 89)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3305 (($ $ $) 70)) (-2262 (($) 93 T CONST)) (-3201 (($ $) 77)) (-2783 (((-1034) $) 10) (($ $) 79)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-3217 (($ $) 98)) (-1820 (((-394 $) $) 50)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 130)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 124)) (-4104 (((-108) $) 91)) (-1972 (((-710) $) 126)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 127)) (-3523 (($ $ (-710)) 111) (($ $) 109)) (-2029 (($ $) 76)) (-1664 (($ $) 78)) (-3663 (((-523) $) 108) (((-499) $) 102) (((-823 (-523)) $) 101) (((-355) $) 96) (((-203) $) 95)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-523)) 107)) (-1621 (((-710)) 29)) (-1981 (((-108) $ $) 87)) (-2574 (($ $ $) 99)) (-3007 (($) 90)) (-1704 (((-108) $ $) 39)) (-2108 (($ $ $ $) 74)) (-2619 (($ $) 113)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-710)) 112) (($ $) 110)) (-4043 (((-108) $ $) 120)) (-4019 (((-108) $ $) 121)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 119)) (-4007 (((-108) $ $) 122)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-2382 (((-589 |#2|) (-1083 |#1|) |#3|) 83)) (-2975 (((-589 (-2 (|:| |outval| |#2|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#2|))))) (-629 |#1|) |#3| (-1 (-394 (-1083 |#1|)) (-1083 |#1|))) 99)) (-1718 (((-1083 |#1|) (-629 |#1|)) 95))) +(((-496 |#1| |#2| |#3|) (-10 -7 (-15 -1718 ((-1083 |#1|) (-629 |#1|))) (-15 -2382 ((-589 |#2|) (-1083 |#1|) |#3|)) (-15 -2975 ((-589 (-2 (|:| |outval| |#2|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#2|))))) (-629 |#1|) |#3| (-1 (-394 (-1083 |#1|)) (-1083 |#1|))))) (-339) (-339) (-13 (-339) (-784))) (T -496)) +((-2975 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *6)) (-5 *5 (-1 (-394 (-1083 *6)) (-1083 *6))) (-4 *6 (-339)) (-5 *2 (-589 (-2 (|:| |outval| *7) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 *7)))))) (-5 *1 (-496 *6 *7 *4)) (-4 *7 (-339)) (-4 *4 (-13 (-339) (-784))))) (-2382 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *5)) (-4 *5 (-339)) (-5 *2 (-589 *6)) (-5 *1 (-496 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784))))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-339)) (-5 *2 (-1083 *4)) (-5 *1 (-496 *4 *5 *6)) (-4 *5 (-339)) (-4 *6 (-13 (-339) (-784)))))) +(-10 -7 (-15 -1718 ((-1083 |#1|) (-629 |#1|))) (-15 -2382 ((-589 |#2|) (-1083 |#1|) |#3|)) (-15 -2975 ((-589 (-2 (|:| |outval| |#2|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#2|))))) (-629 |#1|) |#3| (-1 (-394 (-1083 |#1|)) (-1083 |#1|))))) +((-1873 (((-779 (-523))) 11)) (-3659 (((-779 (-523))) 13)) (-3362 (((-772 (-523))) 8))) +(((-497) (-10 -7 (-15 -3362 ((-772 (-523)))) (-15 -1873 ((-779 (-523)))) (-15 -3659 ((-779 (-523)))))) (T -497)) +((-3659 (*1 *2) (-12 (-5 *2 (-779 (-523))) (-5 *1 (-497)))) (-1873 (*1 *2) (-12 (-5 *2 (-779 (-523))) (-5 *1 (-497)))) (-3362 (*1 *2) (-12 (-5 *2 (-772 (-523))) (-5 *1 (-497))))) +(-10 -7 (-15 -3362 ((-772 (-523)))) (-15 -1873 ((-779 (-523)))) (-15 -3659 ((-779 (-523))))) +((-3189 (((-499) (-1087)) 15)) (-3234 ((|#1| (-499)) 20))) +(((-498 |#1|) (-10 -7 (-15 -3189 ((-499) (-1087))) (-15 -3234 (|#1| (-499)))) (-1123)) (T -498)) +((-3234 (*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-498 *2)) (-4 *2 (-1123)))) (-3189 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-499)) (-5 *1 (-498 *4)) (-4 *4 (-1123))))) +(-10 -7 (-15 -3189 ((-499) (-1087))) (-15 -3234 (|#1| (-499)))) +((-1680 (((-108) $ $) NIL)) (-3252 (((-1070) $) 46)) (-2028 (((-108) $) 43)) (-2414 (((-1087) $) 44)) (-2629 (((-108) $) 41)) (-3279 (((-1070) $) 42)) (-2255 (((-108) $) NIL)) (-3820 (((-108) $) NIL)) (-2016 (((-108) $) NIL)) (-2032 (((-1070) $) NIL)) (-2851 (($ $ (-589 (-1087))) 20)) (-3234 (((-51) $) 22)) (-3690 (((-108) $) NIL)) (-2434 (((-523) $) NIL)) (-3951 (((-1034) $) NIL)) (-3155 (($ $ (-589 (-1087)) (-1087)) 58)) (-3779 (((-108) $) NIL)) (-4210 (((-203) $) NIL)) (-2279 (($ $) 38)) (-2685 (((-794) $) NIL)) (-2849 (((-108) $ $) NIL)) (-1937 (($ $ (-523)) NIL) (($ $ (-589 (-523))) NIL)) (-2489 (((-589 $) $) 28)) (-3835 (((-1087) (-589 $)) 47)) (-1400 (($ (-589 $)) 51) (($ (-1070)) NIL) (($ (-1087)) 18) (($ (-523)) 8) (($ (-203)) 25) (($ (-794)) NIL) (((-1020) $) 11) (($ (-1020)) 12)) (-4068 (((-1087) (-1087) (-589 $)) 50)) (-1691 (((-794) $) NIL)) (-2325 (($ $) 49)) (-2312 (($ $) 48)) (-2425 (($ $ (-589 $)) 55)) (-3187 (((-108) $) 27)) (-1879 (($) 9 T CONST)) (-1891 (($) 10 T CONST)) (-3941 (((-108) $ $) 59)) (-4074 (($ $ $) 64)) (-4045 (($ $ $) 60)) (** (($ $ (-710)) 63) (($ $ (-523)) 62)) (* (($ $ $) 61)) (-2810 (((-523) $) NIL))) +(((-499) (-13 (-1019 (-1070) (-1087) (-523) (-203) (-794)) (-564 (-1020)) (-10 -8 (-15 -3234 ((-51) $)) (-15 -1400 ($ (-1020))) (-15 -2425 ($ $ (-589 $))) (-15 -3155 ($ $ (-589 (-1087)) (-1087))) (-15 -2851 ($ $ (-589 (-1087)))) (-15 -4045 ($ $ $)) (-15 * ($ $ $)) (-15 -4074 ($ $ $)) (-15 ** ($ $ (-710))) (-15 ** ($ $ (-523))) (-15 0 ($) -2501) (-15 1 ($) -2501) (-15 -2279 ($ $)) (-15 -3252 ((-1070) $)) (-15 -3835 ((-1087) (-589 $))) (-15 -4068 ((-1087) (-1087) (-589 $)))))) (T -499)) +((-3234 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-499)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-499)))) (-2425 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-499))) (-5 *1 (-499)))) (-3155 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-1087)) (-5 *1 (-499)))) (-2851 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-499)))) (-4045 (*1 *1 *1 *1) (-5 *1 (-499))) (* (*1 *1 *1 *1) (-5 *1 (-499))) (-4074 (*1 *1 *1 *1) (-5 *1 (-499))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-499)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-499)))) (-1879 (*1 *1) (-5 *1 (-499))) (-1891 (*1 *1) (-5 *1 (-499))) (-2279 (*1 *1 *1) (-5 *1 (-499))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-499)))) (-3835 (*1 *2 *3) (-12 (-5 *3 (-589 (-499))) (-5 *2 (-1087)) (-5 *1 (-499)))) (-4068 (*1 *2 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-499))) (-5 *1 (-499))))) +(-13 (-1019 (-1070) (-1087) (-523) (-203) (-794)) (-564 (-1020)) (-10 -8 (-15 -3234 ((-51) $)) (-15 -1400 ($ (-1020))) (-15 -2425 ($ $ (-589 $))) (-15 -3155 ($ $ (-589 (-1087)) (-1087))) (-15 -2851 ($ $ (-589 (-1087)))) (-15 -4045 ($ $ $)) (-15 * ($ $ $)) (-15 -4074 ($ $ $)) (-15 ** ($ $ (-710))) (-15 ** ($ $ (-523))) (-15 (-1879) ($) -2501) (-15 (-1891) ($) -2501) (-15 -2279 ($ $)) (-15 -3252 ((-1070) $)) (-15 -3835 ((-1087) (-589 $))) (-15 -4068 ((-1087) (-1087) (-589 $))))) +((-1298 ((|#2| |#2|) 17)) (-2720 ((|#2| |#2|) 13)) (-3432 ((|#2| |#2| (-523) (-523)) 20)) (-2011 ((|#2| |#2|) 15))) +(((-500 |#1| |#2|) (-10 -7 (-15 -2720 (|#2| |#2|)) (-15 -2011 (|#2| |#2|)) (-15 -1298 (|#2| |#2|)) (-15 -3432 (|#2| |#2| (-523) (-523)))) (-13 (-515) (-136)) (-1160 |#1|)) (T -500)) +((-3432 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-523)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-500 *4 *2)) (-4 *2 (-1160 *4)))) (-1298 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) (-4 *2 (-1160 *3)))) (-2011 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) (-4 *2 (-1160 *3)))) (-2720 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) (-4 *2 (-1160 *3))))) +(-10 -7 (-15 -2720 (|#2| |#2|)) (-15 -2011 (|#2| |#2|)) (-15 -1298 (|#2| |#2|)) (-15 -3432 (|#2| |#2| (-523) (-523)))) +((-2538 (((-589 (-271 (-883 |#2|))) (-589 |#2|) (-589 (-1087))) 32)) (-3552 (((-589 |#2|) (-883 |#1|) |#3|) 53) (((-589 |#2|) (-1083 |#1|) |#3|) 52)) (-3003 (((-589 (-589 |#2|)) (-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)) |#3|) 87))) +(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -3552 ((-589 |#2|) (-1083 |#1|) |#3|)) (-15 -3552 ((-589 |#2|) (-883 |#1|) |#3|)) (-15 -3003 ((-589 (-589 |#2|)) (-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)) |#3|)) (-15 -2538 ((-589 (-271 (-883 |#2|))) (-589 |#2|) (-589 (-1087))))) (-427) (-339) (-13 (-339) (-784))) (T -501)) +((-2538 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-1087))) (-4 *6 (-339)) (-5 *2 (-589 (-271 (-883 *6)))) (-5 *1 (-501 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-13 (-339) (-784))))) (-3003 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-589 (-589 *7))) (-5 *1 (-501 *6 *7 *5)) (-4 *7 (-339)) (-4 *5 (-13 (-339) (-784))))) (-3552 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-4 *5 (-427)) (-5 *2 (-589 *6)) (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784))))) (-3552 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *5)) (-4 *5 (-427)) (-5 *2 (-589 *6)) (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784)))))) +(-10 -7 (-15 -3552 ((-589 |#2|) (-1083 |#1|) |#3|)) (-15 -3552 ((-589 |#2|) (-883 |#1|) |#3|)) (-15 -3003 ((-589 (-589 |#2|)) (-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)) |#3|)) (-15 -2538 ((-589 (-271 (-883 |#2|))) (-589 |#2|) (-589 (-1087))))) +((-1327 ((|#2| |#2| |#1|) 17)) (-1758 ((|#2| (-589 |#2|)) 27)) (-1785 ((|#2| (-589 |#2|)) 46))) +(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1758 (|#2| (-589 |#2|))) (-15 -1785 (|#2| (-589 |#2|))) (-15 -1327 (|#2| |#2| |#1|))) (-284) (-1145 |#1|) |#1| (-1 |#1| |#1| (-710))) (T -502)) +((-1327 (*1 *2 *2 *3) (-12 (-4 *3 (-284)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-710))) (-5 *1 (-502 *3 *2 *4 *5)) (-4 *2 (-1145 *3)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-502 *4 *2 *5 *6)) (-4 *4 (-284)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-710))))) (-1758 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-502 *4 *2 *5 *6)) (-4 *4 (-284)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-710)))))) +(-10 -7 (-15 -1758 (|#2| (-589 |#2|))) (-15 -1785 (|#2| (-589 |#2|))) (-15 -1327 (|#2| |#2| |#1|))) +((-2424 (((-394 (-1083 |#4|)) (-1083 |#4|) (-1 (-394 (-1083 |#3|)) (-1083 |#3|))) 79) (((-394 |#4|) |#4| (-1 (-394 (-1083 |#3|)) (-1083 |#3|))) 168))) +(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2424 ((-394 |#4|) |#4| (-1 (-394 (-1083 |#3|)) (-1083 |#3|)))) (-15 -2424 ((-394 (-1083 |#4|)) (-1083 |#4|) (-1 (-394 (-1083 |#3|)) (-1083 |#3|))))) (-786) (-732) (-13 (-284) (-136)) (-880 |#3| |#2| |#1|)) (T -503)) +((-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-284) (-136))) (-4 *5 (-786)) (-4 *6 (-732)) (-4 *8 (-880 *7 *6 *5)) (-5 *2 (-394 (-1083 *8))) (-5 *1 (-503 *5 *6 *7 *8)) (-5 *3 (-1083 *8)))) (-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-284) (-136))) (-4 *5 (-786)) (-4 *6 (-732)) (-5 *2 (-394 *3)) (-5 *1 (-503 *5 *6 *7 *3)) (-4 *3 (-880 *7 *6 *5))))) +(-10 -7 (-15 -2424 ((-394 |#4|) |#4| (-1 (-394 (-1083 |#3|)) (-1083 |#3|)))) (-15 -2424 ((-394 (-1083 |#4|)) (-1083 |#4|) (-1 (-394 (-1083 |#3|)) (-1083 |#3|))))) +((-1298 ((|#4| |#4|) 74)) (-2720 ((|#4| |#4|) 70)) (-3432 ((|#4| |#4| (-523) (-523)) 76)) (-2011 ((|#4| |#4|) 72))) +(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2720 (|#4| |#4|)) (-15 -2011 (|#4| |#4|)) (-15 -1298 (|#4| |#4|)) (-15 -3432 (|#4| |#4| (-523) (-523)))) (-13 (-339) (-344) (-564 (-523))) (-1145 |#1|) (-664 |#1| |#2|) (-1160 |#3|)) (T -504)) +((-3432 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-523)) (-4 *4 (-13 (-339) (-344) (-564 *3))) (-4 *5 (-1145 *4)) (-4 *6 (-664 *4 *5)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-1160 *6)))) (-1298 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1145 *3)) (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1160 *5)))) (-2011 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1145 *3)) (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1160 *5)))) (-2720 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1145 *3)) (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1160 *5))))) +(-10 -7 (-15 -2720 (|#4| |#4|)) (-15 -2011 (|#4| |#4|)) (-15 -1298 (|#4| |#4|)) (-15 -3432 (|#4| |#4| (-523) (-523)))) +((-1298 ((|#2| |#2|) 27)) (-2720 ((|#2| |#2|) 23)) (-3432 ((|#2| |#2| (-523) (-523)) 29)) (-2011 ((|#2| |#2|) 25))) +(((-505 |#1| |#2|) (-10 -7 (-15 -2720 (|#2| |#2|)) (-15 -2011 (|#2| |#2|)) (-15 -1298 (|#2| |#2|)) (-15 -3432 (|#2| |#2| (-523) (-523)))) (-13 (-339) (-344) (-564 (-523))) (-1160 |#1|)) (T -505)) +((-3432 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-523)) (-4 *4 (-13 (-339) (-344) (-564 *3))) (-5 *1 (-505 *4 *2)) (-4 *2 (-1160 *4)))) (-1298 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) (-4 *2 (-1160 *3)))) (-2011 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) (-4 *2 (-1160 *3)))) (-2720 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) (-4 *2 (-1160 *3))))) +(-10 -7 (-15 -2720 (|#2| |#2|)) (-15 -2011 (|#2| |#2|)) (-15 -1298 (|#2| |#2|)) (-15 -3432 (|#2| |#2| (-523) (-523)))) +((-1786 (((-3 (-523) "failed") |#2| |#1| (-1 (-3 (-523) "failed") |#1|)) 14) (((-3 (-523) "failed") |#2| |#1| (-523) (-1 (-3 (-523) "failed") |#1|)) 13) (((-3 (-523) "failed") |#2| (-523) (-1 (-3 (-523) "failed") |#1|)) 26))) +(((-506 |#1| |#2|) (-10 -7 (-15 -1786 ((-3 (-523) "failed") |#2| (-523) (-1 (-3 (-523) "failed") |#1|))) (-15 -1786 ((-3 (-523) "failed") |#2| |#1| (-523) (-1 (-3 (-523) "failed") |#1|))) (-15 -1786 ((-3 (-523) "failed") |#2| |#1| (-1 (-3 (-523) "failed") |#1|)))) (-973) (-1145 |#1|)) (T -506)) +((-1786 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-523) "failed") *4)) (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-506 *4 *3)) (-4 *3 (-1145 *4)))) (-1786 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-523) "failed") *4)) (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-506 *4 *3)) (-4 *3 (-1145 *4)))) (-1786 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-523) "failed") *5)) (-4 *5 (-973)) (-5 *2 (-523)) (-5 *1 (-506 *5 *3)) (-4 *3 (-1145 *5))))) +(-10 -7 (-15 -1786 ((-3 (-523) "failed") |#2| (-523) (-1 (-3 (-523) "failed") |#1|))) (-15 -1786 ((-3 (-523) "failed") |#2| |#1| (-523) (-1 (-3 (-523) "failed") |#1|))) (-15 -1786 ((-3 (-523) "failed") |#2| |#1| (-1 (-3 (-523) "failed") |#1|)))) +((-2755 (($ $ $) 79)) (-4226 (((-394 $) $) 47)) (-1220 (((-3 (-523) "failed") $) 59)) (-3508 (((-523) $) 37)) (-3317 (((-3 (-383 (-523)) "failed") $) 74)) (-3045 (((-108) $) 24)) (-1682 (((-383 (-523)) $) 72)) (-3049 (((-108) $) 50)) (-4024 (($ $ $ $) 86)) (-3712 (((-108) $) 16)) (-3325 (($ $ $) 57)) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 69)) (-2738 (((-3 $ "failed") $) 64)) (-2236 (($ $) 23)) (-4193 (($ $ $) 84)) (-2773 (($) 60)) (-3459 (($ $) 53)) (-2424 (((-394 $) $) 45)) (-3101 (((-108) $) 14)) (-3413 (((-710) $) 28)) (-3984 (($ $ (-710)) NIL) (($ $) 10)) (-1874 (($ $) 17)) (-1400 (((-523) $) NIL) (((-499) $) 36) (((-823 (-523)) $) 40) (((-355) $) 31) (((-203) $) 33)) (-3272 (((-710)) 8)) (-3512 (((-108) $ $) 20)) (-3435 (($ $ $) 55))) +(((-507 |#1|) (-10 -8 (-15 -4193 (|#1| |#1| |#1|)) (-15 -4024 (|#1| |#1| |#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -3317 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1682 ((-383 (-523)) |#1|)) (-15 -3045 ((-108) |#1|)) (-15 -2755 (|#1| |#1| |#1|)) (-15 -3512 ((-108) |#1| |#1|)) (-15 -3101 ((-108) |#1|)) (-15 -2773 (|#1|)) (-15 -2738 ((-3 |#1| "failed") |#1|)) (-15 -1400 ((-203) |#1|)) (-15 -1400 ((-355) |#1|)) (-15 -3325 (|#1| |#1| |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -3435 (|#1| |#1| |#1|)) (-15 -1524 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -1400 ((-823 (-523)) |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -1400 ((-523) |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -3712 ((-108) |#1|)) (-15 -3413 ((-710) |#1|)) (-15 -2424 ((-394 |#1|) |#1|)) (-15 -4226 ((-394 |#1|) |#1|)) (-15 -3049 ((-108) |#1|)) (-15 -3272 ((-710)))) (-508)) (T -507)) +((-3272 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-507 *3)) (-4 *3 (-508))))) +(-10 -8 (-15 -4193 (|#1| |#1| |#1|)) (-15 -4024 (|#1| |#1| |#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -3317 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1682 ((-383 (-523)) |#1|)) (-15 -3045 ((-108) |#1|)) (-15 -2755 (|#1| |#1| |#1|)) (-15 -3512 ((-108) |#1| |#1|)) (-15 -3101 ((-108) |#1|)) (-15 -2773 (|#1|)) (-15 -2738 ((-3 |#1| "failed") |#1|)) (-15 -1400 ((-203) |#1|)) (-15 -1400 ((-355) |#1|)) (-15 -3325 (|#1| |#1| |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -3435 (|#1| |#1| |#1|)) (-15 -1524 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -1400 ((-823 (-523)) |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -1400 ((-523) |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -3712 ((-108) |#1|)) (-15 -3413 ((-710) |#1|)) (-15 -2424 ((-394 |#1|) |#1|)) (-15 -4226 ((-394 |#1|) |#1|)) (-15 -3049 ((-108) |#1|)) (-15 -3272 ((-710)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-2755 (($ $ $) 85)) (-3405 (((-3 $ "failed") $ $) 19)) (-1368 (($ $ $ $) 73)) (-3718 (($ $) 51)) (-4226 (((-394 $) $) 52)) (-2787 (((-108) $ $) 125)) (-3482 (((-523) $) 114)) (-2156 (($ $ $) 88)) (-4189 (($) 17 T CONST)) (-1220 (((-3 (-523) "failed") $) 106)) (-3508 (((-523) $) 105)) (-4059 (($ $ $) 129)) (-2243 (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 104) (((-629 (-523)) (-629 $)) 103)) (-1444 (((-3 $ "failed") $) 34)) (-3317 (((-3 (-383 (-523)) "failed") $) 82)) (-3045 (((-108) $) 84)) (-1682 (((-383 (-523)) $) 83)) (-1631 (($) 81) (($ $) 80)) (-4032 (($ $ $) 128)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 123)) (-3049 (((-108) $) 53)) (-4024 (($ $ $ $) 71)) (-3501 (($ $ $) 86)) (-3712 (((-108) $) 116)) (-3325 (($ $ $) 97)) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 100)) (-2769 (((-108) $) 31)) (-3860 (((-108) $) 92)) (-2738 (((-3 $ "failed") $) 94)) (-2057 (((-108) $) 115)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 132)) (-3928 (($ $ $ $) 72)) (-3239 (($ $ $) 117)) (-3158 (($ $ $) 118)) (-2236 (($ $) 75)) (-2616 (($ $) 89)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-4193 (($ $ $) 70)) (-2773 (($) 93 T CONST)) (-3762 (($ $) 77)) (-3951 (((-1034) $) 10) (($ $) 79)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-3459 (($ $) 98)) (-2424 (((-394 $) $) 50)) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 130)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 124)) (-3101 (((-108) $) 91)) (-3413 (((-710) $) 126)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 127)) (-3984 (($ $ (-710)) 111) (($ $) 109)) (-1890 (($ $) 76)) (-1874 (($ $) 78)) (-1400 (((-523) $) 108) (((-499) $) 102) (((-823 (-523)) $) 101) (((-355) $) 96) (((-203) $) 95)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-523)) 107)) (-3272 (((-710)) 29)) (-3512 (((-108) $ $) 87)) (-3435 (($ $ $) 99)) (-1416 (($) 90)) (-2801 (((-108) $ $) 39)) (-2447 (($ $ $ $) 74)) (-2695 (($ $) 113)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-710)) 112) (($ $) 110)) (-4006 (((-108) $ $) 120)) (-3980 (((-108) $ $) 121)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 119)) (-3966 (((-108) $ $) 122)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-508) (-129)) (T -508)) -((-1557 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) (-3007 (*1 *1) (-4 *1 (-508))) (-2996 (*1 *1 *1) (-4 *1 (-508))) (-2041 (*1 *1 *1 *1) (-4 *1 (-508))) (-1981 (*1 *2 *1 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) (-1980 (*1 *1 *1 *1) (-4 *1 (-508))) (-2312 (*1 *1 *1 *1) (-4 *1 (-508))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-383 (-523))))) (-3346 (*1 *2 *1) (|partial| -12 (-4 *1 (-508)) (-5 *2 (-383 (-523))))) (-4032 (*1 *1) (-4 *1 (-508))) (-4032 (*1 *1 *1) (-4 *1 (-508))) (-2783 (*1 *1 *1) (-4 *1 (-508))) (-1664 (*1 *1 *1) (-4 *1 (-508))) (-3201 (*1 *1 *1) (-4 *1 (-508))) (-2029 (*1 *1 *1) (-4 *1 (-508))) (-1647 (*1 *1 *1) (-4 *1 (-508))) (-2108 (*1 *1 *1 *1 *1) (-4 *1 (-508))) (-1808 (*1 *1 *1 *1 *1) (-4 *1 (-508))) (-4183 (*1 *1 *1 *1 *1) (-4 *1 (-508))) (-2819 (*1 *1 *1 *1 *1) (-4 *1 (-508))) (-3305 (*1 *1 *1 *1) (-4 *1 (-508)))) -(-13 (-1126) (-284) (-759) (-211) (-564 (-523)) (-964 (-523)) (-585 (-523)) (-564 (-499)) (-564 (-823 (-523))) (-817 (-523)) (-132) (-949) (-136) (-1063) (-10 -8 (-15 -1557 ((-108) $)) (-15 -4104 ((-108) $)) (-6 -4243) (-15 -3007 ($)) (-15 -2996 ($ $)) (-15 -2041 ($ $ $)) (-15 -1981 ((-108) $ $)) (-15 -1980 ($ $ $)) (-15 -2312 ($ $ $)) (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $)) (-15 -4032 ($)) (-15 -4032 ($ $)) (-15 -2783 ($ $)) (-15 -1664 ($ $)) (-15 -3201 ($ $)) (-15 -2029 ($ $)) (-15 -1647 ($ $)) (-15 -2108 ($ $ $ $)) (-15 -1808 ($ $ $ $)) (-15 -4183 ($ $ $ $)) (-15 -2819 ($ $ $ $)) (-15 -3305 ($ $ $)) (-6 -4242))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-132) . T) ((-158) . T) ((-564 (-203)) . T) ((-564 (-355)) . T) ((-564 (-499)) . T) ((-564 (-523)) . T) ((-564 (-823 (-523))) . T) ((-211) . T) ((-267) . T) ((-284) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-585 (-523)) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-759) . T) ((-784) . T) ((-786) . T) ((-817 (-523)) . T) ((-851) . T) ((-949) . T) ((-964 (-523)) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) . T) ((-1126) . T)) -((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#2| $ |#1| |#2|) NIL)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) NIL)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1330 (((-589 |#1|) $) NIL)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2412 (((-589 |#1|) $) NIL)) (-4135 (((-108) |#1| $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-509 |#1| |#2| |#3|) (-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) (-1016) (-1016) (-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244)))) (T -509)) -NIL -(-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) -((-3778 (((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))) 49))) -(((-510 |#1| |#2|) (-10 -7 (-15 -3778 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))))) (-13 (-786) (-515)) (-13 (-27) (-406 |#1|))) (T -510)) -((-3778 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-562 *3)) (-5 *5 (-1 (-1083 *3) (-1083 *3))) (-4 *3 (-13 (-27) (-406 *6))) (-4 *6 (-13 (-786) (-515))) (-5 *2 (-540 *3)) (-5 *1 (-510 *6 *3))))) -(-10 -7 (-15 -3778 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))))) -((-3167 (((-540 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-3835 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-2712 (((-540 |#5|) |#5| (-1 |#3| |#3|)) 198))) -(((-511 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2712 ((-540 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3167 ((-540 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3835 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-786) (-515) (-964 (-523))) (-13 (-27) (-406 |#1|)) (-1144 |#2|) (-1144 (-383 |#3|)) (-318 |#2| |#3| |#4|)) (T -511)) -((-3835 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-27) (-406 *4))) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-4 *7 (-1144 (-383 *6))) (-5 *1 (-511 *4 *5 *6 *7 *2)) (-4 *2 (-318 *5 *6 *7)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-13 (-27) (-406 *5))) (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-4 *8 (-1144 (-383 *7))) (-5 *2 (-540 *3)) (-5 *1 (-511 *5 *6 *7 *8 *3)) (-4 *3 (-318 *6 *7 *8)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-13 (-27) (-406 *5))) (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-4 *8 (-1144 (-383 *7))) (-5 *2 (-540 *3)) (-5 *1 (-511 *5 *6 *7 *8 *3)) (-4 *3 (-318 *6 *7 *8))))) -(-10 -7 (-15 -2712 ((-540 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3167 ((-540 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3835 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-1846 (((-108) (-523) (-523)) 10)) (-2305 (((-523) (-523)) 7)) (-1516 (((-523) (-523) (-523)) 8))) -(((-512) (-10 -7 (-15 -2305 ((-523) (-523))) (-15 -1516 ((-523) (-523) (-523))) (-15 -1846 ((-108) (-523) (-523))))) (T -512)) -((-1846 (*1 *2 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-108)) (-5 *1 (-512)))) (-1516 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-512)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-512))))) -(-10 -7 (-15 -2305 ((-523) (-523))) (-15 -1516 ((-523) (-523) (-523))) (-15 -1846 ((-108) (-523) (-523)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3919 ((|#1| $) 61)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-1769 (($ $) 91)) (-3780 (($ $) 74)) (-3596 ((|#1| $) 62)) (-3212 (((-3 $ "failed") $ $) 19)) (-1832 (($ $) 73)) (-1744 (($ $) 90)) (-3711 (($ $) 75)) (-1793 (($ $) 89)) (-3805 (($ $) 76)) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 69)) (-3474 (((-523) $) 68)) (-2121 (((-3 $ "failed") $) 34)) (-2194 (($ |#1| |#1|) 66)) (-2604 (((-108) $) 60)) (-2820 (($) 101)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 72)) (-4114 (((-108) $) 59)) (-2454 (($ $ $) 107)) (-2062 (($ $ $) 106)) (-2384 (($ $) 98)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2081 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-383 (-523))) 64)) (-2774 ((|#1| $) 63)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-3746 (((-3 $ "failed") $ $) 42)) (-1811 (($ $) 99)) (-1805 (($ $) 88)) (-3816 (($ $) 77)) (-1782 (($ $) 87)) (-3793 (($ $) 78)) (-1757 (($ $) 86)) (-3767 (($ $) 79)) (-2442 (((-108) $ |#1|) 58)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-523)) 70)) (-1621 (((-710)) 29)) (-1839 (($ $) 97)) (-3847 (($ $) 85)) (-1704 (((-108) $ $) 39)) (-1818 (($ $) 96)) (-3828 (($ $) 84)) (-1865 (($ $) 95)) (-1719 (($ $) 83)) (-2914 (($ $) 94)) (-1731 (($ $) 82)) (-1852 (($ $) 93)) (-3859 (($ $) 81)) (-1830 (($ $) 92)) (-3838 (($ $) 80)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 104)) (-4019 (((-108) $ $) 103)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 105)) (-4007 (((-108) $ $) 102)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ $) 100) (($ $ (-383 (-523))) 71)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) -(((-513 |#1|) (-129) (-13 (-380) (-1108))) (T -513)) -((-2081 (*1 *1 *2 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) (-2194 (*1 *1 *2 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) (-2081 (*1 *1 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) (-2081 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))) (-5 *2 (-108)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))) (-5 *2 (-108)))) (-2442 (*1 *2 *1 *3) (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))) (-5 *2 (-108))))) -(-13 (-427) (-786) (-1108) (-930) (-964 (-523)) (-10 -8 (-6 -2562) (-15 -2081 ($ |t#1| |t#1|)) (-15 -2194 ($ |t#1| |t#1|)) (-15 -2081 ($ |t#1|)) (-15 -2081 ($ (-383 (-523)))) (-15 -2774 (|t#1| $)) (-15 -3596 (|t#1| $)) (-15 -3919 (|t#1| $)) (-15 -2604 ((-108) $)) (-15 -4114 ((-108) $)) (-15 -2442 ((-108) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-261) . T) ((-267) . T) ((-427) . T) ((-464) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-786) . T) ((-930) . T) ((-964 (-523)) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1108) . T) ((-1111) . T)) -((-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 9)) (-3345 (($ $) 11)) (-3331 (((-108) $) 18)) (-2121 (((-3 $ "failed") $) 16)) (-1704 (((-108) $ $) 20))) -(((-514 |#1|) (-10 -8 (-15 -3331 ((-108) |#1|)) (-15 -1704 ((-108) |#1| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -1669 ((-2 (|:| -3819 |#1|) (|:| -4231 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|))) (-515)) (T -514)) -NIL -(-10 -8 (-15 -3331 ((-108) |#1|)) (-15 -1704 ((-108) |#1| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -1669 ((-2 (|:| -3819 |#1|) (|:| -4231 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ $) 42)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-3860 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) (-1416 (*1 *1) (-4 *1 (-508))) (-2616 (*1 *1 *1) (-4 *1 (-508))) (-2156 (*1 *1 *1 *1) (-4 *1 (-508))) (-3512 (*1 *2 *1 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) (-3501 (*1 *1 *1 *1) (-4 *1 (-508))) (-2755 (*1 *1 *1 *1) (-4 *1 (-508))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) (-1682 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-383 (-523))))) (-3317 (*1 *2 *1) (|partial| -12 (-4 *1 (-508)) (-5 *2 (-383 (-523))))) (-1631 (*1 *1) (-4 *1 (-508))) (-1631 (*1 *1 *1) (-4 *1 (-508))) (-3951 (*1 *1 *1) (-4 *1 (-508))) (-1874 (*1 *1 *1) (-4 *1 (-508))) (-3762 (*1 *1 *1) (-4 *1 (-508))) (-1890 (*1 *1 *1) (-4 *1 (-508))) (-2236 (*1 *1 *1) (-4 *1 (-508))) (-2447 (*1 *1 *1 *1 *1) (-4 *1 (-508))) (-1368 (*1 *1 *1 *1 *1) (-4 *1 (-508))) (-3928 (*1 *1 *1 *1 *1) (-4 *1 (-508))) (-4024 (*1 *1 *1 *1 *1) (-4 *1 (-508))) (-4193 (*1 *1 *1 *1) (-4 *1 (-508)))) +(-13 (-1127) (-284) (-759) (-211) (-564 (-523)) (-964 (-523)) (-585 (-523)) (-564 (-499)) (-564 (-823 (-523))) (-817 (-523)) (-132) (-949) (-136) (-1063) (-10 -8 (-15 -3860 ((-108) $)) (-15 -3101 ((-108) $)) (-6 -4247) (-15 -1416 ($)) (-15 -2616 ($ $)) (-15 -2156 ($ $ $)) (-15 -3512 ((-108) $ $)) (-15 -3501 ($ $ $)) (-15 -2755 ($ $ $)) (-15 -3045 ((-108) $)) (-15 -1682 ((-383 (-523)) $)) (-15 -3317 ((-3 (-383 (-523)) "failed") $)) (-15 -1631 ($)) (-15 -1631 ($ $)) (-15 -3951 ($ $)) (-15 -1874 ($ $)) (-15 -3762 ($ $)) (-15 -1890 ($ $)) (-15 -2236 ($ $)) (-15 -2447 ($ $ $ $)) (-15 -1368 ($ $ $ $)) (-15 -3928 ($ $ $ $)) (-15 -4024 ($ $ $ $)) (-15 -4193 ($ $ $)) (-6 -4246))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-132) . T) ((-158) . T) ((-564 (-203)) . T) ((-564 (-355)) . T) ((-564 (-499)) . T) ((-564 (-523)) . T) ((-564 (-823 (-523))) . T) ((-211) . T) ((-267) . T) ((-284) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-585 (-523)) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-759) . T) ((-784) . T) ((-786) . T) ((-817 (-523)) . T) ((-851) . T) ((-949) . T) ((-964 (-523)) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) . T) ((-1127) . T)) +((-1680 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3723 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-4191 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#2| $ |#1| |#2|) NIL)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-4216 (((-3 |#2| "failed") |#1| $) NIL)) (-4189 (($) NIL T CONST)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-3286 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-3 |#2| "failed") |#1| $) NIL)) (-2514 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#2| $ |#1|) NIL)) (-1871 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 ((|#1| $) NIL (|has| |#1| (-786)))) (-1584 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-2567 ((|#1| $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4249))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1255 (((-589 |#1|) $) NIL)) (-1862 (((-108) |#1| $) NIL)) (-1293 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3108 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-2536 (((-589 |#1|) $) NIL)) (-2254 (((-108) |#1| $) NIL)) (-3951 (((-1034) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2428 ((|#2| $) NIL (|has| |#1| (-786)))) (-2509 (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL)) (-4141 (($ $ |#2|) NIL (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3973 (((-589 |#2|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2963 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-1691 (((-794) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2417 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-509 |#1| |#2| |#3|) (-13 (-1100 |#1| |#2|) (-10 -7 (-6 -4248))) (-1016) (-1016) (-13 (-1100 |#1| |#2|) (-10 -7 (-6 -4248)))) (T -509)) +NIL +(-13 (-1100 |#1| |#2|) (-10 -7 (-6 -4248))) +((-2023 (((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))) 49))) +(((-510 |#1| |#2|) (-10 -7 (-15 -2023 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))))) (-13 (-786) (-515)) (-13 (-27) (-406 |#1|))) (T -510)) +((-2023 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-562 *3)) (-5 *5 (-1 (-1083 *3) (-1083 *3))) (-4 *3 (-13 (-27) (-406 *6))) (-4 *6 (-13 (-786) (-515))) (-5 *2 (-540 *3)) (-5 *1 (-510 *6 *3))))) +(-10 -7 (-15 -2023 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))))) +((-1224 (((-540 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-2491 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-2380 (((-540 |#5|) |#5| (-1 |#3| |#3|)) 198))) +(((-511 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2380 ((-540 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1224 ((-540 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2491 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-786) (-515) (-964 (-523))) (-13 (-27) (-406 |#1|)) (-1145 |#2|) (-1145 (-383 |#3|)) (-318 |#2| |#3| |#4|)) (T -511)) +((-2491 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-27) (-406 *4))) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-4 *7 (-1145 (-383 *6))) (-5 *1 (-511 *4 *5 *6 *7 *2)) (-4 *2 (-318 *5 *6 *7)))) (-1224 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1145 *6)) (-4 *6 (-13 (-27) (-406 *5))) (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-4 *8 (-1145 (-383 *7))) (-5 *2 (-540 *3)) (-5 *1 (-511 *5 *6 *7 *8 *3)) (-4 *3 (-318 *6 *7 *8)))) (-2380 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1145 *6)) (-4 *6 (-13 (-27) (-406 *5))) (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-4 *8 (-1145 (-383 *7))) (-5 *2 (-540 *3)) (-5 *1 (-511 *5 *6 *7 *8 *3)) (-4 *3 (-318 *6 *7 *8))))) +(-10 -7 (-15 -2380 ((-540 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1224 ((-540 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2491 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-1676 (((-108) (-523) (-523)) 10)) (-2688 (((-523) (-523)) 7)) (-1726 (((-523) (-523) (-523)) 8))) +(((-512) (-10 -7 (-15 -2688 ((-523) (-523))) (-15 -1726 ((-523) (-523) (-523))) (-15 -1676 ((-108) (-523) (-523))))) (T -512)) +((-1676 (*1 *2 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-108)) (-5 *1 (-512)))) (-1726 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-512)))) (-2688 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-512))))) +(-10 -7 (-15 -2688 ((-523) (-523))) (-15 -1726 ((-523) (-523) (-523))) (-15 -1676 ((-108) (-523) (-523)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2872 ((|#1| $) 61)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-1462 (($ $) 91)) (-1285 (($ $) 74)) (-4016 ((|#1| $) 62)) (-3405 (((-3 $ "failed") $ $) 19)) (-2437 (($ $) 73)) (-1441 (($ $) 90)) (-1260 (($ $) 75)) (-1481 (($ $) 89)) (-1309 (($ $) 76)) (-4189 (($) 17 T CONST)) (-1220 (((-3 (-523) "failed") $) 69)) (-3508 (((-523) $) 68)) (-1444 (((-3 $ "failed") $) 34)) (-3955 (($ |#1| |#1|) 66)) (-3712 (((-108) $) 60)) (-3352 (($) 101)) (-2769 (((-108) $) 31)) (-1973 (($ $ (-523)) 72)) (-2057 (((-108) $) 59)) (-3239 (($ $ $) 107)) (-3158 (($ $ $) 106)) (-2313 (($ $) 98)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-2153 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-383 (-523))) 64)) (-1830 ((|#1| $) 63)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-4007 (((-3 $ "failed") $ $) 42)) (-2922 (($ $) 99)) (-2306 (($ $) 88)) (-1322 (($ $) 77)) (-1471 (($ $) 87)) (-1295 (($ $) 78)) (-1453 (($ $) 86)) (-1274 (($ $) 79)) (-1660 (((-108) $ |#1|) 58)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-523)) 70)) (-3272 (((-710)) 29)) (-2341 (($ $) 97)) (-1401 (($ $) 85)) (-2801 (((-108) $ $) 39)) (-2318 (($ $) 96)) (-1334 (($ $) 84)) (-2366 (($ $) 95)) (-1421 (($ $) 83)) (-2102 (($ $) 94)) (-1431 (($ $) 82)) (-2353 (($ $) 93)) (-1413 (($ $) 81)) (-2330 (($ $) 92)) (-1346 (($ $) 80)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-4006 (((-108) $ $) 104)) (-3980 (((-108) $ $) 103)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 105)) (-3966 (((-108) $ $) 102)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ $) 100) (($ $ (-383 (-523))) 71)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-513 |#1|) (-129) (-13 (-380) (-1109))) (T -513)) +((-2153 (*1 *1 *2 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1109))))) (-3955 (*1 *1 *2 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1109))))) (-2153 (*1 *1 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1109))))) (-2153 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1109))))) (-1830 (*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1109))))) (-4016 (*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1109))))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1109))))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1109))) (-5 *2 (-108)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1109))) (-5 *2 (-108)))) (-1660 (*1 *2 *1 *3) (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1109))) (-5 *2 (-108))))) +(-13 (-427) (-786) (-1109) (-930) (-964 (-523)) (-10 -8 (-6 -4108) (-15 -2153 ($ |t#1| |t#1|)) (-15 -3955 ($ |t#1| |t#1|)) (-15 -2153 ($ |t#1|)) (-15 -2153 ($ (-383 (-523)))) (-15 -1830 (|t#1| $)) (-15 -4016 (|t#1| $)) (-15 -2872 (|t#1| $)) (-15 -3712 ((-108) $)) (-15 -2057 ((-108) $)) (-15 -1660 ((-108) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-261) . T) ((-267) . T) ((-427) . T) ((-464) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-786) . T) ((-930) . T) ((-964 (-523)) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1109) . T) ((-1112) . T)) +((-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 9)) (-3306 (($ $) 11)) (-3174 (((-108) $) 18)) (-1444 (((-3 $ "failed") $) 16)) (-2801 (((-108) $ $) 20))) +(((-514 |#1|) (-10 -8 (-15 -3174 ((-108) |#1|)) (-15 -2801 ((-108) |#1| |#1|)) (-15 -3306 (|#1| |#1|)) (-15 -2545 ((-2 (|:| -2345 |#1|) (|:| -4235 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1444 ((-3 |#1| "failed") |#1|))) (-515)) (T -514)) +NIL +(-10 -8 (-15 -3174 ((-108) |#1|)) (-15 -2801 ((-108) |#1| |#1|)) (-15 -3306 (|#1| |#1|)) (-15 -2545 ((-2 (|:| -2345 |#1|) (|:| -4235 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1444 ((-3 |#1| "failed") |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-4007 (((-3 $ "failed") $ $) 42)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-515) (-129)) (T -515)) -((-3746 (*1 *1 *1 *1) (|partial| -4 *1 (-515))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3819 *1) (|:| -4231 *1) (|:| |associate| *1))) (-4 *1 (-515)))) (-3345 (*1 *1 *1) (-4 *1 (-515))) (-1704 (*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-108)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-108))))) -(-13 (-158) (-37 $) (-267) (-10 -8 (-15 -3746 ((-3 $ "failed") $ $)) (-15 -1669 ((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $)) (-15 -3345 ($ $)) (-15 -1704 ((-108) $ $)) (-15 -3331 ((-108) $)))) +((-4007 (*1 *1 *1 *1) (|partial| -4 *1 (-515))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2345 *1) (|:| -4235 *1) (|:| |associate| *1))) (-4 *1 (-515)))) (-3306 (*1 *1 *1) (-4 *1 (-515))) (-2801 (*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-108)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-108))))) +(-13 (-158) (-37 $) (-267) (-10 -8 (-15 -4007 ((-3 $ "failed") $ $)) (-15 -2545 ((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $)) (-15 -3306 ($ $)) (-15 -2801 ((-108) $ $)) (-15 -3174 ((-108) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-2230 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1087) (-589 |#2|)) 35)) (-3009 (((-540 |#2|) |#2| (-1087)) 58)) (-1968 (((-3 |#2| "failed") |#2| (-1087)) 149)) (-3587 (((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) (-562 |#2|) (-589 (-562 |#2|))) 152)) (-1366 (((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) |#2|) 38))) -(((-516 |#1| |#2|) (-10 -7 (-15 -1366 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) |#2|)) (-15 -2230 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1087) (-589 |#2|))) (-15 -1968 ((-3 |#2| "failed") |#2| (-1087))) (-15 -3009 ((-540 |#2|) |#2| (-1087))) (-15 -3587 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) (-562 |#2|) (-589 (-562 |#2|))))) (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -516)) -((-3587 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1087)) (-5 *6 (-589 (-562 *3))) (-5 *5 (-562 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *7))) (-4 *7 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) (-5 *1 (-516 *7 *3)))) (-3009 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-516 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-1968 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *1 (-516 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) (-2230 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-516 *6 *3)))) (-1366 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) (-5 *1 (-516 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) -(-10 -7 (-15 -1366 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) |#2|)) (-15 -2230 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1087) (-589 |#2|))) (-15 -1968 ((-3 |#2| "failed") |#2| (-1087))) (-15 -3009 ((-540 |#2|) |#2| (-1087))) (-15 -3587 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) (-562 |#2|) (-589 (-562 |#2|))))) -((-3614 (((-394 |#1|) |#1|) 18)) (-1820 (((-394 |#1|) |#1|) 33)) (-3466 (((-3 |#1| "failed") |#1|) 44)) (-2006 (((-394 |#1|) |#1|) 51))) -(((-517 |#1|) (-10 -7 (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2006 ((-394 |#1|) |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|))) (-508)) (T -517)) -((-3466 (*1 *2 *2) (|partial| -12 (-5 *1 (-517 *2)) (-4 *2 (-508)))) (-2006 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508)))) (-3614 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508)))) (-1820 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508))))) -(-10 -7 (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2006 ((-394 |#1|) |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|))) -((-3889 (($) 9)) (-4215 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 29)) (-1330 (((-589 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $) 26)) (-3450 (($ (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2969 (($ (-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-2433 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 33)) (-1264 (((-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-3809 (((-1173)) 12))) -(((-518) (-10 -8 (-15 -3889 ($)) (-15 -3809 ((-1173))) (-15 -1330 ((-589 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $)) (-15 -2969 ($ (-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3450 ($ (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4215 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1264 ((-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2433 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (T -518)) -((-2433 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-518)))) (-1264 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-518)))) (-4215 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-518)))) (-3450 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-518)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-518)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-5 *1 (-518)))) (-3809 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-518)))) (-3889 (*1 *1) (-5 *1 (-518)))) -(-10 -8 (-15 -3889 ($)) (-15 -3809 ((-1173))) (-15 -1330 ((-589 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $)) (-15 -2969 ($ (-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3450 ($ (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4215 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1264 ((-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2433 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) -((-1786 (((-1083 (-383 (-1083 |#2|))) |#2| (-562 |#2|) (-562 |#2|) (-1083 |#2|)) 28)) (-3580 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) |#2| (-1083 |#2|)) 106)) (-1858 (((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))) 78) (((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|)) 50)) (-2742 (((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| (-562 |#2|) |#2| (-383 (-1083 |#2|))) 85) (((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| |#2| (-1083 |#2|)) 105)) (-1954 (((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) (-562 |#2|) |#2| (-383 (-1083 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) |#2| (-1083 |#2|)) 107)) (-3944 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))) 124 (|has| |#3| (-599 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|)) 123 (|has| |#3| (-599 |#2|)))) (-1945 ((|#2| (-1083 (-383 (-1083 |#2|))) (-562 |#2|) |#2|) 48)) (-2428 (((-1083 (-383 (-1083 |#2|))) (-1083 |#2|) (-562 |#2|)) 27))) -(((-519 |#1| |#2| |#3|) (-10 -7 (-15 -1858 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|))) (-15 -1858 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -2742 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| |#2| (-1083 |#2|))) (-15 -2742 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -3580 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) |#2| (-1083 |#2|))) (-15 -3580 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -1954 ((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) |#2| (-1083 |#2|))) (-15 -1954 ((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -1786 ((-1083 (-383 (-1083 |#2|))) |#2| (-562 |#2|) (-562 |#2|) (-1083 |#2|))) (-15 -1945 (|#2| (-1083 (-383 (-1083 |#2|))) (-562 |#2|) |#2|)) (-15 -2428 ((-1083 (-383 (-1083 |#2|))) (-1083 |#2|) (-562 |#2|))) (IF (|has| |#3| (-599 |#2|)) (PROGN (-15 -3944 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|))) (-15 -3944 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))))) |%noBranch|)) (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523))) (-13 (-406 |#1|) (-27) (-1108)) (-1016)) (T -519)) -((-3944 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-562 *4)) (-5 *6 (-383 (-1083 *4))) (-4 *4 (-13 (-406 *7) (-27) (-1108))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016)))) (-3944 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-562 *4)) (-5 *6 (-1083 *4)) (-4 *4 (-13 (-406 *7) (-27) (-1108))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016)))) (-2428 (*1 *2 *3 *4) (-12 (-5 *4 (-562 *6)) (-4 *6 (-13 (-406 *5) (-27) (-1108))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-1083 (-383 (-1083 *6)))) (-5 *1 (-519 *5 *6 *7)) (-5 *3 (-1083 *6)) (-4 *7 (-1016)))) (-1945 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1083 (-383 (-1083 *2)))) (-5 *4 (-562 *2)) (-4 *2 (-13 (-406 *5) (-27) (-1108))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1016)))) (-1786 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-1083 (-383 (-1083 *3)))) (-5 *1 (-519 *6 *3 *7)) (-5 *5 (-1083 *3)) (-4 *7 (-1016)))) (-1954 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-562 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) (-5 *5 (-383 (-1083 *2))) (-4 *2 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *1 (-519 *6 *2 *7)) (-4 *7 (-1016)))) (-1954 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-562 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) (-5 *5 (-1083 *2)) (-4 *2 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *1 (-519 *6 *2 *7)) (-4 *7 (-1016)))) (-3580 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) (-5 *6 (-383 (-1083 *3))) (-4 *3 (-13 (-406 *7) (-27) (-1108))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *7 *3 *8)) (-4 *8 (-1016)))) (-3580 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) (-5 *6 (-1083 *3)) (-4 *3 (-13 (-406 *7) (-27) (-1108))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *7 *3 *8)) (-4 *8 (-1016)))) (-2742 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-383 (-1083 *3))) (-4 *3 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) (-2742 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-1083 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) (-1858 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-562 *3)) (-5 *5 (-383 (-1083 *3))) (-4 *3 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) (-1858 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-562 *3)) (-5 *5 (-1083 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016))))) -(-10 -7 (-15 -1858 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|))) (-15 -1858 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -2742 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| |#2| (-1083 |#2|))) (-15 -2742 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -3580 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) |#2| (-1083 |#2|))) (-15 -3580 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -1954 ((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) |#2| (-1083 |#2|))) (-15 -1954 ((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -1786 ((-1083 (-383 (-1083 |#2|))) |#2| (-562 |#2|) (-562 |#2|) (-1083 |#2|))) (-15 -1945 (|#2| (-1083 (-383 (-1083 |#2|))) (-562 |#2|) |#2|)) (-15 -2428 ((-1083 (-383 (-1083 |#2|))) (-1083 |#2|) (-562 |#2|))) (IF (|has| |#3| (-599 |#2|)) (PROGN (-15 -3944 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|))) (-15 -3944 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))))) |%noBranch|)) -((-3721 (((-523) (-523) (-710)) 66)) (-3971 (((-523) (-523)) 65)) (-2335 (((-523) (-523)) 64)) (-3546 (((-523) (-523)) 69)) (-1220 (((-523) (-523) (-523)) 49)) (-2678 (((-523) (-523) (-523)) 46)) (-2002 (((-383 (-523)) (-523)) 20)) (-1212 (((-523) (-523)) 21)) (-2642 (((-523) (-523)) 58)) (-1712 (((-523) (-523)) 32)) (-2812 (((-589 (-523)) (-523)) 63)) (-3169 (((-523) (-523) (-523) (-523) (-523)) 44)) (-3490 (((-383 (-523)) (-523)) 41))) -(((-520) (-10 -7 (-15 -3490 ((-383 (-523)) (-523))) (-15 -3169 ((-523) (-523) (-523) (-523) (-523))) (-15 -2812 ((-589 (-523)) (-523))) (-15 -1712 ((-523) (-523))) (-15 -2642 ((-523) (-523))) (-15 -1212 ((-523) (-523))) (-15 -2002 ((-383 (-523)) (-523))) (-15 -2678 ((-523) (-523) (-523))) (-15 -1220 ((-523) (-523) (-523))) (-15 -3546 ((-523) (-523))) (-15 -2335 ((-523) (-523))) (-15 -3971 ((-523) (-523))) (-15 -3721 ((-523) (-523) (-710))))) (T -520)) -((-3721 (*1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-710)) (-5 *1 (-520)))) (-3971 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-3546 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-1220 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2678 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2002 (*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-520)) (-5 *3 (-523)))) (-1212 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2642 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-1712 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2812 (*1 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-520)) (-5 *3 (-523)))) (-3169 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-3490 (*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-520)) (-5 *3 (-523))))) -(-10 -7 (-15 -3490 ((-383 (-523)) (-523))) (-15 -3169 ((-523) (-523) (-523) (-523) (-523))) (-15 -2812 ((-589 (-523)) (-523))) (-15 -1712 ((-523) (-523))) (-15 -2642 ((-523) (-523))) (-15 -1212 ((-523) (-523))) (-15 -2002 ((-383 (-523)) (-523))) (-15 -2678 ((-523) (-523) (-523))) (-15 -1220 ((-523) (-523) (-523))) (-15 -3546 ((-523) (-523))) (-15 -2335 ((-523) (-523))) (-15 -3971 ((-523) (-523))) (-15 -3721 ((-523) (-523) (-710)))) -((-1762 (((-2 (|:| |answer| |#4|) (|:| -2124 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1762 ((-2 (|:| |answer| |#4|) (|:| -2124 |#4|)) |#4| (-1 |#2| |#2|)))) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -521)) -((-1762 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-4 *7 (-1144 (-383 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2124 *3))) (-5 *1 (-521 *5 *6 *7 *3)) (-4 *3 (-318 *5 *6 *7))))) -(-10 -7 (-15 -1762 ((-2 (|:| |answer| |#4|) (|:| -2124 |#4|)) |#4| (-1 |#2| |#2|)))) -((-1762 (((-2 (|:| |answer| (-383 |#2|)) (|:| -2124 (-383 |#2|)) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|)) 18))) -(((-522 |#1| |#2|) (-10 -7 (-15 -1762 ((-2 (|:| |answer| (-383 |#2|)) (|:| -2124 (-383 |#2|)) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|)))) (-339) (-1144 |#1|)) (T -522)) -((-1762 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |answer| (-383 *6)) (|:| -2124 (-383 *6)) (|:| |specpart| (-383 *6)) (|:| |polypart| *6))) (-5 *1 (-522 *5 *6)) (-5 *3 (-383 *6))))) -(-10 -7 (-15 -1762 ((-2 (|:| |answer| (-383 |#2|)) (|:| -2124 (-383 |#2|)) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 25)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 86)) (-3345 (($ $) 87)) (-3331 (((-108) $) NIL)) (-2312 (($ $ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1808 (($ $ $ $) 42)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL)) (-2041 (($ $ $) 80)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL)) (-3474 (((-523) $) NIL)) (-3796 (($ $ $) 79)) (-2381 (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 60) (((-629 (-523)) (-629 $)) 57)) (-2121 (((-3 $ "failed") $) 83)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL)) (-1292 (((-108) $) NIL)) (-2146 (((-383 (-523)) $) NIL)) (-4032 (($) 62) (($ $) 63)) (-3769 (($ $ $) 78)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2819 (($ $ $ $) NIL)) (-1980 (($ $ $) 54)) (-2604 (((-108) $) NIL)) (-3654 (($ $ $) NIL)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL)) (-2023 (((-108) $) 26)) (-1557 (((-108) $) 73)) (-4058 (((-3 $ "failed") $) NIL)) (-4114 (((-108) $) 34)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4183 (($ $ $ $) 43)) (-2454 (($ $ $) 75)) (-2062 (($ $ $) 74)) (-1647 (($ $) NIL)) (-2996 (($ $) 40)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) 53)) (-3305 (($ $ $) NIL)) (-2262 (($) NIL T CONST)) (-3201 (($ $) 31)) (-2783 (((-1034) $) NIL) (($ $) 33)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 117)) (-3278 (($ $ $) 84) (($ (-589 $)) NIL)) (-3217 (($ $) NIL)) (-1820 (((-394 $) $) 103)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3746 (((-3 $ "failed") $ $) 82)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4104 (((-108) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 77)) (-3523 (($ $ (-710)) NIL) (($ $) NIL)) (-2029 (($ $) 32)) (-1664 (($ $) 30)) (-3663 (((-523) $) 39) (((-499) $) 51) (((-823 (-523)) $) NIL) (((-355) $) 46) (((-203) $) 48) (((-1070) $) 52)) (-1458 (((-794) $) 37) (($ (-523)) 38) (($ $) NIL) (($ (-523)) 38)) (-1621 (((-710)) NIL)) (-1981 (((-108) $ $) NIL)) (-2574 (($ $ $) NIL)) (-3007 (($) 29)) (-1704 (((-108) $ $) NIL)) (-2108 (($ $ $ $) 41)) (-2619 (($ $) 61)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 27 T CONST)) (-2767 (($) 28 T CONST)) (-3790 (((-1070) $) 20) (((-1070) $ (-108)) 22) (((-1173) (-761) $) 23) (((-1173) (-761) $ (-108)) 24)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 64)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 65)) (-4087 (($ $) 66) (($ $ $) 68)) (-4075 (($ $ $) 67)) (** (($ $ (-852)) NIL) (($ $ (-710)) 72)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 70) (($ $ $) 69))) -(((-523) (-13 (-508) (-564 (-1070)) (-767) (-10 -8 (-15 -4032 ($ $)) (-6 -4231) (-6 -4236) (-6 -4232) (-6 -4226)))) (T -523)) -((-4032 (*1 *1 *1) (-5 *1 (-523)))) -(-13 (-508) (-564 (-1070)) (-767) (-10 -8 (-15 -4032 ($ $)) (-6 -4231) (-6 -4236) (-6 -4232) (-6 -4226))) -((-1228 (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708) (-985)) 103) (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708)) 105)) (-3417 (((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1087)) 168) (((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1070)) 167) (((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355) (-985)) 173) (((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355)) 174) (((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355)) 175) (((-962) (-292 (-355)) (-589 (-1011 (-779 (-355))))) 176) (((-962) (-292 (-355)) (-1011 (-779 (-355)))) 163) (((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355)) 162) (((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355)) 158) (((-962) (-708)) 150) (((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355) (-985)) 157))) -(((-524) (-10 -7 (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355) (-985))) (-15 -3417 ((-962) (-708))) (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355) (-985))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708) (-985))) (-15 -3417 ((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1070))) (-15 -3417 ((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1087))))) (T -524)) -((-3417 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-292 (-355))) (-5 *4 (-1009 (-779 (-355)))) (-5 *5 (-1087)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-292 (-355))) (-5 *4 (-1009 (-779 (-355)))) (-5 *5 (-1070)) (-5 *2 (-962)) (-5 *1 (-524)))) (-1228 (*1 *2 *3 *4) (-12 (-5 *3 (-708)) (-5 *4 (-985)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) (-5 *1 (-524)))) (-1228 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) (-5 *5 (-355)) (-5 *6 (-985)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) (-5 *5 (-355)) (-5 *6 (-985)) (-5 *2 (-962)) (-5 *1 (-524))))) -(-10 -7 (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355) (-985))) (-15 -3417 ((-962) (-708))) (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355) (-985))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708) (-985))) (-15 -3417 ((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1070))) (-15 -3417 ((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1087)))) -((-3089 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|)) 181)) (-1217 (((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|)) 99)) (-4082 (((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2|) 177)) (-2513 (((-3 |#2| "failed") |#2| |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087))) 186)) (-3275 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-1087)) 194 (|has| |#3| (-599 |#2|))))) -(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -1217 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|))) (-15 -4082 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2|)) (-15 -3089 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|))) (-15 -2513 ((-3 |#2| "failed") |#2| |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)))) (IF (|has| |#3| (-599 |#2|)) (-15 -3275 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-1087))) |%noBranch|)) (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523))) (-13 (-406 |#1|) (-27) (-1108)) (-1016)) (T -525)) -((-3275 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-562 *4)) (-5 *6 (-1087)) (-4 *4 (-13 (-406 *7) (-27) (-1108))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-525 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016)))) (-2513 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-562 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) (-4 *2 (-13 (-406 *5) (-27) (-1108))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *1 (-525 *5 *2 *6)) (-4 *6 (-1016)))) (-3089 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-525 *6 *3 *7)) (-4 *7 (-1016)))) (-4082 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1108))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) (-5 *1 (-525 *5 *3 *6)) (-4 *6 (-1016)))) (-1217 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1108))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-525 *5 *3 *6)) (-4 *6 (-1016))))) -(-10 -7 (-15 -1217 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|))) (-15 -4082 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2|)) (-15 -3089 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|))) (-15 -2513 ((-3 |#2| "failed") |#2| |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)))) (IF (|has| |#3| (-599 |#2|)) (-15 -3275 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-1087))) |%noBranch|)) -((-1861 (((-2 (|:| -1280 |#2|) (|:| |nconst| |#2|)) |#2| (-1087)) 62)) (-3528 (((-3 |#2| "failed") |#2| (-1087) (-779 |#2|) (-779 |#2|)) 159 (-12 (|has| |#2| (-1051)) (|has| |#1| (-564 (-823 (-523)))) (|has| |#1| (-817 (-523))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)) 133 (-12 (|has| |#2| (-575)) (|has| |#1| (-564 (-823 (-523)))) (|has| |#1| (-817 (-523)))))) (-3922 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)) 142 (-12 (|has| |#2| (-575)) (|has| |#1| (-564 (-823 (-523)))) (|has| |#1| (-817 (-523))))))) -(((-526 |#1| |#2|) (-10 -7 (-15 -1861 ((-2 (|:| -1280 |#2|) (|:| |nconst| |#2|)) |#2| (-1087))) (IF (|has| |#1| (-564 (-823 (-523)))) (IF (|has| |#1| (-817 (-523))) (PROGN (IF (|has| |#2| (-575)) (PROGN (-15 -3922 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087))) (-15 -3528 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)))) |%noBranch|) (IF (|has| |#2| (-1051)) (-15 -3528 ((-3 |#2| "failed") |#2| (-1087) (-779 |#2|) (-779 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-786) (-964 (-523)) (-427) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -526)) -((-3528 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1087)) (-5 *4 (-779 *2)) (-4 *2 (-1051)) (-4 *2 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-564 (-823 (-523)))) (-4 *5 (-817 (-523))) (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) (-5 *1 (-526 *5 *2)))) (-3528 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-564 (-823 (-523)))) (-4 *5 (-817 (-523))) (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-526 *5 *3)) (-4 *3 (-575)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-3922 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-564 (-823 (-523)))) (-4 *5 (-817 (-523))) (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-526 *5 *3)) (-4 *3 (-575)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-1861 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) (-5 *2 (-2 (|:| -1280 *3) (|:| |nconst| *3))) (-5 *1 (-526 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) -(-10 -7 (-15 -1861 ((-2 (|:| -1280 |#2|) (|:| |nconst| |#2|)) |#2| (-1087))) (IF (|has| |#1| (-564 (-823 (-523)))) (IF (|has| |#1| (-817 (-523))) (PROGN (IF (|has| |#2| (-575)) (PROGN (-15 -3922 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087))) (-15 -3528 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)))) |%noBranch|) (IF (|has| |#2| (-1051)) (-15 -3528 ((-3 |#2| "failed") |#2| (-1087) (-779 |#2|) (-779 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2380 (((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-589 (-383 |#2|))) 39)) (-3417 (((-540 (-383 |#2|)) (-383 |#2|)) 27)) (-1984 (((-3 (-383 |#2|) "failed") (-383 |#2|)) 16)) (-3241 (((-3 (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-383 |#2|)) 46))) -(((-527 |#1| |#2|) (-10 -7 (-15 -3417 ((-540 (-383 |#2|)) (-383 |#2|))) (-15 -1984 ((-3 (-383 |#2|) "failed") (-383 |#2|))) (-15 -3241 ((-3 (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-383 |#2|))) (-15 -2380 ((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-589 (-383 |#2|))))) (-13 (-339) (-136) (-964 (-523))) (-1144 |#1|)) (T -527)) -((-2380 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-589 (-383 *6))) (-5 *3 (-383 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *5 *6)))) (-3241 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -2462 (-383 *5)) (|:| |coeff| (-383 *5)))) (-5 *1 (-527 *4 *5)) (-5 *3 (-383 *5)))) (-1984 (*1 *2 *2) (|partial| -12 (-5 *2 (-383 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-13 (-339) (-136) (-964 (-523)))) (-5 *1 (-527 *3 *4)))) (-3417 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1144 *4)) (-5 *2 (-540 (-383 *5))) (-5 *1 (-527 *4 *5)) (-5 *3 (-383 *5))))) -(-10 -7 (-15 -3417 ((-540 (-383 |#2|)) (-383 |#2|))) (-15 -1984 ((-3 (-383 |#2|) "failed") (-383 |#2|))) (-15 -3241 ((-3 (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-383 |#2|))) (-15 -2380 ((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-589 (-383 |#2|))))) -((-2156 (((-3 (-523) "failed") |#1|) 14)) (-1538 (((-108) |#1|) 13)) (-3356 (((-523) |#1|) 9))) -(((-528 |#1|) (-10 -7 (-15 -3356 ((-523) |#1|)) (-15 -1538 ((-108) |#1|)) (-15 -2156 ((-3 (-523) "failed") |#1|))) (-964 (-523))) (T -528)) -((-2156 (*1 *2 *3) (|partial| -12 (-5 *2 (-523)) (-5 *1 (-528 *3)) (-4 *3 (-964 *2)))) (-1538 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-528 *3)) (-4 *3 (-964 (-523))))) (-3356 (*1 *2 *3) (-12 (-5 *2 (-523)) (-5 *1 (-528 *3)) (-4 *3 (-964 *2))))) -(-10 -7 (-15 -3356 ((-523) |#1|)) (-15 -1538 ((-108) |#1|)) (-15 -2156 ((-3 (-523) "failed") |#1|))) -((-3569 (((-3 (-2 (|:| |mainpart| (-383 (-883 |#1|))) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 (-883 |#1|))) (|:| |logand| (-383 (-883 |#1|))))))) "failed") (-383 (-883 |#1|)) (-1087) (-589 (-383 (-883 |#1|)))) 43)) (-2737 (((-540 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-1087)) 25)) (-3732 (((-3 (-383 (-883 |#1|)) "failed") (-383 (-883 |#1|)) (-1087)) 20)) (-3516 (((-3 (-2 (|:| -2462 (-383 (-883 |#1|))) (|:| |coeff| (-383 (-883 |#1|)))) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|))) 32))) -(((-529 |#1|) (-10 -7 (-15 -2737 ((-540 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -3732 ((-3 (-383 (-883 |#1|)) "failed") (-383 (-883 |#1|)) (-1087))) (-15 -3569 ((-3 (-2 (|:| |mainpart| (-383 (-883 |#1|))) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 (-883 |#1|))) (|:| |logand| (-383 (-883 |#1|))))))) "failed") (-383 (-883 |#1|)) (-1087) (-589 (-383 (-883 |#1|))))) (-15 -3516 ((-3 (-2 (|:| -2462 (-383 (-883 |#1|))) (|:| |coeff| (-383 (-883 |#1|)))) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|))))) (-13 (-515) (-964 (-523)) (-136))) (T -529)) -((-3516 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-964 (-523)) (-136))) (-5 *2 (-2 (|:| -2462 (-383 (-883 *5))) (|:| |coeff| (-383 (-883 *5))))) (-5 *1 (-529 *5)) (-5 *3 (-383 (-883 *5))))) (-3569 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 (-383 (-883 *6)))) (-5 *3 (-383 (-883 *6))) (-4 *6 (-13 (-515) (-964 (-523)) (-136))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-529 *6)))) (-3732 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-383 (-883 *4))) (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-964 (-523)) (-136))) (-5 *1 (-529 *4)))) (-2737 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-964 (-523)) (-136))) (-5 *2 (-540 (-383 (-883 *5)))) (-5 *1 (-529 *5)) (-5 *3 (-383 (-883 *5)))))) -(-10 -7 (-15 -2737 ((-540 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -3732 ((-3 (-383 (-883 |#1|)) "failed") (-383 (-883 |#1|)) (-1087))) (-15 -3569 ((-3 (-2 (|:| |mainpart| (-383 (-883 |#1|))) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 (-883 |#1|))) (|:| |logand| (-383 (-883 |#1|))))))) "failed") (-383 (-883 |#1|)) (-1087) (-589 (-383 (-883 |#1|))))) (-15 -3516 ((-3 (-2 (|:| -2462 (-383 (-883 |#1|))) (|:| |coeff| (-383 (-883 |#1|)))) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|))))) -((-3924 (((-108) $ $) 59)) (-2295 (((-108) $) 36)) (-3919 ((|#1| $) 30)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) 63)) (-1769 (($ $) 123)) (-3780 (($ $) 103)) (-3596 ((|#1| $) 28)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $) NIL)) (-1744 (($ $) 125)) (-3711 (($ $) 99)) (-1793 (($ $) 127)) (-3805 (($ $) 107)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) 78)) (-3474 (((-523) $) 80)) (-2121 (((-3 $ "failed") $) 62)) (-2194 (($ |#1| |#1|) 26)) (-2604 (((-108) $) 33)) (-2820 (($) 89)) (-2023 (((-108) $) 43)) (-1420 (($ $ (-523)) NIL)) (-4114 (((-108) $) 34)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2384 (($ $) 91)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-2081 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-383 (-523))) 77)) (-2774 ((|#1| $) 27)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) 65) (($ (-589 $)) NIL)) (-3746 (((-3 $ "failed") $ $) 64)) (-1811 (($ $) 93)) (-1805 (($ $) 131)) (-3816 (($ $) 105)) (-1782 (($ $) 133)) (-3793 (($ $) 109)) (-1757 (($ $) 129)) (-3767 (($ $) 101)) (-2442 (((-108) $ |#1|) 31)) (-1458 (((-794) $) 85) (($ (-523)) 67) (($ $) NIL) (($ (-523)) 67)) (-1621 (((-710)) 87)) (-1839 (($ $) 145)) (-3847 (($ $) 115)) (-1704 (((-108) $ $) NIL)) (-1818 (($ $) 143)) (-3828 (($ $) 111)) (-1865 (($ $) 141)) (-1719 (($ $) 121)) (-2914 (($ $) 139)) (-1731 (($ $) 119)) (-1852 (($ $) 137)) (-3859 (($ $) 117)) (-1830 (($ $) 135)) (-3838 (($ $) 113)) (-2364 (($ $ (-852)) 55) (($ $ (-710)) NIL)) (-2756 (($) 21 T CONST)) (-2767 (($) 10 T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 37)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 35)) (-4087 (($ $) 41) (($ $ $) 42)) (-4075 (($ $ $) 40)) (** (($ $ (-852)) 54) (($ $ (-710)) NIL) (($ $ $) 95) (($ $ (-383 (-523))) 147)) (* (($ (-852) $) 51) (($ (-710) $) NIL) (($ (-523) $) 50) (($ $ $) 48))) -(((-530 |#1|) (-513 |#1|) (-13 (-380) (-1108))) (T -530)) +((-1363 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1087) (-589 |#2|)) 35)) (-2138 (((-540 |#2|) |#2| (-1087)) 58)) (-3380 (((-3 |#2| "failed") |#2| (-1087)) 149)) (-3903 (((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) (-562 |#2|) (-589 (-562 |#2|))) 152)) (-2606 (((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) |#2|) 38))) +(((-516 |#1| |#2|) (-10 -7 (-15 -2606 ((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) |#2|)) (-15 -1363 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1087) (-589 |#2|))) (-15 -3380 ((-3 |#2| "failed") |#2| (-1087))) (-15 -2138 ((-540 |#2|) |#2| (-1087))) (-15 -3903 ((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) (-562 |#2|) (-589 (-562 |#2|))))) (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1109) (-406 |#1|))) (T -516)) +((-3903 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1087)) (-5 *6 (-589 (-562 *3))) (-5 *5 (-562 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *7))) (-4 *7 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-2 (|:| -1825 *3) (|:| |coeff| *3))) (-5 *1 (-516 *7 *3)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-516 *5 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))))) (-3380 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *1 (-516 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4))))) (-1363 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-516 *6 *3)))) (-2606 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-2 (|:| -1825 *3) (|:| |coeff| *3))) (-5 *1 (-516 *5 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5)))))) +(-10 -7 (-15 -2606 ((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) |#2|)) (-15 -1363 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1087) (-589 |#2|))) (-15 -3380 ((-3 |#2| "failed") |#2| (-1087))) (-15 -2138 ((-540 |#2|) |#2| (-1087))) (-15 -3903 ((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) (-562 |#2|) (-589 (-562 |#2|))))) +((-4226 (((-394 |#1|) |#1|) 18)) (-2424 (((-394 |#1|) |#1|) 33)) (-2115 (((-3 |#1| "failed") |#1|) 44)) (-2617 (((-394 |#1|) |#1|) 51))) +(((-517 |#1|) (-10 -7 (-15 -2424 ((-394 |#1|) |#1|)) (-15 -4226 ((-394 |#1|) |#1|)) (-15 -2617 ((-394 |#1|) |#1|)) (-15 -2115 ((-3 |#1| "failed") |#1|))) (-508)) (T -517)) +((-2115 (*1 *2 *2) (|partial| -12 (-5 *1 (-517 *2)) (-4 *2 (-508)))) (-2617 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508)))) (-4226 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508)))) (-2424 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508))))) +(-10 -7 (-15 -2424 ((-394 |#1|) |#1|)) (-15 -4226 ((-394 |#1|) |#1|)) (-15 -2617 ((-394 |#1|) |#1|)) (-15 -2115 ((-3 |#1| "failed") |#1|))) +((-1831 (($) 9)) (-1527 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 29)) (-1255 (((-589 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $) 26)) (-3108 (($ (-2 (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2936 (($ (-589 (-2 (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-2482 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 33)) (-3973 (((-589 (-2 (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-2258 (((-1174)) 12))) +(((-518) (-10 -8 (-15 -1831 ($)) (-15 -2258 ((-1174))) (-15 -1255 ((-589 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $)) (-15 -2936 ($ (-589 (-2 (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3108 ($ (-2 (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1527 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3973 ((-589 (-2 (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2482 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (T -518)) +((-2482 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-518)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-518)))) (-1527 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-518)))) (-3108 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-518)))) (-2936 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-518)))) (-1255 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-5 *1 (-518)))) (-2258 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-518)))) (-1831 (*1 *1) (-5 *1 (-518)))) +(-10 -8 (-15 -1831 ($)) (-15 -2258 ((-1174))) (-15 -1255 ((-589 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $)) (-15 -2936 ($ (-589 (-2 (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3108 ($ (-2 (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1527 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3973 ((-589 (-2 (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2482 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) +((-2389 (((-1083 (-383 (-1083 |#2|))) |#2| (-562 |#2|) (-562 |#2|) (-1083 |#2|)) 28)) (-3821 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) |#2| (-1083 |#2|)) 106)) (-1770 (((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))) 78) (((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|)) 50)) (-1545 (((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| (-562 |#2|) |#2| (-383 (-1083 |#2|))) 85) (((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| |#2| (-1083 |#2|)) 105)) (-3236 (((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) (-562 |#2|) |#2| (-383 (-1083 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) |#2| (-1083 |#2|)) 107)) (-4195 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3760 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))) 124 (|has| |#3| (-599 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3760 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|)) 123 (|has| |#3| (-599 |#2|)))) (-1280 ((|#2| (-1083 (-383 (-1083 |#2|))) (-562 |#2|) |#2|) 48)) (-2104 (((-1083 (-383 (-1083 |#2|))) (-1083 |#2|) (-562 |#2|)) 27))) +(((-519 |#1| |#2| |#3|) (-10 -7 (-15 -1770 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|))) (-15 -1770 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -1545 ((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| |#2| (-1083 |#2|))) (-15 -1545 ((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -3821 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) |#2| (-1083 |#2|))) (-15 -3821 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -3236 ((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) |#2| (-1083 |#2|))) (-15 -3236 ((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -2389 ((-1083 (-383 (-1083 |#2|))) |#2| (-562 |#2|) (-562 |#2|) (-1083 |#2|))) (-15 -1280 (|#2| (-1083 (-383 (-1083 |#2|))) (-562 |#2|) |#2|)) (-15 -2104 ((-1083 (-383 (-1083 |#2|))) (-1083 |#2|) (-562 |#2|))) (IF (|has| |#3| (-599 |#2|)) (PROGN (-15 -4195 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3760 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|))) (-15 -4195 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3760 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))))) |%noBranch|)) (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523))) (-13 (-406 |#1|) (-27) (-1109)) (-1016)) (T -519)) +((-4195 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-562 *4)) (-5 *6 (-383 (-1083 *4))) (-4 *4 (-13 (-406 *7) (-27) (-1109))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016)))) (-4195 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-562 *4)) (-5 *6 (-1083 *4)) (-4 *4 (-13 (-406 *7) (-27) (-1109))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016)))) (-2104 (*1 *2 *3 *4) (-12 (-5 *4 (-562 *6)) (-4 *6 (-13 (-406 *5) (-27) (-1109))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-1083 (-383 (-1083 *6)))) (-5 *1 (-519 *5 *6 *7)) (-5 *3 (-1083 *6)) (-4 *7 (-1016)))) (-1280 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1083 (-383 (-1083 *2)))) (-5 *4 (-562 *2)) (-4 *2 (-13 (-406 *5) (-27) (-1109))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1016)))) (-2389 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1109))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-1083 (-383 (-1083 *3)))) (-5 *1 (-519 *6 *3 *7)) (-5 *5 (-1083 *3)) (-4 *7 (-1016)))) (-3236 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-562 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) (-5 *5 (-383 (-1083 *2))) (-4 *2 (-13 (-406 *6) (-27) (-1109))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *1 (-519 *6 *2 *7)) (-4 *7 (-1016)))) (-3236 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-562 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) (-5 *5 (-1083 *2)) (-4 *2 (-13 (-406 *6) (-27) (-1109))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *1 (-519 *6 *2 *7)) (-4 *7 (-1016)))) (-3821 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) (-5 *6 (-383 (-1083 *3))) (-4 *3 (-13 (-406 *7) (-27) (-1109))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *7 *3 *8)) (-4 *8 (-1016)))) (-3821 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) (-5 *6 (-1083 *3)) (-4 *3 (-13 (-406 *7) (-27) (-1109))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *7 *3 *8)) (-4 *8 (-1016)))) (-1545 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-383 (-1083 *3))) (-4 *3 (-13 (-406 *6) (-27) (-1109))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| -1825 *3) (|:| |coeff| *3))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) (-1545 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-1083 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1109))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| -1825 *3) (|:| |coeff| *3))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) (-1770 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-562 *3)) (-5 *5 (-383 (-1083 *3))) (-4 *3 (-13 (-406 *6) (-27) (-1109))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) (-1770 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-562 *3)) (-5 *5 (-1083 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1109))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016))))) +(-10 -7 (-15 -1770 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|))) (-15 -1770 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -1545 ((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| |#2| (-1083 |#2|))) (-15 -1545 ((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -3821 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) |#2| (-1083 |#2|))) (-15 -3821 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -3236 ((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) |#2| (-1083 |#2|))) (-15 -3236 ((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -2389 ((-1083 (-383 (-1083 |#2|))) |#2| (-562 |#2|) (-562 |#2|) (-1083 |#2|))) (-15 -1280 (|#2| (-1083 (-383 (-1083 |#2|))) (-562 |#2|) |#2|)) (-15 -2104 ((-1083 (-383 (-1083 |#2|))) (-1083 |#2|) (-562 |#2|))) (IF (|has| |#3| (-599 |#2|)) (PROGN (-15 -4195 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3760 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|))) (-15 -4195 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3760 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))))) |%noBranch|)) +((-2723 (((-523) (-523) (-710)) 66)) (-1445 (((-523) (-523)) 65)) (-2953 (((-523) (-523)) 64)) (-1733 (((-523) (-523)) 69)) (-1720 (((-523) (-523) (-523)) 49)) (-2081 (((-523) (-523) (-523)) 46)) (-2578 (((-383 (-523)) (-523)) 20)) (-1636 (((-523) (-523)) 21)) (-2910 (((-523) (-523)) 58)) (-2873 (((-523) (-523)) 32)) (-3972 (((-589 (-523)) (-523)) 63)) (-1244 (((-523) (-523) (-523) (-523) (-523)) 44)) (-2363 (((-383 (-523)) (-523)) 41))) +(((-520) (-10 -7 (-15 -2363 ((-383 (-523)) (-523))) (-15 -1244 ((-523) (-523) (-523) (-523) (-523))) (-15 -3972 ((-589 (-523)) (-523))) (-15 -2873 ((-523) (-523))) (-15 -2910 ((-523) (-523))) (-15 -1636 ((-523) (-523))) (-15 -2578 ((-383 (-523)) (-523))) (-15 -2081 ((-523) (-523) (-523))) (-15 -1720 ((-523) (-523) (-523))) (-15 -1733 ((-523) (-523))) (-15 -2953 ((-523) (-523))) (-15 -1445 ((-523) (-523))) (-15 -2723 ((-523) (-523) (-710))))) (T -520)) +((-2723 (*1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-710)) (-5 *1 (-520)))) (-1445 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2953 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-1733 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-1720 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2081 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2578 (*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-520)) (-5 *3 (-523)))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2873 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-3972 (*1 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-520)) (-5 *3 (-523)))) (-1244 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2363 (*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-520)) (-5 *3 (-523))))) +(-10 -7 (-15 -2363 ((-383 (-523)) (-523))) (-15 -1244 ((-523) (-523) (-523) (-523) (-523))) (-15 -3972 ((-589 (-523)) (-523))) (-15 -2873 ((-523) (-523))) (-15 -2910 ((-523) (-523))) (-15 -1636 ((-523) (-523))) (-15 -2578 ((-383 (-523)) (-523))) (-15 -2081 ((-523) (-523) (-523))) (-15 -1720 ((-523) (-523) (-523))) (-15 -1733 ((-523) (-523))) (-15 -2953 ((-523) (-523))) (-15 -1445 ((-523) (-523))) (-15 -2723 ((-523) (-523) (-710)))) +((-2124 (((-2 (|:| |answer| |#4|) (|:| -1474 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2124 ((-2 (|:| |answer| |#4|) (|:| -1474 |#4|)) |#4| (-1 |#2| |#2|)))) (-339) (-1145 |#1|) (-1145 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -521)) +((-2124 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-339)) (-4 *7 (-1145 (-383 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1474 *3))) (-5 *1 (-521 *5 *6 *7 *3)) (-4 *3 (-318 *5 *6 *7))))) +(-10 -7 (-15 -2124 ((-2 (|:| |answer| |#4|) (|:| -1474 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2124 (((-2 (|:| |answer| (-383 |#2|)) (|:| -1474 (-383 |#2|)) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|)) 18))) +(((-522 |#1| |#2|) (-10 -7 (-15 -2124 ((-2 (|:| |answer| (-383 |#2|)) (|:| -1474 (-383 |#2|)) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|)))) (-339) (-1145 |#1|)) (T -522)) +((-2124 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |answer| (-383 *6)) (|:| -1474 (-383 *6)) (|:| |specpart| (-383 *6)) (|:| |polypart| *6))) (-5 *1 (-522 *5 *6)) (-5 *3 (-383 *6))))) +(-10 -7 (-15 -2124 ((-2 (|:| |answer| (-383 |#2|)) (|:| -1474 (-383 |#2|)) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 25)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 86)) (-3306 (($ $) 87)) (-3174 (((-108) $) NIL)) (-2755 (($ $ $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $ $ $) 42)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL)) (-2156 (($ $ $) 80)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL)) (-3508 (((-523) $) NIL)) (-4059 (($ $ $) 79)) (-2243 (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 60) (((-629 (-523)) (-629 $)) 57)) (-1444 (((-3 $ "failed") $) 83)) (-3317 (((-3 (-383 (-523)) "failed") $) NIL)) (-3045 (((-108) $) NIL)) (-1682 (((-383 (-523)) $) NIL)) (-1631 (($) 62) (($ $) 63)) (-4032 (($ $ $) 78)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-4024 (($ $ $ $) NIL)) (-3501 (($ $ $) 54)) (-3712 (((-108) $) NIL)) (-3325 (($ $ $) NIL)) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL)) (-2769 (((-108) $) 26)) (-3860 (((-108) $) 73)) (-2738 (((-3 $ "failed") $) NIL)) (-2057 (((-108) $) 34)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3928 (($ $ $ $) 43)) (-3239 (($ $ $) 75)) (-3158 (($ $ $) 74)) (-2236 (($ $) NIL)) (-2616 (($ $) 40)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) 53)) (-4193 (($ $ $) NIL)) (-2773 (($) NIL T CONST)) (-3762 (($ $) 31)) (-3951 (((-1034) $) NIL) (($ $) 33)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 117)) (-3310 (($ $ $) 84) (($ (-589 $)) NIL)) (-3459 (($ $) NIL)) (-2424 (((-394 $) $) 103)) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL)) (-4007 (((-3 $ "failed") $ $) 82)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3101 (((-108) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 77)) (-3984 (($ $ (-710)) NIL) (($ $) NIL)) (-1890 (($ $) 32)) (-1874 (($ $) 30)) (-1400 (((-523) $) 39) (((-499) $) 51) (((-823 (-523)) $) NIL) (((-355) $) 46) (((-203) $) 48) (((-1070) $) 52)) (-1691 (((-794) $) 37) (($ (-523)) 38) (($ $) NIL) (($ (-523)) 38)) (-3272 (((-710)) NIL)) (-3512 (((-108) $ $) NIL)) (-3435 (($ $ $) NIL)) (-1416 (($) 29)) (-2801 (((-108) $ $) NIL)) (-2447 (($ $ $ $) 41)) (-2695 (($ $) 61)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 27 T CONST)) (-1891 (($) 28 T CONST)) (-2111 (((-1070) $) 20) (((-1070) $ (-108)) 22) (((-1174) (-761) $) 23) (((-1174) (-761) $ (-108)) 24)) (-2909 (($ $ (-710)) NIL) (($ $) NIL)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 64)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 65)) (-4060 (($ $) 66) (($ $ $) 68)) (-4045 (($ $ $) 67)) (** (($ $ (-852)) NIL) (($ $ (-710)) 72)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 70) (($ $ $) 69))) +(((-523) (-13 (-508) (-564 (-1070)) (-767) (-10 -8 (-15 -1631 ($ $)) (-6 -4235) (-6 -4240) (-6 -4236) (-6 -4230)))) (T -523)) +((-1631 (*1 *1 *1) (-5 *1 (-523)))) +(-13 (-508) (-564 (-1070)) (-767) (-10 -8 (-15 -1631 ($ $)) (-6 -4235) (-6 -4240) (-6 -4236) (-6 -4230))) +((-1796 (((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708) (-985)) 103) (((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708)) 105)) (-2814 (((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1087)) 168) (((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1070)) 167) (((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355) (-985)) 173) (((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355)) 174) (((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355)) 175) (((-962) (-292 (-355)) (-589 (-1011 (-779 (-355))))) 176) (((-962) (-292 (-355)) (-1011 (-779 (-355)))) 163) (((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355)) 162) (((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355)) 158) (((-962) (-708)) 150) (((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355) (-985)) 157))) +(((-524) (-10 -7 (-15 -2814 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355) (-985))) (-15 -2814 ((-962) (-708))) (-15 -2814 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355))) (-15 -2814 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355))) (-15 -2814 ((-962) (-292 (-355)) (-1011 (-779 (-355))))) (-15 -2814 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))))) (-15 -2814 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355))) (-15 -2814 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355))) (-15 -2814 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355) (-985))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708) (-985))) (-15 -2814 ((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1070))) (-15 -2814 ((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1087))))) (T -524)) +((-2814 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-292 (-355))) (-5 *4 (-1009 (-779 (-355)))) (-5 *5 (-1087)) (-5 *2 (-962)) (-5 *1 (-524)))) (-2814 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-292 (-355))) (-5 *4 (-1009 (-779 (-355)))) (-5 *5 (-1070)) (-5 *2 (-962)) (-5 *1 (-524)))) (-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-708)) (-5 *4 (-985)) (-5 *2 (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) (-5 *1 (-524)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) (-5 *1 (-524)))) (-2814 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) (-5 *5 (-355)) (-5 *6 (-985)) (-5 *2 (-962)) (-5 *1 (-524)))) (-2814 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) (-2814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) (-5 *2 (-962)) (-5 *1 (-524)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) (-5 *2 (-962)) (-5 *1 (-524)))) (-2814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) (-2814 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-962)) (-5 *1 (-524)))) (-2814 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) (-5 *5 (-355)) (-5 *6 (-985)) (-5 *2 (-962)) (-5 *1 (-524))))) +(-10 -7 (-15 -2814 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355) (-985))) (-15 -2814 ((-962) (-708))) (-15 -2814 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355))) (-15 -2814 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355))) (-15 -2814 ((-962) (-292 (-355)) (-1011 (-779 (-355))))) (-15 -2814 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))))) (-15 -2814 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355))) (-15 -2814 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355))) (-15 -2814 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355) (-985))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708) (-985))) (-15 -2814 ((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1070))) (-15 -2814 ((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1087)))) +((-1713 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|)) 180)) (-1685 (((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|)) 98)) (-2945 (((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2|) 176)) (-4139 (((-3 |#2| "failed") |#2| |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087))) 185)) (-3897 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3760 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-1087)) 193 (|has| |#3| (-599 |#2|))))) +(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -1685 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|))) (-15 -2945 ((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2|)) (-15 -1713 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|))) (-15 -4139 ((-3 |#2| "failed") |#2| |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)))) (IF (|has| |#3| (-599 |#2|)) (-15 -3897 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3760 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-1087))) |%noBranch|)) (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523))) (-13 (-406 |#1|) (-27) (-1109)) (-1016)) (T -525)) +((-3897 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-562 *4)) (-5 *6 (-1087)) (-4 *4 (-13 (-406 *7) (-27) (-1109))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) (-5 *1 (-525 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016)))) (-4139 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-562 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) (-4 *2 (-13 (-406 *5) (-27) (-1109))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *1 (-525 *5 *2 *6)) (-4 *6 (-1016)))) (-1713 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1109))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-525 *6 *3 *7)) (-4 *7 (-1016)))) (-2945 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1109))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| -1825 *3) (|:| |coeff| *3))) (-5 *1 (-525 *5 *3 *6)) (-4 *6 (-1016)))) (-1685 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1109))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-525 *5 *3 *6)) (-4 *6 (-1016))))) +(-10 -7 (-15 -1685 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|))) (-15 -2945 ((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2|)) (-15 -1713 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|))) (-15 -4139 ((-3 |#2| "failed") |#2| |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)))) (IF (|has| |#3| (-599 |#2|)) (-15 -3897 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3760 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-1087))) |%noBranch|)) +((-1797 (((-2 (|:| -4173 |#2|) (|:| |nconst| |#2|)) |#2| (-1087)) 62)) (-1567 (((-3 |#2| "failed") |#2| (-1087) (-779 |#2|) (-779 |#2|)) 162 (-12 (|has| |#2| (-1051)) (|has| |#1| (-564 (-823 (-523)))) (|has| |#1| (-817 (-523))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)) 136 (-12 (|has| |#2| (-575)) (|has| |#1| (-564 (-823 (-523)))) (|has| |#1| (-817 (-523)))))) (-3934 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)) 145 (-12 (|has| |#2| (-575)) (|has| |#1| (-564 (-823 (-523)))) (|has| |#1| (-817 (-523))))))) +(((-526 |#1| |#2|) (-10 -7 (-15 -1797 ((-2 (|:| -4173 |#2|) (|:| |nconst| |#2|)) |#2| (-1087))) (IF (|has| |#1| (-564 (-823 (-523)))) (IF (|has| |#1| (-817 (-523))) (PROGN (IF (|has| |#2| (-575)) (PROGN (-15 -3934 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087))) (-15 -1567 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)))) |%noBranch|) (IF (|has| |#2| (-1051)) (-15 -1567 ((-3 |#2| "failed") |#2| (-1087) (-779 |#2|) (-779 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-786) (-964 (-523)) (-427) (-585 (-523))) (-13 (-27) (-1109) (-406 |#1|))) (T -526)) +((-1567 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1087)) (-5 *4 (-779 *2)) (-4 *2 (-1051)) (-4 *2 (-13 (-27) (-1109) (-406 *5))) (-4 *5 (-564 (-823 (-523)))) (-4 *5 (-817 (-523))) (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) (-5 *1 (-526 *5 *2)))) (-1567 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-564 (-823 (-523)))) (-4 *5 (-817 (-523))) (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-526 *5 *3)) (-4 *3 (-575)) (-4 *3 (-13 (-27) (-1109) (-406 *5))))) (-3934 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-564 (-823 (-523)))) (-4 *5 (-817 (-523))) (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-526 *5 *3)) (-4 *3 (-575)) (-4 *3 (-13 (-27) (-1109) (-406 *5))))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) (-5 *2 (-2 (|:| -4173 *3) (|:| |nconst| *3))) (-5 *1 (-526 *5 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5)))))) +(-10 -7 (-15 -1797 ((-2 (|:| -4173 |#2|) (|:| |nconst| |#2|)) |#2| (-1087))) (IF (|has| |#1| (-564 (-823 (-523)))) (IF (|has| |#1| (-817 (-523))) (PROGN (IF (|has| |#2| (-575)) (PROGN (-15 -3934 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087))) (-15 -1567 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)))) |%noBranch|) (IF (|has| |#2| (-1051)) (-15 -1567 ((-3 |#2| "failed") |#2| (-1087) (-779 |#2|) (-779 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2232 (((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-589 (-383 |#2|))) 39)) (-2814 (((-540 (-383 |#2|)) (-383 |#2|)) 27)) (-3534 (((-3 (-383 |#2|) "failed") (-383 |#2|)) 16)) (-3679 (((-3 (-2 (|:| -1825 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-383 |#2|)) 46))) +(((-527 |#1| |#2|) (-10 -7 (-15 -2814 ((-540 (-383 |#2|)) (-383 |#2|))) (-15 -3534 ((-3 (-383 |#2|) "failed") (-383 |#2|))) (-15 -3679 ((-3 (-2 (|:| -1825 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-383 |#2|))) (-15 -2232 ((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-589 (-383 |#2|))))) (-13 (-339) (-136) (-964 (-523))) (-1145 |#1|)) (T -527)) +((-2232 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-589 (-383 *6))) (-5 *3 (-383 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *5 *6)))) (-3679 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| -1825 (-383 *5)) (|:| |coeff| (-383 *5)))) (-5 *1 (-527 *4 *5)) (-5 *3 (-383 *5)))) (-3534 (*1 *2 *2) (|partial| -12 (-5 *2 (-383 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-13 (-339) (-136) (-964 (-523)))) (-5 *1 (-527 *3 *4)))) (-2814 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1145 *4)) (-5 *2 (-540 (-383 *5))) (-5 *1 (-527 *4 *5)) (-5 *3 (-383 *5))))) +(-10 -7 (-15 -2814 ((-540 (-383 |#2|)) (-383 |#2|))) (-15 -3534 ((-3 (-383 |#2|) "failed") (-383 |#2|))) (-15 -3679 ((-3 (-2 (|:| -1825 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-383 |#2|))) (-15 -2232 ((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-589 (-383 |#2|))))) +((-1775 (((-3 (-523) "failed") |#1|) 14)) (-3690 (((-108) |#1|) 13)) (-2434 (((-523) |#1|) 9))) +(((-528 |#1|) (-10 -7 (-15 -2434 ((-523) |#1|)) (-15 -3690 ((-108) |#1|)) (-15 -1775 ((-3 (-523) "failed") |#1|))) (-964 (-523))) (T -528)) +((-1775 (*1 *2 *3) (|partial| -12 (-5 *2 (-523)) (-5 *1 (-528 *3)) (-4 *3 (-964 *2)))) (-3690 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-528 *3)) (-4 *3 (-964 (-523))))) (-2434 (*1 *2 *3) (-12 (-5 *2 (-523)) (-5 *1 (-528 *3)) (-4 *3 (-964 *2))))) +(-10 -7 (-15 -2434 ((-523) |#1|)) (-15 -3690 ((-108) |#1|)) (-15 -1775 ((-3 (-523) "failed") |#1|))) +((-1918 (((-3 (-2 (|:| |mainpart| (-383 (-883 |#1|))) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 (-883 |#1|))) (|:| |logand| (-383 (-883 |#1|))))))) "failed") (-383 (-883 |#1|)) (-1087) (-589 (-383 (-883 |#1|)))) 43)) (-1493 (((-540 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-1087)) 25)) (-2808 (((-3 (-383 (-883 |#1|)) "failed") (-383 (-883 |#1|)) (-1087)) 20)) (-1479 (((-3 (-2 (|:| -1825 (-383 (-883 |#1|))) (|:| |coeff| (-383 (-883 |#1|)))) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|))) 32))) +(((-529 |#1|) (-10 -7 (-15 -1493 ((-540 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -2808 ((-3 (-383 (-883 |#1|)) "failed") (-383 (-883 |#1|)) (-1087))) (-15 -1918 ((-3 (-2 (|:| |mainpart| (-383 (-883 |#1|))) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 (-883 |#1|))) (|:| |logand| (-383 (-883 |#1|))))))) "failed") (-383 (-883 |#1|)) (-1087) (-589 (-383 (-883 |#1|))))) (-15 -1479 ((-3 (-2 (|:| -1825 (-383 (-883 |#1|))) (|:| |coeff| (-383 (-883 |#1|)))) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|))))) (-13 (-515) (-964 (-523)) (-136))) (T -529)) +((-1479 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-964 (-523)) (-136))) (-5 *2 (-2 (|:| -1825 (-383 (-883 *5))) (|:| |coeff| (-383 (-883 *5))))) (-5 *1 (-529 *5)) (-5 *3 (-383 (-883 *5))))) (-1918 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 (-383 (-883 *6)))) (-5 *3 (-383 (-883 *6))) (-4 *6 (-13 (-515) (-964 (-523)) (-136))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-529 *6)))) (-2808 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-383 (-883 *4))) (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-964 (-523)) (-136))) (-5 *1 (-529 *4)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-964 (-523)) (-136))) (-5 *2 (-540 (-383 (-883 *5)))) (-5 *1 (-529 *5)) (-5 *3 (-383 (-883 *5)))))) +(-10 -7 (-15 -1493 ((-540 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -2808 ((-3 (-383 (-883 |#1|)) "failed") (-383 (-883 |#1|)) (-1087))) (-15 -1918 ((-3 (-2 (|:| |mainpart| (-383 (-883 |#1|))) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 (-883 |#1|))) (|:| |logand| (-383 (-883 |#1|))))))) "failed") (-383 (-883 |#1|)) (-1087) (-589 (-383 (-883 |#1|))))) (-15 -1479 ((-3 (-2 (|:| -1825 (-383 (-883 |#1|))) (|:| |coeff| (-383 (-883 |#1|)))) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|))))) +((-1680 (((-108) $ $) 59)) (-2603 (((-108) $) 36)) (-2872 ((|#1| $) 30)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) 63)) (-1462 (($ $) 123)) (-1285 (($ $) 103)) (-4016 ((|#1| $) 28)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2437 (($ $) NIL)) (-1441 (($ $) 125)) (-1260 (($ $) 99)) (-1481 (($ $) 127)) (-1309 (($ $) 107)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) 78)) (-3508 (((-523) $) 80)) (-1444 (((-3 $ "failed") $) 62)) (-3955 (($ |#1| |#1|) 26)) (-3712 (((-108) $) 33)) (-3352 (($) 89)) (-2769 (((-108) $) 43)) (-1973 (($ $ (-523)) NIL)) (-2057 (((-108) $) 34)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2313 (($ $) 91)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-2153 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-383 (-523))) 77)) (-1830 ((|#1| $) 27)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) 65) (($ (-589 $)) NIL)) (-4007 (((-3 $ "failed") $ $) 64)) (-2922 (($ $) 93)) (-2306 (($ $) 131)) (-1322 (($ $) 105)) (-1471 (($ $) 133)) (-1295 (($ $) 109)) (-1453 (($ $) 129)) (-1274 (($ $) 101)) (-1660 (((-108) $ |#1|) 31)) (-1691 (((-794) $) 85) (($ (-523)) 67) (($ $) NIL) (($ (-523)) 67)) (-3272 (((-710)) 87)) (-2341 (($ $) 145)) (-1401 (($ $) 115)) (-2801 (((-108) $ $) NIL)) (-2318 (($ $) 143)) (-1334 (($ $) 111)) (-2366 (($ $) 141)) (-1421 (($ $) 121)) (-2102 (($ $) 139)) (-1431 (($ $) 119)) (-2353 (($ $) 137)) (-1413 (($ $) 117)) (-2330 (($ $) 135)) (-1346 (($ $) 113)) (-2423 (($ $ (-852)) 55) (($ $ (-710)) NIL)) (-1879 (($) 21 T CONST)) (-1891 (($) 10 T CONST)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 37)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 35)) (-4060 (($ $) 41) (($ $ $) 42)) (-4045 (($ $ $) 40)) (** (($ $ (-852)) 54) (($ $ (-710)) NIL) (($ $ $) 95) (($ $ (-383 (-523))) 147)) (* (($ (-852) $) 51) (($ (-710) $) NIL) (($ (-523) $) 50) (($ $ $) 48))) +(((-530 |#1|) (-513 |#1|) (-13 (-380) (-1109))) (T -530)) NIL (-513 |#1|) -((-3652 (((-3 (-589 (-1083 (-523))) "failed") (-589 (-1083 (-523))) (-1083 (-523))) 24))) -(((-531) (-10 -7 (-15 -3652 ((-3 (-589 (-1083 (-523))) "failed") (-589 (-1083 (-523))) (-1083 (-523)))))) (T -531)) -((-3652 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 (-523)))) (-5 *3 (-1083 (-523))) (-5 *1 (-531))))) -(-10 -7 (-15 -3652 ((-3 (-589 (-1083 (-523))) "failed") (-589 (-1083 (-523))) (-1083 (-523))))) -((-3328 (((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-1087)) 18)) (-1695 (((-589 (-562 |#2|)) (-589 |#2|) (-1087)) 23)) (-3288 (((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-589 (-562 |#2|))) 10)) (-3511 ((|#2| |#2| (-1087)) 52 (|has| |#1| (-515)))) (-1860 ((|#2| |#2| (-1087)) 77 (-12 (|has| |#2| (-261)) (|has| |#1| (-427))))) (-1273 (((-562 |#2|) (-562 |#2|) (-589 (-562 |#2|)) (-1087)) 25)) (-4213 (((-562 |#2|) (-589 (-562 |#2|))) 24)) (-2485 (((-540 |#2|) |#2| (-1087) (-1 (-540 |#2|) |#2| (-1087)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087))) 101 (-12 (|has| |#2| (-261)) (|has| |#2| (-575)) (|has| |#2| (-964 (-1087))) (|has| |#1| (-564 (-823 (-523)))) (|has| |#1| (-427)) (|has| |#1| (-817 (-523))))))) -(((-532 |#1| |#2|) (-10 -7 (-15 -3328 ((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-1087))) (-15 -4213 ((-562 |#2|) (-589 (-562 |#2|)))) (-15 -1273 ((-562 |#2|) (-562 |#2|) (-589 (-562 |#2|)) (-1087))) (-15 -3288 ((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-589 (-562 |#2|)))) (-15 -1695 ((-589 (-562 |#2|)) (-589 |#2|) (-1087))) (IF (|has| |#1| (-515)) (-15 -3511 (|#2| |#2| (-1087))) |%noBranch|) (IF (|has| |#1| (-427)) (IF (|has| |#2| (-261)) (PROGN (-15 -1860 (|#2| |#2| (-1087))) (IF (|has| |#1| (-564 (-823 (-523)))) (IF (|has| |#1| (-817 (-523))) (IF (|has| |#2| (-575)) (IF (|has| |#2| (-964 (-1087))) (-15 -2485 ((-540 |#2|) |#2| (-1087) (-1 (-540 |#2|) |#2| (-1087)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-786) (-406 |#1|)) (T -532)) -((-2485 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-540 *3) *3 (-1087))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1087))) (-4 *3 (-261)) (-4 *3 (-575)) (-4 *3 (-964 *4)) (-4 *3 (-406 *7)) (-5 *4 (-1087)) (-4 *7 (-564 (-823 (-523)))) (-4 *7 (-427)) (-4 *7 (-817 (-523))) (-4 *7 (-786)) (-5 *2 (-540 *3)) (-5 *1 (-532 *7 *3)))) (-1860 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-427)) (-4 *4 (-786)) (-5 *1 (-532 *4 *2)) (-4 *2 (-261)) (-4 *2 (-406 *4)))) (-3511 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-515)) (-4 *4 (-786)) (-5 *1 (-532 *4 *2)) (-4 *2 (-406 *4)))) (-1695 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-1087)) (-4 *6 (-406 *5)) (-4 *5 (-786)) (-5 *2 (-589 (-562 *6))) (-5 *1 (-532 *5 *6)))) (-3288 (*1 *2 *2 *2) (-12 (-5 *2 (-589 (-562 *4))) (-4 *4 (-406 *3)) (-4 *3 (-786)) (-5 *1 (-532 *3 *4)))) (-1273 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-589 (-562 *6))) (-5 *4 (-1087)) (-5 *2 (-562 *6)) (-4 *6 (-406 *5)) (-4 *5 (-786)) (-5 *1 (-532 *5 *6)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-589 (-562 *5))) (-4 *4 (-786)) (-5 *2 (-562 *5)) (-5 *1 (-532 *4 *5)) (-4 *5 (-406 *4)))) (-3328 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-562 *5))) (-5 *3 (-1087)) (-4 *5 (-406 *4)) (-4 *4 (-786)) (-5 *1 (-532 *4 *5))))) -(-10 -7 (-15 -3328 ((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-1087))) (-15 -4213 ((-562 |#2|) (-589 (-562 |#2|)))) (-15 -1273 ((-562 |#2|) (-562 |#2|) (-589 (-562 |#2|)) (-1087))) (-15 -3288 ((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-589 (-562 |#2|)))) (-15 -1695 ((-589 (-562 |#2|)) (-589 |#2|) (-1087))) (IF (|has| |#1| (-515)) (-15 -3511 (|#2| |#2| (-1087))) |%noBranch|) (IF (|has| |#1| (-427)) (IF (|has| |#2| (-261)) (PROGN (-15 -1860 (|#2| |#2| (-1087))) (IF (|has| |#1| (-564 (-823 (-523)))) (IF (|has| |#1| (-817 (-523))) (IF (|has| |#2| (-575)) (IF (|has| |#2| (-964 (-1087))) (-15 -2485 ((-540 |#2|) |#2| (-1087) (-1 (-540 |#2|) |#2| (-1087)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1528 (((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-589 |#1|) "failed") (-523) |#1| |#1|)) 168)) (-2669 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-589 (-383 |#2|))) 144)) (-3575 (((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-589 (-383 |#2|))) 141)) (-1958 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 130)) (-2105 (((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 154)) (-3784 (((-3 (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-383 |#2|)) 171)) (-3609 (((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-383 |#2|)) 174)) (-3163 (((-2 (|:| |ir| (-540 (-383 |#2|))) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|)) 82)) (-3281 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-2159 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-589 (-383 |#2|))) 148)) (-1407 (((-3 (-570 |#1| |#2|) "failed") (-570 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|)) 134)) (-2447 (((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|)) 158)) (-2092 (((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-383 |#2|)) 179))) -(((-533 |#1| |#2|) (-10 -7 (-15 -2105 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2447 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|))) (-15 -1528 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-589 |#1|) "failed") (-523) |#1| |#1|))) (-15 -3609 ((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-383 |#2|))) (-15 -2092 ((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-383 |#2|))) (-15 -2669 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-589 (-383 |#2|)))) (-15 -2159 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-589 (-383 |#2|)))) (-15 -3784 ((-3 (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-383 |#2|))) (-15 -3575 ((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-589 (-383 |#2|)))) (-15 -1958 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1407 ((-3 (-570 |#1| |#2|) "failed") (-570 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|))) (-15 -3163 ((-2 (|:| |ir| (-540 (-383 |#2|))) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|))) (-15 -3281 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-339) (-1144 |#1|)) (T -533)) -((-3281 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-533 *5 *3)))) (-3163 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |ir| (-540 (-383 *6))) (|:| |specpart| (-383 *6)) (|:| |polypart| *6))) (-5 *1 (-533 *5 *6)) (-5 *3 (-383 *6)))) (-1407 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-570 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3159 *4) (|:| |sol?| (-108))) (-523) *4)) (-4 *4 (-339)) (-4 *5 (-1144 *4)) (-5 *1 (-533 *4 *5)))) (-1958 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2462 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-339)) (-5 *1 (-533 *4 *2)) (-4 *2 (-1144 *4)))) (-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-589 (-383 *7))) (-4 *7 (-1144 *6)) (-5 *3 (-383 *7)) (-4 *6 (-339)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-533 *6 *7)))) (-3784 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| -2462 (-383 *6)) (|:| |coeff| (-383 *6)))) (-5 *1 (-533 *5 *6)) (-5 *3 (-383 *6)))) (-2159 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3159 *7) (|:| |sol?| (-108))) (-523) *7)) (-5 *6 (-589 (-383 *8))) (-4 *7 (-339)) (-4 *8 (-1144 *7)) (-5 *3 (-383 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-533 *7 *8)))) (-2669 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2462 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-589 (-383 *8))) (-4 *7 (-339)) (-4 *8 (-1144 *7)) (-5 *3 (-383 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-533 *7 *8)))) (-2092 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3159 *6) (|:| |sol?| (-108))) (-523) *6)) (-4 *6 (-339)) (-4 *7 (-1144 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-383 *7)) (|:| |a0| *6)) (-2 (|:| -2462 (-383 *7)) (|:| |coeff| (-383 *7))) "failed")) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7)))) (-3609 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2462 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-339)) (-4 *7 (-1144 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-383 *7)) (|:| |a0| *6)) (-2 (|:| -2462 (-383 *7)) (|:| |coeff| (-383 *7))) "failed")) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7)))) (-1528 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-589 *6) "failed") (-523) *6 *6)) (-4 *6 (-339)) (-4 *7 (-1144 *6)) (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7)))) (-2447 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3159 *6) (|:| |sol?| (-108))) (-523) *6)) (-4 *6 (-339)) (-4 *7 (-1144 *6)) (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7)))) (-2105 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2462 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-339)) (-4 *7 (-1144 *6)) (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) -(-10 -7 (-15 -2105 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2447 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|))) (-15 -1528 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-589 |#1|) "failed") (-523) |#1| |#1|))) (-15 -3609 ((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-383 |#2|))) (-15 -2092 ((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-383 |#2|))) (-15 -2669 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-589 (-383 |#2|)))) (-15 -2159 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-589 (-383 |#2|)))) (-15 -3784 ((-3 (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-383 |#2|))) (-15 -3575 ((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-589 (-383 |#2|)))) (-15 -1958 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1407 ((-3 (-570 |#1| |#2|) "failed") (-570 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|))) (-15 -3163 ((-2 (|:| |ir| (-540 (-383 |#2|))) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|))) (-15 -3281 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-3990 (((-3 |#2| "failed") |#2| (-1087) (-1087)) 10))) -(((-534 |#1| |#2|) (-10 -7 (-15 -3990 ((-3 |#2| "failed") |#2| (-1087) (-1087)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-889) (-1051) (-29 |#1|))) (T -534)) -((-3990 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1087)) (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *1 (-534 *4 *2)) (-4 *2 (-13 (-1108) (-889) (-1051) (-29 *4)))))) -(-10 -7 (-15 -3990 ((-3 |#2| "failed") |#2| (-1087) (-1087)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $ (-523)) 65)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2635 (($ (-1083 (-523)) (-523)) 71)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) 57)) (-2816 (($ $) 33)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1640 (((-710) $) 15)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3507 (((-523)) 27)) (-2329 (((-523) $) 31)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4097 (($ $ (-523)) 21)) (-3746 (((-3 $ "failed") $ $) 58)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) 16)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 60)) (-1617 (((-1068 (-523)) $) 18)) (-1353 (($ $) 23)) (-1458 (((-794) $) 86) (($ (-523)) 51) (($ $) NIL)) (-1621 (((-710)) 14)) (-1704 (((-108) $ $) NIL)) (-2562 (((-523) $ (-523)) 35)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 34 T CONST)) (-2767 (($) 19 T CONST)) (-3983 (((-108) $ $) 38)) (-4087 (($ $) 50) (($ $ $) 36)) (-4075 (($ $ $) 49)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 53) (($ $ $) 54))) +((-3302 (((-3 (-589 (-1083 (-523))) "failed") (-589 (-1083 (-523))) (-1083 (-523))) 24))) +(((-531) (-10 -7 (-15 -3302 ((-3 (-589 (-1083 (-523))) "failed") (-589 (-1083 (-523))) (-1083 (-523)))))) (T -531)) +((-3302 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 (-523)))) (-5 *3 (-1083 (-523))) (-5 *1 (-531))))) +(-10 -7 (-15 -3302 ((-3 (-589 (-1083 (-523))) "failed") (-589 (-1083 (-523))) (-1083 (-523))))) +((-3143 (((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-1087)) 18)) (-2744 (((-589 (-562 |#2|)) (-589 |#2|) (-1087)) 23)) (-3321 (((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-589 (-562 |#2|))) 10)) (-1439 ((|#2| |#2| (-1087)) 53 (|has| |#1| (-515)))) (-1788 ((|#2| |#2| (-1087)) 78 (-12 (|has| |#2| (-261)) (|has| |#1| (-427))))) (-4091 (((-562 |#2|) (-562 |#2|) (-589 (-562 |#2|)) (-1087)) 25)) (-1234 (((-562 |#2|) (-589 (-562 |#2|))) 24)) (-3846 (((-540 |#2|) |#2| (-1087) (-1 (-540 |#2|) |#2| (-1087)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087))) 102 (-12 (|has| |#2| (-261)) (|has| |#2| (-575)) (|has| |#2| (-964 (-1087))) (|has| |#1| (-564 (-823 (-523)))) (|has| |#1| (-427)) (|has| |#1| (-817 (-523))))))) +(((-532 |#1| |#2|) (-10 -7 (-15 -3143 ((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-1087))) (-15 -1234 ((-562 |#2|) (-589 (-562 |#2|)))) (-15 -4091 ((-562 |#2|) (-562 |#2|) (-589 (-562 |#2|)) (-1087))) (-15 -3321 ((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-589 (-562 |#2|)))) (-15 -2744 ((-589 (-562 |#2|)) (-589 |#2|) (-1087))) (IF (|has| |#1| (-515)) (-15 -1439 (|#2| |#2| (-1087))) |%noBranch|) (IF (|has| |#1| (-427)) (IF (|has| |#2| (-261)) (PROGN (-15 -1788 (|#2| |#2| (-1087))) (IF (|has| |#1| (-564 (-823 (-523)))) (IF (|has| |#1| (-817 (-523))) (IF (|has| |#2| (-575)) (IF (|has| |#2| (-964 (-1087))) (-15 -3846 ((-540 |#2|) |#2| (-1087) (-1 (-540 |#2|) |#2| (-1087)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-786) (-406 |#1|)) (T -532)) +((-3846 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-540 *3) *3 (-1087))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1087))) (-4 *3 (-261)) (-4 *3 (-575)) (-4 *3 (-964 *4)) (-4 *3 (-406 *7)) (-5 *4 (-1087)) (-4 *7 (-564 (-823 (-523)))) (-4 *7 (-427)) (-4 *7 (-817 (-523))) (-4 *7 (-786)) (-5 *2 (-540 *3)) (-5 *1 (-532 *7 *3)))) (-1788 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-427)) (-4 *4 (-786)) (-5 *1 (-532 *4 *2)) (-4 *2 (-261)) (-4 *2 (-406 *4)))) (-1439 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-515)) (-4 *4 (-786)) (-5 *1 (-532 *4 *2)) (-4 *2 (-406 *4)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-1087)) (-4 *6 (-406 *5)) (-4 *5 (-786)) (-5 *2 (-589 (-562 *6))) (-5 *1 (-532 *5 *6)))) (-3321 (*1 *2 *2 *2) (-12 (-5 *2 (-589 (-562 *4))) (-4 *4 (-406 *3)) (-4 *3 (-786)) (-5 *1 (-532 *3 *4)))) (-4091 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-589 (-562 *6))) (-5 *4 (-1087)) (-5 *2 (-562 *6)) (-4 *6 (-406 *5)) (-4 *5 (-786)) (-5 *1 (-532 *5 *6)))) (-1234 (*1 *2 *3) (-12 (-5 *3 (-589 (-562 *5))) (-4 *4 (-786)) (-5 *2 (-562 *5)) (-5 *1 (-532 *4 *5)) (-4 *5 (-406 *4)))) (-3143 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-562 *5))) (-5 *3 (-1087)) (-4 *5 (-406 *4)) (-4 *4 (-786)) (-5 *1 (-532 *4 *5))))) +(-10 -7 (-15 -3143 ((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-1087))) (-15 -1234 ((-562 |#2|) (-589 (-562 |#2|)))) (-15 -4091 ((-562 |#2|) (-562 |#2|) (-589 (-562 |#2|)) (-1087))) (-15 -3321 ((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-589 (-562 |#2|)))) (-15 -2744 ((-589 (-562 |#2|)) (-589 |#2|) (-1087))) (IF (|has| |#1| (-515)) (-15 -1439 (|#2| |#2| (-1087))) |%noBranch|) (IF (|has| |#1| (-427)) (IF (|has| |#2| (-261)) (PROGN (-15 -1788 (|#2| |#2| (-1087))) (IF (|has| |#1| (-564 (-823 (-523)))) (IF (|has| |#1| (-817 (-523))) (IF (|has| |#2| (-575)) (IF (|has| |#2| (-964 (-1087))) (-15 -3846 ((-540 |#2|) |#2| (-1087) (-1 (-540 |#2|) |#2| (-1087)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1828 (((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-589 |#1|) "failed") (-523) |#1| |#1|)) 170)) (-3139 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-589 (-383 |#2|))) 146)) (-1970 (((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-589 (-383 |#2|))) 143)) (-3267 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 132)) (-2413 (((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 156)) (-2062 (((-3 (-2 (|:| -1825 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-383 |#2|)) 173)) (-4175 (((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1825 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-383 |#2|)) 176)) (-4202 (((-2 (|:| |ir| (-540 (-383 |#2|))) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|)) 82)) (-3956 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-1802 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3855 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-589 (-383 |#2|))) 150)) (-2986 (((-3 (-570 |#1| |#2|) "failed") (-570 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3855 |#1|) (|:| |sol?| (-108))) (-523) |#1|)) 136)) (-1699 (((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3855 |#1|) (|:| |sol?| (-108))) (-523) |#1|)) 160)) (-2266 (((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1825 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3855 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-383 |#2|)) 181))) +(((-533 |#1| |#2|) (-10 -7 (-15 -2413 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1699 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3855 |#1|) (|:| |sol?| (-108))) (-523) |#1|))) (-15 -1828 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-589 |#1|) "failed") (-523) |#1| |#1|))) (-15 -4175 ((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1825 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-383 |#2|))) (-15 -2266 ((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1825 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3855 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-383 |#2|))) (-15 -3139 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-589 (-383 |#2|)))) (-15 -1802 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3855 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-589 (-383 |#2|)))) (-15 -2062 ((-3 (-2 (|:| -1825 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-383 |#2|))) (-15 -1970 ((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-589 (-383 |#2|)))) (-15 -3267 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2986 ((-3 (-570 |#1| |#2|) "failed") (-570 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3855 |#1|) (|:| |sol?| (-108))) (-523) |#1|))) (-15 -4202 ((-2 (|:| |ir| (-540 (-383 |#2|))) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|))) (-15 -3956 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-339) (-1145 |#1|)) (T -533)) +((-3956 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-533 *5 *3)))) (-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |ir| (-540 (-383 *6))) (|:| |specpart| (-383 *6)) (|:| |polypart| *6))) (-5 *1 (-533 *5 *6)) (-5 *3 (-383 *6)))) (-2986 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-570 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3855 *4) (|:| |sol?| (-108))) (-523) *4)) (-4 *4 (-339)) (-4 *5 (-1145 *4)) (-5 *1 (-533 *4 *5)))) (-3267 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1825 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-339)) (-5 *1 (-533 *4 *2)) (-4 *2 (-1145 *4)))) (-1970 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-589 (-383 *7))) (-4 *7 (-1145 *6)) (-5 *3 (-383 *7)) (-4 *6 (-339)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-533 *6 *7)))) (-2062 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| -1825 (-383 *6)) (|:| |coeff| (-383 *6)))) (-5 *1 (-533 *5 *6)) (-5 *3 (-383 *6)))) (-1802 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3855 *7) (|:| |sol?| (-108))) (-523) *7)) (-5 *6 (-589 (-383 *8))) (-4 *7 (-339)) (-4 *8 (-1145 *7)) (-5 *3 (-383 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-533 *7 *8)))) (-3139 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1825 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-589 (-383 *8))) (-4 *7 (-339)) (-4 *8 (-1145 *7)) (-5 *3 (-383 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-533 *7 *8)))) (-2266 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3855 *6) (|:| |sol?| (-108))) (-523) *6)) (-4 *6 (-339)) (-4 *7 (-1145 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-383 *7)) (|:| |a0| *6)) (-2 (|:| -1825 (-383 *7)) (|:| |coeff| (-383 *7))) "failed")) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7)))) (-4175 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1825 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-339)) (-4 *7 (-1145 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-383 *7)) (|:| |a0| *6)) (-2 (|:| -1825 (-383 *7)) (|:| |coeff| (-383 *7))) "failed")) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7)))) (-1828 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-589 *6) "failed") (-523) *6 *6)) (-4 *6 (-339)) (-4 *7 (-1145 *6)) (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7)))) (-1699 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3855 *6) (|:| |sol?| (-108))) (-523) *6)) (-4 *6 (-339)) (-4 *7 (-1145 *6)) (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7)))) (-2413 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1825 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-339)) (-4 *7 (-1145 *6)) (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) +(-10 -7 (-15 -2413 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1699 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3855 |#1|) (|:| |sol?| (-108))) (-523) |#1|))) (-15 -1828 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-589 |#1|) "failed") (-523) |#1| |#1|))) (-15 -4175 ((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1825 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-383 |#2|))) (-15 -2266 ((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1825 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3855 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-383 |#2|))) (-15 -3139 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-589 (-383 |#2|)))) (-15 -1802 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3855 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-589 (-383 |#2|)))) (-15 -2062 ((-3 (-2 (|:| -1825 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-383 |#2|))) (-15 -1970 ((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-589 (-383 |#2|)))) (-15 -3267 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2986 ((-3 (-570 |#1| |#2|) "failed") (-570 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3855 |#1|) (|:| |sol?| (-108))) (-523) |#1|))) (-15 -4202 ((-2 (|:| |ir| (-540 (-383 |#2|))) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|))) (-15 -3956 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3344 (((-3 |#2| "failed") |#2| (-1087) (-1087)) 10))) +(((-534 |#1| |#2|) (-10 -7 (-15 -3344 ((-3 |#2| "failed") |#2| (-1087) (-1087)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1109) (-889) (-1051) (-29 |#1|))) (T -534)) +((-3344 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1087)) (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *1 (-534 *4 *2)) (-4 *2 (-13 (-1109) (-889) (-1051) (-29 *4)))))) +(-10 -7 (-15 -3344 ((-3 |#2| "failed") |#2| (-1087) (-1087)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2437 (($ $ (-523)) 66)) (-2787 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-2838 (($ (-1083 (-523)) (-523)) 72)) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) 58)) (-4012 (($ $) 34)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3437 (((-710) $) 15)) (-2769 (((-108) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2547 (((-523)) 29)) (-2903 (((-523) $) 32)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3053 (($ $ (-523)) 21)) (-4007 (((-3 $ "failed") $ $) 59)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) 16)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 61)) (-3229 (((-1068 (-523)) $) 18)) (-2488 (($ $) 23)) (-1691 (((-794) $) 87) (($ (-523)) 52) (($ $) NIL)) (-3272 (((-710)) 14)) (-2801 (((-108) $ $) NIL)) (-4108 (((-523) $ (-523)) 36)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 35 T CONST)) (-1891 (($) 19 T CONST)) (-3941 (((-108) $ $) 39)) (-4060 (($ $) 51) (($ $ $) 37)) (-4045 (($ $ $) 50)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 54) (($ $ $) 55))) (((-535 |#1| |#2|) (-800 |#1|) (-523) (-108)) (T -535)) NIL (-800 |#1|) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 18)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 (($ $ (-852)) NIL (|has| $ (-344))) (($ $) NIL)) (-2430 (((-1096 (-852) (-710)) (-523)) 47)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 $ "failed") $) 75)) (-3474 (($ $) 74)) (-3409 (($ (-1168 $)) 73)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) 30)) (-4032 (($) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) 49)) (-2155 (((-108) $) NIL)) (-1991 (($ $) NIL) (($ $ (-710)) NIL)) (-2657 (((-108) $) NIL)) (-1640 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2023 (((-108) $) NIL)) (-1881 (($) 35 (|has| $ (-344)))) (-2307 (((-108) $) NIL (|has| $ (-344)))) (-3892 (($ $ (-852)) NIL (|has| $ (-344))) (($ $) NIL)) (-4058 (((-3 $ "failed") $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 $) $ (-852)) NIL (|has| $ (-344))) (((-1083 $) $) 83)) (-2072 (((-852) $) 55)) (-3943 (((-1083 $) $) NIL (|has| $ (-344)))) (-2122 (((-3 (-1083 $) "failed") $ $) NIL (|has| $ (-344))) (((-1083 $) $) NIL (|has| $ (-344)))) (-3865 (($ $ (-1083 $)) NIL (|has| $ (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL T CONST)) (-3878 (($ (-852)) 48)) (-1290 (((-108) $) 67)) (-2783 (((-1034) $) NIL)) (-3441 (($) 16 (|has| $ (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 40)) (-1820 (((-394 $) $) NIL)) (-4124 (((-852)) 66) (((-772 (-852))) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-3 (-710) "failed") $ $) NIL) (((-710) $) NIL)) (-3203 (((-126)) NIL)) (-3523 (($ $ (-710)) NIL) (($ $) NIL)) (-2299 (((-852) $) 65) (((-772 (-852)) $) NIL)) (-3727 (((-1083 $)) 82)) (-3425 (($) 54)) (-2749 (($) 36 (|has| $ (-344)))) (-2966 (((-629 $) (-1168 $)) NIL) (((-1168 $) $) 71)) (-3663 (((-523) $) 26)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) 28) (($ $) NIL) (($ (-383 (-523))) NIL)) (-3901 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1621 (((-710)) 37)) (-4041 (((-1168 $) (-852)) 77) (((-1168 $)) 76)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 19 T CONST)) (-2767 (($) 15 T CONST)) (-3454 (($ $ (-710)) NIL (|has| $ (-344))) (($ $) NIL (|has| $ (-344)))) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 24)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 61) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 18)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2803 (((-108) $) NIL)) (-3019 (((-710)) NIL)) (-1477 (($ $ (-852)) NIL (|has| $ (-344))) (($ $) NIL)) (-1557 (((-1097 (-852) (-710)) (-523)) 47)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-2395 (((-710)) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 $ "failed") $) 75)) (-3508 (($ $) 74)) (-2754 (($ (-1169 $)) 73)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) 30)) (-1631 (($) NIL)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3665 (($) 49)) (-1766 (((-108) $) NIL)) (-3610 (($ $) NIL) (($ $ (-710)) NIL)) (-3049 (((-108) $) NIL)) (-3437 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2769 (((-108) $) NIL)) (-3753 (($) 35 (|has| $ (-344)))) (-2706 (((-108) $) NIL (|has| $ (-344)))) (-1863 (($ $ (-852)) NIL (|has| $ (-344))) (($ $) NIL)) (-2738 (((-3 $ "failed") $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2887 (((-1083 $) $ (-852)) NIL (|has| $ (-344))) (((-1083 $) $) 83)) (-2060 (((-852) $) 55)) (-4183 (((-1083 $) $) NIL (|has| $ (-344)))) (-1455 (((-3 (-1083 $) "failed") $ $) NIL (|has| $ (-344))) (((-1083 $) $) NIL (|has| $ (-344)))) (-1605 (($ $ (-1083 $)) NIL (|has| $ (-344)))) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL T CONST)) (-4013 (($ (-852)) 48)) (-3026 (((-108) $) 67)) (-3951 (((-1034) $) NIL)) (-1621 (($) 16 (|has| $ (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) 40)) (-2424 (((-394 $) $) NIL)) (-2151 (((-852)) 66) (((-772 (-852))) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2984 (((-3 (-710) "failed") $ $) NIL) (((-710) $) NIL)) (-3314 (((-126)) NIL)) (-3984 (($ $ (-710)) NIL) (($ $) NIL)) (-2640 (((-852) $) 65) (((-772 (-852)) $) NIL)) (-2762 (((-1083 $)) 82)) (-2893 (($) 54)) (-1614 (($) 36 (|has| $ (-344)))) (-2906 (((-629 $) (-1169 $)) NIL) (((-1169 $) $) 71)) (-1400 (((-523) $) 26)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) 28) (($ $) NIL) (($ (-383 (-523))) NIL)) (-1942 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3272 (((-710)) 37)) (-3760 (((-1169 $) (-852)) 77) (((-1169 $)) 76)) (-2801 (((-108) $ $) NIL)) (-1747 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 19 T CONST)) (-1891 (($) 15 T CONST)) (-2009 (($ $ (-710)) NIL (|has| $ (-344))) (($ $) NIL (|has| $ (-344)))) (-2909 (($ $ (-710)) NIL) (($ $) NIL)) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 24)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 61) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) (((-536 |#1|) (-13 (-325) (-305 $) (-564 (-523))) (-852)) (T -536)) NIL (-13 (-325) (-305 $) (-564 (-523))) -((-3753 (((-1173) (-1070)) 10))) -(((-537) (-10 -7 (-15 -3753 ((-1173) (-1070))))) (T -537)) -((-3753 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-537))))) -(-10 -7 (-15 -3753 ((-1173) (-1070)))) -((-2063 (((-540 |#2|) (-540 |#2|)) 38)) (-3686 (((-589 |#2|) (-540 |#2|)) 40)) (-2134 ((|#2| (-540 |#2|)) 47))) -(((-538 |#1| |#2|) (-10 -7 (-15 -2063 ((-540 |#2|) (-540 |#2|))) (-15 -3686 ((-589 |#2|) (-540 |#2|))) (-15 -2134 (|#2| (-540 |#2|)))) (-13 (-427) (-964 (-523)) (-786) (-585 (-523))) (-13 (-29 |#1|) (-1108))) (T -538)) -((-2134 (*1 *2 *3) (-12 (-5 *3 (-540 *2)) (-4 *2 (-13 (-29 *4) (-1108))) (-5 *1 (-538 *4 *2)) (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))))) (-3686 (*1 *2 *3) (-12 (-5 *3 (-540 *5)) (-4 *5 (-13 (-29 *4) (-1108))) (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-589 *5)) (-5 *1 (-538 *4 *5)))) (-2063 (*1 *2 *2) (-12 (-5 *2 (-540 *4)) (-4 *4 (-13 (-29 *3) (-1108))) (-4 *3 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *1 (-538 *3 *4))))) -(-10 -7 (-15 -2063 ((-540 |#2|) (-540 |#2|))) (-15 -3686 ((-589 |#2|) (-540 |#2|))) (-15 -2134 (|#2| (-540 |#2|)))) -((-3612 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-540 |#2|) (-1 |#2| |#1|) (-540 |#1|)) 26))) -(((-539 |#1| |#2|) (-10 -7 (-15 -3612 ((-540 |#2|) (-1 |#2| |#1|) (-540 |#1|))) (-15 -3612 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3612 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3612 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-339) (-339)) (T -539)) -((-3612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-339)) (-4 *6 (-339)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-539 *5 *6)))) (-3612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-339)) (-4 *2 (-339)) (-5 *1 (-539 *5 *2)))) (-3612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2462 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-339)) (-4 *6 (-339)) (-5 *2 (-2 (|:| -2462 *6) (|:| |coeff| *6))) (-5 *1 (-539 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-540 *5)) (-4 *5 (-339)) (-4 *6 (-339)) (-5 *2 (-540 *6)) (-5 *1 (-539 *5 *6))))) -(-10 -7 (-15 -3612 ((-540 |#2|) (-1 |#2| |#1|) (-540 |#1|))) (-15 -3612 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3612 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3612 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 69)) (-3474 ((|#1| $) NIL)) (-2462 ((|#1| $) 24)) (-1225 (((-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-3658 (($ |#1| (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-2124 (((-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $) 25)) (-3779 (((-1070) $) NIL)) (-1373 (($ |#1| |#1|) 32) (($ |#1| (-1087)) 43 (|has| |#1| (-964 (-1087))))) (-2783 (((-1034) $) NIL)) (-3998 (((-108) $) 28)) (-3523 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1087)) 82 (|has| |#1| (-831 (-1087))))) (-1458 (((-794) $) 96) (($ |#1|) 23)) (-2756 (($) 16 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) 15) (($ $ $) NIL)) (-4075 (($ $ $) 78)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 14) (($ (-383 (-523)) $) 35) (($ $ (-383 (-523))) NIL))) -(((-540 |#1|) (-13 (-657 (-383 (-523))) (-964 |#1|) (-10 -8 (-15 -3658 ($ |#1| (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2462 (|#1| $)) (-15 -2124 ((-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $)) (-15 -1225 ((-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3998 ((-108) $)) (-15 -1373 ($ |#1| |#1|)) (-15 -3523 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-831 (-1087))) (-15 -3523 (|#1| $ (-1087))) |%noBranch|) (IF (|has| |#1| (-964 (-1087))) (-15 -1373 ($ |#1| (-1087))) |%noBranch|))) (-339)) (T -540)) -((-3658 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 *2)) (|:| |logand| (-1083 *2))))) (-5 *4 (-589 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-339)) (-5 *1 (-540 *2)))) (-2462 (*1 *2 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-339)))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 *3)) (|:| |logand| (-1083 *3))))) (-5 *1 (-540 *3)) (-4 *3 (-339)))) (-1225 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-540 *3)) (-4 *3 (-339)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-339)))) (-1373 (*1 *1 *2 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-339)))) (-3523 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-540 *2)) (-4 *2 (-339)))) (-3523 (*1 *2 *1 *3) (-12 (-4 *2 (-339)) (-4 *2 (-831 *3)) (-5 *1 (-540 *2)) (-5 *3 (-1087)))) (-1373 (*1 *1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *1 (-540 *2)) (-4 *2 (-964 *3)) (-4 *2 (-339))))) -(-13 (-657 (-383 (-523))) (-964 |#1|) (-10 -8 (-15 -3658 ($ |#1| (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2462 (|#1| $)) (-15 -2124 ((-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $)) (-15 -1225 ((-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3998 ((-108) $)) (-15 -1373 ($ |#1| |#1|)) (-15 -3523 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-831 (-1087))) (-15 -3523 (|#1| $ (-1087))) |%noBranch|) (IF (|has| |#1| (-964 (-1087))) (-15 -1373 ($ |#1| (-1087))) |%noBranch|))) -((-3472 (((-108) |#1|) 16)) (-3128 (((-3 |#1| "failed") |#1|) 14)) (-3955 (((-2 (|:| -3007 |#1|) (|:| -2735 (-710))) |#1|) 31) (((-3 |#1| "failed") |#1| (-710)) 18)) (-2421 (((-108) |#1| (-710)) 19)) (-3437 ((|#1| |#1|) 32)) (-3377 ((|#1| |#1| (-710)) 34))) -(((-541 |#1|) (-10 -7 (-15 -2421 ((-108) |#1| (-710))) (-15 -3955 ((-3 |#1| "failed") |#1| (-710))) (-15 -3955 ((-2 (|:| -3007 |#1|) (|:| -2735 (-710))) |#1|)) (-15 -3377 (|#1| |#1| (-710))) (-15 -3472 ((-108) |#1|)) (-15 -3128 ((-3 |#1| "failed") |#1|)) (-15 -3437 (|#1| |#1|))) (-508)) (T -541)) -((-3437 (*1 *2 *2) (-12 (-5 *1 (-541 *2)) (-4 *2 (-508)))) (-3128 (*1 *2 *2) (|partial| -12 (-5 *1 (-541 *2)) (-4 *2 (-508)))) (-3472 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-541 *3)) (-4 *3 (-508)))) (-3377 (*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-541 *2)) (-4 *2 (-508)))) (-3955 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3007 *3) (|:| -2735 (-710)))) (-5 *1 (-541 *3)) (-4 *3 (-508)))) (-3955 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-710)) (-5 *1 (-541 *2)) (-4 *2 (-508)))) (-2421 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-108)) (-5 *1 (-541 *3)) (-4 *3 (-508))))) -(-10 -7 (-15 -2421 ((-108) |#1| (-710))) (-15 -3955 ((-3 |#1| "failed") |#1| (-710))) (-15 -3955 ((-2 (|:| -3007 |#1|) (|:| -2735 (-710))) |#1|)) (-15 -3377 (|#1| |#1| (-710))) (-15 -3472 ((-108) |#1|)) (-15 -3128 ((-3 |#1| "failed") |#1|)) (-15 -3437 (|#1| |#1|))) -((-2287 (((-1083 |#1|) (-852)) 27))) -(((-542 |#1|) (-10 -7 (-15 -2287 ((-1083 |#1|) (-852)))) (-325)) (T -542)) -((-2287 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-542 *4)) (-4 *4 (-325))))) -(-10 -7 (-15 -2287 ((-1083 |#1|) (-852)))) -((-2063 (((-540 (-383 (-883 |#1|))) (-540 (-383 (-883 |#1|)))) 26)) (-3417 (((-3 (-292 |#1|) (-589 (-292 |#1|))) (-383 (-883 |#1|)) (-1087)) 32 (|has| |#1| (-136)))) (-3686 (((-589 (-292 |#1|)) (-540 (-383 (-883 |#1|)))) 18)) (-1533 (((-292 |#1|) (-383 (-883 |#1|)) (-1087)) 30 (|has| |#1| (-136)))) (-2134 (((-292 |#1|) (-540 (-383 (-883 |#1|)))) 20))) -(((-543 |#1|) (-10 -7 (-15 -2063 ((-540 (-383 (-883 |#1|))) (-540 (-383 (-883 |#1|))))) (-15 -3686 ((-589 (-292 |#1|)) (-540 (-383 (-883 |#1|))))) (-15 -2134 ((-292 |#1|) (-540 (-383 (-883 |#1|))))) (IF (|has| |#1| (-136)) (PROGN (-15 -3417 ((-3 (-292 |#1|) (-589 (-292 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -1533 ((-292 |#1|) (-383 (-883 |#1|)) (-1087)))) |%noBranch|)) (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (T -543)) -((-1533 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-136)) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-292 *5)) (-5 *1 (-543 *5)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-136)) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-3 (-292 *5) (-589 (-292 *5)))) (-5 *1 (-543 *5)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-540 (-383 (-883 *4)))) (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-292 *4)) (-5 *1 (-543 *4)))) (-3686 (*1 *2 *3) (-12 (-5 *3 (-540 (-383 (-883 *4)))) (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-589 (-292 *4))) (-5 *1 (-543 *4)))) (-2063 (*1 *2 *2) (-12 (-5 *2 (-540 (-383 (-883 *3)))) (-4 *3 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *1 (-543 *3))))) -(-10 -7 (-15 -2063 ((-540 (-383 (-883 |#1|))) (-540 (-383 (-883 |#1|))))) (-15 -3686 ((-589 (-292 |#1|)) (-540 (-383 (-883 |#1|))))) (-15 -2134 ((-292 |#1|) (-540 (-383 (-883 |#1|))))) (IF (|has| |#1| (-136)) (PROGN (-15 -3417 ((-3 (-292 |#1|) (-589 (-292 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -1533 ((-292 |#1|) (-383 (-883 |#1|)) (-1087)))) |%noBranch|)) -((-2507 (((-589 (-629 (-523))) (-589 (-523)) (-589 (-836 (-523)))) 46) (((-589 (-629 (-523))) (-589 (-523))) 47) (((-629 (-523)) (-589 (-523)) (-836 (-523))) 42)) (-1741 (((-710) (-589 (-523))) 40))) -(((-544) (-10 -7 (-15 -1741 ((-710) (-589 (-523)))) (-15 -2507 ((-629 (-523)) (-589 (-523)) (-836 (-523)))) (-15 -2507 ((-589 (-629 (-523))) (-589 (-523)))) (-15 -2507 ((-589 (-629 (-523))) (-589 (-523)) (-589 (-836 (-523))))))) (T -544)) -((-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-523))) (-5 *4 (-589 (-836 (-523)))) (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-544)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-544)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-523))) (-5 *4 (-836 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-544)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-710)) (-5 *1 (-544))))) -(-10 -7 (-15 -1741 ((-710) (-589 (-523)))) (-15 -2507 ((-629 (-523)) (-589 (-523)) (-836 (-523)))) (-15 -2507 ((-589 (-629 (-523))) (-589 (-523)))) (-15 -2507 ((-589 (-629 (-523))) (-589 (-523)) (-589 (-836 (-523)))))) -((-2419 (((-589 |#5|) |#5| (-108)) 73)) (-1468 (((-108) |#5| (-589 |#5|)) 30))) -(((-545 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2419 ((-589 |#5|) |#5| (-108))) (-15 -1468 ((-108) |#5| (-589 |#5|)))) (-13 (-284) (-136)) (-732) (-786) (-987 |#1| |#2| |#3|) (-1025 |#1| |#2| |#3| |#4|)) (T -545)) -((-1468 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-1025 *5 *6 *7 *8)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-545 *5 *6 *7 *8 *3)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-589 *3)) (-5 *1 (-545 *5 *6 *7 *8 *3)) (-4 *3 (-1025 *5 *6 *7 *8))))) -(-10 -7 (-15 -2419 ((-589 |#5|) |#5| (-108))) (-15 -1468 ((-108) |#5| (-589 |#5|)))) -((-3924 (((-108) $ $) NIL (|has| (-133) (-1016)))) (-2109 (($ $) 34)) (-1303 (($ $) NIL)) (-2874 (($ $ (-133)) NIL) (($ $ (-130)) NIL)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1545 (((-108) $ $) 51)) (-1521 (((-108) $ $ (-523)) 46)) (-2063 (((-589 $) $ (-133)) 60) (((-589 $) $ (-130)) 61)) (-1964 (((-108) (-1 (-108) (-133) (-133)) $) NIL) (((-108) $) NIL (|has| (-133) (-786)))) (-1506 (($ (-1 (-108) (-133) (-133)) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| (-133) (-786))))) (-3974 (($ (-1 (-108) (-133) (-133)) $) NIL) (($ $) NIL (|has| (-133) (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 (((-133) $ (-523) (-133)) 45 (|has| $ (-6 -4245))) (((-133) $ (-1135 (-523)) (-133)) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-4123 (($ $ (-133)) 64) (($ $ (-130)) 65)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-2129 (($ $ (-1135 (-523)) $) 44)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-2557 (($ (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016)))) (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016)))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) NIL (|has| $ (-6 -4244))) (((-133) (-1 (-133) (-133) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2863 (((-133) $ (-523) (-133)) NIL (|has| $ (-6 -4245)))) (-2795 (((-133) $ (-523)) NIL)) (-1569 (((-108) $ $) 71)) (-1479 (((-523) (-1 (-108) (-133)) $) NIL) (((-523) (-133) $) NIL (|has| (-133) (-1016))) (((-523) (-133) $ (-523)) 48 (|has| (-133) (-1016))) (((-523) $ $ (-523)) 47) (((-523) (-130) $ (-523)) 50)) (-1666 (((-589 (-133)) $) NIL (|has| $ (-6 -4244)))) (-3052 (($ (-710) (-133)) 9)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 28 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| (-133) (-786)))) (-2178 (($ (-1 (-108) (-133) (-133)) $ $) NIL) (($ $ $) NIL (|has| (-133) (-786)))) (-2136 (((-589 (-133)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-3056 (((-523) $) 42 (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-133) (-786)))) (-2599 (((-108) $ $ (-133)) 72)) (-1547 (((-710) $ $ (-133)) 70)) (-2852 (($ (-1 (-133) (-133)) $) 33 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-133) (-133)) $) NIL) (($ (-1 (-133) (-133) (-133)) $ $) NIL)) (-2858 (($ $) 37)) (-2674 (($ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-4133 (($ $ (-133)) 62) (($ $ (-130)) 63)) (-3779 (((-1070) $) 38 (|has| (-133) (-1016)))) (-2847 (($ (-133) $ (-523)) NIL) (($ $ $ (-523)) 23)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-523) $) 69) (((-1034) $) NIL (|has| (-133) (-1016)))) (-1738 (((-133) $) NIL (|has| (-523) (-786)))) (-2114 (((-3 (-133) "failed") (-1 (-108) (-133)) $) NIL)) (-4203 (($ $ (-133)) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-133)))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-133)) (-589 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-1264 (((-589 (-133)) $) NIL)) (-3883 (((-108) $) 12)) (-3988 (($) 10)) (-3223 (((-133) $ (-523) (-133)) NIL) (((-133) $ (-523)) 52) (($ $ (-1135 (-523))) 21) (($ $ $) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244))) (((-710) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-3160 (($ $ $ (-523)) 66 (|has| $ (-6 -4245)))) (-1664 (($ $) 17)) (-3663 (((-499) $) NIL (|has| (-133) (-564 (-499))))) (-1472 (($ (-589 (-133))) NIL)) (-2326 (($ $ (-133)) NIL) (($ (-133) $) NIL) (($ $ $) 16) (($ (-589 $)) 67)) (-1458 (($ (-133)) NIL) (((-794) $) 27 (|has| (-133) (-563 (-794))))) (-2096 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| (-133) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-133) (-786)))) (-3983 (((-108) $ $) 14 (|has| (-133) (-1016)))) (-4030 (((-108) $ $) NIL (|has| (-133) (-786)))) (-4007 (((-108) $ $) 15 (|has| (-133) (-786)))) (-2676 (((-710) $) 13 (|has| $ (-6 -4244))))) -(((-546 |#1|) (-13 (-1056) (-10 -8 (-15 -2783 ((-523) $)))) (-523)) (T -546)) -((-2783 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-546 *3)) (-14 *3 *2)))) -(-13 (-1056) (-10 -8 (-15 -2783 ((-523) $)))) -((-1923 (((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2| (-1011 |#4|)) 32))) -(((-547 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1923 ((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2| (-1011 |#4|))) (-15 -1923 ((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2|))) (-732) (-786) (-515) (-880 |#3| |#1| |#2|)) (T -547)) -((-1923 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-515)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-523)))) (-5 *1 (-547 *5 *4 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) (-1923 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1011 *3)) (-4 *3 (-880 *7 *6 *4)) (-4 *6 (-732)) (-4 *4 (-786)) (-4 *7 (-515)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-523)))) (-5 *1 (-547 *6 *4 *7 *3))))) -(-10 -7 (-15 -1923 ((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2| (-1011 |#4|))) (-15 -1923 ((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 63)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-523)) 54) (($ $ (-523) (-523)) 55)) (-2133 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 60)) (-1321 (($ $) 100)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3823 (((-794) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) (-953 (-779 (-523))) (-1087) |#1| (-383 (-523))) 215)) (-2417 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 34)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2003 (((-108) $) NIL)) (-1640 (((-523) $) 58) (((-523) $ (-523)) 59)) (-2023 (((-108) $) NIL)) (-1349 (($ $ (-852)) 76)) (-3735 (($ (-1 |#1| (-523)) $) 73)) (-2620 (((-108) $) 25)) (-1933 (($ |#1| (-523)) 22) (($ $ (-1001) (-523)) NIL) (($ $ (-589 (-1001)) (-589 (-523))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) 67)) (-2239 (($ (-953 (-779 (-523))) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 11)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-3417 (($ $) 112 (|has| |#1| (-37 (-383 (-523)))))) (-3107 (((-3 $ "failed") $ $ (-108)) 99)) (-1670 (($ $ $) 108)) (-2783 (((-1034) $) NIL)) (-1597 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 13)) (-2069 (((-953 (-779 (-523))) $) 12)) (-4097 (($ $ (-523)) 45)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-523)))))) (-3223 ((|#1| $ (-523)) 57) (($ $ $) NIL (|has| (-523) (-1028)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (-2299 (((-523) $) NIL)) (-1353 (($ $) 46)) (-1458 (((-794) $) NIL) (($ (-523)) 28) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) 27 (|has| |#1| (-158)))) (-2365 ((|#1| $ (-523)) 56)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) 37)) (-1288 ((|#1| $) NIL)) (-2211 (($ $) 180 (|has| |#1| (-37 (-383 (-523)))))) (-2145 (($ $) 156 (|has| |#1| (-37 (-383 (-523)))))) (-3440 (($ $) 177 (|has| |#1| (-37 (-383 (-523)))))) (-3194 (($ $) 153 (|has| |#1| (-37 (-383 (-523)))))) (-2406 (($ $) 182 (|has| |#1| (-37 (-383 (-523)))))) (-1400 (($ $) 159 (|has| |#1| (-37 (-383 (-523)))))) (-2486 (($ $ (-383 (-523))) 146 (|has| |#1| (-37 (-383 (-523)))))) (-1893 (($ $ |#1|) 121 (|has| |#1| (-37 (-383 (-523)))))) (-2197 (($ $) 150 (|has| |#1| (-37 (-383 (-523)))))) (-1318 (($ $) 148 (|has| |#1| (-37 (-383 (-523)))))) (-1266 (($ $) 183 (|has| |#1| (-37 (-383 (-523)))))) (-2465 (($ $) 160 (|has| |#1| (-37 (-383 (-523)))))) (-4080 (($ $) 181 (|has| |#1| (-37 (-383 (-523)))))) (-1593 (($ $) 158 (|has| |#1| (-37 (-383 (-523)))))) (-2747 (($ $) 178 (|has| |#1| (-37 (-383 (-523)))))) (-3446 (($ $) 154 (|has| |#1| (-37 (-383 (-523)))))) (-3756 (($ $) 188 (|has| |#1| (-37 (-383 (-523)))))) (-1237 (($ $) 168 (|has| |#1| (-37 (-383 (-523)))))) (-1613 (($ $) 185 (|has| |#1| (-37 (-383 (-523)))))) (-3453 (($ $) 163 (|has| |#1| (-37 (-383 (-523)))))) (-3291 (($ $) 192 (|has| |#1| (-37 (-383 (-523)))))) (-2855 (($ $) 172 (|has| |#1| (-37 (-383 (-523)))))) (-2915 (($ $) 194 (|has| |#1| (-37 (-383 (-523)))))) (-4010 (($ $) 174 (|has| |#1| (-37 (-383 (-523)))))) (-3209 (($ $) 190 (|has| |#1| (-37 (-383 (-523)))))) (-1960 (($ $) 170 (|has| |#1| (-37 (-383 (-523)))))) (-1809 (($ $) 187 (|has| |#1| (-37 (-383 (-523)))))) (-2807 (($ $) 166 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2562 ((|#1| $ (-523)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 29 T CONST)) (-2767 (($) 38 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (-3983 (((-108) $ $) 65)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) 84) (($ $ $) 64)) (-4075 (($ $ $) 81)) (** (($ $ (-852)) NIL) (($ $ (-710)) 103)) (* (($ (-852) $) 89) (($ (-710) $) 87) (($ (-523) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-548 |#1|) (-13 (-1146 |#1| (-523)) (-10 -8 (-15 -2239 ($ (-953 (-779 (-523))) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))))) (-15 -2069 ((-953 (-779 (-523))) $)) (-15 -1597 ((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $)) (-15 -2417 ($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))))) (-15 -2620 ((-108) $)) (-15 -3735 ($ (-1 |#1| (-523)) $)) (-15 -3107 ((-3 $ "failed") $ $ (-108))) (-15 -1321 ($ $)) (-15 -1670 ($ $ $)) (-15 -3823 ((-794) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) (-953 (-779 (-523))) (-1087) |#1| (-383 (-523)))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $)) (-15 -1893 ($ $ |#1|)) (-15 -2486 ($ $ (-383 (-523)))) (-15 -1318 ($ $)) (-15 -2197 ($ $)) (-15 -3194 ($ $)) (-15 -3446 ($ $)) (-15 -2145 ($ $)) (-15 -1593 ($ $)) (-15 -1400 ($ $)) (-15 -2465 ($ $)) (-15 -3453 ($ $)) (-15 -2807 ($ $)) (-15 -1237 ($ $)) (-15 -1960 ($ $)) (-15 -2855 ($ $)) (-15 -4010 ($ $)) (-15 -3440 ($ $)) (-15 -2747 ($ $)) (-15 -2211 ($ $)) (-15 -4080 ($ $)) (-15 -2406 ($ $)) (-15 -1266 ($ $)) (-15 -1613 ($ $)) (-15 -1809 ($ $)) (-15 -3756 ($ $)) (-15 -3209 ($ $)) (-15 -3291 ($ $)) (-15 -2915 ($ $))) |%noBranch|))) (-973)) (T -548)) -((-2620 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-973)))) (-2239 (*1 *1 *2 *3) (-12 (-5 *2 (-953 (-779 (-523)))) (-5 *3 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *4)))) (-4 *4 (-973)) (-5 *1 (-548 *4)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-953 (-779 (-523)))) (-5 *1 (-548 *3)) (-4 *3 (-973)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) (-5 *1 (-548 *3)) (-4 *3 (-973)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) (-4 *3 (-973)) (-5 *1 (-548 *3)))) (-3735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-523))) (-4 *3 (-973)) (-5 *1 (-548 *3)))) (-3107 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-973)))) (-1321 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-973)))) (-1670 (*1 *1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-973)))) (-3823 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *6)))) (-5 *4 (-953 (-779 (-523)))) (-5 *5 (-1087)) (-5 *7 (-383 (-523))) (-4 *6 (-973)) (-5 *2 (-794)) (-5 *1 (-548 *6)))) (-3417 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1893 (*1 *1 *1 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2486 (*1 *1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-548 *3)) (-4 *3 (-37 *2)) (-4 *3 (-973)))) (-1318 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2197 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3194 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3446 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2145 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1593 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1400 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2465 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3453 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2807 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1237 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1960 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2855 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-4010 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3440 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2747 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2211 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-4080 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2406 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1266 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1613 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1809 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3756 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3209 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3291 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2915 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(-13 (-1146 |#1| (-523)) (-10 -8 (-15 -2239 ($ (-953 (-779 (-523))) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))))) (-15 -2069 ((-953 (-779 (-523))) $)) (-15 -1597 ((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $)) (-15 -2417 ($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))))) (-15 -2620 ((-108) $)) (-15 -3735 ($ (-1 |#1| (-523)) $)) (-15 -3107 ((-3 $ "failed") $ $ (-108))) (-15 -1321 ($ $)) (-15 -1670 ($ $ $)) (-15 -3823 ((-794) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) (-953 (-779 (-523))) (-1087) |#1| (-383 (-523)))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $)) (-15 -1893 ($ $ |#1|)) (-15 -2486 ($ $ (-383 (-523)))) (-15 -1318 ($ $)) (-15 -2197 ($ $)) (-15 -3194 ($ $)) (-15 -3446 ($ $)) (-15 -2145 ($ $)) (-15 -1593 ($ $)) (-15 -1400 ($ $)) (-15 -2465 ($ $)) (-15 -3453 ($ $)) (-15 -2807 ($ $)) (-15 -1237 ($ $)) (-15 -1960 ($ $)) (-15 -2855 ($ $)) (-15 -4010 ($ $)) (-15 -3440 ($ $)) (-15 -2747 ($ $)) (-15 -2211 ($ $)) (-15 -4080 ($ $)) (-15 -2406 ($ $)) (-15 -1266 ($ $)) (-15 -1613 ($ $)) (-15 -1809 ($ $)) (-15 -3756 ($ $)) (-15 -3209 ($ $)) (-15 -3291 ($ $)) (-15 -2915 ($ $))) |%noBranch|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2417 (($ (-1068 |#1|)) 9)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) 42)) (-2003 (((-108) $) 52)) (-1640 (((-710) $) 55) (((-710) $ (-710)) 54)) (-2023 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ $) 44 (|has| |#1| (-515)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-1068 |#1|) $) 23)) (-1621 (((-710)) 51)) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 10 T CONST)) (-2767 (($) 14 T CONST)) (-3983 (((-108) $ $) 22)) (-4087 (($ $) 30) (($ $ $) 16)) (-4075 (($ $ $) 25)) (** (($ $ (-852)) NIL) (($ $ (-710)) 49)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-523)) 36))) -(((-549 |#1|) (-13 (-973) (-10 -8 (-15 -1251 ((-1068 |#1|) $)) (-15 -2417 ($ (-1068 |#1|))) (-15 -2003 ((-108) $)) (-15 -1640 ((-710) $)) (-15 -1640 ((-710) $ (-710))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-523))) (IF (|has| |#1| (-515)) (-6 (-515)) |%noBranch|))) (-973)) (T -549)) -((-1251 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-549 *3)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) (-1640 (*1 *2 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-549 *2)) (-4 *2 (-973)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-549 *2)) (-4 *2 (-973)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-549 *3)) (-4 *3 (-973))))) -(-13 (-973) (-10 -8 (-15 -1251 ((-1068 |#1|) $)) (-15 -2417 ($ (-1068 |#1|))) (-15 -2003 ((-108) $)) (-15 -1640 ((-710) $)) (-15 -1640 ((-710) $ (-710))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-523))) (IF (|has| |#1| (-515)) (-6 (-515)) |%noBranch|))) -((-3612 (((-553 |#2|) (-1 |#2| |#1|) (-553 |#1|)) 15))) -(((-550 |#1| |#2|) (-10 -7 (-15 -3612 ((-553 |#2|) (-1 |#2| |#1|) (-553 |#1|)))) (-1122) (-1122)) (T -550)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-553 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-553 *6)) (-5 *1 (-550 *5 *6))))) -(-10 -7 (-15 -3612 ((-553 |#2|) (-1 |#2| |#1|) (-553 |#1|)))) -((-3612 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-1068 |#2|)) 20) (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-553 |#2|)) 19) (((-553 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-553 |#2|)) 18))) -(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -3612 ((-553 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-553 |#2|))) (-15 -3612 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-553 |#2|))) (-15 -3612 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-1068 |#2|)))) (-1122) (-1122) (-1122)) (T -551)) -((-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-553 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-1068 *8)) (-5 *1 (-551 *6 *7 *8)))) (-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-553 *7)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-1068 *8)) (-5 *1 (-551 *6 *7 *8)))) (-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-553 *6)) (-5 *5 (-553 *7)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-553 *8)) (-5 *1 (-551 *6 *7 *8))))) -(-10 -7 (-15 -3612 ((-553 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-553 |#2|))) (-15 -3612 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-553 |#2|))) (-15 -3612 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-1068 |#2|)))) -((-2214 ((|#3| |#3| (-589 (-562 |#3|)) (-589 (-1087))) 55)) (-1841 (((-155 |#2|) |#3|) 116)) (-2587 ((|#3| (-155 |#2|)) 43)) (-3032 ((|#2| |#3|) 19)) (-3171 ((|#3| |#2|) 32))) -(((-552 |#1| |#2| |#3|) (-10 -7 (-15 -2587 (|#3| (-155 |#2|))) (-15 -3032 (|#2| |#3|)) (-15 -3171 (|#3| |#2|)) (-15 -1841 ((-155 |#2|) |#3|)) (-15 -2214 (|#3| |#3| (-589 (-562 |#3|)) (-589 (-1087))))) (-13 (-515) (-786)) (-13 (-406 |#1|) (-930) (-1108)) (-13 (-406 (-155 |#1|)) (-930) (-1108))) (T -552)) -((-2214 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-589 (-562 *2))) (-5 *4 (-589 (-1087))) (-4 *2 (-13 (-406 (-155 *5)) (-930) (-1108))) (-4 *5 (-13 (-515) (-786))) (-5 *1 (-552 *5 *6 *2)) (-4 *6 (-13 (-406 *5) (-930) (-1108))))) (-1841 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786))) (-5 *2 (-155 *5)) (-5 *1 (-552 *4 *5 *3)) (-4 *5 (-13 (-406 *4) (-930) (-1108))) (-4 *3 (-13 (-406 (-155 *4)) (-930) (-1108))))) (-3171 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786))) (-4 *2 (-13 (-406 (-155 *4)) (-930) (-1108))) (-5 *1 (-552 *4 *3 *2)) (-4 *3 (-13 (-406 *4) (-930) (-1108))))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786))) (-4 *2 (-13 (-406 *4) (-930) (-1108))) (-5 *1 (-552 *4 *2 *3)) (-4 *3 (-13 (-406 (-155 *4)) (-930) (-1108))))) (-2587 (*1 *2 *3) (-12 (-5 *3 (-155 *5)) (-4 *5 (-13 (-406 *4) (-930) (-1108))) (-4 *4 (-13 (-515) (-786))) (-4 *2 (-13 (-406 (-155 *4)) (-930) (-1108))) (-5 *1 (-552 *4 *5 *2))))) -(-10 -7 (-15 -2587 (|#3| (-155 |#2|))) (-15 -3032 (|#2| |#3|)) (-15 -3171 (|#3| |#2|)) (-15 -1841 ((-155 |#2|) |#3|)) (-15 -2214 (|#3| |#3| (-589 (-562 |#3|)) (-589 (-1087))))) -((-3724 (($ (-1 (-108) |#1|) $) 16)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3655 (($ (-1 |#1| |#1|) |#1|) 9)) (-3699 (($ (-1 (-108) |#1|) $) 12)) (-3712 (($ (-1 (-108) |#1|) $) 14)) (-1472 (((-1068 |#1|) $) 17)) (-1458 (((-794) $) NIL))) -(((-553 |#1|) (-13 (-563 (-794)) (-10 -8 (-15 -3612 ($ (-1 |#1| |#1|) $)) (-15 -3699 ($ (-1 (-108) |#1|) $)) (-15 -3712 ($ (-1 (-108) |#1|) $)) (-15 -3724 ($ (-1 (-108) |#1|) $)) (-15 -3655 ($ (-1 |#1| |#1|) |#1|)) (-15 -1472 ((-1068 |#1|) $)))) (-1122)) (T -553)) -((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) (-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) (-3655 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-553 *3)) (-4 *3 (-1122))))) -(-13 (-563 (-794)) (-10 -8 (-15 -3612 ($ (-1 |#1| |#1|) $)) (-15 -3699 ($ (-1 (-108) |#1|) $)) (-15 -3712 ($ (-1 (-108) |#1|) $)) (-15 -3724 ($ (-1 (-108) |#1|) $)) (-15 -3655 ($ (-1 |#1| |#1|) |#1|)) (-15 -1472 ((-1068 |#1|) $)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2821 (($ (-710)) NIL (|has| |#1| (-23)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1777 (((-629 |#1|) $ $) NIL (|has| |#1| (-973)))) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3798 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-2866 (((-108) $ (-710)) NIL)) (-2996 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-3269 ((|#1| $ $) NIL (|has| |#1| (-973)))) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2240 (($ $ $) NIL (|has| |#1| (-973)))) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4087 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4075 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-523) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-666))) (($ $ |#1|) NIL (|has| |#1| (-666)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-554 |#1| |#2|) (-1166 |#1|) (-1122) (-523)) (T -554)) -NIL -(-1166 |#1|) -((-4207 (((-1173) $ |#2| |#2|) 36)) (-4084 ((|#2| $) 23)) (-3056 ((|#2| $) 21)) (-2852 (($ (-1 |#3| |#3|) $) 32)) (-3612 (($ (-1 |#3| |#3|) $) 30)) (-1738 ((|#3| $) 26)) (-4203 (($ $ |#3|) 33)) (-1370 (((-108) |#3| $) 17)) (-1264 (((-589 |#3|) $) 15)) (-3223 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-555 |#1| |#2| |#3|) (-10 -8 (-15 -4207 ((-1173) |#1| |#2| |#2|)) (-15 -4203 (|#1| |#1| |#3|)) (-15 -1738 (|#3| |#1|)) (-15 -4084 (|#2| |#1|)) (-15 -3056 (|#2| |#1|)) (-15 -1370 ((-108) |#3| |#1|)) (-15 -1264 ((-589 |#3|) |#1|)) (-15 -3223 (|#3| |#1| |#2|)) (-15 -3223 (|#3| |#1| |#2| |#3|)) (-15 -2852 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3612 (|#1| (-1 |#3| |#3|) |#1|))) (-556 |#2| |#3|) (-1016) (-1122)) (T -555)) -NIL -(-10 -8 (-15 -4207 ((-1173) |#1| |#2| |#2|)) (-15 -4203 (|#1| |#1| |#3|)) (-15 -1738 (|#3| |#1|)) (-15 -4084 (|#2| |#1|)) (-15 -3056 (|#2| |#1|)) (-15 -1370 ((-108) |#3| |#1|)) (-15 -1264 ((-589 |#3|) |#1|)) (-15 -3223 (|#3| |#1| |#2|)) (-15 -3223 (|#3| |#1| |#2| |#3|)) (-15 -2852 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3612 (|#1| (-1 |#3| |#3|) |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#2| (-1016)))) (-4207 (((-1173) $ |#1| |#1|) 40 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4245)))) (-2518 (($) 7 T CONST)) (-2863 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) 51)) (-1666 (((-589 |#2|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-4084 ((|#1| $) 43 (|has| |#1| (-786)))) (-2136 (((-589 |#2|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-3056 ((|#1| $) 44 (|has| |#1| (-786)))) (-2852 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#2| (-1016)))) (-2412 (((-589 |#1|) $) 46)) (-4135 (((-108) |#1| $) 47)) (-2783 (((-1034) $) 21 (|has| |#2| (-1016)))) (-1738 ((|#2| $) 42 (|has| |#1| (-786)))) (-4203 (($ $ |#2|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) 26 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 25 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 23 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2792 (((-710) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4244))) (((-710) |#2| $) 28 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#2| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#2| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-556 |#1| |#2|) (-129) (-1016) (-1122)) (T -556)) -((-1264 (*1 *2 *1) (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) (-5 *2 (-589 *4)))) (-4135 (*1 *2 *3 *1) (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) (-5 *2 (-108)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) (-5 *2 (-589 *3)))) (-1370 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-556 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-3056 (*1 *2 *1) (-12 (-4 *1 (-556 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1016)) (-4 *2 (-786)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-556 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1016)) (-4 *2 (-786)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-556 *3 *2)) (-4 *3 (-1016)) (-4 *3 (-786)) (-4 *2 (-1122)))) (-4203 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-556 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) (-4207 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) (-5 *2 (-1173))))) -(-13 (-462 |t#2|) (-265 |t#1| |t#2|) (-10 -8 (-15 -1264 ((-589 |t#2|) $)) (-15 -4135 ((-108) |t#1| $)) (-15 -2412 ((-589 |t#1|) $)) (IF (|has| |t#2| (-1016)) (IF (|has| $ (-6 -4244)) (-15 -1370 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-786)) (PROGN (-15 -3056 (|t#1| $)) (-15 -4084 (|t#1| $)) (-15 -1738 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4245)) (PROGN (-15 -4203 ($ $ |t#2|)) (-15 -4207 ((-1173) $ |t#1| |t#1|))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#2| (-1016)) ((-563 (-794)) -3262 (|has| |#2| (-1016)) (|has| |#2| (-563 (-794)))) ((-263 |#1| |#2|) . T) ((-265 |#1| |#2|) . T) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-462 |#2|) . T) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-1016) |has| |#2| (-1016)) ((-1122) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3819 (((-3 $ "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3115 (((-1168 (-629 |#1|))) NIL (|has| |#2| (-393 |#1|))) (((-1168 (-629 |#1|)) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2738 (((-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2518 (($) NIL T CONST)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3545 (((-3 $ "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1431 (((-629 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-3744 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2788 (((-629 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) $ (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2532 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3138 (((-1083 (-883 |#1|))) NIL (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-339))))) (-1970 (($ $ (-852)) NIL)) (-4212 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-1726 (((-1083 |#1|) $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2284 ((|#1|) NIL (|has| |#2| (-393 |#1|))) ((|#1| (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-1778 (((-1083 |#1|) $) NIL (|has| |#2| (-343 |#1|)))) (-2117 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3409 (($ (-1168 |#1|)) NIL (|has| |#2| (-393 |#1|))) (($ (-1168 |#1|) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2121 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1319 (((-852)) NIL (|has| |#2| (-343 |#1|)))) (-1487 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3650 (($ $ (-852)) NIL)) (-1649 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2956 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2491 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1386 (((-3 $ "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1504 (((-629 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-3237 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2139 (((-629 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) $ (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-1579 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2525 (((-1083 (-883 |#1|))) NIL (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-339))))) (-1448 (($ $ (-852)) NIL)) (-4050 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2553 (((-1083 |#1|) $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3002 ((|#1|) NIL (|has| |#2| (-393 |#1|))) ((|#1| (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2565 (((-1083 |#1|) $) NIL (|has| |#2| (-343 |#1|)))) (-1216 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3779 (((-1070) $) NIL)) (-2345 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1510 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2871 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2783 (((-1034) $) NIL)) (-2751 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3223 ((|#1| $ (-523)) NIL (|has| |#2| (-393 |#1|)))) (-2966 (((-629 |#1|) (-1168 $)) NIL (|has| |#2| (-393 |#1|))) (((-1168 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1168 $) (-1168 $)) NIL (|has| |#2| (-343 |#1|))) (((-1168 |#1|) $ (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-3663 (($ (-1168 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-1168 |#1|) $) NIL (|has| |#2| (-393 |#1|)))) (-3863 (((-589 (-883 |#1|))) NIL (|has| |#2| (-393 |#1|))) (((-589 (-883 |#1|)) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-1714 (($ $ $) NIL)) (-1673 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1458 (((-794) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4041 (((-1168 $)) NIL (|has| |#2| (-393 |#1|)))) (-3751 (((-589 (-1168 |#1|))) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2022 (($ $ $ $) NIL)) (-3120 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1677 (($ (-629 |#1|) $) NIL (|has| |#2| (-393 |#1|)))) (-1995 (($ $ $) NIL)) (-1462 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3366 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2071 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2756 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) 24)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-557 |#1| |#2|) (-13 (-684 |#1|) (-563 |#2|) (-10 -8 (-15 -1458 ($ |#2|)) (IF (|has| |#2| (-393 |#1|)) (-6 (-393 |#1|)) |%noBranch|) (IF (|has| |#2| (-343 |#1|)) (-6 (-343 |#1|)) |%noBranch|))) (-158) (-684 |#1|)) (T -557)) -((-1458 (*1 *1 *2) (-12 (-4 *3 (-158)) (-5 *1 (-557 *3 *2)) (-4 *2 (-684 *3))))) -(-13 (-684 |#1|) (-563 |#2|) (-10 -8 (-15 -1458 ($ |#2|)) (IF (|has| |#2| (-393 |#1|)) (-6 (-393 |#1|)) |%noBranch|) (IF (|has| |#2| (-343 |#1|)) (-6 (-343 |#1|)) |%noBranch|))) -((-3924 (((-108) $ $) NIL)) (-3715 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) 32)) (-3043 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL) (($) NIL)) (-4207 (((-1173) $ (-1070) (-1070)) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-1070) |#1|) 42)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#1| "failed") (-1070) $) 45)) (-2518 (($) NIL T CONST)) (-2647 (($ $ (-1070)) 24)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016))))) (-2249 (((-3 |#1| "failed") (-1070) $) 46) (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (($ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (|has| $ (-6 -4244)))) (-2557 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (($ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016))))) (-2437 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016))))) (-3114 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) 31)) (-2863 ((|#1| $ (-1070) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-1070)) NIL)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244))) (((-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-2918 (($ $) 47)) (-2625 (($ (-364)) 22) (($ (-364) (-1070)) 21)) (-4038 (((-364) $) 33)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244))) (((-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (((-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016))))) (-3056 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-1330 (((-589 (-1070)) $) 38)) (-2777 (((-108) (-1070) $) NIL)) (-1998 (((-1070) $) 34)) (-1934 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL)) (-2412 (((-589 (-1070)) $) NIL)) (-4135 (((-108) (-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 ((|#1| $) NIL (|has| (-1070) (-786)))) (-2114 (((-3 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) "failed") (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-589 (-271 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 36)) (-3223 ((|#1| $ (-1070) |#1|) NIL) ((|#1| $ (-1070)) 41)) (-3433 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL) (($) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (((-710) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (((-710) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL)) (-1458 (((-794) $) 20)) (-1685 (($ $) 25)) (-2401 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 19)) (-2676 (((-710) $) 40 (|has| $ (-6 -4244))))) -(((-558 |#1|) (-13 (-340 (-364) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) (-1099 (-1070) |#1|) (-10 -8 (-6 -4244) (-15 -2918 ($ $)))) (-1016)) (T -558)) -((-2918 (*1 *1 *1) (-12 (-5 *1 (-558 *2)) (-4 *2 (-1016))))) -(-13 (-340 (-364) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) (-1099 (-1070) |#1|) (-10 -8 (-6 -4244) (-15 -2918 ($ $)))) -((-1973 (((-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) $) 15)) (-1330 (((-589 |#2|) $) 19)) (-2777 (((-108) |#2| $) 12))) -(((-559 |#1| |#2| |#3|) (-10 -8 (-15 -1330 ((-589 |#2|) |#1|)) (-15 -2777 ((-108) |#2| |#1|)) (-15 -1973 ((-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|))) (-560 |#2| |#3|) (-1016) (-1016)) (T -559)) -NIL -(-10 -8 (-15 -1330 ((-589 |#2|) |#1|)) (-15 -2777 ((-108) |#2| |#1|)) (-15 -1973 ((-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|))) -((-3924 (((-108) $ $) 19 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 55 (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) 61)) (-2518 (($) 7 T CONST)) (-1773 (($ $) 58 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 46 (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) 62)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 54 (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 56 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 53 (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 52 (|has| $ (-6 -4244)))) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-1330 (((-589 |#1|) $) 63)) (-2777 (((-108) |#1| $) 64)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 39)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 40)) (-2783 (((-1034) $) 21 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 51)) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 41)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) 26 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 25 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 24 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 23 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3433 (($) 49) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 48)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 31 (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 50)) (-1458 (((-794) $) 18 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 42)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-2987 (((-1174) (-1070)) 10))) +(((-537) (-10 -7 (-15 -2987 ((-1174) (-1070))))) (T -537)) +((-2987 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-537))))) +(-10 -7 (-15 -2987 ((-1174) (-1070)))) +((-1980 (((-540 |#2|) (-540 |#2|)) 38)) (-1870 (((-589 |#2|) (-540 |#2|)) 40)) (-1561 ((|#2| (-540 |#2|)) 47))) +(((-538 |#1| |#2|) (-10 -7 (-15 -1980 ((-540 |#2|) (-540 |#2|))) (-15 -1870 ((-589 |#2|) (-540 |#2|))) (-15 -1561 (|#2| (-540 |#2|)))) (-13 (-427) (-964 (-523)) (-786) (-585 (-523))) (-13 (-29 |#1|) (-1109))) (T -538)) +((-1561 (*1 *2 *3) (-12 (-5 *3 (-540 *2)) (-4 *2 (-13 (-29 *4) (-1109))) (-5 *1 (-538 *4 *2)) (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-540 *5)) (-4 *5 (-13 (-29 *4) (-1109))) (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-589 *5)) (-5 *1 (-538 *4 *5)))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-540 *4)) (-4 *4 (-13 (-29 *3) (-1109))) (-4 *3 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *1 (-538 *3 *4))))) +(-10 -7 (-15 -1980 ((-540 |#2|) (-540 |#2|))) (-15 -1870 ((-589 |#2|) (-540 |#2|))) (-15 -1561 (|#2| (-540 |#2|)))) +((-1345 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-540 |#2|) (-1 |#2| |#1|) (-540 |#1|)) 26))) +(((-539 |#1| |#2|) (-10 -7 (-15 -1345 ((-540 |#2|) (-1 |#2| |#1|) (-540 |#1|))) (-15 -1345 ((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1345 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1345 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-339) (-339)) (T -539)) +((-1345 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-339)) (-4 *6 (-339)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-539 *5 *6)))) (-1345 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-339)) (-4 *2 (-339)) (-5 *1 (-539 *5 *2)))) (-1345 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1825 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-339)) (-4 *6 (-339)) (-5 *2 (-2 (|:| -1825 *6) (|:| |coeff| *6))) (-5 *1 (-539 *5 *6)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-540 *5)) (-4 *5 (-339)) (-4 *6 (-339)) (-5 *2 (-540 *6)) (-5 *1 (-539 *5 *6))))) +(-10 -7 (-15 -1345 ((-540 |#2|) (-1 |#2| |#1|) (-540 |#1|))) (-15 -1345 ((-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1825 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1345 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1345 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) 69)) (-3508 ((|#1| $) NIL)) (-1825 ((|#1| $) 24)) (-1769 (((-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-3349 (($ |#1| (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-1474 (((-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $) 25)) (-2032 (((-1070) $) NIL)) (-2663 (($ |#1| |#1|) 32) (($ |#1| (-1087)) 43 (|has| |#1| (-964 (-1087))))) (-3951 (((-1034) $) NIL)) (-3399 (((-108) $) 28)) (-3984 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1087)) 82 (|has| |#1| (-831 (-1087))))) (-1691 (((-794) $) 96) (($ |#1|) 23)) (-1879 (($) 16 T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) 15) (($ $ $) NIL)) (-4045 (($ $ $) 78)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 14) (($ (-383 (-523)) $) 35) (($ $ (-383 (-523))) NIL))) +(((-540 |#1|) (-13 (-657 (-383 (-523))) (-964 |#1|) (-10 -8 (-15 -3349 ($ |#1| (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1825 (|#1| $)) (-15 -1474 ((-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $)) (-15 -1769 ((-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3399 ((-108) $)) (-15 -2663 ($ |#1| |#1|)) (-15 -3984 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-831 (-1087))) (-15 -3984 (|#1| $ (-1087))) |%noBranch|) (IF (|has| |#1| (-964 (-1087))) (-15 -2663 ($ |#1| (-1087))) |%noBranch|))) (-339)) (T -540)) +((-3349 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 *2)) (|:| |logand| (-1083 *2))))) (-5 *4 (-589 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-339)) (-5 *1 (-540 *2)))) (-1825 (*1 *2 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-339)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 *3)) (|:| |logand| (-1083 *3))))) (-5 *1 (-540 *3)) (-4 *3 (-339)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-540 *3)) (-4 *3 (-339)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-339)))) (-2663 (*1 *1 *2 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-339)))) (-3984 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-540 *2)) (-4 *2 (-339)))) (-3984 (*1 *2 *1 *3) (-12 (-4 *2 (-339)) (-4 *2 (-831 *3)) (-5 *1 (-540 *2)) (-5 *3 (-1087)))) (-2663 (*1 *1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *1 (-540 *2)) (-4 *2 (-964 *3)) (-4 *2 (-339))))) +(-13 (-657 (-383 (-523))) (-964 |#1|) (-10 -8 (-15 -3349 ($ |#1| (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1825 (|#1| $)) (-15 -1474 ((-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $)) (-15 -1769 ((-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3399 ((-108) $)) (-15 -2663 ($ |#1| |#1|)) (-15 -3984 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-831 (-1087))) (-15 -3984 (|#1| $ (-1087))) |%noBranch|) (IF (|has| |#1| (-964 (-1087))) (-15 -2663 ($ |#1| (-1087))) |%noBranch|))) +((-2182 (((-108) |#1|) 16)) (-2019 (((-3 |#1| "failed") |#1|) 14)) (-1278 (((-2 (|:| -1416 |#1|) (|:| -1475 (-710))) |#1|) 31) (((-3 |#1| "failed") |#1| (-710)) 18)) (-1480 (((-108) |#1| (-710)) 19)) (-3004 ((|#1| |#1|) 32)) (-3606 ((|#1| |#1| (-710)) 34))) +(((-541 |#1|) (-10 -7 (-15 -1480 ((-108) |#1| (-710))) (-15 -1278 ((-3 |#1| "failed") |#1| (-710))) (-15 -1278 ((-2 (|:| -1416 |#1|) (|:| -1475 (-710))) |#1|)) (-15 -3606 (|#1| |#1| (-710))) (-15 -2182 ((-108) |#1|)) (-15 -2019 ((-3 |#1| "failed") |#1|)) (-15 -3004 (|#1| |#1|))) (-508)) (T -541)) +((-3004 (*1 *2 *2) (-12 (-5 *1 (-541 *2)) (-4 *2 (-508)))) (-2019 (*1 *2 *2) (|partial| -12 (-5 *1 (-541 *2)) (-4 *2 (-508)))) (-2182 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-541 *3)) (-4 *3 (-508)))) (-3606 (*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-541 *2)) (-4 *2 (-508)))) (-1278 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1416 *3) (|:| -1475 (-710)))) (-5 *1 (-541 *3)) (-4 *3 (-508)))) (-1278 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-710)) (-5 *1 (-541 *2)) (-4 *2 (-508)))) (-1480 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-108)) (-5 *1 (-541 *3)) (-4 *3 (-508))))) +(-10 -7 (-15 -1480 ((-108) |#1| (-710))) (-15 -1278 ((-3 |#1| "failed") |#1| (-710))) (-15 -1278 ((-2 (|:| -1416 |#1|) (|:| -1475 (-710))) |#1|)) (-15 -3606 (|#1| |#1| (-710))) (-15 -2182 ((-108) |#1|)) (-15 -2019 ((-3 |#1| "failed") |#1|)) (-15 -3004 (|#1| |#1|))) +((-3670 (((-1083 |#1|) (-852)) 27))) +(((-542 |#1|) (-10 -7 (-15 -3670 ((-1083 |#1|) (-852)))) (-325)) (T -542)) +((-3670 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-542 *4)) (-4 *4 (-325))))) +(-10 -7 (-15 -3670 ((-1083 |#1|) (-852)))) +((-1980 (((-540 (-383 (-883 |#1|))) (-540 (-383 (-883 |#1|)))) 26)) (-2814 (((-3 (-292 |#1|) (-589 (-292 |#1|))) (-383 (-883 |#1|)) (-1087)) 32 (|has| |#1| (-136)))) (-1870 (((-589 (-292 |#1|)) (-540 (-383 (-883 |#1|)))) 18)) (-1872 (((-292 |#1|) (-383 (-883 |#1|)) (-1087)) 30 (|has| |#1| (-136)))) (-1561 (((-292 |#1|) (-540 (-383 (-883 |#1|)))) 20))) +(((-543 |#1|) (-10 -7 (-15 -1980 ((-540 (-383 (-883 |#1|))) (-540 (-383 (-883 |#1|))))) (-15 -1870 ((-589 (-292 |#1|)) (-540 (-383 (-883 |#1|))))) (-15 -1561 ((-292 |#1|) (-540 (-383 (-883 |#1|))))) (IF (|has| |#1| (-136)) (PROGN (-15 -2814 ((-3 (-292 |#1|) (-589 (-292 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -1872 ((-292 |#1|) (-383 (-883 |#1|)) (-1087)))) |%noBranch|)) (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (T -543)) +((-1872 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-136)) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-292 *5)) (-5 *1 (-543 *5)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-136)) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-3 (-292 *5) (-589 (-292 *5)))) (-5 *1 (-543 *5)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-540 (-383 (-883 *4)))) (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-292 *4)) (-5 *1 (-543 *4)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-540 (-383 (-883 *4)))) (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-589 (-292 *4))) (-5 *1 (-543 *4)))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-540 (-383 (-883 *3)))) (-4 *3 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *1 (-543 *3))))) +(-10 -7 (-15 -1980 ((-540 (-383 (-883 |#1|))) (-540 (-383 (-883 |#1|))))) (-15 -1870 ((-589 (-292 |#1|)) (-540 (-383 (-883 |#1|))))) (-15 -1561 ((-292 |#1|) (-540 (-383 (-883 |#1|))))) (IF (|has| |#1| (-136)) (PROGN (-15 -2814 ((-3 (-292 |#1|) (-589 (-292 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -1872 ((-292 |#1|) (-383 (-883 |#1|)) (-1087)))) |%noBranch|)) +((-4093 (((-589 (-629 (-523))) (-589 (-523)) (-589 (-836 (-523)))) 46) (((-589 (-629 (-523))) (-589 (-523))) 47) (((-629 (-523)) (-589 (-523)) (-836 (-523))) 42)) (-1969 (((-710) (-589 (-523))) 40))) +(((-544) (-10 -7 (-15 -1969 ((-710) (-589 (-523)))) (-15 -4093 ((-629 (-523)) (-589 (-523)) (-836 (-523)))) (-15 -4093 ((-589 (-629 (-523))) (-589 (-523)))) (-15 -4093 ((-589 (-629 (-523))) (-589 (-523)) (-589 (-836 (-523))))))) (T -544)) +((-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-523))) (-5 *4 (-589 (-836 (-523)))) (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-544)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-544)))) (-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-523))) (-5 *4 (-836 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-544)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-710)) (-5 *1 (-544))))) +(-10 -7 (-15 -1969 ((-710) (-589 (-523)))) (-15 -4093 ((-629 (-523)) (-589 (-523)) (-836 (-523)))) (-15 -4093 ((-589 (-629 (-523))) (-589 (-523)))) (-15 -4093 ((-589 (-629 (-523))) (-589 (-523)) (-589 (-836 (-523)))))) +((-1459 (((-589 |#5|) |#5| (-108)) 73)) (-2421 (((-108) |#5| (-589 |#5|)) 30))) +(((-545 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1459 ((-589 |#5|) |#5| (-108))) (-15 -2421 ((-108) |#5| (-589 |#5|)))) (-13 (-284) (-136)) (-732) (-786) (-987 |#1| |#2| |#3|) (-1025 |#1| |#2| |#3| |#4|)) (T -545)) +((-2421 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-1025 *5 *6 *7 *8)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-545 *5 *6 *7 *8 *3)))) (-1459 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-589 *3)) (-5 *1 (-545 *5 *6 *7 *8 *3)) (-4 *3 (-1025 *5 *6 *7 *8))))) +(-10 -7 (-15 -1459 ((-589 |#5|) |#5| (-108))) (-15 -2421 ((-108) |#5| (-589 |#5|)))) +((-1680 (((-108) $ $) NIL (|has| (-133) (-1016)))) (-2458 (($ $) 34)) (-3137 (($ $) NIL)) (-3214 (($ $ (-133)) NIL) (($ $ (-130)) NIL)) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-2141 (((-108) $ $) 51)) (-2119 (((-108) $ $ (-523)) 46)) (-1980 (((-589 $) $ (-133)) 60) (((-589 $) $ (-130)) 61)) (-3337 (((-108) (-1 (-108) (-133) (-133)) $) NIL) (((-108) $) NIL (|has| (-133) (-786)))) (-1632 (($ (-1 (-108) (-133) (-133)) $) NIL (|has| $ (-6 -4249))) (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| (-133) (-786))))) (-1581 (($ (-1 (-108) (-133) (-133)) $) NIL) (($ $) NIL (|has| (-133) (-786)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 (((-133) $ (-523) (-133)) 45 (|has| $ (-6 -4249))) (((-133) $ (-1136 (-523)) (-133)) NIL (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-1300 (($ $ (-133)) 64) (($ $ (-130)) 65)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-1694 (($ $ (-1136 (-523)) $) 44)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-2514 (($ (-133) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016)))) (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016)))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) NIL (|has| $ (-6 -4248))) (((-133) (-1 (-133) (-133) (-133)) $) NIL (|has| $ (-6 -4248)))) (-2053 (((-133) $ (-523) (-133)) NIL (|has| $ (-6 -4249)))) (-2000 (((-133) $ (-523)) NIL)) (-2164 (((-108) $ $) 72)) (-3449 (((-523) (-1 (-108) (-133)) $) NIL) (((-523) (-133) $) NIL (|has| (-133) (-1016))) (((-523) (-133) $ (-523)) 48 (|has| (-133) (-1016))) (((-523) $ $ (-523)) 47) (((-523) (-130) $ (-523)) 50)) (-1871 (((-589 (-133)) $) NIL (|has| $ (-6 -4248)))) (-3733 (($ (-710) (-133)) 9)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) 28 (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| (-133) (-786)))) (-3780 (($ (-1 (-108) (-133) (-133)) $ $) NIL) (($ $ $) NIL (|has| (-133) (-786)))) (-1584 (((-589 (-133)) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-133) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-2567 (((-523) $) 42 (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| (-133) (-786)))) (-2676 (((-108) $ $ (-133)) 73)) (-2178 (((-710) $ $ (-133)) 70)) (-2043 (($ (-1 (-133) (-133)) $) 33 (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-133) (-133)) $) NIL) (($ (-1 (-133) (-133) (-133)) $ $) NIL)) (-1353 (($ $) 37)) (-2052 (($ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-1313 (($ $ (-133)) 62) (($ $ (-130)) 63)) (-2032 (((-1070) $) 38 (|has| (-133) (-1016)))) (-2912 (($ (-133) $ (-523)) NIL) (($ $ $ (-523)) 23)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-523) $) 69) (((-1034) $) NIL (|has| (-133) (-1016)))) (-2428 (((-133) $) NIL (|has| (-523) (-786)))) (-2509 (((-3 (-133) "failed") (-1 (-108) (-133)) $) NIL)) (-4141 (($ $ (-133)) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-133)))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-133)) (-589 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) (-133) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-3973 (((-589 (-133)) $) NIL)) (-1777 (((-108) $) 12)) (-3320 (($) 10)) (-1937 (((-133) $ (-523) (-133)) NIL) (((-133) $ (-523)) 52) (($ $ (-1136 (-523))) 21) (($ $ $) NIL)) (-1499 (($ $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-3977 (((-710) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248))) (((-710) (-133) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-4166 (($ $ $ (-523)) 66 (|has| $ (-6 -4249)))) (-1874 (($ $) 17)) (-1400 (((-499) $) NIL (|has| (-133) (-564 (-499))))) (-1704 (($ (-589 (-133))) NIL)) (-2394 (($ $ (-133)) NIL) (($ (-133) $) NIL) (($ $ $) 16) (($ (-589 $)) 67)) (-1691 (($ (-133)) NIL) (((-794) $) 27 (|has| (-133) (-563 (-794))))) (-2308 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) NIL (|has| (-133) (-786)))) (-3980 (((-108) $ $) NIL (|has| (-133) (-786)))) (-3941 (((-108) $ $) 14 (|has| (-133) (-1016)))) (-3993 (((-108) $ $) NIL (|has| (-133) (-786)))) (-3966 (((-108) $ $) 15 (|has| (-133) (-786)))) (-2810 (((-710) $) 13 (|has| $ (-6 -4248))))) +(((-546 |#1|) (-13 (-1056) (-10 -8 (-15 -3951 ((-523) $)))) (-523)) (T -546)) +((-3951 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-546 *3)) (-14 *3 *2)))) +(-13 (-1056) (-10 -8 (-15 -3951 ((-523) $)))) +((-2990 (((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2| (-1011 |#4|)) 32))) +(((-547 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2990 ((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2| (-1011 |#4|))) (-15 -2990 ((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2|))) (-732) (-786) (-515) (-880 |#3| |#1| |#2|)) (T -547)) +((-2990 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-515)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-523)))) (-5 *1 (-547 *5 *4 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) (-2990 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1011 *3)) (-4 *3 (-880 *7 *6 *4)) (-4 *6 (-732)) (-4 *4 (-786)) (-4 *7 (-515)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-523)))) (-5 *1 (-547 *6 *4 *7 *3))))) +(-10 -7 (-15 -2990 ((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2| (-1011 |#4|))) (-15 -2990 ((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 63)) (-1292 (((-589 (-1001)) $) NIL)) (-2724 (((-1087) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-3276 (($ $ (-523)) 54) (($ $ (-523) (-523)) 55)) (-1552 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 60)) (-3309 (($ $) 100)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2381 (((-794) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) (-953 (-779 (-523))) (-1087) |#1| (-383 (-523))) 215)) (-3199 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 34)) (-4189 (($) NIL T CONST)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-2589 (((-108) $) NIL)) (-3437 (((-523) $) 58) (((-523) $ (-523)) 59)) (-2769 (((-108) $) NIL)) (-3590 (($ $ (-852)) 76)) (-2839 (($ (-1 |#1| (-523)) $) 73)) (-2704 (((-108) $) 25)) (-1267 (($ |#1| (-523)) 22) (($ $ (-1001) (-523)) NIL) (($ $ (-589 (-1001)) (-589 (-523))) NIL)) (-1345 (($ (-1 |#1| |#1|) $) 67)) (-3192 (($ (-953 (-779 (-523))) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 11)) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-2814 (($ $) 112 (|has| |#1| (-37 (-383 (-523)))))) (-1869 (((-3 $ "failed") $ $ (-108)) 99)) (-2555 (($ $ $) 108)) (-3951 (((-1034) $) NIL)) (-1275 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 13)) (-2030 (((-953 (-779 (-523))) $) 12)) (-3053 (($ $ (-523)) 45)) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2812 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-523)))))) (-1937 ((|#1| $ (-523)) 57) (($ $ $) NIL (|has| (-523) (-1028)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (-2640 (((-523) $) NIL)) (-2488 (($ $) 46)) (-1691 (((-794) $) NIL) (($ (-523)) 28) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) 27 (|has| |#1| (-158)))) (-2084 ((|#1| $ (-523)) 56)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) 37)) (-3710 ((|#1| $) NIL)) (-4157 (($ $) 180 (|has| |#1| (-37 (-383 (-523)))))) (-1672 (($ $) 156 (|has| |#1| (-37 (-383 (-523)))))) (-3030 (($ $) 177 (|has| |#1| (-37 (-383 (-523)))))) (-3250 (($ $) 153 (|has| |#1| (-37 (-383 (-523)))))) (-2474 (($ $) 182 (|has| |#1| (-37 (-383 (-523)))))) (-2918 (($ $) 159 (|has| |#1| (-37 (-383 (-523)))))) (-3857 (($ $ (-383 (-523))) 146 (|has| |#1| (-37 (-383 (-523)))))) (-3867 (($ $ |#1|) 121 (|has| |#1| (-37 (-383 (-523)))))) (-3996 (($ $) 150 (|has| |#1| (-37 (-383 (-523)))))) (-3289 (($ $) 148 (|has| |#1| (-37 (-383 (-523)))))) (-4000 (($ $) 183 (|has| |#1| (-37 (-383 (-523)))))) (-1845 (($ $) 160 (|has| |#1| (-37 (-383 (-523)))))) (-2937 (($ $) 181 (|has| |#1| (-37 (-383 (-523)))))) (-1225 (($ $) 158 (|has| |#1| (-37 (-383 (-523)))))) (-1594 (($ $) 178 (|has| |#1| (-37 (-383 (-523)))))) (-3081 (($ $) 154 (|has| |#1| (-37 (-383 (-523)))))) (-3018 (($ $) 188 (|has| |#1| (-37 (-383 (-523)))))) (-3664 (($ $) 168 (|has| |#1| (-37 (-383 (-523)))))) (-3191 (($ $) 185 (|has| |#1| (-37 (-383 (-523)))))) (-2002 (($ $) 163 (|has| |#1| (-37 (-383 (-523)))))) (-4062 (($ $) 192 (|has| |#1| (-37 (-383 (-523)))))) (-1328 (($ $) 172 (|has| |#1| (-37 (-383 (-523)))))) (-3628 (($ $) 194 (|has| |#1| (-37 (-383 (-523)))))) (-3498 (($ $) 174 (|has| |#1| (-37 (-383 (-523)))))) (-3373 (($ $) 190 (|has| |#1| (-37 (-383 (-523)))))) (-3290 (($ $) 170 (|has| |#1| (-37 (-383 (-523)))))) (-1381 (($ $) 187 (|has| |#1| (-37 (-383 (-523)))))) (-3910 (($ $) 166 (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-4108 ((|#1| $ (-523)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 29 T CONST)) (-1891 (($) 38 T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (-3941 (((-108) $ $) 65)) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $) 84) (($ $ $) 64)) (-4045 (($ $ $) 81)) (** (($ $ (-852)) NIL) (($ $ (-710)) 103)) (* (($ (-852) $) 89) (($ (-710) $) 87) (($ (-523) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-548 |#1|) (-13 (-1147 |#1| (-523)) (-10 -8 (-15 -3192 ($ (-953 (-779 (-523))) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))))) (-15 -2030 ((-953 (-779 (-523))) $)) (-15 -1275 ((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $)) (-15 -3199 ($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))))) (-15 -2704 ((-108) $)) (-15 -2839 ($ (-1 |#1| (-523)) $)) (-15 -1869 ((-3 $ "failed") $ $ (-108))) (-15 -3309 ($ $)) (-15 -2555 ($ $ $)) (-15 -2381 ((-794) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) (-953 (-779 (-523))) (-1087) |#1| (-383 (-523)))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -2814 ($ $)) (-15 -3867 ($ $ |#1|)) (-15 -3857 ($ $ (-383 (-523)))) (-15 -3289 ($ $)) (-15 -3996 ($ $)) (-15 -3250 ($ $)) (-15 -3081 ($ $)) (-15 -1672 ($ $)) (-15 -1225 ($ $)) (-15 -2918 ($ $)) (-15 -1845 ($ $)) (-15 -2002 ($ $)) (-15 -3910 ($ $)) (-15 -3664 ($ $)) (-15 -3290 ($ $)) (-15 -1328 ($ $)) (-15 -3498 ($ $)) (-15 -3030 ($ $)) (-15 -1594 ($ $)) (-15 -4157 ($ $)) (-15 -2937 ($ $)) (-15 -2474 ($ $)) (-15 -4000 ($ $)) (-15 -3191 ($ $)) (-15 -1381 ($ $)) (-15 -3018 ($ $)) (-15 -3373 ($ $)) (-15 -4062 ($ $)) (-15 -3628 ($ $))) |%noBranch|))) (-973)) (T -548)) +((-2704 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-973)))) (-3192 (*1 *1 *2 *3) (-12 (-5 *2 (-953 (-779 (-523)))) (-5 *3 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *4)))) (-4 *4 (-973)) (-5 *1 (-548 *4)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-953 (-779 (-523)))) (-5 *1 (-548 *3)) (-4 *3 (-973)))) (-1275 (*1 *2 *1) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) (-5 *1 (-548 *3)) (-4 *3 (-973)))) (-3199 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) (-4 *3 (-973)) (-5 *1 (-548 *3)))) (-2839 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-523))) (-4 *3 (-973)) (-5 *1 (-548 *3)))) (-1869 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-973)))) (-3309 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-973)))) (-2555 (*1 *1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-973)))) (-2381 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *6)))) (-5 *4 (-953 (-779 (-523)))) (-5 *5 (-1087)) (-5 *7 (-383 (-523))) (-4 *6 (-973)) (-5 *2 (-794)) (-5 *1 (-548 *6)))) (-2814 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3867 (*1 *1 *1 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3857 (*1 *1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-548 *3)) (-4 *3 (-37 *2)) (-4 *3 (-973)))) (-3289 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3996 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3250 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3081 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1672 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1225 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2918 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1845 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2002 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3910 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3664 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3290 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1328 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3498 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3030 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1594 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-4157 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2937 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2474 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-4000 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3191 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1381 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3018 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3373 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-4062 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3628 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(-13 (-1147 |#1| (-523)) (-10 -8 (-15 -3192 ($ (-953 (-779 (-523))) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))))) (-15 -2030 ((-953 (-779 (-523))) $)) (-15 -1275 ((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $)) (-15 -3199 ($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))))) (-15 -2704 ((-108) $)) (-15 -2839 ($ (-1 |#1| (-523)) $)) (-15 -1869 ((-3 $ "failed") $ $ (-108))) (-15 -3309 ($ $)) (-15 -2555 ($ $ $)) (-15 -2381 ((-794) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) (-953 (-779 (-523))) (-1087) |#1| (-383 (-523)))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -2814 ($ $)) (-15 -3867 ($ $ |#1|)) (-15 -3857 ($ $ (-383 (-523)))) (-15 -3289 ($ $)) (-15 -3996 ($ $)) (-15 -3250 ($ $)) (-15 -3081 ($ $)) (-15 -1672 ($ $)) (-15 -1225 ($ $)) (-15 -2918 ($ $)) (-15 -1845 ($ $)) (-15 -2002 ($ $)) (-15 -3910 ($ $)) (-15 -3664 ($ $)) (-15 -3290 ($ $)) (-15 -1328 ($ $)) (-15 -3498 ($ $)) (-15 -3030 ($ $)) (-15 -1594 ($ $)) (-15 -4157 ($ $)) (-15 -2937 ($ $)) (-15 -2474 ($ $)) (-15 -4000 ($ $)) (-15 -3191 ($ $)) (-15 -1381 ($ $)) (-15 -3018 ($ $)) (-15 -3373 ($ $)) (-15 -4062 ($ $)) (-15 -3628 ($ $))) |%noBranch|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3199 (($ (-1068 |#1|)) 9)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) 42)) (-2589 (((-108) $) 52)) (-3437 (((-710) $) 55) (((-710) $ (-710)) 54)) (-2769 (((-108) $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-4007 (((-3 $ "failed") $ $) 44 (|has| |#1| (-515)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL (|has| |#1| (-515)))) (-3819 (((-1068 |#1|) $) 23)) (-3272 (((-710)) 51)) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 10 T CONST)) (-1891 (($) 14 T CONST)) (-3941 (((-108) $ $) 22)) (-4060 (($ $) 30) (($ $ $) 16)) (-4045 (($ $ $) 25)) (** (($ $ (-852)) NIL) (($ $ (-710)) 49)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-523)) 36))) +(((-549 |#1|) (-13 (-973) (-10 -8 (-15 -3819 ((-1068 |#1|) $)) (-15 -3199 ($ (-1068 |#1|))) (-15 -2589 ((-108) $)) (-15 -3437 ((-710) $)) (-15 -3437 ((-710) $ (-710))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-523))) (IF (|has| |#1| (-515)) (-6 (-515)) |%noBranch|))) (-973)) (T -549)) +((-3819 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) (-3199 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-549 *3)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) (-3437 (*1 *2 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-549 *2)) (-4 *2 (-973)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-549 *2)) (-4 *2 (-973)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-549 *3)) (-4 *3 (-973))))) +(-13 (-973) (-10 -8 (-15 -3819 ((-1068 |#1|) $)) (-15 -3199 ($ (-1068 |#1|))) (-15 -2589 ((-108) $)) (-15 -3437 ((-710) $)) (-15 -3437 ((-710) $ (-710))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-523))) (IF (|has| |#1| (-515)) (-6 (-515)) |%noBranch|))) +((-1345 (((-553 |#2|) (-1 |#2| |#1|) (-553 |#1|)) 15))) +(((-550 |#1| |#2|) (-10 -7 (-15 -1345 ((-553 |#2|) (-1 |#2| |#1|) (-553 |#1|)))) (-1123) (-1123)) (T -550)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-553 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-553 *6)) (-5 *1 (-550 *5 *6))))) +(-10 -7 (-15 -1345 ((-553 |#2|) (-1 |#2| |#1|) (-553 |#1|)))) +((-1345 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-1068 |#2|)) 20) (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-553 |#2|)) 19) (((-553 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-553 |#2|)) 18))) +(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -1345 ((-553 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-553 |#2|))) (-15 -1345 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-553 |#2|))) (-15 -1345 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-1068 |#2|)))) (-1123) (-1123) (-1123)) (T -551)) +((-1345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-553 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1123)) (-4 *7 (-1123)) (-4 *8 (-1123)) (-5 *2 (-1068 *8)) (-5 *1 (-551 *6 *7 *8)))) (-1345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-553 *7)) (-4 *6 (-1123)) (-4 *7 (-1123)) (-4 *8 (-1123)) (-5 *2 (-1068 *8)) (-5 *1 (-551 *6 *7 *8)))) (-1345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-553 *6)) (-5 *5 (-553 *7)) (-4 *6 (-1123)) (-4 *7 (-1123)) (-4 *8 (-1123)) (-5 *2 (-553 *8)) (-5 *1 (-551 *6 *7 *8))))) +(-10 -7 (-15 -1345 ((-553 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-553 |#2|))) (-15 -1345 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-553 |#2|))) (-15 -1345 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-1068 |#2|)))) +((-4194 ((|#3| |#3| (-589 (-562 |#3|)) (-589 (-1087))) 55)) (-1637 (((-155 |#2|) |#3|) 116)) (-3559 ((|#3| (-155 |#2|)) 43)) (-2352 ((|#2| |#3|) 19)) (-1268 ((|#3| |#2|) 32))) +(((-552 |#1| |#2| |#3|) (-10 -7 (-15 -3559 (|#3| (-155 |#2|))) (-15 -2352 (|#2| |#3|)) (-15 -1268 (|#3| |#2|)) (-15 -1637 ((-155 |#2|) |#3|)) (-15 -4194 (|#3| |#3| (-589 (-562 |#3|)) (-589 (-1087))))) (-13 (-515) (-786)) (-13 (-406 |#1|) (-930) (-1109)) (-13 (-406 (-155 |#1|)) (-930) (-1109))) (T -552)) +((-4194 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-589 (-562 *2))) (-5 *4 (-589 (-1087))) (-4 *2 (-13 (-406 (-155 *5)) (-930) (-1109))) (-4 *5 (-13 (-515) (-786))) (-5 *1 (-552 *5 *6 *2)) (-4 *6 (-13 (-406 *5) (-930) (-1109))))) (-1637 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786))) (-5 *2 (-155 *5)) (-5 *1 (-552 *4 *5 *3)) (-4 *5 (-13 (-406 *4) (-930) (-1109))) (-4 *3 (-13 (-406 (-155 *4)) (-930) (-1109))))) (-1268 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786))) (-4 *2 (-13 (-406 (-155 *4)) (-930) (-1109))) (-5 *1 (-552 *4 *3 *2)) (-4 *3 (-13 (-406 *4) (-930) (-1109))))) (-2352 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786))) (-4 *2 (-13 (-406 *4) (-930) (-1109))) (-5 *1 (-552 *4 *2 *3)) (-4 *3 (-13 (-406 (-155 *4)) (-930) (-1109))))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-155 *5)) (-4 *5 (-13 (-406 *4) (-930) (-1109))) (-4 *4 (-13 (-515) (-786))) (-4 *2 (-13 (-406 (-155 *4)) (-930) (-1109))) (-5 *1 (-552 *4 *5 *2))))) +(-10 -7 (-15 -3559 (|#3| (-155 |#2|))) (-15 -2352 (|#2| |#3|)) (-15 -1268 (|#3| |#2|)) (-15 -1637 ((-155 |#2|) |#3|)) (-15 -4194 (|#3| |#3| (-589 (-562 |#3|)) (-589 (-1087))))) +((-1903 (($ (-1 (-108) |#1|) $) 16)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1838 (($ (-1 |#1| |#1|) |#1|) 9)) (-1883 (($ (-1 (-108) |#1|) $) 12)) (-1894 (($ (-1 (-108) |#1|) $) 14)) (-1704 (((-1068 |#1|) $) 17)) (-1691 (((-794) $) NIL))) +(((-553 |#1|) (-13 (-563 (-794)) (-10 -8 (-15 -1345 ($ (-1 |#1| |#1|) $)) (-15 -1883 ($ (-1 (-108) |#1|) $)) (-15 -1894 ($ (-1 (-108) |#1|) $)) (-15 -1903 ($ (-1 (-108) |#1|) $)) (-15 -1838 ($ (-1 |#1| |#1|) |#1|)) (-15 -1704 ((-1068 |#1|) $)))) (-1123)) (T -553)) +((-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1123)) (-5 *1 (-553 *3)))) (-1883 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1123)) (-5 *1 (-553 *3)))) (-1894 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1123)) (-5 *1 (-553 *3)))) (-1903 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1123)) (-5 *1 (-553 *3)))) (-1838 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1123)) (-5 *1 (-553 *3)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-553 *3)) (-4 *3 (-1123))))) +(-13 (-563 (-794)) (-10 -8 (-15 -1345 ($ (-1 |#1| |#1|) $)) (-15 -1883 ($ (-1 (-108) |#1|) $)) (-15 -1894 ($ (-1 (-108) |#1|) $)) (-15 -1903 ($ (-1 (-108) |#1|) $)) (-15 -1838 ($ (-1 |#1| |#1|) |#1|)) (-15 -1704 ((-1068 |#1|) $)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1709 (($ (-710)) NIL (|has| |#1| (-23)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1632 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4249))) (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| |#1| (-786))))) (-1581 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) NIL (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) NIL)) (-3449 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-2359 (((-629 |#1|) $ $) NIL (|has| |#1| (-973)))) (-3733 (($ (-710) |#1|) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3780 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2169 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-1418 (((-108) $ (-710)) NIL)) (-2616 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2912 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2428 ((|#1| $) NIL (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4141 (($ $ |#1|) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-3839 ((|#1| $ $) NIL (|has| |#1| (-973)))) (-1499 (($ $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-3203 (($ $ $) NIL (|has| |#1| (-973)))) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) NIL)) (-2394 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4060 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4045 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-523) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-666))) (($ $ |#1|) NIL (|has| |#1| (-666)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-554 |#1| |#2|) (-1167 |#1|) (-1123) (-523)) (T -554)) +NIL +(-1167 |#1|) +((-4191 (((-1174) $ |#2| |#2|) 36)) (-2965 ((|#2| $) 23)) (-2567 ((|#2| $) 21)) (-2043 (($ (-1 |#3| |#3|) $) 32)) (-1345 (($ (-1 |#3| |#3|) $) 30)) (-2428 ((|#3| $) 26)) (-4141 (($ $ |#3|) 33)) (-2633 (((-108) |#3| $) 17)) (-3973 (((-589 |#3|) $) 15)) (-1937 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-555 |#1| |#2| |#3|) (-10 -8 (-15 -4191 ((-1174) |#1| |#2| |#2|)) (-15 -4141 (|#1| |#1| |#3|)) (-15 -2428 (|#3| |#1|)) (-15 -2965 (|#2| |#1|)) (-15 -2567 (|#2| |#1|)) (-15 -2633 ((-108) |#3| |#1|)) (-15 -3973 ((-589 |#3|) |#1|)) (-15 -1937 (|#3| |#1| |#2|)) (-15 -1937 (|#3| |#1| |#2| |#3|)) (-15 -2043 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1345 (|#1| (-1 |#3| |#3|) |#1|))) (-556 |#2| |#3|) (-1016) (-1123)) (T -555)) +NIL +(-10 -8 (-15 -4191 ((-1174) |#1| |#2| |#2|)) (-15 -4141 (|#1| |#1| |#3|)) (-15 -2428 (|#3| |#1|)) (-15 -2965 (|#2| |#1|)) (-15 -2567 (|#2| |#1|)) (-15 -2633 ((-108) |#3| |#1|)) (-15 -3973 ((-589 |#3|) |#1|)) (-15 -1937 (|#3| |#1| |#2|)) (-15 -1937 (|#3| |#1| |#2| |#3|)) (-15 -2043 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1345 (|#1| (-1 |#3| |#3|) |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#2| (-1016)))) (-4191 (((-1174) $ |#1| |#1|) 40 (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) 8)) (-1849 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4249)))) (-4189 (($) 7 T CONST)) (-2053 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4249)))) (-2000 ((|#2| $ |#1|) 51)) (-1871 (((-589 |#2|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-2965 ((|#1| $) 43 (|has| |#1| (-786)))) (-1584 (((-589 |#2|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4248))))) (-2567 ((|#1| $) 44 (|has| |#1| (-786)))) (-2043 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#2| |#2|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#2| (-1016)))) (-2536 (((-589 |#1|) $) 46)) (-2254 (((-108) |#1| $) 47)) (-3951 (((-1034) $) 21 (|has| |#2| (-1016)))) (-2428 ((|#2| $) 42 (|has| |#1| (-786)))) (-4141 (($ $ |#2|) 41 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#2|))) 26 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 25 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 23 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3973 (((-589 |#2|) $) 48)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3977 (((-710) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4248))) (((-710) |#2| $) 28 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1691 (((-794) $) 18 (|has| |#2| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#2| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-556 |#1| |#2|) (-129) (-1016) (-1123)) (T -556)) +((-3973 (*1 *2 *1) (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1123)) (-5 *2 (-589 *4)))) (-2254 (*1 *2 *3 *1) (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1123)) (-5 *2 (-108)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1123)) (-5 *2 (-589 *3)))) (-2633 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4248)) (-4 *1 (-556 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-1123)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-556 *2 *3)) (-4 *3 (-1123)) (-4 *2 (-1016)) (-4 *2 (-786)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-556 *2 *3)) (-4 *3 (-1123)) (-4 *2 (-1016)) (-4 *2 (-786)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-556 *3 *2)) (-4 *3 (-1016)) (-4 *3 (-786)) (-4 *2 (-1123)))) (-4141 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-556 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1123)))) (-4191 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1123)) (-5 *2 (-1174))))) +(-13 (-462 |t#2|) (-265 |t#1| |t#2|) (-10 -8 (-15 -3973 ((-589 |t#2|) $)) (-15 -2254 ((-108) |t#1| $)) (-15 -2536 ((-589 |t#1|) $)) (IF (|has| |t#2| (-1016)) (IF (|has| $ (-6 -4248)) (-15 -2633 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-786)) (PROGN (-15 -2567 (|t#1| $)) (-15 -2965 (|t#1| $)) (-15 -2428 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4249)) (PROGN (-15 -4141 ($ $ |t#2|)) (-15 -4191 ((-1174) $ |t#1| |t#1|))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#2| (-1016)) ((-563 (-794)) -3172 (|has| |#2| (-1016)) (|has| |#2| (-563 (-794)))) ((-263 |#1| |#2|) . T) ((-265 |#1| |#2|) . T) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-462 |#2|) . T) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-1016) |has| |#2| (-1016)) ((-1123) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2345 (((-3 $ "failed")) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-1939 (((-1169 (-629 |#1|))) NIL (|has| |#2| (-393 |#1|))) (((-1169 (-629 |#1|)) (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-1502 (((-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-4189 (($) NIL T CONST)) (-2314 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1722 (((-3 $ "failed")) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2059 (((-629 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-2920 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-1950 (((-629 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) $ (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-1307 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3927 (((-1083 (-883 |#1|))) NIL (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-339))))) (-3402 (($ $ (-852)) NIL)) (-1223 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2992 (((-1083 |#1|) $) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3637 ((|#1|) NIL (|has| |#2| (-393 |#1|))) ((|#1| (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-2242 (((-1083 |#1|) $) NIL (|has| |#2| (-343 |#1|)))) (-1404 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2754 (($ (-1169 |#1|)) NIL (|has| |#2| (-393 |#1|))) (($ (-1169 |#1|) (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-1444 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3569 (((-852)) NIL (|has| |#2| (-343 |#1|)))) (-1454 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3291 (($ $ (-852)) NIL)) (-3517 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2804 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3914 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2065 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2778 (((-3 $ "failed")) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1612 (((-629 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-3647 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-1613 (((-629 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) $ (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-4097 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1233 (((-1083 (-883 |#1|))) NIL (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-339))))) (-2237 (($ $ (-852)) NIL)) (-2670 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-3248 (((-1083 |#1|) $) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2085 ((|#1|) NIL (|has| |#2| (-393 |#1|))) ((|#1| (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-3359 (((-1083 |#1|) $) NIL (|has| |#2| (-343 |#1|)))) (-1675 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2032 (((-1070) $) NIL)) (-3041 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1671 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3194 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3951 (((-1034) $) NIL)) (-1634 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1937 ((|#1| $ (-523)) NIL (|has| |#2| (-393 |#1|)))) (-2906 (((-629 |#1|) (-1169 $)) NIL (|has| |#2| (-393 |#1|))) (((-1169 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1169 $) (-1169 $)) NIL (|has| |#2| (-343 |#1|))) (((-1169 |#1|) $ (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-1400 (($ (-1169 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-1169 |#1|) $) NIL (|has| |#2| (-393 |#1|)))) (-1586 (((-589 (-883 |#1|))) NIL (|has| |#2| (-393 |#1|))) (((-589 (-883 |#1|)) (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-2892 (($ $ $) NIL)) (-2572 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1691 (((-794) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3760 (((-1169 $)) NIL (|has| |#2| (-393 |#1|)))) (-2969 (((-589 (-1169 |#1|))) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2760 (($ $ $ $) NIL)) (-1978 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2372 (($ (-629 |#1|) $) NIL (|has| |#2| (-393 |#1|)))) (-3654 (($ $ $) NIL)) (-2367 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3505 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2050 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1879 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) 24)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-557 |#1| |#2|) (-13 (-684 |#1|) (-563 |#2|) (-10 -8 (-15 -1691 ($ |#2|)) (IF (|has| |#2| (-393 |#1|)) (-6 (-393 |#1|)) |%noBranch|) (IF (|has| |#2| (-343 |#1|)) (-6 (-343 |#1|)) |%noBranch|))) (-158) (-684 |#1|)) (T -557)) +((-1691 (*1 *1 *2) (-12 (-4 *3 (-158)) (-5 *1 (-557 *3 *2)) (-4 *2 (-684 *3))))) +(-13 (-684 |#1|) (-563 |#2|) (-10 -8 (-15 -1691 ($ |#2|)) (IF (|has| |#2| (-393 |#1|)) (-6 (-393 |#1|)) |%noBranch|) (IF (|has| |#2| (-343 |#1|)) (-6 (-343 |#1|)) |%noBranch|))) +((-1680 (((-108) $ $) NIL)) (-2674 (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) 33)) (-3723 (($ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) NIL) (($) NIL)) (-4191 (((-1174) $ (-1070) (-1070)) NIL (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#1| $ (-1070) |#1|) 43)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248)))) (-4216 (((-3 |#1| "failed") (-1070) $) 46)) (-4189 (($) NIL T CONST)) (-2949 (($ $ (-1070)) 24)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016))))) (-3286 (((-3 |#1| "failed") (-1070) $) 47) (($ (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248))) (($ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL (|has| $ (-6 -4248)))) (-2514 (($ (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248))) (($ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016))))) (-2116 (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016))))) (-1928 (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) 32)) (-2053 ((|#1| $ (-1070) |#1|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-1070)) NIL)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248))) (((-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248)))) (-3652 (($ $) 48)) (-2647 (($ (-364)) 22) (($ (-364) (-1070)) 21)) (-4198 (((-364) $) 34)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-1070) $) NIL (|has| (-1070) (-786)))) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248))) (((-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (((-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016))))) (-2567 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249))) (($ (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-1255 (((-589 (-1070)) $) 39)) (-1862 (((-108) (-1070) $) NIL)) (-2541 (((-1070) $) 35)) (-1293 (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL)) (-3108 (($ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL)) (-2536 (((-589 (-1070)) $) NIL)) (-2254 (((-108) (-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2428 ((|#1| $) NIL (|has| (-1070) (-786)))) (-2509 (((-3 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) "failed") (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL)) (-4141 (($ $ |#1|) NIL (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) NIL (-12 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)))) (($ $ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) NIL (-12 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) NIL (-12 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)))) (($ $ (-589 (-271 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))))) NIL (-12 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) 37)) (-1937 ((|#1| $ (-1070) |#1|) NIL) ((|#1| $ (-1070)) 42)) (-2963 (($ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) NIL) (($) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (((-710) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)))) (((-710) (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) NIL)) (-1691 (((-794) $) 20)) (-2667 (($ $) 25)) (-2417 (($ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) NIL)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 19)) (-2810 (((-710) $) 41 (|has| $ (-6 -4248))))) +(((-558 |#1|) (-13 (-340 (-364) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) (-1100 (-1070) |#1|) (-10 -8 (-6 -4248) (-15 -3652 ($ $)))) (-1016)) (T -558)) +((-3652 (*1 *1 *1) (-12 (-5 *1 (-558 *2)) (-4 *2 (-1016))))) +(-13 (-340 (-364) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) (-1100 (-1070) |#1|) (-10 -8 (-6 -4248) (-15 -3652 ($ $)))) +((-3423 (((-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) $) 15)) (-1255 (((-589 |#2|) $) 19)) (-1862 (((-108) |#2| $) 12))) +(((-559 |#1| |#2| |#3|) (-10 -8 (-15 -1255 ((-589 |#2|) |#1|)) (-15 -1862 ((-108) |#2| |#1|)) (-15 -3423 ((-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) |#1|))) (-560 |#2| |#3|) (-1016) (-1016)) (T -559)) +NIL +(-10 -8 (-15 -1255 ((-589 |#2|) |#1|)) (-15 -1862 ((-108) |#2| |#1|)) (-15 -3423 ((-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) |#1|))) +((-1680 (((-108) $ $) 19 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-1620 (((-108) $ (-710)) 8)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 45 (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 55 (|has| $ (-6 -4248)))) (-4216 (((-3 |#2| "failed") |#1| $) 61)) (-4189 (($) 7 T CONST)) (-2462 (($ $) 58 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248))))) (-3286 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 47 (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 46 (|has| $ (-6 -4248))) (((-3 |#2| "failed") |#1| $) 62)) (-2514 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 54 (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 56 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 53 (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 52 (|has| $ (-6 -4248)))) (-1871 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-1255 (((-589 |#1|) $) 63)) (-1862 (((-108) |#1| $) 64)) (-1293 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 39)) (-3108 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 40)) (-3951 (((-1034) $) 21 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-2509 (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 51)) (-3048 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 41)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) 26 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 25 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 24 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 23 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-2963 (($) 49) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 48)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 31 (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1400 (((-499) $) 59 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 50)) (-1691 (((-794) $) 18 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794))))) (-2417 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 42)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-560 |#1| |#2|) (-129) (-1016) (-1016)) (T -560)) -((-2777 (*1 *2 *3 *1) (-12 (-4 *1 (-560 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-5 *2 (-108)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-560 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-5 *2 (-589 *3)))) (-2249 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-560 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-2243 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-560 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) -(-13 (-207 (-2 (|:| -1853 |t#1|) (|:| -2433 |t#2|))) (-10 -8 (-15 -2777 ((-108) |t#1| $)) (-15 -1330 ((-589 |t#1|) $)) (-15 -2249 ((-3 |t#2| "failed") |t#1| $)) (-15 -2243 ((-3 |t#2| "failed") |t#1| $)))) -(((-33) . T) ((-102 #0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((-97) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) ((-563 (-794)) -3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794)))) ((-140 #0#) . T) ((-564 (-499)) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))) ((-207 #0#) . T) ((-213 #0#) . T) ((-286 #0#) -12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-462 #0#) . T) ((-484 #0# #0#) -12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-1016) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) ((-1122) . T)) -((-1244 (((-562 |#2|) |#1|) 15)) (-2808 (((-3 |#1| "failed") (-562 |#2|)) 19))) -(((-561 |#1| |#2|) (-10 -7 (-15 -1244 ((-562 |#2|) |#1|)) (-15 -2808 ((-3 |#1| "failed") (-562 |#2|)))) (-786) (-786)) (T -561)) -((-2808 (*1 *2 *3) (|partial| -12 (-5 *3 (-562 *4)) (-4 *4 (-786)) (-4 *2 (-786)) (-5 *1 (-561 *2 *4)))) (-1244 (*1 *2 *3) (-12 (-5 *2 (-562 *4)) (-5 *1 (-561 *3 *4)) (-4 *3 (-786)) (-4 *4 (-786))))) -(-10 -7 (-15 -1244 ((-562 |#2|) |#1|)) (-15 -2808 ((-3 |#1| "failed") (-562 |#2|)))) -((-3924 (((-108) $ $) NIL)) (-2154 (((-3 (-1087) "failed") $) 36)) (-2118 (((-1173) $ (-710)) 26)) (-1479 (((-710) $) 25)) (-1403 (((-110) $) 12)) (-4038 (((-1087) $) 20)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2868 (($ (-110) (-589 |#1|) (-710)) 30) (($ (-1087)) 31)) (-3259 (((-108) $ (-110)) 18) (((-108) $ (-1087)) 16)) (-2510 (((-710) $) 22)) (-2783 (((-1034) $) NIL)) (-3663 (((-823 (-523)) $) 69 (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) 75 (|has| |#1| (-564 (-823 (-355))))) (((-499) $) 62 (|has| |#1| (-564 (-499))))) (-1458 (((-794) $) 51)) (-2135 (((-589 |#1|) $) 24)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 39)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 40))) -(((-562 |#1|) (-13 (-125) (-815 |#1|) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -1403 ((-110) $)) (-15 -2135 ((-589 |#1|) $)) (-15 -2510 ((-710) $)) (-15 -2868 ($ (-110) (-589 |#1|) (-710))) (-15 -2868 ($ (-1087))) (-15 -2154 ((-3 (-1087) "failed") $)) (-15 -3259 ((-108) $ (-110))) (-15 -3259 ((-108) $ (-1087))) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) (-786)) (T -562)) -((-4038 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-2868 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-589 *5)) (-5 *4 (-710)) (-4 *5 (-786)) (-5 *1 (-562 *5)))) (-2868 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-2154 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-562 *4)) (-4 *4 (-786)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-108)) (-5 *1 (-562 *4)) (-4 *4 (-786))))) -(-13 (-125) (-815 |#1|) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -1403 ((-110) $)) (-15 -2135 ((-589 |#1|) $)) (-15 -2510 ((-710) $)) (-15 -2868 ($ (-110) (-589 |#1|) (-710))) (-15 -2868 ($ (-1087))) (-15 -2154 ((-3 (-1087) "failed") $)) (-15 -3259 ((-108) $ (-110))) (-15 -3259 ((-108) $ (-1087))) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) -((-1458 ((|#1| $) 6))) -(((-563 |#1|) (-129) (-1122)) (T -563)) -((-1458 (*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-1122))))) -(-13 (-10 -8 (-15 -1458 (|t#1| $)))) -((-3663 ((|#1| $) 6))) -(((-564 |#1|) (-129) (-1122)) (T -564)) -((-3663 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-1122))))) -(-13 (-10 -8 (-15 -3663 (|t#1| $)))) -((-1884 (((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 (-394 |#2|) |#2|)) 13) (((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|)) 14))) -(((-565 |#1| |#2|) (-10 -7 (-15 -1884 ((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|))) (-15 -1884 ((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 (-394 |#2|) |#2|)))) (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523)))) (-1144 |#1|)) (T -565)) -((-1884 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-1083 (-383 *6))) (-5 *1 (-565 *5 *6)) (-5 *3 (-383 *6)))) (-1884 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *2 (-1083 (-383 *5))) (-5 *1 (-565 *4 *5)) (-5 *3 (-383 *5))))) -(-10 -7 (-15 -1884 ((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|))) (-15 -1884 ((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 (-394 |#2|) |#2|)))) -((-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) 10))) -(((-566 |#1| |#2|) (-10 -8 (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-567 |#2|) (-973)) (T -566)) -NIL -(-10 -8 (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 36)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ |#1| $) 37))) +((-1862 (*1 *2 *3 *1) (-12 (-4 *1 (-560 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-5 *2 (-108)))) (-1255 (*1 *2 *1) (-12 (-4 *1 (-560 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-5 *2 (-589 *3)))) (-3286 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-560 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-4216 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-560 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) +(-13 (-207 (-2 (|:| -3772 |t#1|) (|:| -2482 |t#2|))) (-10 -8 (-15 -1862 ((-108) |t#1| $)) (-15 -1255 ((-589 |t#1|) $)) (-15 -3286 ((-3 |t#2| "failed") |t#1| $)) (-15 -4216 ((-3 |t#2| "failed") |t#1| $)))) +(((-33) . T) ((-102 #0=(-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T) ((-97) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) ((-563 (-794)) -3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794)))) ((-140 #0#) . T) ((-564 (-499)) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))) ((-207 #0#) . T) ((-213 #0#) . T) ((-286 #0#) -12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))) ((-462 #0#) . T) ((-484 #0# #0#) -12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))) ((-1016) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) ((-1123) . T)) +((-3742 (((-562 |#2|) |#1|) 15)) (-3921 (((-3 |#1| "failed") (-562 |#2|)) 19))) +(((-561 |#1| |#2|) (-10 -7 (-15 -3742 ((-562 |#2|) |#1|)) (-15 -3921 ((-3 |#1| "failed") (-562 |#2|)))) (-786) (-786)) (T -561)) +((-3921 (*1 *2 *3) (|partial| -12 (-5 *3 (-562 *4)) (-4 *4 (-786)) (-4 *2 (-786)) (-5 *1 (-561 *2 *4)))) (-3742 (*1 *2 *3) (-12 (-5 *2 (-562 *4)) (-5 *1 (-561 *3 *4)) (-4 *3 (-786)) (-4 *4 (-786))))) +(-10 -7 (-15 -3742 ((-562 |#2|) |#1|)) (-15 -3921 ((-3 |#1| "failed") (-562 |#2|)))) +((-1680 (((-108) $ $) NIL)) (-1757 (((-3 (-1087) "failed") $) 36)) (-1415 (((-1174) $ (-710)) 26)) (-3449 (((-710) $) 25)) (-2947 (((-110) $) 12)) (-4198 (((-1087) $) 20)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3396 (($ (-110) (-589 |#1|) (-710)) 30) (($ (-1087)) 31)) (-3739 (((-108) $ (-110)) 18) (((-108) $ (-1087)) 16)) (-1933 (((-710) $) 22)) (-3951 (((-1034) $) NIL)) (-1400 (((-823 (-523)) $) 73 (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) 79 (|has| |#1| (-564 (-823 (-355))))) (((-499) $) 66 (|has| |#1| (-564 (-499))))) (-1691 (((-794) $) 52)) (-1572 (((-589 |#1|) $) 24)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 39)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 40))) +(((-562 |#1|) (-13 (-125) (-815 |#1|) (-10 -8 (-15 -4198 ((-1087) $)) (-15 -2947 ((-110) $)) (-15 -1572 ((-589 |#1|) $)) (-15 -1933 ((-710) $)) (-15 -3396 ($ (-110) (-589 |#1|) (-710))) (-15 -3396 ($ (-1087))) (-15 -1757 ((-3 (-1087) "failed") $)) (-15 -3739 ((-108) $ (-110))) (-15 -3739 ((-108) $ (-1087))) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) (-786)) (T -562)) +((-4198 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-3396 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-589 *5)) (-5 *4 (-710)) (-4 *5 (-786)) (-5 *1 (-562 *5)))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-1757 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-3739 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-562 *4)) (-4 *4 (-786)))) (-3739 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-108)) (-5 *1 (-562 *4)) (-4 *4 (-786))))) +(-13 (-125) (-815 |#1|) (-10 -8 (-15 -4198 ((-1087) $)) (-15 -2947 ((-110) $)) (-15 -1572 ((-589 |#1|) $)) (-15 -1933 ((-710) $)) (-15 -3396 ($ (-110) (-589 |#1|) (-710))) (-15 -3396 ($ (-1087))) (-15 -1757 ((-3 (-1087) "failed") $)) (-15 -3739 ((-108) $ (-110))) (-15 -3739 ((-108) $ (-1087))) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) +((-1691 ((|#1| $) 6))) +(((-563 |#1|) (-129) (-1123)) (T -563)) +((-1691 (*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-1123))))) +(-13 (-10 -8 (-15 -1691 (|t#1| $)))) +((-1400 ((|#1| $) 6))) +(((-564 |#1|) (-129) (-1123)) (T -564)) +((-1400 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-1123))))) +(-13 (-10 -8 (-15 -1400 (|t#1| $)))) +((-3786 (((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 (-394 |#2|) |#2|)) 13) (((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|)) 14))) +(((-565 |#1| |#2|) (-10 -7 (-15 -3786 ((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|))) (-15 -3786 ((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 (-394 |#2|) |#2|)))) (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523)))) (-1145 |#1|)) (T -565)) +((-3786 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-1083 (-383 *6))) (-5 *1 (-565 *5 *6)) (-5 *3 (-383 *6)))) (-3786 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523))))) (-4 *5 (-1145 *4)) (-5 *2 (-1083 (-383 *5))) (-5 *1 (-565 *4 *5)) (-5 *3 (-383 *5))))) +(-10 -7 (-15 -3786 ((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|))) (-15 -3786 ((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 (-394 |#2|) |#2|)))) +((-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) 10))) +(((-566 |#1| |#2|) (-10 -8 (-15 -1691 (|#1| |#2|)) (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) (-567 |#2|) (-973)) (T -566)) +NIL +(-10 -8 (-15 -1691 (|#1| |#2|)) (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 36)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ |#1| $) 37))) (((-567 |#1|) (-129) (-973)) (T -567)) -((-1458 (*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-973))))) -(-13 (-973) (-591 |t#1|) (-10 -8 (-15 -1458 ($ |t#1|)))) +((-1691 (*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-973))))) +(-13 (-973) (-591 |t#1|) (-10 -8 (-15 -1691 ($ |t#1|)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3671 (((-523) $) NIL (|has| |#1| (-784)))) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2604 (((-108) $) NIL (|has| |#1| (-784)))) (-2023 (((-108) $) NIL)) (-2785 ((|#1| $) 13)) (-4114 (((-108) $) NIL (|has| |#1| (-784)))) (-2454 (($ $ $) NIL (|has| |#1| (-784)))) (-2062 (($ $ $) NIL (|has| |#1| (-784)))) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2797 ((|#3| $) 15)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL)) (-1621 (((-710)) 20)) (-2619 (($ $) NIL (|has| |#1| (-784)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) 12 T CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4098 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-568 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (-15 -4098 ($ $ |#3|)) (-15 -4098 ($ |#1| |#3|)) (-15 -2785 (|#1| $)) (-15 -2797 (|#3| $)))) (-37 |#2|) (-158) (|SubsetCategory| (-666) |#2|)) (T -568)) -((-4098 (*1 *1 *1 *2) (-12 (-4 *4 (-158)) (-5 *1 (-568 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-666) *4)))) (-4098 (*1 *1 *2 *3) (-12 (-4 *4 (-158)) (-5 *1 (-568 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-666) *4)))) (-2785 (*1 *2 *1) (-12 (-4 *3 (-158)) (-4 *2 (-37 *3)) (-5 *1 (-568 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-666) *3)))) (-2797 (*1 *2 *1) (-12 (-4 *4 (-158)) (-4 *2 (|SubsetCategory| (-666) *4)) (-5 *1 (-568 *3 *4 *2)) (-4 *3 (-37 *4))))) -(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (-15 -4098 ($ $ |#3|)) (-15 -4098 ($ |#1| |#3|)) (-15 -2785 (|#1| $)) (-15 -2797 (|#3| $)))) -((-3010 ((|#2| |#2| (-1087) (-1087)) 18))) -(((-569 |#1| |#2|) (-10 -7 (-15 -3010 (|#2| |#2| (-1087) (-1087)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-889) (-29 |#1|))) (T -569)) -((-3010 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-1108) (-889) (-29 *4)))))) -(-10 -7 (-15 -3010 (|#2| |#2| (-1087) (-1087)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 52)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2167 ((|#1| $) 49)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-3444 (((-2 (|:| -3062 $) (|:| -2591 (-383 |#2|))) (-383 |#2|)) 97 (|has| |#1| (-339)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 82)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) 24)) (-2121 (((-3 $ "failed") $) 76)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-1640 (((-523) $) 19)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) 36)) (-1933 (($ |#1| (-523)) 21)) (-3786 ((|#1| $) 51)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) 87 (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ $) 80)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1972 (((-710) $) 99 (|has| |#1| (-339)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 98 (|has| |#1| (-339)))) (-3523 (($ $ (-1 |#2| |#2|)) 67) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-2299 (((-523) $) 34)) (-3663 (((-383 |#2|) $) 42)) (-1458 (((-794) $) 63) (($ (-523)) 32) (($ $) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 31) (($ |#2|) 22)) (-2365 ((|#1| $ (-523)) 64)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 9 T CONST)) (-2767 (($) 12 T CONST)) (-2862 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3983 (((-108) $ $) 17)) (-4087 (($ $) 46) (($ $ $) NIL)) (-4075 (($ $ $) 77)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 26) (($ $ $) 44))) -(((-570 |#1| |#2|) (-13 (-209 |#2|) (-515) (-564 (-383 |#2|)) (-387 |#1|) (-964 |#2|) (-10 -8 (-15 -2620 ((-108) $)) (-15 -2299 ((-523) $)) (-15 -1640 ((-523) $)) (-15 -3810 ($ $)) (-15 -3786 (|#1| $)) (-15 -2167 (|#1| $)) (-15 -2365 (|#1| $ (-523))) (-15 -1933 ($ |#1| (-523))) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-6 (-284)) (-15 -3444 ((-2 (|:| -3062 $) (|:| -2591 (-383 |#2|))) (-383 |#2|)))) |%noBranch|))) (-515) (-1144 |#1|)) (T -570)) -((-2620 (*1 *2 *1) (-12 (-4 *3 (-515)) (-5 *2 (-108)) (-5 *1 (-570 *3 *4)) (-4 *4 (-1144 *3)))) (-2299 (*1 *2 *1) (-12 (-4 *3 (-515)) (-5 *2 (-523)) (-5 *1 (-570 *3 *4)) (-4 *4 (-1144 *3)))) (-1640 (*1 *2 *1) (-12 (-4 *3 (-515)) (-5 *2 (-523)) (-5 *1 (-570 *3 *4)) (-4 *4 (-1144 *3)))) (-3810 (*1 *1 *1) (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1144 *2)))) (-3786 (*1 *2 *1) (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1144 *2)))) (-2167 (*1 *2 *1) (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1144 *2)))) (-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *2 (-515)) (-5 *1 (-570 *2 *4)) (-4 *4 (-1144 *2)))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-4 *2 (-515)) (-5 *1 (-570 *2 *4)) (-4 *4 (-1144 *2)))) (-3444 (*1 *2 *3) (-12 (-4 *4 (-339)) (-4 *4 (-515)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -3062 (-570 *4 *5)) (|:| -2591 (-383 *5)))) (-5 *1 (-570 *4 *5)) (-5 *3 (-383 *5))))) -(-13 (-209 |#2|) (-515) (-564 (-383 |#2|)) (-387 |#1|) (-964 |#2|) (-10 -8 (-15 -2620 ((-108) $)) (-15 -2299 ((-523) $)) (-15 -1640 ((-523) $)) (-15 -3810 ($ $)) (-15 -3786 (|#1| $)) (-15 -2167 (|#1| $)) (-15 -2365 (|#1| $ (-523))) (-15 -1933 ($ |#1| (-523))) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-6 (-284)) (-15 -3444 ((-2 (|:| -3062 $) (|:| -2591 (-383 |#2|))) (-383 |#2|)))) |%noBranch|))) -((-3846 (((-589 |#6|) (-589 |#4|) (-108)) 47)) (-1705 ((|#6| |#6|) 40))) -(((-571 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1705 (|#6| |#6|)) (-15 -3846 ((-589 |#6|) (-589 |#4|) (-108)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|) (-1025 |#1| |#2| |#3| |#4|)) (T -571)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 *10)) (-5 *1 (-571 *5 *6 *7 *8 *9 *10)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *10 (-1025 *5 *6 *7 *8)))) (-1705 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-571 *3 *4 *5 *6 *7 *2)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *2 (-1025 *3 *4 *5 *6))))) -(-10 -7 (-15 -1705 (|#6| |#6|)) (-15 -3846 ((-589 |#6|) (-589 |#4|) (-108)))) -((-1555 (((-108) |#3| (-710) (-589 |#3|)) 23)) (-2260 (((-3 (-2 (|:| |polfac| (-589 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-589 (-1083 |#3|)))) "failed") |#3| (-589 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1979 (-589 (-2 (|:| |irr| |#4|) (|:| -1227 (-523)))))) (-589 |#3|) (-589 |#1|) (-589 |#3|)) 52))) -(((-572 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1555 ((-108) |#3| (-710) (-589 |#3|))) (-15 -2260 ((-3 (-2 (|:| |polfac| (-589 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-589 (-1083 |#3|)))) "failed") |#3| (-589 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1979 (-589 (-2 (|:| |irr| |#4|) (|:| -1227 (-523)))))) (-589 |#3|) (-589 |#1|) (-589 |#3|)))) (-786) (-732) (-284) (-880 |#3| |#2| |#1|)) (T -572)) -((-2260 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1979 (-589 (-2 (|:| |irr| *10) (|:| -1227 (-523))))))) (-5 *6 (-589 *3)) (-5 *7 (-589 *8)) (-4 *8 (-786)) (-4 *3 (-284)) (-4 *10 (-880 *3 *9 *8)) (-4 *9 (-732)) (-5 *2 (-2 (|:| |polfac| (-589 *10)) (|:| |correct| *3) (|:| |corrfact| (-589 (-1083 *3))))) (-5 *1 (-572 *8 *9 *3 *10)) (-5 *4 (-589 (-1083 *3))))) (-1555 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-710)) (-5 *5 (-589 *3)) (-4 *3 (-284)) (-4 *6 (-786)) (-4 *7 (-732)) (-5 *2 (-108)) (-5 *1 (-572 *6 *7 *3 *8)) (-4 *8 (-880 *3 *7 *6))))) -(-10 -7 (-15 -1555 ((-108) |#3| (-710) (-589 |#3|))) (-15 -2260 ((-3 (-2 (|:| |polfac| (-589 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-589 (-1083 |#3|)))) "failed") |#3| (-589 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1979 (-589 (-2 (|:| |irr| |#4|) (|:| -1227 (-523)))))) (-589 |#3|) (-589 |#1|) (-589 |#3|)))) -((-3924 (((-108) $ $) NIL)) (-2061 (((-589 |#1|) $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-1419 (($ $) 67)) (-2384 (((-607 |#1| |#2|) $) 52)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 70)) (-3752 (((-589 (-271 |#2|)) $ $) 33)) (-2783 (((-1034) $) NIL)) (-1811 (($ (-607 |#1| |#2|)) 48)) (-3208 (($ $ $) NIL)) (-1714 (($ $ $) NIL)) (-1458 (((-794) $) 58) (((-1181 |#1| |#2|) $) NIL) (((-1186 |#1| |#2|) $) 66)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2767 (($) 53 T CONST)) (-2618 (((-589 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) 31)) (-2643 (((-589 (-607 |#1| |#2|)) (-589 |#1|)) 65)) (-1643 (((-589 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $) 36)) (-3983 (((-108) $ $) 54)) (-4098 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ $ $) 44))) -(((-573 |#1| |#2| |#3|) (-13 (-448) (-10 -8 (-15 -1811 ($ (-607 |#1| |#2|))) (-15 -2384 ((-607 |#1| |#2|) $)) (-15 -1643 ((-589 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $)) (-15 -1458 ((-1181 |#1| |#2|) $)) (-15 -1458 ((-1186 |#1| |#2|) $)) (-15 -1419 ($ $)) (-15 -2061 ((-589 |#1|) $)) (-15 -2643 ((-589 (-607 |#1| |#2|)) (-589 |#1|))) (-15 -2618 ((-589 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $)) (-15 -3752 ((-589 (-271 |#2|)) $ $)))) (-786) (-13 (-158) (-657 (-383 (-523)))) (-852)) (T -573)) -((-1811 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-5 *1 (-573 *3 *4 *5)) (-14 *5 (-852)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |k| (-824 *3)) (|:| |c| *4)))) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-1419 (*1 *1 *1) (-12 (-5 *1 (-573 *2 *3 *4)) (-4 *2 (-786)) (-4 *3 (-13 (-158) (-657 (-383 (-523))))) (-14 *4 (-852)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-786)) (-5 *2 (-589 (-607 *4 *5))) (-5 *1 (-573 *4 *5 *6)) (-4 *5 (-13 (-158) (-657 (-383 (-523))))) (-14 *6 (-852)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-3752 (*1 *2 *1 *1) (-12 (-5 *2 (-589 (-271 *4))) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852))))) -(-13 (-448) (-10 -8 (-15 -1811 ($ (-607 |#1| |#2|))) (-15 -2384 ((-607 |#1| |#2|) $)) (-15 -1643 ((-589 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $)) (-15 -1458 ((-1181 |#1| |#2|) $)) (-15 -1458 ((-1186 |#1| |#2|) $)) (-15 -1419 ($ $)) (-15 -2061 ((-589 |#1|) $)) (-15 -2643 ((-589 (-607 |#1| |#2|)) (-589 |#1|))) (-15 -2618 ((-589 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $)) (-15 -3752 ((-589 (-271 |#2|)) $ $)))) -((-3846 (((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108)) 71) (((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108)) 57)) (-3249 (((-108) (-589 (-719 |#1| (-796 |#2|)))) 22)) (-1885 (((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108)) 70)) (-2883 (((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108)) 56)) (-1896 (((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|)))) 26)) (-4095 (((-3 (-589 (-719 |#1| (-796 |#2|))) "failed") (-589 (-719 |#1| (-796 |#2|)))) 25))) -(((-574 |#1| |#2|) (-10 -7 (-15 -3249 ((-108) (-589 (-719 |#1| (-796 |#2|))))) (-15 -4095 ((-3 (-589 (-719 |#1| (-796 |#2|))) "failed") (-589 (-719 |#1| (-796 |#2|))))) (-15 -1896 ((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))))) (-15 -2883 ((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -1885 ((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -3846 ((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -3846 ((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108)))) (-427) (-589 (-1087))) (T -574)) -((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-1058 *5 (-495 (-796 *6)) (-796 *6) (-719 *5 (-796 *6))))) (-5 *1 (-574 *5 *6)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-574 *5 *6)))) (-1885 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-1058 *5 (-495 (-796 *6)) (-796 *6) (-719 *5 (-796 *6))))) (-5 *1 (-574 *5 *6)))) (-2883 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-574 *5 *6)))) (-1896 (*1 *2 *2) (-12 (-5 *2 (-589 (-719 *3 (-796 *4)))) (-4 *3 (-427)) (-14 *4 (-589 (-1087))) (-5 *1 (-574 *3 *4)))) (-4095 (*1 *2 *2) (|partial| -12 (-5 *2 (-589 (-719 *3 (-796 *4)))) (-4 *3 (-427)) (-14 *4 (-589 (-1087))) (-5 *1 (-574 *3 *4)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-589 (-719 *4 (-796 *5)))) (-4 *4 (-427)) (-14 *5 (-589 (-1087))) (-5 *2 (-108)) (-5 *1 (-574 *4 *5))))) -(-10 -7 (-15 -3249 ((-108) (-589 (-719 |#1| (-796 |#2|))))) (-15 -4095 ((-3 (-589 (-719 |#1| (-796 |#2|))) "failed") (-589 (-719 |#1| (-796 |#2|))))) (-15 -1896 ((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))))) (-15 -2883 ((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -1885 ((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -3846 ((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -3846 ((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108)))) -((-1769 (($ $) 38)) (-3780 (($ $) 21)) (-1744 (($ $) 37)) (-3711 (($ $) 22)) (-1793 (($ $) 36)) (-3805 (($ $) 23)) (-2820 (($) 48)) (-2384 (($ $) 45)) (-3825 (($ $) 17)) (-1373 (($ $ (-1009 $)) 7) (($ $ (-1087)) 6)) (-1811 (($ $) 46)) (-3084 (($ $) 15)) (-3694 (($ $) 16)) (-1805 (($ $) 35)) (-3816 (($ $) 24)) (-1782 (($ $) 34)) (-3793 (($ $) 25)) (-1757 (($ $) 33)) (-3767 (($ $) 26)) (-1839 (($ $) 44)) (-3847 (($ $) 32)) (-1818 (($ $) 43)) (-3828 (($ $) 31)) (-1865 (($ $) 42)) (-1719 (($ $) 30)) (-2914 (($ $) 41)) (-1731 (($ $) 29)) (-1852 (($ $) 40)) (-3859 (($ $) 28)) (-1830 (($ $) 39)) (-3838 (($ $) 27)) (-3334 (($ $) 19)) (-2440 (($ $) 20)) (-1527 (($ $) 18)) (** (($ $ $) 47))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3482 (((-523) $) NIL (|has| |#1| (-784)))) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) NIL)) (-3712 (((-108) $) NIL (|has| |#1| (-784)))) (-2769 (((-108) $) NIL)) (-3316 ((|#1| $) 13)) (-2057 (((-108) $) NIL (|has| |#1| (-784)))) (-3239 (($ $ $) NIL (|has| |#1| (-784)))) (-3158 (($ $ $) NIL (|has| |#1| (-784)))) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3329 ((|#3| $) 15)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL)) (-3272 (((-710)) 20)) (-2695 (($ $) NIL (|has| |#1| (-784)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) 12 T CONST)) (-4006 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4074 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-568 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (-15 -4074 ($ $ |#3|)) (-15 -4074 ($ |#1| |#3|)) (-15 -3316 (|#1| $)) (-15 -3329 (|#3| $)))) (-37 |#2|) (-158) (|SubsetCategory| (-666) |#2|)) (T -568)) +((-4074 (*1 *1 *1 *2) (-12 (-4 *4 (-158)) (-5 *1 (-568 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-666) *4)))) (-4074 (*1 *1 *2 *3) (-12 (-4 *4 (-158)) (-5 *1 (-568 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-666) *4)))) (-3316 (*1 *2 *1) (-12 (-4 *3 (-158)) (-4 *2 (-37 *3)) (-5 *1 (-568 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-666) *3)))) (-3329 (*1 *2 *1) (-12 (-4 *4 (-158)) (-4 *2 (|SubsetCategory| (-666) *4)) (-5 *1 (-568 *3 *4 *2)) (-4 *3 (-37 *4))))) +(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (-15 -4074 ($ $ |#3|)) (-15 -4074 ($ |#1| |#3|)) (-15 -3316 (|#1| $)) (-15 -3329 (|#3| $)))) +((-2147 ((|#2| |#2| (-1087) (-1087)) 18))) +(((-569 |#1| |#2|) (-10 -7 (-15 -2147 (|#2| |#2| (-1087) (-1087)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1109) (-889) (-29 |#1|))) (T -569)) +((-2147 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-1109) (-889) (-29 *4)))))) +(-10 -7 (-15 -2147 (|#2| |#2| (-1087) (-1087)))) +((-1680 (((-108) $ $) 56)) (-2603 (((-108) $) 52)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-1884 ((|#1| $) 49)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-3061 (((-2 (|:| -2604 $) (|:| -3592 (-383 |#2|))) (-383 |#2|)) 97 (|has| |#1| (-339)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-1457 (($ $) 24)) (-1444 (((-3 $ "failed") $) 75)) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-3437 (((-523) $) 19)) (-2769 (((-108) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2704 (((-108) $) 36)) (-1267 (($ |#1| (-523)) 21)) (-1437 ((|#1| $) 51)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) 87 (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-4007 (((-3 $ "failed") $ $) 79)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-3413 (((-710) $) 99 (|has| |#1| (-339)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 98 (|has| |#1| (-339)))) (-3984 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-2640 (((-523) $) 34)) (-1400 (((-383 |#2|) $) 42)) (-1691 (((-794) $) 62) (($ (-523)) 32) (($ $) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 31) (($ |#2|) 22)) (-2084 ((|#1| $ (-523)) 63)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 9 T CONST)) (-1891 (($) 12 T CONST)) (-2909 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3941 (((-108) $ $) 17)) (-4060 (($ $) 46) (($ $ $) NIL)) (-4045 (($ $ $) 76)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 26) (($ $ $) 44))) +(((-570 |#1| |#2|) (-13 (-209 |#2|) (-515) (-564 (-383 |#2|)) (-387 |#1|) (-964 |#2|) (-10 -8 (-15 -2704 ((-108) $)) (-15 -2640 ((-523) $)) (-15 -3437 ((-523) $)) (-15 -1457 ($ $)) (-15 -1437 (|#1| $)) (-15 -1884 (|#1| $)) (-15 -2084 (|#1| $ (-523))) (-15 -1267 ($ |#1| (-523))) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-6 (-284)) (-15 -3061 ((-2 (|:| -2604 $) (|:| -3592 (-383 |#2|))) (-383 |#2|)))) |%noBranch|))) (-515) (-1145 |#1|)) (T -570)) +((-2704 (*1 *2 *1) (-12 (-4 *3 (-515)) (-5 *2 (-108)) (-5 *1 (-570 *3 *4)) (-4 *4 (-1145 *3)))) (-2640 (*1 *2 *1) (-12 (-4 *3 (-515)) (-5 *2 (-523)) (-5 *1 (-570 *3 *4)) (-4 *4 (-1145 *3)))) (-3437 (*1 *2 *1) (-12 (-4 *3 (-515)) (-5 *2 (-523)) (-5 *1 (-570 *3 *4)) (-4 *4 (-1145 *3)))) (-1457 (*1 *1 *1) (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1145 *2)))) (-1437 (*1 *2 *1) (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1145 *2)))) (-1884 (*1 *2 *1) (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1145 *2)))) (-2084 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *2 (-515)) (-5 *1 (-570 *2 *4)) (-4 *4 (-1145 *2)))) (-1267 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-4 *2 (-515)) (-5 *1 (-570 *2 *4)) (-4 *4 (-1145 *2)))) (-3061 (*1 *2 *3) (-12 (-4 *4 (-339)) (-4 *4 (-515)) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| -2604 (-570 *4 *5)) (|:| -3592 (-383 *5)))) (-5 *1 (-570 *4 *5)) (-5 *3 (-383 *5))))) +(-13 (-209 |#2|) (-515) (-564 (-383 |#2|)) (-387 |#1|) (-964 |#2|) (-10 -8 (-15 -2704 ((-108) $)) (-15 -2640 ((-523) $)) (-15 -3437 ((-523) $)) (-15 -1457 ($ $)) (-15 -1437 (|#1| $)) (-15 -1884 (|#1| $)) (-15 -2084 (|#1| $ (-523))) (-15 -1267 ($ |#1| (-523))) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-6 (-284)) (-15 -3061 ((-2 (|:| -2604 $) (|:| -3592 (-383 |#2|))) (-383 |#2|)))) |%noBranch|))) +((-2591 (((-589 |#6|) (-589 |#4|) (-108)) 47)) (-2811 ((|#6| |#6|) 40))) +(((-571 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2811 (|#6| |#6|)) (-15 -2591 ((-589 |#6|) (-589 |#4|) (-108)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|) (-1025 |#1| |#2| |#3| |#4|)) (T -571)) +((-2591 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 *10)) (-5 *1 (-571 *5 *6 *7 *8 *9 *10)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *10 (-1025 *5 *6 *7 *8)))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-571 *3 *4 *5 *6 *7 *2)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *2 (-1025 *3 *4 *5 *6))))) +(-10 -7 (-15 -2811 (|#6| |#6|)) (-15 -2591 ((-589 |#6|) (-589 |#4|) (-108)))) +((-3837 (((-108) |#3| (-710) (-589 |#3|)) 23)) (-3397 (((-3 (-2 (|:| |polfac| (-589 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-589 (-1083 |#3|)))) "failed") |#3| (-589 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3491 (-589 (-2 (|:| |irr| |#4|) (|:| -1787 (-523)))))) (-589 |#3|) (-589 |#1|) (-589 |#3|)) 54))) +(((-572 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3837 ((-108) |#3| (-710) (-589 |#3|))) (-15 -3397 ((-3 (-2 (|:| |polfac| (-589 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-589 (-1083 |#3|)))) "failed") |#3| (-589 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3491 (-589 (-2 (|:| |irr| |#4|) (|:| -1787 (-523)))))) (-589 |#3|) (-589 |#1|) (-589 |#3|)))) (-786) (-732) (-284) (-880 |#3| |#2| |#1|)) (T -572)) +((-3397 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3491 (-589 (-2 (|:| |irr| *10) (|:| -1787 (-523))))))) (-5 *6 (-589 *3)) (-5 *7 (-589 *8)) (-4 *8 (-786)) (-4 *3 (-284)) (-4 *10 (-880 *3 *9 *8)) (-4 *9 (-732)) (-5 *2 (-2 (|:| |polfac| (-589 *10)) (|:| |correct| *3) (|:| |corrfact| (-589 (-1083 *3))))) (-5 *1 (-572 *8 *9 *3 *10)) (-5 *4 (-589 (-1083 *3))))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-710)) (-5 *5 (-589 *3)) (-4 *3 (-284)) (-4 *6 (-786)) (-4 *7 (-732)) (-5 *2 (-108)) (-5 *1 (-572 *6 *7 *3 *8)) (-4 *8 (-880 *3 *7 *6))))) +(-10 -7 (-15 -3837 ((-108) |#3| (-710) (-589 |#3|))) (-15 -3397 ((-3 (-2 (|:| |polfac| (-589 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-589 (-1083 |#3|)))) "failed") |#3| (-589 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3491 (-589 (-2 (|:| |irr| |#4|) (|:| -1787 (-523)))))) (-589 |#3|) (-589 |#1|) (-589 |#3|)))) +((-1680 (((-108) $ $) NIL)) (-2634 (((-589 |#1|) $) NIL)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) NIL)) (-2769 (((-108) $) NIL)) (-1965 (($ $) 67)) (-2313 (((-607 |#1| |#2|) $) 52)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 70)) (-2980 (((-589 (-271 |#2|)) $ $) 33)) (-3951 (((-1034) $) NIL)) (-2922 (($ (-607 |#1| |#2|)) 48)) (-3361 (($ $ $) NIL)) (-2892 (($ $ $) NIL)) (-1691 (((-794) $) 58) (((-1182 |#1| |#2|) $) NIL) (((-1187 |#1| |#2|) $) 66)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1891 (($) 53 T CONST)) (-2683 (((-589 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) 31)) (-2921 (((-589 (-607 |#1| |#2|)) (-589 |#1|)) 65)) (-3461 (((-589 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $) 36)) (-3941 (((-108) $ $) 54)) (-4074 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ $ $) 44))) +(((-573 |#1| |#2| |#3|) (-13 (-448) (-10 -8 (-15 -2922 ($ (-607 |#1| |#2|))) (-15 -2313 ((-607 |#1| |#2|) $)) (-15 -3461 ((-589 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $)) (-15 -1691 ((-1182 |#1| |#2|) $)) (-15 -1691 ((-1187 |#1| |#2|) $)) (-15 -1965 ($ $)) (-15 -2634 ((-589 |#1|) $)) (-15 -2921 ((-589 (-607 |#1| |#2|)) (-589 |#1|))) (-15 -2683 ((-589 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $)) (-15 -2980 ((-589 (-271 |#2|)) $ $)))) (-786) (-13 (-158) (-657 (-383 (-523)))) (-852)) (T -573)) +((-2922 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-5 *1 (-573 *3 *4 *5)) (-14 *5 (-852)))) (-2313 (*1 *2 *1) (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |k| (-824 *3)) (|:| |c| *4)))) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1182 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-1965 (*1 *1 *1) (-12 (-5 *1 (-573 *2 *3 *4)) (-4 *2 (-786)) (-4 *3 (-13 (-158) (-657 (-383 (-523))))) (-14 *4 (-852)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-786)) (-5 *2 (-589 (-607 *4 *5))) (-5 *1 (-573 *4 *5 *6)) (-4 *5 (-13 (-158) (-657 (-383 (-523))))) (-14 *6 (-852)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-2980 (*1 *2 *1 *1) (-12 (-5 *2 (-589 (-271 *4))) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852))))) +(-13 (-448) (-10 -8 (-15 -2922 ($ (-607 |#1| |#2|))) (-15 -2313 ((-607 |#1| |#2|) $)) (-15 -3461 ((-589 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $)) (-15 -1691 ((-1182 |#1| |#2|) $)) (-15 -1691 ((-1187 |#1| |#2|) $)) (-15 -1965 ($ $)) (-15 -2634 ((-589 |#1|) $)) (-15 -2921 ((-589 (-607 |#1| |#2|)) (-589 |#1|))) (-15 -2683 ((-589 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $)) (-15 -2980 ((-589 (-271 |#2|)) $ $)))) +((-2591 (((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108)) 71) (((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108)) 57)) (-3746 (((-108) (-589 (-719 |#1| (-796 |#2|)))) 22)) (-3798 (((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108)) 70)) (-3287 (((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108)) 56)) (-3901 (((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|)))) 26)) (-3032 (((-3 (-589 (-719 |#1| (-796 |#2|))) "failed") (-589 (-719 |#1| (-796 |#2|)))) 25))) +(((-574 |#1| |#2|) (-10 -7 (-15 -3746 ((-108) (-589 (-719 |#1| (-796 |#2|))))) (-15 -3032 ((-3 (-589 (-719 |#1| (-796 |#2|))) "failed") (-589 (-719 |#1| (-796 |#2|))))) (-15 -3901 ((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))))) (-15 -3287 ((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -3798 ((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -2591 ((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -2591 ((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108)))) (-427) (-589 (-1087))) (T -574)) +((-2591 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-1058 *5 (-495 (-796 *6)) (-796 *6) (-719 *5 (-796 *6))))) (-5 *1 (-574 *5 *6)))) (-2591 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-574 *5 *6)))) (-3798 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-1058 *5 (-495 (-796 *6)) (-796 *6) (-719 *5 (-796 *6))))) (-5 *1 (-574 *5 *6)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-574 *5 *6)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-589 (-719 *3 (-796 *4)))) (-4 *3 (-427)) (-14 *4 (-589 (-1087))) (-5 *1 (-574 *3 *4)))) (-3032 (*1 *2 *2) (|partial| -12 (-5 *2 (-589 (-719 *3 (-796 *4)))) (-4 *3 (-427)) (-14 *4 (-589 (-1087))) (-5 *1 (-574 *3 *4)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-589 (-719 *4 (-796 *5)))) (-4 *4 (-427)) (-14 *5 (-589 (-1087))) (-5 *2 (-108)) (-5 *1 (-574 *4 *5))))) +(-10 -7 (-15 -3746 ((-108) (-589 (-719 |#1| (-796 |#2|))))) (-15 -3032 ((-3 (-589 (-719 |#1| (-796 |#2|))) "failed") (-589 (-719 |#1| (-796 |#2|))))) (-15 -3901 ((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))))) (-15 -3287 ((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -3798 ((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -2591 ((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -2591 ((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108)))) +((-1462 (($ $) 38)) (-1285 (($ $) 21)) (-1441 (($ $) 37)) (-1260 (($ $) 22)) (-1481 (($ $) 36)) (-1309 (($ $) 23)) (-3352 (($) 48)) (-2313 (($ $) 45)) (-1451 (($ $) 17)) (-2663 (($ $ (-1009 $)) 7) (($ $ (-1087)) 6)) (-2922 (($ $) 46)) (-2533 (($ $) 15)) (-1247 (($ $) 16)) (-2306 (($ $) 35)) (-1322 (($ $) 24)) (-1471 (($ $) 34)) (-1295 (($ $) 25)) (-1453 (($ $) 33)) (-1274 (($ $) 26)) (-2341 (($ $) 44)) (-1401 (($ $) 32)) (-2318 (($ $) 43)) (-1334 (($ $) 31)) (-2366 (($ $) 42)) (-1421 (($ $) 30)) (-2102 (($ $) 41)) (-1431 (($ $) 29)) (-2353 (($ $) 40)) (-1413 (($ $) 28)) (-2330 (($ $) 39)) (-1346 (($ $) 27)) (-3202 (($ $) 19)) (-1638 (($ $) 20)) (-1819 (($ $) 18)) (** (($ $ $) 47))) (((-575) (-129)) (T -575)) -((-2440 (*1 *1 *1) (-4 *1 (-575))) (-3334 (*1 *1 *1) (-4 *1 (-575))) (-1527 (*1 *1 *1) (-4 *1 (-575))) (-3825 (*1 *1 *1) (-4 *1 (-575))) (-3694 (*1 *1 *1) (-4 *1 (-575))) (-3084 (*1 *1 *1) (-4 *1 (-575)))) -(-13 (-889) (-1108) (-10 -8 (-15 -2440 ($ $)) (-15 -3334 ($ $)) (-15 -1527 ($ $)) (-15 -3825 ($ $)) (-15 -3694 ($ $)) (-15 -3084 ($ $)))) -(((-34) . T) ((-91) . T) ((-261) . T) ((-464) . T) ((-889) . T) ((-1108) . T) ((-1111) . T)) -((-1403 (((-110) (-110)) 83)) (-3825 ((|#2| |#2|) 30)) (-1373 ((|#2| |#2| (-1009 |#2|)) 79) ((|#2| |#2| (-1087)) 52)) (-3084 ((|#2| |#2|) 29)) (-3694 ((|#2| |#2|) 31)) (-1950 (((-108) (-110)) 34)) (-3334 ((|#2| |#2|) 26)) (-2440 ((|#2| |#2|) 28)) (-1527 ((|#2| |#2|) 27))) -(((-576 |#1| |#2|) (-10 -7 (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -2440 (|#2| |#2|)) (-15 -3334 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -3084 (|#2| |#2|)) (-15 -3694 (|#2| |#2|)) (-15 -1373 (|#2| |#2| (-1087))) (-15 -1373 (|#2| |#2| (-1009 |#2|)))) (-13 (-786) (-515)) (-13 (-406 |#1|) (-930) (-1108))) (T -576)) -((-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1009 *2)) (-4 *2 (-13 (-406 *4) (-930) (-1108))) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-576 *4 *2)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-576 *4 *2)) (-4 *2 (-13 (-406 *4) (-930) (-1108))))) (-3694 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1108))))) (-3084 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1108))))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1108))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1108))))) (-3334 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1108))))) (-2440 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1108))))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *4)) (-4 *4 (-13 (-406 *3) (-930) (-1108))))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-576 *4 *5)) (-4 *5 (-13 (-406 *4) (-930) (-1108)))))) -(-10 -7 (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -2440 (|#2| |#2|)) (-15 -3334 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -3084 (|#2| |#2|)) (-15 -3694 (|#2| |#2|)) (-15 -1373 (|#2| |#2| (-1087))) (-15 -1373 (|#2| |#2| (-1009 |#2|)))) -((-3218 (((-455 |#1| |#2|) (-225 |#1| |#2|)) 53)) (-3678 (((-589 (-225 |#1| |#2|)) (-589 (-455 |#1| |#2|))) 68)) (-3381 (((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-796 |#1|)) 70) (((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)) (-796 |#1|)) 69)) (-1565 (((-2 (|:| |gblist| (-589 (-225 |#1| |#2|))) (|:| |gvlist| (-589 (-523)))) (-589 (-455 |#1| |#2|))) 106)) (-3213 (((-589 (-455 |#1| |#2|)) (-796 |#1|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|))) 83)) (-2082 (((-2 (|:| |glbase| (-589 (-225 |#1| |#2|))) (|:| |glval| (-589 (-523)))) (-589 (-225 |#1| |#2|))) 117)) (-2013 (((-1168 |#2|) (-455 |#1| |#2|) (-589 (-455 |#1| |#2|))) 58)) (-1414 (((-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|))) 39)) (-1508 (((-225 |#1| |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|))) 49)) (-2282 (((-225 |#1| |#2|) (-589 |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|))) 90))) -(((-577 |#1| |#2|) (-10 -7 (-15 -1565 ((-2 (|:| |gblist| (-589 (-225 |#1| |#2|))) (|:| |gvlist| (-589 (-523)))) (-589 (-455 |#1| |#2|)))) (-15 -2082 ((-2 (|:| |glbase| (-589 (-225 |#1| |#2|))) (|:| |glval| (-589 (-523)))) (-589 (-225 |#1| |#2|)))) (-15 -3678 ((-589 (-225 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -3381 ((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)) (-796 |#1|))) (-15 -3381 ((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-796 |#1|))) (-15 -1414 ((-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -2013 ((-1168 |#2|) (-455 |#1| |#2|) (-589 (-455 |#1| |#2|)))) (-15 -2282 ((-225 |#1| |#2|) (-589 |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|)))) (-15 -3213 ((-589 (-455 |#1| |#2|)) (-796 |#1|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -1508 ((-225 |#1| |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|)))) (-15 -3218 ((-455 |#1| |#2|) (-225 |#1| |#2|)))) (-589 (-1087)) (-427)) (T -577)) -((-3218 (*1 *2 *3) (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *2 (-455 *4 *5)) (-5 *1 (-577 *4 *5)))) (-1508 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-225 *4 *5))) (-5 *2 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-577 *4 *5)))) (-3213 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-589 (-455 *4 *5))) (-5 *3 (-796 *4)) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-577 *4 *5)))) (-2282 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-225 *5 *6))) (-4 *6 (-427)) (-5 *2 (-225 *5 *6)) (-14 *5 (-589 (-1087))) (-5 *1 (-577 *5 *6)))) (-2013 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-455 *5 *6))) (-5 *3 (-455 *5 *6)) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-1168 *6)) (-5 *1 (-577 *5 *6)))) (-1414 (*1 *2 *2) (-12 (-5 *2 (-589 (-455 *3 *4))) (-14 *3 (-589 (-1087))) (-4 *4 (-427)) (-5 *1 (-577 *3 *4)))) (-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-455 *5 *6))) (-5 *4 (-796 *5)) (-14 *5 (-589 (-1087))) (-5 *2 (-455 *5 *6)) (-5 *1 (-577 *5 *6)) (-4 *6 (-427)))) (-3381 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-589 (-455 *5 *6))) (-5 *4 (-796 *5)) (-14 *5 (-589 (-1087))) (-5 *2 (-455 *5 *6)) (-5 *1 (-577 *5 *6)) (-4 *6 (-427)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-589 (-455 *4 *5))) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *2 (-589 (-225 *4 *5))) (-5 *1 (-577 *4 *5)))) (-2082 (*1 *2 *3) (-12 (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *2 (-2 (|:| |glbase| (-589 (-225 *4 *5))) (|:| |glval| (-589 (-523))))) (-5 *1 (-577 *4 *5)) (-5 *3 (-589 (-225 *4 *5))))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-589 (-455 *4 *5))) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *2 (-2 (|:| |gblist| (-589 (-225 *4 *5))) (|:| |gvlist| (-589 (-523))))) (-5 *1 (-577 *4 *5))))) -(-10 -7 (-15 -1565 ((-2 (|:| |gblist| (-589 (-225 |#1| |#2|))) (|:| |gvlist| (-589 (-523)))) (-589 (-455 |#1| |#2|)))) (-15 -2082 ((-2 (|:| |glbase| (-589 (-225 |#1| |#2|))) (|:| |glval| (-589 (-523)))) (-589 (-225 |#1| |#2|)))) (-15 -3678 ((-589 (-225 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -3381 ((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)) (-796 |#1|))) (-15 -3381 ((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-796 |#1|))) (-15 -1414 ((-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -2013 ((-1168 |#2|) (-455 |#1| |#2|) (-589 (-455 |#1| |#2|)))) (-15 -2282 ((-225 |#1| |#2|) (-589 |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|)))) (-15 -3213 ((-589 (-455 |#1| |#2|)) (-796 |#1|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -1508 ((-225 |#1| |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|)))) (-15 -3218 ((-455 |#1| |#2|) (-225 |#1| |#2|)))) -((-3924 (((-108) $ $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) NIL)) (-4207 (((-1173) $ (-1070) (-1070)) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 (((-51) $ (-1070) (-51)) 16) (((-51) $ (-1087) (-51)) 17)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 (-51) "failed") (-1070) $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016))))) (-2249 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-3 (-51) "failed") (-1070) $) NIL)) (-2557 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $ (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (((-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $ (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2863 (((-51) $ (-1070) (-51)) NIL (|has| $ (-6 -4245)))) (-2795 (((-51) $ (-1070)) NIL)) (-1666 (((-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-589 (-51)) $) NIL (|has| $ (-6 -4244)))) (-2918 (($ $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2136 (((-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-589 (-51)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016))))) (-3056 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4245))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4042 (($ (-364)) 9)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016))))) (-1330 (((-589 (-1070)) $) NIL)) (-2777 (((-108) (-1070) $) NIL)) (-1934 (((-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL)) (-3450 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL)) (-2412 (((-589 (-1070)) $) NIL)) (-4135 (((-108) (-1070) $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016))))) (-1738 (((-51) $) NIL (|has| (-1070) (-786)))) (-2114 (((-3 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) "failed") (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL)) (-4203 (($ $ (-51)) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (($ $ (-271 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (($ $ (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (($ $ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (($ $ (-589 (-51)) (-589 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-271 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-589 (-271 (-51)))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016))))) (-1264 (((-589 (-51)) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 (((-51) $ (-1070)) 14) (((-51) $ (-1070) (-51)) NIL) (((-51) $ (-1087)) 15)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (((-710) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016)))) (((-710) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-51) (-563 (-794))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-578) (-13 (-1099 (-1070) (-51)) (-10 -8 (-15 -4042 ($ (-364))) (-15 -2918 ($ $)) (-15 -3223 ((-51) $ (-1087))) (-15 -1641 ((-51) $ (-1087) (-51)))))) (T -578)) -((-4042 (*1 *1 *2) (-12 (-5 *2 (-364)) (-5 *1 (-578)))) (-2918 (*1 *1 *1) (-5 *1 (-578))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-51)) (-5 *1 (-578)))) (-1641 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1087)) (-5 *1 (-578))))) -(-13 (-1099 (-1070) (-51)) (-10 -8 (-15 -4042 ($ (-364))) (-15 -2918 ($ $)) (-15 -3223 ((-51) $ (-1087))) (-15 -1641 ((-51) $ (-1087) (-51))))) -((-4098 (($ $ |#2|) 10))) -(((-579 |#1| |#2|) (-10 -8 (-15 -4098 (|#1| |#1| |#2|))) (-580 |#2|) (-158)) (T -579)) -NIL -(-10 -8 (-15 -4098 (|#1| |#1| |#2|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1472 (($ $ $) 29)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 28 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +((-1638 (*1 *1 *1) (-4 *1 (-575))) (-3202 (*1 *1 *1) (-4 *1 (-575))) (-1819 (*1 *1 *1) (-4 *1 (-575))) (-1451 (*1 *1 *1) (-4 *1 (-575))) (-1247 (*1 *1 *1) (-4 *1 (-575))) (-2533 (*1 *1 *1) (-4 *1 (-575)))) +(-13 (-889) (-1109) (-10 -8 (-15 -1638 ($ $)) (-15 -3202 ($ $)) (-15 -1819 ($ $)) (-15 -1451 ($ $)) (-15 -1247 ($ $)) (-15 -2533 ($ $)))) +(((-34) . T) ((-91) . T) ((-261) . T) ((-464) . T) ((-889) . T) ((-1109) . T) ((-1112) . T)) +((-2947 (((-110) (-110)) 83)) (-1451 ((|#2| |#2|) 30)) (-2663 ((|#2| |#2| (-1009 |#2|)) 79) ((|#2| |#2| (-1087)) 52)) (-2533 ((|#2| |#2|) 29)) (-1247 ((|#2| |#2|) 31)) (-3198 (((-108) (-110)) 34)) (-3202 ((|#2| |#2|) 26)) (-1638 ((|#2| |#2|) 28)) (-1819 ((|#2| |#2|) 27))) +(((-576 |#1| |#2|) (-10 -7 (-15 -3198 ((-108) (-110))) (-15 -2947 ((-110) (-110))) (-15 -1638 (|#2| |#2|)) (-15 -3202 (|#2| |#2|)) (-15 -1819 (|#2| |#2|)) (-15 -1451 (|#2| |#2|)) (-15 -2533 (|#2| |#2|)) (-15 -1247 (|#2| |#2|)) (-15 -2663 (|#2| |#2| (-1087))) (-15 -2663 (|#2| |#2| (-1009 |#2|)))) (-13 (-786) (-515)) (-13 (-406 |#1|) (-930) (-1109))) (T -576)) +((-2663 (*1 *2 *2 *3) (-12 (-5 *3 (-1009 *2)) (-4 *2 (-13 (-406 *4) (-930) (-1109))) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-576 *4 *2)))) (-2663 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-576 *4 *2)) (-4 *2 (-13 (-406 *4) (-930) (-1109))))) (-1247 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1109))))) (-2533 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1109))))) (-1451 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1109))))) (-1819 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1109))))) (-3202 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1109))))) (-1638 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1109))))) (-2947 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *4)) (-4 *4 (-13 (-406 *3) (-930) (-1109))))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-576 *4 *5)) (-4 *5 (-13 (-406 *4) (-930) (-1109)))))) +(-10 -7 (-15 -3198 ((-108) (-110))) (-15 -2947 ((-110) (-110))) (-15 -1638 (|#2| |#2|)) (-15 -3202 (|#2| |#2|)) (-15 -1819 (|#2| |#2|)) (-15 -1451 (|#2| |#2|)) (-15 -2533 (|#2| |#2|)) (-15 -1247 (|#2| |#2|)) (-15 -2663 (|#2| |#2| (-1087))) (-15 -2663 (|#2| |#2| (-1009 |#2|)))) +((-3470 (((-455 |#1| |#2|) (-225 |#1| |#2|)) 52)) (-3549 (((-589 (-225 |#1| |#2|)) (-589 (-455 |#1| |#2|))) 67)) (-3649 (((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-796 |#1|)) 69) (((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)) (-796 |#1|)) 68)) (-3942 (((-2 (|:| |gblist| (-589 (-225 |#1| |#2|))) (|:| |gvlist| (-589 (-523)))) (-589 (-455 |#1| |#2|))) 107)) (-3416 (((-589 (-455 |#1| |#2|)) (-796 |#1|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|))) 83)) (-2166 (((-2 (|:| |glbase| (-589 (-225 |#1| |#2|))) (|:| |glval| (-589 (-523)))) (-589 (-225 |#1| |#2|))) 118)) (-2684 (((-1169 |#2|) (-455 |#1| |#2|) (-589 (-455 |#1| |#2|))) 57)) (-1921 (((-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|))) 39)) (-1652 (((-225 |#1| |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|))) 49)) (-3616 (((-225 |#1| |#2|) (-589 |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|))) 91))) +(((-577 |#1| |#2|) (-10 -7 (-15 -3942 ((-2 (|:| |gblist| (-589 (-225 |#1| |#2|))) (|:| |gvlist| (-589 (-523)))) (-589 (-455 |#1| |#2|)))) (-15 -2166 ((-2 (|:| |glbase| (-589 (-225 |#1| |#2|))) (|:| |glval| (-589 (-523)))) (-589 (-225 |#1| |#2|)))) (-15 -3549 ((-589 (-225 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -3649 ((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)) (-796 |#1|))) (-15 -3649 ((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-796 |#1|))) (-15 -1921 ((-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -2684 ((-1169 |#2|) (-455 |#1| |#2|) (-589 (-455 |#1| |#2|)))) (-15 -3616 ((-225 |#1| |#2|) (-589 |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|)))) (-15 -3416 ((-589 (-455 |#1| |#2|)) (-796 |#1|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -1652 ((-225 |#1| |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|)))) (-15 -3470 ((-455 |#1| |#2|) (-225 |#1| |#2|)))) (-589 (-1087)) (-427)) (T -577)) +((-3470 (*1 *2 *3) (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *2 (-455 *4 *5)) (-5 *1 (-577 *4 *5)))) (-1652 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-225 *4 *5))) (-5 *2 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-577 *4 *5)))) (-3416 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-589 (-455 *4 *5))) (-5 *3 (-796 *4)) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-577 *4 *5)))) (-3616 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-225 *5 *6))) (-4 *6 (-427)) (-5 *2 (-225 *5 *6)) (-14 *5 (-589 (-1087))) (-5 *1 (-577 *5 *6)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-455 *5 *6))) (-5 *3 (-455 *5 *6)) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-1169 *6)) (-5 *1 (-577 *5 *6)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-589 (-455 *3 *4))) (-14 *3 (-589 (-1087))) (-4 *4 (-427)) (-5 *1 (-577 *3 *4)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-455 *5 *6))) (-5 *4 (-796 *5)) (-14 *5 (-589 (-1087))) (-5 *2 (-455 *5 *6)) (-5 *1 (-577 *5 *6)) (-4 *6 (-427)))) (-3649 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-589 (-455 *5 *6))) (-5 *4 (-796 *5)) (-14 *5 (-589 (-1087))) (-5 *2 (-455 *5 *6)) (-5 *1 (-577 *5 *6)) (-4 *6 (-427)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-589 (-455 *4 *5))) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *2 (-589 (-225 *4 *5))) (-5 *1 (-577 *4 *5)))) (-2166 (*1 *2 *3) (-12 (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *2 (-2 (|:| |glbase| (-589 (-225 *4 *5))) (|:| |glval| (-589 (-523))))) (-5 *1 (-577 *4 *5)) (-5 *3 (-589 (-225 *4 *5))))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-589 (-455 *4 *5))) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *2 (-2 (|:| |gblist| (-589 (-225 *4 *5))) (|:| |gvlist| (-589 (-523))))) (-5 *1 (-577 *4 *5))))) +(-10 -7 (-15 -3942 ((-2 (|:| |gblist| (-589 (-225 |#1| |#2|))) (|:| |gvlist| (-589 (-523)))) (-589 (-455 |#1| |#2|)))) (-15 -2166 ((-2 (|:| |glbase| (-589 (-225 |#1| |#2|))) (|:| |glval| (-589 (-523)))) (-589 (-225 |#1| |#2|)))) (-15 -3549 ((-589 (-225 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -3649 ((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)) (-796 |#1|))) (-15 -3649 ((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-796 |#1|))) (-15 -1921 ((-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -2684 ((-1169 |#2|) (-455 |#1| |#2|) (-589 (-455 |#1| |#2|)))) (-15 -3616 ((-225 |#1| |#2|) (-589 |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|)))) (-15 -3416 ((-589 (-455 |#1| |#2|)) (-796 |#1|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -1652 ((-225 |#1| |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|)))) (-15 -3470 ((-455 |#1| |#2|) (-225 |#1| |#2|)))) +((-1680 (((-108) $ $) NIL (-3172 (|has| (-51) (-1016)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016))))) (-3723 (($) NIL) (($ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))))) NIL)) (-4191 (((-1174) $ (-1070) (-1070)) NIL (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 (((-51) $ (-1070) (-51)) 16) (((-51) $ (-1087) (-51)) 17)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248)))) (-4216 (((-3 (-51) "failed") (-1070) $) NIL)) (-4189 (($) NIL T CONST)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016))))) (-3286 (($ (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) $) NIL (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-3 (-51) "failed") (-1070) $) NIL)) (-2514 (($ (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016)))) (($ (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $ (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016)))) (((-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $ (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248)))) (-2053 (((-51) $ (-1070) (-51)) NIL (|has| $ (-6 -4249)))) (-2000 (((-51) $ (-1070)) NIL)) (-1871 (((-589 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-589 (-51)) $) NIL (|has| $ (-6 -4248)))) (-3652 (($ $) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-1070) $) NIL (|has| (-1070) (-786)))) (-1584 (((-589 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-589 (-51)) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-51) (-1016))))) (-2567 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4249))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1314 (($ (-364)) 9)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (-3172 (|has| (-51) (-1016)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016))))) (-1255 (((-589 (-1070)) $) NIL)) (-1862 (((-108) (-1070) $) NIL)) (-1293 (((-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) $) NIL)) (-3108 (($ (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) $) NIL)) (-2536 (((-589 (-1070)) $) NIL)) (-2254 (((-108) (-1070) $) NIL)) (-3951 (((-1034) $) NIL (-3172 (|has| (-51) (-1016)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016))))) (-2428 (((-51) $) NIL (|has| (-1070) (-786)))) (-2509 (((-3 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) "failed") (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL)) (-4141 (($ $ (-51)) NIL (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) $) NIL)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))))) NIL (-12 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016)))) (($ $ (-271 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))))) NIL (-12 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016)))) (($ $ (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) NIL (-12 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016)))) (($ $ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))))) NIL (-12 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016)))) (($ $ (-589 (-51)) (-589 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-271 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-589 (-271 (-51)))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-51) (-1016))))) (-3973 (((-589 (-51)) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 (((-51) $ (-1070)) 14) (((-51) $ (-1070) (-51)) NIL) (((-51) $ (-1087)) 15)) (-2963 (($) NIL) (($ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))))) NIL)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016)))) (((-710) (-51) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-51) (-1016)))) (((-710) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))))) NIL)) (-1691 (((-794) $) NIL (-3172 (|has| (-51) (-563 (-794))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-563 (-794)))))) (-2417 (($ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))))) NIL)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (-3172 (|has| (-51) (-1016)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 (-51))) (-1016))))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-578) (-13 (-1100 (-1070) (-51)) (-10 -8 (-15 -1314 ($ (-364))) (-15 -3652 ($ $)) (-15 -1937 ((-51) $ (-1087))) (-15 -1849 ((-51) $ (-1087) (-51)))))) (T -578)) +((-1314 (*1 *1 *2) (-12 (-5 *2 (-364)) (-5 *1 (-578)))) (-3652 (*1 *1 *1) (-5 *1 (-578))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-51)) (-5 *1 (-578)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1087)) (-5 *1 (-578))))) +(-13 (-1100 (-1070) (-51)) (-10 -8 (-15 -1314 ($ (-364))) (-15 -3652 ($ $)) (-15 -1937 ((-51) $ (-1087))) (-15 -1849 ((-51) $ (-1087) (-51))))) +((-4074 (($ $ |#2|) 10))) +(((-579 |#1| |#2|) (-10 -8 (-15 -4074 (|#1| |#1| |#2|))) (-580 |#2|) (-158)) (T -579)) +NIL +(-10 -8 (-15 -4074 (|#1| |#1| |#2|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1704 (($ $ $) 29)) (-1691 (((-794) $) 11)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#1|) 28 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) (((-580 |#1|) (-129) (-158)) (T -580)) -((-1472 (*1 *1 *1 *1) (-12 (-4 *1 (-580 *2)) (-4 *2 (-158)))) (-4098 (*1 *1 *1 *2) (-12 (-4 *1 (-580 *2)) (-4 *2 (-158)) (-4 *2 (-339))))) -(-13 (-657 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1472 ($ $ $)) (IF (|has| |t#1| (-339)) (-15 -4098 ($ $ |t#1|)) |%noBranch|))) +((-1704 (*1 *1 *1 *1) (-12 (-4 *1 (-580 *2)) (-4 *2 (-158)))) (-4074 (*1 *1 *1 *2) (-12 (-4 *1 (-580 *2)) (-4 *2 (-158)) (-4 *2 (-339))))) +(-13 (-657 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1704 ($ $ $)) (IF (|has| |t#1| (-339)) (-15 -4074 ($ $ |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-657 |#1|) . T) ((-979 |#1|) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3819 (((-3 $ "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3115 (((-1168 (-629 |#1|))) NIL (|has| |#2| (-393 |#1|))) (((-1168 (-629 |#1|)) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2738 (((-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2518 (($) NIL T CONST)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3545 (((-3 $ "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1431 (((-629 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-3744 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2788 (((-629 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) $ (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2532 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3138 (((-1083 (-883 |#1|))) NIL (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-339))))) (-1970 (($ $ (-852)) NIL)) (-4212 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-1726 (((-1083 |#1|) $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2284 ((|#1|) NIL (|has| |#2| (-393 |#1|))) ((|#1| (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-1778 (((-1083 |#1|) $) NIL (|has| |#2| (-343 |#1|)))) (-2117 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3409 (($ (-1168 |#1|)) NIL (|has| |#2| (-393 |#1|))) (($ (-1168 |#1|) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2121 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1319 (((-852)) NIL (|has| |#2| (-343 |#1|)))) (-1487 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3650 (($ $ (-852)) NIL)) (-1649 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2956 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2491 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1386 (((-3 $ "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1504 (((-629 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-3237 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2139 (((-629 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) $ (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-1579 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2525 (((-1083 (-883 |#1|))) NIL (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-339))))) (-1448 (($ $ (-852)) NIL)) (-4050 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2553 (((-1083 |#1|) $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3002 ((|#1|) NIL (|has| |#2| (-393 |#1|))) ((|#1| (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2565 (((-1083 |#1|) $) NIL (|has| |#2| (-343 |#1|)))) (-1216 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3779 (((-1070) $) NIL)) (-2345 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1510 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2871 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2783 (((-1034) $) NIL)) (-2751 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3223 ((|#1| $ (-523)) NIL (|has| |#2| (-393 |#1|)))) (-2966 (((-629 |#1|) (-1168 $)) NIL (|has| |#2| (-393 |#1|))) (((-1168 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1168 $) (-1168 $)) NIL (|has| |#2| (-343 |#1|))) (((-1168 |#1|) $ (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-3663 (($ (-1168 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-1168 |#1|) $) NIL (|has| |#2| (-393 |#1|)))) (-3863 (((-589 (-883 |#1|))) NIL (|has| |#2| (-393 |#1|))) (((-589 (-883 |#1|)) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-1714 (($ $ $) NIL)) (-1673 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1458 (((-794) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4041 (((-1168 $)) NIL (|has| |#2| (-393 |#1|)))) (-3751 (((-589 (-1168 |#1|))) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2022 (($ $ $ $) NIL)) (-3120 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1677 (($ (-629 |#1|) $) NIL (|has| |#2| (-393 |#1|)))) (-1995 (($ $ $) NIL)) (-1462 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3366 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2071 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2756 (($) 15 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) 17)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-581 |#1| |#2|) (-13 (-684 |#1|) (-563 |#2|) (-10 -8 (-15 -1458 ($ |#2|)) (IF (|has| |#2| (-393 |#1|)) (-6 (-393 |#1|)) |%noBranch|) (IF (|has| |#2| (-343 |#1|)) (-6 (-343 |#1|)) |%noBranch|))) (-158) (-684 |#1|)) (T -581)) -((-1458 (*1 *1 *2) (-12 (-4 *3 (-158)) (-5 *1 (-581 *3 *2)) (-4 *2 (-684 *3))))) -(-13 (-684 |#1|) (-563 |#2|) (-10 -8 (-15 -1458 ($ |#2|)) (IF (|has| |#2| (-393 |#1|)) (-6 (-393 |#1|)) |%noBranch|) (IF (|has| |#2| (-343 |#1|)) (-6 (-343 |#1|)) |%noBranch|))) -((-2165 (((-3 (-779 |#2|) "failed") |#2| (-271 |#2|) (-1070)) 78) (((-3 (-779 |#2|) (-2 (|:| |leftHandLimit| (-3 (-779 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-779 |#2|) "failed"))) "failed") |#2| (-271 (-779 |#2|))) 100)) (-3641 (((-3 (-772 |#2|) "failed") |#2| (-271 (-772 |#2|))) 105))) -(((-582 |#1| |#2|) (-10 -7 (-15 -2165 ((-3 (-779 |#2|) (-2 (|:| |leftHandLimit| (-3 (-779 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-779 |#2|) "failed"))) "failed") |#2| (-271 (-779 |#2|)))) (-15 -3641 ((-3 (-772 |#2|) "failed") |#2| (-271 (-772 |#2|)))) (-15 -2165 ((-3 (-779 |#2|) "failed") |#2| (-271 |#2|) (-1070)))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -582)) -((-2165 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-271 *3)) (-5 *5 (-1070)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-779 *3)) (-5 *1 (-582 *6 *3)))) (-3641 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-271 (-772 *3))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-772 *3)) (-5 *1 (-582 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-779 *3))) (-4 *3 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (-779 *3) (-2 (|:| |leftHandLimit| (-3 (-779 *3) "failed")) (|:| |rightHandLimit| (-3 (-779 *3) "failed"))) "failed")) (-5 *1 (-582 *5 *3))))) -(-10 -7 (-15 -2165 ((-3 (-779 |#2|) (-2 (|:| |leftHandLimit| (-3 (-779 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-779 |#2|) "failed"))) "failed") |#2| (-271 (-779 |#2|)))) (-15 -3641 ((-3 (-772 |#2|) "failed") |#2| (-271 (-772 |#2|)))) (-15 -2165 ((-3 (-779 |#2|) "failed") |#2| (-271 |#2|) (-1070)))) -((-2165 (((-3 (-779 (-383 (-883 |#1|))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))) (-1070)) 79) (((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|)))) 18) (((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-779 (-883 |#1|)))) 34)) (-3641 (((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|)))) 21) (((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-772 (-883 |#1|)))) 42))) -(((-583 |#1|) (-10 -7 (-15 -2165 ((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-779 (-883 |#1|))))) (-15 -2165 ((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -3641 ((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-772 (-883 |#1|))))) (-15 -3641 ((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -2165 ((-3 (-779 (-383 (-883 |#1|))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))) (-1070)))) (-427)) (T -583)) -((-2165 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-271 (-383 (-883 *6)))) (-5 *5 (-1070)) (-5 *3 (-383 (-883 *6))) (-4 *6 (-427)) (-5 *2 (-779 *3)) (-5 *1 (-583 *6)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) (-4 *5 (-427)) (-5 *2 (-772 *3)) (-5 *1 (-583 *5)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-772 (-883 *5)))) (-4 *5 (-427)) (-5 *2 (-772 (-383 (-883 *5)))) (-5 *1 (-583 *5)) (-5 *3 (-383 (-883 *5))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) (-4 *5 (-427)) (-5 *2 (-3 (-779 *3) (-2 (|:| |leftHandLimit| (-3 (-779 *3) "failed")) (|:| |rightHandLimit| (-3 (-779 *3) "failed"))) "failed")) (-5 *1 (-583 *5)))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-779 (-883 *5)))) (-4 *5 (-427)) (-5 *2 (-3 (-779 (-383 (-883 *5))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 *5))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 *5))) "failed"))) "failed")) (-5 *1 (-583 *5)) (-5 *3 (-383 (-883 *5)))))) -(-10 -7 (-15 -2165 ((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-779 (-883 |#1|))))) (-15 -2165 ((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -3641 ((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-772 (-883 |#1|))))) (-15 -3641 ((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -2165 ((-3 (-779 (-383 (-883 |#1|))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))) (-1070)))) -((-1315 (((-3 (-1168 (-383 |#1|)) "failed") (-1168 |#2|) |#2|) 57 (-3900 (|has| |#1| (-339)))) (((-3 (-1168 |#1|) "failed") (-1168 |#2|) |#2|) 42 (|has| |#1| (-339)))) (-3161 (((-108) (-1168 |#2|)) 30)) (-3284 (((-3 (-1168 |#1|) "failed") (-1168 |#2|)) 33))) -(((-584 |#1| |#2|) (-10 -7 (-15 -3161 ((-108) (-1168 |#2|))) (-15 -3284 ((-3 (-1168 |#1|) "failed") (-1168 |#2|))) (IF (|has| |#1| (-339)) (-15 -1315 ((-3 (-1168 |#1|) "failed") (-1168 |#2|) |#2|)) (-15 -1315 ((-3 (-1168 (-383 |#1|)) "failed") (-1168 |#2|) |#2|)))) (-515) (-585 |#1|)) (T -584)) -((-1315 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 *5)) (-3900 (-4 *5 (-339))) (-4 *5 (-515)) (-5 *2 (-1168 (-383 *5))) (-5 *1 (-584 *5 *4)))) (-1315 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 *5)) (-4 *5 (-339)) (-4 *5 (-515)) (-5 *2 (-1168 *5)) (-5 *1 (-584 *5 *4)))) (-3284 (*1 *2 *3) (|partial| -12 (-5 *3 (-1168 *5)) (-4 *5 (-585 *4)) (-4 *4 (-515)) (-5 *2 (-1168 *4)) (-5 *1 (-584 *4 *5)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-1168 *5)) (-4 *5 (-585 *4)) (-4 *4 (-515)) (-5 *2 (-108)) (-5 *1 (-584 *4 *5))))) -(-10 -7 (-15 -3161 ((-108) (-1168 |#2|))) (-15 -3284 ((-3 (-1168 |#1|) "failed") (-1168 |#2|))) (IF (|has| |#1| (-339)) (-15 -1315 ((-3 (-1168 |#1|) "failed") (-1168 |#2|) |#2|)) (-15 -1315 ((-3 (-1168 (-383 |#1|)) "failed") (-1168 |#2|) |#2|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2381 (((-629 |#1|) (-629 $)) 36) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 35)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2345 (((-3 $ "failed")) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-1939 (((-1169 (-629 |#1|))) NIL (|has| |#2| (-393 |#1|))) (((-1169 (-629 |#1|)) (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-1502 (((-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-4189 (($) NIL T CONST)) (-2314 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1722 (((-3 $ "failed")) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2059 (((-629 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-2920 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-1950 (((-629 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) $ (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-1307 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3927 (((-1083 (-883 |#1|))) NIL (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-339))))) (-3402 (($ $ (-852)) NIL)) (-1223 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2992 (((-1083 |#1|) $) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3637 ((|#1|) NIL (|has| |#2| (-393 |#1|))) ((|#1| (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-2242 (((-1083 |#1|) $) NIL (|has| |#2| (-343 |#1|)))) (-1404 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2754 (($ (-1169 |#1|)) NIL (|has| |#2| (-393 |#1|))) (($ (-1169 |#1|) (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-1444 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3569 (((-852)) NIL (|has| |#2| (-343 |#1|)))) (-1454 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3291 (($ $ (-852)) NIL)) (-3517 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2804 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3914 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2065 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2778 (((-3 $ "failed")) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1612 (((-629 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-3647 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-1613 (((-629 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) $ (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-4097 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1233 (((-1083 (-883 |#1|))) NIL (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-339))))) (-2237 (($ $ (-852)) NIL)) (-2670 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-3248 (((-1083 |#1|) $) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2085 ((|#1|) NIL (|has| |#2| (-393 |#1|))) ((|#1| (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-3359 (((-1083 |#1|) $) NIL (|has| |#2| (-343 |#1|)))) (-1675 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2032 (((-1070) $) NIL)) (-3041 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1671 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3194 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3951 (((-1034) $) NIL)) (-1634 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1937 ((|#1| $ (-523)) NIL (|has| |#2| (-393 |#1|)))) (-2906 (((-629 |#1|) (-1169 $)) NIL (|has| |#2| (-393 |#1|))) (((-1169 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1169 $) (-1169 $)) NIL (|has| |#2| (-343 |#1|))) (((-1169 |#1|) $ (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-1400 (($ (-1169 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-1169 |#1|) $) NIL (|has| |#2| (-393 |#1|)))) (-1586 (((-589 (-883 |#1|))) NIL (|has| |#2| (-393 |#1|))) (((-589 (-883 |#1|)) (-1169 $)) NIL (|has| |#2| (-343 |#1|)))) (-2892 (($ $ $) NIL)) (-2572 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1691 (((-794) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3760 (((-1169 $)) NIL (|has| |#2| (-393 |#1|)))) (-2969 (((-589 (-1169 |#1|))) NIL (-3172 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2760 (($ $ $ $) NIL)) (-1978 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2372 (($ (-629 |#1|) $) NIL (|has| |#2| (-393 |#1|)))) (-3654 (($ $ $) NIL)) (-2367 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3505 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2050 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1879 (($) 15 T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) 17)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-581 |#1| |#2|) (-13 (-684 |#1|) (-563 |#2|) (-10 -8 (-15 -1691 ($ |#2|)) (IF (|has| |#2| (-393 |#1|)) (-6 (-393 |#1|)) |%noBranch|) (IF (|has| |#2| (-343 |#1|)) (-6 (-343 |#1|)) |%noBranch|))) (-158) (-684 |#1|)) (T -581)) +((-1691 (*1 *1 *2) (-12 (-4 *3 (-158)) (-5 *1 (-581 *3 *2)) (-4 *2 (-684 *3))))) +(-13 (-684 |#1|) (-563 |#2|) (-10 -8 (-15 -1691 ($ |#2|)) (IF (|has| |#2| (-393 |#1|)) (-6 (-393 |#1|)) |%noBranch|) (IF (|has| |#2| (-343 |#1|)) (-6 (-343 |#1|)) |%noBranch|))) +((-1861 (((-3 (-779 |#2|) "failed") |#2| (-271 |#2|) (-1070)) 82) (((-3 (-779 |#2|) (-2 (|:| |leftHandLimit| (-3 (-779 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-779 |#2|) "failed"))) "failed") |#2| (-271 (-779 |#2|))) 104)) (-3209 (((-3 (-772 |#2|) "failed") |#2| (-271 (-772 |#2|))) 109))) +(((-582 |#1| |#2|) (-10 -7 (-15 -1861 ((-3 (-779 |#2|) (-2 (|:| |leftHandLimit| (-3 (-779 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-779 |#2|) "failed"))) "failed") |#2| (-271 (-779 |#2|)))) (-15 -3209 ((-3 (-772 |#2|) "failed") |#2| (-271 (-772 |#2|)))) (-15 -1861 ((-3 (-779 |#2|) "failed") |#2| (-271 |#2|) (-1070)))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1109) (-406 |#1|))) (T -582)) +((-1861 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-271 *3)) (-5 *5 (-1070)) (-4 *3 (-13 (-27) (-1109) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-779 *3)) (-5 *1 (-582 *6 *3)))) (-3209 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-271 (-772 *3))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-772 *3)) (-5 *1 (-582 *5 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))))) (-1861 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-779 *3))) (-4 *3 (-13 (-27) (-1109) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (-779 *3) (-2 (|:| |leftHandLimit| (-3 (-779 *3) "failed")) (|:| |rightHandLimit| (-3 (-779 *3) "failed"))) "failed")) (-5 *1 (-582 *5 *3))))) +(-10 -7 (-15 -1861 ((-3 (-779 |#2|) (-2 (|:| |leftHandLimit| (-3 (-779 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-779 |#2|) "failed"))) "failed") |#2| (-271 (-779 |#2|)))) (-15 -3209 ((-3 (-772 |#2|) "failed") |#2| (-271 (-772 |#2|)))) (-15 -1861 ((-3 (-779 |#2|) "failed") |#2| (-271 |#2|) (-1070)))) +((-1861 (((-3 (-779 (-383 (-883 |#1|))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))) (-1070)) 79) (((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|)))) 18) (((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-779 (-883 |#1|)))) 34)) (-3209 (((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|)))) 21) (((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-772 (-883 |#1|)))) 42))) +(((-583 |#1|) (-10 -7 (-15 -1861 ((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-779 (-883 |#1|))))) (-15 -1861 ((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -3209 ((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-772 (-883 |#1|))))) (-15 -3209 ((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -1861 ((-3 (-779 (-383 (-883 |#1|))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))) (-1070)))) (-427)) (T -583)) +((-1861 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-271 (-383 (-883 *6)))) (-5 *5 (-1070)) (-5 *3 (-383 (-883 *6))) (-4 *6 (-427)) (-5 *2 (-779 *3)) (-5 *1 (-583 *6)))) (-3209 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) (-4 *5 (-427)) (-5 *2 (-772 *3)) (-5 *1 (-583 *5)))) (-3209 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-772 (-883 *5)))) (-4 *5 (-427)) (-5 *2 (-772 (-383 (-883 *5)))) (-5 *1 (-583 *5)) (-5 *3 (-383 (-883 *5))))) (-1861 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) (-4 *5 (-427)) (-5 *2 (-3 (-779 *3) (-2 (|:| |leftHandLimit| (-3 (-779 *3) "failed")) (|:| |rightHandLimit| (-3 (-779 *3) "failed"))) "failed")) (-5 *1 (-583 *5)))) (-1861 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-779 (-883 *5)))) (-4 *5 (-427)) (-5 *2 (-3 (-779 (-383 (-883 *5))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 *5))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 *5))) "failed"))) "failed")) (-5 *1 (-583 *5)) (-5 *3 (-383 (-883 *5)))))) +(-10 -7 (-15 -1861 ((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-779 (-883 |#1|))))) (-15 -1861 ((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -3209 ((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-772 (-883 |#1|))))) (-15 -3209 ((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -1861 ((-3 (-779 (-383 (-883 |#1|))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))) (-1070)))) +((-3256 (((-3 (-1169 (-383 |#1|)) "failed") (-1169 |#2|) |#2|) 57 (-4179 (|has| |#1| (-339)))) (((-3 (-1169 |#1|) "failed") (-1169 |#2|) |#2|) 42 (|has| |#1| (-339)))) (-4177 (((-108) (-1169 |#2|)) 30)) (-3983 (((-3 (-1169 |#1|) "failed") (-1169 |#2|)) 33))) +(((-584 |#1| |#2|) (-10 -7 (-15 -4177 ((-108) (-1169 |#2|))) (-15 -3983 ((-3 (-1169 |#1|) "failed") (-1169 |#2|))) (IF (|has| |#1| (-339)) (-15 -3256 ((-3 (-1169 |#1|) "failed") (-1169 |#2|) |#2|)) (-15 -3256 ((-3 (-1169 (-383 |#1|)) "failed") (-1169 |#2|) |#2|)))) (-515) (-585 |#1|)) (T -584)) +((-3256 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-585 *5)) (-4179 (-4 *5 (-339))) (-4 *5 (-515)) (-5 *2 (-1169 (-383 *5))) (-5 *1 (-584 *5 *4)))) (-3256 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-585 *5)) (-4 *5 (-339)) (-4 *5 (-515)) (-5 *2 (-1169 *5)) (-5 *1 (-584 *5 *4)))) (-3983 (*1 *2 *3) (|partial| -12 (-5 *3 (-1169 *5)) (-4 *5 (-585 *4)) (-4 *4 (-515)) (-5 *2 (-1169 *4)) (-5 *1 (-584 *4 *5)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-1169 *5)) (-4 *5 (-585 *4)) (-4 *4 (-515)) (-5 *2 (-108)) (-5 *1 (-584 *4 *5))))) +(-10 -7 (-15 -4177 ((-108) (-1169 |#2|))) (-15 -3983 ((-3 (-1169 |#1|) "failed") (-1169 |#2|))) (IF (|has| |#1| (-339)) (-15 -3256 ((-3 (-1169 |#1|) "failed") (-1169 |#2|) |#2|)) (-15 -3256 ((-3 (-1169 (-383 |#1|)) "failed") (-1169 |#2|) |#2|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2243 (((-629 |#1|) (-629 $)) 36) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 35)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ (-523)) 28)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-585 |#1|) (-129) (-973)) (T -585)) -((-2381 (*1 *2 *3) (-12 (-5 *3 (-629 *1)) (-4 *1 (-585 *4)) (-4 *4 (-973)) (-5 *2 (-629 *4)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *1)) (-5 *4 (-1168 *1)) (-4 *1 (-585 *5)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3392 (-629 *5)) (|:| |vec| (-1168 *5))))))) -(-13 (-973) (-10 -8 (-15 -2381 ((-629 |t#1|) (-629 $))) (-15 -2381 ((-2 (|:| -3392 (-629 |t#1|)) (|:| |vec| (-1168 |t#1|))) (-629 $) (-1168 $))))) +((-2243 (*1 *2 *3) (-12 (-5 *3 (-629 *1)) (-4 *1 (-585 *4)) (-4 *4 (-973)) (-5 *2 (-629 *4)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *1)) (-5 *4 (-1169 *1)) (-4 *1 (-585 *5)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -2600 (-629 *5)) (|:| |vec| (-1169 *5))))))) +(-13 (-973) (-10 -8 (-15 -2243 ((-629 |t#1|) (-629 $))) (-15 -2243 ((-2 (|:| -2600 (-629 |t#1|)) (|:| |vec| (-1169 |t#1|))) (-629 $) (-1169 $))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-1547 ((|#2| (-589 |#1|) (-589 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-589 |#1|) (-589 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) |#2|) 17) ((|#2| (-589 |#1|) (-589 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|)) 12))) -(((-586 |#1| |#2|) (-10 -7 (-15 -1547 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|))) (-15 -1547 (|#2| (-589 |#1|) (-589 |#2|) |#1|)) (-15 -1547 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) |#2|)) (-15 -1547 (|#2| (-589 |#1|) (-589 |#2|) |#1| |#2|)) (-15 -1547 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) (-1 |#2| |#1|))) (-15 -1547 (|#2| (-589 |#1|) (-589 |#2|) |#1| (-1 |#2| |#1|)))) (-1016) (-1122)) (T -586)) -((-1547 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1016)) (-4 *2 (-1122)) (-5 *1 (-586 *5 *2)))) (-1547 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-589 *5)) (-5 *4 (-589 *6)) (-4 *5 (-1016)) (-4 *6 (-1122)) (-5 *1 (-586 *5 *6)))) (-1547 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-4 *5 (-1016)) (-4 *2 (-1122)) (-5 *1 (-586 *5 *2)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 *5)) (-4 *6 (-1016)) (-4 *5 (-1122)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-4 *5 (-1016)) (-4 *2 (-1122)) (-5 *1 (-586 *5 *2)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *6)) (-4 *5 (-1016)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6))))) -(-10 -7 (-15 -1547 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|))) (-15 -1547 (|#2| (-589 |#1|) (-589 |#2|) |#1|)) (-15 -1547 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) |#2|)) (-15 -1547 (|#2| (-589 |#1|) (-589 |#2|) |#1| |#2|)) (-15 -1547 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) (-1 |#2| |#1|))) (-15 -1547 (|#2| (-589 |#1|) (-589 |#2|) |#1| (-1 |#2| |#1|)))) -((-2837 (((-589 |#2|) (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|) 16)) (-2437 ((|#2| (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|) 18)) (-3612 (((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)) 13))) -(((-587 |#1| |#2|) (-10 -7 (-15 -2837 ((-589 |#2|) (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|)) (-15 -3612 ((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)))) (-1122) (-1122)) (T -587)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-589 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-589 *6)) (-5 *1 (-587 *5 *6)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-589 *5)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-587 *5 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-589 *6)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-5 *2 (-589 *5)) (-5 *1 (-587 *6 *5))))) -(-10 -7 (-15 -2837 ((-589 |#2|) (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|)) (-15 -3612 ((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)))) -((-3612 (((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|)) 13))) -(((-588 |#1| |#2| |#3|) (-10 -7 (-15 -3612 ((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|)))) (-1122) (-1122) (-1122)) (T -588)) -((-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-589 *7)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-589 *8)) (-5 *1 (-588 *6 *7 *8))))) -(-10 -7 (-15 -3612 ((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) NIL)) (-1546 ((|#1| $) NIL)) (-4039 (($ $) NIL)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) $) NIL (|has| |#1| (-786))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1506 (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3974 (($ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-2110 (($ $ $) NIL (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "rest" $) NIL (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-1661 (($ $ $) 32 (|has| |#1| (-1016)))) (-1653 (($ $ $) 34 (|has| |#1| (-1016)))) (-1638 (($ $ $) 37 (|has| |#1| (-1016)))) (-3387 (($ (-1 (-108) |#1|) $) NIL)) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-1532 ((|#1| $) NIL)) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1751 (($ $) NIL) (($ $ (-710)) NIL)) (-3941 (($ $) NIL (|has| |#1| (-1016)))) (-1773 (($ $) 31 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) NIL)) (-2557 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1232 (((-108) $) NIL)) (-1479 (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016))) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) (-1 (-108) |#1|) $) NIL)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1544 (((-108) $) 9)) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3656 (($) 7)) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2158 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2178 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3992 (($ |#1|) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2579 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-3450 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2847 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-2402 (((-108) $) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1135 (-523))) NIL) ((|#1| $ (-523)) 36) ((|#1| $ (-523) |#1|) NIL)) (-1549 (((-523) $ $) NIL)) (-2753 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-1469 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-2524 (((-108) $) NIL)) (-2732 (($ $) NIL)) (-2363 (($ $) NIL (|has| $ (-6 -4245)))) (-2316 (((-710) $) NIL)) (-3562 (($ $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) 45 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-3449 (($ |#1| $) 10)) (-1746 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2326 (($ $ $) 30) (($ |#1| $) NIL) (($ (-589 $)) NIL) (($ $ |#1|) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2881 (($ $ $) 11)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3790 (((-1070) $) 26 (|has| |#1| (-767))) (((-1070) $ (-108)) 27 (|has| |#1| (-767))) (((-1173) (-761) $) 28 (|has| |#1| (-767))) (((-1173) (-761) $ (-108)) 29 (|has| |#1| (-767)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-589 |#1|) (-13 (-609 |#1|) (-10 -8 (-15 -3656 ($)) (-15 -1544 ((-108) $)) (-15 -3449 ($ |#1| $)) (-15 -2881 ($ $ $)) (IF (|has| |#1| (-1016)) (PROGN (-15 -1661 ($ $ $)) (-15 -1653 ($ $ $)) (-15 -1638 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|))) (-1122)) (T -589)) -((-3656 (*1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1122)))) (-1544 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-589 *3)) (-4 *3 (-1122)))) (-3449 (*1 *1 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1122)))) (-2881 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1122)))) (-1661 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1122)))) (-1653 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1122)))) (-1638 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1122))))) -(-13 (-609 |#1|) (-10 -8 (-15 -3656 ($)) (-15 -1544 ((-108) $)) (-15 -3449 ($ |#1| $)) (-15 -2881 ($ $ $)) (IF (|has| |#1| (-1016)) (PROGN (-15 -1661 ($ $ $)) (-15 -1653 ($ $ $)) (-15 -1638 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1763 (($ |#1| |#1| $) 43)) (-3079 (((-108) $ (-710)) NIL)) (-3387 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-3941 (($ $) 45)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) 52 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 9 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 37)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1934 ((|#1| $) 46)) (-3450 (($ |#1| $) 26) (($ |#1| $ (-710)) 42)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3761 ((|#1| $) 48)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 21)) (-3988 (($) 25)) (-2288 (((-108) $) 50)) (-2766 (((-589 (-2 (|:| -2433 |#1|) (|:| -2792 (-710)))) $) 59)) (-3433 (($) 23) (($ (-589 |#1|)) 18)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) 56 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 19)) (-3663 (((-499) $) 34 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-1458 (((-794) $) 14 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 22)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 61 (|has| |#1| (-1016)))) (-2676 (((-710) $) 16 (|has| $ (-6 -4244))))) -(((-590 |#1|) (-13 (-634 |#1|) (-10 -8 (-6 -4244) (-15 -2288 ((-108) $)) (-15 -1763 ($ |#1| |#1| $)))) (-1016)) (T -590)) -((-2288 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-590 *3)) (-4 *3 (-1016)))) (-1763 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1016))))) -(-13 (-634 |#1|) (-10 -8 (-6 -4244) (-15 -2288 ((-108) $)) (-15 -1763 ($ |#1| |#1| $)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23))) +((-2178 ((|#2| (-589 |#1|) (-589 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-589 |#1|) (-589 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) |#2|) 17) ((|#2| (-589 |#1|) (-589 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|)) 12))) +(((-586 |#1| |#2|) (-10 -7 (-15 -2178 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|))) (-15 -2178 (|#2| (-589 |#1|) (-589 |#2|) |#1|)) (-15 -2178 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) |#2|)) (-15 -2178 (|#2| (-589 |#1|) (-589 |#2|) |#1| |#2|)) (-15 -2178 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) (-1 |#2| |#1|))) (-15 -2178 (|#2| (-589 |#1|) (-589 |#2|) |#1| (-1 |#2| |#1|)))) (-1016) (-1123)) (T -586)) +((-2178 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1016)) (-4 *2 (-1123)) (-5 *1 (-586 *5 *2)))) (-2178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-589 *5)) (-5 *4 (-589 *6)) (-4 *5 (-1016)) (-4 *6 (-1123)) (-5 *1 (-586 *5 *6)))) (-2178 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-4 *5 (-1016)) (-4 *2 (-1123)) (-5 *1 (-586 *5 *2)))) (-2178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 *5)) (-4 *6 (-1016)) (-4 *5 (-1123)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) (-2178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-4 *5 (-1016)) (-4 *2 (-1123)) (-5 *1 (-586 *5 *2)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *6)) (-4 *5 (-1016)) (-4 *6 (-1123)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6))))) +(-10 -7 (-15 -2178 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|))) (-15 -2178 (|#2| (-589 |#1|) (-589 |#2|) |#1|)) (-15 -2178 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) |#2|)) (-15 -2178 (|#2| (-589 |#1|) (-589 |#2|) |#1| |#2|)) (-15 -2178 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) (-1 |#2| |#1|))) (-15 -2178 (|#2| (-589 |#1|) (-589 |#2|) |#1| (-1 |#2| |#1|)))) +((-4184 (((-589 |#2|) (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|) 16)) (-2116 ((|#2| (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|) 18)) (-1345 (((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)) 13))) +(((-587 |#1| |#2|) (-10 -7 (-15 -4184 ((-589 |#2|) (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|)) (-15 -2116 (|#2| (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|)) (-15 -1345 ((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)))) (-1123) (-1123)) (T -587)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-589 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-589 *6)) (-5 *1 (-587 *5 *6)))) (-2116 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-589 *5)) (-4 *5 (-1123)) (-4 *2 (-1123)) (-5 *1 (-587 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-589 *6)) (-4 *6 (-1123)) (-4 *5 (-1123)) (-5 *2 (-589 *5)) (-5 *1 (-587 *6 *5))))) +(-10 -7 (-15 -4184 ((-589 |#2|) (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|)) (-15 -2116 (|#2| (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|)) (-15 -1345 ((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)))) +((-1345 (((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|)) 13))) +(((-588 |#1| |#2| |#3|) (-10 -7 (-15 -1345 ((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|)))) (-1123) (-1123) (-1123)) (T -588)) +((-1345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-589 *7)) (-4 *6 (-1123)) (-4 *7 (-1123)) (-4 *8 (-1123)) (-5 *2 (-589 *8)) (-5 *1 (-588 *6 *7 *8))))) +(-10 -7 (-15 -1345 ((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3370 ((|#1| $) NIL)) (-2176 ((|#1| $) NIL)) (-2227 (($ $) NIL)) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-2856 (($ $ (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) $) NIL (|has| |#1| (-786))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1632 (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| |#1| (-786)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1581 (($ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1487 ((|#1| $ |#1|) NIL (|has| $ (-6 -4249)))) (-2470 (($ $ $) NIL (|has| $ (-6 -4249)))) (-2622 ((|#1| $ |#1|) NIL (|has| $ (-6 -4249)))) (-2027 ((|#1| $ |#1|) NIL (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4249))) (($ $ "rest" $) NIL (|has| $ (-6 -4249))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) NIL (|has| $ (-6 -4249)))) (-2360 (($ $ $) 32 (|has| |#1| (-1016)))) (-2347 (($ $ $) 34 (|has| |#1| (-1016)))) (-2335 (($ $ $) 37 (|has| |#1| (-1016)))) (-3703 (($ (-1 (-108) |#1|) $) NIL)) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2165 ((|#1| $) NIL)) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-2441 (($ $) NIL) (($ $ (-710)) NIL)) (-4160 (($ $) NIL (|has| |#1| (-1016)))) (-2462 (($ $) 31 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3286 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) NIL)) (-2514 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2053 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) NIL)) (-1833 (((-108) $) NIL)) (-3449 (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016))) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) (-1 (-108) |#1|) $) NIL)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-1856 (((-108) $) 9)) (-2932 (((-589 $) $) NIL)) (-3675 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4069 (($) 7)) (-3733 (($ (-710) |#1|) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-1793 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3780 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2301 (($ |#1|) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-1701 (((-589 |#1|) $) NIL)) (-1799 (((-108) $) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2535 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-3108 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2912 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2428 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4141 (($ $ |#1|) NIL (|has| $ (-6 -4249)))) (-2430 (((-108) $) NIL)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1136 (-523))) NIL) ((|#1| $ (-523)) 36) ((|#1| $ (-523) |#1|) NIL)) (-3766 (((-523) $ $) NIL)) (-1655 (($ $ (-1136 (-523))) NIL) (($ $ (-523)) NIL)) (-1499 (($ $ (-1136 (-523))) NIL) (($ $ (-523)) NIL)) (-1221 (((-108) $) NIL)) (-2582 (($ $) NIL)) (-2075 (($ $) NIL (|has| $ (-6 -4249)))) (-2784 (((-710) $) NIL)) (-1867 (($ $) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) 45 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) NIL)) (-3540 (($ |#1| $) 10)) (-2001 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2394 (($ $ $) 30) (($ |#1| $) NIL) (($ (-589 $)) NIL) (($ $ |#1|) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) NIL)) (-3313 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1853 (($ $ $) 11)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2111 (((-1070) $) 26 (|has| |#1| (-767))) (((-1070) $ (-108)) 27 (|has| |#1| (-767))) (((-1174) (-761) $) 28 (|has| |#1| (-767))) (((-1174) (-761) $ (-108)) 29 (|has| |#1| (-767)))) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-589 |#1|) (-13 (-609 |#1|) (-10 -8 (-15 -4069 ($)) (-15 -1856 ((-108) $)) (-15 -3540 ($ |#1| $)) (-15 -1853 ($ $ $)) (IF (|has| |#1| (-1016)) (PROGN (-15 -2360 ($ $ $)) (-15 -2347 ($ $ $)) (-15 -2335 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|))) (-1123)) (T -589)) +((-4069 (*1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1123)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-589 *3)) (-4 *3 (-1123)))) (-3540 (*1 *1 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1123)))) (-1853 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1123)))) (-2360 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1123)))) (-2347 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1123)))) (-2335 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1123))))) +(-13 (-609 |#1|) (-10 -8 (-15 -4069 ($)) (-15 -1856 ((-108) $)) (-15 -3540 ($ |#1| $)) (-15 -1853 ($ $ $)) (IF (|has| |#1| (-1016)) (PROGN (-15 -2360 ($ $ $)) (-15 -2347 ($ $ $)) (-15 -2335 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2452 (($ |#1| |#1| $) 43)) (-1620 (((-108) $ (-710)) NIL)) (-3703 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-4160 (($ $) 45)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3286 (($ |#1| $) 52 (|has| $ (-6 -4248))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4248)))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248)))) (-1871 (((-589 |#1|) $) 9 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2043 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 37)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1293 ((|#1| $) 46)) (-3108 (($ |#1| $) 26) (($ |#1| $ (-710)) 42)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3048 ((|#1| $) 48)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 21)) (-3320 (($) 25)) (-3681 (((-108) $) 50)) (-1767 (((-589 (-2 (|:| -2482 |#1|) (|:| -3977 (-710)))) $) 59)) (-2963 (($) 23) (($ (-589 |#1|)) 18)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) 56 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) 19)) (-1400 (((-499) $) 34 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) NIL)) (-1691 (((-794) $) 14 (|has| |#1| (-563 (-794))))) (-2417 (($ (-589 |#1|)) 22)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 61 (|has| |#1| (-1016)))) (-2810 (((-710) $) 16 (|has| $ (-6 -4248))))) +(((-590 |#1|) (-13 (-634 |#1|) (-10 -8 (-6 -4248) (-15 -3681 ((-108) $)) (-15 -2452 ($ |#1| |#1| $)))) (-1016)) (T -590)) +((-3681 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-590 *3)) (-4 *3 (-1016)))) (-2452 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1016))))) +(-13 (-634 |#1|) (-10 -8 (-6 -4248) (-15 -3681 ((-108) $)) (-15 -2452 ($ |#1| |#1| $)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23))) (((-591 |#1|) (-129) (-980)) (T -591)) ((* (*1 *1 *2 *1) (-12 (-4 *1 (-591 *2)) (-4 *2 (-980))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-1703 (((-710) $) 15)) (-2894 (($ $ |#1|) 55)) (-2867 (($ $) 32)) (-3631 (($ $) 31)) (-3517 (((-3 |#1| "failed") $) 47)) (-3474 ((|#1| $) NIL)) (-2209 (($ |#1| |#2| $) 61) (($ $ $) 62)) (-3553 (((-794) $ (-1 (-794) (-794) (-794)) (-1 (-794) (-794) (-794)) (-523)) 45)) (-2378 ((|#1| $ (-523)) 30)) (-3731 ((|#2| $ (-523)) 29)) (-4093 (($ (-1 |#1| |#1|) $) 34)) (-2682 (($ (-1 |#2| |#2|) $) 38)) (-1920 (($) 10)) (-3795 (($ |#1| |#2|) 22)) (-2424 (($ (-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|)))) 23)) (-1932 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))) $) 13)) (-1974 (($ |#1| $) 56)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1301 (((-108) $ $) 58)) (-1458 (((-794) $) 19) (($ |#1|) 16)) (-3983 (((-108) $ $) 25))) -(((-592 |#1| |#2| |#3|) (-13 (-1016) (-964 |#1|) (-10 -8 (-15 -3553 ((-794) $ (-1 (-794) (-794) (-794)) (-1 (-794) (-794) (-794)) (-523))) (-15 -1932 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))) $)) (-15 -3795 ($ |#1| |#2|)) (-15 -2424 ($ (-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))))) (-15 -3731 (|#2| $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -3631 ($ $)) (-15 -2867 ($ $)) (-15 -1703 ((-710) $)) (-15 -1920 ($)) (-15 -2894 ($ $ |#1|)) (-15 -1974 ($ |#1| $)) (-15 -2209 ($ |#1| |#2| $)) (-15 -2209 ($ $ $)) (-15 -1301 ((-108) $ $)) (-15 -2682 ($ (-1 |#2| |#2|) $)) (-15 -4093 ($ (-1 |#1| |#1|) $)))) (-1016) (-23) |#2|) (T -592)) -((-3553 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-794) (-794) (-794))) (-5 *4 (-523)) (-5 *2 (-794)) (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-23)) (-14 *7 *6))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 *4)))) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4))) (-3795 (*1 *1 *2 *3) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 *4)))) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1016)) (-14 *5 *2))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *2 (-1016)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3631 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2867 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4))) (-1920 (*1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2894 (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-1974 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2209 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2209 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-1301 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4))) (-2682 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)))) (-4093 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1016) (-964 |#1|) (-10 -8 (-15 -3553 ((-794) $ (-1 (-794) (-794) (-794)) (-1 (-794) (-794) (-794)) (-523))) (-15 -1932 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))) $)) (-15 -3795 ($ |#1| |#2|)) (-15 -2424 ($ (-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))))) (-15 -3731 (|#2| $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -3631 ($ $)) (-15 -2867 ($ $)) (-15 -1703 ((-710) $)) (-15 -1920 ($)) (-15 -2894 ($ $ |#1|)) (-15 -1974 ($ |#1| $)) (-15 -2209 ($ |#1| |#2| $)) (-15 -2209 ($ $ $)) (-15 -1301 ((-108) $ $)) (-15 -2682 ($ (-1 |#2| |#2|) $)) (-15 -4093 ($ (-1 |#1| |#1|) $)))) -((-3056 (((-523) $) 24)) (-2847 (($ |#2| $ (-523)) 22) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) 12)) (-4135 (((-108) (-523) $) 15)) (-2326 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-589 $)) NIL))) -(((-593 |#1| |#2|) (-10 -8 (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -2326 (|#1| (-589 |#1|))) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -3056 ((-523) |#1|)) (-15 -2412 ((-589 (-523)) |#1|)) (-15 -4135 ((-108) (-523) |#1|))) (-594 |#2|) (-1122)) (T -593)) -NIL -(-10 -8 (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -2326 (|#1| (-589 |#1|))) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -3056 ((-523) |#1|)) (-15 -2412 ((-589 (-523)) |#1|)) (-15 -4135 ((-108) (-523) |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-1773 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 51)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 42 (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4203 (($ $ |#1|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1135 (-523))) 63)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 70)) (-2326 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-594 |#1|) (-129) (-1122)) (T -594)) -((-3052 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-2326 (*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1122)))) (-2326 (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1122)))) (-2326 (*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1122)))) (-2326 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-3612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-523))) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-1469 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-1469 (*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-523))) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-2847 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-594 *2)) (-4 *2 (-1122)))) (-2847 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-1641 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1135 (-523))) (|has| *1 (-6 -4245)) (-4 *1 (-594 *2)) (-4 *2 (-1122))))) -(-13 (-556 (-523) |t#1|) (-140 |t#1|) (-10 -8 (-15 -3052 ($ (-710) |t#1|)) (-15 -2326 ($ $ |t#1|)) (-15 -2326 ($ |t#1| $)) (-15 -2326 ($ $ $)) (-15 -2326 ($ (-589 $))) (-15 -3612 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3223 ($ $ (-1135 (-523)))) (-15 -1469 ($ $ (-523))) (-15 -1469 ($ $ (-1135 (-523)))) (-15 -2847 ($ |t#1| $ (-523))) (-15 -2847 ($ $ $ (-523))) (IF (|has| $ (-6 -4245)) (-15 -1641 (|t#1| $ (-1135 (-523)) |t#1|)) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-1940 (((-3 |#2| "failed") |#3| |#2| (-1087) |#2| (-589 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) "failed") |#3| |#2| (-1087)) 43))) -(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -1940 ((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) "failed") |#3| |#2| (-1087))) (-15 -1940 ((-3 |#2| "failed") |#3| |#2| (-1087) |#2| (-589 |#2|)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1108) (-889)) (-599 |#2|)) (T -595)) -((-1940 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 *2)) (-4 *2 (-13 (-29 *6) (-1108) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-599 *2)))) (-1940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1087)) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-4 *4 (-13 (-29 *6) (-1108) (-889))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4041 (-589 *4)))) (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-599 *4))))) -(-10 -7 (-15 -1940 ((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) "failed") |#3| |#2| (-1087))) (-15 -1940 ((-3 |#2| "failed") |#3| |#2| (-1087) |#2| (-589 |#2|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1709 (($ $) NIL (|has| |#1| (-339)))) (-2731 (($ $ $) NIL (|has| |#1| (-339)))) (-2221 (($ $ (-710)) NIL (|has| |#1| (-339)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-339)))) (-2324 (($ $ $) NIL (|has| |#1| (-339)))) (-1354 (($ $ $) NIL (|has| |#1| (-339)))) (-1470 (($ $ $) NIL (|has| |#1| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1371 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427)))) (-2023 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) NIL)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-1575 (((-710) $) NIL)) (-3077 (($ $ $) NIL (|has| |#1| (-339)))) (-3082 (($ $ $) NIL (|has| |#1| (-339)))) (-2035 (($ $ $) NIL (|has| |#1| (-339)))) (-2500 (($ $ $) NIL (|has| |#1| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-3223 ((|#1| $ |#1|) NIL)) (-3332 (($ $ $) NIL (|has| |#1| (-339)))) (-2299 (((-710) $) NIL)) (-2438 ((|#1| $) NIL (|has| |#1| (-427)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) NIL)) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) NIL)) (-1621 (((-710)) NIL)) (-1677 ((|#1| $ |#1| |#1|) NIL)) (-2708 (($ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($) NIL)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2395 (((-710) $) 15)) (-3410 (($ $ |#1|) 56)) (-1426 (($ $) 32)) (-3700 (($ $) 31)) (-1220 (((-3 |#1| "failed") $) 48)) (-3508 ((|#1| $) NIL)) (-2758 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-1781 (((-794) $ (-1 (-794) (-794) (-794)) (-1 (-794) (-794) (-794)) (-523)) 46)) (-2212 ((|#1| $ (-523)) 30)) (-2800 ((|#2| $ (-523)) 29)) (-3015 (($ (-1 |#1| |#1|) $) 34)) (-2110 (($ (-1 |#2| |#2|) $) 38)) (-4174 (($) 10)) (-2144 (($ |#1| |#2|) 22)) (-1507 (($ (-589 (-2 (|:| |gen| |#1|) (|:| -2922 |#2|)))) 23)) (-1281 (((-589 (-2 (|:| |gen| |#1|) (|:| -2922 |#2|))) $) 13)) (-3433 (($ |#1| $) 57)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3118 (((-108) $ $) 60)) (-1691 (((-794) $) 19) (($ |#1|) 16)) (-3941 (((-108) $ $) 25))) +(((-592 |#1| |#2| |#3|) (-13 (-1016) (-964 |#1|) (-10 -8 (-15 -1781 ((-794) $ (-1 (-794) (-794) (-794)) (-1 (-794) (-794) (-794)) (-523))) (-15 -1281 ((-589 (-2 (|:| |gen| |#1|) (|:| -2922 |#2|))) $)) (-15 -2144 ($ |#1| |#2|)) (-15 -1507 ($ (-589 (-2 (|:| |gen| |#1|) (|:| -2922 |#2|))))) (-15 -2800 (|#2| $ (-523))) (-15 -2212 (|#1| $ (-523))) (-15 -3700 ($ $)) (-15 -1426 ($ $)) (-15 -2395 ((-710) $)) (-15 -4174 ($)) (-15 -3410 ($ $ |#1|)) (-15 -3433 ($ |#1| $)) (-15 -2758 ($ |#1| |#2| $)) (-15 -2758 ($ $ $)) (-15 -3118 ((-108) $ $)) (-15 -2110 ($ (-1 |#2| |#2|) $)) (-15 -3015 ($ (-1 |#1| |#1|) $)))) (-1016) (-23) |#2|) (T -592)) +((-1781 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-794) (-794) (-794))) (-5 *4 (-523)) (-5 *2 (-794)) (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-23)) (-14 *7 *6))) (-1281 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -2922 *4)))) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4))) (-2144 (*1 *1 *2 *3) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -2922 *4)))) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)))) (-2800 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1016)) (-14 *5 *2))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *2 (-1016)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3700 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-1426 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4))) (-4174 (*1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-3410 (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-3433 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2758 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2758 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-3118 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4))) (-2110 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)))) (-3015 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1016) (-964 |#1|) (-10 -8 (-15 -1781 ((-794) $ (-1 (-794) (-794) (-794)) (-1 (-794) (-794) (-794)) (-523))) (-15 -1281 ((-589 (-2 (|:| |gen| |#1|) (|:| -2922 |#2|))) $)) (-15 -2144 ($ |#1| |#2|)) (-15 -1507 ($ (-589 (-2 (|:| |gen| |#1|) (|:| -2922 |#2|))))) (-15 -2800 (|#2| $ (-523))) (-15 -2212 (|#1| $ (-523))) (-15 -3700 ($ $)) (-15 -1426 ($ $)) (-15 -2395 ((-710) $)) (-15 -4174 ($)) (-15 -3410 ($ $ |#1|)) (-15 -3433 ($ |#1| $)) (-15 -2758 ($ |#1| |#2| $)) (-15 -2758 ($ $ $)) (-15 -3118 ((-108) $ $)) (-15 -2110 ($ (-1 |#2| |#2|) $)) (-15 -3015 ($ (-1 |#1| |#1|) $)))) +((-2567 (((-523) $) 24)) (-2912 (($ |#2| $ (-523)) 22) (($ $ $ (-523)) NIL)) (-2536 (((-589 (-523)) $) 12)) (-2254 (((-108) (-523) $) 15)) (-2394 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-589 $)) NIL))) +(((-593 |#1| |#2|) (-10 -8 (-15 -2912 (|#1| |#1| |#1| (-523))) (-15 -2912 (|#1| |#2| |#1| (-523))) (-15 -2394 (|#1| (-589 |#1|))) (-15 -2394 (|#1| |#1| |#1|)) (-15 -2394 (|#1| |#2| |#1|)) (-15 -2394 (|#1| |#1| |#2|)) (-15 -2567 ((-523) |#1|)) (-15 -2536 ((-589 (-523)) |#1|)) (-15 -2254 ((-108) (-523) |#1|))) (-594 |#2|) (-1123)) (T -593)) +NIL +(-10 -8 (-15 -2912 (|#1| |#1| |#1| (-523))) (-15 -2912 (|#1| |#2| |#1| (-523))) (-15 -2394 (|#1| (-589 |#1|))) (-15 -2394 (|#1| |#1| |#1|)) (-15 -2394 (|#1| |#2| |#1|)) (-15 -2394 (|#1| |#1| |#2|)) (-15 -2567 ((-523) |#1|)) (-15 -2536 ((-589 (-523)) |#1|)) (-15 -2254 ((-108) (-523) |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-4191 (((-1174) $ (-523) (-523)) 40 (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) 8)) (-1849 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) 58 (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-2462 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) 51)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3733 (($ (-710) |#1|) 69)) (-3051 (((-108) $ (-710)) 9)) (-2965 (((-523) $) 43 (|has| (-523) (-786)))) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 44 (|has| (-523) (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2912 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2536 (((-589 (-523)) $) 46)) (-2254 (((-108) (-523) $) 47)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2428 ((|#1| $) 42 (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4141 (($ $ |#1|) 41 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) 48)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1136 (-523))) 63)) (-1499 (($ $ (-523)) 62) (($ $ (-1136 (-523))) 61)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1400 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 70)) (-2394 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-594 |#1|) (-129) (-1123)) (T -594)) +((-3733 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) (-2394 (*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1123)))) (-2394 (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1123)))) (-2394 (*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1123)))) (-2394 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) (-1345 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-1136 (-523))) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) (-1499 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) (-1499 (*1 *1 *1 *2) (-12 (-5 *2 (-1136 (-523))) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) (-2912 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-594 *2)) (-4 *2 (-1123)))) (-2912 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1136 (-523))) (|has| *1 (-6 -4249)) (-4 *1 (-594 *2)) (-4 *2 (-1123))))) +(-13 (-556 (-523) |t#1|) (-140 |t#1|) (-10 -8 (-15 -3733 ($ (-710) |t#1|)) (-15 -2394 ($ $ |t#1|)) (-15 -2394 ($ |t#1| $)) (-15 -2394 ($ $ $)) (-15 -2394 ($ (-589 $))) (-15 -1345 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1937 ($ $ (-1136 (-523)))) (-15 -1499 ($ $ (-523))) (-15 -1499 ($ $ (-1136 (-523)))) (-15 -2912 ($ |t#1| $ (-523))) (-15 -2912 ($ $ $ (-523))) (IF (|has| $ (-6 -4249)) (-15 -1849 (|t#1| $ (-1136 (-523)) |t#1|)) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-3112 (((-3 |#2| "failed") |#3| |#2| (-1087) |#2| (-589 |#2|)) 159) (((-3 (-2 (|:| |particular| |#2|) (|:| -3760 (-589 |#2|))) "failed") |#3| |#2| (-1087)) 43))) +(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -3112 ((-3 (-2 (|:| |particular| |#2|) (|:| -3760 (-589 |#2|))) "failed") |#3| |#2| (-1087))) (-15 -3112 ((-3 |#2| "failed") |#3| |#2| (-1087) |#2| (-589 |#2|)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1109) (-889)) (-599 |#2|)) (T -595)) +((-3112 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 *2)) (-4 *2 (-13 (-29 *6) (-1109) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-599 *2)))) (-3112 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1087)) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-4 *4 (-13 (-29 *6) (-1109) (-889))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3760 (-589 *4)))) (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-599 *4))))) +(-10 -7 (-15 -3112 ((-3 (-2 (|:| |particular| |#2|) (|:| -3760 (-589 |#2|))) "failed") |#3| |#2| (-1087))) (-15 -3112 ((-3 |#2| "failed") |#3| |#2| (-1087) |#2| (-589 |#2|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2852 (($ $) NIL (|has| |#1| (-339)))) (-2571 (($ $ $) NIL (|has| |#1| (-339)))) (-1250 (($ $ (-710)) NIL (|has| |#1| (-339)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-2261 (($ $ $) NIL (|has| |#1| (-339)))) (-2863 (($ $ $) NIL (|has| |#1| (-339)))) (-2497 (($ $ $) NIL (|has| |#1| (-339)))) (-2435 (($ $ $) NIL (|has| |#1| (-339)))) (-1503 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-2643 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-2930 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#1| (-427)))) (-2769 (((-108) $) NIL)) (-1267 (($ |#1| (-710)) NIL)) (-1301 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-515)))) (-2779 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-515)))) (-4047 (((-710) $) NIL)) (-1601 (($ $ $) NIL (|has| |#1| (-339)))) (-1651 (($ $ $) NIL (|has| |#1| (-339)))) (-2869 (($ $ $) NIL (|has| |#1| (-339)))) (-4017 (($ $ $) NIL (|has| |#1| (-339)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-2687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-1735 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-1937 ((|#1| $ |#1|) NIL)) (-3184 (($ $ $) NIL (|has| |#1| (-339)))) (-2640 (((-710) $) NIL)) (-1618 ((|#1| $) NIL (|has| |#1| (-427)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) NIL)) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-710)) NIL)) (-3272 (((-710)) NIL)) (-2372 ((|#1| $ |#1| |#1|) NIL)) (-2346 (($ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($) NIL)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-596 |#1|) (-599 |#1|) (-211)) (T -596)) NIL (-599 |#1|) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1709 (($ $) NIL (|has| |#1| (-339)))) (-2731 (($ $ $) NIL (|has| |#1| (-339)))) (-2221 (($ $ (-710)) NIL (|has| |#1| (-339)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-339)))) (-2324 (($ $ $) NIL (|has| |#1| (-339)))) (-1354 (($ $ $) NIL (|has| |#1| (-339)))) (-1470 (($ $ $) NIL (|has| |#1| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1371 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427)))) (-2023 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) NIL)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-1575 (((-710) $) NIL)) (-3077 (($ $ $) NIL (|has| |#1| (-339)))) (-3082 (($ $ $) NIL (|has| |#1| (-339)))) (-2035 (($ $ $) NIL (|has| |#1| (-339)))) (-2500 (($ $ $) NIL (|has| |#1| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-3223 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3332 (($ $ $) NIL (|has| |#1| (-339)))) (-2299 (((-710) $) NIL)) (-2438 ((|#1| $) NIL (|has| |#1| (-427)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) NIL)) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) NIL)) (-1621 (((-710)) NIL)) (-1677 ((|#1| $ |#1| |#1|) NIL)) (-2708 (($ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($) NIL)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-597 |#1| |#2|) (-13 (-599 |#1|) (-263 |#2| |#2|)) (-211) (-13 (-591 |#1|) (-10 -8 (-15 -3523 ($ $))))) (T -597)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2852 (($ $) NIL (|has| |#1| (-339)))) (-2571 (($ $ $) NIL (|has| |#1| (-339)))) (-1250 (($ $ (-710)) NIL (|has| |#1| (-339)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-2261 (($ $ $) NIL (|has| |#1| (-339)))) (-2863 (($ $ $) NIL (|has| |#1| (-339)))) (-2497 (($ $ $) NIL (|has| |#1| (-339)))) (-2435 (($ $ $) NIL (|has| |#1| (-339)))) (-1503 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-2643 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-2930 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#1| (-427)))) (-2769 (((-108) $) NIL)) (-1267 (($ |#1| (-710)) NIL)) (-1301 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-515)))) (-2779 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-515)))) (-4047 (((-710) $) NIL)) (-1601 (($ $ $) NIL (|has| |#1| (-339)))) (-1651 (($ $ $) NIL (|has| |#1| (-339)))) (-2869 (($ $ $) NIL (|has| |#1| (-339)))) (-4017 (($ $ $) NIL (|has| |#1| (-339)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-2687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-1735 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-1937 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3184 (($ $ $) NIL (|has| |#1| (-339)))) (-2640 (((-710) $) NIL)) (-1618 ((|#1| $) NIL (|has| |#1| (-427)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) NIL)) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-710)) NIL)) (-3272 (((-710)) NIL)) (-2372 ((|#1| $ |#1| |#1|) NIL)) (-2346 (($ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($) NIL)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-597 |#1| |#2|) (-13 (-599 |#1|) (-263 |#2| |#2|)) (-211) (-13 (-591 |#1|) (-10 -8 (-15 -3984 ($ $))))) (T -597)) NIL (-13 (-599 |#1|) (-263 |#2| |#2|)) -((-1709 (($ $) 27)) (-2708 (($ $) 25)) (-2862 (($) 12))) -(((-598 |#1| |#2|) (-10 -8 (-15 -1709 (|#1| |#1|)) (-15 -2708 (|#1| |#1|)) (-15 -2862 (|#1|))) (-599 |#2|) (-973)) (T -598)) +((-2852 (($ $) 26)) (-2346 (($ $) 24)) (-2909 (($) 12))) +(((-598 |#1| |#2|) (-10 -8 (-15 -2852 (|#1| |#1|)) (-15 -2346 (|#1| |#1|)) (-15 -2909 (|#1|))) (-599 |#2|) (-973)) (T -598)) NIL -(-10 -8 (-15 -1709 (|#1| |#1|)) (-15 -2708 (|#1| |#1|)) (-15 -2862 (|#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1709 (($ $) 82 (|has| |#1| (-339)))) (-2731 (($ $ $) 84 (|has| |#1| (-339)))) (-2221 (($ $ (-710)) 83 (|has| |#1| (-339)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2383 (($ $ $) 45 (|has| |#1| (-339)))) (-2324 (($ $ $) 46 (|has| |#1| (-339)))) (-1354 (($ $ $) 48 (|has| |#1| (-339)))) (-1470 (($ $ $) 43 (|has| |#1| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 42 (|has| |#1| (-339)))) (-1371 (((-3 $ "failed") $ $) 44 (|has| |#1| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 47 (|has| |#1| (-339)))) (-3517 (((-3 (-523) "failed") $) 74 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 72 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 69)) (-3474 (((-523) $) 75 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 73 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 68)) (-3810 (($ $) 64)) (-2121 (((-3 $ "failed") $) 34)) (-2528 (($ $) 55 (|has| |#1| (-427)))) (-2023 (((-108) $) 31)) (-1933 (($ |#1| (-710)) 62)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57 (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 58 (|has| |#1| (-515)))) (-1575 (((-710) $) 66)) (-3077 (($ $ $) 52 (|has| |#1| (-339)))) (-3082 (($ $ $) 53 (|has| |#1| (-339)))) (-2035 (($ $ $) 41 (|has| |#1| (-339)))) (-2500 (($ $ $) 50 (|has| |#1| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 49 (|has| |#1| (-339)))) (-1687 (((-3 $ "failed") $ $) 51 (|has| |#1| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 54 (|has| |#1| (-339)))) (-3786 ((|#1| $) 65)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-515)))) (-3223 ((|#1| $ |#1|) 87)) (-3332 (($ $ $) 81 (|has| |#1| (-339)))) (-2299 (((-710) $) 67)) (-2438 ((|#1| $) 56 (|has| |#1| (-427)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 71 (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 70)) (-1251 (((-589 |#1|) $) 61)) (-2365 ((|#1| $ (-710)) 63)) (-1621 (((-710)) 29)) (-1677 ((|#1| $ |#1| |#1|) 60)) (-2708 (($ $) 85)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($) 86)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) +(-10 -8 (-15 -2852 (|#1| |#1|)) (-15 -2346 (|#1| |#1|)) (-15 -2909 (|#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2852 (($ $) 82 (|has| |#1| (-339)))) (-2571 (($ $ $) 84 (|has| |#1| (-339)))) (-1250 (($ $ (-710)) 83 (|has| |#1| (-339)))) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2261 (($ $ $) 45 (|has| |#1| (-339)))) (-2863 (($ $ $) 46 (|has| |#1| (-339)))) (-2497 (($ $ $) 48 (|has| |#1| (-339)))) (-2435 (($ $ $) 43 (|has| |#1| (-339)))) (-1503 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 42 (|has| |#1| (-339)))) (-2643 (((-3 $ "failed") $ $) 44 (|has| |#1| (-339)))) (-2930 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 47 (|has| |#1| (-339)))) (-1220 (((-3 (-523) "failed") $) 74 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 72 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 69)) (-3508 (((-523) $) 75 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 73 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 68)) (-1457 (($ $) 64)) (-1444 (((-3 $ "failed") $) 34)) (-1272 (($ $) 55 (|has| |#1| (-427)))) (-2769 (((-108) $) 31)) (-1267 (($ |#1| (-710)) 62)) (-1301 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57 (|has| |#1| (-515)))) (-2779 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 58 (|has| |#1| (-515)))) (-4047 (((-710) $) 66)) (-1601 (($ $ $) 52 (|has| |#1| (-339)))) (-1651 (($ $ $) 53 (|has| |#1| (-339)))) (-2869 (($ $ $) 41 (|has| |#1| (-339)))) (-4017 (($ $ $) 50 (|has| |#1| (-339)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 49 (|has| |#1| (-339)))) (-2687 (((-3 $ "failed") $ $) 51 (|has| |#1| (-339)))) (-1735 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 54 (|has| |#1| (-339)))) (-1437 ((|#1| $) 65)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-4007 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-515)))) (-1937 ((|#1| $ |#1|) 87)) (-3184 (($ $ $) 81 (|has| |#1| (-339)))) (-2640 (((-710) $) 67)) (-1618 ((|#1| $) 56 (|has| |#1| (-427)))) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 71 (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 70)) (-3819 (((-589 |#1|) $) 61)) (-2084 ((|#1| $ (-710)) 63)) (-3272 (((-710)) 29)) (-2372 ((|#1| $ |#1| |#1|) 60)) (-2346 (($ $) 85)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($) 86)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) (((-599 |#1|) (-129) (-973)) (T -599)) -((-2862 (*1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)))) (-2708 (*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)))) (-2731 (*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2221 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-599 *3)) (-4 *3 (-973)) (-4 *3 (-339)))) (-1709 (*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3332 (*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) -(-13 (-788 |t#1|) (-263 |t#1| |t#1|) (-10 -8 (-15 -2862 ($)) (-15 -2708 ($ $)) (IF (|has| |t#1| (-339)) (PROGN (-15 -2731 ($ $ $)) (-15 -2221 ($ $ (-710))) (-15 -1709 ($ $)) (-15 -3332 ($ $ $))) |%noBranch|))) +((-2909 (*1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)))) (-2346 (*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)))) (-2571 (*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-1250 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-599 *3)) (-4 *3 (-973)) (-4 *3 (-339)))) (-2852 (*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3184 (*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(-13 (-788 |t#1|) (-263 |t#1| |t#1|) (-10 -8 (-15 -2909 ($)) (-15 -2346 ($ $)) (IF (|has| |t#1| (-339)) (PROGN (-15 -2571 ($ $ $)) (-15 -1250 ($ $ (-710))) (-15 -2852 ($ $)) (-15 -3184 ($ $ $))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-158)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-263 |#1| |#1|) . T) ((-387 |#1|) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) |has| |#1| (-158)) ((-666) . T) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-788 |#1|) . T)) -((-2441 (((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|))) 73 (|has| |#1| (-27)))) (-1820 (((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|))) 72 (|has| |#1| (-27))) (((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|)) 15))) -(((-600 |#1| |#2|) (-10 -7 (-15 -1820 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1820 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)))) (-15 -2441 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|))))) |%noBranch|)) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))) (-1144 |#1|)) (T -600)) -((-2441 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *2 (-589 (-596 (-383 *5)))) (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-383 *5))))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *2 (-589 (-596 (-383 *5)))) (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-383 *5))))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-596 (-383 *6)))) (-5 *1 (-600 *5 *6)) (-5 *3 (-596 (-383 *6)))))) -(-10 -7 (-15 -1820 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1820 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)))) (-15 -2441 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|))))) |%noBranch|)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1709 (($ $) NIL (|has| |#1| (-339)))) (-2731 (($ $ $) 28 (|has| |#1| (-339)))) (-2221 (($ $ (-710)) 31 (|has| |#1| (-339)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-339)))) (-2324 (($ $ $) NIL (|has| |#1| (-339)))) (-1354 (($ $ $) NIL (|has| |#1| (-339)))) (-1470 (($ $ $) NIL (|has| |#1| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1371 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427)))) (-2023 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) NIL)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-1575 (((-710) $) NIL)) (-3077 (($ $ $) NIL (|has| |#1| (-339)))) (-3082 (($ $ $) NIL (|has| |#1| (-339)))) (-2035 (($ $ $) NIL (|has| |#1| (-339)))) (-2500 (($ $ $) NIL (|has| |#1| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-3223 ((|#1| $ |#1|) 24)) (-3332 (($ $ $) 33 (|has| |#1| (-339)))) (-2299 (((-710) $) NIL)) (-2438 ((|#1| $) NIL (|has| |#1| (-427)))) (-1458 (((-794) $) 20) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) NIL)) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) NIL)) (-1621 (((-710)) NIL)) (-1677 ((|#1| $ |#1| |#1|) 23)) (-2708 (($ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 21 T CONST)) (-2767 (($) 8 T CONST)) (-2862 (($) NIL)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-1650 (((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|))) 73 (|has| |#1| (-27)))) (-2424 (((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|))) 72 (|has| |#1| (-27))) (((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|)) 15))) +(((-600 |#1| |#2|) (-10 -7 (-15 -2424 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2424 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)))) (-15 -1650 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|))))) |%noBranch|)) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))) (-1145 |#1|)) (T -600)) +((-1650 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *5 (-1145 *4)) (-5 *2 (-589 (-596 (-383 *5)))) (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-383 *5))))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *5 (-1145 *4)) (-5 *2 (-589 (-596 (-383 *5)))) (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-383 *5))))) (-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1145 *5)) (-5 *2 (-589 (-596 (-383 *6)))) (-5 *1 (-600 *5 *6)) (-5 *3 (-596 (-383 *6)))))) +(-10 -7 (-15 -2424 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2424 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)))) (-15 -1650 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|))))) |%noBranch|)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2852 (($ $) NIL (|has| |#1| (-339)))) (-2571 (($ $ $) 28 (|has| |#1| (-339)))) (-1250 (($ $ (-710)) 31 (|has| |#1| (-339)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-2261 (($ $ $) NIL (|has| |#1| (-339)))) (-2863 (($ $ $) NIL (|has| |#1| (-339)))) (-2497 (($ $ $) NIL (|has| |#1| (-339)))) (-2435 (($ $ $) NIL (|has| |#1| (-339)))) (-1503 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-2643 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-2930 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#1| (-427)))) (-2769 (((-108) $) NIL)) (-1267 (($ |#1| (-710)) NIL)) (-1301 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-515)))) (-2779 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-515)))) (-4047 (((-710) $) NIL)) (-1601 (($ $ $) NIL (|has| |#1| (-339)))) (-1651 (($ $ $) NIL (|has| |#1| (-339)))) (-2869 (($ $ $) NIL (|has| |#1| (-339)))) (-4017 (($ $ $) NIL (|has| |#1| (-339)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-2687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-1735 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-1937 ((|#1| $ |#1|) 24)) (-3184 (($ $ $) 33 (|has| |#1| (-339)))) (-2640 (((-710) $) NIL)) (-1618 ((|#1| $) NIL (|has| |#1| (-427)))) (-1691 (((-794) $) 20) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) NIL)) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-710)) NIL)) (-3272 (((-710)) NIL)) (-2372 ((|#1| $ |#1| |#1|) 23)) (-2346 (($ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 21 T CONST)) (-1891 (($) 8 T CONST)) (-2909 (($) NIL)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-601 |#1| |#2|) (-599 |#1|) (-973) (-1 |#1| |#1|)) (T -601)) NIL (-599 |#1|) -((-2731 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 60)) (-2221 ((|#2| |#2| (-710) (-1 |#1| |#1|)) 41)) (-3332 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 62))) -(((-602 |#1| |#2|) (-10 -7 (-15 -2731 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2221 (|#2| |#2| (-710) (-1 |#1| |#1|))) (-15 -3332 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-339) (-599 |#1|)) (T -602)) -((-3332 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-339)) (-5 *1 (-602 *4 *2)) (-4 *2 (-599 *4)))) (-2221 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) (-5 *1 (-602 *5 *2)) (-4 *2 (-599 *5)))) (-2731 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-339)) (-5 *1 (-602 *4 *2)) (-4 *2 (-599 *4))))) -(-10 -7 (-15 -2731 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2221 (|#2| |#2| (-710) (-1 |#1| |#1|))) (-15 -3332 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3651 (($ $ $) 9))) -(((-603 |#1|) (-10 -8 (-15 -3651 (|#1| |#1| |#1|))) (-604)) (T -603)) -NIL -(-10 -8 (-15 -3651 (|#1| |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2573 (($ $) 10)) (-3651 (($ $ $) 8)) (-3983 (((-108) $ $) 6)) (-3640 (($ $ $) 9))) +((-2571 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1250 ((|#2| |#2| (-710) (-1 |#1| |#1|)) 40)) (-3184 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-602 |#1| |#2|) (-10 -7 (-15 -2571 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1250 (|#2| |#2| (-710) (-1 |#1| |#1|))) (-15 -3184 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-339) (-599 |#1|)) (T -602)) +((-3184 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-339)) (-5 *1 (-602 *4 *2)) (-4 *2 (-599 *4)))) (-1250 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) (-5 *1 (-602 *5 *2)) (-4 *2 (-599 *5)))) (-2571 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-339)) (-5 *1 (-602 *4 *2)) (-4 *2 (-599 *4))))) +(-10 -7 (-15 -2571 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1250 (|#2| |#2| (-710) (-1 |#1| |#1|))) (-15 -3184 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-1269 (($ $ $) 9))) +(((-603 |#1|) (-10 -8 (-15 -1269 (|#1| |#1| |#1|))) (-604)) (T -603)) +NIL +(-10 -8 (-15 -1269 (|#1| |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2602 (($ $) 10)) (-1269 (($ $ $) 8)) (-3941 (((-108) $ $) 6)) (-1257 (($ $ $) 9))) (((-604) (-129)) (T -604)) -((-2573 (*1 *1 *1) (-4 *1 (-604))) (-3640 (*1 *1 *1 *1) (-4 *1 (-604))) (-3651 (*1 *1 *1 *1) (-4 *1 (-604)))) -(-13 (-97) (-10 -8 (-15 -2573 ($ $)) (-15 -3640 ($ $ $)) (-15 -3651 ($ $ $)))) +((-2602 (*1 *1 *1) (-4 *1 (-604))) (-1257 (*1 *1 *1 *1) (-4 *1 (-604))) (-1269 (*1 *1 *1 *1) (-4 *1 (-604)))) +(-13 (-97) (-10 -8 (-15 -2602 ($ $)) (-15 -1257 ($ $ $)) (-15 -1269 ($ $ $)))) (((-97) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 15)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2785 ((|#1| $) 21)) (-2454 (($ $ $) NIL (|has| |#1| (-730)))) (-2062 (($ $ $) NIL (|has| |#1| (-730)))) (-3779 (((-1070) $) 46)) (-2783 (((-1034) $) NIL)) (-2797 ((|#3| $) 22)) (-1458 (((-794) $) 42)) (-2756 (($) 10 T CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-730)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-730)))) (-3983 (((-108) $ $) 20)) (-4030 (((-108) $ $) NIL (|has| |#1| (-730)))) (-4007 (((-108) $ $) 24 (|has| |#1| (-730)))) (-4098 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4087 (($ $) 17) (($ $ $) NIL)) (-4075 (($ $ $) 27)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-605 |#1| |#2| |#3|) (-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-730)) (-6 (-730)) |%noBranch|) (-15 -4098 ($ $ |#3|)) (-15 -4098 ($ |#1| |#3|)) (-15 -2785 (|#1| $)) (-15 -2797 (|#3| $)))) (-657 |#2|) (-158) (|SubsetCategory| (-666) |#2|)) (T -605)) -((-4098 (*1 *1 *1 *2) (-12 (-4 *4 (-158)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-657 *4)) (-4 *2 (|SubsetCategory| (-666) *4)))) (-4098 (*1 *1 *2 *3) (-12 (-4 *4 (-158)) (-5 *1 (-605 *2 *4 *3)) (-4 *2 (-657 *4)) (-4 *3 (|SubsetCategory| (-666) *4)))) (-2785 (*1 *2 *1) (-12 (-4 *3 (-158)) (-4 *2 (-657 *3)) (-5 *1 (-605 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-666) *3)))) (-2797 (*1 *2 *1) (-12 (-4 *4 (-158)) (-4 *2 (|SubsetCategory| (-666) *4)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-657 *4))))) -(-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-730)) (-6 (-730)) |%noBranch|) (-15 -4098 ($ $ |#3|)) (-15 -4098 ($ |#1| |#3|)) (-15 -2785 (|#1| $)) (-15 -2797 (|#3| $)))) -((-1730 (((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|)) 33))) -(((-606 |#1|) (-10 -7 (-15 -1730 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|)))) (-840)) (T -606)) -((-1730 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *4))) (-5 *3 (-1083 *4)) (-4 *4 (-840)) (-5 *1 (-606 *4))))) -(-10 -7 (-15 -1730 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2061 (((-589 |#1|) $) 83)) (-3296 (($ $ (-710)) 91)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-4111 (((-1190 |#1| |#2|) (-1190 |#1| |#2|) $) 48)) (-3517 (((-3 (-614 |#1|) "failed") $) NIL)) (-3474 (((-614 |#1|) $) NIL)) (-3810 (($ $) 90)) (-3554 (((-710) $) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-2302 (($ (-614 |#1|) |#2|) 69)) (-1419 (($ $) 87)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2701 (((-1190 |#1| |#2|) (-1190 |#1| |#2|) $) 47)) (-4184 (((-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3774 (((-614 |#1|) $) NIL)) (-3786 ((|#2| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2679 (($ $ |#1| $) 30) (($ $ (-589 |#1|) (-589 $)) 32)) (-2299 (((-710) $) 89)) (-1472 (($ $ $) 20) (($ (-614 |#1|) (-614 |#1|)) 78) (($ (-614 |#1|) $) 76) (($ $ (-614 |#1|)) 77)) (-1458 (((-794) $) NIL) (($ |#1|) 75) (((-1181 |#1| |#2|) $) 59) (((-1190 |#1| |#2|) $) 41) (($ (-614 |#1|)) 25)) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-614 |#1|)) NIL)) (-2935 ((|#2| (-1190 |#1| |#2|) $) 43)) (-2756 (($) 23 T CONST)) (-1643 (((-589 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3442 (((-3 $ "failed") (-1181 |#1| |#2|)) 61)) (-1484 (($ (-614 |#1|)) 14)) (-3983 (((-108) $ $) 44)) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) 67) (($ $ $) NIL)) (-4075 (($ $ $) 29)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-614 |#1|)) NIL))) -(((-607 |#1| |#2|) (-13 (-350 |#1| |#2|) (-358 |#2| (-614 |#1|)) (-10 -8 (-15 -3442 ((-3 $ "failed") (-1181 |#1| |#2|))) (-15 -1472 ($ (-614 |#1|) (-614 |#1|))) (-15 -1472 ($ (-614 |#1|) $)) (-15 -1472 ($ $ (-614 |#1|))))) (-786) (-158)) (T -607)) -((-3442 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *1 (-607 *3 *4)))) (-1472 (*1 *1 *2 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) (-4 *4 (-158)))) (-1472 (*1 *1 *2 *1) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) (-4 *4 (-158)))) (-1472 (*1 *1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) (-4 *4 (-158))))) -(-13 (-350 |#1| |#2|) (-358 |#2| (-614 |#1|)) (-10 -8 (-15 -3442 ((-3 $ "failed") (-1181 |#1| |#2|))) (-15 -1472 ($ (-614 |#1|) (-614 |#1|))) (-15 -1472 ($ (-614 |#1|) $)) (-15 -1472 ($ $ (-614 |#1|))))) -((-1964 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-1506 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 11)) (-3387 (($ (-1 (-108) |#2|) $) 28)) (-2867 (($ $) 56)) (-3941 (($ $) 63)) (-2249 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-2437 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1479 (((-523) |#2| $ (-523)) 61) (((-523) |#2| $) NIL) (((-523) (-1 (-108) |#2|) $) 47)) (-3052 (($ (-710) |#2|) 54)) (-2158 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-2178 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-3612 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3992 (($ |#2|) 14)) (-3450 (($ $ $ (-523)) 36) (($ |#2| $ (-523)) 34)) (-2114 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-2753 (($ $ (-1135 (-523))) 44) (($ $ (-523)) 38)) (-3160 (($ $ $ (-523)) 60)) (-1664 (($ $) 58)) (-4007 (((-108) $ $) 65))) -(((-608 |#1| |#2|) (-10 -8 (-15 -3992 (|#1| |#2|)) (-15 -2753 (|#1| |#1| (-523))) (-15 -2753 (|#1| |#1| (-1135 (-523)))) (-15 -2249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3450 (|#1| |#2| |#1| (-523))) (-15 -3450 (|#1| |#1| |#1| (-523))) (-15 -2158 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3387 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2249 (|#1| |#2| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -2158 (|#1| |#1| |#1|)) (-15 -2178 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1964 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1479 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -1479 ((-523) |#2| |#1|)) (-15 -1479 ((-523) |#2| |#1| (-523))) (-15 -2178 (|#1| |#1| |#1|)) (-15 -1964 ((-108) |#1|)) (-15 -3160 (|#1| |#1| |#1| (-523))) (-15 -2867 (|#1| |#1|)) (-15 -1506 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2114 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3052 (|#1| (-710) |#2|)) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1664 (|#1| |#1|))) (-609 |#2|) (-1122)) (T -608)) -NIL -(-10 -8 (-15 -3992 (|#1| |#2|)) (-15 -2753 (|#1| |#1| (-523))) (-15 -2753 (|#1| |#1| (-1135 (-523)))) (-15 -2249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3450 (|#1| |#2| |#1| (-523))) (-15 -3450 (|#1| |#1| |#1| (-523))) (-15 -2158 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3387 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2249 (|#1| |#2| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -2158 (|#1| |#1| |#1|)) (-15 -2178 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1964 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1479 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -1479 ((-523) |#2| |#1|)) (-15 -1479 ((-523) |#2| |#1| (-523))) (-15 -2178 (|#1| |#1| |#1|)) (-15 -1964 ((-108) |#1|)) (-15 -3160 (|#1| |#1| |#1| (-523))) (-15 -2867 (|#1| |#1|)) (-15 -1506 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2114 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3052 (|#1| (-710) |#2|)) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1664 (|#1| |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-1546 ((|#1| $) 65)) (-4039 (($ $) 67)) (-4207 (((-1173) $ (-523) (-523)) 97 (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) 52 (|has| $ (-6 -4245)))) (-1964 (((-108) $) 142 (|has| |#1| (-786))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-1506 (($ $) 146 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4245)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4245)))) (-3974 (($ $) 141 (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-2110 (($ $ $) 56 (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) 54 (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) 58 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4245))) (($ $ "rest" $) 55 (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 117 (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) 86 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) |#1|) $) 129)) (-3724 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4244)))) (-1532 ((|#1| $) 66)) (-2518 (($) 7 T CONST)) (-2867 (($ $) 144 (|has| $ (-6 -4245)))) (-3631 (($ $) 134)) (-1751 (($ $) 73) (($ $ (-710)) 71)) (-3941 (($ $) 131 (|has| |#1| (-1016)))) (-1773 (($ $) 99 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 130 (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) 125)) (-2557 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4244))) (($ |#1| $) 100 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2863 ((|#1| $ (-523) |#1|) 85 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 87)) (-1232 (((-108) $) 83)) (-1479 (((-523) |#1| $ (-523)) 139 (|has| |#1| (-1016))) (((-523) |#1| $) 138 (|has| |#1| (-1016))) (((-523) (-1 (-108) |#1|) $) 137)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-3052 (($ (-710) |#1|) 108)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 95 (|has| (-523) (-786)))) (-2454 (($ $ $) 147 (|has| |#1| (-786)))) (-2158 (($ $ $) 132 (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-2178 (($ $ $) 140 (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 94 (|has| (-523) (-786)))) (-2062 (($ $ $) 148 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3992 (($ |#1|) 122)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2579 ((|#1| $) 70) (($ $ (-710)) 68)) (-3450 (($ $ $ (-523)) 127) (($ |#1| $ (-523)) 126)) (-2847 (($ $ $ (-523)) 116) (($ |#1| $ (-523)) 115)) (-2412 (((-589 (-523)) $) 92)) (-4135 (((-108) (-523) $) 91)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 76) (($ $ (-710)) 74)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-4203 (($ $ |#1|) 96 (|has| $ (-6 -4245)))) (-2402 (((-108) $) 84)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 90)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1135 (-523))) 112) ((|#1| $ (-523)) 89) ((|#1| $ (-523) |#1|) 88)) (-1549 (((-523) $ $) 44)) (-2753 (($ $ (-1135 (-523))) 124) (($ $ (-523)) 123)) (-1469 (($ $ (-1135 (-523))) 114) (($ $ (-523)) 113)) (-2524 (((-108) $) 46)) (-2732 (($ $) 62)) (-2363 (($ $) 59 (|has| $ (-6 -4245)))) (-2316 (((-710) $) 63)) (-3562 (($ $) 64)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 143 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 98 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 107)) (-1746 (($ $ $) 61) (($ $ |#1|) 60)) (-2326 (($ $ $) 78) (($ |#1| $) 77) (($ (-589 $)) 110) (($ $ |#1|) 109)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 150 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 151 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4030 (((-108) $ $) 149 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 152 (|has| |#1| (-786)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-609 |#1|) (-129) (-1122)) (T -609)) -((-3992 (*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1122))))) -(-13 (-1061 |t#1|) (-349 |t#1|) (-259 |t#1|) (-10 -8 (-15 -3992 ($ |t#1|)))) -(((-33) . T) ((-97) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-259 |#1|) . T) ((-349 |#1|) . T) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-786) |has| |#1| (-786)) ((-938 |#1|) . T) ((-1016) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1061 |#1|) . T) ((-1122) . T) ((-1156 |#1|) . T)) -((-1940 (((-589 (-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|))))) (-589 (-589 |#1|)) (-589 (-1168 |#1|))) 21) (((-589 (-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|))))) (-629 |#1|) (-589 (-1168 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-589 (-589 |#1|)) (-1168 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-629 |#1|) (-1168 |#1|)) 13)) (-1319 (((-710) (-629 |#1|) (-1168 |#1|)) 29)) (-1848 (((-3 (-1168 |#1|) "failed") (-629 |#1|) (-1168 |#1|)) 23)) (-2048 (((-108) (-629 |#1|) (-1168 |#1|)) 26))) -(((-610 |#1|) (-10 -7 (-15 -1940 ((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-629 |#1|) (-1168 |#1|))) (-15 -1940 ((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-589 (-589 |#1|)) (-1168 |#1|))) (-15 -1940 ((-589 (-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|))))) (-629 |#1|) (-589 (-1168 |#1|)))) (-15 -1940 ((-589 (-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|))))) (-589 (-589 |#1|)) (-589 (-1168 |#1|)))) (-15 -1848 ((-3 (-1168 |#1|) "failed") (-629 |#1|) (-1168 |#1|))) (-15 -2048 ((-108) (-629 |#1|) (-1168 |#1|))) (-15 -1319 ((-710) (-629 |#1|) (-1168 |#1|)))) (-339)) (T -610)) -((-1319 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-339)) (-5 *2 (-710)) (-5 *1 (-610 *5)))) (-2048 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-339)) (-5 *2 (-108)) (-5 *1 (-610 *5)))) (-1848 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1168 *4)) (-5 *3 (-629 *4)) (-4 *4 (-339)) (-5 *1 (-610 *4)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 *5))) (-4 *5 (-339)) (-5 *2 (-589 (-2 (|:| |particular| (-3 (-1168 *5) "failed")) (|:| -4041 (-589 (-1168 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-589 (-1168 *5))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-4 *5 (-339)) (-5 *2 (-589 (-2 (|:| |particular| (-3 (-1168 *5) "failed")) (|:| -4041 (-589 (-1168 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-589 (-1168 *5))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 *5))) (-4 *5 (-339)) (-5 *2 (-2 (|:| |particular| (-3 (-1168 *5) "failed")) (|:| -4041 (-589 (-1168 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1168 *5)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |particular| (-3 (-1168 *5) "failed")) (|:| -4041 (-589 (-1168 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1168 *5))))) -(-10 -7 (-15 -1940 ((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-629 |#1|) (-1168 |#1|))) (-15 -1940 ((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-589 (-589 |#1|)) (-1168 |#1|))) (-15 -1940 ((-589 (-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|))))) (-629 |#1|) (-589 (-1168 |#1|)))) (-15 -1940 ((-589 (-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|))))) (-589 (-589 |#1|)) (-589 (-1168 |#1|)))) (-15 -1848 ((-3 (-1168 |#1|) "failed") (-629 |#1|) (-1168 |#1|))) (-15 -2048 ((-108) (-629 |#1|) (-1168 |#1|))) (-15 -1319 ((-710) (-629 |#1|) (-1168 |#1|)))) -((-1940 (((-589 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|)))) |#4| (-589 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|))) |#4| |#3|) 45)) (-1319 (((-710) |#4| |#3|) 17)) (-1848 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2048 (((-108) |#4| |#3|) 13))) -(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1940 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|))) |#4| |#3|)) (-15 -1940 ((-589 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|)))) |#4| (-589 |#3|))) (-15 -1848 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2048 ((-108) |#4| |#3|)) (-15 -1319 ((-710) |#4| |#3|))) (-339) (-13 (-349 |#1|) (-10 -7 (-6 -4245))) (-13 (-349 |#1|) (-10 -7 (-6 -4245))) (-627 |#1| |#2| |#3|)) (T -611)) -((-1319 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 (-710)) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-2048 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 (-108)) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-1848 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-339)) (-4 *5 (-13 (-349 *4) (-10 -7 (-6 -4245)))) (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245)))) (-5 *1 (-611 *4 *5 *2 *3)) (-4 *3 (-627 *4 *5 *2)))) (-1940 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-4 *7 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 (-589 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4041 (-589 *7))))) (-5 *1 (-611 *5 *6 *7 *3)) (-5 *4 (-589 *7)) (-4 *3 (-627 *5 *6 *7)))) (-1940 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) -(-10 -7 (-15 -1940 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|))) |#4| |#3|)) (-15 -1940 ((-589 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|)))) |#4| (-589 |#3|))) (-15 -1848 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2048 ((-108) |#4| |#3|)) (-15 -1319 ((-710) |#4| |#3|))) -((-1654 (((-2 (|:| |particular| (-3 (-1168 (-383 |#4|)) "failed")) (|:| -4041 (-589 (-1168 (-383 |#4|))))) (-589 |#4|) (-589 |#3|)) 45))) -(((-612 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1654 ((-2 (|:| |particular| (-3 (-1168 (-383 |#4|)) "failed")) (|:| -4041 (-589 (-1168 (-383 |#4|))))) (-589 |#4|) (-589 |#3|)))) (-515) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -612)) -((-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *7)) (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-5 *2 (-2 (|:| |particular| (-3 (-1168 (-383 *8)) "failed")) (|:| -4041 (-589 (-1168 (-383 *8)))))) (-5 *1 (-612 *5 *6 *7 *8))))) -(-10 -7 (-15 -1654 ((-2 (|:| |particular| (-3 (-1168 (-383 |#4|)) "failed")) (|:| -4041 (-589 (-1168 (-383 |#4|))))) (-589 |#4|) (-589 |#3|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3819 (((-3 $ "failed")) NIL (|has| |#2| (-515)))) (-4187 ((|#2| $) NIL)) (-2606 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3115 (((-1168 (-629 |#2|))) NIL) (((-1168 (-629 |#2|)) (-1168 $)) NIL)) (-2651 (((-108) $) NIL)) (-2738 (((-1168 $)) 37)) (-3079 (((-108) $ (-710)) NIL)) (-1421 (($ |#2|) NIL)) (-2518 (($) NIL T CONST)) (-2445 (($ $) NIL (|has| |#2| (-284)))) (-2031 (((-218 |#1| |#2|) $ (-523)) NIL)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (|has| |#2| (-515)))) (-3545 (((-3 $ "failed")) NIL (|has| |#2| (-515)))) (-1431 (((-629 |#2|)) NIL) (((-629 |#2|) (-1168 $)) NIL)) (-3744 ((|#2| $) NIL)) (-2788 (((-629 |#2|) $) NIL) (((-629 |#2|) $ (-1168 $)) NIL)) (-2532 (((-3 $ "failed") $) NIL (|has| |#2| (-515)))) (-3138 (((-1083 (-883 |#2|))) NIL (|has| |#2| (-339)))) (-1970 (($ $ (-852)) NIL)) (-4212 ((|#2| $) NIL)) (-1726 (((-1083 |#2|) $) NIL (|has| |#2| (-515)))) (-2284 ((|#2|) NIL) ((|#2| (-1168 $)) NIL)) (-1778 (((-1083 |#2|) $) NIL)) (-2117 (((-108)) NIL)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 |#2| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) ((|#2| $) NIL)) (-3409 (($ (-1168 |#2|)) NIL) (($ (-1168 |#2|) (-1168 $)) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1319 (((-710) $) NIL (|has| |#2| (-515))) (((-852)) 38)) (-2795 ((|#2| $ (-523) (-523)) NIL)) (-1487 (((-108)) NIL)) (-3650 (($ $ (-852)) NIL)) (-1666 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL)) (-1867 (((-710) $) NIL (|has| |#2| (-515)))) (-3498 (((-589 (-218 |#1| |#2|)) $) NIL (|has| |#2| (-515)))) (-2803 (((-710) $) NIL)) (-1649 (((-108)) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-1925 ((|#2| $) NIL (|has| |#2| (-6 (-4246 "*"))))) (-3871 (((-523) $) NIL)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3338 (((-523) $) NIL)) (-2347 (((-523) $) NIL)) (-3068 (($ (-589 (-589 |#2|))) NIL)) (-2852 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2289 (((-589 (-589 |#2|)) $) NIL)) (-2956 (((-108)) NIL)) (-2491 (((-108)) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (|has| |#2| (-515)))) (-1386 (((-3 $ "failed")) NIL (|has| |#2| (-515)))) (-1504 (((-629 |#2|)) NIL) (((-629 |#2|) (-1168 $)) NIL)) (-3237 ((|#2| $) NIL)) (-2139 (((-629 |#2|) $) NIL) (((-629 |#2|) $ (-1168 $)) NIL)) (-1579 (((-3 $ "failed") $) NIL (|has| |#2| (-515)))) (-2525 (((-1083 (-883 |#2|))) NIL (|has| |#2| (-339)))) (-1448 (($ $ (-852)) NIL)) (-4050 ((|#2| $) NIL)) (-2553 (((-1083 |#2|) $) NIL (|has| |#2| (-515)))) (-3002 ((|#2|) NIL) ((|#2| (-1168 $)) NIL)) (-2565 (((-1083 |#2|) $) NIL)) (-1216 (((-108)) NIL)) (-3779 (((-1070) $) NIL)) (-2345 (((-108)) NIL)) (-1510 (((-108)) NIL)) (-2871 (((-108)) NIL)) (-3698 (((-3 $ "failed") $) NIL (|has| |#2| (-339)))) (-2783 (((-1034) $) NIL)) (-2751 (((-108)) NIL)) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515)))) (-1327 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ (-523) (-523) |#2|) NIL) ((|#2| $ (-523) (-523)) 22) ((|#2| $ (-523)) NIL)) (-3523 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3804 ((|#2| $) NIL)) (-3739 (($ (-589 |#2|)) NIL)) (-3117 (((-108) $) NIL)) (-2561 (((-218 |#1| |#2|) $) NIL)) (-2310 ((|#2| $) NIL (|has| |#2| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1664 (($ $) NIL)) (-2966 (((-629 |#2|) (-1168 $)) NIL) (((-1168 |#2|) $) NIL) (((-629 |#2|) (-1168 $) (-1168 $)) NIL) (((-1168 |#2|) $ (-1168 $)) 25)) (-3663 (($ (-1168 |#2|)) NIL) (((-1168 |#2|) $) NIL)) (-3863 (((-589 (-883 |#2|))) NIL) (((-589 (-883 |#2|)) (-1168 $)) NIL)) (-1714 (($ $ $) NIL)) (-1673 (((-108)) NIL)) (-1595 (((-218 |#1| |#2|) $ (-523)) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#2| (-964 (-383 (-523))))) (($ |#2|) NIL) (((-629 |#2|) $) NIL)) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) 36)) (-3751 (((-589 (-1168 |#2|))) NIL (|has| |#2| (-515)))) (-2022 (($ $ $ $) NIL)) (-3120 (((-108)) NIL)) (-1677 (($ (-629 |#2|) $) NIL)) (-2096 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2175 (((-108) $) NIL)) (-1995 (($ $ $) NIL)) (-1462 (((-108)) NIL)) (-3366 (((-108)) NIL)) (-2071 (((-108)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#2| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-218 |#1| |#2|) $ (-218 |#1| |#2|)) NIL) (((-218 |#1| |#2|) (-218 |#1| |#2|) $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 15)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-3316 ((|#1| $) 21)) (-3239 (($ $ $) NIL (|has| |#1| (-730)))) (-3158 (($ $ $) NIL (|has| |#1| (-730)))) (-2032 (((-1070) $) 46)) (-3951 (((-1034) $) NIL)) (-3329 ((|#3| $) 22)) (-1691 (((-794) $) 42)) (-1879 (($) 10 T CONST)) (-4006 (((-108) $ $) NIL (|has| |#1| (-730)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-730)))) (-3941 (((-108) $ $) 20)) (-3993 (((-108) $ $) NIL (|has| |#1| (-730)))) (-3966 (((-108) $ $) 24 (|has| |#1| (-730)))) (-4074 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4060 (($ $) 17) (($ $ $) NIL)) (-4045 (($ $ $) 27)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-605 |#1| |#2| |#3|) (-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-730)) (-6 (-730)) |%noBranch|) (-15 -4074 ($ $ |#3|)) (-15 -4074 ($ |#1| |#3|)) (-15 -3316 (|#1| $)) (-15 -3329 (|#3| $)))) (-657 |#2|) (-158) (|SubsetCategory| (-666) |#2|)) (T -605)) +((-4074 (*1 *1 *1 *2) (-12 (-4 *4 (-158)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-657 *4)) (-4 *2 (|SubsetCategory| (-666) *4)))) (-4074 (*1 *1 *2 *3) (-12 (-4 *4 (-158)) (-5 *1 (-605 *2 *4 *3)) (-4 *2 (-657 *4)) (-4 *3 (|SubsetCategory| (-666) *4)))) (-3316 (*1 *2 *1) (-12 (-4 *3 (-158)) (-4 *2 (-657 *3)) (-5 *1 (-605 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-666) *3)))) (-3329 (*1 *2 *1) (-12 (-4 *4 (-158)) (-4 *2 (|SubsetCategory| (-666) *4)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-657 *4))))) +(-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-730)) (-6 (-730)) |%noBranch|) (-15 -4074 ($ $ |#3|)) (-15 -4074 ($ |#1| |#3|)) (-15 -3316 (|#1| $)) (-15 -3329 (|#3| $)))) +((-3031 (((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|)) 33))) +(((-606 |#1|) (-10 -7 (-15 -3031 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|)))) (-840)) (T -606)) +((-3031 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *4))) (-5 *3 (-1083 *4)) (-4 *4 (-840)) (-5 *1 (-606 *4))))) +(-10 -7 (-15 -3031 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2634 (((-589 |#1|) $) 82)) (-4111 (($ $ (-710)) 90)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-3166 (((-1191 |#1| |#2|) (-1191 |#1| |#2|) $) 48)) (-1220 (((-3 (-614 |#1|) "failed") $) NIL)) (-3508 (((-614 |#1|) $) NIL)) (-1457 (($ $) 89)) (-1789 (((-710) $) NIL)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-2836 (($ (-614 |#1|) |#2|) 68)) (-1965 (($ $) 86)) (-1345 (($ (-1 |#2| |#2|) $) NIL)) (-2278 (((-1191 |#1| |#2|) (-1191 |#1| |#2|) $) 47)) (-3940 (((-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1427 (((-614 |#1|) $) NIL)) (-1437 ((|#2| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2812 (($ $ |#1| $) 30) (($ $ (-589 |#1|) (-589 $)) 32)) (-2640 (((-710) $) 88)) (-1704 (($ $ $) 20) (($ (-614 |#1|) (-614 |#1|)) 77) (($ (-614 |#1|) $) 75) (($ $ (-614 |#1|)) 76)) (-1691 (((-794) $) NIL) (($ |#1|) 74) (((-1182 |#1| |#2|) $) 58) (((-1191 |#1| |#2|) $) 41) (($ (-614 |#1|)) 25)) (-3819 (((-589 |#2|) $) NIL)) (-2084 ((|#2| $ (-614 |#1|)) NIL)) (-3474 ((|#2| (-1191 |#1| |#2|) $) 43)) (-1879 (($) 23 T CONST)) (-3461 (((-589 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3042 (((-3 $ "failed") (-1182 |#1| |#2|)) 60)) (-1423 (($ (-614 |#1|)) 14)) (-3941 (((-108) $ $) 44)) (-4074 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4060 (($ $) 66) (($ $ $) NIL)) (-4045 (($ $ $) 29)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-614 |#1|)) NIL))) +(((-607 |#1| |#2|) (-13 (-350 |#1| |#2|) (-358 |#2| (-614 |#1|)) (-10 -8 (-15 -3042 ((-3 $ "failed") (-1182 |#1| |#2|))) (-15 -1704 ($ (-614 |#1|) (-614 |#1|))) (-15 -1704 ($ (-614 |#1|) $)) (-15 -1704 ($ $ (-614 |#1|))))) (-786) (-158)) (T -607)) +((-3042 (*1 *1 *2) (|partial| -12 (-5 *2 (-1182 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *1 (-607 *3 *4)))) (-1704 (*1 *1 *2 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) (-4 *4 (-158)))) (-1704 (*1 *1 *2 *1) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) (-4 *4 (-158)))) (-1704 (*1 *1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) (-4 *4 (-158))))) +(-13 (-350 |#1| |#2|) (-358 |#2| (-614 |#1|)) (-10 -8 (-15 -3042 ((-3 $ "failed") (-1182 |#1| |#2|))) (-15 -1704 ($ (-614 |#1|) (-614 |#1|))) (-15 -1704 ($ (-614 |#1|) $)) (-15 -1704 ($ $ (-614 |#1|))))) +((-3337 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-1632 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 11)) (-3703 (($ (-1 (-108) |#2|) $) 28)) (-1426 (($ $) 56)) (-4160 (($ $) 64)) (-3286 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-2116 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3449 (((-523) |#2| $ (-523)) 61) (((-523) |#2| $) NIL) (((-523) (-1 (-108) |#2|) $) 47)) (-3733 (($ (-710) |#2|) 54)) (-1793 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-3780 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-1345 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2301 (($ |#2|) 14)) (-3108 (($ $ $ (-523)) 36) (($ |#2| $ (-523)) 34)) (-2509 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-1655 (($ $ (-1136 (-523))) 44) (($ $ (-523)) 38)) (-4166 (($ $ $ (-523)) 60)) (-1874 (($ $) 58)) (-3966 (((-108) $ $) 66))) +(((-608 |#1| |#2|) (-10 -8 (-15 -2301 (|#1| |#2|)) (-15 -1655 (|#1| |#1| (-523))) (-15 -1655 (|#1| |#1| (-1136 (-523)))) (-15 -3286 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3108 (|#1| |#2| |#1| (-523))) (-15 -3108 (|#1| |#1| |#1| (-523))) (-15 -1793 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3703 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3286 (|#1| |#2| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -1793 (|#1| |#1| |#1|)) (-15 -3780 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3337 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3449 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -3449 ((-523) |#2| |#1|)) (-15 -3449 ((-523) |#2| |#1| (-523))) (-15 -3780 (|#1| |#1| |#1|)) (-15 -3337 ((-108) |#1|)) (-15 -4166 (|#1| |#1| |#1| (-523))) (-15 -1426 (|#1| |#1|)) (-15 -1632 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -3966 ((-108) |#1| |#1|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2509 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3733 (|#1| (-710) |#2|)) (-15 -1345 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1874 (|#1| |#1|))) (-609 |#2|) (-1123)) (T -608)) +NIL +(-10 -8 (-15 -2301 (|#1| |#2|)) (-15 -1655 (|#1| |#1| (-523))) (-15 -1655 (|#1| |#1| (-1136 (-523)))) (-15 -3286 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3108 (|#1| |#2| |#1| (-523))) (-15 -3108 (|#1| |#1| |#1| (-523))) (-15 -1793 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3703 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3286 (|#1| |#2| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -1793 (|#1| |#1| |#1|)) (-15 -3780 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3337 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3449 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -3449 ((-523) |#2| |#1|)) (-15 -3449 ((-523) |#2| |#1| (-523))) (-15 -3780 (|#1| |#1| |#1|)) (-15 -3337 ((-108) |#1|)) (-15 -4166 (|#1| |#1| |#1| (-523))) (-15 -1426 (|#1| |#1|)) (-15 -1632 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -3966 ((-108) |#1| |#1|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2116 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2509 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3733 (|#1| (-710) |#2|)) (-15 -1345 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1874 (|#1| |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3370 ((|#1| $) 48)) (-2176 ((|#1| $) 65)) (-2227 (($ $) 67)) (-4191 (((-1174) $ (-523) (-523)) 97 (|has| $ (-6 -4249)))) (-2856 (($ $ (-523)) 52 (|has| $ (-6 -4249)))) (-3337 (((-108) $) 142 (|has| |#1| (-786))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-1632 (($ $) 146 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4249)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4249)))) (-1581 (($ $) 141 (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-1620 (((-108) $ (-710)) 8)) (-1487 ((|#1| $ |#1|) 39 (|has| $ (-6 -4249)))) (-2470 (($ $ $) 56 (|has| $ (-6 -4249)))) (-2622 ((|#1| $ |#1|) 54 (|has| $ (-6 -4249)))) (-2027 ((|#1| $ |#1|) 58 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4249))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4249))) (($ $ "rest" $) 55 (|has| $ (-6 -4249))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) 117 (|has| $ (-6 -4249))) ((|#1| $ (-523) |#1|) 86 (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) 41 (|has| $ (-6 -4249)))) (-3703 (($ (-1 (-108) |#1|) $) 129)) (-1903 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4248)))) (-2165 ((|#1| $) 66)) (-4189 (($) 7 T CONST)) (-1426 (($ $) 144 (|has| $ (-6 -4249)))) (-3700 (($ $) 134)) (-2441 (($ $) 73) (($ $ (-710)) 71)) (-4160 (($ $) 131 (|has| |#1| (-1016)))) (-2462 (($ $) 99 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3286 (($ |#1| $) 130 (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) 125)) (-2514 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4248))) (($ |#1| $) 100 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2053 ((|#1| $ (-523) |#1|) 85 (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) 87)) (-1833 (((-108) $) 83)) (-3449 (((-523) |#1| $ (-523)) 139 (|has| |#1| (-1016))) (((-523) |#1| $) 138 (|has| |#1| (-1016))) (((-523) (-1 (-108) |#1|) $) 137)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) 50)) (-3675 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-3733 (($ (-710) |#1|) 108)) (-3051 (((-108) $ (-710)) 9)) (-2965 (((-523) $) 95 (|has| (-523) (-786)))) (-3239 (($ $ $) 147 (|has| |#1| (-786)))) (-1793 (($ $ $) 132 (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-3780 (($ $ $) 140 (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 94 (|has| (-523) (-786)))) (-3158 (($ $ $) 148 (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2301 (($ |#1|) 122)) (-1418 (((-108) $ (-710)) 10)) (-1701 (((-589 |#1|) $) 45)) (-1799 (((-108) $) 49)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2535 ((|#1| $) 70) (($ $ (-710)) 68)) (-3108 (($ $ $ (-523)) 127) (($ |#1| $ (-523)) 126)) (-2912 (($ $ $ (-523)) 116) (($ |#1| $ (-523)) 115)) (-2536 (((-589 (-523)) $) 92)) (-2254 (((-108) (-523) $) 91)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2428 ((|#1| $) 76) (($ $ (-710)) 74)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-4141 (($ $ |#1|) 96 (|has| $ (-6 -4249)))) (-2430 (((-108) $) 84)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) 90)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1136 (-523))) 112) ((|#1| $ (-523)) 89) ((|#1| $ (-523) |#1|) 88)) (-3766 (((-523) $ $) 44)) (-1655 (($ $ (-1136 (-523))) 124) (($ $ (-523)) 123)) (-1499 (($ $ (-1136 (-523))) 114) (($ $ (-523)) 113)) (-1221 (((-108) $) 46)) (-2582 (($ $) 62)) (-2075 (($ $) 59 (|has| $ (-6 -4249)))) (-2784 (((-710) $) 63)) (-1867 (($ $) 64)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-4166 (($ $ $ (-523)) 143 (|has| $ (-6 -4249)))) (-1874 (($ $) 13)) (-1400 (((-499) $) 98 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 107)) (-2001 (($ $ $) 61) (($ $ |#1|) 60)) (-2394 (($ $ $) 78) (($ |#1| $) 77) (($ (-589 $)) 110) (($ $ |#1|) 109)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) 51)) (-3313 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) 150 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 151 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-3993 (((-108) $ $) 149 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 152 (|has| |#1| (-786)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-609 |#1|) (-129) (-1123)) (T -609)) +((-2301 (*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1123))))) +(-13 (-1061 |t#1|) (-349 |t#1|) (-259 |t#1|) (-10 -8 (-15 -2301 ($ |t#1|)))) +(((-33) . T) ((-97) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-259 |#1|) . T) ((-349 |#1|) . T) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-786) |has| |#1| (-786)) ((-938 |#1|) . T) ((-1016) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1061 |#1|) . T) ((-1123) . T) ((-1157 |#1|) . T)) +((-3112 (((-589 (-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|))))) (-589 (-589 |#1|)) (-589 (-1169 |#1|))) 21) (((-589 (-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|))))) (-629 |#1|) (-589 (-1169 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|)))) (-589 (-589 |#1|)) (-1169 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|)))) (-629 |#1|) (-1169 |#1|)) 13)) (-3569 (((-710) (-629 |#1|) (-1169 |#1|)) 29)) (-1698 (((-3 (-1169 |#1|) "failed") (-629 |#1|) (-1169 |#1|)) 23)) (-2988 (((-108) (-629 |#1|) (-1169 |#1|)) 26))) +(((-610 |#1|) (-10 -7 (-15 -3112 ((-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|)))) (-629 |#1|) (-1169 |#1|))) (-15 -3112 ((-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|)))) (-589 (-589 |#1|)) (-1169 |#1|))) (-15 -3112 ((-589 (-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|))))) (-629 |#1|) (-589 (-1169 |#1|)))) (-15 -3112 ((-589 (-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|))))) (-589 (-589 |#1|)) (-589 (-1169 |#1|)))) (-15 -1698 ((-3 (-1169 |#1|) "failed") (-629 |#1|) (-1169 |#1|))) (-15 -2988 ((-108) (-629 |#1|) (-1169 |#1|))) (-15 -3569 ((-710) (-629 |#1|) (-1169 |#1|)))) (-339)) (T -610)) +((-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-339)) (-5 *2 (-710)) (-5 *1 (-610 *5)))) (-2988 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-339)) (-5 *2 (-108)) (-5 *1 (-610 *5)))) (-1698 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1169 *4)) (-5 *3 (-629 *4)) (-4 *4 (-339)) (-5 *1 (-610 *4)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 *5))) (-4 *5 (-339)) (-5 *2 (-589 (-2 (|:| |particular| (-3 (-1169 *5) "failed")) (|:| -3760 (-589 (-1169 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-589 (-1169 *5))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-4 *5 (-339)) (-5 *2 (-589 (-2 (|:| |particular| (-3 (-1169 *5) "failed")) (|:| -3760 (-589 (-1169 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-589 (-1169 *5))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 *5))) (-4 *5 (-339)) (-5 *2 (-2 (|:| |particular| (-3 (-1169 *5) "failed")) (|:| -3760 (-589 (-1169 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1169 *5)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |particular| (-3 (-1169 *5) "failed")) (|:| -3760 (-589 (-1169 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1169 *5))))) +(-10 -7 (-15 -3112 ((-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|)))) (-629 |#1|) (-1169 |#1|))) (-15 -3112 ((-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|)))) (-589 (-589 |#1|)) (-1169 |#1|))) (-15 -3112 ((-589 (-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|))))) (-629 |#1|) (-589 (-1169 |#1|)))) (-15 -3112 ((-589 (-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|))))) (-589 (-589 |#1|)) (-589 (-1169 |#1|)))) (-15 -1698 ((-3 (-1169 |#1|) "failed") (-629 |#1|) (-1169 |#1|))) (-15 -2988 ((-108) (-629 |#1|) (-1169 |#1|))) (-15 -3569 ((-710) (-629 |#1|) (-1169 |#1|)))) +((-3112 (((-589 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3760 (-589 |#3|)))) |#4| (-589 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3760 (-589 |#3|))) |#4| |#3|) 45)) (-3569 (((-710) |#4| |#3|) 17)) (-1698 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2988 (((-108) |#4| |#3|) 13))) +(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3112 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3760 (-589 |#3|))) |#4| |#3|)) (-15 -3112 ((-589 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3760 (-589 |#3|)))) |#4| (-589 |#3|))) (-15 -1698 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2988 ((-108) |#4| |#3|)) (-15 -3569 ((-710) |#4| |#3|))) (-339) (-13 (-349 |#1|) (-10 -7 (-6 -4249))) (-13 (-349 |#1|) (-10 -7 (-6 -4249))) (-627 |#1| |#2| |#3|)) (T -611)) +((-3569 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4249)))) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4249)))) (-5 *2 (-710)) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-2988 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4249)))) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4249)))) (-5 *2 (-108)) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-1698 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-339)) (-4 *5 (-13 (-349 *4) (-10 -7 (-6 -4249)))) (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4249)))) (-5 *1 (-611 *4 *5 *2 *3)) (-4 *3 (-627 *4 *5 *2)))) (-3112 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4249)))) (-4 *7 (-13 (-349 *5) (-10 -7 (-6 -4249)))) (-5 *2 (-589 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3760 (-589 *7))))) (-5 *1 (-611 *5 *6 *7 *3)) (-5 *4 (-589 *7)) (-4 *3 (-627 *5 *6 *7)))) (-3112 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4249)))) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4249)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) +(-10 -7 (-15 -3112 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3760 (-589 |#3|))) |#4| |#3|)) (-15 -3112 ((-589 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3760 (-589 |#3|)))) |#4| (-589 |#3|))) (-15 -1698 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2988 ((-108) |#4| |#3|)) (-15 -3569 ((-710) |#4| |#3|))) +((-3562 (((-2 (|:| |particular| (-3 (-1169 (-383 |#4|)) "failed")) (|:| -3760 (-589 (-1169 (-383 |#4|))))) (-589 |#4|) (-589 |#3|)) 44))) +(((-612 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3562 ((-2 (|:| |particular| (-3 (-1169 (-383 |#4|)) "failed")) (|:| -3760 (-589 (-1169 (-383 |#4|))))) (-589 |#4|) (-589 |#3|)))) (-515) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -612)) +((-3562 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *7)) (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-5 *2 (-2 (|:| |particular| (-3 (-1169 (-383 *8)) "failed")) (|:| -3760 (-589 (-1169 (-383 *8)))))) (-5 *1 (-612 *5 *6 *7 *8))))) +(-10 -7 (-15 -3562 ((-2 (|:| |particular| (-3 (-1169 (-383 |#4|)) "failed")) (|:| -3760 (-589 (-1169 (-383 |#4|))))) (-589 |#4|) (-589 |#3|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2345 (((-3 $ "failed")) NIL (|has| |#2| (-515)))) (-1477 ((|#2| $) NIL)) (-3735 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1939 (((-1169 (-629 |#2|))) NIL) (((-1169 (-629 |#2|)) (-1169 $)) NIL)) (-2989 (((-108) $) NIL)) (-1502 (((-1169 $)) 37)) (-1620 (((-108) $ (-710)) NIL)) (-1979 (($ |#2|) NIL)) (-4189 (($) NIL T CONST)) (-1678 (($ $) NIL (|has| |#2| (-284)))) (-2827 (((-218 |#1| |#2|) $ (-523)) NIL)) (-2314 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) NIL (|has| |#2| (-515)))) (-1722 (((-3 $ "failed")) NIL (|has| |#2| (-515)))) (-2059 (((-629 |#2|)) NIL) (((-629 |#2|) (-1169 $)) NIL)) (-2920 ((|#2| $) NIL)) (-1950 (((-629 |#2|) $) NIL) (((-629 |#2|) $ (-1169 $)) NIL)) (-1307 (((-3 $ "failed") $) NIL (|has| |#2| (-515)))) (-3927 (((-1083 (-883 |#2|))) NIL (|has| |#2| (-339)))) (-3402 (($ $ (-852)) NIL)) (-1223 ((|#2| $) NIL)) (-2992 (((-1083 |#2|) $) NIL (|has| |#2| (-515)))) (-3637 ((|#2|) NIL) ((|#2| (-1169 $)) NIL)) (-2242 (((-1083 |#2|) $) NIL)) (-1404 (((-108)) NIL)) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 |#2| "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) ((|#2| $) NIL)) (-2754 (($ (-1169 |#2|)) NIL) (($ (-1169 |#2|) (-1169 $)) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-3569 (((-710) $) NIL (|has| |#2| (-515))) (((-852)) 38)) (-2000 ((|#2| $ (-523) (-523)) NIL)) (-1454 (((-108)) NIL)) (-3291 (($ $ (-852)) NIL)) (-1871 (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-2769 (((-108) $) NIL)) (-1835 (((-710) $) NIL (|has| |#2| (-515)))) (-2454 (((-589 (-218 |#1| |#2|)) $) NIL (|has| |#2| (-515)))) (-1357 (((-710) $) NIL)) (-3517 (((-108)) NIL)) (-1370 (((-710) $) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-4224 ((|#2| $) NIL (|has| |#2| (-6 (-4250 "*"))))) (-1665 (((-523) $) NIL)) (-2082 (((-523) $) NIL)) (-1584 (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3231 (((-523) $) NIL)) (-3060 (((-523) $) NIL)) (-3648 (($ (-589 (-589 |#2|))) NIL)) (-2043 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3692 (((-589 (-589 |#2|)) $) NIL)) (-2804 (((-108)) NIL)) (-3914 (((-108)) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2065 (((-3 (-2 (|:| |particular| $) (|:| -3760 (-589 $))) "failed")) NIL (|has| |#2| (-515)))) (-2778 (((-3 $ "failed")) NIL (|has| |#2| (-515)))) (-1612 (((-629 |#2|)) NIL) (((-629 |#2|) (-1169 $)) NIL)) (-3647 ((|#2| $) NIL)) (-1613 (((-629 |#2|) $) NIL) (((-629 |#2|) $ (-1169 $)) NIL)) (-4097 (((-3 $ "failed") $) NIL (|has| |#2| (-515)))) (-1233 (((-1083 (-883 |#2|))) NIL (|has| |#2| (-339)))) (-2237 (($ $ (-852)) NIL)) (-2670 ((|#2| $) NIL)) (-3248 (((-1083 |#2|) $) NIL (|has| |#2| (-515)))) (-2085 ((|#2|) NIL) ((|#2| (-1169 $)) NIL)) (-3359 (((-1083 |#2|) $) NIL)) (-1675 (((-108)) NIL)) (-2032 (((-1070) $) NIL)) (-3041 (((-108)) NIL)) (-1671 (((-108)) NIL)) (-3194 (((-108)) NIL)) (-3713 (((-3 $ "failed") $) NIL (|has| |#2| (-339)))) (-3951 (((-1034) $) NIL)) (-1634 (((-108)) NIL)) (-4007 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515)))) (-3379 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#2| $ (-523) (-523) |#2|) NIL) ((|#2| $ (-523) (-523)) 22) ((|#2| $ (-523)) NIL)) (-3984 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-2218 ((|#2| $) NIL)) (-2870 (($ (-589 |#2|)) NIL)) (-1956 (((-108) $) NIL)) (-3326 (((-218 |#1| |#2|) $) NIL)) (-2736 ((|#2| $) NIL (|has| |#2| (-6 (-4250 "*"))))) (-3977 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-1874 (($ $) NIL)) (-2906 (((-629 |#2|) (-1169 $)) NIL) (((-1169 |#2|) $) NIL) (((-629 |#2|) (-1169 $) (-1169 $)) NIL) (((-1169 |#2|) $ (-1169 $)) 25)) (-1400 (($ (-1169 |#2|)) NIL) (((-1169 |#2|) $) NIL)) (-1586 (((-589 (-883 |#2|))) NIL) (((-589 (-883 |#2|)) (-1169 $)) NIL)) (-2892 (($ $ $) NIL)) (-2572 (((-108)) NIL)) (-1249 (((-218 |#1| |#2|) $ (-523)) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#2| (-964 (-383 (-523))))) (($ |#2|) NIL) (((-629 |#2|) $) NIL)) (-3272 (((-710)) NIL)) (-3760 (((-1169 $)) 36)) (-2969 (((-589 (-1169 |#2|))) NIL (|has| |#2| (-515)))) (-2760 (($ $ $ $) NIL)) (-1978 (((-108)) NIL)) (-2372 (($ (-629 |#2|) $) NIL)) (-2308 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-3749 (((-108) $) NIL)) (-3654 (($ $ $) NIL)) (-2367 (((-108)) NIL)) (-3505 (((-108)) NIL)) (-2050 (((-108)) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#2| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-218 |#1| |#2|) $ (-218 |#1| |#2|)) NIL) (((-218 |#1| |#2|) (-218 |#1| |#2|) $) NIL)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) (((-613 |#1| |#2|) (-13 (-1037 |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) (-563 (-629 |#2|)) (-393 |#2|)) (-852) (-158)) (T -613)) NIL (-13 (-1037 |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) (-563 (-629 |#2|)) (-393 |#2|)) -((-3924 (((-108) $ $) NIL)) (-2061 (((-589 |#1|) $) NIL)) (-3159 (($ $) 51)) (-1406 (((-108) $) NIL)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3788 (((-3 $ "failed") (-758 |#1|)) 23)) (-2552 (((-108) (-758 |#1|)) 15)) (-3057 (($ (-758 |#1|)) 24)) (-2964 (((-108) $ $) 29)) (-2996 (((-852) $) 36)) (-3149 (($ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1820 (((-589 $) (-758 |#1|)) 17)) (-1458 (((-794) $) 42) (($ |#1|) 33) (((-758 |#1|) $) 38) (((-618 |#1|) $) 43)) (-3263 (((-57 (-589 $)) (-589 |#1|) (-852)) 56)) (-3344 (((-589 $) (-589 |#1|) (-852)) 59)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 52)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 37))) -(((-614 |#1|) (-13 (-786) (-964 |#1|) (-10 -8 (-15 -1406 ((-108) $)) (-15 -3149 ($ $)) (-15 -3159 ($ $)) (-15 -2996 ((-852) $)) (-15 -2964 ((-108) $ $)) (-15 -1458 ((-758 |#1|) $)) (-15 -1458 ((-618 |#1|) $)) (-15 -1820 ((-589 $) (-758 |#1|))) (-15 -2552 ((-108) (-758 |#1|))) (-15 -3057 ($ (-758 |#1|))) (-15 -3788 ((-3 $ "failed") (-758 |#1|))) (-15 -2061 ((-589 |#1|) $)) (-15 -3263 ((-57 (-589 $)) (-589 |#1|) (-852))) (-15 -3344 ((-589 $) (-589 |#1|) (-852))))) (-786)) (T -614)) -((-1406 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-3149 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-786)))) (-3159 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-786)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-2964 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-758 *3)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-758 *4)) (-4 *4 (-786)) (-5 *2 (-589 (-614 *4))) (-5 *1 (-614 *4)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-758 *4)) (-4 *4 (-786)) (-5 *2 (-108)) (-5 *1 (-614 *4)))) (-3057 (*1 *1 *2) (-12 (-5 *2 (-758 *3)) (-4 *3 (-786)) (-5 *1 (-614 *3)))) (-3788 (*1 *1 *2) (|partial| -12 (-5 *2 (-758 *3)) (-4 *3 (-786)) (-5 *1 (-614 *3)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-3263 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-852)) (-4 *5 (-786)) (-5 *2 (-57 (-589 (-614 *5)))) (-5 *1 (-614 *5)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-852)) (-4 *5 (-786)) (-5 *2 (-589 (-614 *5))) (-5 *1 (-614 *5))))) -(-13 (-786) (-964 |#1|) (-10 -8 (-15 -1406 ((-108) $)) (-15 -3149 ($ $)) (-15 -3159 ($ $)) (-15 -2996 ((-852) $)) (-15 -2964 ((-108) $ $)) (-15 -1458 ((-758 |#1|) $)) (-15 -1458 ((-618 |#1|) $)) (-15 -1820 ((-589 $) (-758 |#1|))) (-15 -2552 ((-108) (-758 |#1|))) (-15 -3057 ($ (-758 |#1|))) (-15 -3788 ((-3 $ "failed") (-758 |#1|))) (-15 -2061 ((-589 |#1|) $)) (-15 -3263 ((-57 (-589 $)) (-589 |#1|) (-852))) (-15 -3344 ((-589 $) (-589 |#1|) (-852))))) -((-1733 ((|#2| $) 76)) (-4039 (($ $) 96)) (-3079 (((-108) $ (-710)) 26)) (-1751 (($ $) 85) (($ $ (-710)) 88)) (-1232 (((-108) $) 97)) (-2645 (((-589 $) $) 72)) (-1238 (((-108) $ $) 71)) (-2346 (((-108) $ (-710)) 24)) (-4084 (((-523) $) 46)) (-3056 (((-523) $) 45)) (-2866 (((-108) $ (-710)) 22)) (-3555 (((-108) $) 74)) (-2579 ((|#2| $) 89) (($ $ (-710)) 92)) (-2847 (($ $ $ (-523)) 62) (($ |#2| $ (-523)) 61)) (-2412 (((-589 (-523)) $) 44)) (-4135 (((-108) (-523) $) 42)) (-1738 ((|#2| $) NIL) (($ $ (-710)) 84)) (-4097 (($ $ (-523)) 100)) (-2402 (((-108) $) 99)) (-1327 (((-108) (-1 (-108) |#2|) $) 32)) (-1264 (((-589 |#2|) $) 33)) (-3223 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1135 (-523))) 58) ((|#2| $ (-523)) 40) ((|#2| $ (-523) |#2|) 41)) (-1549 (((-523) $ $) 70)) (-1469 (($ $ (-1135 (-523))) 57) (($ $ (-523)) 51)) (-2524 (((-108) $) 66)) (-2732 (($ $) 81)) (-2316 (((-710) $) 80)) (-3562 (($ $) 79)) (-1472 (($ (-589 |#2|)) 37)) (-1353 (($ $) 101)) (-2296 (((-589 $) $) 69)) (-3653 (((-108) $ $) 68)) (-2096 (((-108) (-1 (-108) |#2|) $) 31)) (-3983 (((-108) $ $) 18)) (-2676 (((-710) $) 29))) -(((-615 |#1| |#2|) (-10 -8 (-15 -1353 (|#1| |#1|)) (-15 -4097 (|#1| |#1| (-523))) (-15 -1232 ((-108) |#1|)) (-15 -2402 ((-108) |#1|)) (-15 -3223 (|#2| |#1| (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523))) (-15 -1264 ((-589 |#2|) |#1|)) (-15 -4135 ((-108) (-523) |#1|)) (-15 -2412 ((-589 (-523)) |#1|)) (-15 -3056 ((-523) |#1|)) (-15 -4084 ((-523) |#1|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -1469 (|#1| |#1| (-523))) (-15 -1469 (|#1| |#1| (-1135 (-523)))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2732 (|#1| |#1|)) (-15 -2316 ((-710) |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2579 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "last")) (-15 -2579 (|#2| |#1|)) (-15 -1751 (|#1| |#1| (-710))) (-15 -3223 (|#1| |#1| "rest")) (-15 -1751 (|#1| |#1|)) (-15 -1738 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "first")) (-15 -1738 (|#2| |#1|)) (-15 -1238 ((-108) |#1| |#1|)) (-15 -3653 ((-108) |#1| |#1|)) (-15 -1549 ((-523) |#1| |#1|)) (-15 -2524 ((-108) |#1|)) (-15 -3223 (|#2| |#1| "value")) (-15 -1733 (|#2| |#1|)) (-15 -3555 ((-108) |#1|)) (-15 -2645 ((-589 |#1|) |#1|)) (-15 -2296 ((-589 |#1|) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710)))) (-616 |#2|) (-1122)) (T -615)) -NIL -(-10 -8 (-15 -1353 (|#1| |#1|)) (-15 -4097 (|#1| |#1| (-523))) (-15 -1232 ((-108) |#1|)) (-15 -2402 ((-108) |#1|)) (-15 -3223 (|#2| |#1| (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523))) (-15 -1264 ((-589 |#2|) |#1|)) (-15 -4135 ((-108) (-523) |#1|)) (-15 -2412 ((-589 (-523)) |#1|)) (-15 -3056 ((-523) |#1|)) (-15 -4084 ((-523) |#1|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -1469 (|#1| |#1| (-523))) (-15 -1469 (|#1| |#1| (-1135 (-523)))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2732 (|#1| |#1|)) (-15 -2316 ((-710) |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2579 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "last")) (-15 -2579 (|#2| |#1|)) (-15 -1751 (|#1| |#1| (-710))) (-15 -3223 (|#1| |#1| "rest")) (-15 -1751 (|#1| |#1|)) (-15 -1738 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "first")) (-15 -1738 (|#2| |#1|)) (-15 -1238 ((-108) |#1| |#1|)) (-15 -3653 ((-108) |#1| |#1|)) (-15 -1549 ((-523) |#1| |#1|)) (-15 -2524 ((-108) |#1|)) (-15 -3223 (|#2| |#1| "value")) (-15 -1733 (|#2| |#1|)) (-15 -3555 ((-108) |#1|)) (-15 -2645 ((-589 |#1|) |#1|)) (-15 -2296 ((-589 |#1|) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710)))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-1546 ((|#1| $) 65)) (-4039 (($ $) 67)) (-4207 (((-1173) $ (-523) (-523)) 97 (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) 52 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-2110 (($ $ $) 56 (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) 54 (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) 58 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4245))) (($ $ "rest" $) 55 (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 117 (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) 86 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 102)) (-1532 ((|#1| $) 66)) (-2518 (($) 7 T CONST)) (-3898 (($ $) 124)) (-1751 (($ $) 73) (($ $ (-710)) 71)) (-1773 (($ $) 99 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 100 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 103)) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2863 ((|#1| $ (-523) |#1|) 85 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 87)) (-1232 (((-108) $) 83)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-4122 (((-710) $) 123)) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-3052 (($ (-710) |#1|) 108)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 95 (|has| (-523) (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 94 (|has| (-523) (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3886 (($ $) 126)) (-2271 (((-108) $) 127)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2579 ((|#1| $) 70) (($ $ (-710)) 68)) (-2847 (($ $ $ (-523)) 116) (($ |#1| $ (-523)) 115)) (-2412 (((-589 (-523)) $) 92)) (-4135 (((-108) (-523) $) 91)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1810 ((|#1| $) 125)) (-1738 ((|#1| $) 76) (($ $ (-710)) 74)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-4203 (($ $ |#1|) 96 (|has| $ (-6 -4245)))) (-4097 (($ $ (-523)) 122)) (-2402 (((-108) $) 84)) (-3762 (((-108) $) 128)) (-2556 (((-108) $) 129)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 90)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1135 (-523))) 112) ((|#1| $ (-523)) 89) ((|#1| $ (-523) |#1|) 88)) (-1549 (((-523) $ $) 44)) (-1469 (($ $ (-1135 (-523))) 114) (($ $ (-523)) 113)) (-2524 (((-108) $) 46)) (-2732 (($ $) 62)) (-2363 (($ $) 59 (|has| $ (-6 -4245)))) (-2316 (((-710) $) 63)) (-3562 (($ $) 64)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 98 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 107)) (-1746 (($ $ $) 61 (|has| $ (-6 -4245))) (($ $ |#1|) 60 (|has| $ (-6 -4245)))) (-2326 (($ $ $) 78) (($ |#1| $) 77) (($ (-589 $)) 110) (($ $ |#1|) 109)) (-1353 (($ $) 121)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-616 |#1|) (-129) (-1122)) (T -616)) -((-2557 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1122)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1122)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) (-3886 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122)))) (-3898 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-710)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-616 *3)) (-4 *3 (-1122)))) (-1353 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122))))) -(-13 (-1061 |t#1|) (-10 -8 (-15 -2557 ($ (-1 (-108) |t#1|) $)) (-15 -3724 ($ (-1 (-108) |t#1|) $)) (-15 -2556 ((-108) $)) (-15 -3762 ((-108) $)) (-15 -2271 ((-108) $)) (-15 -3886 ($ $)) (-15 -1810 (|t#1| $)) (-15 -3898 ($ $)) (-15 -4122 ((-710) $)) (-15 -4097 ($ $ (-523))) (-15 -1353 ($ $)))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1061 |#1|) . T) ((-1122) . T) ((-1156 |#1|) . T)) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1785 (($ (-710) (-710) (-710)) 34 (|has| |#1| (-973)))) (-3079 (((-108) $ (-710)) NIL)) (-3354 ((|#1| $ (-710) (-710) (-710) |#1|) 29)) (-2518 (($) NIL T CONST)) (-2209 (($ $ $) 38 (|has| |#1| (-973)))) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1247 (((-1168 (-710)) $) 10)) (-2304 (($ (-1087) $ $) 24)) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3947 (($ (-710)) 36 (|has| |#1| (-973)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-710) (-710) (-710)) 27)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1472 (($ (-589 (-589 (-589 |#1|)))) 45)) (-1458 (($ (-888 (-888 (-888 |#1|)))) 17) (((-888 (-888 (-888 |#1|))) $) 14) (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-617 |#1|) (-13 (-462 |#1|) (-10 -8 (IF (|has| |#1| (-973)) (PROGN (-15 -1785 ($ (-710) (-710) (-710))) (-15 -3947 ($ (-710))) (-15 -2209 ($ $ $))) |%noBranch|) (-15 -1472 ($ (-589 (-589 (-589 |#1|))))) (-15 -3223 (|#1| $ (-710) (-710) (-710))) (-15 -3354 (|#1| $ (-710) (-710) (-710) |#1|)) (-15 -1458 ($ (-888 (-888 (-888 |#1|))))) (-15 -1458 ((-888 (-888 (-888 |#1|))) $)) (-15 -2304 ($ (-1087) $ $)) (-15 -1247 ((-1168 (-710)) $)))) (-1016)) (T -617)) -((-1785 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-617 *3)) (-4 *3 (-973)) (-4 *3 (-1016)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-617 *3)) (-4 *3 (-973)) (-4 *3 (-1016)))) (-2209 (*1 *1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-973)) (-4 *2 (-1016)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-589 *3)))) (-4 *3 (-1016)) (-5 *1 (-617 *3)))) (-3223 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-710)) (-5 *1 (-617 *2)) (-4 *2 (-1016)))) (-3354 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-617 *2)) (-4 *2 (-1016)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-888 (-888 (-888 *3)))) (-4 *3 (-1016)) (-5 *1 (-617 *3)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-888 (-888 (-888 *3)))) (-5 *1 (-617 *3)) (-4 *3 (-1016)))) (-2304 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-617 *3)) (-4 *3 (-1016)))) (-1247 (*1 *2 *1) (-12 (-5 *2 (-1168 (-710))) (-5 *1 (-617 *3)) (-4 *3 (-1016))))) -(-13 (-462 |#1|) (-10 -8 (IF (|has| |#1| (-973)) (PROGN (-15 -1785 ($ (-710) (-710) (-710))) (-15 -3947 ($ (-710))) (-15 -2209 ($ $ $))) |%noBranch|) (-15 -1472 ($ (-589 (-589 (-589 |#1|))))) (-15 -3223 (|#1| $ (-710) (-710) (-710))) (-15 -3354 (|#1| $ (-710) (-710) (-710) |#1|)) (-15 -1458 ($ (-888 (-888 (-888 |#1|))))) (-15 -1458 ((-888 (-888 (-888 |#1|))) $)) (-15 -2304 ($ (-1087) $ $)) (-15 -1247 ((-1168 (-710)) $)))) -((-3924 (((-108) $ $) NIL)) (-2061 (((-589 |#1|) $) 14)) (-3159 (($ $) 18)) (-1406 (((-108) $) 19)) (-3517 (((-3 |#1| "failed") $) 22)) (-3474 ((|#1| $) 20)) (-1751 (($ $) 36)) (-1419 (($ $) 24)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2964 (((-108) $ $) 42)) (-2996 (((-852) $) 38)) (-3149 (($ $) 17)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 ((|#1| $) 35)) (-1458 (((-794) $) 31) (($ |#1|) 23) (((-758 |#1|) $) 27)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 12)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 40)) (* (($ $ $) 34))) -(((-618 |#1|) (-13 (-786) (-964 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1458 ((-758 |#1|) $)) (-15 -1738 (|#1| $)) (-15 -3149 ($ $)) (-15 -2996 ((-852) $)) (-15 -2964 ((-108) $ $)) (-15 -1419 ($ $)) (-15 -1751 ($ $)) (-15 -1406 ((-108) $)) (-15 -3159 ($ $)) (-15 -2061 ((-589 |#1|) $)))) (-786)) (T -618)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-758 *3)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) (-1738 (*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-3149 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) (-2964 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) (-1419 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-1751 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) (-3159 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-618 *3)) (-4 *3 (-786))))) -(-13 (-786) (-964 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1458 ((-758 |#1|) $)) (-15 -1738 (|#1| $)) (-15 -3149 ($ $)) (-15 -2996 ((-852) $)) (-15 -2964 ((-108) $ $)) (-15 -1419 ($ $)) (-15 -1751 ($ $)) (-15 -1406 ((-108) $)) (-15 -3159 ($ $)) (-15 -2061 ((-589 |#1|) $)))) -((-2755 ((|#1| (-1 |#1| (-710) |#1|) (-710) |#1|) 11)) (-1721 ((|#1| (-1 |#1| |#1|) (-710) |#1|) 9))) -(((-619 |#1|) (-10 -7 (-15 -1721 (|#1| (-1 |#1| |#1|) (-710) |#1|)) (-15 -2755 (|#1| (-1 |#1| (-710) |#1|) (-710) |#1|))) (-1016)) (T -619)) -((-2755 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-710) *2)) (-5 *4 (-710)) (-4 *2 (-1016)) (-5 *1 (-619 *2)))) (-1721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-710)) (-4 *2 (-1016)) (-5 *1 (-619 *2))))) -(-10 -7 (-15 -1721 (|#1| (-1 |#1| |#1|) (-710) |#1|)) (-15 -2755 (|#1| (-1 |#1| (-710) |#1|) (-710) |#1|))) -((-1511 ((|#2| |#1| |#2|) 9)) (-1499 ((|#1| |#1| |#2|) 8))) -(((-620 |#1| |#2|) (-10 -7 (-15 -1499 (|#1| |#1| |#2|)) (-15 -1511 (|#2| |#1| |#2|))) (-1016) (-1016)) (T -620)) -((-1511 (*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-1499 (*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) -(-10 -7 (-15 -1499 (|#1| |#1| |#2|)) (-15 -1511 (|#2| |#1| |#2|))) -((-2370 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -2370 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1016) (-1016) (-1016)) (T -621)) -((-2370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)) (-5 *1 (-621 *5 *6 *2))))) -(-10 -7 (-15 -2370 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2755 (((-1 |#1| (-710) |#1|) (-1 |#1| (-710) |#1|)) 23)) (-2244 (((-1 |#1|) |#1|) 8)) (-3024 ((|#1| |#1|) 16)) (-2285 (((-589 |#1|) (-1 (-589 |#1|) (-589 |#1|)) (-523)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1458 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-710)) 20))) -(((-622 |#1|) (-10 -7 (-15 -2244 ((-1 |#1|) |#1|)) (-15 -1458 ((-1 |#1|) |#1|)) (-15 -2285 (|#1| (-1 |#1| |#1|))) (-15 -2285 ((-589 |#1|) (-1 (-589 |#1|) (-589 |#1|)) (-523))) (-15 -3024 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-710))) (-15 -2755 ((-1 |#1| (-710) |#1|) (-1 |#1| (-710) |#1|)))) (-1016)) (T -622)) -((-2755 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-710) *3)) (-4 *3 (-1016)) (-5 *1 (-622 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *4 (-1016)) (-5 *1 (-622 *4)))) (-3024 (*1 *2 *2) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1016)))) (-2285 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-589 *5) (-589 *5))) (-5 *4 (-523)) (-5 *2 (-589 *5)) (-5 *1 (-622 *5)) (-4 *5 (-1016)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-622 *2)) (-4 *2 (-1016)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1016)))) (-2244 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1016))))) -(-10 -7 (-15 -2244 ((-1 |#1|) |#1|)) (-15 -1458 ((-1 |#1|) |#1|)) (-15 -2285 (|#1| (-1 |#1| |#1|))) (-15 -2285 ((-589 |#1|) (-1 (-589 |#1|) (-589 |#1|)) (-523))) (-15 -3024 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-710))) (-15 -2755 ((-1 |#1| (-710) |#1|) (-1 |#1| (-710) |#1|)))) -((-3608 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3137 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3059 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1280 (((-1 |#2| |#1|) |#2|) 11))) -(((-623 |#1| |#2|) (-10 -7 (-15 -1280 ((-1 |#2| |#1|) |#2|)) (-15 -3137 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3059 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3608 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1016) (-1016)) (T -623)) -((-3608 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-5 *2 (-1 *5 *4)) (-5 *1 (-623 *4 *5)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1016)) (-5 *2 (-1 *5 *4)) (-5 *1 (-623 *4 *5)) (-4 *4 (-1016)))) (-3137 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-5 *2 (-1 *5)) (-5 *1 (-623 *4 *5)))) (-1280 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-623 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-1016))))) -(-10 -7 (-15 -1280 ((-1 |#2| |#1|) |#2|)) (-15 -3137 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3059 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3608 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-3233 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3841 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2164 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-4217 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2204 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-624 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2164 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4217 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2204 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3233 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1016) (-1016) (-1016)) (T -624)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-1 *7 *5)) (-5 *1 (-624 *5 *6 *7)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-624 *4 *5 *6)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *4 (-1016)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-1016)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *4 *5 *6)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1016)) (-4 *4 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *4 *6))))) -(-10 -7 (-15 -3841 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2164 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4217 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2204 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3233 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2437 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3612 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-625 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3612 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3612 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2437 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-973) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|) (-973) (-349 |#5|) (-349 |#5|) (-627 |#5| |#6| |#7|)) (T -625)) -((-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-973)) (-4 *2 (-973)) (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *8 (-349 *2)) (-4 *9 (-349 *2)) (-5 *1 (-625 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7)) (-4 *10 (-627 *2 *8 *9)))) (-3612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-973)) (-4 *8 (-973)) (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-349 *8)) (-4 *10 (-349 *8)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-973)) (-4 *8 (-973)) (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-349 *8)) (-4 *10 (-349 *8))))) -(-10 -7 (-15 -3612 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3612 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2437 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2821 (($ (-710) (-710)) 32)) (-1911 (($ $ $) 55)) (-4190 (($ |#3|) 51) (($ $) 52)) (-2606 (((-108) $) 27)) (-2637 (($ $ (-523) (-523)) 57)) (-3276 (($ $ (-523) (-523)) 58)) (-2934 (($ $ (-523) (-523) (-523) (-523)) 62)) (-3858 (($ $) 53)) (-2651 (((-108) $) 14)) (-1494 (($ $ (-523) (-523) $) 63)) (-1641 ((|#2| $ (-523) (-523) |#2|) NIL) (($ $ (-589 (-523)) (-589 (-523)) $) 61)) (-1421 (($ (-710) |#2|) 37)) (-3068 (($ (-589 (-589 |#2|))) 35)) (-2289 (((-589 (-589 |#2|)) $) 56)) (-3945 (($ $ $) 54)) (-3746 (((-3 $ "failed") $ |#2|) 90)) (-3223 ((|#2| $ (-523) (-523)) NIL) ((|#2| $ (-523) (-523) |#2|) NIL) (($ $ (-589 (-523)) (-589 (-523))) 60)) (-3739 (($ (-589 |#2|)) 39) (($ (-589 $)) 41)) (-3117 (((-108) $) 24)) (-1458 (($ |#4|) 46) (((-794) $) NIL)) (-2175 (((-108) $) 29)) (-4098 (($ $ |#2|) 92)) (-4087 (($ $ $) 67) (($ $) 70)) (-4075 (($ $ $) 65)) (** (($ $ (-710)) 79) (($ $ (-523)) 95)) (* (($ $ $) 76) (($ |#2| $) 72) (($ $ |#2|) 73) (($ (-523) $) 75) ((|#4| $ |#4|) 83) ((|#3| |#3| $) 87))) -(((-626 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 -4098 (|#1| |#1| |#2|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-710))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1494 (|#1| |#1| (-523) (-523) |#1|)) (-15 -2934 (|#1| |#1| (-523) (-523) (-523) (-523))) (-15 -3276 (|#1| |#1| (-523) (-523))) (-15 -2637 (|#1| |#1| (-523) (-523))) (-15 -1641 (|#1| |#1| (-589 (-523)) (-589 (-523)) |#1|)) (-15 -3223 (|#1| |#1| (-589 (-523)) (-589 (-523)))) (-15 -2289 ((-589 (-589 |#2|)) |#1|)) (-15 -1911 (|#1| |#1| |#1|)) (-15 -3945 (|#1| |#1| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -4190 (|#1| |#1|)) (-15 -4190 (|#1| |#3|)) (-15 -1458 (|#1| |#4|)) (-15 -3739 (|#1| (-589 |#1|))) (-15 -3739 (|#1| (-589 |#2|))) (-15 -1421 (|#1| (-710) |#2|)) (-15 -3068 (|#1| (-589 (-589 |#2|)))) (-15 -2821 (|#1| (-710) (-710))) (-15 -2175 ((-108) |#1|)) (-15 -2606 ((-108) |#1|)) (-15 -3117 ((-108) |#1|)) (-15 -2651 ((-108) |#1|)) (-15 -1641 (|#2| |#1| (-523) (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) (-523)))) (-627 |#2| |#3| |#4|) (-973) (-349 |#2|) (-349 |#2|)) (T -626)) -NIL -(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 -4098 (|#1| |#1| |#2|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-710))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1494 (|#1| |#1| (-523) (-523) |#1|)) (-15 -2934 (|#1| |#1| (-523) (-523) (-523) (-523))) (-15 -3276 (|#1| |#1| (-523) (-523))) (-15 -2637 (|#1| |#1| (-523) (-523))) (-15 -1641 (|#1| |#1| (-589 (-523)) (-589 (-523)) |#1|)) (-15 -3223 (|#1| |#1| (-589 (-523)) (-589 (-523)))) (-15 -2289 ((-589 (-589 |#2|)) |#1|)) (-15 -1911 (|#1| |#1| |#1|)) (-15 -3945 (|#1| |#1| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -4190 (|#1| |#1|)) (-15 -4190 (|#1| |#3|)) (-15 -1458 (|#1| |#4|)) (-15 -3739 (|#1| (-589 |#1|))) (-15 -3739 (|#1| (-589 |#2|))) (-15 -1421 (|#1| (-710) |#2|)) (-15 -3068 (|#1| (-589 (-589 |#2|)))) (-15 -2821 (|#1| (-710) (-710))) (-15 -2175 ((-108) |#1|)) (-15 -2606 ((-108) |#1|)) (-15 -3117 ((-108) |#1|)) (-15 -2651 ((-108) |#1|)) (-15 -1641 (|#2| |#1| (-523) (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) (-523)))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-2821 (($ (-710) (-710)) 97)) (-1911 (($ $ $) 87)) (-4190 (($ |#2|) 91) (($ $) 90)) (-2606 (((-108) $) 99)) (-2637 (($ $ (-523) (-523)) 83)) (-3276 (($ $ (-523) (-523)) 82)) (-2934 (($ $ (-523) (-523) (-523) (-523)) 81)) (-3858 (($ $) 89)) (-2651 (((-108) $) 101)) (-3079 (((-108) $ (-710)) 8)) (-1494 (($ $ (-523) (-523) $) 80)) (-1641 ((|#1| $ (-523) (-523) |#1|) 44) (($ $ (-589 (-523)) (-589 (-523)) $) 84)) (-3787 (($ $ (-523) |#2|) 42)) (-3617 (($ $ (-523) |#3|) 41)) (-1421 (($ (-710) |#1|) 95)) (-2518 (($) 7 T CONST)) (-2445 (($ $) 67 (|has| |#1| (-284)))) (-2031 ((|#2| $ (-523)) 46)) (-1319 (((-710) $) 66 (|has| |#1| (-515)))) (-2863 ((|#1| $ (-523) (-523) |#1|) 43)) (-2795 ((|#1| $ (-523) (-523)) 48)) (-1666 (((-589 |#1|) $) 30)) (-1867 (((-710) $) 65 (|has| |#1| (-515)))) (-3498 (((-589 |#3|) $) 64 (|has| |#1| (-515)))) (-2803 (((-710) $) 51)) (-3052 (($ (-710) (-710) |#1|) 57)) (-2813 (((-710) $) 50)) (-2346 (((-108) $ (-710)) 9)) (-1925 ((|#1| $) 62 (|has| |#1| (-6 (-4246 "*"))))) (-3871 (((-523) $) 55)) (-1758 (((-523) $) 53)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3338 (((-523) $) 54)) (-2347 (((-523) $) 52)) (-3068 (($ (-589 (-589 |#1|))) 96)) (-2852 (($ (-1 |#1| |#1|) $) 34)) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2289 (((-589 (-589 |#1|)) $) 86)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-3698 (((-3 $ "failed") $) 61 (|has| |#1| (-339)))) (-3945 (($ $ $) 88)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) 56)) (-3746 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-515)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) (-523)) 49) ((|#1| $ (-523) (-523) |#1|) 47) (($ $ (-589 (-523)) (-589 (-523))) 85)) (-3739 (($ (-589 |#1|)) 94) (($ (-589 $)) 93)) (-3117 (((-108) $) 100)) (-2310 ((|#1| $) 63 (|has| |#1| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1595 ((|#3| $ (-523)) 45)) (-1458 (($ |#3|) 92) (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-2175 (((-108) $) 98)) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4098 (($ $ |#1|) 68 (|has| |#1| (-339)))) (-4087 (($ $ $) 78) (($ $) 77)) (-4075 (($ $ $) 79)) (** (($ $ (-710)) 70) (($ $ (-523)) 60 (|has| |#1| (-339)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-523) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-1680 (((-108) $ $) NIL)) (-2634 (((-589 |#1|) $) NIL)) (-3855 (($ $) 52)) (-2977 (((-108) $) NIL)) (-1220 (((-3 |#1| "failed") $) NIL)) (-3508 ((|#1| $) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2089 (((-3 $ "failed") (-758 |#1|)) 23)) (-3237 (((-108) (-758 |#1|)) 15)) (-2575 (($ (-758 |#1|)) 24)) (-2886 (((-108) $ $) 30)) (-2616 (((-852) $) 37)) (-3844 (($ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2424 (((-589 $) (-758 |#1|)) 17)) (-1691 (((-794) $) 43) (($ |#1|) 34) (((-758 |#1|) $) 39) (((-618 |#1|) $) 44)) (-3767 (((-57 (-589 $)) (-589 |#1|) (-852)) 57)) (-3296 (((-589 $) (-589 |#1|) (-852)) 60)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 53)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 38))) +(((-614 |#1|) (-13 (-786) (-964 |#1|) (-10 -8 (-15 -2977 ((-108) $)) (-15 -3844 ($ $)) (-15 -3855 ($ $)) (-15 -2616 ((-852) $)) (-15 -2886 ((-108) $ $)) (-15 -1691 ((-758 |#1|) $)) (-15 -1691 ((-618 |#1|) $)) (-15 -2424 ((-589 $) (-758 |#1|))) (-15 -3237 ((-108) (-758 |#1|))) (-15 -2575 ($ (-758 |#1|))) (-15 -2089 ((-3 $ "failed") (-758 |#1|))) (-15 -2634 ((-589 |#1|) $)) (-15 -3767 ((-57 (-589 $)) (-589 |#1|) (-852))) (-15 -3296 ((-589 $) (-589 |#1|) (-852))))) (-786)) (T -614)) +((-2977 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-3844 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-786)))) (-3855 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-786)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-2886 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-758 *3)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-758 *4)) (-4 *4 (-786)) (-5 *2 (-589 (-614 *4))) (-5 *1 (-614 *4)))) (-3237 (*1 *2 *3) (-12 (-5 *3 (-758 *4)) (-4 *4 (-786)) (-5 *2 (-108)) (-5 *1 (-614 *4)))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-758 *3)) (-4 *3 (-786)) (-5 *1 (-614 *3)))) (-2089 (*1 *1 *2) (|partial| -12 (-5 *2 (-758 *3)) (-4 *3 (-786)) (-5 *1 (-614 *3)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-852)) (-4 *5 (-786)) (-5 *2 (-57 (-589 (-614 *5)))) (-5 *1 (-614 *5)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-852)) (-4 *5 (-786)) (-5 *2 (-589 (-614 *5))) (-5 *1 (-614 *5))))) +(-13 (-786) (-964 |#1|) (-10 -8 (-15 -2977 ((-108) $)) (-15 -3844 ($ $)) (-15 -3855 ($ $)) (-15 -2616 ((-852) $)) (-15 -2886 ((-108) $ $)) (-15 -1691 ((-758 |#1|) $)) (-15 -1691 ((-618 |#1|) $)) (-15 -2424 ((-589 $) (-758 |#1|))) (-15 -3237 ((-108) (-758 |#1|))) (-15 -2575 ($ (-758 |#1|))) (-15 -2089 ((-3 $ "failed") (-758 |#1|))) (-15 -2634 ((-589 |#1|) $)) (-15 -3767 ((-57 (-589 $)) (-589 |#1|) (-852))) (-15 -3296 ((-589 $) (-589 |#1|) (-852))))) +((-3370 ((|#2| $) 76)) (-2227 (($ $) 96)) (-1620 (((-108) $ (-710)) 26)) (-2441 (($ $) 85) (($ $ (-710)) 88)) (-1833 (((-108) $) 97)) (-2932 (((-589 $) $) 72)) (-3675 (((-108) $ $) 71)) (-3051 (((-108) $ (-710)) 24)) (-2965 (((-523) $) 46)) (-2567 (((-523) $) 45)) (-1418 (((-108) $ (-710)) 22)) (-1799 (((-108) $) 74)) (-2535 ((|#2| $) 89) (($ $ (-710)) 92)) (-2912 (($ $ $ (-523)) 62) (($ |#2| $ (-523)) 61)) (-2536 (((-589 (-523)) $) 44)) (-2254 (((-108) (-523) $) 42)) (-2428 ((|#2| $) NIL) (($ $ (-710)) 84)) (-3053 (($ $ (-523)) 100)) (-2430 (((-108) $) 99)) (-3379 (((-108) (-1 (-108) |#2|) $) 32)) (-3973 (((-589 |#2|) $) 33)) (-1937 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1136 (-523))) 58) ((|#2| $ (-523)) 40) ((|#2| $ (-523) |#2|) 41)) (-3766 (((-523) $ $) 70)) (-1499 (($ $ (-1136 (-523))) 57) (($ $ (-523)) 51)) (-1221 (((-108) $) 66)) (-2582 (($ $) 81)) (-2784 (((-710) $) 80)) (-1867 (($ $) 79)) (-1704 (($ (-589 |#2|)) 37)) (-2488 (($ $) 101)) (-2612 (((-589 $) $) 69)) (-3313 (((-108) $ $) 68)) (-2308 (((-108) (-1 (-108) |#2|) $) 31)) (-3941 (((-108) $ $) 18)) (-2810 (((-710) $) 29))) +(((-615 |#1| |#2|) (-10 -8 (-15 -2488 (|#1| |#1|)) (-15 -3053 (|#1| |#1| (-523))) (-15 -1833 ((-108) |#1|)) (-15 -2430 ((-108) |#1|)) (-15 -1937 (|#2| |#1| (-523) |#2|)) (-15 -1937 (|#2| |#1| (-523))) (-15 -3973 ((-589 |#2|) |#1|)) (-15 -2254 ((-108) (-523) |#1|)) (-15 -2536 ((-589 (-523)) |#1|)) (-15 -2567 ((-523) |#1|)) (-15 -2965 ((-523) |#1|)) (-15 -1704 (|#1| (-589 |#2|))) (-15 -1937 (|#1| |#1| (-1136 (-523)))) (-15 -1499 (|#1| |#1| (-523))) (-15 -1499 (|#1| |#1| (-1136 (-523)))) (-15 -2912 (|#1| |#2| |#1| (-523))) (-15 -2912 (|#1| |#1| |#1| (-523))) (-15 -2582 (|#1| |#1|)) (-15 -2784 ((-710) |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2535 (|#1| |#1| (-710))) (-15 -1937 (|#2| |#1| "last")) (-15 -2535 (|#2| |#1|)) (-15 -2441 (|#1| |#1| (-710))) (-15 -1937 (|#1| |#1| "rest")) (-15 -2441 (|#1| |#1|)) (-15 -2428 (|#1| |#1| (-710))) (-15 -1937 (|#2| |#1| "first")) (-15 -2428 (|#2| |#1|)) (-15 -3675 ((-108) |#1| |#1|)) (-15 -3313 ((-108) |#1| |#1|)) (-15 -3766 ((-523) |#1| |#1|)) (-15 -1221 ((-108) |#1|)) (-15 -1937 (|#2| |#1| "value")) (-15 -3370 (|#2| |#1|)) (-15 -1799 ((-108) |#1|)) (-15 -2932 ((-589 |#1|) |#1|)) (-15 -2612 ((-589 |#1|) |#1|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -3379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2308 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2810 ((-710) |#1|)) (-15 -1620 ((-108) |#1| (-710))) (-15 -3051 ((-108) |#1| (-710))) (-15 -1418 ((-108) |#1| (-710)))) (-616 |#2|) (-1123)) (T -615)) +NIL +(-10 -8 (-15 -2488 (|#1| |#1|)) (-15 -3053 (|#1| |#1| (-523))) (-15 -1833 ((-108) |#1|)) (-15 -2430 ((-108) |#1|)) (-15 -1937 (|#2| |#1| (-523) |#2|)) (-15 -1937 (|#2| |#1| (-523))) (-15 -3973 ((-589 |#2|) |#1|)) (-15 -2254 ((-108) (-523) |#1|)) (-15 -2536 ((-589 (-523)) |#1|)) (-15 -2567 ((-523) |#1|)) (-15 -2965 ((-523) |#1|)) (-15 -1704 (|#1| (-589 |#2|))) (-15 -1937 (|#1| |#1| (-1136 (-523)))) (-15 -1499 (|#1| |#1| (-523))) (-15 -1499 (|#1| |#1| (-1136 (-523)))) (-15 -2912 (|#1| |#2| |#1| (-523))) (-15 -2912 (|#1| |#1| |#1| (-523))) (-15 -2582 (|#1| |#1|)) (-15 -2784 ((-710) |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2535 (|#1| |#1| (-710))) (-15 -1937 (|#2| |#1| "last")) (-15 -2535 (|#2| |#1|)) (-15 -2441 (|#1| |#1| (-710))) (-15 -1937 (|#1| |#1| "rest")) (-15 -2441 (|#1| |#1|)) (-15 -2428 (|#1| |#1| (-710))) (-15 -1937 (|#2| |#1| "first")) (-15 -2428 (|#2| |#1|)) (-15 -3675 ((-108) |#1| |#1|)) (-15 -3313 ((-108) |#1| |#1|)) (-15 -3766 ((-523) |#1| |#1|)) (-15 -1221 ((-108) |#1|)) (-15 -1937 (|#2| |#1| "value")) (-15 -3370 (|#2| |#1|)) (-15 -1799 ((-108) |#1|)) (-15 -2932 ((-589 |#1|) |#1|)) (-15 -2612 ((-589 |#1|) |#1|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -3379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2308 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2810 ((-710) |#1|)) (-15 -1620 ((-108) |#1| (-710))) (-15 -3051 ((-108) |#1| (-710))) (-15 -1418 ((-108) |#1| (-710)))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3370 ((|#1| $) 48)) (-2176 ((|#1| $) 65)) (-2227 (($ $) 67)) (-4191 (((-1174) $ (-523) (-523)) 97 (|has| $ (-6 -4249)))) (-2856 (($ $ (-523)) 52 (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) 8)) (-1487 ((|#1| $ |#1|) 39 (|has| $ (-6 -4249)))) (-2470 (($ $ $) 56 (|has| $ (-6 -4249)))) (-2622 ((|#1| $ |#1|) 54 (|has| $ (-6 -4249)))) (-2027 ((|#1| $ |#1|) 58 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4249))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4249))) (($ $ "rest" $) 55 (|has| $ (-6 -4249))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) 117 (|has| $ (-6 -4249))) ((|#1| $ (-523) |#1|) 86 (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) 41 (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) 102)) (-2165 ((|#1| $) 66)) (-4189 (($) 7 T CONST)) (-1923 (($ $) 124)) (-2441 (($ $) 73) (($ $ (-710)) 71)) (-2462 (($ $) 99 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#1| $) 100 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 103)) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2053 ((|#1| $ (-523) |#1|) 85 (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) 87)) (-1833 (((-108) $) 83)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-2139 (((-710) $) 123)) (-2932 (((-589 $) $) 50)) (-3675 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-3733 (($ (-710) |#1|) 108)) (-3051 (((-108) $ (-710)) 9)) (-2965 (((-523) $) 95 (|has| (-523) (-786)))) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 94 (|has| (-523) (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1418 (((-108) $ (-710)) 10)) (-1701 (((-589 |#1|) $) 45)) (-1799 (((-108) $) 49)) (-1803 (($ $) 126)) (-3507 (((-108) $) 127)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2535 ((|#1| $) 70) (($ $ (-710)) 68)) (-2912 (($ $ $ (-523)) 116) (($ |#1| $ (-523)) 115)) (-2536 (((-589 (-523)) $) 92)) (-2254 (((-108) (-523) $) 91)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1388 ((|#1| $) 125)) (-2428 ((|#1| $) 76) (($ $ (-710)) 74)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-4141 (($ $ |#1|) 96 (|has| $ (-6 -4249)))) (-3053 (($ $ (-523)) 122)) (-2430 (((-108) $) 84)) (-3057 (((-108) $) 128)) (-3281 (((-108) $) 129)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) 90)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1136 (-523))) 112) ((|#1| $ (-523)) 89) ((|#1| $ (-523) |#1|) 88)) (-3766 (((-523) $ $) 44)) (-1499 (($ $ (-1136 (-523))) 114) (($ $ (-523)) 113)) (-1221 (((-108) $) 46)) (-2582 (($ $) 62)) (-2075 (($ $) 59 (|has| $ (-6 -4249)))) (-2784 (((-710) $) 63)) (-1867 (($ $) 64)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1400 (((-499) $) 98 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 107)) (-2001 (($ $ $) 61 (|has| $ (-6 -4249))) (($ $ |#1|) 60 (|has| $ (-6 -4249)))) (-2394 (($ $ $) 78) (($ |#1| $) 77) (($ (-589 $)) 110) (($ $ |#1|) 109)) (-2488 (($ $) 121)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) 51)) (-3313 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-616 |#1|) (-129) (-1123)) (T -616)) +((-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1123)))) (-1903 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1123)))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1123)) (-5 *2 (-108)))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1123)) (-5 *2 (-108)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1123)) (-5 *2 (-108)))) (-1803 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1123)))) (-1388 (*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1123)))) (-1923 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1123)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1123)) (-5 *2 (-710)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-616 *3)) (-4 *3 (-1123)))) (-2488 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1123))))) +(-13 (-1061 |t#1|) (-10 -8 (-15 -2514 ($ (-1 (-108) |t#1|) $)) (-15 -1903 ($ (-1 (-108) |t#1|) $)) (-15 -3281 ((-108) $)) (-15 -3057 ((-108) $)) (-15 -3507 ((-108) $)) (-15 -1803 ($ $)) (-15 -1388 (|t#1| $)) (-15 -1923 ($ $)) (-15 -2139 ((-710) $)) (-15 -3053 ($ $ (-523))) (-15 -2488 ($ $)))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1061 |#1|) . T) ((-1123) . T) ((-1157 |#1|) . T)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2300 (($ (-710) (-710) (-710)) 34 (|has| |#1| (-973)))) (-1620 (((-108) $ (-710)) NIL)) (-3398 ((|#1| $ (-710) (-710) (-710) |#1|) 29)) (-4189 (($) NIL T CONST)) (-2758 (($ $ $) 38 (|has| |#1| (-973)))) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3771 (((-1169 (-710)) $) 10)) (-2679 (($ (-1087) $ $) 24)) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1203 (($ (-710)) 36 (|has| |#1| (-973)))) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ (-710) (-710) (-710)) 27)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1704 (($ (-589 (-589 (-589 |#1|)))) 45)) (-1691 (($ (-888 (-888 (-888 |#1|)))) 17) (((-888 (-888 (-888 |#1|))) $) 14) (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-617 |#1|) (-13 (-462 |#1|) (-10 -8 (IF (|has| |#1| (-973)) (PROGN (-15 -2300 ($ (-710) (-710) (-710))) (-15 -1203 ($ (-710))) (-15 -2758 ($ $ $))) |%noBranch|) (-15 -1704 ($ (-589 (-589 (-589 |#1|))))) (-15 -1937 (|#1| $ (-710) (-710) (-710))) (-15 -3398 (|#1| $ (-710) (-710) (-710) |#1|)) (-15 -1691 ($ (-888 (-888 (-888 |#1|))))) (-15 -1691 ((-888 (-888 (-888 |#1|))) $)) (-15 -2679 ($ (-1087) $ $)) (-15 -3771 ((-1169 (-710)) $)))) (-1016)) (T -617)) +((-2300 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-617 *3)) (-4 *3 (-973)) (-4 *3 (-1016)))) (-1203 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-617 *3)) (-4 *3 (-973)) (-4 *3 (-1016)))) (-2758 (*1 *1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-973)) (-4 *2 (-1016)))) (-1704 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-589 *3)))) (-4 *3 (-1016)) (-5 *1 (-617 *3)))) (-1937 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-710)) (-5 *1 (-617 *2)) (-4 *2 (-1016)))) (-3398 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-617 *2)) (-4 *2 (-1016)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-888 (-888 (-888 *3)))) (-4 *3 (-1016)) (-5 *1 (-617 *3)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-888 (-888 (-888 *3)))) (-5 *1 (-617 *3)) (-4 *3 (-1016)))) (-2679 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-617 *3)) (-4 *3 (-1016)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-1169 (-710))) (-5 *1 (-617 *3)) (-4 *3 (-1016))))) +(-13 (-462 |#1|) (-10 -8 (IF (|has| |#1| (-973)) (PROGN (-15 -2300 ($ (-710) (-710) (-710))) (-15 -1203 ($ (-710))) (-15 -2758 ($ $ $))) |%noBranch|) (-15 -1704 ($ (-589 (-589 (-589 |#1|))))) (-15 -1937 (|#1| $ (-710) (-710) (-710))) (-15 -3398 (|#1| $ (-710) (-710) (-710) |#1|)) (-15 -1691 ($ (-888 (-888 (-888 |#1|))))) (-15 -1691 ((-888 (-888 (-888 |#1|))) $)) (-15 -2679 ($ (-1087) $ $)) (-15 -3771 ((-1169 (-710)) $)))) +((-1680 (((-108) $ $) NIL)) (-2634 (((-589 |#1|) $) 14)) (-3855 (($ $) 18)) (-2977 (((-108) $) 19)) (-1220 (((-3 |#1| "failed") $) 22)) (-3508 ((|#1| $) 20)) (-2441 (($ $) 36)) (-1965 (($ $) 24)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2886 (((-108) $ $) 42)) (-2616 (((-852) $) 38)) (-3844 (($ $) 17)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2428 ((|#1| $) 35)) (-1691 (((-794) $) 31) (($ |#1|) 23) (((-758 |#1|) $) 27)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 12)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 40)) (* (($ $ $) 34))) +(((-618 |#1|) (-13 (-786) (-964 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1691 ((-758 |#1|) $)) (-15 -2428 (|#1| $)) (-15 -3844 ($ $)) (-15 -2616 ((-852) $)) (-15 -2886 ((-108) $ $)) (-15 -1965 ($ $)) (-15 -2441 ($ $)) (-15 -2977 ((-108) $)) (-15 -3855 ($ $)) (-15 -2634 ((-589 |#1|) $)))) (-786)) (T -618)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-758 *3)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) (-2428 (*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-3844 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) (-2886 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) (-1965 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-2441 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) (-3855 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-618 *3)) (-4 *3 (-786))))) +(-13 (-786) (-964 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1691 ((-758 |#1|) $)) (-15 -2428 (|#1| $)) (-15 -3844 ($ $)) (-15 -2616 ((-852) $)) (-15 -2886 ((-108) $ $)) (-15 -1965 ($ $)) (-15 -2441 ($ $)) (-15 -2977 ((-108) $)) (-15 -3855 ($ $)) (-15 -2634 ((-589 |#1|) $)))) +((-1674 ((|#1| (-1 |#1| (-710) |#1|) (-710) |#1|) 11)) (-2861 ((|#1| (-1 |#1| |#1|) (-710) |#1|) 9))) +(((-619 |#1|) (-10 -7 (-15 -2861 (|#1| (-1 |#1| |#1|) (-710) |#1|)) (-15 -1674 (|#1| (-1 |#1| (-710) |#1|) (-710) |#1|))) (-1016)) (T -619)) +((-1674 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-710) *2)) (-5 *4 (-710)) (-4 *2 (-1016)) (-5 *1 (-619 *2)))) (-2861 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-710)) (-4 *2 (-1016)) (-5 *1 (-619 *2))))) +(-10 -7 (-15 -2861 (|#1| (-1 |#1| |#1|) (-710) |#1|)) (-15 -1674 (|#1| (-1 |#1| (-710) |#1|) (-710) |#1|))) +((-2143 ((|#2| |#1| |#2|) 9)) (-2130 ((|#1| |#1| |#2|) 8))) +(((-620 |#1| |#2|) (-10 -7 (-15 -2130 (|#1| |#1| |#2|)) (-15 -2143 (|#2| |#1| |#2|))) (-1016) (-1016)) (T -620)) +((-2143 (*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-2130 (*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) +(-10 -7 (-15 -2130 (|#1| |#1| |#2|)) (-15 -2143 (|#2| |#1| |#2|))) +((-2397 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -2397 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1016) (-1016) (-1016)) (T -621)) +((-2397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)) (-5 *1 (-621 *5 *6 *2))))) +(-10 -7 (-15 -2397 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-1674 (((-1 |#1| (-710) |#1|) (-1 |#1| (-710) |#1|)) 23)) (-3230 (((-1 |#1|) |#1|) 8)) (-3697 ((|#1| |#1|) 16)) (-3650 (((-589 |#1|) (-1 (-589 |#1|) (-589 |#1|)) (-523)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1691 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-710)) 20))) +(((-622 |#1|) (-10 -7 (-15 -3230 ((-1 |#1|) |#1|)) (-15 -1691 ((-1 |#1|) |#1|)) (-15 -3650 (|#1| (-1 |#1| |#1|))) (-15 -3650 ((-589 |#1|) (-1 (-589 |#1|) (-589 |#1|)) (-523))) (-15 -3697 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-710))) (-15 -1674 ((-1 |#1| (-710) |#1|) (-1 |#1| (-710) |#1|)))) (-1016)) (T -622)) +((-1674 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-710) *3)) (-4 *3 (-1016)) (-5 *1 (-622 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *4 (-1016)) (-5 *1 (-622 *4)))) (-3697 (*1 *2 *2) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1016)))) (-3650 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-589 *5) (-589 *5))) (-5 *4 (-523)) (-5 *2 (-589 *5)) (-5 *1 (-622 *5)) (-4 *5 (-1016)))) (-3650 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-622 *2)) (-4 *2 (-1016)))) (-1691 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1016)))) (-3230 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1016))))) +(-10 -7 (-15 -3230 ((-1 |#1|) |#1|)) (-15 -1691 ((-1 |#1|) |#1|)) (-15 -3650 (|#1| (-1 |#1| |#1|))) (-15 -3650 ((-589 |#1|) (-1 (-589 |#1|) (-589 |#1|)) (-523))) (-15 -3697 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-710))) (-15 -1674 ((-1 |#1| (-710) |#1|) (-1 |#1| (-710) |#1|)))) +((-4164 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3916 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2501 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-4173 (((-1 |#2| |#1|) |#2|) 11))) +(((-623 |#1| |#2|) (-10 -7 (-15 -4173 ((-1 |#2| |#1|) |#2|)) (-15 -3916 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2501 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4164 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1016) (-1016)) (T -623)) +((-4164 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-5 *2 (-1 *5 *4)) (-5 *1 (-623 *4 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1016)) (-5 *2 (-1 *5 *4)) (-5 *1 (-623 *4 *5)) (-4 *4 (-1016)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-5 *2 (-1 *5)) (-5 *1 (-623 *4 *5)))) (-4173 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-623 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-1016))))) +(-10 -7 (-15 -4173 ((-1 |#2| |#1|) |#2|)) (-15 -3916 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2501 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4164 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-3604 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2543 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1850 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1273 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4087 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-624 |#1| |#2| |#3|) (-10 -7 (-15 -2543 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1850 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1273 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4087 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3604 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1016) (-1016) (-1016)) (T -624)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-1 *7 *5)) (-5 *1 (-624 *5 *6 *7)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-624 *4 *5 *6)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *4 (-1016)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-1016)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *4 *5 *6)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1016)) (-4 *4 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *4 *6))))) +(-10 -7 (-15 -2543 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1850 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1273 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4087 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3604 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2116 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1345 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-625 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1345 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1345 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2116 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-973) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|) (-973) (-349 |#5|) (-349 |#5|) (-627 |#5| |#6| |#7|)) (T -625)) +((-2116 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-973)) (-4 *2 (-973)) (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *8 (-349 *2)) (-4 *9 (-349 *2)) (-5 *1 (-625 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7)) (-4 *10 (-627 *2 *8 *9)))) (-1345 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-973)) (-4 *8 (-973)) (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-349 *8)) (-4 *10 (-349 *8)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-973)) (-4 *8 (-973)) (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-349 *8)) (-4 *10 (-349 *8))))) +(-10 -7 (-15 -1345 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1345 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2116 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-1709 (($ (-710) (-710)) 33)) (-4081 (($ $ $) 56)) (-4005 (($ |#3|) 52) (($ $) 53)) (-3735 (((-108) $) 28)) (-2859 (($ $ (-523) (-523)) 58)) (-3909 (($ $ (-523) (-523)) 59)) (-2641 (($ $ (-523) (-523) (-523) (-523)) 63)) (-1553 (($ $) 54)) (-2989 (((-108) $) 14)) (-1522 (($ $ (-523) (-523) $) 64)) (-1849 ((|#2| $ (-523) (-523) |#2|) NIL) (($ $ (-589 (-523)) (-589 (-523)) $) 62)) (-1979 (($ (-710) |#2|) 38)) (-3648 (($ (-589 (-589 |#2|))) 36)) (-3692 (((-589 (-589 |#2|)) $) 57)) (-4207 (($ $ $) 55)) (-4007 (((-3 $ "failed") $ |#2|) 91)) (-1937 ((|#2| $ (-523) (-523)) NIL) ((|#2| $ (-523) (-523) |#2|) NIL) (($ $ (-589 (-523)) (-589 (-523))) 61)) (-2870 (($ (-589 |#2|)) 40) (($ (-589 $)) 42)) (-1956 (((-108) $) 24)) (-1691 (($ |#4|) 47) (((-794) $) NIL)) (-3749 (((-108) $) 30)) (-4074 (($ $ |#2|) 93)) (-4060 (($ $ $) 68) (($ $) 71)) (-4045 (($ $ $) 66)) (** (($ $ (-710)) 80) (($ $ (-523)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-523) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-626 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1691 ((-794) |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 -4074 (|#1| |#1| |#2|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-710))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -1522 (|#1| |#1| (-523) (-523) |#1|)) (-15 -2641 (|#1| |#1| (-523) (-523) (-523) (-523))) (-15 -3909 (|#1| |#1| (-523) (-523))) (-15 -2859 (|#1| |#1| (-523) (-523))) (-15 -1849 (|#1| |#1| (-589 (-523)) (-589 (-523)) |#1|)) (-15 -1937 (|#1| |#1| (-589 (-523)) (-589 (-523)))) (-15 -3692 ((-589 (-589 |#2|)) |#1|)) (-15 -4081 (|#1| |#1| |#1|)) (-15 -4207 (|#1| |#1| |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4005 (|#1| |#3|)) (-15 -1691 (|#1| |#4|)) (-15 -2870 (|#1| (-589 |#1|))) (-15 -2870 (|#1| (-589 |#2|))) (-15 -1979 (|#1| (-710) |#2|)) (-15 -3648 (|#1| (-589 (-589 |#2|)))) (-15 -1709 (|#1| (-710) (-710))) (-15 -3749 ((-108) |#1|)) (-15 -3735 ((-108) |#1|)) (-15 -1956 ((-108) |#1|)) (-15 -2989 ((-108) |#1|)) (-15 -1849 (|#2| |#1| (-523) (-523) |#2|)) (-15 -1937 (|#2| |#1| (-523) (-523) |#2|)) (-15 -1937 (|#2| |#1| (-523) (-523)))) (-627 |#2| |#3| |#4|) (-973) (-349 |#2|) (-349 |#2|)) (T -626)) +NIL +(-10 -8 (-15 -1691 ((-794) |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 -4074 (|#1| |#1| |#2|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-710))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -1522 (|#1| |#1| (-523) (-523) |#1|)) (-15 -2641 (|#1| |#1| (-523) (-523) (-523) (-523))) (-15 -3909 (|#1| |#1| (-523) (-523))) (-15 -2859 (|#1| |#1| (-523) (-523))) (-15 -1849 (|#1| |#1| (-589 (-523)) (-589 (-523)) |#1|)) (-15 -1937 (|#1| |#1| (-589 (-523)) (-589 (-523)))) (-15 -3692 ((-589 (-589 |#2|)) |#1|)) (-15 -4081 (|#1| |#1| |#1|)) (-15 -4207 (|#1| |#1| |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4005 (|#1| |#3|)) (-15 -1691 (|#1| |#4|)) (-15 -2870 (|#1| (-589 |#1|))) (-15 -2870 (|#1| (-589 |#2|))) (-15 -1979 (|#1| (-710) |#2|)) (-15 -3648 (|#1| (-589 (-589 |#2|)))) (-15 -1709 (|#1| (-710) (-710))) (-15 -3749 ((-108) |#1|)) (-15 -3735 ((-108) |#1|)) (-15 -1956 ((-108) |#1|)) (-15 -2989 ((-108) |#1|)) (-15 -1849 (|#2| |#1| (-523) (-523) |#2|)) (-15 -1937 (|#2| |#1| (-523) (-523) |#2|)) (-15 -1937 (|#2| |#1| (-523) (-523)))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1709 (($ (-710) (-710)) 97)) (-4081 (($ $ $) 87)) (-4005 (($ |#2|) 91) (($ $) 90)) (-3735 (((-108) $) 99)) (-2859 (($ $ (-523) (-523)) 83)) (-3909 (($ $ (-523) (-523)) 82)) (-2641 (($ $ (-523) (-523) (-523) (-523)) 81)) (-1553 (($ $) 89)) (-2989 (((-108) $) 101)) (-1620 (((-108) $ (-710)) 8)) (-1522 (($ $ (-523) (-523) $) 80)) (-1849 ((|#1| $ (-523) (-523) |#1|) 44) (($ $ (-589 (-523)) (-589 (-523)) $) 84)) (-2080 (($ $ (-523) |#2|) 42)) (-1232 (($ $ (-523) |#3|) 41)) (-1979 (($ (-710) |#1|) 95)) (-4189 (($) 7 T CONST)) (-1678 (($ $) 67 (|has| |#1| (-284)))) (-2827 ((|#2| $ (-523)) 46)) (-3569 (((-710) $) 66 (|has| |#1| (-515)))) (-2053 ((|#1| $ (-523) (-523) |#1|) 43)) (-2000 ((|#1| $ (-523) (-523)) 48)) (-1871 (((-589 |#1|) $) 30)) (-1835 (((-710) $) 65 (|has| |#1| (-515)))) (-2454 (((-589 |#3|) $) 64 (|has| |#1| (-515)))) (-1357 (((-710) $) 51)) (-3733 (($ (-710) (-710) |#1|) 57)) (-1370 (((-710) $) 50)) (-3051 (((-108) $ (-710)) 9)) (-4224 ((|#1| $) 62 (|has| |#1| (-6 (-4250 "*"))))) (-1665 (((-523) $) 55)) (-2082 (((-523) $) 53)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3231 (((-523) $) 54)) (-3060 (((-523) $) 52)) (-3648 (($ (-589 (-589 |#1|))) 96)) (-2043 (($ (-1 |#1| |#1|) $) 34)) (-1345 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3692 (((-589 (-589 |#1|)) $) 86)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-3713 (((-3 $ "failed") $) 61 (|has| |#1| (-339)))) (-4207 (($ $ $) 88)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-4141 (($ $ |#1|) 56)) (-4007 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-515)))) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ (-523) (-523)) 49) ((|#1| $ (-523) (-523) |#1|) 47) (($ $ (-589 (-523)) (-589 (-523))) 85)) (-2870 (($ (-589 |#1|)) 94) (($ (-589 $)) 93)) (-1956 (((-108) $) 100)) (-2736 ((|#1| $) 63 (|has| |#1| (-6 (-4250 "*"))))) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1249 ((|#3| $ (-523)) 45)) (-1691 (($ |#3|) 92) (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3749 (((-108) $) 98)) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4074 (($ $ |#1|) 68 (|has| |#1| (-339)))) (-4060 (($ $ $) 78) (($ $) 77)) (-4045 (($ $ $) 79)) (** (($ $ (-710)) 70) (($ $ (-523)) 60 (|has| |#1| (-339)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-523) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-627 |#1| |#2| |#3|) (-129) (-973) (-349 |t#1|) (-349 |t#1|)) (T -627)) -((-2651 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-108)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-108)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-108)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-108)))) (-2821 (*1 *1 *2 *2) (-12 (-5 *2 (-710)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1421 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-349 *3)) (-4 *2 (-349 *3)))) (-4190 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-349 *3)) (-4 *4 (-349 *3)))) (-4190 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-3945 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-1911 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-589 (-589 *3))))) (-3223 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-589 (-523))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1641 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-589 (-523))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-2637 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3276 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-2934 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1494 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-4075 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-4087 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-4087 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *2 (-349 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-973)) (-4 *2 (-349 *3)) (-4 *4 (-349 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3746 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-515)))) (-4098 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-339)))) (-2445 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-284)))) (-1319 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-710)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-710)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-589 *5)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973)))) (-3698 (*1 *1 *1) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-339)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-339))))) -(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4245) (-6 -4244) (-15 -2651 ((-108) $)) (-15 -3117 ((-108) $)) (-15 -2606 ((-108) $)) (-15 -2175 ((-108) $)) (-15 -2821 ($ (-710) (-710))) (-15 -3068 ($ (-589 (-589 |t#1|)))) (-15 -1421 ($ (-710) |t#1|)) (-15 -3739 ($ (-589 |t#1|))) (-15 -3739 ($ (-589 $))) (-15 -1458 ($ |t#3|)) (-15 -4190 ($ |t#2|)) (-15 -4190 ($ $)) (-15 -3858 ($ $)) (-15 -3945 ($ $ $)) (-15 -1911 ($ $ $)) (-15 -2289 ((-589 (-589 |t#1|)) $)) (-15 -3223 ($ $ (-589 (-523)) (-589 (-523)))) (-15 -1641 ($ $ (-589 (-523)) (-589 (-523)) $)) (-15 -2637 ($ $ (-523) (-523))) (-15 -3276 ($ $ (-523) (-523))) (-15 -2934 ($ $ (-523) (-523) (-523) (-523))) (-15 -1494 ($ $ (-523) (-523) $)) (-15 -4075 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -4087 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-523) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-710))) (IF (|has| |t#1| (-515)) (-15 -3746 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-339)) (-15 -4098 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-284)) (-15 -2445 ($ $)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -1319 ((-710) $)) (-15 -1867 ((-710) $)) (-15 -3498 ((-589 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4246 "*"))) (PROGN (-15 -2310 (|t#1| $)) (-15 -1925 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-339)) (PROGN (-15 -3698 ((-3 $ "failed") $)) (-15 ** ($ $ (-523)))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-55 |#1| |#2| |#3|) . T) ((-1122) . T)) -((-2445 ((|#4| |#4|) 68 (|has| |#1| (-284)))) (-1319 (((-710) |#4|) 70 (|has| |#1| (-515)))) (-1867 (((-710) |#4|) 72 (|has| |#1| (-515)))) (-3498 (((-589 |#3|) |#4|) 79 (|has| |#1| (-515)))) (-3527 (((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|) 96 (|has| |#1| (-284)))) (-1925 ((|#1| |#4|) 34)) (-3755 (((-3 |#4| "failed") |#4|) 62 (|has| |#1| (-515)))) (-3698 (((-3 |#4| "failed") |#4|) 76 (|has| |#1| (-339)))) (-3374 ((|#4| |#4|) 55 (|has| |#1| (-515)))) (-4011 ((|#4| |#4| |#1| (-523) (-523)) 42)) (-1678 ((|#4| |#4| (-523) (-523)) 37)) (-1917 ((|#4| |#4| |#1| (-523) (-523)) 47)) (-2310 ((|#1| |#4|) 74)) (-2708 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 58 (|has| |#1| (-515))))) -(((-628 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2310 (|#1| |#4|)) (-15 -1925 (|#1| |#4|)) (-15 -1678 (|#4| |#4| (-523) (-523))) (-15 -4011 (|#4| |#4| |#1| (-523) (-523))) (-15 -1917 (|#4| |#4| |#1| (-523) (-523))) (IF (|has| |#1| (-515)) (PROGN (-15 -1319 ((-710) |#4|)) (-15 -1867 ((-710) |#4|)) (-15 -3498 ((-589 |#3|) |#4|)) (-15 -3374 (|#4| |#4|)) (-15 -3755 ((-3 |#4| "failed") |#4|)) (-15 -2708 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-284)) (PROGN (-15 -2445 (|#4| |#4|)) (-15 -3527 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-339)) (-15 -3698 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-158) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|)) (T -628)) -((-3698 (*1 *2 *2) (|partial| -12 (-4 *3 (-339)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3527 (*1 *2 *3 *3) (-12 (-4 *3 (-284)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-628 *3 *4 *5 *6)) (-4 *6 (-627 *3 *4 *5)))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-284)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2708 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3755 (*1 *2 *2) (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3374 (*1 *2 *2) (-12 (-4 *3 (-515)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3498 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-589 *6)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1867 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1319 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1917 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-523)) (-4 *3 (-158)) (-4 *5 (-349 *3)) (-4 *6 (-349 *3)) (-5 *1 (-628 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-4011 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-523)) (-4 *3 (-158)) (-4 *5 (-349 *3)) (-4 *6 (-349 *3)) (-5 *1 (-628 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-1678 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-523)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *1 (-628 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6)))) (-1925 (*1 *2 *3) (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-158)) (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-2310 (*1 *2 *3) (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-158)) (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))) -(-10 -7 (-15 -2310 (|#1| |#4|)) (-15 -1925 (|#1| |#4|)) (-15 -1678 (|#4| |#4| (-523) (-523))) (-15 -4011 (|#4| |#4| |#1| (-523) (-523))) (-15 -1917 (|#4| |#4| |#1| (-523) (-523))) (IF (|has| |#1| (-515)) (PROGN (-15 -1319 ((-710) |#4|)) (-15 -1867 ((-710) |#4|)) (-15 -3498 ((-589 |#3|) |#4|)) (-15 -3374 (|#4| |#4|)) (-15 -3755 ((-3 |#4| "failed") |#4|)) (-15 -2708 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-284)) (PROGN (-15 -2445 (|#4| |#4|)) (-15 -3527 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-339)) (-15 -3698 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2821 (($ (-710) (-710)) 45)) (-1911 (($ $ $) NIL)) (-4190 (($ (-1168 |#1|)) NIL) (($ $) NIL)) (-2606 (((-108) $) NIL)) (-2637 (($ $ (-523) (-523)) 12)) (-3276 (($ $ (-523) (-523)) NIL)) (-2934 (($ $ (-523) (-523) (-523) (-523)) NIL)) (-3858 (($ $) NIL)) (-2651 (((-108) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1494 (($ $ (-523) (-523) $) NIL)) (-1641 ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523)) $) NIL)) (-3787 (($ $ (-523) (-1168 |#1|)) NIL)) (-3617 (($ $ (-523) (-1168 |#1|)) NIL)) (-1421 (($ (-710) |#1|) 22)) (-2518 (($) NIL T CONST)) (-2445 (($ $) 30 (|has| |#1| (-284)))) (-2031 (((-1168 |#1|) $ (-523)) NIL)) (-1319 (((-710) $) 32 (|has| |#1| (-515)))) (-2863 ((|#1| $ (-523) (-523) |#1|) 50)) (-2795 ((|#1| $ (-523) (-523)) NIL)) (-1666 (((-589 |#1|) $) NIL)) (-1867 (((-710) $) 34 (|has| |#1| (-515)))) (-3498 (((-589 (-1168 |#1|)) $) 37 (|has| |#1| (-515)))) (-2803 (((-710) $) 20)) (-3052 (($ (-710) (-710) |#1|) 16)) (-2813 (((-710) $) 21)) (-2346 (((-108) $ (-710)) NIL)) (-1925 ((|#1| $) 28 (|has| |#1| (-6 (-4246 "*"))))) (-3871 (((-523) $) 9)) (-1758 (((-523) $) 10)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3338 (((-523) $) 11)) (-2347 (((-523) $) 46)) (-3068 (($ (-589 (-589 |#1|))) NIL)) (-2852 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2289 (((-589 (-589 |#1|)) $) 58)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3698 (((-3 $ "failed") $) 41 (|has| |#1| (-339)))) (-3945 (($ $ $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523))) NIL)) (-3739 (($ (-589 |#1|)) NIL) (($ (-589 $)) NIL) (($ (-1168 |#1|)) 51)) (-3117 (((-108) $) NIL)) (-2310 ((|#1| $) 26 (|has| |#1| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-3663 (((-499) $) 62 (|has| |#1| (-564 (-499))))) (-1595 (((-1168 |#1|) $ (-523)) NIL)) (-1458 (($ (-1168 |#1|)) NIL) (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2175 (((-108) $) NIL)) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) 23) (($ $ (-523)) 44 (|has| |#1| (-339)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-523) $) NIL) (((-1168 |#1|) $ (-1168 |#1|)) NIL) (((-1168 |#1|) (-1168 |#1|) $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-629 |#1|) (-13 (-627 |#1| (-1168 |#1|) (-1168 |#1|)) (-10 -8 (-15 -3739 ($ (-1168 |#1|))) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |#1| (-339)) (-15 -3698 ((-3 $ "failed") $)) |%noBranch|))) (-973)) (T -629)) -((-3698 (*1 *1 *1) (|partial| -12 (-5 *1 (-629 *2)) (-4 *2 (-339)) (-4 *2 (-973)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-973)) (-5 *1 (-629 *3))))) -(-13 (-627 |#1| (-1168 |#1|) (-1168 |#1|)) (-10 -8 (-15 -3739 ($ (-1168 |#1|))) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |#1| (-339)) (-15 -3698 ((-3 $ "failed") $)) |%noBranch|))) -((-2065 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|)) 25)) (-1907 (((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|) 21)) (-1358 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-710)) 26)) (-2900 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|)) 14)) (-3363 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|)) 18) (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 16)) (-1536 (((-629 |#1|) (-629 |#1|) |#1| (-629 |#1|)) 20)) (-1486 (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 12)) (** (((-629 |#1|) (-629 |#1|) (-710)) 30))) -(((-630 |#1|) (-10 -7 (-15 -1486 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2900 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3363 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3363 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1536 ((-629 |#1|) (-629 |#1|) |#1| (-629 |#1|))) (-15 -1907 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -2065 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1358 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-710))) (-15 ** ((-629 |#1|) (-629 |#1|) (-710)))) (-973)) (T -630)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-710)) (-4 *4 (-973)) (-5 *1 (-630 *4)))) (-1358 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-710)) (-4 *4 (-973)) (-5 *1 (-630 *4)))) (-2065 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-1907 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-1536 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-3363 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-3363 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-2900 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-1486 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) -(-10 -7 (-15 -1486 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2900 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3363 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3363 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1536 ((-629 |#1|) (-629 |#1|) |#1| (-629 |#1|))) (-15 -1907 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -2065 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1358 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-710))) (-15 ** ((-629 |#1|) (-629 |#1|) (-710)))) -((-1618 ((|#2| |#2| |#4|) 25)) (-2140 (((-629 |#2|) |#3| |#4|) 31)) (-3112 (((-629 |#2|) |#2| |#4|) 30)) (-1994 (((-1168 |#2|) |#2| |#4|) 16)) (-1248 ((|#2| |#3| |#4|) 24)) (-3691 (((-629 |#2|) |#3| |#4| (-710) (-710)) 38)) (-3505 (((-629 |#2|) |#2| |#4| (-710)) 37))) -(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1994 ((-1168 |#2|) |#2| |#4|)) (-15 -1248 (|#2| |#3| |#4|)) (-15 -1618 (|#2| |#2| |#4|)) (-15 -3112 ((-629 |#2|) |#2| |#4|)) (-15 -3505 ((-629 |#2|) |#2| |#4| (-710))) (-15 -2140 ((-629 |#2|) |#3| |#4|)) (-15 -3691 ((-629 |#2|) |#3| |#4| (-710) (-710)))) (-1016) (-831 |#1|) (-349 |#2|) (-13 (-349 |#1|) (-10 -7 (-6 -4244)))) (T -631)) -((-3691 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-710)) (-4 *6 (-1016)) (-4 *7 (-831 *6)) (-5 *2 (-629 *7)) (-5 *1 (-631 *6 *7 *3 *4)) (-4 *3 (-349 *7)) (-4 *4 (-13 (-349 *6) (-10 -7 (-6 -4244)))))) (-2140 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *6 (-831 *5)) (-5 *2 (-629 *6)) (-5 *1 (-631 *5 *6 *3 *4)) (-4 *3 (-349 *6)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244)))))) (-3505 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-1016)) (-4 *3 (-831 *6)) (-5 *2 (-629 *3)) (-5 *1 (-631 *6 *3 *7 *4)) (-4 *7 (-349 *3)) (-4 *4 (-13 (-349 *6) (-10 -7 (-6 -4244)))))) (-3112 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *3 (-831 *5)) (-5 *2 (-629 *3)) (-5 *1 (-631 *5 *3 *6 *4)) (-4 *6 (-349 *3)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244)))))) (-1618 (*1 *2 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-831 *4)) (-5 *1 (-631 *4 *2 *5 *3)) (-4 *5 (-349 *2)) (-4 *3 (-13 (-349 *4) (-10 -7 (-6 -4244)))))) (-1248 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *2 (-831 *5)) (-5 *1 (-631 *5 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244)))))) (-1994 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *3 (-831 *5)) (-5 *2 (-1168 *3)) (-5 *1 (-631 *5 *3 *6 *4)) (-4 *6 (-349 *3)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244))))))) -(-10 -7 (-15 -1994 ((-1168 |#2|) |#2| |#4|)) (-15 -1248 (|#2| |#3| |#4|)) (-15 -1618 (|#2| |#2| |#4|)) (-15 -3112 ((-629 |#2|) |#2| |#4|)) (-15 -3505 ((-629 |#2|) |#2| |#4| (-710))) (-15 -2140 ((-629 |#2|) |#3| |#4|)) (-15 -3691 ((-629 |#2|) |#3| |#4| (-710) (-710)))) -((-1199 (((-2 (|:| |num| (-629 |#1|)) (|:| |den| |#1|)) (-629 |#2|)) 18)) (-3616 ((|#1| (-629 |#2|)) 9)) (-3604 (((-629 |#1|) (-629 |#2|)) 16))) -(((-632 |#1| |#2|) (-10 -7 (-15 -3616 (|#1| (-629 |#2|))) (-15 -3604 ((-629 |#1|) (-629 |#2|))) (-15 -1199 ((-2 (|:| |num| (-629 |#1|)) (|:| |den| |#1|)) (-629 |#2|)))) (-515) (-921 |#1|)) (T -632)) -((-1199 (*1 *2 *3) (-12 (-5 *3 (-629 *5)) (-4 *5 (-921 *4)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |num| (-629 *4)) (|:| |den| *4))) (-5 *1 (-632 *4 *5)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-629 *5)) (-4 *5 (-921 *4)) (-4 *4 (-515)) (-5 *2 (-629 *4)) (-5 *1 (-632 *4 *5)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-632 *2 *4))))) -(-10 -7 (-15 -3616 (|#1| (-629 |#2|))) (-15 -3604 ((-629 |#1|) (-629 |#2|))) (-15 -1199 ((-2 (|:| |num| (-629 |#1|)) (|:| |den| |#1|)) (-629 |#2|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3750 (((-629 (-638))) NIL) (((-629 (-638)) (-1168 $)) NIL)) (-4187 (((-638) $) NIL)) (-1769 (($ $) NIL (|has| (-638) (-1108)))) (-3780 (($ $) NIL (|has| (-638) (-1108)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-638) (-325)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-638) (-284)) (|has| (-638) (-840))))) (-2291 (($ $) NIL (-3262 (-12 (|has| (-638) (-284)) (|has| (-638) (-840))) (|has| (-638) (-339))))) (-3614 (((-394 $) $) NIL (-3262 (-12 (|has| (-638) (-284)) (|has| (-638) (-840))) (|has| (-638) (-339))))) (-1832 (($ $) NIL (-12 (|has| (-638) (-930)) (|has| (-638) (-1108))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-638) (-284)) (|has| (-638) (-840))))) (-1387 (((-108) $ $) NIL (|has| (-638) (-284)))) (-1703 (((-710)) NIL (|has| (-638) (-344)))) (-1744 (($ $) NIL (|has| (-638) (-1108)))) (-3711 (($ $) NIL (|has| (-638) (-1108)))) (-1793 (($ $) NIL (|has| (-638) (-1108)))) (-3805 (($ $) NIL (|has| (-638) (-1108)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-638) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-638) (-964 (-383 (-523)))))) (-3474 (((-523) $) NIL) (((-638) $) NIL) (((-383 (-523)) $) NIL (|has| (-638) (-964 (-383 (-523)))))) (-3409 (($ (-1168 (-638))) NIL) (($ (-1168 (-638)) (-1168 $)) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-638) (-325)))) (-3796 (($ $ $) NIL (|has| (-638) (-284)))) (-4079 (((-629 (-638)) $) NIL) (((-629 (-638)) $ (-1168 $)) NIL)) (-2381 (((-629 (-638)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-638))) (|:| |vec| (-1168 (-638)))) (-629 $) (-1168 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-638) (-585 (-523)))) (((-629 (-523)) (-629 $)) NIL (|has| (-638) (-585 (-523))))) (-2437 (((-3 $ "failed") (-383 (-1083 (-638)))) NIL (|has| (-638) (-339))) (($ (-1083 (-638))) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1842 (((-638) $) 29)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL (|has| (-638) (-508)))) (-1292 (((-108) $) NIL (|has| (-638) (-508)))) (-2146 (((-383 (-523)) $) NIL (|has| (-638) (-508)))) (-1319 (((-852)) NIL)) (-4032 (($) NIL (|has| (-638) (-344)))) (-3769 (($ $ $) NIL (|has| (-638) (-284)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| (-638) (-284)))) (-1996 (($) NIL (|has| (-638) (-325)))) (-2155 (((-108) $) NIL (|has| (-638) (-325)))) (-1991 (($ $) NIL (|has| (-638) (-325))) (($ $ (-710)) NIL (|has| (-638) (-325)))) (-2657 (((-108) $) NIL (-3262 (-12 (|has| (-638) (-284)) (|has| (-638) (-840))) (|has| (-638) (-339))))) (-4107 (((-2 (|:| |r| (-638)) (|:| |phi| (-638))) $) NIL (-12 (|has| (-638) (-982)) (|has| (-638) (-1108))))) (-2820 (($) NIL (|has| (-638) (-1108)))) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-638) (-817 (-355)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-638) (-817 (-523))))) (-1640 (((-772 (-852)) $) NIL (|has| (-638) (-325))) (((-852) $) NIL (|has| (-638) (-325)))) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (-12 (|has| (-638) (-930)) (|has| (-638) (-1108))))) (-3892 (((-638) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| (-638) (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-638) (-284)))) (-1397 (((-1083 (-638)) $) NIL (|has| (-638) (-339)))) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 (-638) (-638)) $) NIL)) (-2072 (((-852) $) NIL (|has| (-638) (-344)))) (-2384 (($ $) NIL (|has| (-638) (-1108)))) (-2428 (((-1083 (-638)) $) NIL)) (-3244 (($ (-589 $)) NIL (|has| (-638) (-284))) (($ $ $) NIL (|has| (-638) (-284)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| (-638) (-339)))) (-2262 (($) NIL (|has| (-638) (-325)) CONST)) (-3878 (($ (-852)) NIL (|has| (-638) (-344)))) (-3917 (($) NIL)) (-1856 (((-638) $) 31)) (-2783 (((-1034) $) NIL)) (-3441 (($) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-638) (-284)))) (-3278 (($ (-589 $)) NIL (|has| (-638) (-284))) (($ $ $) NIL (|has| (-638) (-284)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-638) (-325)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-638) (-284)) (|has| (-638) (-840))))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-638) (-284)) (|has| (-638) (-840))))) (-1820 (((-394 $) $) NIL (-3262 (-12 (|has| (-638) (-284)) (|has| (-638) (-840))) (|has| (-638) (-339))))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-638) (-284))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| (-638) (-284)))) (-3746 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-638)) NIL (|has| (-638) (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-638) (-284)))) (-1811 (($ $) NIL (|has| (-638) (-1108)))) (-2679 (($ $ (-1087) (-638)) NIL (|has| (-638) (-484 (-1087) (-638)))) (($ $ (-589 (-1087)) (-589 (-638))) NIL (|has| (-638) (-484 (-1087) (-638)))) (($ $ (-589 (-271 (-638)))) NIL (|has| (-638) (-286 (-638)))) (($ $ (-271 (-638))) NIL (|has| (-638) (-286 (-638)))) (($ $ (-638) (-638)) NIL (|has| (-638) (-286 (-638)))) (($ $ (-589 (-638)) (-589 (-638))) NIL (|has| (-638) (-286 (-638))))) (-1972 (((-710) $) NIL (|has| (-638) (-284)))) (-3223 (($ $ (-638)) NIL (|has| (-638) (-263 (-638) (-638))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| (-638) (-284)))) (-3549 (((-638)) NIL) (((-638) (-1168 $)) NIL)) (-2974 (((-3 (-710) "failed") $ $) NIL (|has| (-638) (-325))) (((-710) $) NIL (|has| (-638) (-325)))) (-3523 (($ $ (-1 (-638) (-638))) NIL) (($ $ (-1 (-638) (-638)) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-1087)) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-710)) NIL (|has| (-638) (-211))) (($ $) NIL (|has| (-638) (-211)))) (-1976 (((-629 (-638)) (-1168 $) (-1 (-638) (-638))) NIL (|has| (-638) (-339)))) (-3727 (((-1083 (-638))) NIL)) (-1805 (($ $) NIL (|has| (-638) (-1108)))) (-3816 (($ $) NIL (|has| (-638) (-1108)))) (-3425 (($) NIL (|has| (-638) (-325)))) (-1782 (($ $) NIL (|has| (-638) (-1108)))) (-3793 (($ $) NIL (|has| (-638) (-1108)))) (-1757 (($ $) NIL (|has| (-638) (-1108)))) (-3767 (($ $) NIL (|has| (-638) (-1108)))) (-2966 (((-629 (-638)) (-1168 $)) NIL) (((-1168 (-638)) $) NIL) (((-629 (-638)) (-1168 $) (-1168 $)) NIL) (((-1168 (-638)) $ (-1168 $)) NIL)) (-3663 (((-499) $) NIL (|has| (-638) (-564 (-499)))) (((-155 (-203)) $) NIL (|has| (-638) (-949))) (((-155 (-355)) $) NIL (|has| (-638) (-949))) (((-823 (-355)) $) NIL (|has| (-638) (-564 (-823 (-355))))) (((-823 (-523)) $) NIL (|has| (-638) (-564 (-823 (-523))))) (($ (-1083 (-638))) NIL) (((-1083 (-638)) $) NIL) (($ (-1168 (-638))) NIL) (((-1168 (-638)) $) NIL)) (-3208 (($ $) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-3262 (-12 (|has| (-638) (-284)) (|has| $ (-134)) (|has| (-638) (-840))) (|has| (-638) (-325))))) (-2571 (($ (-638) (-638)) 12)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-523)) NIL) (($ (-638)) NIL) (($ (-155 (-355))) 13) (($ (-155 (-523))) 19) (($ (-155 (-638))) 28) (($ (-155 (-640))) 25) (((-155 (-355)) $) 33) (($ (-383 (-523))) NIL (-3262 (|has| (-638) (-964 (-383 (-523)))) (|has| (-638) (-339))))) (-3901 (($ $) NIL (|has| (-638) (-325))) (((-3 $ "failed") $) NIL (-3262 (-12 (|has| (-638) (-284)) (|has| $ (-134)) (|has| (-638) (-840))) (|has| (-638) (-134))))) (-1807 (((-1083 (-638)) $) NIL)) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL)) (-1839 (($ $) NIL (|has| (-638) (-1108)))) (-3847 (($ $) NIL (|has| (-638) (-1108)))) (-1704 (((-108) $ $) NIL)) (-1818 (($ $) NIL (|has| (-638) (-1108)))) (-3828 (($ $) NIL (|has| (-638) (-1108)))) (-1865 (($ $) NIL (|has| (-638) (-1108)))) (-1719 (($ $) NIL (|has| (-638) (-1108)))) (-2135 (((-638) $) NIL (|has| (-638) (-1108)))) (-2914 (($ $) NIL (|has| (-638) (-1108)))) (-1731 (($ $) NIL (|has| (-638) (-1108)))) (-1852 (($ $) NIL (|has| (-638) (-1108)))) (-3859 (($ $) NIL (|has| (-638) (-1108)))) (-1830 (($ $) NIL (|has| (-638) (-1108)))) (-3838 (($ $) NIL (|has| (-638) (-1108)))) (-2619 (($ $) NIL (|has| (-638) (-982)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-638) (-339)))) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-1 (-638) (-638))) NIL) (($ $ (-1 (-638) (-638)) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-1087)) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-710)) NIL (|has| (-638) (-211))) (($ $) NIL (|has| (-638) (-211)))) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL (|has| (-638) (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ $) NIL (|has| (-638) (-1108))) (($ $ (-383 (-523))) NIL (-12 (|has| (-638) (-930)) (|has| (-638) (-1108)))) (($ $ (-523)) NIL (|has| (-638) (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ (-638) $) NIL) (($ $ (-638)) NIL) (($ (-383 (-523)) $) NIL (|has| (-638) (-339))) (($ $ (-383 (-523))) NIL (|has| (-638) (-339))))) -(((-633) (-13 (-363) (-152 (-638)) (-10 -8 (-15 -1458 ($ (-155 (-355)))) (-15 -1458 ($ (-155 (-523)))) (-15 -1458 ($ (-155 (-638)))) (-15 -1458 ($ (-155 (-640)))) (-15 -1458 ((-155 (-355)) $))))) (T -633)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-155 (-355))) (-5 *1 (-633)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-155 (-523))) (-5 *1 (-633)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-155 (-638))) (-5 *1 (-633)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-155 (-640))) (-5 *1 (-633)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-155 (-355))) (-5 *1 (-633))))) -(-13 (-363) (-152 (-638)) (-10 -8 (-15 -1458 ($ (-155 (-355)))) (-15 -1458 ($ (-155 (-523)))) (-15 -1458 ($ (-155 (-638)))) (-15 -1458 ($ (-155 (-640)))) (-15 -1458 ((-155 (-355)) $)))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-3387 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-3941 (($ $) 62)) (-1773 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40) (($ |#1| $ (-710)) 63)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2766 (((-589 (-2 (|:| -2433 |#1|) (|:| -2792 (-710)))) $) 61)) (-3433 (($) 49) (($ (-589 |#1|)) 48)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 50)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-2989 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-108)))) (-1956 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-108)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-108)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-108)))) (-1709 (*1 *1 *2 *2) (-12 (-5 *2 (-710)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3648 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1979 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-2870 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-2870 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1691 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-349 *3)) (-4 *2 (-349 *3)))) (-4005 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-349 *3)) (-4 *4 (-349 *3)))) (-4005 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-1553 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-4207 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-4081 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-589 (-589 *3))))) (-1937 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-589 (-523))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1849 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-589 (-523))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-2859 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3909 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-2641 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1522 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-4045 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-4060 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-4060 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *2 (-349 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-973)) (-4 *2 (-349 *3)) (-4 *4 (-349 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-4007 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-515)))) (-4074 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-339)))) (-1678 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-284)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-710)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-710)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-589 *5)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (|has| *2 (-6 (-4250 "*"))) (-4 *2 (-973)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (|has| *2 (-6 (-4250 "*"))) (-4 *2 (-973)))) (-3713 (*1 *1 *1) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-339)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-339))))) +(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4249) (-6 -4248) (-15 -2989 ((-108) $)) (-15 -1956 ((-108) $)) (-15 -3735 ((-108) $)) (-15 -3749 ((-108) $)) (-15 -1709 ($ (-710) (-710))) (-15 -3648 ($ (-589 (-589 |t#1|)))) (-15 -1979 ($ (-710) |t#1|)) (-15 -2870 ($ (-589 |t#1|))) (-15 -2870 ($ (-589 $))) (-15 -1691 ($ |t#3|)) (-15 -4005 ($ |t#2|)) (-15 -4005 ($ $)) (-15 -1553 ($ $)) (-15 -4207 ($ $ $)) (-15 -4081 ($ $ $)) (-15 -3692 ((-589 (-589 |t#1|)) $)) (-15 -1937 ($ $ (-589 (-523)) (-589 (-523)))) (-15 -1849 ($ $ (-589 (-523)) (-589 (-523)) $)) (-15 -2859 ($ $ (-523) (-523))) (-15 -3909 ($ $ (-523) (-523))) (-15 -2641 ($ $ (-523) (-523) (-523) (-523))) (-15 -1522 ($ $ (-523) (-523) $)) (-15 -4045 ($ $ $)) (-15 -4060 ($ $ $)) (-15 -4060 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-523) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-710))) (IF (|has| |t#1| (-515)) (-15 -4007 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-339)) (-15 -4074 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-284)) (-15 -1678 ($ $)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3569 ((-710) $)) (-15 -1835 ((-710) $)) (-15 -2454 ((-589 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4250 "*"))) (PROGN (-15 -2736 (|t#1| $)) (-15 -4224 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-339)) (PROGN (-15 -3713 ((-3 $ "failed") $)) (-15 ** ($ $ (-523)))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-55 |#1| |#2| |#3|) . T) ((-1123) . T)) +((-1678 ((|#4| |#4|) 70 (|has| |#1| (-284)))) (-3569 (((-710) |#4|) 72 (|has| |#1| (-515)))) (-1835 (((-710) |#4|) 74 (|has| |#1| (-515)))) (-2454 (((-589 |#3|) |#4|) 81 (|has| |#1| (-515)))) (-1558 (((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|) 98 (|has| |#1| (-284)))) (-4224 ((|#1| |#4|) 35)) (-3010 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-515)))) (-3713 (((-3 |#4| "failed") |#4|) 78 (|has| |#1| (-339)))) (-3575 ((|#4| |#4|) 57 (|has| |#1| (-515)))) (-3510 ((|#4| |#4| |#1| (-523) (-523)) 43)) (-2610 ((|#4| |#4| (-523) (-523)) 38)) (-4138 ((|#4| |#4| |#1| (-523) (-523)) 48)) (-2736 ((|#1| |#4|) 76)) (-2346 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 60 (|has| |#1| (-515))))) +(((-628 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2736 (|#1| |#4|)) (-15 -4224 (|#1| |#4|)) (-15 -2610 (|#4| |#4| (-523) (-523))) (-15 -3510 (|#4| |#4| |#1| (-523) (-523))) (-15 -4138 (|#4| |#4| |#1| (-523) (-523))) (IF (|has| |#1| (-515)) (PROGN (-15 -3569 ((-710) |#4|)) (-15 -1835 ((-710) |#4|)) (-15 -2454 ((-589 |#3|) |#4|)) (-15 -3575 (|#4| |#4|)) (-15 -3010 ((-3 |#4| "failed") |#4|)) (-15 -2346 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-284)) (PROGN (-15 -1678 (|#4| |#4|)) (-15 -1558 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-339)) (-15 -3713 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-158) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|)) (T -628)) +((-3713 (*1 *2 *2) (|partial| -12 (-4 *3 (-339)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-1558 (*1 *2 *3 *3) (-12 (-4 *3 (-284)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-628 *3 *4 *5 *6)) (-4 *6 (-627 *3 *4 *5)))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-284)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2346 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3010 (*1 *2 *2) (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3575 (*1 *2 *2) (-12 (-4 *3 (-515)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2454 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-589 *6)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1835 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-4138 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-523)) (-4 *3 (-158)) (-4 *5 (-349 *3)) (-4 *6 (-349 *3)) (-5 *1 (-628 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-3510 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-523)) (-4 *3 (-158)) (-4 *5 (-349 *3)) (-4 *6 (-349 *3)) (-5 *1 (-628 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2610 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-523)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *1 (-628 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6)))) (-4224 (*1 *2 *3) (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-158)) (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-2736 (*1 *2 *3) (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-158)) (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))) +(-10 -7 (-15 -2736 (|#1| |#4|)) (-15 -4224 (|#1| |#4|)) (-15 -2610 (|#4| |#4| (-523) (-523))) (-15 -3510 (|#4| |#4| |#1| (-523) (-523))) (-15 -4138 (|#4| |#4| |#1| (-523) (-523))) (IF (|has| |#1| (-515)) (PROGN (-15 -3569 ((-710) |#4|)) (-15 -1835 ((-710) |#4|)) (-15 -2454 ((-589 |#3|) |#4|)) (-15 -3575 (|#4| |#4|)) (-15 -3010 ((-3 |#4| "failed") |#4|)) (-15 -2346 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-284)) (PROGN (-15 -1678 (|#4| |#4|)) (-15 -1558 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-339)) (-15 -3713 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1709 (($ (-710) (-710)) 45)) (-4081 (($ $ $) NIL)) (-4005 (($ (-1169 |#1|)) NIL) (($ $) NIL)) (-3735 (((-108) $) NIL)) (-2859 (($ $ (-523) (-523)) 12)) (-3909 (($ $ (-523) (-523)) NIL)) (-2641 (($ $ (-523) (-523) (-523) (-523)) NIL)) (-1553 (($ $) NIL)) (-2989 (((-108) $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1522 (($ $ (-523) (-523) $) NIL)) (-1849 ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523)) $) NIL)) (-2080 (($ $ (-523) (-1169 |#1|)) NIL)) (-1232 (($ $ (-523) (-1169 |#1|)) NIL)) (-1979 (($ (-710) |#1|) 22)) (-4189 (($) NIL T CONST)) (-1678 (($ $) 30 (|has| |#1| (-284)))) (-2827 (((-1169 |#1|) $ (-523)) NIL)) (-3569 (((-710) $) 32 (|has| |#1| (-515)))) (-2053 ((|#1| $ (-523) (-523) |#1|) 50)) (-2000 ((|#1| $ (-523) (-523)) NIL)) (-1871 (((-589 |#1|) $) NIL)) (-1835 (((-710) $) 34 (|has| |#1| (-515)))) (-2454 (((-589 (-1169 |#1|)) $) 37 (|has| |#1| (-515)))) (-1357 (((-710) $) 20)) (-3733 (($ (-710) (-710) |#1|) 16)) (-1370 (((-710) $) 21)) (-3051 (((-108) $ (-710)) NIL)) (-4224 ((|#1| $) 28 (|has| |#1| (-6 (-4250 "*"))))) (-1665 (((-523) $) 9)) (-2082 (((-523) $) 10)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3231 (((-523) $) 11)) (-3060 (((-523) $) 46)) (-3648 (($ (-589 (-589 |#1|))) NIL)) (-2043 (($ (-1 |#1| |#1|) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3692 (((-589 (-589 |#1|)) $) 58)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3713 (((-3 $ "failed") $) 41 (|has| |#1| (-339)))) (-4207 (($ $ $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4141 (($ $ |#1|) NIL)) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523))) NIL)) (-2870 (($ (-589 |#1|)) NIL) (($ (-589 $)) NIL) (($ (-1169 |#1|)) 51)) (-1956 (((-108) $) NIL)) (-2736 ((|#1| $) 26 (|has| |#1| (-6 (-4250 "*"))))) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1400 (((-499) $) 62 (|has| |#1| (-564 (-499))))) (-1249 (((-1169 |#1|) $ (-523)) NIL)) (-1691 (($ (-1169 |#1|)) NIL) (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3749 (((-108) $) NIL)) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $ $) NIL) (($ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-710)) 23) (($ $ (-523)) 44 (|has| |#1| (-339)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-523) $) NIL) (((-1169 |#1|) $ (-1169 |#1|)) NIL) (((-1169 |#1|) (-1169 |#1|) $) NIL)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-629 |#1|) (-13 (-627 |#1| (-1169 |#1|) (-1169 |#1|)) (-10 -8 (-15 -2870 ($ (-1169 |#1|))) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |#1| (-339)) (-15 -3713 ((-3 $ "failed") $)) |%noBranch|))) (-973)) (T -629)) +((-3713 (*1 *1 *1) (|partial| -12 (-5 *1 (-629 *2)) (-4 *2 (-339)) (-4 *2 (-973)))) (-2870 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-973)) (-5 *1 (-629 *3))))) +(-13 (-627 |#1| (-1169 |#1|) (-1169 |#1|)) (-10 -8 (-15 -2870 ($ (-1169 |#1|))) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |#1| (-339)) (-15 -3713 ((-3 $ "failed") $)) |%noBranch|))) +((-1997 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|)) 25)) (-4027 (((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|) 21)) (-2540 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-710)) 26)) (-3477 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|)) 14)) (-3475 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|)) 18) (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 16)) (-3669 (((-629 |#1|) (-629 |#1|) |#1| (-629 |#1|)) 20)) (-1443 (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 12)) (** (((-629 |#1|) (-629 |#1|) (-710)) 30))) +(((-630 |#1|) (-10 -7 (-15 -1443 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3477 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3475 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3475 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3669 ((-629 |#1|) (-629 |#1|) |#1| (-629 |#1|))) (-15 -4027 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -1997 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2540 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-710))) (-15 ** ((-629 |#1|) (-629 |#1|) (-710)))) (-973)) (T -630)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-710)) (-4 *4 (-973)) (-5 *1 (-630 *4)))) (-2540 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-710)) (-4 *4 (-973)) (-5 *1 (-630 *4)))) (-1997 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-4027 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-3669 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-3475 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-3475 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-3477 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-1443 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(-10 -7 (-15 -1443 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3477 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3475 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3475 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3669 ((-629 |#1|) (-629 |#1|) |#1| (-629 |#1|))) (-15 -4027 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -1997 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2540 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-710))) (-15 ** ((-629 |#1|) (-629 |#1|) (-710)))) +((-3241 ((|#2| |#2| |#4|) 25)) (-1623 (((-629 |#2|) |#3| |#4|) 31)) (-1913 (((-629 |#2|) |#2| |#4|) 30)) (-3644 (((-1169 |#2|) |#2| |#4|) 16)) (-3784 ((|#2| |#3| |#4|) 24)) (-3655 (((-629 |#2|) |#3| |#4| (-710) (-710)) 38)) (-2524 (((-629 |#2|) |#2| |#4| (-710)) 37))) +(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3644 ((-1169 |#2|) |#2| |#4|)) (-15 -3784 (|#2| |#3| |#4|)) (-15 -3241 (|#2| |#2| |#4|)) (-15 -1913 ((-629 |#2|) |#2| |#4|)) (-15 -2524 ((-629 |#2|) |#2| |#4| (-710))) (-15 -1623 ((-629 |#2|) |#3| |#4|)) (-15 -3655 ((-629 |#2|) |#3| |#4| (-710) (-710)))) (-1016) (-831 |#1|) (-349 |#2|) (-13 (-349 |#1|) (-10 -7 (-6 -4248)))) (T -631)) +((-3655 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-710)) (-4 *6 (-1016)) (-4 *7 (-831 *6)) (-5 *2 (-629 *7)) (-5 *1 (-631 *6 *7 *3 *4)) (-4 *3 (-349 *7)) (-4 *4 (-13 (-349 *6) (-10 -7 (-6 -4248)))))) (-1623 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *6 (-831 *5)) (-5 *2 (-629 *6)) (-5 *1 (-631 *5 *6 *3 *4)) (-4 *3 (-349 *6)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4248)))))) (-2524 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-1016)) (-4 *3 (-831 *6)) (-5 *2 (-629 *3)) (-5 *1 (-631 *6 *3 *7 *4)) (-4 *7 (-349 *3)) (-4 *4 (-13 (-349 *6) (-10 -7 (-6 -4248)))))) (-1913 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *3 (-831 *5)) (-5 *2 (-629 *3)) (-5 *1 (-631 *5 *3 *6 *4)) (-4 *6 (-349 *3)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4248)))))) (-3241 (*1 *2 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-831 *4)) (-5 *1 (-631 *4 *2 *5 *3)) (-4 *5 (-349 *2)) (-4 *3 (-13 (-349 *4) (-10 -7 (-6 -4248)))))) (-3784 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *2 (-831 *5)) (-5 *1 (-631 *5 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4248)))))) (-3644 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *3 (-831 *5)) (-5 *2 (-1169 *3)) (-5 *1 (-631 *5 *3 *6 *4)) (-4 *6 (-349 *3)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4248))))))) +(-10 -7 (-15 -3644 ((-1169 |#2|) |#2| |#4|)) (-15 -3784 (|#2| |#3| |#4|)) (-15 -3241 (|#2| |#2| |#4|)) (-15 -1913 ((-629 |#2|) |#2| |#4|)) (-15 -2524 ((-629 |#2|) |#2| |#4| (-710))) (-15 -1623 ((-629 |#2|) |#3| |#4|)) (-15 -3655 ((-629 |#2|) |#3| |#4| (-710) (-710)))) +((-1505 (((-2 (|:| |num| (-629 |#1|)) (|:| |den| |#1|)) (-629 |#2|)) 18)) (-1222 ((|#1| (-629 |#2|)) 9)) (-4117 (((-629 |#1|) (-629 |#2|)) 16))) +(((-632 |#1| |#2|) (-10 -7 (-15 -1222 (|#1| (-629 |#2|))) (-15 -4117 ((-629 |#1|) (-629 |#2|))) (-15 -1505 ((-2 (|:| |num| (-629 |#1|)) (|:| |den| |#1|)) (-629 |#2|)))) (-515) (-921 |#1|)) (T -632)) +((-1505 (*1 *2 *3) (-12 (-5 *3 (-629 *5)) (-4 *5 (-921 *4)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |num| (-629 *4)) (|:| |den| *4))) (-5 *1 (-632 *4 *5)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-629 *5)) (-4 *5 (-921 *4)) (-4 *4 (-515)) (-5 *2 (-629 *4)) (-5 *1 (-632 *4 *5)))) (-1222 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-632 *2 *4))))) +(-10 -7 (-15 -1222 (|#1| (-629 |#2|))) (-15 -4117 ((-629 |#1|) (-629 |#2|))) (-15 -1505 ((-2 (|:| |num| (-629 |#1|)) (|:| |den| |#1|)) (-629 |#2|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2959 (((-629 (-638))) NIL) (((-629 (-638)) (-1169 $)) NIL)) (-1477 (((-638) $) NIL)) (-1462 (($ $) NIL (|has| (-638) (-1109)))) (-1285 (($ $) NIL (|has| (-638) (-1109)))) (-1557 (((-1097 (-852) (-710)) (-523)) NIL (|has| (-638) (-325)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-638) (-284)) (|has| (-638) (-840))))) (-3718 (($ $) NIL (-3172 (-12 (|has| (-638) (-284)) (|has| (-638) (-840))) (|has| (-638) (-339))))) (-4226 (((-394 $) $) NIL (-3172 (-12 (|has| (-638) (-284)) (|has| (-638) (-840))) (|has| (-638) (-339))))) (-2437 (($ $) NIL (-12 (|has| (-638) (-930)) (|has| (-638) (-1109))))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-638) (-284)) (|has| (-638) (-840))))) (-2787 (((-108) $ $) NIL (|has| (-638) (-284)))) (-2395 (((-710)) NIL (|has| (-638) (-344)))) (-1441 (($ $) NIL (|has| (-638) (-1109)))) (-1260 (($ $) NIL (|has| (-638) (-1109)))) (-1481 (($ $) NIL (|has| (-638) (-1109)))) (-1309 (($ $) NIL (|has| (-638) (-1109)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL) (((-3 (-638) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-638) (-964 (-383 (-523)))))) (-3508 (((-523) $) NIL) (((-638) $) NIL) (((-383 (-523)) $) NIL (|has| (-638) (-964 (-383 (-523)))))) (-2754 (($ (-1169 (-638))) NIL) (($ (-1169 (-638)) (-1169 $)) NIL)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-638) (-325)))) (-4059 (($ $ $) NIL (|has| (-638) (-284)))) (-2927 (((-629 (-638)) $) NIL) (((-629 (-638)) $ (-1169 $)) NIL)) (-2243 (((-629 (-638)) (-629 $)) NIL) (((-2 (|:| -2600 (-629 (-638))) (|:| |vec| (-1169 (-638)))) (-629 $) (-1169 $)) NIL) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| (-638) (-585 (-523)))) (((-629 (-523)) (-629 $)) NIL (|has| (-638) (-585 (-523))))) (-2116 (((-3 $ "failed") (-383 (-1083 (-638)))) NIL (|has| (-638) (-339))) (($ (-1083 (-638))) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-2448 (((-638) $) 29)) (-3317 (((-3 (-383 (-523)) "failed") $) NIL (|has| (-638) (-508)))) (-3045 (((-108) $) NIL (|has| (-638) (-508)))) (-1682 (((-383 (-523)) $) NIL (|has| (-638) (-508)))) (-3569 (((-852)) NIL)) (-1631 (($) NIL (|has| (-638) (-344)))) (-4032 (($ $ $) NIL (|has| (-638) (-284)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| (-638) (-284)))) (-3665 (($) NIL (|has| (-638) (-325)))) (-1766 (((-108) $) NIL (|has| (-638) (-325)))) (-3610 (($ $) NIL (|has| (-638) (-325))) (($ $ (-710)) NIL (|has| (-638) (-325)))) (-3049 (((-108) $) NIL (-3172 (-12 (|has| (-638) (-284)) (|has| (-638) (-840))) (|has| (-638) (-339))))) (-3125 (((-2 (|:| |r| (-638)) (|:| |phi| (-638))) $) NIL (-12 (|has| (-638) (-982)) (|has| (-638) (-1109))))) (-3352 (($) NIL (|has| (-638) (-1109)))) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-638) (-817 (-355)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-638) (-817 (-523))))) (-3437 (((-772 (-852)) $) NIL (|has| (-638) (-325))) (((-852) $) NIL (|has| (-638) (-325)))) (-2769 (((-108) $) NIL)) (-1973 (($ $ (-523)) NIL (-12 (|has| (-638) (-930)) (|has| (-638) (-1109))))) (-1863 (((-638) $) NIL)) (-2738 (((-3 $ "failed") $) NIL (|has| (-638) (-325)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-638) (-284)))) (-2887 (((-1083 (-638)) $) NIL (|has| (-638) (-339)))) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-1345 (($ (-1 (-638) (-638)) $) NIL)) (-2060 (((-852) $) NIL (|has| (-638) (-344)))) (-2313 (($ $) NIL (|has| (-638) (-1109)))) (-2104 (((-1083 (-638)) $) NIL)) (-3278 (($ (-589 $)) NIL (|has| (-638) (-284))) (($ $ $) NIL (|has| (-638) (-284)))) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL (|has| (-638) (-339)))) (-2773 (($) NIL (|has| (-638) (-325)) CONST)) (-4013 (($ (-852)) NIL (|has| (-638) (-344)))) (-3887 (($) NIL)) (-2459 (((-638) $) 31)) (-3951 (((-1034) $) NIL)) (-1621 (($) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-638) (-284)))) (-3310 (($ (-589 $)) NIL (|has| (-638) (-284))) (($ $ $) NIL (|has| (-638) (-284)))) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL (|has| (-638) (-325)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-638) (-284)) (|has| (-638) (-840))))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-638) (-284)) (|has| (-638) (-840))))) (-2424 (((-394 $) $) NIL (-3172 (-12 (|has| (-638) (-284)) (|has| (-638) (-840))) (|has| (-638) (-339))))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-638) (-284))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| (-638) (-284)))) (-4007 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-638)) NIL (|has| (-638) (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-638) (-284)))) (-2922 (($ $) NIL (|has| (-638) (-1109)))) (-2812 (($ $ (-1087) (-638)) NIL (|has| (-638) (-484 (-1087) (-638)))) (($ $ (-589 (-1087)) (-589 (-638))) NIL (|has| (-638) (-484 (-1087) (-638)))) (($ $ (-589 (-271 (-638)))) NIL (|has| (-638) (-286 (-638)))) (($ $ (-271 (-638))) NIL (|has| (-638) (-286 (-638)))) (($ $ (-638) (-638)) NIL (|has| (-638) (-286 (-638)))) (($ $ (-589 (-638)) (-589 (-638))) NIL (|has| (-638) (-286 (-638))))) (-3413 (((-710) $) NIL (|has| (-638) (-284)))) (-1937 (($ $ (-638)) NIL (|has| (-638) (-263 (-638) (-638))))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| (-638) (-284)))) (-1744 (((-638)) NIL) (((-638) (-1169 $)) NIL)) (-2984 (((-3 (-710) "failed") $ $) NIL (|has| (-638) (-325))) (((-710) $) NIL (|has| (-638) (-325)))) (-3984 (($ $ (-1 (-638) (-638))) NIL) (($ $ (-1 (-638) (-638)) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-1087)) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-710)) NIL (|has| (-638) (-211))) (($ $) NIL (|has| (-638) (-211)))) (-3456 (((-629 (-638)) (-1169 $) (-1 (-638) (-638))) NIL (|has| (-638) (-339)))) (-2762 (((-1083 (-638))) NIL)) (-2306 (($ $) NIL (|has| (-638) (-1109)))) (-1322 (($ $) NIL (|has| (-638) (-1109)))) (-2893 (($) NIL (|has| (-638) (-325)))) (-1471 (($ $) NIL (|has| (-638) (-1109)))) (-1295 (($ $) NIL (|has| (-638) (-1109)))) (-1453 (($ $) NIL (|has| (-638) (-1109)))) (-1274 (($ $) NIL (|has| (-638) (-1109)))) (-2906 (((-629 (-638)) (-1169 $)) NIL) (((-1169 (-638)) $) NIL) (((-629 (-638)) (-1169 $) (-1169 $)) NIL) (((-1169 (-638)) $ (-1169 $)) NIL)) (-1400 (((-499) $) NIL (|has| (-638) (-564 (-499)))) (((-155 (-203)) $) NIL (|has| (-638) (-949))) (((-155 (-355)) $) NIL (|has| (-638) (-949))) (((-823 (-355)) $) NIL (|has| (-638) (-564 (-823 (-355))))) (((-823 (-523)) $) NIL (|has| (-638) (-564 (-823 (-523))))) (($ (-1083 (-638))) NIL) (((-1083 (-638)) $) NIL) (($ (-1169 (-638))) NIL) (((-1169 (-638)) $) NIL)) (-3361 (($ $) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-3172 (-12 (|has| (-638) (-284)) (|has| $ (-134)) (|has| (-638) (-840))) (|has| (-638) (-325))))) (-4115 (($ (-638) (-638)) 12)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-523)) NIL) (($ (-638)) NIL) (($ (-155 (-355))) 13) (($ (-155 (-523))) 19) (($ (-155 (-638))) 28) (($ (-155 (-640))) 25) (((-155 (-355)) $) 33) (($ (-383 (-523))) NIL (-3172 (|has| (-638) (-964 (-383 (-523)))) (|has| (-638) (-339))))) (-1942 (($ $) NIL (|has| (-638) (-325))) (((-3 $ "failed") $) NIL (-3172 (-12 (|has| (-638) (-284)) (|has| $ (-134)) (|has| (-638) (-840))) (|has| (-638) (-134))))) (-1356 (((-1083 (-638)) $) NIL)) (-3272 (((-710)) NIL)) (-3760 (((-1169 $)) NIL)) (-2341 (($ $) NIL (|has| (-638) (-1109)))) (-1401 (($ $) NIL (|has| (-638) (-1109)))) (-2801 (((-108) $ $) NIL)) (-2318 (($ $) NIL (|has| (-638) (-1109)))) (-1334 (($ $) NIL (|has| (-638) (-1109)))) (-2366 (($ $) NIL (|has| (-638) (-1109)))) (-1421 (($ $) NIL (|has| (-638) (-1109)))) (-1572 (((-638) $) NIL (|has| (-638) (-1109)))) (-2102 (($ $) NIL (|has| (-638) (-1109)))) (-1431 (($ $) NIL (|has| (-638) (-1109)))) (-2353 (($ $) NIL (|has| (-638) (-1109)))) (-1413 (($ $) NIL (|has| (-638) (-1109)))) (-2330 (($ $) NIL (|has| (-638) (-1109)))) (-1346 (($ $) NIL (|has| (-638) (-1109)))) (-2695 (($ $) NIL (|has| (-638) (-982)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-638) (-339)))) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-1 (-638) (-638))) NIL) (($ $ (-1 (-638) (-638)) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-1087)) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-710)) NIL (|has| (-638) (-211))) (($ $) NIL (|has| (-638) (-211)))) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL (|has| (-638) (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ $) NIL (|has| (-638) (-1109))) (($ $ (-383 (-523))) NIL (-12 (|has| (-638) (-930)) (|has| (-638) (-1109)))) (($ $ (-523)) NIL (|has| (-638) (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ (-638) $) NIL) (($ $ (-638)) NIL) (($ (-383 (-523)) $) NIL (|has| (-638) (-339))) (($ $ (-383 (-523))) NIL (|has| (-638) (-339))))) +(((-633) (-13 (-363) (-152 (-638)) (-10 -8 (-15 -1691 ($ (-155 (-355)))) (-15 -1691 ($ (-155 (-523)))) (-15 -1691 ($ (-155 (-638)))) (-15 -1691 ($ (-155 (-640)))) (-15 -1691 ((-155 (-355)) $))))) (T -633)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-155 (-355))) (-5 *1 (-633)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-155 (-523))) (-5 *1 (-633)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-155 (-638))) (-5 *1 (-633)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-155 (-640))) (-5 *1 (-633)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-155 (-355))) (-5 *1 (-633))))) +(-13 (-363) (-152 (-638)) (-10 -8 (-15 -1691 ($ (-155 (-355)))) (-15 -1691 ($ (-155 (-523)))) (-15 -1691 ($ (-155 (-638)))) (-15 -1691 ($ (-155 (-640)))) (-15 -1691 ((-155 (-355)) $)))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) 8)) (-3703 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-4160 (($ $) 62)) (-2462 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3286 (($ |#1| $) 47 (|has| $ (-6 -4248))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4248)))) (-2514 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4248)))) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1293 ((|#1| $) 39)) (-3108 (($ |#1| $) 40) (($ |#1| $ (-710)) 63)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3048 ((|#1| $) 41)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1767 (((-589 (-2 (|:| -2482 |#1|) (|:| -3977 (-710)))) $) 61)) (-2963 (($) 49) (($ (-589 |#1|)) 48)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1400 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 50)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2417 (($ (-589 |#1|)) 42)) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-634 |#1|) (-129) (-1016)) (T -634)) -((-3450 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-634 *2)) (-4 *2 (-1016)))) (-3941 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1016)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-634 *3)) (-4 *3 (-1016)) (-5 *2 (-589 (-2 (|:| -2433 *3) (|:| -2792 (-710)))))))) -(-13 (-213 |t#1|) (-10 -8 (-15 -3450 ($ |t#1| $ (-710))) (-15 -3941 ($ $)) (-15 -2766 ((-589 (-2 (|:| -2433 |t#1|) (|:| -2792 (-710)))) $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-2987 (((-589 |#1|) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))) (-523)) 46)) (-2103 ((|#1| |#1| (-523)) 45)) (-3278 ((|#1| |#1| |#1| (-523)) 35)) (-1820 (((-589 |#1|) |#1| (-523)) 38)) (-1281 ((|#1| |#1| (-523) |#1| (-523)) 32)) (-3929 (((-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))) |#1| (-523)) 44))) -(((-635 |#1|) (-10 -7 (-15 -3278 (|#1| |#1| |#1| (-523))) (-15 -2103 (|#1| |#1| (-523))) (-15 -1820 ((-589 |#1|) |#1| (-523))) (-15 -3929 ((-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))) |#1| (-523))) (-15 -2987 ((-589 |#1|) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))) (-523))) (-15 -1281 (|#1| |#1| (-523) |#1| (-523)))) (-1144 (-523))) (T -635)) -((-1281 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1144 *3)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| -1820 *5) (|:| -2299 (-523))))) (-5 *4 (-523)) (-4 *5 (-1144 *4)) (-5 *2 (-589 *5)) (-5 *1 (-635 *5)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-5 *2 (-589 (-2 (|:| -1820 *3) (|:| -2299 *4)))) (-5 *1 (-635 *3)) (-4 *3 (-1144 *4)))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-5 *2 (-589 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1144 *4)))) (-2103 (*1 *2 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1144 *3)))) (-3278 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1144 *3))))) -(-10 -7 (-15 -3278 (|#1| |#1| |#1| (-523))) (-15 -2103 (|#1| |#1| (-523))) (-15 -1820 ((-589 |#1|) |#1| (-523))) (-15 -3929 ((-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))) |#1| (-523))) (-15 -2987 ((-589 |#1|) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))) (-523))) (-15 -1281 (|#1| |#1| (-523) |#1| (-523)))) -((-3487 (((-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203) (-203))) 17)) (-2965 (((-1047 (-203)) (-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240))) 38) (((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240))) 40) (((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240))) 42)) (-1253 (((-1047 (-203)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-589 (-240))) NIL)) (-3647 (((-1047 (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240))) 43))) -(((-636) (-10 -7 (-15 -2965 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2965 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2965 ((-1047 (-203)) (-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -3647 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -1253 ((-1047 (-203)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -3487 ((-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203) (-203)))))) (T -636)) -((-3487 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1 (-203) (-203) (-203) (-203))) (-5 *2 (-1 (-874 (-203)) (-203) (-203))) (-5 *1 (-636)))) (-1253 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636)))) (-3647 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-3 (-1 (-203) (-203) (-203) (-203)) "undefined")) (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636)))) (-2965 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-203))) (-5 *5 (-589 (-240))) (-5 *1 (-636)))) (-2965 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-203))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636)))) (-2965 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-3 (-1 (-203) (-203) (-203) (-203)) "undefined")) (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636))))) -(-10 -7 (-15 -2965 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2965 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2965 ((-1047 (-203)) (-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -3647 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -1253 ((-1047 (-203)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -3487 ((-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203) (-203))))) -((-1820 (((-394 (-1083 |#4|)) (-1083 |#4|)) 73) (((-394 |#4|) |#4|) 217))) -(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 |#4|) |#4|)) (-15 -1820 ((-394 (-1083 |#4|)) (-1083 |#4|)))) (-786) (-732) (-325) (-880 |#3| |#2| |#1|)) (T -637)) -((-1820 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-325)) (-4 *7 (-880 *6 *5 *4)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4))))) -(-10 -7 (-15 -1820 ((-394 |#4|) |#4|)) (-15 -1820 ((-394 (-1083 |#4|)) (-1083 |#4|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 84)) (-3458 (((-523) $) 30)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3984 (($ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1832 (($ $) NIL)) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL)) (-2518 (($) NIL T CONST)) (-1258 (($ $) NIL)) (-3517 (((-3 (-523) "failed") $) 73) (((-3 (-383 (-523)) "failed") $) 26) (((-3 (-355) "failed") $) 70)) (-3474 (((-523) $) 75) (((-383 (-523)) $) 67) (((-355) $) 68)) (-3796 (($ $ $) 96)) (-2121 (((-3 $ "failed") $) 87)) (-3769 (($ $ $) 95)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2685 (((-852)) 77) (((-852) (-852)) 76)) (-2604 (((-108) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL)) (-1640 (((-523) $) NIL)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL)) (-3892 (($ $) NIL)) (-4114 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4101 (((-523) (-523)) 81) (((-523)) 82)) (-2454 (($ $ $) NIL) (($) NIL (-12 (-3900 (|has| $ (-6 -4227))) (-3900 (|has| $ (-6 -4235)))))) (-3930 (((-523) (-523)) 79) (((-523)) 80)) (-2062 (($ $ $) NIL) (($) NIL (-12 (-3900 (|has| $ (-6 -4227))) (-3900 (|has| $ (-6 -4235)))))) (-1369 (((-523) $) 16)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 91)) (-3986 (((-852) (-523)) NIL (|has| $ (-6 -4235)))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL)) (-3722 (($ $) NIL)) (-4092 (($ (-523) (-523)) NIL) (($ (-523) (-523) (-852)) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) 92)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2735 (((-523) $) 22)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 94)) (-1617 (((-852)) NIL) (((-852) (-852)) NIL (|has| $ (-6 -4235)))) (-3134 (((-852) (-523)) NIL (|has| $ (-6 -4235)))) (-3663 (((-355) $) NIL) (((-203) $) NIL) (((-823 (-355)) $) NIL)) (-1458 (((-794) $) 52) (($ (-523)) 63) (($ $) NIL) (($ (-383 (-523))) 66) (($ (-523)) 63) (($ (-383 (-523))) 66) (($ (-355)) 60) (((-355) $) 50) (($ (-640)) 55)) (-1621 (((-710)) 103)) (-3492 (($ (-523) (-523) (-852)) 44)) (-1886 (($ $) NIL)) (-1329 (((-852)) NIL) (((-852) (-852)) NIL (|has| $ (-6 -4235)))) (-3007 (((-852)) 35) (((-852) (-852)) 78)) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 32 T CONST)) (-2767 (($) 17 T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 83)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 101)) (-4098 (($ $ $) 65)) (-4087 (($ $) 99) (($ $ $) 100)) (-4075 (($ $ $) 98)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL) (($ $ (-383 (-523))) 90)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 97) (($ $ $) 88) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) -(((-638) (-13 (-380) (-363) (-339) (-964 (-355)) (-964 (-383 (-523))) (-136) (-10 -8 (-15 -2685 ((-852) (-852))) (-15 -2685 ((-852))) (-15 -3007 ((-852) (-852))) (-15 -3007 ((-852))) (-15 -3930 ((-523) (-523))) (-15 -3930 ((-523))) (-15 -4101 ((-523) (-523))) (-15 -4101 ((-523))) (-15 -1458 ((-355) $)) (-15 -1458 ($ (-640))) (-15 -1369 ((-523) $)) (-15 -2735 ((-523) $)) (-15 -3492 ($ (-523) (-523) (-852)))))) (T -638)) -((-3007 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-2685 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) (-2685 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) (-3007 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-3930 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-4101 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-4101 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-355)) (-5 *1 (-638)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-640)) (-5 *1 (-638)))) (-3492 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-852)) (-5 *1 (-638))))) -(-13 (-380) (-363) (-339) (-964 (-355)) (-964 (-383 (-523))) (-136) (-10 -8 (-15 -2685 ((-852) (-852))) (-15 -2685 ((-852))) (-15 -3007 ((-852) (-852))) (-15 -3007 ((-852))) (-15 -3930 ((-523) (-523))) (-15 -3930 ((-523))) (-15 -4101 ((-523) (-523))) (-15 -4101 ((-523))) (-15 -1458 ((-355) $)) (-15 -1458 ($ (-640))) (-15 -1369 ((-523) $)) (-15 -2735 ((-523) $)) (-15 -3492 ($ (-523) (-523) (-852))))) -((-2586 (((-629 |#1|) (-629 |#1|) |#1| |#1|) 65)) (-2445 (((-629 |#1|) (-629 |#1|) |#1|) 48)) (-4216 (((-629 |#1|) (-629 |#1|) |#1|) 66)) (-1813 (((-629 |#1|) (-629 |#1|)) 49)) (-3527 (((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|) 64))) -(((-639 |#1|) (-10 -7 (-15 -1813 ((-629 |#1|) (-629 |#1|))) (-15 -2445 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -4216 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -2586 ((-629 |#1|) (-629 |#1|) |#1| |#1|)) (-15 -3527 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|))) (-284)) (T -639)) -((-3527 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-639 *3)) (-4 *3 (-284)))) (-2586 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3)))) (-4216 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3)))) (-2445 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3)))) (-1813 (*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3))))) -(-10 -7 (-15 -1813 ((-629 |#1|) (-629 |#1|))) (-15 -2445 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -4216 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -2586 ((-629 |#1|) (-629 |#1|) |#1| |#1|)) (-15 -3527 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2312 (($ $ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1808 (($ $ $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL)) (-2041 (($ $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) 27)) (-3474 (((-523) $) 25)) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL)) (-1292 (((-108) $) NIL)) (-2146 (((-383 (-523)) $) NIL)) (-4032 (($ $) NIL) (($) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2819 (($ $ $ $) NIL)) (-1980 (($ $ $) NIL)) (-2604 (((-108) $) NIL)) (-3654 (($ $ $) NIL)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL)) (-2023 (((-108) $) NIL)) (-1557 (((-108) $) NIL)) (-4058 (((-3 $ "failed") $) NIL)) (-4114 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4183 (($ $ $ $) NIL)) (-2454 (($ $ $) NIL)) (-2729 (((-852) (-852)) 10) (((-852)) 9)) (-2062 (($ $ $) NIL)) (-1647 (($ $) NIL)) (-2996 (($ $) NIL)) (-3244 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-3305 (($ $ $) NIL)) (-2262 (($) NIL T CONST)) (-3201 (($ $) NIL)) (-2783 (((-1034) $) NIL) (($ $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3217 (($ $) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4104 (((-108) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL) (($ $ (-710)) NIL)) (-2029 (($ $) NIL)) (-1664 (($ $) NIL)) (-3663 (((-203) $) NIL) (((-355) $) NIL) (((-823 (-523)) $) NIL) (((-499) $) NIL) (((-523) $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) 24) (($ $) NIL) (($ (-523)) 24) (((-292 $) (-292 (-523))) 18)) (-1621 (((-710)) NIL)) (-1981 (((-108) $ $) NIL)) (-2574 (($ $ $) NIL)) (-3007 (($) NIL)) (-1704 (((-108) $ $) NIL)) (-2108 (($ $ $ $) NIL)) (-2619 (($ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL) (($ $ (-710)) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL))) -(((-640) (-13 (-363) (-508) (-10 -8 (-15 -2729 ((-852) (-852))) (-15 -2729 ((-852))) (-15 -1458 ((-292 $) (-292 (-523))))))) (T -640)) -((-2729 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-640)))) (-2729 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-640)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-292 (-523))) (-5 *2 (-292 (-640))) (-5 *1 (-640))))) -(-13 (-363) (-508) (-10 -8 (-15 -2729 ((-852) (-852))) (-15 -2729 ((-852))) (-15 -1458 ((-292 $) (-292 (-523)))))) -((-1989 (((-1 |#4| |#2| |#3|) |#1| (-1087) (-1087)) 19)) (-1449 (((-1 |#4| |#2| |#3|) (-1087)) 12))) -(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1449 ((-1 |#4| |#2| |#3|) (-1087))) (-15 -1989 ((-1 |#4| |#2| |#3|) |#1| (-1087) (-1087)))) (-564 (-499)) (-1122) (-1122) (-1122)) (T -641)) -((-1989 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *3 *5 *6 *7)) (-4 *3 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *4 *5 *6 *7)) (-4 *4 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122))))) -(-10 -7 (-15 -1449 ((-1 |#4| |#2| |#3|) (-1087))) (-15 -1989 ((-1 |#4| |#2| |#3|) |#1| (-1087) (-1087)))) -((-3924 (((-108) $ $) NIL)) (-2118 (((-1173) $ (-710)) 14)) (-1479 (((-710) $) 12)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 25)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 24))) -(((-642 |#1|) (-13 (-125) (-563 |#1|) (-10 -8 (-15 -1458 ($ |#1|)))) (-1016)) (T -642)) -((-1458 (*1 *1 *2) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1016))))) -(-13 (-125) (-563 |#1|) (-10 -8 (-15 -1458 ($ |#1|)))) -((-3501 (((-1 (-203) (-203) (-203)) |#1| (-1087) (-1087)) 33) (((-1 (-203) (-203)) |#1| (-1087)) 38))) -(((-643 |#1|) (-10 -7 (-15 -3501 ((-1 (-203) (-203)) |#1| (-1087))) (-15 -3501 ((-1 (-203) (-203) (-203)) |#1| (-1087) (-1087)))) (-564 (-499))) (T -643)) -((-3501 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-1 (-203) (-203) (-203))) (-5 *1 (-643 *3)) (-4 *3 (-564 (-499))))) (-3501 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-1 (-203) (-203))) (-5 *1 (-643 *3)) (-4 *3 (-564 (-499)))))) -(-10 -7 (-15 -3501 ((-1 (-203) (-203)) |#1| (-1087))) (-15 -3501 ((-1 (-203) (-203) (-203)) |#1| (-1087) (-1087)))) -((-3121 (((-1087) |#1| (-1087) (-589 (-1087))) 9) (((-1087) |#1| (-1087) (-1087) (-1087)) 12) (((-1087) |#1| (-1087) (-1087)) 11) (((-1087) |#1| (-1087)) 10))) -(((-644 |#1|) (-10 -7 (-15 -3121 ((-1087) |#1| (-1087))) (-15 -3121 ((-1087) |#1| (-1087) (-1087))) (-15 -3121 ((-1087) |#1| (-1087) (-1087) (-1087))) (-15 -3121 ((-1087) |#1| (-1087) (-589 (-1087))))) (-564 (-499))) (T -644)) -((-3121 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-589 (-1087))) (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499))))) (-3121 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499))))) (-3121 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499))))) (-3121 (*1 *2 *3 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499)))))) -(-10 -7 (-15 -3121 ((-1087) |#1| (-1087))) (-15 -3121 ((-1087) |#1| (-1087) (-1087))) (-15 -3121 ((-1087) |#1| (-1087) (-1087) (-1087))) (-15 -3121 ((-1087) |#1| (-1087) (-589 (-1087))))) -((-3792 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-645 |#1| |#2|) (-10 -7 (-15 -3792 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1122) (-1122)) (T -645)) -((-3792 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-645 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) -(-10 -7 (-15 -3792 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2341 (((-1 |#3| |#2|) (-1087)) 11)) (-1989 (((-1 |#3| |#2|) |#1| (-1087)) 21))) -(((-646 |#1| |#2| |#3|) (-10 -7 (-15 -2341 ((-1 |#3| |#2|) (-1087))) (-15 -1989 ((-1 |#3| |#2|) |#1| (-1087)))) (-564 (-499)) (-1122) (-1122)) (T -646)) -((-1989 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *3 *5 *6)) (-4 *3 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *4 *5 *6)) (-4 *4 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122))))) -(-10 -7 (-15 -2341 ((-1 |#3| |#2|) (-1087))) (-15 -1989 ((-1 |#3| |#2|) |#1| (-1087)))) -((-2502 (((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#4|)) (-589 |#3|) (-589 |#4|) (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| |#4|)))) (-589 (-710)) (-1168 (-589 (-1083 |#3|))) |#3|) 59)) (-1594 (((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#3|)) (-589 |#3|) (-589 |#4|) (-589 (-710)) |#3|) 72)) (-2369 (((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 |#3|) (-589 (-710)) (-589 (-1083 |#4|)) (-1168 (-589 (-1083 |#3|))) |#3|) 32))) -(((-647 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2369 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 |#3|) (-589 (-710)) (-589 (-1083 |#4|)) (-1168 (-589 (-1083 |#3|))) |#3|)) (-15 -1594 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#3|)) (-589 |#3|) (-589 |#4|) (-589 (-710)) |#3|)) (-15 -2502 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#4|)) (-589 |#3|) (-589 |#4|) (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| |#4|)))) (-589 (-710)) (-1168 (-589 (-1083 |#3|))) |#3|))) (-732) (-786) (-284) (-880 |#3| |#1| |#2|)) (T -647)) -((-2502 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-589 (-1083 *13))) (-5 *3 (-1083 *13)) (-5 *4 (-589 *12)) (-5 *5 (-589 *10)) (-5 *6 (-589 *13)) (-5 *7 (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| *13))))) (-5 *8 (-589 (-710))) (-5 *9 (-1168 (-589 (-1083 *10)))) (-4 *12 (-786)) (-4 *10 (-284)) (-4 *13 (-880 *10 *11 *12)) (-4 *11 (-732)) (-5 *1 (-647 *11 *12 *10 *13)))) (-1594 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-589 *11)) (-5 *5 (-589 (-1083 *9))) (-5 *6 (-589 *9)) (-5 *7 (-589 *12)) (-5 *8 (-589 (-710))) (-4 *11 (-786)) (-4 *9 (-284)) (-4 *12 (-880 *9 *10 *11)) (-4 *10 (-732)) (-5 *2 (-589 (-1083 *12))) (-5 *1 (-647 *10 *11 *9 *12)) (-5 *3 (-1083 *12)))) (-2369 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-589 (-1083 *11))) (-5 *3 (-1083 *11)) (-5 *4 (-589 *10)) (-5 *5 (-589 *8)) (-5 *6 (-589 (-710))) (-5 *7 (-1168 (-589 (-1083 *8)))) (-4 *10 (-786)) (-4 *8 (-284)) (-4 *11 (-880 *8 *9 *10)) (-4 *9 (-732)) (-5 *1 (-647 *9 *10 *8 *11))))) -(-10 -7 (-15 -2369 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 |#3|) (-589 (-710)) (-589 (-1083 |#4|)) (-1168 (-589 (-1083 |#3|))) |#3|)) (-15 -1594 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#3|)) (-589 |#3|) (-589 |#4|) (-589 (-710)) |#3|)) (-15 -2502 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#4|)) (-589 |#3|) (-589 |#4|) (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| |#4|)))) (-589 (-710)) (-1168 (-589 (-1083 |#3|))) |#3|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3810 (($ $) 41)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-1933 (($ |#1| (-710)) 39)) (-1575 (((-710) $) 43)) (-3786 ((|#1| $) 42)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2299 (((-710) $) 44)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 38 (|has| |#1| (-158)))) (-2365 ((|#1| $ (-710)) 40)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-3108 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-634 *2)) (-4 *2 (-1016)))) (-4160 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1016)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-634 *3)) (-4 *3 (-1016)) (-5 *2 (-589 (-2 (|:| -2482 *3) (|:| -3977 (-710)))))))) +(-13 (-213 |t#1|) (-10 -8 (-15 -3108 ($ |t#1| $ (-710))) (-15 -4160 ($ $)) (-15 -1767 ((-589 (-2 (|:| -2482 |t#1|) (|:| -3977 (-710)))) $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-3100 (((-589 |#1|) (-589 (-2 (|:| -2424 |#1|) (|:| -2640 (-523)))) (-523)) 47)) (-2388 ((|#1| |#1| (-523)) 46)) (-3310 ((|#1| |#1| |#1| (-523)) 36)) (-2424 (((-589 |#1|) |#1| (-523)) 39)) (-4186 ((|#1| |#1| (-523) |#1| (-523)) 32)) (-4011 (((-589 (-2 (|:| -2424 |#1|) (|:| -2640 (-523)))) |#1| (-523)) 45))) +(((-635 |#1|) (-10 -7 (-15 -3310 (|#1| |#1| |#1| (-523))) (-15 -2388 (|#1| |#1| (-523))) (-15 -2424 ((-589 |#1|) |#1| (-523))) (-15 -4011 ((-589 (-2 (|:| -2424 |#1|) (|:| -2640 (-523)))) |#1| (-523))) (-15 -3100 ((-589 |#1|) (-589 (-2 (|:| -2424 |#1|) (|:| -2640 (-523)))) (-523))) (-15 -4186 (|#1| |#1| (-523) |#1| (-523)))) (-1145 (-523))) (T -635)) +((-4186 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1145 *3)))) (-3100 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| -2424 *5) (|:| -2640 (-523))))) (-5 *4 (-523)) (-4 *5 (-1145 *4)) (-5 *2 (-589 *5)) (-5 *1 (-635 *5)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-5 *2 (-589 (-2 (|:| -2424 *3) (|:| -2640 *4)))) (-5 *1 (-635 *3)) (-4 *3 (-1145 *4)))) (-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-5 *2 (-589 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1145 *4)))) (-2388 (*1 *2 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1145 *3)))) (-3310 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1145 *3))))) +(-10 -7 (-15 -3310 (|#1| |#1| |#1| (-523))) (-15 -2388 (|#1| |#1| (-523))) (-15 -2424 ((-589 |#1|) |#1| (-523))) (-15 -4011 ((-589 (-2 (|:| -2424 |#1|) (|:| -2640 (-523)))) |#1| (-523))) (-15 -3100 ((-589 |#1|) (-589 (-2 (|:| -2424 |#1|) (|:| -2640 (-523)))) (-523))) (-15 -4186 (|#1| |#1| (-523) |#1| (-523)))) +((-2327 (((-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203) (-203))) 17)) (-2896 (((-1047 (-203)) (-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240))) 38) (((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240))) 40) (((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240))) 42)) (-3842 (((-1047 (-203)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-589 (-240))) NIL)) (-3268 (((-1047 (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240))) 43))) +(((-636) (-10 -7 (-15 -2896 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2896 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2896 ((-1047 (-203)) (-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -3268 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -3842 ((-1047 (-203)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2327 ((-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203) (-203)))))) (T -636)) +((-2327 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1 (-203) (-203) (-203) (-203))) (-5 *2 (-1 (-874 (-203)) (-203) (-203))) (-5 *1 (-636)))) (-3842 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636)))) (-3268 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-3 (-1 (-203) (-203) (-203) (-203)) "undefined")) (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636)))) (-2896 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-203))) (-5 *5 (-589 (-240))) (-5 *1 (-636)))) (-2896 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-203))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636)))) (-2896 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-3 (-1 (-203) (-203) (-203) (-203)) "undefined")) (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636))))) +(-10 -7 (-15 -2896 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2896 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2896 ((-1047 (-203)) (-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -3268 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -3842 ((-1047 (-203)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2327 ((-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203) (-203))))) +((-2424 (((-394 (-1083 |#4|)) (-1083 |#4|)) 73) (((-394 |#4|) |#4|) 218))) +(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2424 ((-394 |#4|) |#4|)) (-15 -2424 ((-394 (-1083 |#4|)) (-1083 |#4|)))) (-786) (-732) (-325) (-880 |#3| |#2| |#1|)) (T -637)) +((-2424 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-325)) (-4 *7 (-880 *6 *5 *4)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4))))) +(-10 -7 (-15 -2424 ((-394 |#4|) |#4|)) (-15 -2424 ((-394 (-1083 |#4|)) (-1083 |#4|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 84)) (-2046 (((-523) $) 30)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3276 (($ $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2437 (($ $) NIL)) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL)) (-4189 (($) NIL T CONST)) (-3900 (($ $) NIL)) (-1220 (((-3 (-523) "failed") $) 73) (((-3 (-383 (-523)) "failed") $) 26) (((-3 (-355) "failed") $) 70)) (-3508 (((-523) $) 75) (((-383 (-523)) $) 67) (((-355) $) 68)) (-4059 (($ $ $) 96)) (-1444 (((-3 $ "failed") $) 87)) (-4032 (($ $ $) 95)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-2285 (((-852)) 77) (((-852) (-852)) 76)) (-3712 (((-108) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL)) (-3437 (((-523) $) NIL)) (-2769 (((-108) $) NIL)) (-1973 (($ $ (-523)) NIL)) (-1863 (($ $) NIL)) (-2057 (((-108) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3072 (((-523) (-523)) 81) (((-523)) 82)) (-3239 (($ $ $) NIL) (($) NIL (-12 (-4179 (|has| $ (-6 -4231))) (-4179 (|has| $ (-6 -4239)))))) (-4025 (((-523) (-523)) 79) (((-523)) 80)) (-3158 (($ $ $) NIL) (($) NIL (-12 (-4179 (|has| $ (-6 -4231))) (-4179 (|has| $ (-6 -4239)))))) (-1512 (((-523) $) 16)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 91)) (-3297 (((-852) (-523)) NIL (|has| $ (-6 -4239)))) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4110 (($ $) NIL)) (-2733 (($ $) NIL)) (-4210 (($ (-523) (-523)) NIL) (($ (-523) (-523) (-852)) NIL)) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) 92)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1475 (((-523) $) 22)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 94)) (-3229 (((-852)) NIL) (((-852) (-852)) NIL (|has| $ (-6 -4239)))) (-3892 (((-852) (-523)) NIL (|has| $ (-6 -4239)))) (-1400 (((-355) $) NIL) (((-203) $) NIL) (((-823 (-355)) $) NIL)) (-1691 (((-794) $) 52) (($ (-523)) 63) (($ $) NIL) (($ (-383 (-523))) 66) (($ (-523)) 63) (($ (-383 (-523))) 66) (($ (-355)) 60) (((-355) $) 50) (($ (-640)) 55)) (-3272 (((-710)) 103)) (-2383 (($ (-523) (-523) (-852)) 44)) (-3809 (($ $) NIL)) (-3401 (((-852)) NIL) (((-852) (-852)) NIL (|has| $ (-6 -4239)))) (-1416 (((-852)) 35) (((-852) (-852)) 78)) (-2801 (((-108) $ $) NIL)) (-2695 (($ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 32 T CONST)) (-1891 (($) 17 T CONST)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 83)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 101)) (-4074 (($ $ $) 65)) (-4060 (($ $) 99) (($ $ $) 100)) (-4045 (($ $ $) 98)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL) (($ $ (-383 (-523))) 90)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 97) (($ $ $) 88) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-638) (-13 (-380) (-363) (-339) (-964 (-355)) (-964 (-383 (-523))) (-136) (-10 -8 (-15 -2285 ((-852) (-852))) (-15 -2285 ((-852))) (-15 -1416 ((-852) (-852))) (-15 -1416 ((-852))) (-15 -4025 ((-523) (-523))) (-15 -4025 ((-523))) (-15 -3072 ((-523) (-523))) (-15 -3072 ((-523))) (-15 -1691 ((-355) $)) (-15 -1691 ($ (-640))) (-15 -1512 ((-523) $)) (-15 -1475 ((-523) $)) (-15 -2383 ($ (-523) (-523) (-852)))))) (T -638)) +((-1416 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-2285 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) (-2285 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) (-1416 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) (-4025 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-4025 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-3072 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-355)) (-5 *1 (-638)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-640)) (-5 *1 (-638)))) (-2383 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-852)) (-5 *1 (-638))))) +(-13 (-380) (-363) (-339) (-964 (-355)) (-964 (-383 (-523))) (-136) (-10 -8 (-15 -2285 ((-852) (-852))) (-15 -2285 ((-852))) (-15 -1416 ((-852) (-852))) (-15 -1416 ((-852))) (-15 -4025 ((-523) (-523))) (-15 -4025 ((-523))) (-15 -3072 ((-523) (-523))) (-15 -3072 ((-523))) (-15 -1691 ((-355) $)) (-15 -1691 ($ (-640))) (-15 -1512 ((-523) $)) (-15 -1475 ((-523) $)) (-15 -2383 ($ (-523) (-523) (-852))))) +((-3550 (((-629 |#1|) (-629 |#1|) |#1| |#1|) 65)) (-1678 (((-629 |#1|) (-629 |#1|) |#1|) 48)) (-1258 (((-629 |#1|) (-629 |#1|) |#1|) 66)) (-1409 (((-629 |#1|) (-629 |#1|)) 49)) (-1558 (((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|) 64))) +(((-639 |#1|) (-10 -7 (-15 -1409 ((-629 |#1|) (-629 |#1|))) (-15 -1678 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -1258 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -3550 ((-629 |#1|) (-629 |#1|) |#1| |#1|)) (-15 -1558 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|))) (-284)) (T -639)) +((-1558 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-639 *3)) (-4 *3 (-284)))) (-3550 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3)))) (-1258 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3)))) (-1678 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3))))) +(-10 -7 (-15 -1409 ((-629 |#1|) (-629 |#1|))) (-15 -1678 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -1258 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -3550 ((-629 |#1|) (-629 |#1|) |#1| |#1|)) (-15 -1558 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2755 (($ $ $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $ $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL)) (-2156 (($ $ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) 27)) (-3508 (((-523) $) 25)) (-4059 (($ $ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-3317 (((-3 (-383 (-523)) "failed") $) NIL)) (-3045 (((-108) $) NIL)) (-1682 (((-383 (-523)) $) NIL)) (-1631 (($ $) NIL) (($) NIL)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-4024 (($ $ $ $) NIL)) (-3501 (($ $ $) NIL)) (-3712 (((-108) $) NIL)) (-3325 (($ $ $) NIL)) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL)) (-2769 (((-108) $) NIL)) (-3860 (((-108) $) NIL)) (-2738 (((-3 $ "failed") $) NIL)) (-2057 (((-108) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3928 (($ $ $ $) NIL)) (-3239 (($ $ $) NIL)) (-2553 (((-852) (-852)) 10) (((-852)) 9)) (-3158 (($ $ $) NIL)) (-2236 (($ $) NIL)) (-2616 (($ $) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-4193 (($ $ $) NIL)) (-2773 (($) NIL T CONST)) (-3762 (($ $) NIL)) (-3951 (((-1034) $) NIL) (($ $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3459 (($ $) NIL)) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3101 (((-108) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3984 (($ $) NIL) (($ $ (-710)) NIL)) (-1890 (($ $) NIL)) (-1874 (($ $) NIL)) (-1400 (((-203) $) NIL) (((-355) $) NIL) (((-823 (-523)) $) NIL) (((-499) $) NIL) (((-523) $) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) 24) (($ $) NIL) (($ (-523)) 24) (((-292 $) (-292 (-523))) 18)) (-3272 (((-710)) NIL)) (-3512 (((-108) $ $) NIL)) (-3435 (($ $ $) NIL)) (-1416 (($) NIL)) (-2801 (((-108) $ $) NIL)) (-2447 (($ $ $ $) NIL)) (-2695 (($ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $) NIL) (($ $ (-710)) NIL)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL))) +(((-640) (-13 (-363) (-508) (-10 -8 (-15 -2553 ((-852) (-852))) (-15 -2553 ((-852))) (-15 -1691 ((-292 $) (-292 (-523))))))) (T -640)) +((-2553 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-640)))) (-2553 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-640)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-292 (-523))) (-5 *2 (-292 (-640))) (-5 *1 (-640))))) +(-13 (-363) (-508) (-10 -8 (-15 -2553 ((-852) (-852))) (-15 -2553 ((-852))) (-15 -1691 ((-292 $) (-292 (-523)))))) +((-3591 (((-1 |#4| |#2| |#3|) |#1| (-1087) (-1087)) 19)) (-2247 (((-1 |#4| |#2| |#3|) (-1087)) 12))) +(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2247 ((-1 |#4| |#2| |#3|) (-1087))) (-15 -3591 ((-1 |#4| |#2| |#3|) |#1| (-1087) (-1087)))) (-564 (-499)) (-1123) (-1123) (-1123)) (T -641)) +((-3591 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *3 *5 *6 *7)) (-4 *3 (-564 (-499))) (-4 *5 (-1123)) (-4 *6 (-1123)) (-4 *7 (-1123)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *4 *5 *6 *7)) (-4 *4 (-564 (-499))) (-4 *5 (-1123)) (-4 *6 (-1123)) (-4 *7 (-1123))))) +(-10 -7 (-15 -2247 ((-1 |#4| |#2| |#3|) (-1087))) (-15 -3591 ((-1 |#4| |#2| |#3|) |#1| (-1087) (-1087)))) +((-1680 (((-108) $ $) NIL)) (-1415 (((-1174) $ (-710)) 14)) (-3449 (((-710) $) 12)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 25)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 24))) +(((-642 |#1|) (-13 (-125) (-563 |#1|) (-10 -8 (-15 -1691 ($ |#1|)))) (-1016)) (T -642)) +((-1691 (*1 *1 *2) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1016))))) +(-13 (-125) (-563 |#1|) (-10 -8 (-15 -1691 ($ |#1|)))) +((-2484 (((-1 (-203) (-203) (-203)) |#1| (-1087) (-1087)) 33) (((-1 (-203) (-203)) |#1| (-1087)) 38))) +(((-643 |#1|) (-10 -7 (-15 -2484 ((-1 (-203) (-203)) |#1| (-1087))) (-15 -2484 ((-1 (-203) (-203) (-203)) |#1| (-1087) (-1087)))) (-564 (-499))) (T -643)) +((-2484 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-1 (-203) (-203) (-203))) (-5 *1 (-643 *3)) (-4 *3 (-564 (-499))))) (-2484 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-1 (-203) (-203))) (-5 *1 (-643 *3)) (-4 *3 (-564 (-499)))))) +(-10 -7 (-15 -2484 ((-1 (-203) (-203)) |#1| (-1087))) (-15 -2484 ((-1 (-203) (-203) (-203)) |#1| (-1087) (-1087)))) +((-3155 (((-1087) |#1| (-1087) (-589 (-1087))) 9) (((-1087) |#1| (-1087) (-1087) (-1087)) 12) (((-1087) |#1| (-1087) (-1087)) 11) (((-1087) |#1| (-1087)) 10))) +(((-644 |#1|) (-10 -7 (-15 -3155 ((-1087) |#1| (-1087))) (-15 -3155 ((-1087) |#1| (-1087) (-1087))) (-15 -3155 ((-1087) |#1| (-1087) (-1087) (-1087))) (-15 -3155 ((-1087) |#1| (-1087) (-589 (-1087))))) (-564 (-499))) (T -644)) +((-3155 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-589 (-1087))) (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499))))) (-3155 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499))))) (-3155 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499))))) (-3155 (*1 *2 *3 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499)))))) +(-10 -7 (-15 -3155 ((-1087) |#1| (-1087))) (-15 -3155 ((-1087) |#1| (-1087) (-1087))) (-15 -3155 ((-1087) |#1| (-1087) (-1087) (-1087))) (-15 -3155 ((-1087) |#1| (-1087) (-589 (-1087))))) +((-1955 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-645 |#1| |#2|) (-10 -7 (-15 -1955 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1123) (-1123)) (T -645)) +((-1955 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-645 *3 *4)) (-4 *3 (-1123)) (-4 *4 (-1123))))) +(-10 -7 (-15 -1955 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3005 (((-1 |#3| |#2|) (-1087)) 11)) (-3591 (((-1 |#3| |#2|) |#1| (-1087)) 21))) +(((-646 |#1| |#2| |#3|) (-10 -7 (-15 -3005 ((-1 |#3| |#2|) (-1087))) (-15 -3591 ((-1 |#3| |#2|) |#1| (-1087)))) (-564 (-499)) (-1123) (-1123)) (T -646)) +((-3591 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *3 *5 *6)) (-4 *3 (-564 (-499))) (-4 *5 (-1123)) (-4 *6 (-1123)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *4 *5 *6)) (-4 *4 (-564 (-499))) (-4 *5 (-1123)) (-4 *6 (-1123))))) +(-10 -7 (-15 -3005 ((-1 |#3| |#2|) (-1087))) (-15 -3591 ((-1 |#3| |#2|) |#1| (-1087)))) +((-4041 (((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#4|)) (-589 |#3|) (-589 |#4|) (-589 (-589 (-2 (|:| -2981 (-710)) (|:| |pcoef| |#4|)))) (-589 (-710)) (-1169 (-589 (-1083 |#3|))) |#3|) 60)) (-1236 (((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#3|)) (-589 |#3|) (-589 |#4|) (-589 (-710)) |#3|) 74)) (-2126 (((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 |#3|) (-589 (-710)) (-589 (-1083 |#4|)) (-1169 (-589 (-1083 |#3|))) |#3|) 32))) +(((-647 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2126 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 |#3|) (-589 (-710)) (-589 (-1083 |#4|)) (-1169 (-589 (-1083 |#3|))) |#3|)) (-15 -1236 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#3|)) (-589 |#3|) (-589 |#4|) (-589 (-710)) |#3|)) (-15 -4041 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#4|)) (-589 |#3|) (-589 |#4|) (-589 (-589 (-2 (|:| -2981 (-710)) (|:| |pcoef| |#4|)))) (-589 (-710)) (-1169 (-589 (-1083 |#3|))) |#3|))) (-732) (-786) (-284) (-880 |#3| |#1| |#2|)) (T -647)) +((-4041 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-589 (-1083 *13))) (-5 *3 (-1083 *13)) (-5 *4 (-589 *12)) (-5 *5 (-589 *10)) (-5 *6 (-589 *13)) (-5 *7 (-589 (-589 (-2 (|:| -2981 (-710)) (|:| |pcoef| *13))))) (-5 *8 (-589 (-710))) (-5 *9 (-1169 (-589 (-1083 *10)))) (-4 *12 (-786)) (-4 *10 (-284)) (-4 *13 (-880 *10 *11 *12)) (-4 *11 (-732)) (-5 *1 (-647 *11 *12 *10 *13)))) (-1236 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-589 *11)) (-5 *5 (-589 (-1083 *9))) (-5 *6 (-589 *9)) (-5 *7 (-589 *12)) (-5 *8 (-589 (-710))) (-4 *11 (-786)) (-4 *9 (-284)) (-4 *12 (-880 *9 *10 *11)) (-4 *10 (-732)) (-5 *2 (-589 (-1083 *12))) (-5 *1 (-647 *10 *11 *9 *12)) (-5 *3 (-1083 *12)))) (-2126 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-589 (-1083 *11))) (-5 *3 (-1083 *11)) (-5 *4 (-589 *10)) (-5 *5 (-589 *8)) (-5 *6 (-589 (-710))) (-5 *7 (-1169 (-589 (-1083 *8)))) (-4 *10 (-786)) (-4 *8 (-284)) (-4 *11 (-880 *8 *9 *10)) (-4 *9 (-732)) (-5 *1 (-647 *9 *10 *8 *11))))) +(-10 -7 (-15 -2126 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 |#3|) (-589 (-710)) (-589 (-1083 |#4|)) (-1169 (-589 (-1083 |#3|))) |#3|)) (-15 -1236 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#3|)) (-589 |#3|) (-589 |#4|) (-589 (-710)) |#3|)) (-15 -4041 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#4|)) (-589 |#3|) (-589 |#4|) (-589 (-589 (-2 (|:| -2981 (-710)) (|:| |pcoef| |#4|)))) (-589 (-710)) (-1169 (-589 (-1083 |#3|))) |#3|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1457 (($ $) 41)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-1267 (($ |#1| (-710)) 39)) (-4047 (((-710) $) 43)) (-1437 ((|#1| $) 42)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-2640 (((-710) $) 44)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 38 (|has| |#1| (-158)))) (-2084 ((|#1| $ (-710)) 40)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-648 |#1|) (-129) (-973)) (T -648)) -((-2299 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-973)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-973)))) (-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-648 *2)) (-4 *2 (-973)))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-648 *2)) (-4 *2 (-973))))) -(-13 (-973) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-158)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2299 ((-710) $)) (-15 -1575 ((-710) $)) (-15 -3786 (|t#1| $)) (-15 -3810 ($ $)) (-15 -2365 (|t#1| $ (-710))) (-15 -1933 ($ |t#1| (-710))))) +((-2640 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-4047 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-973)))) (-1457 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-973)))) (-2084 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-648 *2)) (-4 *2 (-973)))) (-1267 (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-648 *2)) (-4 *2 (-973))))) +(-13 (-973) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-158)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2640 ((-710) $)) (-15 -4047 ((-710) $)) (-15 -1437 (|t#1| $)) (-15 -1457 ($ $)) (-15 -2084 (|t#1| $ (-710))) (-15 -1267 ($ |t#1| (-710))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-158)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) |has| |#1| (-158)) ((-666) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3612 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-649 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3612 (|#6| (-1 |#4| |#1|) |#3|))) (-515) (-1144 |#1|) (-1144 (-383 |#2|)) (-515) (-1144 |#4|) (-1144 (-383 |#5|))) (T -649)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-515)) (-4 *7 (-515)) (-4 *6 (-1144 *5)) (-4 *2 (-1144 (-383 *8))) (-5 *1 (-649 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1144 (-383 *6))) (-4 *8 (-1144 *7))))) -(-10 -7 (-15 -3612 (|#6| (-1 |#4| |#1|) |#3|))) -((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2958 (((-1070) (-794)) 31)) (-3973 (((-1173) (-1070)) 28)) (-3027 (((-1070) (-794)) 24)) (-2060 (((-1070) (-794)) 25)) (-1458 (((-794) $) NIL) (((-1070) (-794)) 23)) (-3983 (((-108) $ $) NIL))) -(((-650) (-13 (-1016) (-10 -7 (-15 -1458 ((-1070) (-794))) (-15 -3027 ((-1070) (-794))) (-15 -2060 ((-1070) (-794))) (-15 -2958 ((-1070) (-794))) (-15 -3973 ((-1173) (-1070)))))) (T -650)) -((-1458 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-650))))) -(-13 (-1016) (-10 -7 (-15 -1458 ((-1070) (-794))) (-15 -3027 ((-1070) (-794))) (-15 -2060 ((-1070) (-794))) (-15 -2958 ((-1070) (-794))) (-15 -3973 ((-1173) (-1070))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL)) (-2437 (($ |#1| |#2|) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3507 ((|#2| $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3620 (((-3 $ "failed") $ $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) ((|#1| $) NIL)) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) -(((-651 |#1| |#2| |#3| |#4| |#5|) (-13 (-339) (-10 -8 (-15 -3507 (|#2| $)) (-15 -1458 (|#1| $)) (-15 -2437 ($ |#1| |#2|)) (-15 -3620 ((-3 $ "failed") $ $)))) (-158) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -651)) -((-3507 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-651 *3 *2 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1458 (*1 *2 *1) (-12 (-4 *2 (-158)) (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2437 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3620 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-339) (-10 -8 (-15 -3507 (|#2| $)) (-15 -1458 (|#1| $)) (-15 -2437 ($ |#1| |#2|)) (-15 -3620 ((-3 $ "failed") $ $)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 30)) (-2854 (((-1168 |#1|) $ (-710)) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-3131 (($ (-1083 |#1|)) NIL)) (-1786 (((-1083 $) $ (-1001)) NIL) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1001))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2407 (($ $ $) NIL (|has| |#1| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1703 (((-710)) 47 (|has| |#1| (-344)))) (-2692 (($ $ (-710)) NIL)) (-2482 (($ $ (-710)) NIL)) (-2686 ((|#2| |#2|) 44)) (-3444 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-427)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1001) "failed") $) NIL)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1001) $) NIL)) (-3078 (($ $ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $ $) NIL (|has| |#1| (-158)))) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) 34)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2437 (($ |#2|) 42)) (-2121 (((-3 $ "failed") $) 85)) (-4032 (($) 51 (|has| |#1| (-344)))) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-3666 (($ $ $) NIL)) (-2349 (($ $ $) NIL (|has| |#1| (-515)))) (-2815 (((-2 (|:| -2935 |#1|) (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1227 (((-888 $)) 79)) (-1284 (($ $ |#1| (-710) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1640 (((-710) $ $) NIL (|has| |#1| (-515)))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-1063)))) (-1945 (($ (-1083 |#1|) (-1001)) NIL) (($ (-1083 $) (-1001)) NIL)) (-1349 (($ $ (-710)) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) 77) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1001)) NIL) (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3507 ((|#2|) 45)) (-1575 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-710) (-710)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (((-1083 |#1|) $) NIL)) (-2520 (((-3 (-1001) "failed") $) NIL)) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-2428 ((|#2| $) 41)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) 28)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-2150 (((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710)) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-1001)) (|:| -2735 (-710))) "failed") $) NIL)) (-3417 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2262 (($) NIL (|has| |#1| (-1063)) CONST)) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1429 (($ $) 78 (|has| |#1| (-325)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#1|) NIL) (($ $ (-589 (-1001)) (-589 |#1|)) NIL) (($ $ (-1001) $) NIL) (($ $ (-589 (-1001)) (-589 $)) NIL)) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-383 $) (-383 $) (-383 $)) NIL (|has| |#1| (-515))) ((|#1| (-383 $) |#1|) NIL (|has| |#1| (-339))) (((-383 $) $ (-383 $)) NIL (|has| |#1| (-515)))) (-3255 (((-3 $ "failed") $ (-710)) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 86 (|has| |#1| (-339)))) (-3549 (($ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $) NIL (|has| |#1| (-158)))) (-3523 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2299 (((-710) $) 32) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-2149 (((-888 $)) 36)) (-1260 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515))) (((-3 (-383 $) "failed") (-383 $) $) NIL (|has| |#1| (-515)))) (-1458 (((-794) $) 61) (($ (-523)) NIL) (($ |#1|) 58) (($ (-1001)) NIL) (($ |#2|) 68) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) 63) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 20 T CONST)) (-3329 (((-1168 |#1|) $) 75)) (-1706 (($ (-1168 |#1|)) 50)) (-2767 (($) 8 T CONST)) (-2862 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4150 (((-1168 |#1|) $) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 69)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) 72) (($ $ $) NIL)) (-4075 (($ $ $) 33)) (** (($ $ (-852)) NIL) (($ $ (-710)) 80)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 57) (($ $ $) 74) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-652 |#1| |#2|) (-13 (-1144 |#1|) (-10 -8 (-15 -2686 (|#2| |#2|)) (-15 -3507 (|#2|)) (-15 -2437 ($ |#2|)) (-15 -2428 (|#2| $)) (-15 -1458 ($ |#2|)) (-15 -3329 ((-1168 |#1|) $)) (-15 -1706 ($ (-1168 |#1|))) (-15 -4150 ((-1168 |#1|) $)) (-15 -1227 ((-888 $))) (-15 -2149 ((-888 $))) (IF (|has| |#1| (-325)) (-15 -1429 ($ $)) |%noBranch|) (IF (|has| |#1| (-344)) (-6 (-344)) |%noBranch|))) (-973) (-1144 |#1|)) (T -652)) -((-2686 (*1 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1144 *3)))) (-3507 (*1 *2) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-652 *3 *2)) (-4 *3 (-973)))) (-2437 (*1 *1 *2) (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1144 *3)))) (-2428 (*1 *2 *1) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-652 *3 *2)) (-4 *3 (-973)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1144 *3)))) (-3329 (*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-1168 *3)) (-5 *1 (-652 *3 *4)) (-4 *4 (-1144 *3)))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-973)) (-5 *1 (-652 *3 *4)) (-4 *4 (-1144 *3)))) (-4150 (*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-1168 *3)) (-5 *1 (-652 *3 *4)) (-4 *4 (-1144 *3)))) (-1227 (*1 *2) (-12 (-4 *3 (-973)) (-5 *2 (-888 (-652 *3 *4))) (-5 *1 (-652 *3 *4)) (-4 *4 (-1144 *3)))) (-2149 (*1 *2) (-12 (-4 *3 (-973)) (-5 *2 (-888 (-652 *3 *4))) (-5 *1 (-652 *3 *4)) (-4 *4 (-1144 *3)))) (-1429 (*1 *1 *1) (-12 (-4 *2 (-325)) (-4 *2 (-973)) (-5 *1 (-652 *2 *3)) (-4 *3 (-1144 *2))))) -(-13 (-1144 |#1|) (-10 -8 (-15 -2686 (|#2| |#2|)) (-15 -3507 (|#2|)) (-15 -2437 ($ |#2|)) (-15 -2428 (|#2| $)) (-15 -1458 ($ |#2|)) (-15 -3329 ((-1168 |#1|) $)) (-15 -1706 ($ (-1168 |#1|))) (-15 -4150 ((-1168 |#1|) $)) (-15 -1227 ((-888 $))) (-15 -2149 ((-888 $))) (IF (|has| |#1| (-325)) (-15 -1429 ($ $)) |%noBranch|) (IF (|has| |#1| (-344)) (-6 (-344)) |%noBranch|))) -((-3924 (((-108) $ $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-3878 ((|#1| $) 13)) (-2783 (((-1034) $) NIL)) (-2735 ((|#2| $) 12)) (-1472 (($ |#1| |#2|) 16)) (-1458 (((-794) $) NIL) (($ (-2 (|:| -3878 |#1|) (|:| -2735 |#2|))) 15) (((-2 (|:| -3878 |#1|) (|:| -2735 |#2|)) $) 14)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 11))) -(((-653 |#1| |#2| |#3|) (-13 (-786) (-10 -8 (-15 -2735 (|#2| $)) (-15 -3878 (|#1| $)) (-15 -1458 ($ (-2 (|:| -3878 |#1|) (|:| -2735 |#2|)))) (-15 -1458 ((-2 (|:| -3878 |#1|) (|:| -2735 |#2|)) $)) (-15 -1472 ($ |#1| |#2|)))) (-786) (-1016) (-1 (-108) (-2 (|:| -3878 |#1|) (|:| -2735 |#2|)) (-2 (|:| -3878 |#1|) (|:| -2735 |#2|)))) (T -653)) -((-2735 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-653 *3 *2 *4)) (-4 *3 (-786)) (-14 *4 (-1 (-108) (-2 (|:| -3878 *3) (|:| -2735 *2)) (-2 (|:| -3878 *3) (|:| -2735 *2)))))) (-3878 (*1 *2 *1) (-12 (-4 *2 (-786)) (-5 *1 (-653 *2 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *3)) (-2 (|:| -3878 *2) (|:| -2735 *3)))))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3878 *3) (|:| -2735 *4))) (-4 *3 (-786)) (-4 *4 (-1016)) (-5 *1 (-653 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3878 *3) (|:| -2735 *4))) (-5 *1 (-653 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-1016)) (-14 *5 (-1 (-108) *2 *2)))) (-1472 (*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4)) (-4 *2 (-786)) (-4 *3 (-1016)) (-14 *4 (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *3)) (-2 (|:| -3878 *2) (|:| -2735 *3))))))) -(-13 (-786) (-10 -8 (-15 -2735 (|#2| $)) (-15 -3878 (|#1| $)) (-15 -1458 ($ (-2 (|:| -3878 |#1|) (|:| -2735 |#2|)))) (-15 -1458 ((-2 (|:| -3878 |#1|) (|:| -2735 |#2|)) $)) (-15 -1472 ($ |#1| |#2|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 59)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-3474 ((|#1| $) NIL) (((-110) $) 39)) (-2121 (((-3 $ "failed") $) 90)) (-1257 ((|#2| (-110) |#2|) 82)) (-2023 (((-108) $) NIL)) (-4209 (($ |#1| (-337 (-110))) 13)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3512 (($ $ (-1 |#2| |#2|)) 58)) (-2038 (($ $ (-1 |#2| |#2|)) 44)) (-3223 ((|#2| $ |#2|) 32)) (-4056 ((|#1| |#1|) 100 (|has| |#1| (-158)))) (-1458 (((-794) $) 66) (($ (-523)) 17) (($ |#1|) 16) (($ (-110)) 23)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) 36)) (-2708 (($ $) 99 (|has| |#1| (-158))) (($ $ $) 103 (|has| |#1| (-158)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 20 T CONST)) (-2767 (($) 9 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) 48) (($ $ $) NIL)) (-4075 (($ $ $) 73)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ (-110) (-523)) NIL) (($ $ (-523)) 57)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-158))) (($ $ |#1|) 97 (|has| |#1| (-158))))) -(((-654 |#1| |#2|) (-13 (-973) (-964 |#1|) (-964 (-110)) (-263 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-6 (-37 |#1|)) (-15 -2708 ($ $)) (-15 -2708 ($ $ $)) (-15 -4056 (|#1| |#1|))) |%noBranch|) (-15 -2038 ($ $ (-1 |#2| |#2|))) (-15 -3512 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-523))) (-15 ** ($ $ (-523))) (-15 -1257 (|#2| (-110) |#2|)) (-15 -4209 ($ |#1| (-337 (-110)))))) (-973) (-591 |#1|)) (T -654)) -((-2708 (*1 *1 *1) (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) (-4 *3 (-591 *2)))) (-2708 (*1 *1 *1 *1) (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) (-4 *3 (-591 *2)))) (-4056 (*1 *2 *2) (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) (-4 *3 (-591 *2)))) (-2038 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-973)) (-5 *1 (-654 *3 *4)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-973)) (-5 *1 (-654 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-523)) (-4 *4 (-973)) (-5 *1 (-654 *4 *5)) (-4 *5 (-591 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *3 (-973)) (-5 *1 (-654 *3 *4)) (-4 *4 (-591 *3)))) (-1257 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-973)) (-5 *1 (-654 *4 *2)) (-4 *2 (-591 *4)))) (-4209 (*1 *1 *2 *3) (-12 (-5 *3 (-337 (-110))) (-4 *2 (-973)) (-5 *1 (-654 *2 *4)) (-4 *4 (-591 *2))))) -(-13 (-973) (-964 |#1|) (-964 (-110)) (-263 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-6 (-37 |#1|)) (-15 -2708 ($ $)) (-15 -2708 ($ $ $)) (-15 -4056 (|#1| |#1|))) |%noBranch|) (-15 -2038 ($ $ (-1 |#2| |#2|))) (-15 -3512 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-523))) (-15 ** ($ $ (-523))) (-15 -1257 (|#2| (-110) |#2|)) (-15 -4209 ($ |#1| (-337 (-110)))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 33)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2437 (($ |#1| |#2|) 25)) (-2121 (((-3 $ "failed") $) 47)) (-2023 (((-108) $) 35)) (-3507 ((|#2| $) 12)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 48)) (-2783 (((-1034) $) NIL)) (-3620 (((-3 $ "failed") $ $) 46)) (-1458 (((-794) $) 24) (($ (-523)) 19) ((|#1| $) 13)) (-1621 (((-710)) 28)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 16 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 38)) (-4087 (($ $) 43) (($ $ $) 37)) (-4075 (($ $ $) 40)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 21) (($ $ $) 20))) -(((-655 |#1| |#2| |#3| |#4| |#5|) (-13 (-973) (-10 -8 (-15 -3507 (|#2| $)) (-15 -1458 (|#1| $)) (-15 -2437 ($ |#1| |#2|)) (-15 -3620 ((-3 $ "failed") $ $)) (-15 -2121 ((-3 $ "failed") $)) (-15 -3738 ($ $)))) (-158) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -655)) -((-2121 (*1 *1 *1) (|partial| -12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3507 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-655 *3 *2 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1458 (*1 *2 *1) (-12 (-4 *2 (-158)) (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2437 (*1 *1 *2 *3) (-12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3620 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3738 (*1 *1 *1) (-12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-973) (-10 -8 (-15 -3507 (|#2| $)) (-15 -1458 (|#1| $)) (-15 -2437 ($ |#1| |#2|)) (-15 -3620 ((-3 $ "failed") $ $)) (-15 -2121 ((-3 $ "failed") $)) (-15 -3738 ($ $)))) +((-1345 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-649 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1345 (|#6| (-1 |#4| |#1|) |#3|))) (-515) (-1145 |#1|) (-1145 (-383 |#2|)) (-515) (-1145 |#4|) (-1145 (-383 |#5|))) (T -649)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-515)) (-4 *7 (-515)) (-4 *6 (-1145 *5)) (-4 *2 (-1145 (-383 *8))) (-5 *1 (-649 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1145 (-383 *6))) (-4 *8 (-1145 *7))))) +(-10 -7 (-15 -1345 (|#6| (-1 |#4| |#1|) |#3|))) +((-1680 (((-108) $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2824 (((-1070) (-794)) 31)) (-1239 (((-1174) (-1070)) 28)) (-2305 (((-1070) (-794)) 24)) (-1974 (((-1070) (-794)) 25)) (-1691 (((-794) $) NIL) (((-1070) (-794)) 23)) (-3941 (((-108) $ $) NIL))) +(((-650) (-13 (-1016) (-10 -7 (-15 -1691 ((-1070) (-794))) (-15 -2305 ((-1070) (-794))) (-15 -1974 ((-1070) (-794))) (-15 -2824 ((-1070) (-794))) (-15 -1239 ((-1174) (-1070)))))) (T -650)) +((-1691 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) (-2305 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) (-1239 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-650))))) +(-13 (-1016) (-10 -7 (-15 -1691 ((-1070) (-794))) (-15 -2305 ((-1070) (-794))) (-15 -1974 ((-1070) (-794))) (-15 -2824 ((-1070) (-794))) (-15 -1239 ((-1174) (-1070))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-4059 (($ $ $) NIL)) (-2116 (($ |#1| |#2|) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-2769 (((-108) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2547 ((|#2| $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1271 (((-3 $ "failed") $ $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) ((|#1| $) NIL)) (-3272 (((-710)) NIL)) (-2801 (((-108) $ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-651 |#1| |#2| |#3| |#4| |#5|) (-13 (-339) (-10 -8 (-15 -2547 (|#2| $)) (-15 -1691 (|#1| $)) (-15 -2116 ($ |#1| |#2|)) (-15 -1271 ((-3 $ "failed") $ $)))) (-158) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -651)) +((-2547 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-651 *3 *2 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1691 (*1 *2 *1) (-12 (-4 *2 (-158)) (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2116 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1271 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-339) (-10 -8 (-15 -2547 (|#2| $)) (-15 -1691 (|#1| $)) (-15 -2116 ($ |#1| |#2|)) (-15 -1271 ((-3 $ "failed") $ $)))) +((-1680 (((-108) $ $) 78)) (-2603 (((-108) $) 30)) (-1317 (((-1169 |#1|) $ (-710)) NIL)) (-1292 (((-589 (-1001)) $) NIL)) (-3859 (($ (-1083 |#1|)) NIL)) (-2389 (((-1083 $) $ (-1001)) NIL) (((-1083 |#1|) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 (-1001))) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2485 (($ $ $) NIL (|has| |#1| (-515)))) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3718 (($ $) NIL (|has| |#1| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-2395 (((-710)) 47 (|has| |#1| (-344)))) (-2199 (($ $ (-710)) NIL)) (-3811 (($ $ (-710)) NIL)) (-2145 ((|#2| |#2|) 44)) (-3061 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-427)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1001) "failed") $) NIL)) (-3508 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1001) $) NIL)) (-1611 (($ $ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $ $) NIL (|has| |#1| (-158)))) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-1457 (($ $) 34)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2116 (($ |#2|) 42)) (-1444 (((-3 $ "failed") $) 86)) (-1631 (($) 51 (|has| |#1| (-344)))) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-3425 (($ $ $) NIL)) (-3082 (($ $ $) NIL (|has| |#1| (-515)))) (-3999 (((-2 (|:| -3474 |#1|) (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-515)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-1272 (($ $) NIL (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#1| (-840)))) (-1787 (((-888 $)) 80)) (-4222 (($ $ |#1| (-710) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-3437 (((-710) $ $) NIL (|has| |#1| (-515)))) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-2738 (((-3 $ "failed") $) NIL (|has| |#1| (-1063)))) (-1280 (($ (-1083 |#1|) (-1001)) NIL) (($ (-1083 $) (-1001)) NIL)) (-3590 (($ $ (-710)) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-710)) 77) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ (-1001)) NIL) (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2547 ((|#2|) 45)) (-4047 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2041 (($ (-1 (-710) (-710)) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-3805 (((-1083 |#1|) $) NIL)) (-4213 (((-3 (-1001) "failed") $) NIL)) (-2060 (((-852) $) NIL (|has| |#1| (-344)))) (-2104 ((|#2| $) 41)) (-1427 (($ $) NIL)) (-1437 ((|#1| $) 28)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2032 (((-1070) $) NIL)) (-1716 (((-2 (|:| -3070 $) (|:| -3969 $)) $ (-710)) NIL)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| (-1001)) (|:| -1475 (-710))) "failed") $) NIL)) (-2814 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2773 (($) NIL (|has| |#1| (-1063)) CONST)) (-4013 (($ (-852)) NIL (|has| |#1| (-344)))) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) NIL)) (-1419 ((|#1| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2039 (($ $) 79 (|has| |#1| (-325)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-840)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#1|) NIL) (($ $ (-589 (-1001)) (-589 |#1|)) NIL) (($ $ (-1001) $) NIL) (($ $ (-589 (-1001)) (-589 $)) NIL)) (-3413 (((-710) $) NIL (|has| |#1| (-339)))) (-1937 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-383 $) (-383 $) (-383 $)) NIL (|has| |#1| (-515))) ((|#1| (-383 $) |#1|) NIL (|has| |#1| (-339))) (((-383 $) $ (-383 $)) NIL (|has| |#1| (-515)))) (-3801 (((-3 $ "failed") $ (-710)) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 87 (|has| |#1| (-339)))) (-1744 (($ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $) NIL (|has| |#1| (-158)))) (-3984 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2640 (((-710) $) 32) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-1618 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1705 (((-888 $)) 36)) (-3923 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515))) (((-3 (-383 $) "failed") (-383 $) $) NIL (|has| |#1| (-515)))) (-1691 (((-794) $) 61) (($ (-523)) NIL) (($ |#1|) 58) (($ (-1001)) NIL) (($ |#2|) 68) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-710)) 63) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 20 T CONST)) (-3151 (((-1169 |#1|) $) 75)) (-2821 (($ (-1169 |#1|)) 50)) (-1891 (($) 8 T CONST)) (-2909 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2409 (((-1169 |#1|) $) NIL)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) 69)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $) 72) (($ $ $) NIL)) (-4045 (($ $ $) 33)) (** (($ $ (-852)) NIL) (($ $ (-710)) 81)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 57) (($ $ $) 74) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-652 |#1| |#2|) (-13 (-1145 |#1|) (-10 -8 (-15 -2145 (|#2| |#2|)) (-15 -2547 (|#2|)) (-15 -2116 ($ |#2|)) (-15 -2104 (|#2| $)) (-15 -1691 ($ |#2|)) (-15 -3151 ((-1169 |#1|) $)) (-15 -2821 ($ (-1169 |#1|))) (-15 -2409 ((-1169 |#1|) $)) (-15 -1787 ((-888 $))) (-15 -1705 ((-888 $))) (IF (|has| |#1| (-325)) (-15 -2039 ($ $)) |%noBranch|) (IF (|has| |#1| (-344)) (-6 (-344)) |%noBranch|))) (-973) (-1145 |#1|)) (T -652)) +((-2145 (*1 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1145 *3)))) (-2547 (*1 *2) (-12 (-4 *2 (-1145 *3)) (-5 *1 (-652 *3 *2)) (-4 *3 (-973)))) (-2116 (*1 *1 *2) (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1145 *3)))) (-2104 (*1 *2 *1) (-12 (-4 *2 (-1145 *3)) (-5 *1 (-652 *3 *2)) (-4 *3 (-973)))) (-1691 (*1 *1 *2) (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1145 *3)))) (-3151 (*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-1169 *3)) (-5 *1 (-652 *3 *4)) (-4 *4 (-1145 *3)))) (-2821 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-973)) (-5 *1 (-652 *3 *4)) (-4 *4 (-1145 *3)))) (-2409 (*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-1169 *3)) (-5 *1 (-652 *3 *4)) (-4 *4 (-1145 *3)))) (-1787 (*1 *2) (-12 (-4 *3 (-973)) (-5 *2 (-888 (-652 *3 *4))) (-5 *1 (-652 *3 *4)) (-4 *4 (-1145 *3)))) (-1705 (*1 *2) (-12 (-4 *3 (-973)) (-5 *2 (-888 (-652 *3 *4))) (-5 *1 (-652 *3 *4)) (-4 *4 (-1145 *3)))) (-2039 (*1 *1 *1) (-12 (-4 *2 (-325)) (-4 *2 (-973)) (-5 *1 (-652 *2 *3)) (-4 *3 (-1145 *2))))) +(-13 (-1145 |#1|) (-10 -8 (-15 -2145 (|#2| |#2|)) (-15 -2547 (|#2|)) (-15 -2116 ($ |#2|)) (-15 -2104 (|#2| $)) (-15 -1691 ($ |#2|)) (-15 -3151 ((-1169 |#1|) $)) (-15 -2821 ($ (-1169 |#1|))) (-15 -2409 ((-1169 |#1|) $)) (-15 -1787 ((-888 $))) (-15 -1705 ((-888 $))) (IF (|has| |#1| (-325)) (-15 -2039 ($ $)) |%noBranch|) (IF (|has| |#1| (-344)) (-6 (-344)) |%noBranch|))) +((-1680 (((-108) $ $) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-4013 ((|#1| $) 13)) (-3951 (((-1034) $) NIL)) (-1475 ((|#2| $) 12)) (-1704 (($ |#1| |#2|) 16)) (-1691 (((-794) $) NIL) (($ (-2 (|:| -4013 |#1|) (|:| -1475 |#2|))) 15) (((-2 (|:| -4013 |#1|) (|:| -1475 |#2|)) $) 14)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 11))) +(((-653 |#1| |#2| |#3|) (-13 (-786) (-10 -8 (-15 -1475 (|#2| $)) (-15 -4013 (|#1| $)) (-15 -1691 ($ (-2 (|:| -4013 |#1|) (|:| -1475 |#2|)))) (-15 -1691 ((-2 (|:| -4013 |#1|) (|:| -1475 |#2|)) $)) (-15 -1704 ($ |#1| |#2|)))) (-786) (-1016) (-1 (-108) (-2 (|:| -4013 |#1|) (|:| -1475 |#2|)) (-2 (|:| -4013 |#1|) (|:| -1475 |#2|)))) (T -653)) +((-1475 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-653 *3 *2 *4)) (-4 *3 (-786)) (-14 *4 (-1 (-108) (-2 (|:| -4013 *3) (|:| -1475 *2)) (-2 (|:| -4013 *3) (|:| -1475 *2)))))) (-4013 (*1 *2 *1) (-12 (-4 *2 (-786)) (-5 *1 (-653 *2 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-1 (-108) (-2 (|:| -4013 *2) (|:| -1475 *3)) (-2 (|:| -4013 *2) (|:| -1475 *3)))))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4013 *3) (|:| -1475 *4))) (-4 *3 (-786)) (-4 *4 (-1016)) (-5 *1 (-653 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4013 *3) (|:| -1475 *4))) (-5 *1 (-653 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-1016)) (-14 *5 (-1 (-108) *2 *2)))) (-1704 (*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4)) (-4 *2 (-786)) (-4 *3 (-1016)) (-14 *4 (-1 (-108) (-2 (|:| -4013 *2) (|:| -1475 *3)) (-2 (|:| -4013 *2) (|:| -1475 *3))))))) +(-13 (-786) (-10 -8 (-15 -1475 (|#2| $)) (-15 -4013 (|#1| $)) (-15 -1691 ($ (-2 (|:| -4013 |#1|) (|:| -1475 |#2|)))) (-15 -1691 ((-2 (|:| -4013 |#1|) (|:| -1475 |#2|)) $)) (-15 -1704 ($ |#1| |#2|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 59)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-3508 ((|#1| $) NIL) (((-110) $) 39)) (-1444 (((-3 $ "failed") $) 90)) (-3888 ((|#2| (-110) |#2|) 82)) (-2769 (((-108) $) NIL)) (-4214 (($ |#1| (-337 (-110))) 13)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1450 (($ $ (-1 |#2| |#2|)) 58)) (-2898 (($ $ (-1 |#2| |#2|)) 44)) (-1937 ((|#2| $ |#2|) 32)) (-2718 ((|#1| |#1|) 100 (|has| |#1| (-158)))) (-1691 (((-794) $) 66) (($ (-523)) 17) (($ |#1|) 16) (($ (-110)) 23)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) 36)) (-2346 (($ $) 99 (|has| |#1| (-158))) (($ $ $) 103 (|has| |#1| (-158)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 20 T CONST)) (-1891 (($) 9 T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) 48) (($ $ $) NIL)) (-4045 (($ $ $) 73)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ (-110) (-523)) NIL) (($ $ (-523)) 57)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-158))) (($ $ |#1|) 97 (|has| |#1| (-158))))) +(((-654 |#1| |#2|) (-13 (-973) (-964 |#1|) (-964 (-110)) (-263 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-6 (-37 |#1|)) (-15 -2346 ($ $)) (-15 -2346 ($ $ $)) (-15 -2718 (|#1| |#1|))) |%noBranch|) (-15 -2898 ($ $ (-1 |#2| |#2|))) (-15 -1450 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-523))) (-15 ** ($ $ (-523))) (-15 -3888 (|#2| (-110) |#2|)) (-15 -4214 ($ |#1| (-337 (-110)))))) (-973) (-591 |#1|)) (T -654)) +((-2346 (*1 *1 *1) (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) (-4 *3 (-591 *2)))) (-2346 (*1 *1 *1 *1) (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) (-4 *3 (-591 *2)))) (-2718 (*1 *2 *2) (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) (-4 *3 (-591 *2)))) (-2898 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-973)) (-5 *1 (-654 *3 *4)))) (-1450 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-973)) (-5 *1 (-654 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-523)) (-4 *4 (-973)) (-5 *1 (-654 *4 *5)) (-4 *5 (-591 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *3 (-973)) (-5 *1 (-654 *3 *4)) (-4 *4 (-591 *3)))) (-3888 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-973)) (-5 *1 (-654 *4 *2)) (-4 *2 (-591 *4)))) (-4214 (*1 *1 *2 *3) (-12 (-5 *3 (-337 (-110))) (-4 *2 (-973)) (-5 *1 (-654 *2 *4)) (-4 *4 (-591 *2))))) +(-13 (-973) (-964 |#1|) (-964 (-110)) (-263 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-6 (-37 |#1|)) (-15 -2346 ($ $)) (-15 -2346 ($ $ $)) (-15 -2718 (|#1| |#1|))) |%noBranch|) (-15 -2898 ($ $ (-1 |#2| |#2|))) (-15 -1450 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-523))) (-15 ** ($ $ (-523))) (-15 -3888 (|#2| (-110) |#2|)) (-15 -4214 ($ |#1| (-337 (-110)))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 33)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-2116 (($ |#1| |#2|) 25)) (-1444 (((-3 $ "failed") $) 48)) (-2769 (((-108) $) 35)) (-2547 ((|#2| $) 12)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 49)) (-3951 (((-1034) $) NIL)) (-1271 (((-3 $ "failed") $ $) 47)) (-1691 (((-794) $) 24) (($ (-523)) 19) ((|#1| $) 13)) (-3272 (((-710)) 28)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 16 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 38)) (-4060 (($ $) 43) (($ $ $) 37)) (-4045 (($ $ $) 40)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 21) (($ $ $) 20))) +(((-655 |#1| |#2| |#3| |#4| |#5|) (-13 (-973) (-10 -8 (-15 -2547 (|#2| $)) (-15 -1691 (|#1| $)) (-15 -2116 ($ |#1| |#2|)) (-15 -1271 ((-3 $ "failed") $ $)) (-15 -1444 ((-3 $ "failed") $)) (-15 -1396 ($ $)))) (-158) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -655)) +((-1444 (*1 *1 *1) (|partial| -12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2547 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-655 *3 *2 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1691 (*1 *2 *1) (-12 (-4 *2 (-158)) (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2116 (*1 *1 *2 *3) (-12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1271 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1396 (*1 *1 *1) (-12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-973) (-10 -8 (-15 -2547 (|#2| $)) (-15 -1691 (|#1| $)) (-15 -2116 ($ |#1| |#2|)) (-15 -1271 ((-3 $ "failed") $ $)) (-15 -1444 ((-3 $ "failed") $)) (-15 -1396 ($ $)))) ((* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) (((-656 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-657 |#2|) (-158)) (T -656)) NIL (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) (((-657 |#1|) (-129) (-158)) (T -657)) NIL (-13 (-107 |t#1| |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-979 |#1|) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2041 (($ |#1|) 17) (($ $ |#1|) 20)) (-3495 (($ |#1|) 18) (($ $ |#1|) 21)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2023 (((-108) $) NIL)) (-4012 (($ |#1| |#1| |#1| |#1|) 8)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 16)) (-2783 (((-1034) $) NIL)) (-2679 ((|#1| $ |#1|) 24) (((-772 |#1|) $ (-772 |#1|)) 32)) (-3208 (($ $ $) NIL)) (-1714 (($ $ $) NIL)) (-1458 (((-794) $) 39)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2767 (($) 9 T CONST)) (-3983 (((-108) $ $) 44)) (-4098 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ $ $) 14))) -(((-658 |#1|) (-13 (-448) (-10 -8 (-15 -4012 ($ |#1| |#1| |#1| |#1|)) (-15 -2041 ($ |#1|)) (-15 -3495 ($ |#1|)) (-15 -2121 ($)) (-15 -2041 ($ $ |#1|)) (-15 -3495 ($ $ |#1|)) (-15 -2121 ($ $)) (-15 -2679 (|#1| $ |#1|)) (-15 -2679 ((-772 |#1|) $ (-772 |#1|))))) (-339)) (T -658)) -((-4012 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2041 (*1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-3495 (*1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2121 (*1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-3495 (*1 *1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2121 (*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2679 (*1 *2 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2679 (*1 *2 *1 *2) (-12 (-5 *2 (-772 *3)) (-4 *3 (-339)) (-5 *1 (-658 *3))))) -(-13 (-448) (-10 -8 (-15 -4012 ($ |#1| |#1| |#1| |#1|)) (-15 -2041 ($ |#1|)) (-15 -3495 ($ |#1|)) (-15 -2121 ($)) (-15 -2041 ($ $ |#1|)) (-15 -3495 ($ $ |#1|)) (-15 -2121 ($ $)) (-15 -2679 (|#1| $ |#1|)) (-15 -2679 ((-772 |#1|) $ (-772 |#1|))))) -((-1970 (($ $ (-852)) 12)) (-1448 (($ $ (-852)) 13)) (** (($ $ (-852)) 10))) -(((-659 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-852))) (-15 -1448 (|#1| |#1| (-852))) (-15 -1970 (|#1| |#1| (-852)))) (-660)) (T -659)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-852))) (-15 -1448 (|#1| |#1| (-852))) (-15 -1970 (|#1| |#1| (-852)))) -((-3924 (((-108) $ $) 7)) (-1970 (($ $ (-852)) 15)) (-1448 (($ $ (-852)) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6)) (** (($ $ (-852)) 13)) (* (($ $ $) 16))) +((-1680 (((-108) $ $) NIL)) (-2156 (($ |#1|) 17) (($ $ |#1|) 20)) (-2418 (($ |#1|) 18) (($ $ |#1|) 21)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2769 (((-108) $) NIL)) (-3521 (($ |#1| |#1| |#1| |#1|) 8)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 16)) (-3951 (((-1034) $) NIL)) (-2812 ((|#1| $ |#1|) 24) (((-772 |#1|) $ (-772 |#1|)) 32)) (-3361 (($ $ $) NIL)) (-2892 (($ $ $) NIL)) (-1691 (((-794) $) 39)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1891 (($) 9 T CONST)) (-3941 (((-108) $ $) 44)) (-4074 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ $ $) 14))) +(((-658 |#1|) (-13 (-448) (-10 -8 (-15 -3521 ($ |#1| |#1| |#1| |#1|)) (-15 -2156 ($ |#1|)) (-15 -2418 ($ |#1|)) (-15 -1444 ($)) (-15 -2156 ($ $ |#1|)) (-15 -2418 ($ $ |#1|)) (-15 -1444 ($ $)) (-15 -2812 (|#1| $ |#1|)) (-15 -2812 ((-772 |#1|) $ (-772 |#1|))))) (-339)) (T -658)) +((-3521 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2156 (*1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2418 (*1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-1444 (*1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2156 (*1 *1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2418 (*1 *1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-1444 (*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2812 (*1 *2 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2812 (*1 *2 *1 *2) (-12 (-5 *2 (-772 *3)) (-4 *3 (-339)) (-5 *1 (-658 *3))))) +(-13 (-448) (-10 -8 (-15 -3521 ($ |#1| |#1| |#1| |#1|)) (-15 -2156 ($ |#1|)) (-15 -2418 ($ |#1|)) (-15 -1444 ($)) (-15 -2156 ($ $ |#1|)) (-15 -2418 ($ $ |#1|)) (-15 -1444 ($ $)) (-15 -2812 (|#1| $ |#1|)) (-15 -2812 ((-772 |#1|) $ (-772 |#1|))))) +((-3402 (($ $ (-852)) 12)) (-2237 (($ $ (-852)) 13)) (** (($ $ (-852)) 10))) +(((-659 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-852))) (-15 -2237 (|#1| |#1| (-852))) (-15 -3402 (|#1| |#1| (-852)))) (-660)) (T -659)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-852))) (-15 -2237 (|#1| |#1| (-852))) (-15 -3402 (|#1| |#1| (-852)))) +((-1680 (((-108) $ $) 7)) (-3402 (($ $ (-852)) 15)) (-2237 (($ $ (-852)) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-3941 (((-108) $ $) 6)) (** (($ $ (-852)) 13)) (* (($ $ $) 16))) (((-660) (-129)) (T -660)) -((* (*1 *1 *1 *1) (-4 *1 (-660))) (-1970 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) (-1448 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852))))) -(-13 (-1016) (-10 -8 (-15 * ($ $ $)) (-15 -1970 ($ $ (-852))) (-15 -1448 ($ $ (-852))) (-15 ** ($ $ (-852))))) +((* (*1 *1 *1 *1) (-4 *1 (-660))) (-3402 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) (-2237 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852))))) +(-13 (-1016) (-10 -8 (-15 * ($ $ $)) (-15 -3402 ($ $ (-852))) (-15 -2237 ($ $ (-852))) (-15 ** ($ $ (-852))))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-1970 (($ $ (-852)) NIL) (($ $ (-710)) 17)) (-2023 (((-108) $) 10)) (-1448 (($ $ (-852)) NIL) (($ $ (-710)) 18)) (** (($ $ (-852)) NIL) (($ $ (-710)) 15))) -(((-661 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-710))) (-15 -1448 (|#1| |#1| (-710))) (-15 -1970 (|#1| |#1| (-710))) (-15 -2023 ((-108) |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 -1448 (|#1| |#1| (-852))) (-15 -1970 (|#1| |#1| (-852)))) (-662)) (T -661)) +((-3402 (($ $ (-852)) NIL) (($ $ (-710)) 17)) (-2769 (((-108) $) 10)) (-2237 (($ $ (-852)) NIL) (($ $ (-710)) 18)) (** (($ $ (-852)) NIL) (($ $ (-710)) 15))) +(((-661 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-710))) (-15 -2237 (|#1| |#1| (-710))) (-15 -3402 (|#1| |#1| (-710))) (-15 -2769 ((-108) |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 -2237 (|#1| |#1| (-852))) (-15 -3402 (|#1| |#1| (-852)))) (-662)) (T -661)) NIL -(-10 -8 (-15 ** (|#1| |#1| (-710))) (-15 -1448 (|#1| |#1| (-710))) (-15 -1970 (|#1| |#1| (-710))) (-15 -2023 ((-108) |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 -1448 (|#1| |#1| (-852))) (-15 -1970 (|#1| |#1| (-852)))) -((-3924 (((-108) $ $) 7)) (-2532 (((-3 $ "failed") $) 17)) (-1970 (($ $ (-852)) 15) (($ $ (-710)) 22)) (-2121 (((-3 $ "failed") $) 19)) (-2023 (((-108) $) 23)) (-1579 (((-3 $ "failed") $) 18)) (-1448 (($ $ (-852)) 14) (($ $ (-710)) 21)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2767 (($) 24 T CONST)) (-3983 (((-108) $ $) 6)) (** (($ $ (-852)) 13) (($ $ (-710)) 20)) (* (($ $ $) 16))) +(-10 -8 (-15 ** (|#1| |#1| (-710))) (-15 -2237 (|#1| |#1| (-710))) (-15 -3402 (|#1| |#1| (-710))) (-15 -2769 ((-108) |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 -2237 (|#1| |#1| (-852))) (-15 -3402 (|#1| |#1| (-852)))) +((-1680 (((-108) $ $) 7)) (-1307 (((-3 $ "failed") $) 17)) (-3402 (($ $ (-852)) 15) (($ $ (-710)) 22)) (-1444 (((-3 $ "failed") $) 19)) (-2769 (((-108) $) 23)) (-4097 (((-3 $ "failed") $) 18)) (-2237 (($ $ (-852)) 14) (($ $ (-710)) 21)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1891 (($) 24 T CONST)) (-3941 (((-108) $ $) 6)) (** (($ $ (-852)) 13) (($ $ (-710)) 20)) (* (($ $ $) 16))) (((-662) (-129)) (T -662)) -((-2767 (*1 *1) (-4 *1 (-662))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-662)) (-5 *2 (-108)))) (-1970 (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710)))) (-1448 (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710)))) (-2121 (*1 *1 *1) (|partial| -4 *1 (-662))) (-1579 (*1 *1 *1) (|partial| -4 *1 (-662))) (-2532 (*1 *1 *1) (|partial| -4 *1 (-662)))) -(-13 (-660) (-10 -8 (-15 (-2767) ($) -3059) (-15 -2023 ((-108) $)) (-15 -1970 ($ $ (-710))) (-15 -1448 ($ $ (-710))) (-15 ** ($ $ (-710))) (-15 -2121 ((-3 $ "failed") $)) (-15 -1579 ((-3 $ "failed") $)) (-15 -2532 ((-3 $ "failed") $)))) +((-1891 (*1 *1) (-4 *1 (-662))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-662)) (-5 *2 (-108)))) (-3402 (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710)))) (-2237 (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710)))) (-1444 (*1 *1 *1) (|partial| -4 *1 (-662))) (-4097 (*1 *1 *1) (|partial| -4 *1 (-662))) (-1307 (*1 *1 *1) (|partial| -4 *1 (-662)))) +(-13 (-660) (-10 -8 (-15 (-1891) ($) -2501) (-15 -2769 ((-108) $)) (-15 -3402 ($ $ (-710))) (-15 -2237 ($ $ (-710))) (-15 ** ($ $ (-710))) (-15 -1444 ((-3 $ "failed") $)) (-15 -4097 ((-3 $ "failed") $)) (-15 -1307 ((-3 $ "failed") $)))) (((-97) . T) ((-563 (-794)) . T) ((-660) . T) ((-1016) . T)) -((-1703 (((-710)) 35)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3474 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#2| $) 22)) (-2437 (($ |#3|) NIL) (((-3 $ "failed") (-383 |#3|)) 45)) (-2121 (((-3 $ "failed") $) 65)) (-4032 (($) 39)) (-3892 ((|#2| $) 20)) (-3441 (($) 17)) (-3523 (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-1976 (((-629 |#2|) (-1168 $) (-1 |#2| |#2|)) 60)) (-3663 (((-1168 |#2|) $) NIL) (($ (-1168 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1807 ((|#3| $) 32)) (-4041 (((-1168 $)) 29))) -(((-663 |#1| |#2| |#3|) (-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -4032 (|#1|)) (-15 -1703 ((-710))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -1976 ((-629 |#2|) (-1168 |#1|) (-1 |#2| |#2|))) (-15 -2437 ((-3 |#1| "failed") (-383 |#3|))) (-15 -3663 (|#1| |#3|)) (-15 -2437 (|#1| |#3|)) (-15 -3441 (|#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3663 (|#3| |#1|)) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -4041 ((-1168 |#1|))) (-15 -1807 (|#3| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|))) (-664 |#2| |#3|) (-158) (-1144 |#2|)) (T -663)) -((-1703 (*1 *2) (-12 (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-710)) (-5 *1 (-663 *3 *4 *5)) (-4 *3 (-664 *4 *5))))) -(-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -4032 (|#1|)) (-15 -1703 ((-710))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -1976 ((-629 |#2|) (-1168 |#1|) (-1 |#2| |#2|))) (-15 -2437 ((-3 |#1| "failed") (-383 |#3|))) (-15 -3663 (|#1| |#3|)) (-15 -2437 (|#1| |#3|)) (-15 -3441 (|#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3663 (|#3| |#1|)) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -4041 ((-1168 |#1|))) (-15 -1807 (|#3| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 93 (|has| |#1| (-339)))) (-3345 (($ $) 94 (|has| |#1| (-339)))) (-3331 (((-108) $) 96 (|has| |#1| (-339)))) (-3750 (((-629 |#1|) (-1168 $)) 46) (((-629 |#1|)) 61)) (-4187 ((|#1| $) 52)) (-2430 (((-1096 (-852) (-710)) (-523)) 147 (|has| |#1| (-325)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 113 (|has| |#1| (-339)))) (-3614 (((-394 $) $) 114 (|has| |#1| (-339)))) (-1387 (((-108) $ $) 104 (|has| |#1| (-339)))) (-1703 (((-710)) 87 (|has| |#1| (-344)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 169 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 167 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 166)) (-3474 (((-523) $) 170 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 168 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 165)) (-3409 (($ (-1168 |#1|) (-1168 $)) 48) (($ (-1168 |#1|)) 64)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-325)))) (-3796 (($ $ $) 108 (|has| |#1| (-339)))) (-4079 (((-629 |#1|) $ (-1168 $)) 53) (((-629 |#1|) $) 59)) (-2381 (((-629 (-523)) (-629 $)) 164 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 163 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 162) (((-629 |#1|) (-629 $)) 161)) (-2437 (($ |#2|) 158) (((-3 $ "failed") (-383 |#2|)) 155 (|has| |#1| (-339)))) (-2121 (((-3 $ "failed") $) 34)) (-1319 (((-852)) 54)) (-4032 (($) 90 (|has| |#1| (-344)))) (-3769 (($ $ $) 107 (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 102 (|has| |#1| (-339)))) (-1996 (($) 149 (|has| |#1| (-325)))) (-2155 (((-108) $) 150 (|has| |#1| (-325)))) (-1991 (($ $ (-710)) 141 (|has| |#1| (-325))) (($ $) 140 (|has| |#1| (-325)))) (-2657 (((-108) $) 115 (|has| |#1| (-339)))) (-1640 (((-852) $) 152 (|has| |#1| (-325))) (((-772 (-852)) $) 138 (|has| |#1| (-325)))) (-2023 (((-108) $) 31)) (-3892 ((|#1| $) 51)) (-4058 (((-3 $ "failed") $) 142 (|has| |#1| (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 111 (|has| |#1| (-339)))) (-1397 ((|#2| $) 44 (|has| |#1| (-339)))) (-2072 (((-852) $) 89 (|has| |#1| (-344)))) (-2428 ((|#2| $) 156)) (-3244 (($ (-589 $)) 100 (|has| |#1| (-339))) (($ $ $) 99 (|has| |#1| (-339)))) (-3779 (((-1070) $) 9)) (-3738 (($ $) 116 (|has| |#1| (-339)))) (-2262 (($) 143 (|has| |#1| (-325)) CONST)) (-3878 (($ (-852)) 88 (|has| |#1| (-344)))) (-2783 (((-1034) $) 10)) (-3441 (($) 160)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 101 (|has| |#1| (-339)))) (-3278 (($ (-589 $)) 98 (|has| |#1| (-339))) (($ $ $) 97 (|has| |#1| (-339)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 146 (|has| |#1| (-325)))) (-1820 (((-394 $) $) 112 (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 109 (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ $) 92 (|has| |#1| (-339)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 103 (|has| |#1| (-339)))) (-1972 (((-710) $) 105 (|has| |#1| (-339)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 106 (|has| |#1| (-339)))) (-3549 ((|#1| (-1168 $)) 47) ((|#1|) 60)) (-2974 (((-710) $) 151 (|has| |#1| (-325))) (((-3 (-710) "failed") $ $) 139 (|has| |#1| (-325)))) (-3523 (($ $) 137 (-3262 (-4099 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-710)) 135 (-3262 (-4099 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-1087)) 133 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-589 (-1087))) 132 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-1087) (-710)) 131 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 (-710))) 130 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-1 |#1| |#1|) (-710)) 123 (|has| |#1| (-339))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-339)))) (-1976 (((-629 |#1|) (-1168 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-339)))) (-3727 ((|#2|) 159)) (-3425 (($) 148 (|has| |#1| (-325)))) (-2966 (((-1168 |#1|) $ (-1168 $)) 50) (((-629 |#1|) (-1168 $) (-1168 $)) 49) (((-1168 |#1|) $) 66) (((-629 |#1|) (-1168 $)) 65)) (-3663 (((-1168 |#1|) $) 63) (($ (-1168 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 145 (|has| |#1| (-325)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-339))) (($ (-383 (-523))) 86 (-3262 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523))))))) (-3901 (($ $) 144 (|has| |#1| (-325))) (((-3 $ "failed") $) 43 (|has| |#1| (-134)))) (-1807 ((|#2| $) 45)) (-1621 (((-710)) 29)) (-4041 (((-1168 $)) 67)) (-1704 (((-108) $ $) 95 (|has| |#1| (-339)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 117 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $) 136 (-3262 (-4099 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-710)) 134 (-3262 (-4099 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-1087)) 129 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-589 (-1087))) 128 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-1087) (-710)) 127 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 (-710))) 126 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-1 |#1| |#1|) (-710)) 125 (|has| |#1| (-339))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-339)))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 121 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 118 (|has| |#1| (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-383 (-523)) $) 120 (|has| |#1| (-339))) (($ $ (-383 (-523))) 119 (|has| |#1| (-339))))) -(((-664 |#1| |#2|) (-129) (-158) (-1144 |t#1|)) (T -664)) -((-3441 (*1 *1) (-12 (-4 *2 (-158)) (-4 *1 (-664 *2 *3)) (-4 *3 (-1144 *2)))) (-3727 (*1 *2) (-12 (-4 *1 (-664 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1144 *3)))) (-2437 (*1 *1 *2) (-12 (-4 *3 (-158)) (-4 *1 (-664 *3 *2)) (-4 *2 (-1144 *3)))) (-3663 (*1 *1 *2) (-12 (-4 *3 (-158)) (-4 *1 (-664 *3 *2)) (-4 *2 (-1144 *3)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1144 *3)))) (-2437 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-339)) (-4 *3 (-158)) (-4 *1 (-664 *3 *4)))) (-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-1168 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) (-4 *1 (-664 *5 *6)) (-4 *5 (-158)) (-4 *6 (-1144 *5)) (-5 *2 (-629 *5))))) -(-13 (-385 |t#1| |t#2|) (-158) (-564 |t#2|) (-387 |t#1|) (-353 |t#1|) (-10 -8 (-15 -3441 ($)) (-15 -3727 (|t#2|)) (-15 -2437 ($ |t#2|)) (-15 -3663 ($ |t#2|)) (-15 -2428 (|t#2| $)) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#1| (-339)) (PROGN (-6 (-339)) (-6 (-209 |t#1|)) (-15 -2437 ((-3 $ "failed") (-383 |t#2|))) (-15 -1976 ((-629 |t#1|) (-1168 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-325)) (-6 (-325)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-37 |#1|) . T) ((-37 $) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-97) . T) ((-107 #0# #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3262 (|has| |#1| (-325)) (|has| |#1| (-134))) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 |#2|) . T) ((-209 |#1|) |has| |#1| (-339)) ((-211) -3262 (|has| |#1| (-325)) (-12 (|has| |#1| (-211)) (|has| |#1| (-339)))) ((-221) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-267) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-284) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-339) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-378) |has| |#1| (-325)) ((-344) -3262 (|has| |#1| (-344)) (|has| |#1| (-325))) ((-325) |has| |#1| (-325)) ((-346 |#1| |#2|) . T) ((-385 |#1| |#2|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-515) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-591 #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-657 |#1|) . T) ((-657 $) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087)))) ((-851) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-325)) ((-1126) -3262 (|has| |#1| (-325)) (|has| |#1| (-339)))) -((-2518 (($) 14)) (-2121 (((-3 $ "failed") $) 16)) (-2023 (((-108) $) 13)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) 9)) (** (($ $ (-852)) NIL) (($ $ (-710)) 20))) -(((-665 |#1|) (-10 -8 (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 -2364 (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2023 ((-108) |#1|)) (-15 -2518 (|#1|)) (-15 -2364 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) (-666)) (T -665)) -NIL -(-10 -8 (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 -2364 (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2023 ((-108) |#1|)) (-15 -2518 (|#1|)) (-15 -2364 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) -((-3924 (((-108) $ $) 7)) (-2518 (($) 20 T CONST)) (-2121 (((-3 $ "failed") $) 16)) (-2023 (((-108) $) 19)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2364 (($ $ (-852)) 13) (($ $ (-710)) 17)) (-2767 (($) 21 T CONST)) (-3983 (((-108) $ $) 6)) (** (($ $ (-852)) 14) (($ $ (-710)) 18)) (* (($ $ $) 15))) +((-2395 (((-710)) 35)) (-1220 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3508 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#2| $) 22)) (-2116 (($ |#3|) NIL) (((-3 $ "failed") (-383 |#3|)) 45)) (-1444 (((-3 $ "failed") $) 65)) (-1631 (($) 39)) (-1863 ((|#2| $) 20)) (-1621 (($) 17)) (-3984 (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-3456 (((-629 |#2|) (-1169 $) (-1 |#2| |#2|)) 60)) (-1400 (((-1169 |#2|) $) NIL) (($ (-1169 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1356 ((|#3| $) 32)) (-3760 (((-1169 $)) 29))) +(((-663 |#1| |#2| |#3|) (-10 -8 (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -1631 (|#1|)) (-15 -2395 ((-710))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3456 ((-629 |#2|) (-1169 |#1|) (-1 |#2| |#2|))) (-15 -2116 ((-3 |#1| "failed") (-383 |#3|))) (-15 -1400 (|#1| |#3|)) (-15 -2116 (|#1| |#3|)) (-15 -1621 (|#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1400 (|#3| |#1|)) (-15 -1400 (|#1| (-1169 |#2|))) (-15 -1400 ((-1169 |#2|) |#1|)) (-15 -3760 ((-1169 |#1|))) (-15 -1356 (|#3| |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1444 ((-3 |#1| "failed") |#1|))) (-664 |#2| |#3|) (-158) (-1145 |#2|)) (T -663)) +((-2395 (*1 *2) (-12 (-4 *4 (-158)) (-4 *5 (-1145 *4)) (-5 *2 (-710)) (-5 *1 (-663 *3 *4 *5)) (-4 *3 (-664 *4 *5))))) +(-10 -8 (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -1631 (|#1|)) (-15 -2395 ((-710))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3456 ((-629 |#2|) (-1169 |#1|) (-1 |#2| |#2|))) (-15 -2116 ((-3 |#1| "failed") (-383 |#3|))) (-15 -1400 (|#1| |#3|)) (-15 -2116 (|#1| |#3|)) (-15 -1621 (|#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1400 (|#3| |#1|)) (-15 -1400 (|#1| (-1169 |#2|))) (-15 -1400 ((-1169 |#2|) |#1|)) (-15 -3760 ((-1169 |#1|))) (-15 -1356 (|#3| |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1444 ((-3 |#1| "failed") |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 93 (|has| |#1| (-339)))) (-3306 (($ $) 94 (|has| |#1| (-339)))) (-3174 (((-108) $) 96 (|has| |#1| (-339)))) (-2959 (((-629 |#1|) (-1169 $)) 46) (((-629 |#1|)) 61)) (-1477 ((|#1| $) 52)) (-1557 (((-1097 (-852) (-710)) (-523)) 147 (|has| |#1| (-325)))) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 113 (|has| |#1| (-339)))) (-4226 (((-394 $) $) 114 (|has| |#1| (-339)))) (-2787 (((-108) $ $) 104 (|has| |#1| (-339)))) (-2395 (((-710)) 87 (|has| |#1| (-344)))) (-4189 (($) 17 T CONST)) (-1220 (((-3 (-523) "failed") $) 169 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 167 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 166)) (-3508 (((-523) $) 170 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 168 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 165)) (-2754 (($ (-1169 |#1|) (-1169 $)) 48) (($ (-1169 |#1|)) 64)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-325)))) (-4059 (($ $ $) 108 (|has| |#1| (-339)))) (-2927 (((-629 |#1|) $ (-1169 $)) 53) (((-629 |#1|) $) 59)) (-2243 (((-629 (-523)) (-629 $)) 164 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 163 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 162) (((-629 |#1|) (-629 $)) 161)) (-2116 (($ |#2|) 158) (((-3 $ "failed") (-383 |#2|)) 155 (|has| |#1| (-339)))) (-1444 (((-3 $ "failed") $) 34)) (-3569 (((-852)) 54)) (-1631 (($) 90 (|has| |#1| (-344)))) (-4032 (($ $ $) 107 (|has| |#1| (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 102 (|has| |#1| (-339)))) (-3665 (($) 149 (|has| |#1| (-325)))) (-1766 (((-108) $) 150 (|has| |#1| (-325)))) (-3610 (($ $ (-710)) 141 (|has| |#1| (-325))) (($ $) 140 (|has| |#1| (-325)))) (-3049 (((-108) $) 115 (|has| |#1| (-339)))) (-3437 (((-852) $) 152 (|has| |#1| (-325))) (((-772 (-852)) $) 138 (|has| |#1| (-325)))) (-2769 (((-108) $) 31)) (-1863 ((|#1| $) 51)) (-2738 (((-3 $ "failed") $) 142 (|has| |#1| (-325)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 111 (|has| |#1| (-339)))) (-2887 ((|#2| $) 44 (|has| |#1| (-339)))) (-2060 (((-852) $) 89 (|has| |#1| (-344)))) (-2104 ((|#2| $) 156)) (-3278 (($ (-589 $)) 100 (|has| |#1| (-339))) (($ $ $) 99 (|has| |#1| (-339)))) (-2032 (((-1070) $) 9)) (-1396 (($ $) 116 (|has| |#1| (-339)))) (-2773 (($) 143 (|has| |#1| (-325)) CONST)) (-4013 (($ (-852)) 88 (|has| |#1| (-344)))) (-3951 (((-1034) $) 10)) (-1621 (($) 160)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 101 (|has| |#1| (-339)))) (-3310 (($ (-589 $)) 98 (|has| |#1| (-339))) (($ $ $) 97 (|has| |#1| (-339)))) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) 146 (|has| |#1| (-325)))) (-2424 (((-394 $) $) 112 (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 109 (|has| |#1| (-339)))) (-4007 (((-3 $ "failed") $ $) 92 (|has| |#1| (-339)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 103 (|has| |#1| (-339)))) (-3413 (((-710) $) 105 (|has| |#1| (-339)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 106 (|has| |#1| (-339)))) (-1744 ((|#1| (-1169 $)) 47) ((|#1|) 60)) (-2984 (((-710) $) 151 (|has| |#1| (-325))) (((-3 (-710) "failed") $ $) 139 (|has| |#1| (-325)))) (-3984 (($ $) 137 (-3172 (-3147 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-710)) 135 (-3172 (-3147 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-1087)) 133 (-3147 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-589 (-1087))) 132 (-3147 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-1087) (-710)) 131 (-3147 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 (-710))) 130 (-3147 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-1 |#1| |#1|) (-710)) 123 (|has| |#1| (-339))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-339)))) (-3456 (((-629 |#1|) (-1169 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-339)))) (-2762 ((|#2|) 159)) (-2893 (($) 148 (|has| |#1| (-325)))) (-2906 (((-1169 |#1|) $ (-1169 $)) 50) (((-629 |#1|) (-1169 $) (-1169 $)) 49) (((-1169 |#1|) $) 66) (((-629 |#1|) (-1169 $)) 65)) (-1400 (((-1169 |#1|) $) 63) (($ (-1169 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 145 (|has| |#1| (-325)))) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-339))) (($ (-383 (-523))) 86 (-3172 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523))))))) (-1942 (($ $) 144 (|has| |#1| (-325))) (((-3 $ "failed") $) 43 (|has| |#1| (-134)))) (-1356 ((|#2| $) 45)) (-3272 (((-710)) 29)) (-3760 (((-1169 $)) 67)) (-2801 (((-108) $ $) 95 (|has| |#1| (-339)))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 117 (|has| |#1| (-339)))) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $) 136 (-3172 (-3147 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-710)) 134 (-3172 (-3147 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-1087)) 129 (-3147 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-589 (-1087))) 128 (-3147 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-1087) (-710)) 127 (-3147 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 (-710))) 126 (-3147 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-1 |#1| |#1|) (-710)) 125 (|has| |#1| (-339))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-339)))) (-3941 (((-108) $ $) 6)) (-4074 (($ $ $) 121 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 118 (|has| |#1| (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-383 (-523)) $) 120 (|has| |#1| (-339))) (($ $ (-383 (-523))) 119 (|has| |#1| (-339))))) +(((-664 |#1| |#2|) (-129) (-158) (-1145 |t#1|)) (T -664)) +((-1621 (*1 *1) (-12 (-4 *2 (-158)) (-4 *1 (-664 *2 *3)) (-4 *3 (-1145 *2)))) (-2762 (*1 *2) (-12 (-4 *1 (-664 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1145 *3)))) (-2116 (*1 *1 *2) (-12 (-4 *3 (-158)) (-4 *1 (-664 *3 *2)) (-4 *2 (-1145 *3)))) (-1400 (*1 *1 *2) (-12 (-4 *3 (-158)) (-4 *1 (-664 *3 *2)) (-4 *2 (-1145 *3)))) (-2104 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1145 *3)))) (-2116 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-339)) (-4 *3 (-158)) (-4 *1 (-664 *3 *4)))) (-3456 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) (-4 *1 (-664 *5 *6)) (-4 *5 (-158)) (-4 *6 (-1145 *5)) (-5 *2 (-629 *5))))) +(-13 (-385 |t#1| |t#2|) (-158) (-564 |t#2|) (-387 |t#1|) (-353 |t#1|) (-10 -8 (-15 -1621 ($)) (-15 -2762 (|t#2|)) (-15 -2116 ($ |t#2|)) (-15 -1400 ($ |t#2|)) (-15 -2104 (|t#2| $)) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#1| (-339)) (PROGN (-6 (-339)) (-6 (-209 |t#1|)) (-15 -2116 ((-3 $ "failed") (-383 |t#2|))) (-15 -3456 ((-629 |t#1|) (-1169 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-325)) (-6 (-325)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-37 |#1|) . T) ((-37 $) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-97) . T) ((-107 #0# #0#) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3172 (|has| |#1| (-325)) (|has| |#1| (-134))) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 |#2|) . T) ((-209 |#1|) |has| |#1| (-339)) ((-211) -3172 (|has| |#1| (-325)) (-12 (|has| |#1| (-211)) (|has| |#1| (-339)))) ((-221) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-267) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-284) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-339) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-378) |has| |#1| (-325)) ((-344) -3172 (|has| |#1| (-344)) (|has| |#1| (-325))) ((-325) |has| |#1| (-325)) ((-346 |#1| |#2|) . T) ((-385 |#1| |#2|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-515) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-591 #0#) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-657 |#1|) . T) ((-657 $) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087)))) ((-851) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 #0#) -3172 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-325)) ((-1127) -3172 (|has| |#1| (-325)) (|has| |#1| (-339)))) +((-4189 (($) 14)) (-1444 (((-3 $ "failed") $) 16)) (-2769 (((-108) $) 13)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) 9)) (** (($ $ (-852)) NIL) (($ $ (-710)) 20))) +(((-665 |#1|) (-10 -8 (-15 -1444 ((-3 |#1| "failed") |#1|)) (-15 -2423 (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2769 ((-108) |#1|)) (-15 -4189 (|#1|)) (-15 -2423 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) (-666)) (T -665)) +NIL +(-10 -8 (-15 -1444 ((-3 |#1| "failed") |#1|)) (-15 -2423 (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2769 ((-108) |#1|)) (-15 -4189 (|#1|)) (-15 -2423 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) +((-1680 (((-108) $ $) 7)) (-4189 (($) 20 T CONST)) (-1444 (((-3 $ "failed") $) 16)) (-2769 (((-108) $) 19)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-2423 (($ $ (-852)) 13) (($ $ (-710)) 17)) (-1891 (($) 21 T CONST)) (-3941 (((-108) $ $) 6)) (** (($ $ (-852)) 14) (($ $ (-710)) 18)) (* (($ $ $) 15))) (((-666) (-129)) (T -666)) -((-2767 (*1 *1) (-4 *1 (-666))) (-2518 (*1 *1) (-4 *1 (-666))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-666)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-666)) (-5 *2 (-710)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-666)) (-5 *2 (-710)))) (-2121 (*1 *1 *1) (|partial| -4 *1 (-666)))) -(-13 (-1028) (-10 -8 (-15 (-2767) ($) -3059) (-15 -2518 ($) -3059) (-15 -2023 ((-108) $)) (-15 ** ($ $ (-710))) (-15 -2364 ($ $ (-710))) (-15 -2121 ((-3 $ "failed") $)))) +((-1891 (*1 *1) (-4 *1 (-666))) (-4189 (*1 *1) (-4 *1 (-666))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-666)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-666)) (-5 *2 (-710)))) (-2423 (*1 *1 *1 *2) (-12 (-4 *1 (-666)) (-5 *2 (-710)))) (-1444 (*1 *1 *1) (|partial| -4 *1 (-666)))) +(-13 (-1028) (-10 -8 (-15 (-1891) ($) -2501) (-15 -4189 ($) -2501) (-15 -2769 ((-108) $)) (-15 ** ($ $ (-710))) (-15 -2423 ($ $ (-710))) (-15 -1444 ((-3 $ "failed") $)))) (((-97) . T) ((-563 (-794)) . T) ((-1028) . T) ((-1016) . T)) -((-2569 (((-2 (|:| -3127 (-394 |#2|)) (|:| |special| (-394 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2063 (((-2 (|:| -3127 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4059 ((|#2| (-383 |#2|) (-1 |#2| |#2|)) 13)) (-2274 (((-2 (|:| |poly| |#2|) (|:| -3127 (-383 |#2|)) (|:| |special| (-383 |#2|))) (-383 |#2|) (-1 |#2| |#2|)) 47))) -(((-667 |#1| |#2|) (-10 -7 (-15 -2063 ((-2 (|:| -3127 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2569 ((-2 (|:| -3127 (-394 |#2|)) (|:| |special| (-394 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4059 (|#2| (-383 |#2|) (-1 |#2| |#2|))) (-15 -2274 ((-2 (|:| |poly| |#2|) (|:| -3127 (-383 |#2|)) (|:| |special| (-383 |#2|))) (-383 |#2|) (-1 |#2| |#2|)))) (-339) (-1144 |#1|)) (T -667)) -((-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3127 (-383 *6)) (|:| |special| (-383 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-383 *6)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-383 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1144 *5)) (-5 *1 (-667 *5 *2)) (-4 *5 (-339)))) (-2569 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| -3127 (-394 *3)) (|:| |special| (-394 *3)))) (-5 *1 (-667 *5 *3)))) (-2063 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| -3127 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3))))) -(-10 -7 (-15 -2063 ((-2 (|:| -3127 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2569 ((-2 (|:| -3127 (-394 |#2|)) (|:| |special| (-394 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4059 (|#2| (-383 |#2|) (-1 |#2| |#2|))) (-15 -2274 ((-2 (|:| |poly| |#2|) (|:| -3127 (-383 |#2|)) (|:| |special| (-383 |#2|))) (-383 |#2|) (-1 |#2| |#2|)))) -((-1359 ((|#7| (-589 |#5|) |#6|) NIL)) (-3612 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3612 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1359 (|#7| (-589 |#5|) |#6|))) (-786) (-732) (-732) (-973) (-973) (-880 |#4| |#2| |#1|) (-880 |#5| |#3| |#1|)) (T -668)) -((-1359 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *9)) (-4 *9 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) (-4 *8 (-973)) (-4 *2 (-880 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-732)) (-4 *4 (-880 *8 *6 *5)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-973)) (-4 *9 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) (-4 *2 (-880 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-732)) (-4 *4 (-880 *8 *6 *5))))) -(-10 -7 (-15 -3612 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1359 (|#7| (-589 |#5|) |#6|))) -((-3612 ((|#7| (-1 |#2| |#1|) |#6|) 29))) -(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3612 (|#7| (-1 |#2| |#1|) |#6|))) (-786) (-786) (-732) (-732) (-973) (-880 |#5| |#3| |#1|) (-880 |#5| |#4| |#2|)) (T -669)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-786)) (-4 *6 (-786)) (-4 *7 (-732)) (-4 *9 (-973)) (-4 *2 (-880 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-732)) (-4 *4 (-880 *9 *7 *5))))) -(-10 -7 (-15 -3612 (|#7| (-1 |#2| |#1|) |#6|))) -((-1820 (((-394 |#4|) |#4|) 39))) -(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 |#4|) |#4|))) (-732) (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087))))) (-284) (-880 (-883 |#3|) |#1| |#2|)) (T -670)) -((-1820 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-880 (-883 *6) *4 *5))))) -(-10 -7 (-15 -1820 ((-394 |#4|) |#4|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-796 |#1|)) $) NIL)) (-1786 (((-1083 $) $ (-796 |#1|)) NIL) (((-1083 |#2|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3345 (($ $) NIL (|has| |#2| (-515)))) (-3331 (((-108) $) NIL (|has| |#2| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-796 |#1|))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2291 (($ $) NIL (|has| |#2| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-796 |#1|) "failed") $) NIL)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-796 |#1|) $) NIL)) (-3078 (($ $ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#2| (-840)))) (-1284 (($ $ |#2| (-495 (-796 |#1|)) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#2|) (-796 |#1|)) NIL) (($ (-1083 $) (-796 |#1|)) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#2| (-495 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-796 |#1|)) NIL)) (-1575 (((-495 (-796 |#1|)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-2454 (($ $ $) NIL (|has| |#2| (-786)))) (-2062 (($ $ $) NIL (|has| |#2| (-786)))) (-3782 (($ (-1 (-495 (-796 |#1|)) (-495 (-796 |#1|))) $) NIL)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2520 (((-3 (-796 |#1|) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#2| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-796 |#1|)) (|:| -2735 (-710))) "failed") $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#2| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#2| (-840)))) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-796 |#1|) |#2|) NIL) (($ $ (-589 (-796 |#1|)) (-589 |#2|)) NIL) (($ $ (-796 |#1|) $) NIL) (($ $ (-589 (-796 |#1|)) (-589 $)) NIL)) (-3549 (($ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3523 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2299 (((-495 (-796 |#1|)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-796 |#1|) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-2438 ((|#2| $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-796 |#1|)) NIL) (($ $) NIL (|has| |#2| (-515))) (($ (-383 (-523))) NIL (-3262 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523))))))) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-495 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +((-3403 (((-2 (|:| -3671 (-394 |#2|)) (|:| |special| (-394 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1980 (((-2 (|:| -3671 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2747 ((|#2| (-383 |#2|) (-1 |#2| |#2|)) 13)) (-3530 (((-2 (|:| |poly| |#2|) (|:| -3671 (-383 |#2|)) (|:| |special| (-383 |#2|))) (-383 |#2|) (-1 |#2| |#2|)) 47))) +(((-667 |#1| |#2|) (-10 -7 (-15 -1980 ((-2 (|:| -3671 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3403 ((-2 (|:| -3671 (-394 |#2|)) (|:| |special| (-394 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2747 (|#2| (-383 |#2|) (-1 |#2| |#2|))) (-15 -3530 ((-2 (|:| |poly| |#2|) (|:| -3671 (-383 |#2|)) (|:| |special| (-383 |#2|))) (-383 |#2|) (-1 |#2| |#2|)))) (-339) (-1145 |#1|)) (T -667)) +((-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3671 (-383 *6)) (|:| |special| (-383 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-383 *6)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-383 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1145 *5)) (-5 *1 (-667 *5 *2)) (-4 *5 (-339)))) (-3403 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| -3671 (-394 *3)) (|:| |special| (-394 *3)))) (-5 *1 (-667 *5 *3)))) (-1980 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| -3671 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3))))) +(-10 -7 (-15 -1980 ((-2 (|:| -3671 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3403 ((-2 (|:| -3671 (-394 |#2|)) (|:| |special| (-394 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2747 (|#2| (-383 |#2|) (-1 |#2| |#2|))) (-15 -3530 ((-2 (|:| |poly| |#2|) (|:| -3671 (-383 |#2|)) (|:| |special| (-383 |#2|))) (-383 |#2|) (-1 |#2| |#2|)))) +((-1583 ((|#7| (-589 |#5|) |#6|) NIL)) (-1345 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1345 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1583 (|#7| (-589 |#5|) |#6|))) (-786) (-732) (-732) (-973) (-973) (-880 |#4| |#2| |#1|) (-880 |#5| |#3| |#1|)) (T -668)) +((-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *9)) (-4 *9 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) (-4 *8 (-973)) (-4 *2 (-880 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-732)) (-4 *4 (-880 *8 *6 *5)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-973)) (-4 *9 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) (-4 *2 (-880 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-732)) (-4 *4 (-880 *8 *6 *5))))) +(-10 -7 (-15 -1345 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1583 (|#7| (-589 |#5|) |#6|))) +((-1345 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1345 (|#7| (-1 |#2| |#1|) |#6|))) (-786) (-786) (-732) (-732) (-973) (-880 |#5| |#3| |#1|) (-880 |#5| |#4| |#2|)) (T -669)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-786)) (-4 *6 (-786)) (-4 *7 (-732)) (-4 *9 (-973)) (-4 *2 (-880 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-732)) (-4 *4 (-880 *9 *7 *5))))) +(-10 -7 (-15 -1345 (|#7| (-1 |#2| |#1|) |#6|))) +((-2424 (((-394 |#4|) |#4|) 39))) +(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2424 ((-394 |#4|) |#4|))) (-732) (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)) (-15 -2724 ((-3 $ "failed") (-1087))))) (-284) (-880 (-883 |#3|) |#1| |#2|)) (T -670)) +((-2424 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)) (-15 -2724 ((-3 $ "failed") (-1087)))))) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-880 (-883 *6) *4 *5))))) +(-10 -7 (-15 -2424 ((-394 |#4|) |#4|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1292 (((-589 (-796 |#1|)) $) NIL)) (-2389 (((-1083 $) $ (-796 |#1|)) NIL) (((-1083 |#2|) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3306 (($ $) NIL (|has| |#2| (-515)))) (-3174 (((-108) $) NIL (|has| |#2| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 (-796 |#1|))) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3718 (($ $) NIL (|has| |#2| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-796 |#1|) "failed") $) NIL)) (-3508 ((|#2| $) NIL) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-796 |#1|) $) NIL)) (-1611 (($ $ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-1457 (($ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#2| (-840)))) (-4222 (($ $ |#2| (-495 (-796 |#1|)) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-1280 (($ (-1083 |#2|) (-796 |#1|)) NIL) (($ (-1083 $) (-796 |#1|)) NIL)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#2| (-495 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ (-796 |#1|)) NIL)) (-4047 (((-495 (-796 |#1|)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-3239 (($ $ $) NIL (|has| |#2| (-786)))) (-3158 (($ $ $) NIL (|has| |#2| (-786)))) (-2041 (($ (-1 (-495 (-796 |#1|)) (-495 (-796 |#1|))) $) NIL)) (-1345 (($ (-1 |#2| |#2|) $) NIL)) (-4213 (((-3 (-796 |#1|) "failed") $) NIL)) (-1427 (($ $) NIL)) (-1437 ((|#2| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-2032 (((-1070) $) NIL)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| (-796 |#1|)) (|:| -1475 (-710))) "failed") $) NIL)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) NIL)) (-1419 ((|#2| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#2| (-840)))) (-4007 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-796 |#1|) |#2|) NIL) (($ $ (-589 (-796 |#1|)) (-589 |#2|)) NIL) (($ $ (-796 |#1|) $) NIL) (($ $ (-589 (-796 |#1|)) (-589 $)) NIL)) (-1744 (($ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3984 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2640 (((-495 (-796 |#1|)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-796 |#1|) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-1618 ((|#2| $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-796 |#1|)) NIL) (($ $) NIL (|has| |#2| (-515))) (($ (-383 (-523))) NIL (-3172 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523))))))) (-3819 (((-589 |#2|) $) NIL)) (-2084 ((|#2| $ (-495 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-4006 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4074 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) (((-671 |#1| |#2|) (-880 |#2| (-495 (-796 |#1|)) (-796 |#1|)) (-589 (-1087)) (-973)) (T -671)) NIL (-880 |#2| (-495 (-796 |#1|)) (-796 |#1|)) -((-1882 (((-2 (|:| -3596 (-883 |#3|)) (|:| -2774 (-883 |#3|))) |#4|) 13)) (-1939 ((|#4| |#4| |#2|) 30)) (-3376 ((|#4| (-383 (-883 |#3|)) |#2|) 64)) (-2953 ((|#4| (-1083 (-883 |#3|)) |#2|) 77)) (-2780 ((|#4| (-1083 |#4|) |#2|) 50)) (-1791 ((|#4| |#4| |#2|) 53)) (-1820 (((-394 |#4|) |#4|) 38))) -(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1882 ((-2 (|:| -3596 (-883 |#3|)) (|:| -2774 (-883 |#3|))) |#4|)) (-15 -1791 (|#4| |#4| |#2|)) (-15 -2780 (|#4| (-1083 |#4|) |#2|)) (-15 -1939 (|#4| |#4| |#2|)) (-15 -2953 (|#4| (-1083 (-883 |#3|)) |#2|)) (-15 -3376 (|#4| (-383 (-883 |#3|)) |#2|)) (-15 -1820 ((-394 |#4|) |#4|))) (-732) (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)))) (-515) (-880 (-383 (-883 |#3|)) |#1| |#2|)) (T -672)) -((-1820 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *6 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-880 (-383 (-883 *6)) *4 *5)))) (-3376 (*1 *2 *3 *4) (-12 (-4 *6 (-515)) (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-383 (-883 *6))) (-4 *5 (-732)) (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))))) (-2953 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 (-883 *6))) (-4 *6 (-515)) (-4 *2 (-880 (-383 (-883 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-732)) (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))))) (-1939 (*1 *2 *2 *3) (-12 (-4 *4 (-732)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *5 (-515)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-880 (-383 (-883 *5)) *4 *3)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-880 (-383 (-883 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-732)) (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *6 (-515)))) (-1791 (*1 *2 *2 *3) (-12 (-4 *4 (-732)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *5 (-515)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-880 (-383 (-883 *5)) *4 *3)))) (-1882 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *6 (-515)) (-5 *2 (-2 (|:| -3596 (-883 *6)) (|:| -2774 (-883 *6)))) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-880 (-383 (-883 *6)) *4 *5))))) -(-10 -7 (-15 -1882 ((-2 (|:| -3596 (-883 |#3|)) (|:| -2774 (-883 |#3|))) |#4|)) (-15 -1791 (|#4| |#4| |#2|)) (-15 -2780 (|#4| (-1083 |#4|) |#2|)) (-15 -1939 (|#4| |#4| |#2|)) (-15 -2953 (|#4| (-1083 (-883 |#3|)) |#2|)) (-15 -3376 (|#4| (-383 (-883 |#3|)) |#2|)) (-15 -1820 ((-394 |#4|) |#4|))) -((-1820 (((-394 |#4|) |#4|) 51))) -(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 |#4|) |#4|))) (-732) (-786) (-13 (-284) (-136)) (-880 (-383 |#3|) |#1| |#2|)) (T -673)) -((-1820 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-13 (-284) (-136))) (-5 *2 (-394 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-880 (-383 *6) *4 *5))))) -(-10 -7 (-15 -1820 ((-394 |#4|) |#4|))) -((-3612 (((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)) 18))) -(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -3612 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) (-973) (-973) (-666)) (T -674)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-973)) (-4 *6 (-973)) (-4 *7 (-666)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7))))) -(-10 -7 (-15 -3612 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 26)) (-2133 (((-589 (-2 (|:| -2935 |#1|) (|:| -2302 |#2|))) $) 27)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1703 (((-710)) 20 (-12 (|has| |#2| (-344)) (|has| |#1| (-344))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) 56) (((-3 |#1| "failed") $) 59)) (-3474 ((|#2| $) NIL) ((|#1| $) NIL)) (-3810 (($ $) 76 (|has| |#2| (-786)))) (-2121 (((-3 $ "failed") $) 63)) (-4032 (($) 33 (-12 (|has| |#2| (-344)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) 54)) (-3679 (((-589 $) $) 37)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| |#2|) 16)) (-3612 (($ (-1 |#1| |#1|) $) 53)) (-2072 (((-852) $) 30 (-12 (|has| |#2| (-344)) (|has| |#1| (-344))))) (-3774 ((|#2| $) 75 (|has| |#2| (-786)))) (-3786 ((|#1| $) 74 (|has| |#2| (-786)))) (-3779 (((-1070) $) NIL)) (-3878 (($ (-852)) 25 (-12 (|has| |#2| (-344)) (|has| |#1| (-344))))) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 73) (($ (-523)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-589 (-2 (|:| -2935 |#1|) (|:| -2302 |#2|)))) 11)) (-1251 (((-589 |#1|) $) 39)) (-2365 ((|#1| $ |#2|) 84)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 12 T CONST)) (-2767 (($) 31 T CONST)) (-3983 (((-108) $ $) 77)) (-4087 (($ $) 46) (($ $ $) NIL)) (-4075 (($ $ $) 24)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 51) (($ $ $) 86) (($ |#1| $) 48 (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))))) -(((-675 |#1| |#2|) (-13 (-973) (-964 |#2|) (-964 |#1|) (-10 -8 (-15 -1933 ($ |#1| |#2|)) (-15 -2365 (|#1| $ |#2|)) (-15 -1458 ($ (-589 (-2 (|:| -2935 |#1|) (|:| -2302 |#2|))))) (-15 -2133 ((-589 (-2 (|:| -2935 |#1|) (|:| -2302 |#2|))) $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (-15 -2620 ((-108) $)) (-15 -1251 ((-589 |#1|) $)) (-15 -3679 ((-589 $) $)) (-15 -3554 ((-710) $)) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-344)) (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-786)) (PROGN (-15 -3774 (|#2| $)) (-15 -3786 (|#1| $)) (-15 -3810 ($ $))) |%noBranch|))) (-973) (-666)) (T -675)) -((-1933 (*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-973)) (-4 *3 (-666)))) (-2365 (*1 *2 *1 *3) (-12 (-4 *2 (-973)) (-5 *1 (-675 *2 *3)) (-4 *3 (-666)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -2935 *3) (|:| -2302 *4)))) (-4 *3 (-973)) (-4 *4 (-666)) (-5 *1 (-675 *3 *4)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| -2935 *3) (|:| -2302 *4)))) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-675 *3 *4)) (-4 *4 (-666)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-589 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-3774 (*1 *2 *1) (-12 (-4 *2 (-666)) (-4 *2 (-786)) (-5 *1 (-675 *3 *2)) (-4 *3 (-973)))) (-3786 (*1 *2 *1) (-12 (-4 *2 (-973)) (-5 *1 (-675 *2 *3)) (-4 *3 (-786)) (-4 *3 (-666)))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-786)) (-4 *2 (-973)) (-4 *3 (-666))))) -(-13 (-973) (-964 |#2|) (-964 |#1|) (-10 -8 (-15 -1933 ($ |#1| |#2|)) (-15 -2365 (|#1| $ |#2|)) (-15 -1458 ($ (-589 (-2 (|:| -2935 |#1|) (|:| -2302 |#2|))))) (-15 -2133 ((-589 (-2 (|:| -2935 |#1|) (|:| -2302 |#2|))) $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (-15 -2620 ((-108) $)) (-15 -1251 ((-589 |#1|) $)) (-15 -3679 ((-589 $) $)) (-15 -3554 ((-710) $)) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-344)) (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-786)) (PROGN (-15 -3774 (|#2| $)) (-15 -3786 (|#1| $)) (-15 -3810 ($ $))) |%noBranch|))) -((-3924 (((-108) $ $) 19)) (-3288 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1922 (($ $ $) 72)) (-3471 (((-108) $ $) 73)) (-3079 (((-108) $ (-710)) 8)) (-4086 (($ (-589 |#1|)) 68) (($) 67)) (-3387 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-3941 (($ $) 62)) (-1773 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22)) (-1309 (($ $ $) 69)) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40) (($ |#1| $ (-710)) 63)) (-2783 (((-1034) $) 21)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2766 (((-589 (-2 (|:| -2433 |#1|) (|:| -2792 (-710)))) $) 61)) (-3682 (($ $ |#1|) 71) (($ $ $) 70)) (-3433 (($) 49) (($ (-589 |#1|)) 48)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 50)) (-1458 (((-794) $) 18)) (-1684 (($ (-589 |#1|)) 66) (($) 65)) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20)) (-4007 (((-108) $ $) 64)) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-3764 (((-2 (|:| -4016 (-883 |#3|)) (|:| -1830 (-883 |#3|))) |#4|) 13)) (-3103 ((|#4| |#4| |#2|) 30)) (-3596 ((|#4| (-383 (-883 |#3|)) |#2|) 63)) (-2786 ((|#4| (-1083 (-883 |#3|)) |#2|) 76)) (-1897 ((|#4| (-1083 |#4|) |#2|) 49)) (-2348 ((|#4| |#4| |#2|) 52)) (-2424 (((-394 |#4|) |#4|) 38))) +(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3764 ((-2 (|:| -4016 (-883 |#3|)) (|:| -1830 (-883 |#3|))) |#4|)) (-15 -2348 (|#4| |#4| |#2|)) (-15 -1897 (|#4| (-1083 |#4|) |#2|)) (-15 -3103 (|#4| |#4| |#2|)) (-15 -2786 (|#4| (-1083 (-883 |#3|)) |#2|)) (-15 -3596 (|#4| (-383 (-883 |#3|)) |#2|)) (-15 -2424 ((-394 |#4|) |#4|))) (-732) (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)))) (-515) (-880 (-383 (-883 |#3|)) |#1| |#2|)) (T -672)) +((-2424 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $))))) (-4 *6 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-880 (-383 (-883 *6)) *4 *5)))) (-3596 (*1 *2 *3 *4) (-12 (-4 *6 (-515)) (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-383 (-883 *6))) (-4 *5 (-732)) (-4 *4 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $))))))) (-2786 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 (-883 *6))) (-4 *6 (-515)) (-4 *2 (-880 (-383 (-883 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-732)) (-4 *4 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $))))))) (-3103 (*1 *2 *2 *3) (-12 (-4 *4 (-732)) (-4 *3 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $))))) (-4 *5 (-515)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-880 (-383 (-883 *5)) *4 *3)))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-880 (-383 (-883 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-732)) (-4 *4 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $))))) (-4 *6 (-515)))) (-2348 (*1 *2 *2 *3) (-12 (-4 *4 (-732)) (-4 *3 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $))))) (-4 *5 (-515)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-880 (-383 (-883 *5)) *4 *3)))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $))))) (-4 *6 (-515)) (-5 *2 (-2 (|:| -4016 (-883 *6)) (|:| -1830 (-883 *6)))) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-880 (-383 (-883 *6)) *4 *5))))) +(-10 -7 (-15 -3764 ((-2 (|:| -4016 (-883 |#3|)) (|:| -1830 (-883 |#3|))) |#4|)) (-15 -2348 (|#4| |#4| |#2|)) (-15 -1897 (|#4| (-1083 |#4|) |#2|)) (-15 -3103 (|#4| |#4| |#2|)) (-15 -2786 (|#4| (-1083 (-883 |#3|)) |#2|)) (-15 -3596 (|#4| (-383 (-883 |#3|)) |#2|)) (-15 -2424 ((-394 |#4|) |#4|))) +((-2424 (((-394 |#4|) |#4|) 51))) +(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2424 ((-394 |#4|) |#4|))) (-732) (-786) (-13 (-284) (-136)) (-880 (-383 |#3|) |#1| |#2|)) (T -673)) +((-2424 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-13 (-284) (-136))) (-5 *2 (-394 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-880 (-383 *6) *4 *5))))) +(-10 -7 (-15 -2424 ((-394 |#4|) |#4|))) +((-1345 (((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)) 18))) +(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -1345 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) (-973) (-973) (-666)) (T -674)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-973)) (-4 *6 (-973)) (-4 *7 (-666)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7))))) +(-10 -7 (-15 -1345 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 28)) (-1552 (((-589 (-2 (|:| -3474 |#1|) (|:| -2836 |#2|))) $) 29)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2395 (((-710)) 20 (-12 (|has| |#2| (-344)) (|has| |#1| (-344))))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-3508 ((|#2| $) NIL) ((|#1| $) NIL)) (-1457 (($ $) 79 (|has| |#2| (-786)))) (-1444 (((-3 $ "failed") $) 65)) (-1631 (($) 35 (-12 (|has| |#2| (-344)) (|has| |#1| (-344))))) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) 55)) (-3560 (((-589 $) $) 39)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| |#2|) 16)) (-1345 (($ (-1 |#1| |#1|) $) 54)) (-2060 (((-852) $) 32 (-12 (|has| |#2| (-344)) (|has| |#1| (-344))))) (-1427 ((|#2| $) 78 (|has| |#2| (-786)))) (-1437 ((|#1| $) 77 (|has| |#2| (-786)))) (-2032 (((-1070) $) NIL)) (-4013 (($ (-852)) 27 (-12 (|has| |#2| (-344)) (|has| |#1| (-344))))) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 76) (($ (-523)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-589 (-2 (|:| -3474 |#1|) (|:| -2836 |#2|)))) 11)) (-3819 (((-589 |#1|) $) 41)) (-2084 ((|#1| $ |#2|) 88)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 12 T CONST)) (-1891 (($) 33 T CONST)) (-3941 (((-108) $ $) 80)) (-4060 (($ $) 47) (($ $ $) NIL)) (-4045 (($ $ $) 26)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))))) +(((-675 |#1| |#2|) (-13 (-973) (-964 |#2|) (-964 |#1|) (-10 -8 (-15 -1267 ($ |#1| |#2|)) (-15 -2084 (|#1| $ |#2|)) (-15 -1691 ($ (-589 (-2 (|:| -3474 |#1|) (|:| -2836 |#2|))))) (-15 -1552 ((-589 (-2 (|:| -3474 |#1|) (|:| -2836 |#2|))) $)) (-15 -1345 ($ (-1 |#1| |#1|) $)) (-15 -2704 ((-108) $)) (-15 -3819 ((-589 |#1|) $)) (-15 -3560 ((-589 $) $)) (-15 -1789 ((-710) $)) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-344)) (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-786)) (PROGN (-15 -1427 (|#2| $)) (-15 -1437 (|#1| $)) (-15 -1457 ($ $))) |%noBranch|))) (-973) (-666)) (T -675)) +((-1267 (*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-973)) (-4 *3 (-666)))) (-2084 (*1 *2 *1 *3) (-12 (-4 *2 (-973)) (-5 *1 (-675 *2 *3)) (-4 *3 (-666)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -3474 *3) (|:| -2836 *4)))) (-4 *3 (-973)) (-4 *4 (-666)) (-5 *1 (-675 *3 *4)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| -3474 *3) (|:| -2836 *4)))) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-675 *3 *4)) (-4 *4 (-666)))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-589 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-1427 (*1 *2 *1) (-12 (-4 *2 (-666)) (-4 *2 (-786)) (-5 *1 (-675 *3 *2)) (-4 *3 (-973)))) (-1437 (*1 *2 *1) (-12 (-4 *2 (-973)) (-5 *1 (-675 *2 *3)) (-4 *3 (-786)) (-4 *3 (-666)))) (-1457 (*1 *1 *1) (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-786)) (-4 *2 (-973)) (-4 *3 (-666))))) +(-13 (-973) (-964 |#2|) (-964 |#1|) (-10 -8 (-15 -1267 ($ |#1| |#2|)) (-15 -2084 (|#1| $ |#2|)) (-15 -1691 ($ (-589 (-2 (|:| -3474 |#1|) (|:| -2836 |#2|))))) (-15 -1552 ((-589 (-2 (|:| -3474 |#1|) (|:| -2836 |#2|))) $)) (-15 -1345 ($ (-1 |#1| |#1|) $)) (-15 -2704 ((-108) $)) (-15 -3819 ((-589 |#1|) $)) (-15 -3560 ((-589 $) $)) (-15 -1789 ((-710) $)) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-344)) (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-786)) (PROGN (-15 -1427 (|#2| $)) (-15 -1437 (|#1| $)) (-15 -1457 ($ $))) |%noBranch|))) +((-1680 (((-108) $ $) 19)) (-3321 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-4199 (($ $ $) 72)) (-2172 (((-108) $ $) 73)) (-1620 (((-108) $ (-710)) 8)) (-1365 (($ (-589 |#1|)) 68) (($) 67)) (-3703 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-4160 (($ $) 62)) (-2462 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3286 (($ |#1| $) 47 (|has| $ (-6 -4248))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4248)))) (-2514 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4248)))) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22)) (-3196 (($ $ $) 69)) (-1293 ((|#1| $) 39)) (-3108 (($ |#1| $) 40) (($ |#1| $ (-710)) 63)) (-3951 (((-1034) $) 21)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3048 ((|#1| $) 41)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1767 (((-589 (-2 (|:| -2482 |#1|) (|:| -3977 (-710)))) $) 61)) (-3582 (($ $ |#1|) 71) (($ $ $) 70)) (-2963 (($) 49) (($ (-589 |#1|)) 48)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1400 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 50)) (-1691 (((-794) $) 18)) (-3324 (($ (-589 |#1|)) 66) (($) 65)) (-2417 (($ (-589 |#1|)) 42)) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20)) (-3966 (((-108) $ $) 64)) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-676 |#1|) (-129) (-1016)) (T -676)) NIL (-13 (-634 |t#1|) (-1014 |t#1|)) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-634 |#1|) . T) ((-1014 |#1|) . T) ((-1016) . T) ((-1122) . T)) -((-3924 (((-108) $ $) NIL)) (-3288 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1922 (($ $ $) 79)) (-3471 (((-108) $ $) 82)) (-3079 (((-108) $ (-710)) NIL)) (-4086 (($ (-589 |#1|)) 24) (($) 15)) (-3387 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-3941 (($ $) 71)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) 61 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4244))) (($ |#1| $ (-523)) 62) (($ (-1 (-108) |#1|) $ (-523)) 65)) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (($ |#1| $ (-523)) 67) (($ (-1 (-108) |#1|) $ (-523)) 68)) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 32 (|has| $ (-6 -4244)))) (-3157 (($) 13) (($ |#1|) 26) (($ (-589 |#1|)) 21)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) 38)) (-1973 (((-108) |#1| $) 57 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 75)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-1309 (($ $ $) 77)) (-1934 ((|#1| $) 54)) (-3450 (($ |#1| $) 55) (($ |#1| $ (-710)) 72)) (-2783 (((-1034) $) NIL)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3761 ((|#1| $) 53)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 49)) (-3988 (($) 12)) (-2766 (((-589 (-2 (|:| -2433 |#1|) (|:| -2792 (-710)))) $) 47)) (-3682 (($ $ |#1|) NIL) (($ $ $) 78)) (-3433 (($) 14) (($ (-589 |#1|)) 23)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) 60 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 66)) (-3663 (((-499) $) 36 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 20)) (-1458 (((-794) $) 44)) (-1684 (($ (-589 |#1|)) 25) (($) 16)) (-2401 (($ (-589 |#1|)) 22)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 80)) (-4007 (((-108) $ $) 81)) (-2676 (((-710) $) 59 (|has| $ (-6 -4244))))) -(((-677 |#1|) (-13 (-676 |#1|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -3157 ($)) (-15 -3157 ($ |#1|)) (-15 -3157 ($ (-589 |#1|))) (-15 -2136 ((-589 |#1|) $)) (-15 -2557 ($ |#1| $ (-523))) (-15 -2557 ($ (-1 (-108) |#1|) $ (-523))) (-15 -2249 ($ |#1| $ (-523))) (-15 -2249 ($ (-1 (-108) |#1|) $ (-523))))) (-1016)) (T -677)) -((-3157 (*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1016)))) (-3157 (*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1016)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-677 *3)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1016)))) (-2557 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-677 *2)) (-4 *2 (-1016)))) (-2557 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-523)) (-4 *4 (-1016)) (-5 *1 (-677 *4)))) (-2249 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-677 *2)) (-4 *2 (-1016)))) (-2249 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-523)) (-4 *4 (-1016)) (-5 *1 (-677 *4))))) -(-13 (-676 |#1|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -3157 ($)) (-15 -3157 ($ |#1|)) (-15 -3157 ($ (-589 |#1|))) (-15 -2136 ((-589 |#1|) $)) (-15 -2557 ($ |#1| $ (-523))) (-15 -2557 ($ (-1 (-108) |#1|) $ (-523))) (-15 -2249 ($ |#1| $ (-523))) (-15 -2249 ($ (-1 (-108) |#1|) $ (-523))))) -((-3094 (((-1173) (-1070)) 8))) -(((-678) (-10 -7 (-15 -3094 ((-1173) (-1070))))) (T -678)) -((-3094 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-678))))) -(-10 -7 (-15 -3094 ((-1173) (-1070)))) -((-3730 (((-589 |#1|) (-589 |#1|) (-589 |#1|)) 10))) -(((-679 |#1|) (-10 -7 (-15 -3730 ((-589 |#1|) (-589 |#1|) (-589 |#1|)))) (-786)) (T -679)) -((-3730 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-679 *3))))) -(-10 -7 (-15 -3730 ((-589 |#1|) (-589 |#1|) (-589 |#1|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 |#2|) $) 136)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 129 (|has| |#1| (-515)))) (-3345 (($ $) 128 (|has| |#1| (-515)))) (-3331 (((-108) $) 126 (|has| |#1| (-515)))) (-1769 (($ $) 85 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 68 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) 19)) (-1832 (($ $) 67 (|has| |#1| (-37 (-383 (-523)))))) (-1744 (($ $) 84 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 69 (|has| |#1| (-37 (-383 (-523)))))) (-1793 (($ $) 83 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 70 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) 17 T CONST)) (-3810 (($ $) 120)) (-2121 (((-3 $ "failed") $) 34)) (-3566 (((-883 |#1|) $ (-710)) 98) (((-883 |#1|) $ (-710) (-710)) 97)) (-2003 (((-108) $) 137)) (-2820 (($) 95 (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-710) $ |#2|) 100) (((-710) $ |#2| (-710)) 99)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 66 (|has| |#1| (-37 (-383 (-523)))))) (-2620 (((-108) $) 118)) (-1933 (($ $ (-589 |#2|) (-589 (-495 |#2|))) 135) (($ $ |#2| (-495 |#2|)) 134) (($ |#1| (-495 |#2|)) 119) (($ $ |#2| (-710)) 102) (($ $ (-589 |#2|) (-589 (-710))) 101)) (-3612 (($ (-1 |#1| |#1|) $) 117)) (-2384 (($ $) 92 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) 115)) (-3786 ((|#1| $) 114)) (-3779 (((-1070) $) 9)) (-3417 (($ $ |#2|) 96 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) 10)) (-4097 (($ $ (-710)) 103)) (-3746 (((-3 $ "failed") $ $) 130 (|has| |#1| (-515)))) (-1811 (($ $) 93 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (($ $ |#2| $) 111) (($ $ (-589 |#2|) (-589 $)) 110) (($ $ (-589 (-271 $))) 109) (($ $ (-271 $)) 108) (($ $ $ $) 107) (($ $ (-589 $) (-589 $)) 106)) (-3523 (($ $ |#2|) 42) (($ $ (-589 |#2|)) 41) (($ $ |#2| (-710)) 40) (($ $ (-589 |#2|) (-589 (-710))) 39)) (-2299 (((-495 |#2|) $) 116)) (-1805 (($ $) 82 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 71 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 81 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 72 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 80 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 73 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 138)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 133 (|has| |#1| (-158))) (($ $) 131 (|has| |#1| (-515))) (($ (-383 (-523))) 123 (|has| |#1| (-37 (-383 (-523)))))) (-2365 ((|#1| $ (-495 |#2|)) 121) (($ $ |#2| (-710)) 105) (($ $ (-589 |#2|) (-589 (-710))) 104)) (-3901 (((-3 $ "failed") $) 132 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1839 (($ $) 91 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 79 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) 127 (|has| |#1| (-515)))) (-1818 (($ $) 90 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 78 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 89 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 77 (|has| |#1| (-37 (-383 (-523)))))) (-2914 (($ $) 88 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 76 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 87 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 75 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 86 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 74 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ |#2|) 38) (($ $ (-589 |#2|)) 37) (($ $ |#2| (-710)) 36) (($ $ (-589 |#2|) (-589 (-710))) 35)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 122 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ $) 94 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 65 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 125 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 124 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 113) (($ $ |#1|) 112))) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-634 |#1|) . T) ((-1014 |#1|) . T) ((-1016) . T) ((-1123) . T)) +((-1680 (((-108) $ $) NIL)) (-3321 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-4199 (($ $ $) 79)) (-2172 (((-108) $ $) 83)) (-1620 (((-108) $ (-710)) NIL)) (-1365 (($ (-589 |#1|)) 24) (($) 15)) (-3703 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-4160 (($ $) 71)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3286 (($ |#1| $) 61 (|has| $ (-6 -4248))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4248))) (($ |#1| $ (-523)) 62) (($ (-1 (-108) |#1|) $ (-523)) 65)) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (($ |#1| $ (-523)) 67) (($ (-1 (-108) |#1|) $ (-523)) 68)) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248)))) (-1871 (((-589 |#1|) $) 32 (|has| $ (-6 -4248)))) (-4142 (($) 13) (($ |#1|) 26) (($ (-589 |#1|)) 21)) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#1|) $) 38)) (-3423 (((-108) |#1| $) 57 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2043 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 75)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-3196 (($ $ $) 77)) (-1293 ((|#1| $) 54)) (-3108 (($ |#1| $) 55) (($ |#1| $ (-710)) 72)) (-3951 (((-1034) $) NIL)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3048 ((|#1| $) 53)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 49)) (-3320 (($) 12)) (-1767 (((-589 (-2 (|:| -2482 |#1|) (|:| -3977 (-710)))) $) 47)) (-3582 (($ $ |#1|) NIL) (($ $ $) 78)) (-2963 (($) 14) (($ (-589 |#1|)) 23)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) 60 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) 66)) (-1400 (((-499) $) 36 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 20)) (-1691 (((-794) $) 44)) (-3324 (($ (-589 |#1|)) 25) (($) 16)) (-2417 (($ (-589 |#1|)) 22)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 81)) (-3966 (((-108) $ $) 82)) (-2810 (((-710) $) 59 (|has| $ (-6 -4248))))) +(((-677 |#1|) (-13 (-676 |#1|) (-10 -8 (-6 -4248) (-6 -4249) (-15 -4142 ($)) (-15 -4142 ($ |#1|)) (-15 -4142 ($ (-589 |#1|))) (-15 -1584 ((-589 |#1|) $)) (-15 -2514 ($ |#1| $ (-523))) (-15 -2514 ($ (-1 (-108) |#1|) $ (-523))) (-15 -3286 ($ |#1| $ (-523))) (-15 -3286 ($ (-1 (-108) |#1|) $ (-523))))) (-1016)) (T -677)) +((-4142 (*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1016)))) (-4142 (*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1016)))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-677 *3)))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1016)))) (-2514 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-677 *2)) (-4 *2 (-1016)))) (-2514 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-523)) (-4 *4 (-1016)) (-5 *1 (-677 *4)))) (-3286 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-677 *2)) (-4 *2 (-1016)))) (-3286 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-523)) (-4 *4 (-1016)) (-5 *1 (-677 *4))))) +(-13 (-676 |#1|) (-10 -8 (-6 -4248) (-6 -4249) (-15 -4142 ($)) (-15 -4142 ($ |#1|)) (-15 -4142 ($ (-589 |#1|))) (-15 -1584 ((-589 |#1|) $)) (-15 -2514 ($ |#1| $ (-523))) (-15 -2514 ($ (-1 (-108) |#1|) $ (-523))) (-15 -3286 ($ |#1| $ (-523))) (-15 -3286 ($ (-1 (-108) |#1|) $ (-523))))) +((-3638 (((-1174) (-1070)) 8))) +(((-678) (-10 -7 (-15 -3638 ((-1174) (-1070))))) (T -678)) +((-3638 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-678))))) +(-10 -7 (-15 -3638 ((-1174) (-1070)))) +((-2789 (((-589 |#1|) (-589 |#1|) (-589 |#1|)) 10))) +(((-679 |#1|) (-10 -7 (-15 -2789 ((-589 |#1|) (-589 |#1|) (-589 |#1|)))) (-786)) (T -679)) +((-2789 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-679 *3))))) +(-10 -7 (-15 -2789 ((-589 |#1|) (-589 |#1|) (-589 |#1|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1292 (((-589 |#2|) $) 136)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 129 (|has| |#1| (-515)))) (-3306 (($ $) 128 (|has| |#1| (-515)))) (-3174 (((-108) $) 126 (|has| |#1| (-515)))) (-1462 (($ $) 85 (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) 68 (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) 19)) (-2437 (($ $) 67 (|has| |#1| (-37 (-383 (-523)))))) (-1441 (($ $) 84 (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) 69 (|has| |#1| (-37 (-383 (-523)))))) (-1481 (($ $) 83 (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) 70 (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) 17 T CONST)) (-1457 (($ $) 120)) (-1444 (((-3 $ "failed") $) 34)) (-3714 (((-883 |#1|) $ (-710)) 98) (((-883 |#1|) $ (-710) (-710)) 97)) (-2589 (((-108) $) 137)) (-3352 (($) 95 (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-710) $ |#2|) 100) (((-710) $ |#2| (-710)) 99)) (-2769 (((-108) $) 31)) (-1973 (($ $ (-523)) 66 (|has| |#1| (-37 (-383 (-523)))))) (-2704 (((-108) $) 118)) (-1267 (($ $ (-589 |#2|) (-589 (-495 |#2|))) 135) (($ $ |#2| (-495 |#2|)) 134) (($ |#1| (-495 |#2|)) 119) (($ $ |#2| (-710)) 102) (($ $ (-589 |#2|) (-589 (-710))) 101)) (-1345 (($ (-1 |#1| |#1|) $) 117)) (-2313 (($ $) 92 (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) 115)) (-1437 ((|#1| $) 114)) (-2032 (((-1070) $) 9)) (-2814 (($ $ |#2|) 96 (|has| |#1| (-37 (-383 (-523)))))) (-3951 (((-1034) $) 10)) (-3053 (($ $ (-710)) 103)) (-4007 (((-3 $ "failed") $ $) 130 (|has| |#1| (-515)))) (-2922 (($ $) 93 (|has| |#1| (-37 (-383 (-523)))))) (-2812 (($ $ |#2| $) 111) (($ $ (-589 |#2|) (-589 $)) 110) (($ $ (-589 (-271 $))) 109) (($ $ (-271 $)) 108) (($ $ $ $) 107) (($ $ (-589 $) (-589 $)) 106)) (-3984 (($ $ |#2|) 42) (($ $ (-589 |#2|)) 41) (($ $ |#2| (-710)) 40) (($ $ (-589 |#2|) (-589 (-710))) 39)) (-2640 (((-495 |#2|) $) 116)) (-2306 (($ $) 82 (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) 71 (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) 81 (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) 72 (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) 80 (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) 73 (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) 138)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 133 (|has| |#1| (-158))) (($ $) 131 (|has| |#1| (-515))) (($ (-383 (-523))) 123 (|has| |#1| (-37 (-383 (-523)))))) (-2084 ((|#1| $ (-495 |#2|)) 121) (($ $ |#2| (-710)) 105) (($ $ (-589 |#2|) (-589 (-710))) 104)) (-1942 (((-3 $ "failed") $) 132 (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-2341 (($ $) 91 (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) 79 (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) 127 (|has| |#1| (-515)))) (-2318 (($ $) 90 (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) 78 (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) 89 (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) 77 (|has| |#1| (-37 (-383 (-523)))))) (-2102 (($ $) 88 (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) 76 (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) 87 (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) 75 (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) 86 (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) 74 (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ |#2|) 38) (($ $ (-589 |#2|)) 37) (($ $ |#2| (-710)) 36) (($ $ (-589 |#2|) (-589 (-710))) 35)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#1|) 122 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ $) 94 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 65 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 125 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 124 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 113) (($ $ |#1|) 112))) (((-680 |#1| |#2|) (-129) (-973) (-786)) (T -680)) -((-2365 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *2)) (-4 *4 (-973)) (-4 *2 (-786)))) (-2365 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *5)) (-5 *3 (-589 (-710))) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) (-4 *5 (-786)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-680 *3 *4)) (-4 *3 (-973)) (-4 *4 (-786)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *2)) (-4 *4 (-973)) (-4 *2 (-786)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *5)) (-5 *3 (-589 (-710))) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) (-4 *5 (-786)))) (-1640 (*1 *2 *1 *3) (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-973)) (-4 *3 (-786)) (-5 *2 (-710)))) (-1640 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-710)) (-4 *1 (-680 *4 *3)) (-4 *4 (-973)) (-4 *3 (-786)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) (-4 *5 (-786)) (-5 *2 (-883 *4)))) (-3566 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) (-4 *5 (-786)) (-5 *2 (-883 *4)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-973)) (-4 *2 (-786)) (-4 *3 (-37 (-383 (-523))))))) -(-13 (-831 |t#2|) (-902 |t#1| (-495 |t#2|) |t#2|) (-484 |t#2| $) (-286 $) (-10 -8 (-15 -2365 ($ $ |t#2| (-710))) (-15 -2365 ($ $ (-589 |t#2|) (-589 (-710)))) (-15 -4097 ($ $ (-710))) (-15 -1933 ($ $ |t#2| (-710))) (-15 -1933 ($ $ (-589 |t#2|) (-589 (-710)))) (-15 -1640 ((-710) $ |t#2|)) (-15 -1640 ((-710) $ |t#2| (-710))) (-15 -3566 ((-883 |t#1|) $ (-710))) (-15 -3566 ((-883 |t#1|) $ (-710) (-710))) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $ |t#2|)) (-6 (-930)) (-6 (-1108))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-495 |#2|)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-267) |has| |#1| (-515)) ((-286 $) . T) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-484 |#2| $) . T) ((-484 $ $) . T) ((-515) |has| |#1| (-515)) ((-591 #1#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-831 |#2|) . T) ((-902 |#1| #0# |#2|) . T) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-979 #1#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1108) |has| |#1| (-37 (-383 (-523)))) ((-1111) |has| |#1| (-37 (-383 (-523))))) -((-1820 (((-394 (-1083 |#4|)) (-1083 |#4|)) 28) (((-394 |#4|) |#4|) 24))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 |#4|) |#4|)) (-15 -1820 ((-394 (-1083 |#4|)) (-1083 |#4|)))) (-786) (-732) (-13 (-284) (-136)) (-880 |#3| |#2| |#1|)) (T -681)) -((-1820 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-880 *6 *5 *4)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-13 (-284) (-136))) (-5 *2 (-394 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4))))) -(-10 -7 (-15 -1820 ((-394 |#4|) |#4|)) (-15 -1820 ((-394 (-1083 |#4|)) (-1083 |#4|)))) -((-1946 (((-394 |#4|) |#4| |#2|) 117)) (-4211 (((-394 |#4|) |#4|) NIL)) (-3614 (((-394 (-1083 |#4|)) (-1083 |#4|)) 108) (((-394 |#4|) |#4|) 38)) (-2193 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-589 (-2 (|:| -1820 (-1083 |#4|)) (|:| -2735 (-523)))))) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|))) 66)) (-2979 (((-1083 |#3|) (-1083 |#3|) (-523)) 134)) (-1722 (((-589 (-710)) (-1083 |#4|) (-589 |#2|) (-710)) 59)) (-2428 (((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-589 |#2|) (-589 (-710)) (-589 |#3|)) 63)) (-2927 (((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-589 |#3|)) (|:| |Lfact| (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|))) 22)) (-4162 (((-2 (|:| -1480 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-523)) 55)) (-2848 (((-523) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523))))) 131)) (-3714 ((|#4| (-523) (-394 |#4|)) 56)) (-1322 (((-108) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523))))) NIL))) -(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3614 ((-394 |#4|) |#4|)) (-15 -3614 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -4211 ((-394 |#4|) |#4|)) (-15 -2848 ((-523) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))))) (-15 -1946 ((-394 |#4|) |#4| |#2|)) (-15 -4162 ((-2 (|:| -1480 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-523))) (-15 -2193 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-589 (-2 (|:| -1820 (-1083 |#4|)) (|:| -2735 (-523)))))) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|)))) (-15 -2927 ((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-589 |#3|)) (|:| |Lfact| (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|)))) (-15 -3714 (|#4| (-523) (-394 |#4|))) (-15 -1322 ((-108) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))))) (-15 -2428 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-589 |#2|) (-589 (-710)) (-589 |#3|))) (-15 -1722 ((-589 (-710)) (-1083 |#4|) (-589 |#2|) (-710))) (-15 -2979 ((-1083 |#3|) (-1083 |#3|) (-523)))) (-732) (-786) (-284) (-880 |#3| |#1| |#2|)) (T -682)) -((-2979 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *6)) (-5 *3 (-523)) (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-1722 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-4 *7 (-786)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-4 *8 (-284)) (-5 *2 (-589 (-710))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-710)))) (-2428 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1083 *11)) (-5 *6 (-589 *10)) (-5 *7 (-589 (-710))) (-5 *8 (-589 *11)) (-4 *10 (-786)) (-4 *11 (-284)) (-4 *9 (-732)) (-4 *5 (-880 *11 *9 *10)) (-5 *2 (-589 (-1083 *5))) (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1083 *5)))) (-1322 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-2 (|:| -1820 (-1083 *6)) (|:| -2735 (-523))))) (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-3714 (*1 *2 *3 *4) (-12 (-5 *3 (-523)) (-5 *4 (-394 *2)) (-4 *2 (-880 *7 *5 *6)) (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-284)))) (-2927 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-5 *5 (-589 (-589 *8))) (-4 *7 (-786)) (-4 *8 (-284)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-5 *2 (-2 (|:| |upol| (-1083 *8)) (|:| |Lval| (-589 *8)) (|:| |Lfact| (-589 (-2 (|:| -1820 (-1083 *8)) (|:| -2735 (-523))))) (|:| |ctpol| *8))) (-5 *1 (-682 *6 *7 *8 *9)))) (-2193 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-589 *7)) (-5 *5 (-589 (-589 *8))) (-4 *7 (-786)) (-4 *8 (-284)) (-4 *6 (-732)) (-4 *9 (-880 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-589 (-2 (|:| -1820 (-1083 *9)) (|:| -2735 (-523))))))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1083 *9)))) (-4162 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-523)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-284)) (-4 *9 (-880 *8 *6 *7)) (-5 *2 (-2 (|:| -1480 (-1083 *9)) (|:| |polval| (-1083 *8)))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1083 *9)) (-5 *4 (-1083 *8)))) (-1946 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -1820 (-1083 *6)) (|:| -2735 (-523))))) (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-523)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-4211 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-880 *6 *4 *5)))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-880 *6 *4 *5))))) -(-10 -7 (-15 -3614 ((-394 |#4|) |#4|)) (-15 -3614 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -4211 ((-394 |#4|) |#4|)) (-15 -2848 ((-523) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))))) (-15 -1946 ((-394 |#4|) |#4| |#2|)) (-15 -4162 ((-2 (|:| -1480 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-523))) (-15 -2193 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-589 (-2 (|:| -1820 (-1083 |#4|)) (|:| -2735 (-523)))))) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|)))) (-15 -2927 ((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-589 |#3|)) (|:| |Lfact| (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|)))) (-15 -3714 (|#4| (-523) (-394 |#4|))) (-15 -1322 ((-108) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))))) (-15 -2428 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-589 |#2|) (-589 (-710)) (-589 |#3|))) (-15 -1722 ((-589 (-710)) (-1083 |#4|) (-589 |#2|) (-710))) (-15 -2979 ((-1083 |#3|) (-1083 |#3|) (-523)))) -((-3650 (($ $ (-852)) 12))) -(((-683 |#1| |#2|) (-10 -8 (-15 -3650 (|#1| |#1| (-852)))) (-684 |#2|) (-158)) (T -683)) -NIL -(-10 -8 (-15 -3650 (|#1| |#1| (-852)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-1970 (($ $ (-852)) 28)) (-3650 (($ $ (-852)) 33)) (-1448 (($ $ (-852)) 29)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1714 (($ $ $) 25)) (-1458 (((-794) $) 11)) (-2022 (($ $ $ $) 26)) (-1995 (($ $ $) 24)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-2084 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *2)) (-4 *4 (-973)) (-4 *2 (-786)))) (-2084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *5)) (-5 *3 (-589 (-710))) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) (-4 *5 (-786)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-680 *3 *4)) (-4 *3 (-973)) (-4 *4 (-786)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *2)) (-4 *4 (-973)) (-4 *2 (-786)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *5)) (-5 *3 (-589 (-710))) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) (-4 *5 (-786)))) (-3437 (*1 *2 *1 *3) (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-973)) (-4 *3 (-786)) (-5 *2 (-710)))) (-3437 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-710)) (-4 *1 (-680 *4 *3)) (-4 *4 (-973)) (-4 *3 (-786)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) (-4 *5 (-786)) (-5 *2 (-883 *4)))) (-3714 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) (-4 *5 (-786)) (-5 *2 (-883 *4)))) (-2814 (*1 *1 *1 *2) (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-973)) (-4 *2 (-786)) (-4 *3 (-37 (-383 (-523))))))) +(-13 (-831 |t#2|) (-902 |t#1| (-495 |t#2|) |t#2|) (-484 |t#2| $) (-286 $) (-10 -8 (-15 -2084 ($ $ |t#2| (-710))) (-15 -2084 ($ $ (-589 |t#2|) (-589 (-710)))) (-15 -3053 ($ $ (-710))) (-15 -1267 ($ $ |t#2| (-710))) (-15 -1267 ($ $ (-589 |t#2|) (-589 (-710)))) (-15 -3437 ((-710) $ |t#2|)) (-15 -3437 ((-710) $ |t#2| (-710))) (-15 -3714 ((-883 |t#1|) $ (-710))) (-15 -3714 ((-883 |t#1|) $ (-710) (-710))) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -2814 ($ $ |t#2|)) (-6 (-930)) (-6 (-1109))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-495 |#2|)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-267) |has| |#1| (-515)) ((-286 $) . T) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-484 |#2| $) . T) ((-484 $ $) . T) ((-515) |has| |#1| (-515)) ((-591 #1#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-831 |#2|) . T) ((-902 |#1| #0# |#2|) . T) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-979 #1#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1109) |has| |#1| (-37 (-383 (-523)))) ((-1112) |has| |#1| (-37 (-383 (-523))))) +((-2424 (((-394 (-1083 |#4|)) (-1083 |#4|)) 28) (((-394 |#4|) |#4|) 24))) +(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2424 ((-394 |#4|) |#4|)) (-15 -2424 ((-394 (-1083 |#4|)) (-1083 |#4|)))) (-786) (-732) (-13 (-284) (-136)) (-880 |#3| |#2| |#1|)) (T -681)) +((-2424 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-880 *6 *5 *4)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-13 (-284) (-136))) (-5 *2 (-394 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4))))) +(-10 -7 (-15 -2424 ((-394 |#4|) |#4|)) (-15 -2424 ((-394 (-1083 |#4|)) (-1083 |#4|)))) +((-3157 (((-394 |#4|) |#4| |#2|) 117)) (-1209 (((-394 |#4|) |#4|) NIL)) (-4226 (((-394 (-1083 |#4|)) (-1083 |#4|)) 108) (((-394 |#4|) |#4|) 38)) (-3943 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-589 (-2 (|:| -2424 (-1083 |#4|)) (|:| -1475 (-523)))))) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|))) 66)) (-3034 (((-1083 |#3|) (-1083 |#3|) (-523)) 135)) (-2952 (((-589 (-710)) (-1083 |#4|) (-589 |#2|) (-710)) 59)) (-2104 (((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-589 |#2|) (-589 (-710)) (-589 |#3|)) 63)) (-3741 (((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-589 |#3|)) (|:| |Lfact| (-589 (-2 (|:| -2424 (-1083 |#3|)) (|:| -1475 (-523))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|))) 22)) (-2539 (((-2 (|:| -1385 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-523)) 55)) (-1252 (((-523) (-589 (-2 (|:| -2424 (-1083 |#3|)) (|:| -1475 (-523))))) 132)) (-2665 ((|#4| (-523) (-394 |#4|)) 56)) (-3322 (((-108) (-589 (-2 (|:| -2424 (-1083 |#3|)) (|:| -1475 (-523)))) (-589 (-2 (|:| -2424 (-1083 |#3|)) (|:| -1475 (-523))))) NIL))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4226 ((-394 |#4|) |#4|)) (-15 -4226 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -1209 ((-394 |#4|) |#4|)) (-15 -1252 ((-523) (-589 (-2 (|:| -2424 (-1083 |#3|)) (|:| -1475 (-523)))))) (-15 -3157 ((-394 |#4|) |#4| |#2|)) (-15 -2539 ((-2 (|:| -1385 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-523))) (-15 -3943 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-589 (-2 (|:| -2424 (-1083 |#4|)) (|:| -1475 (-523)))))) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|)))) (-15 -3741 ((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-589 |#3|)) (|:| |Lfact| (-589 (-2 (|:| -2424 (-1083 |#3|)) (|:| -1475 (-523))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|)))) (-15 -2665 (|#4| (-523) (-394 |#4|))) (-15 -3322 ((-108) (-589 (-2 (|:| -2424 (-1083 |#3|)) (|:| -1475 (-523)))) (-589 (-2 (|:| -2424 (-1083 |#3|)) (|:| -1475 (-523)))))) (-15 -2104 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-589 |#2|) (-589 (-710)) (-589 |#3|))) (-15 -2952 ((-589 (-710)) (-1083 |#4|) (-589 |#2|) (-710))) (-15 -3034 ((-1083 |#3|) (-1083 |#3|) (-523)))) (-732) (-786) (-284) (-880 |#3| |#1| |#2|)) (T -682)) +((-3034 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *6)) (-5 *3 (-523)) (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-2952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-4 *7 (-786)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-4 *8 (-284)) (-5 *2 (-589 (-710))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-710)))) (-2104 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1083 *11)) (-5 *6 (-589 *10)) (-5 *7 (-589 (-710))) (-5 *8 (-589 *11)) (-4 *10 (-786)) (-4 *11 (-284)) (-4 *9 (-732)) (-4 *5 (-880 *11 *9 *10)) (-5 *2 (-589 (-1083 *5))) (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1083 *5)))) (-3322 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-2 (|:| -2424 (-1083 *6)) (|:| -1475 (-523))))) (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-523)) (-5 *4 (-394 *2)) (-4 *2 (-880 *7 *5 *6)) (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-284)))) (-3741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-5 *5 (-589 (-589 *8))) (-4 *7 (-786)) (-4 *8 (-284)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-5 *2 (-2 (|:| |upol| (-1083 *8)) (|:| |Lval| (-589 *8)) (|:| |Lfact| (-589 (-2 (|:| -2424 (-1083 *8)) (|:| -1475 (-523))))) (|:| |ctpol| *8))) (-5 *1 (-682 *6 *7 *8 *9)))) (-3943 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-589 *7)) (-5 *5 (-589 (-589 *8))) (-4 *7 (-786)) (-4 *8 (-284)) (-4 *6 (-732)) (-4 *9 (-880 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-589 (-2 (|:| -2424 (-1083 *9)) (|:| -1475 (-523))))))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1083 *9)))) (-2539 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-523)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-284)) (-4 *9 (-880 *8 *6 *7)) (-5 *2 (-2 (|:| -1385 (-1083 *9)) (|:| |polval| (-1083 *8)))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1083 *9)) (-5 *4 (-1083 *8)))) (-3157 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) (-1252 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -2424 (-1083 *6)) (|:| -1475 (-523))))) (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-523)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-1209 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-880 *6 *4 *5)))) (-4226 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-4226 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-880 *6 *4 *5))))) +(-10 -7 (-15 -4226 ((-394 |#4|) |#4|)) (-15 -4226 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -1209 ((-394 |#4|) |#4|)) (-15 -1252 ((-523) (-589 (-2 (|:| -2424 (-1083 |#3|)) (|:| -1475 (-523)))))) (-15 -3157 ((-394 |#4|) |#4| |#2|)) (-15 -2539 ((-2 (|:| -1385 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-523))) (-15 -3943 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-589 (-2 (|:| -2424 (-1083 |#4|)) (|:| -1475 (-523)))))) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|)))) (-15 -3741 ((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-589 |#3|)) (|:| |Lfact| (-589 (-2 (|:| -2424 (-1083 |#3|)) (|:| -1475 (-523))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|)))) (-15 -2665 (|#4| (-523) (-394 |#4|))) (-15 -3322 ((-108) (-589 (-2 (|:| -2424 (-1083 |#3|)) (|:| -1475 (-523)))) (-589 (-2 (|:| -2424 (-1083 |#3|)) (|:| -1475 (-523)))))) (-15 -2104 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-589 |#2|) (-589 (-710)) (-589 |#3|))) (-15 -2952 ((-589 (-710)) (-1083 |#4|) (-589 |#2|) (-710))) (-15 -3034 ((-1083 |#3|) (-1083 |#3|) (-523)))) +((-3291 (($ $ (-852)) 12))) +(((-683 |#1| |#2|) (-10 -8 (-15 -3291 (|#1| |#1| (-852)))) (-684 |#2|) (-158)) (T -683)) +NIL +(-10 -8 (-15 -3291 (|#1| |#1| (-852)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-3402 (($ $ (-852)) 28)) (-3291 (($ $ (-852)) 33)) (-2237 (($ $ (-852)) 29)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-2892 (($ $ $) 25)) (-1691 (((-794) $) 11)) (-2760 (($ $ $ $) 26)) (-3654 (($ $ $) 24)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-684 |#1|) (-129) (-158)) (T -684)) -((-3650 (*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-684 *3)) (-4 *3 (-158))))) -(-13 (-701) (-657 |t#1|) (-10 -8 (-15 -3650 ($ $ (-852))))) +((-3291 (*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-684 *3)) (-4 *3 (-158))))) +(-13 (-701) (-657 |t#1|) (-10 -8 (-15 -3291 ($ $ (-852))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-657 |#1|) . T) ((-660) . T) ((-701) . T) ((-979 |#1|) . T) ((-1016) . T)) -((-2332 (((-962) (-629 (-203)) (-523) (-108) (-523)) 24)) (-2174 (((-962) (-629 (-203)) (-523) (-108) (-523)) 23))) -(((-685) (-10 -7 (-15 -2174 ((-962) (-629 (-203)) (-523) (-108) (-523))) (-15 -2332 ((-962) (-629 (-203)) (-523) (-108) (-523))))) (T -685)) -((-2332 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-685)))) (-2174 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-685))))) -(-10 -7 (-15 -2174 ((-962) (-629 (-203)) (-523) (-108) (-523))) (-15 -2332 ((-962) (-629 (-203)) (-523) (-108) (-523)))) -((-2857 (((-962) (-523) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN)))) 43)) (-3776 (((-962) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN)))) 39)) (-3187 (((-962) (-203) (-203) (-203) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) 32))) -(((-686) (-10 -7 (-15 -3187 ((-962) (-203) (-203) (-203) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -3776 ((-962) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN))))) (-15 -2857 ((-962) (-523) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN))))))) (T -686)) -((-2857 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN)))) (-5 *2 (-962)) (-5 *1 (-686)))) (-3776 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN)))) (-5 *2 (-962)) (-5 *1 (-686)))) (-3187 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) (-5 *1 (-686))))) -(-10 -7 (-15 -3187 ((-962) (-203) (-203) (-203) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -3776 ((-962) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN))))) (-15 -2857 ((-962) (-523) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN)))))) -((-2111 (((-962) (-523) (-523) (-629 (-203)) (-523)) 33)) (-2995 (((-962) (-523) (-523) (-629 (-203)) (-523)) 32)) (-1361 (((-962) (-523) (-629 (-203)) (-523)) 31)) (-3907 (((-962) (-523) (-629 (-203)) (-523)) 30)) (-3176 (((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 29)) (-2514 (((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 28)) (-3460 (((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523)) 27)) (-2882 (((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523)) 26)) (-3074 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 23)) (-3979 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523)) 22)) (-1822 (((-962) (-523) (-629 (-203)) (-523)) 21)) (-3559 (((-962) (-523) (-629 (-203)) (-523)) 20))) -(((-687) (-10 -7 (-15 -3559 ((-962) (-523) (-629 (-203)) (-523))) (-15 -1822 ((-962) (-523) (-629 (-203)) (-523))) (-15 -3979 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3074 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2882 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3460 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2514 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3176 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3907 ((-962) (-523) (-629 (-203)) (-523))) (-15 -1361 ((-962) (-523) (-629 (-203)) (-523))) (-15 -2995 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -2111 ((-962) (-523) (-523) (-629 (-203)) (-523))))) (T -687)) -((-2111 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-2995 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-1361 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3907 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3176 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-2514 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3460 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-2882 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3074 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3979 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-1822 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3559 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687))))) -(-10 -7 (-15 -3559 ((-962) (-523) (-629 (-203)) (-523))) (-15 -1822 ((-962) (-523) (-629 (-203)) (-523))) (-15 -3979 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3074 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2882 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3460 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2514 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3176 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3907 ((-962) (-523) (-629 (-203)) (-523))) (-15 -1361 ((-962) (-523) (-629 (-203)) (-523))) (-15 -2995 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -2111 ((-962) (-523) (-523) (-629 (-203)) (-523)))) -((-1249 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1967 (((-962) (-629 (-203)) (-629 (-203)) (-523) (-523)) 51)) (-3995 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3181 (((-962) (-203) (-203) (-523) (-523) (-523) (-523)) 46)) (-1623 (((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) 45)) (-2456 (((-962) (-203) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) 44)) (-4127 (((-962) (-203) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) 43)) (-4218 (((-962) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) 42)) (-1987 (((-962) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) 38)) (-1904 (((-962) (-203) (-203) (-523) (-629 (-203)) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) 37)) (-3455 (((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) 33)) (-2036 (((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) 32))) -(((-688) (-10 -7 (-15 -2036 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -3455 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -1904 ((-962) (-203) (-203) (-523) (-629 (-203)) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -1987 ((-962) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -4218 ((-962) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -4127 ((-962) (-203) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -2456 ((-962) (-203) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -1623 ((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -3181 ((-962) (-203) (-203) (-523) (-523) (-523) (-523))) (-15 -3995 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN))))) (-15 -1967 ((-962) (-629 (-203)) (-629 (-203)) (-523) (-523))) (-15 -1249 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN))))))) (T -688)) -((-1249 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-1967 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-688)))) (-3995 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-3181 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-688)))) (-1623 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-2456 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-4127 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-4218 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-1987 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-1904 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-688)))) (-3455 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-2036 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) (-5 *1 (-688))))) -(-10 -7 (-15 -2036 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -3455 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -1904 ((-962) (-203) (-203) (-523) (-629 (-203)) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -1987 ((-962) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -4218 ((-962) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -4127 ((-962) (-203) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -2456 ((-962) (-203) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -1623 ((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -3181 ((-962) (-203) (-203) (-523) (-523) (-523) (-523))) (-15 -3995 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN))))) (-15 -1967 ((-962) (-629 (-203)) (-629 (-203)) (-523) (-523))) (-15 -1249 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))))) -((-1454 (((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-2467 (((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))) (-364) (-364)) 69) (((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) 68)) (-3465 (((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG)))) 57)) (-1341 (((-962) (-629 (-203)) (-629 (-203)) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) 50)) (-1324 (((-962) (-203) (-523) (-523) (-1070) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) 49)) (-3981 (((-962) (-203) (-523) (-523) (-203) (-1070) (-203) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) 45)) (-1415 (((-962) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) 42)) (-4200 (((-962) (-203) (-523) (-523) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) 38))) -(((-689) (-10 -7 (-15 -4200 ((-962) (-203) (-523) (-523) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1415 ((-962) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))))) (-15 -3981 ((-962) (-203) (-523) (-523) (-203) (-1070) (-203) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1324 ((-962) (-203) (-523) (-523) (-1070) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1341 ((-962) (-629 (-203)) (-629 (-203)) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))))) (-15 -3465 ((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG))))) (-15 -2467 ((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))))) (-15 -2467 ((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))) (-364) (-364))) (-15 -1454 ((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -689)) -((-1454 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-2467 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-364)) (-5 *2 (-962)) (-5 *1 (-689)))) (-2467 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-962)) (-5 *1 (-689)))) (-3465 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-1341 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *2 (-962)) (-5 *1 (-689)))) (-1324 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-629 (-203))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-3981 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-629 (-203))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-1415 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-4200 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) -(-10 -7 (-15 -4200 ((-962) (-203) (-523) (-523) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1415 ((-962) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))))) (-15 -3981 ((-962) (-203) (-523) (-523) (-203) (-1070) (-203) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1324 ((-962) (-203) (-523) (-523) (-1070) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1341 ((-962) (-629 (-203)) (-629 (-203)) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))))) (-15 -3465 ((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG))))) (-15 -2467 ((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))))) (-15 -2467 ((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))) (-364) (-364))) (-15 -1454 ((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP)))))) -((-1275 (((-962) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-617 (-203)) (-523)) 45)) (-3542 (((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-1070) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY)))) 41)) (-4066 (((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 23))) -(((-690) (-10 -7 (-15 -4066 ((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3542 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-1070) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY))))) (-15 -1275 ((-962) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-617 (-203)) (-523))))) (T -690)) -((-1275 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-617 (-203))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-690)))) (-3542 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-962)) (-5 *1 (-690)))) (-4066 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-690))))) -(-10 -7 (-15 -4066 ((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3542 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-1070) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY))))) (-15 -1275 ((-962) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-617 (-203)) (-523)))) -((-3482 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-629 (-203)) (-203) (-203) (-523)) 35)) (-2687 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-203) (-203) (-523)) 34)) (-3022 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-629 (-203)) (-203) (-203) (-523)) 33)) (-1639 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 29)) (-3165 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 28)) (-3506 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523)) 27)) (-2689 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523)) 23)) (-1696 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523)) 22)) (-2281 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523)) 21)) (-4163 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523)) 20))) -(((-691) (-10 -7 (-15 -4163 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))) (-15 -2281 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1696 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -2689 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -3506 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523))) (-15 -3165 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1639 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3022 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-629 (-203)) (-203) (-203) (-523))) (-15 -2687 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-203) (-203) (-523))) (-15 -3482 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-629 (-203)) (-203) (-203) (-523))))) (T -691)) -((-3482 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-691)))) (-2687 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-691)))) (-3022 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *6 (-203)) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-691)))) (-1639 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-3165 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-3506 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-691)))) (-2689 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-1696 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-2281 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-4163 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691))))) -(-10 -7 (-15 -4163 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))) (-15 -2281 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1696 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -2689 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -3506 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523))) (-15 -3165 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1639 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3022 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-629 (-203)) (-203) (-203) (-523))) (-15 -2687 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-203) (-203) (-523))) (-15 -3482 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-629 (-203)) (-203) (-203) (-523)))) -((-3388 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523)) 45)) (-1436 (((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-523)) 44)) (-3311 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523)) 43)) (-3397 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 42)) (-1287 (((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523)) 41)) (-3529 (((-962) (-1070) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523)) 40)) (-4177 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523) (-523) (-523) (-203) (-629 (-203)) (-523)) 39)) (-2802 (((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523))) 38)) (-3592 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523)) 35)) (-4036 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523)) 34)) (-2228 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523)) 33)) (-2366 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 32)) (-2201 (((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523)) 31)) (-3832 (((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-523)) 30)) (-1614 (((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-523) (-523) (-523)) 29)) (-2899 (((-962) (-523) (-523) (-523) (-203) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-523)) (-523) (-523) (-523)) 28)) (-2917 (((-962) (-523) (-629 (-203)) (-203) (-523)) 24)) (-2540 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 20))) -(((-692) (-10 -7 (-15 -2540 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2917 ((-962) (-523) (-629 (-203)) (-203) (-523))) (-15 -2899 ((-962) (-523) (-523) (-523) (-203) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-523)) (-523) (-523) (-523))) (-15 -1614 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-523) (-523) (-523))) (-15 -3832 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-523))) (-15 -2201 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523))) (-15 -2366 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2228 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523))) (-15 -4036 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523))) (-15 -3592 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2802 ((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)))) (-15 -4177 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523) (-523) (-523) (-203) (-629 (-203)) (-523))) (-15 -3529 ((-962) (-1070) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523))) (-15 -1287 ((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3397 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3311 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))) (-15 -1436 ((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3388 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))))) (T -692)) -((-3388 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-1436 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3311 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-3397 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-1287 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3529 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) (-5 *7 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-692)))) (-4177 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *6 (-203)) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2802 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) (-5 *7 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3592 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-4036 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2228 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2366 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-2201 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3832 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-1614 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2899 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) (-5 *3 (-523)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2917 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2540 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692))))) -(-10 -7 (-15 -2540 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2917 ((-962) (-523) (-629 (-203)) (-203) (-523))) (-15 -2899 ((-962) (-523) (-523) (-523) (-203) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-523)) (-523) (-523) (-523))) (-15 -1614 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-523) (-523) (-523))) (-15 -3832 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-523))) (-15 -2201 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523))) (-15 -2366 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2228 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523))) (-15 -4036 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523))) (-15 -3592 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2802 ((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)))) (-15 -4177 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523) (-523) (-523) (-203) (-629 (-203)) (-523))) (-15 -3529 ((-962) (-1070) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523))) (-15 -1287 ((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3397 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3311 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))) (-15 -1436 ((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3388 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523)))) -((-4148 (((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-523) (-629 (-203)) (-523)) 63)) (-1376 (((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-108) (-203) (-523) (-203) (-203) (-108) (-203) (-203) (-203) (-203) (-108) (-523) (-523) (-523) (-523) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) 62)) (-3188 (((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-108) (-108) (-523) (-523) (-629 (-203)) (-629 (-523)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS)))) 58)) (-4028 (((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-523) (-523) (-629 (-203)) (-523)) 51)) (-3141 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3343 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1426 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1)))) 42)) (-4125 (((-962) (-523) (-203) (-203) (-523) (-203) (-108) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) 38))) -(((-693) (-10 -7 (-15 -4125 ((-962) (-523) (-203) (-203) (-523) (-203) (-108) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN))))) (-15 -1426 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1))))) (-15 -3343 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2))))) (-15 -3141 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1))))) (-15 -4028 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-523) (-523) (-629 (-203)) (-523))) (-15 -3188 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-108) (-108) (-523) (-523) (-629 (-203)) (-629 (-523)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS))))) (-15 -1376 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-108) (-203) (-523) (-203) (-203) (-108) (-203) (-203) (-203) (-203) (-108) (-523) (-523) (-523) (-523) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN))))) (-15 -4148 ((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-523) (-629 (-203)) (-523))))) (T -693)) -((-4148 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693)))) (-1376 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-108)) (-5 *6 (-203)) (-5 *7 (-629 (-523))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-693)))) (-3188 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-629 (-203))) (-5 *6 (-108)) (-5 *7 (-629 (-523))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-523)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693)))) (-4028 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-693)))) (-3141 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-962)) (-5 *1 (-693)))) (-3343 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-962)) (-5 *1 (-693)))) (-1426 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-962)) (-5 *1 (-693)))) (-4125 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-523)) (-5 *5 (-108)) (-5 *6 (-629 (-203))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693))))) -(-10 -7 (-15 -4125 ((-962) (-523) (-203) (-203) (-523) (-203) (-108) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN))))) (-15 -1426 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1))))) (-15 -3343 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2))))) (-15 -3141 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1))))) (-15 -4028 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-523) (-523) (-629 (-203)) (-523))) (-15 -3188 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-108) (-108) (-523) (-523) (-629 (-203)) (-629 (-523)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS))))) (-15 -1376 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-108) (-203) (-523) (-203) (-203) (-108) (-203) (-203) (-203) (-203) (-108) (-523) (-523) (-523) (-523) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN))))) (-15 -4148 ((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-523) (-629 (-203)) (-523)))) -((-1780 (((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523)) 46)) (-1700 (((-962) (-1070) (-1070) (-523) (-523) (-629 (-155 (-203))) (-523) (-629 (-155 (-203))) (-523) (-523) (-629 (-155 (-203))) (-523)) 45)) (-2714 (((-962) (-523) (-523) (-523) (-629 (-155 (-203))) (-523)) 44)) (-3904 (((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 40)) (-2631 (((-962) (-1070) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-629 (-203)) (-523)) 39)) (-3588 (((-962) (-523) (-523) (-523) (-629 (-203)) (-523)) 36)) (-3622 (((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523)) 35)) (-1222 (((-962) (-523) (-523) (-523) (-523) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-203) (-203) (-523)) 34)) (-3067 (((-962) (-523) (-523) (-523) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-108) (-203) (-108) (-629 (-523)) (-629 (-203)) (-523)) 33)) (-2593 (((-962) (-523) (-523) (-523) (-523) (-203) (-108) (-108) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-523)) 32))) -(((-694) (-10 -7 (-15 -2593 ((-962) (-523) (-523) (-523) (-523) (-203) (-108) (-108) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-523))) (-15 -3067 ((-962) (-523) (-523) (-523) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-108) (-203) (-108) (-629 (-523)) (-629 (-203)) (-523))) (-15 -1222 ((-962) (-523) (-523) (-523) (-523) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-203) (-203) (-523))) (-15 -3622 ((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523))) (-15 -3588 ((-962) (-523) (-523) (-523) (-629 (-203)) (-523))) (-15 -2631 ((-962) (-1070) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-629 (-203)) (-523))) (-15 -3904 ((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2714 ((-962) (-523) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -1700 ((-962) (-1070) (-1070) (-523) (-523) (-629 (-155 (-203))) (-523) (-629 (-155 (-203))) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -1780 ((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523))))) (T -694)) -((-1780 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-694)))) (-1700 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-694)))) (-2714 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-694)))) (-3904 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-694)))) (-2631 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-694)))) (-3588 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-694)))) (-3622 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-694)))) (-1222 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-589 (-108))) (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) (-5 *7 (-203)) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-694)))) (-3067 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-629 (-523))) (-5 *5 (-108)) (-5 *7 (-629 (-203))) (-5 *3 (-523)) (-5 *6 (-203)) (-5 *2 (-962)) (-5 *1 (-694)))) (-2593 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-589 (-108))) (-5 *7 (-629 (-203))) (-5 *8 (-629 (-523))) (-5 *3 (-523)) (-5 *4 (-203)) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-694))))) -(-10 -7 (-15 -2593 ((-962) (-523) (-523) (-523) (-523) (-203) (-108) (-108) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-523))) (-15 -3067 ((-962) (-523) (-523) (-523) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-108) (-203) (-108) (-629 (-523)) (-629 (-203)) (-523))) (-15 -1222 ((-962) (-523) (-523) (-523) (-523) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-203) (-203) (-523))) (-15 -3622 ((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523))) (-15 -3588 ((-962) (-523) (-523) (-523) (-629 (-203)) (-523))) (-15 -2631 ((-962) (-1070) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-629 (-203)) (-523))) (-15 -3904 ((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2714 ((-962) (-523) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -1700 ((-962) (-1070) (-1070) (-523) (-523) (-629 (-155 (-203))) (-523) (-629 (-155 (-203))) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -1780 ((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523)))) -((-4170 (((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523)) 64)) (-2339 (((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523)) 60)) (-1645 (((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))) (-364)) 56) (((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) 55)) (-2928 (((-962) (-523) (-523) (-523) (-203) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523)) 37)) (-3148 (((-962) (-523) (-523) (-203) (-203) (-523) (-523) (-629 (-203)) (-523)) 33)) (-1601 (((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523) (-523)) 29)) (-2895 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 28)) (-3570 (((-962) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 27)) (-1660 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 26)) (-1924 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523)) 25)) (-4141 (((-962) (-523) (-523) (-629 (-203)) (-523)) 24)) (-2212 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 23)) (-3909 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 22)) (-2595 (((-962) (-629 (-203)) (-523) (-523) (-523) (-523)) 21)) (-3643 (((-962) (-523) (-523) (-629 (-203)) (-523)) 20))) -(((-695) (-10 -7 (-15 -3643 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -2595 ((-962) (-629 (-203)) (-523) (-523) (-523) (-523))) (-15 -3909 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2212 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -4141 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -1924 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523))) (-15 -1660 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3570 ((-962) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2895 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1601 ((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523) (-523))) (-15 -3148 ((-962) (-523) (-523) (-203) (-203) (-523) (-523) (-629 (-203)) (-523))) (-15 -2928 ((-962) (-523) (-523) (-523) (-203) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1645 ((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))))) (-15 -1645 ((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))) (-364))) (-15 -2339 ((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -4170 ((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523))))) (T -695)) -((-4170 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-108)) (-5 *5 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-695)))) (-2339 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-108)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-1645 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-364)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695)))) (-1645 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695)))) (-2928 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-523)) (-5 *5 (-108)) (-5 *6 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695)))) (-3148 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695)))) (-1601 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-695)))) (-2895 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-3570 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-1660 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-1924 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-4141 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-2212 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-3909 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-2595 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-695)))) (-3643 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695))))) -(-10 -7 (-15 -3643 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -2595 ((-962) (-629 (-203)) (-523) (-523) (-523) (-523))) (-15 -3909 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2212 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -4141 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -1924 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523))) (-15 -1660 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3570 ((-962) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2895 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1601 ((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523) (-523))) (-15 -3148 ((-962) (-523) (-523) (-203) (-203) (-523) (-523) (-629 (-203)) (-523))) (-15 -2928 ((-962) (-523) (-523) (-523) (-203) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1645 ((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))))) (-15 -1645 ((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))) (-364))) (-15 -2339 ((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -4170 ((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523)))) -((-2617 (((-962) (-523) (-523) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD)))) 60)) (-2588 (((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523)) 56)) (-2806 (((-962) (-523) (-629 (-203)) (-108) (-203) (-523) (-523) (-523) (-523) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE)))) 55)) (-1990 (((-962) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523)) 36)) (-1850 (((-962) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-523)) 35)) (-2436 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 31)) (-1229 (((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203))) 30)) (-1630 (((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523)) 26)) (-3659 (((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523)) 25)) (-2762 (((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523)) 24)) (-1844 (((-962) (-523) (-629 (-155 (-203))) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-523)) 20))) -(((-696) (-10 -7 (-15 -1844 ((-962) (-523) (-629 (-155 (-203))) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -2762 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -3659 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -1630 ((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523))) (-15 -1229 ((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)))) (-15 -2436 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1850 ((-962) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1990 ((-962) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523))) (-15 -2806 ((-962) (-523) (-629 (-203)) (-108) (-203) (-523) (-523) (-523) (-523) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE))))) (-15 -2588 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523))) (-15 -2617 ((-962) (-523) (-523) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD))))))) (T -696)) -((-2617 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD)))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-696)))) (-2588 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-696)))) (-2806 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-108)) (-5 *6 (-203)) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-962)) (-5 *1 (-696)))) (-1990 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-696)))) (-1850 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-696)))) (-2436 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-696)))) (-1229 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-696)))) (-1630 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-696)))) (-3659 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-696)))) (-2762 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-696)))) (-1844 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-696))))) -(-10 -7 (-15 -1844 ((-962) (-523) (-629 (-155 (-203))) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -2762 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -3659 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -1630 ((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523))) (-15 -1229 ((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)))) (-15 -2436 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1850 ((-962) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1990 ((-962) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523))) (-15 -2806 ((-962) (-523) (-629 (-203)) (-108) (-203) (-523) (-523) (-523) (-523) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE))))) (-15 -2588 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523))) (-15 -2617 ((-962) (-523) (-523) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD)))))) -((-2247 (((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-523) (-629 (-203))) 28)) (-2739 (((-962) (-1070) (-523) (-523) (-629 (-203))) 27)) (-3168 (((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-203))) 26)) (-3042 (((-962) (-523) (-523) (-523) (-629 (-203))) 20))) -(((-697) (-10 -7 (-15 -3042 ((-962) (-523) (-523) (-523) (-629 (-203)))) (-15 -3168 ((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-203)))) (-15 -2739 ((-962) (-1070) (-523) (-523) (-629 (-203)))) (-15 -2247 ((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-523) (-629 (-203)))))) (T -697)) -((-2247 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-697)))) (-2739 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-697)))) (-3168 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-697)))) (-3042 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-697))))) -(-10 -7 (-15 -3042 ((-962) (-523) (-523) (-523) (-629 (-203)))) (-15 -3168 ((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-203)))) (-15 -2739 ((-962) (-1070) (-523) (-523) (-629 (-203)))) (-15 -2247 ((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-523) (-629 (-203))))) -((-3429 (((-962) (-203) (-203) (-203) (-203) (-523)) 62)) (-2760 (((-962) (-203) (-203) (-203) (-523)) 61)) (-3581 (((-962) (-203) (-203) (-203) (-523)) 60)) (-1465 (((-962) (-203) (-203) (-523)) 59)) (-2921 (((-962) (-203) (-523)) 58)) (-3029 (((-962) (-203) (-523)) 57)) (-2303 (((-962) (-203) (-523)) 56)) (-3975 (((-962) (-203) (-523)) 55)) (-3948 (((-962) (-203) (-523)) 54)) (-1564 (((-962) (-203) (-523)) 53)) (-3484 (((-962) (-203) (-155 (-203)) (-523) (-1070) (-523)) 52)) (-2358 (((-962) (-203) (-155 (-203)) (-523) (-1070) (-523)) 51)) (-3350 (((-962) (-203) (-523)) 50)) (-1877 (((-962) (-203) (-523)) 49)) (-2503 (((-962) (-203) (-523)) 48)) (-3154 (((-962) (-203) (-523)) 47)) (-1723 (((-962) (-523) (-203) (-155 (-203)) (-523) (-1070) (-523)) 46)) (-1859 (((-962) (-1070) (-155 (-203)) (-1070) (-523)) 45)) (-1753 (((-962) (-1070) (-155 (-203)) (-1070) (-523)) 44)) (-3504 (((-962) (-203) (-155 (-203)) (-523) (-1070) (-523)) 43)) (-2021 (((-962) (-203) (-155 (-203)) (-523) (-1070) (-523)) 42)) (-2684 (((-962) (-203) (-523)) 39)) (-3915 (((-962) (-203) (-523)) 38)) (-2623 (((-962) (-203) (-523)) 37)) (-2968 (((-962) (-203) (-523)) 36)) (-2558 (((-962) (-203) (-523)) 35)) (-3949 (((-962) (-203) (-523)) 34)) (-2086 (((-962) (-203) (-523)) 33)) (-1909 (((-962) (-203) (-523)) 32)) (-2757 (((-962) (-203) (-523)) 31)) (-3146 (((-962) (-203) (-523)) 30)) (-1566 (((-962) (-203) (-203) (-203) (-523)) 29)) (-3215 (((-962) (-203) (-523)) 28)) (-2016 (((-962) (-203) (-523)) 27)) (-2157 (((-962) (-203) (-523)) 26)) (-3421 (((-962) (-203) (-523)) 25)) (-2261 (((-962) (-203) (-523)) 24)) (-4060 (((-962) (-155 (-203)) (-523)) 20))) -(((-698) (-10 -7 (-15 -4060 ((-962) (-155 (-203)) (-523))) (-15 -2261 ((-962) (-203) (-523))) (-15 -3421 ((-962) (-203) (-523))) (-15 -2157 ((-962) (-203) (-523))) (-15 -2016 ((-962) (-203) (-523))) (-15 -3215 ((-962) (-203) (-523))) (-15 -1566 ((-962) (-203) (-203) (-203) (-523))) (-15 -3146 ((-962) (-203) (-523))) (-15 -2757 ((-962) (-203) (-523))) (-15 -1909 ((-962) (-203) (-523))) (-15 -2086 ((-962) (-203) (-523))) (-15 -3949 ((-962) (-203) (-523))) (-15 -2558 ((-962) (-203) (-523))) (-15 -2968 ((-962) (-203) (-523))) (-15 -2623 ((-962) (-203) (-523))) (-15 -3915 ((-962) (-203) (-523))) (-15 -2684 ((-962) (-203) (-523))) (-15 -2021 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3504 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -1753 ((-962) (-1070) (-155 (-203)) (-1070) (-523))) (-15 -1859 ((-962) (-1070) (-155 (-203)) (-1070) (-523))) (-15 -1723 ((-962) (-523) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3154 ((-962) (-203) (-523))) (-15 -2503 ((-962) (-203) (-523))) (-15 -1877 ((-962) (-203) (-523))) (-15 -3350 ((-962) (-203) (-523))) (-15 -2358 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3484 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -1564 ((-962) (-203) (-523))) (-15 -3948 ((-962) (-203) (-523))) (-15 -3975 ((-962) (-203) (-523))) (-15 -2303 ((-962) (-203) (-523))) (-15 -3029 ((-962) (-203) (-523))) (-15 -2921 ((-962) (-203) (-523))) (-15 -1465 ((-962) (-203) (-203) (-523))) (-15 -3581 ((-962) (-203) (-203) (-203) (-523))) (-15 -2760 ((-962) (-203) (-203) (-203) (-523))) (-15 -3429 ((-962) (-203) (-203) (-203) (-203) (-523))))) (T -698)) -((-3429 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2760 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3581 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1465 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3029 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1564 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3484 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2358 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1723 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-523)) (-5 *5 (-155 (-203))) (-5 *6 (-1070)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1859 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1070)) (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1753 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1070)) (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3504 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2021 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2623 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2558 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2086 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1566 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2157 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-4060 (*1 *2 *3 *4) (-12 (-5 *3 (-155 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(-10 -7 (-15 -4060 ((-962) (-155 (-203)) (-523))) (-15 -2261 ((-962) (-203) (-523))) (-15 -3421 ((-962) (-203) (-523))) (-15 -2157 ((-962) (-203) (-523))) (-15 -2016 ((-962) (-203) (-523))) (-15 -3215 ((-962) (-203) (-523))) (-15 -1566 ((-962) (-203) (-203) (-203) (-523))) (-15 -3146 ((-962) (-203) (-523))) (-15 -2757 ((-962) (-203) (-523))) (-15 -1909 ((-962) (-203) (-523))) (-15 -2086 ((-962) (-203) (-523))) (-15 -3949 ((-962) (-203) (-523))) (-15 -2558 ((-962) (-203) (-523))) (-15 -2968 ((-962) (-203) (-523))) (-15 -2623 ((-962) (-203) (-523))) (-15 -3915 ((-962) (-203) (-523))) (-15 -2684 ((-962) (-203) (-523))) (-15 -2021 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3504 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -1753 ((-962) (-1070) (-155 (-203)) (-1070) (-523))) (-15 -1859 ((-962) (-1070) (-155 (-203)) (-1070) (-523))) (-15 -1723 ((-962) (-523) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3154 ((-962) (-203) (-523))) (-15 -2503 ((-962) (-203) (-523))) (-15 -1877 ((-962) (-203) (-523))) (-15 -3350 ((-962) (-203) (-523))) (-15 -2358 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3484 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -1564 ((-962) (-203) (-523))) (-15 -3948 ((-962) (-203) (-523))) (-15 -3975 ((-962) (-203) (-523))) (-15 -2303 ((-962) (-203) (-523))) (-15 -3029 ((-962) (-203) (-523))) (-15 -2921 ((-962) (-203) (-523))) (-15 -1465 ((-962) (-203) (-203) (-523))) (-15 -3581 ((-962) (-203) (-203) (-203) (-523))) (-15 -2760 ((-962) (-203) (-203) (-203) (-523))) (-15 -3429 ((-962) (-203) (-203) (-203) (-203) (-523)))) -((-1211 (((-1173)) 18)) (-2151 (((-1070)) 22)) (-3868 (((-1070)) 21)) (-3339 (((-1020) (-1087) (-629 (-523))) 35) (((-1020) (-1087) (-629 (-203))) 31)) (-2536 (((-108)) 16)) (-1662 (((-1070) (-1070)) 25))) -(((-699) (-10 -7 (-15 -3868 ((-1070))) (-15 -2151 ((-1070))) (-15 -1662 ((-1070) (-1070))) (-15 -3339 ((-1020) (-1087) (-629 (-203)))) (-15 -3339 ((-1020) (-1087) (-629 (-523)))) (-15 -2536 ((-108))) (-15 -1211 ((-1173))))) (T -699)) -((-1211 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-699)))) (-2536 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-699)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-629 (-523))) (-5 *2 (-1020)) (-5 *1 (-699)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-629 (-203))) (-5 *2 (-1020)) (-5 *1 (-699)))) (-1662 (*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699)))) (-2151 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699)))) (-3868 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699))))) -(-10 -7 (-15 -3868 ((-1070))) (-15 -2151 ((-1070))) (-15 -1662 ((-1070) (-1070))) (-15 -3339 ((-1020) (-1087) (-629 (-203)))) (-15 -3339 ((-1020) (-1087) (-629 (-523)))) (-15 -2536 ((-108))) (-15 -1211 ((-1173)))) -((-1714 (($ $ $) 10)) (-2022 (($ $ $ $) 9)) (-1995 (($ $ $) 12))) -(((-700 |#1|) (-10 -8 (-15 -1995 (|#1| |#1| |#1|)) (-15 -1714 (|#1| |#1| |#1|)) (-15 -2022 (|#1| |#1| |#1| |#1|))) (-701)) (T -700)) -NIL -(-10 -8 (-15 -1995 (|#1| |#1| |#1|)) (-15 -1714 (|#1| |#1| |#1|)) (-15 -2022 (|#1| |#1| |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-1970 (($ $ (-852)) 28)) (-1448 (($ $ (-852)) 29)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1714 (($ $ $) 25)) (-1458 (((-794) $) 11)) (-2022 (($ $ $ $) 26)) (-1995 (($ $ $) 24)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27))) +((-2926 (((-962) (-629 (-203)) (-523) (-108) (-523)) 24)) (-3738 (((-962) (-629 (-203)) (-523) (-108) (-523)) 23))) +(((-685) (-10 -7 (-15 -3738 ((-962) (-629 (-203)) (-523) (-108) (-523))) (-15 -2926 ((-962) (-629 (-203)) (-523) (-108) (-523))))) (T -685)) +((-2926 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-685)))) (-3738 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-685))))) +(-10 -7 (-15 -3738 ((-962) (-629 (-203)) (-523) (-108) (-523))) (-15 -2926 ((-962) (-629 (-203)) (-523) (-108) (-523)))) +((-1340 (((-962) (-523) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN)))) 43)) (-3140 (((-962) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN)))) 39)) (-1452 (((-962) (-203) (-203) (-203) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) 32))) +(((-686) (-10 -7 (-15 -1452 ((-962) (-203) (-203) (-203) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539))))) (-15 -3140 ((-962) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN))))) (-15 -1340 ((-962) (-523) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN))))))) (T -686)) +((-1340 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN)))) (-5 *2 (-962)) (-5 *1 (-686)))) (-3140 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN)))) (-5 *2 (-962)) (-5 *1 (-686)))) (-1452 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) (-5 *2 (-962)) (-5 *1 (-686))))) +(-10 -7 (-15 -1452 ((-962) (-203) (-203) (-203) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539))))) (-15 -3140 ((-962) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN))))) (-15 -1340 ((-962) (-523) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN)))))) +((-2479 (((-962) (-523) (-523) (-629 (-203)) (-523)) 33)) (-3176 (((-962) (-523) (-523) (-629 (-203)) (-523)) 32)) (-2560 (((-962) (-523) (-629 (-203)) (-523)) 31)) (-1989 (((-962) (-523) (-629 (-203)) (-523)) 30)) (-1332 (((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 29)) (-4152 (((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 28)) (-2066 (((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523)) 27)) (-3275 (((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523)) 26)) (-1569 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 23)) (-3232 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523)) 22)) (-1478 (((-962) (-523) (-629 (-203)) (-523)) 21)) (-1836 (((-962) (-523) (-629 (-203)) (-523)) 20))) +(((-687) (-10 -7 (-15 -1836 ((-962) (-523) (-629 (-203)) (-523))) (-15 -1478 ((-962) (-523) (-629 (-203)) (-523))) (-15 -3232 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1569 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3275 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2066 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523))) (-15 -4152 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1332 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1989 ((-962) (-523) (-629 (-203)) (-523))) (-15 -2560 ((-962) (-523) (-629 (-203)) (-523))) (-15 -3176 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -2479 ((-962) (-523) (-523) (-629 (-203)) (-523))))) (T -687)) +((-2479 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3176 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-2560 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-1989 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-1332 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-4152 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-2066 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3275 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-1569 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3232 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-1478 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-1836 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687))))) +(-10 -7 (-15 -1836 ((-962) (-523) (-629 (-203)) (-523))) (-15 -1478 ((-962) (-523) (-629 (-203)) (-523))) (-15 -3232 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1569 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3275 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2066 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523))) (-15 -4152 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1332 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1989 ((-962) (-523) (-629 (-203)) (-523))) (-15 -2560 ((-962) (-523) (-629 (-203)) (-523))) (-15 -3176 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -2479 ((-962) (-523) (-523) (-629 (-203)) (-523)))) +((-3797 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) 52)) (-3369 (((-962) (-629 (-203)) (-629 (-203)) (-523) (-523)) 51)) (-3366 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) 50)) (-1391 (((-962) (-203) (-203) (-523) (-523) (-523) (-523)) 46)) (-3294 (((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) 45)) (-1771 (((-962) (-203) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) 44)) (-2184 (((-962) (-203) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) 43)) (-1282 (((-962) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) 42)) (-3568 (((-962) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) 38)) (-3988 (((-962) (-203) (-203) (-523) (-629 (-203)) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) 37)) (-2018 (((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) 33)) (-2879 (((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) 32))) +(((-688) (-10 -7 (-15 -2879 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539))))) (-15 -2018 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539))))) (-15 -3988 ((-962) (-203) (-203) (-523) (-629 (-203)) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539))))) (-15 -3568 ((-962) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539))))) (-15 -1282 ((-962) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -2184 ((-962) (-203) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -1771 ((-962) (-203) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -3294 ((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -1391 ((-962) (-203) (-203) (-523) (-523) (-523) (-523))) (-15 -3366 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN))))) (-15 -3369 ((-962) (-629 (-203)) (-629 (-203)) (-523) (-523))) (-15 -3797 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN))))))) (T -688)) +((-3797 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-3369 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-688)))) (-3366 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-1391 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-688)))) (-3294 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-1771 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-2184 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-1282 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-3568 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-3988 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-688)))) (-2018 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-2879 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) (-5 *2 (-962)) (-5 *1 (-688))))) +(-10 -7 (-15 -2879 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539))))) (-15 -2018 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539))))) (-15 -3988 ((-962) (-203) (-203) (-523) (-629 (-203)) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539))))) (-15 -3568 ((-962) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539))))) (-15 -1282 ((-962) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -2184 ((-962) (-203) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -1771 ((-962) (-203) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -3294 ((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -1391 ((-962) (-203) (-203) (-523) (-523) (-523) (-523))) (-15 -3366 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN))))) (-15 -3369 ((-962) (-629 (-203)) (-629 (-203)) (-523) (-523))) (-15 -3797 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))))) +((-2296 (((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-1865 (((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))) (-364) (-364)) 69) (((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2101 (((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG)))) 57)) (-3522 (((-962) (-629 (-203)) (-629 (-203)) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) 50)) (-3346 (((-962) (-203) (-523) (-523) (-1070) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) 49)) (-3255 (((-962) (-203) (-523) (-523) (-203) (-1070) (-203) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) 45)) (-1929 (((-962) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) 42)) (-4105 (((-962) (-203) (-523) (-523) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) 38))) +(((-689) (-10 -7 (-15 -4105 ((-962) (-203) (-523) (-523) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1929 ((-962) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))))) (-15 -3255 ((-962) (-203) (-523) (-523) (-203) (-1070) (-203) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -3346 ((-962) (-203) (-523) (-523) (-1070) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -3522 ((-962) (-629 (-203)) (-629 (-203)) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))))) (-15 -2101 ((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG))))) (-15 -1865 ((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))))) (-15 -1865 ((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))) (-364) (-364))) (-15 -2296 ((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -689)) +((-2296 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-1865 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-364)) (-5 *2 (-962)) (-5 *1 (-689)))) (-1865 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-962)) (-5 *1 (-689)))) (-2101 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-3522 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *2 (-962)) (-5 *1 (-689)))) (-3346 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-629 (-203))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-3255 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-629 (-203))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-1929 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-4105 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) +(-10 -7 (-15 -4105 ((-962) (-203) (-523) (-523) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1929 ((-962) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))))) (-15 -3255 ((-962) (-203) (-523) (-523) (-203) (-1070) (-203) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -3346 ((-962) (-203) (-523) (-523) (-1070) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -3522 ((-962) (-629 (-203)) (-629 (-203)) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))))) (-15 -2101 ((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG))))) (-15 -1865 ((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))))) (-15 -1865 ((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))) (-364) (-364))) (-15 -2296 ((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP)))))) +((-4114 (((-962) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-617 (-203)) (-523)) 45)) (-1687 (((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-1070) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY)))) 41)) (-2805 (((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 23))) +(((-690) (-10 -7 (-15 -2805 ((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1687 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-1070) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY))))) (-15 -4114 ((-962) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-617 (-203)) (-523))))) (T -690)) +((-4114 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-617 (-203))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-690)))) (-1687 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-962)) (-5 *1 (-690)))) (-2805 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-690))))) +(-10 -7 (-15 -2805 ((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1687 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-1070) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY))))) (-15 -4114 ((-962) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-617 (-203)) (-523)))) +((-2272 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-629 (-203)) (-203) (-203) (-523)) 35)) (-2155 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-203) (-203) (-523)) 34)) (-2263 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-629 (-203)) (-203) (-203) (-523)) 33)) (-3427 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 29)) (-4227 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 28)) (-2537 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523)) 27)) (-2168 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523)) 23)) (-2753 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523)) 22)) (-3607 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523)) 21)) (-2549 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523)) 20))) +(((-691) (-10 -7 (-15 -2549 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))) (-15 -3607 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2753 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -2168 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -2537 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523))) (-15 -4227 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3427 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2263 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-629 (-203)) (-203) (-203) (-523))) (-15 -2155 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-203) (-203) (-523))) (-15 -2272 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-629 (-203)) (-203) (-203) (-523))))) (T -691)) +((-2272 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-691)))) (-2155 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-691)))) (-2263 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *6 (-203)) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-691)))) (-3427 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-4227 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-2537 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-691)))) (-2168 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-2753 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-3607 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-2549 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691))))) +(-10 -7 (-15 -2549 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))) (-15 -3607 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2753 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -2168 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -2537 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523))) (-15 -4227 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3427 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2263 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-629 (-203)) (-203) (-203) (-523))) (-15 -2155 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-203) (-203) (-523))) (-15 -2272 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-629 (-203)) (-203) (-203) (-523)))) +((-3717 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523)) 45)) (-2107 (((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-523)) 44)) (-1237 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523)) 43)) (-2639 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 42)) (-1230 (((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523)) 41)) (-1578 (((-962) (-1070) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523)) 40)) (-3870 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523) (-523) (-523) (-203) (-629 (-203)) (-523)) 39)) (-3863 (((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523))) 38)) (-3962 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523)) 35)) (-3729 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523)) 34)) (-1337 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523)) 33)) (-2092 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 32)) (-4049 (((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523)) 31)) (-2460 (((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-523)) 30)) (-3201 (((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-523) (-523) (-523)) 29)) (-3465 (((-962) (-523) (-523) (-523) (-203) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-523)) (-523) (-523) (-523)) 28)) (-3639 (((-962) (-523) (-629 (-203)) (-203) (-523)) 24)) (-1389 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 20))) +(((-692) (-10 -7 (-15 -1389 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3639 ((-962) (-523) (-629 (-203)) (-203) (-523))) (-15 -3465 ((-962) (-523) (-523) (-523) (-203) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-523)) (-523) (-523) (-523))) (-15 -3201 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-523) (-523) (-523))) (-15 -2460 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-523))) (-15 -4049 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523))) (-15 -2092 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1337 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523))) (-15 -3729 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523))) (-15 -3962 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3863 ((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)))) (-15 -3870 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523) (-523) (-523) (-203) (-629 (-203)) (-523))) (-15 -1578 ((-962) (-1070) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523))) (-15 -1230 ((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2639 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1237 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))) (-15 -2107 ((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3717 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))))) (T -692)) +((-3717 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-2107 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-1237 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-2639 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-1230 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-1578 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) (-5 *7 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3870 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *6 (-203)) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3863 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) (-5 *7 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3962 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-3729 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-1337 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2092 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-4049 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2460 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3201 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3465 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) (-5 *3 (-523)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3639 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-1389 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692))))) +(-10 -7 (-15 -1389 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3639 ((-962) (-523) (-629 (-203)) (-203) (-523))) (-15 -3465 ((-962) (-523) (-523) (-523) (-203) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-523)) (-523) (-523) (-523))) (-15 -3201 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-523) (-523) (-523))) (-15 -2460 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-523))) (-15 -4049 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523))) (-15 -2092 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1337 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523))) (-15 -3729 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523))) (-15 -3962 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3863 ((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)))) (-15 -3870 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523) (-523) (-523) (-203) (-629 (-203)) (-523))) (-15 -1578 ((-962) (-1070) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523))) (-15 -1230 ((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2639 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1237 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))) (-15 -2107 ((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3717 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523)))) +((-2386 (((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-523) (-629 (-203)) (-523)) 63)) (-2692 (((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-108) (-203) (-523) (-203) (-203) (-108) (-203) (-203) (-203) (-203) (-108) (-523) (-523) (-523) (-523) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) 62)) (-1461 (((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-108) (-108) (-523) (-523) (-629 (-203)) (-629 (-523)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS)))) 58)) (-3663 (((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-523) (-523) (-629 (-203)) (-523)) 51)) (-3965 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3285 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2)))) 46)) (-2020 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2162 (((-962) (-523) (-203) (-203) (-523) (-203) (-108) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) 38))) +(((-693) (-10 -7 (-15 -2162 ((-962) (-523) (-203) (-203) (-523) (-203) (-108) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN))))) (-15 -2020 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1))))) (-15 -3285 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2))))) (-15 -3965 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1))))) (-15 -3663 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-523) (-523) (-629 (-203)) (-523))) (-15 -1461 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-108) (-108) (-523) (-523) (-629 (-203)) (-629 (-523)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS))))) (-15 -2692 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-108) (-203) (-523) (-203) (-203) (-108) (-203) (-203) (-203) (-203) (-108) (-523) (-523) (-523) (-523) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN))))) (-15 -2386 ((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-523) (-629 (-203)) (-523))))) (T -693)) +((-2386 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693)))) (-2692 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-108)) (-5 *6 (-203)) (-5 *7 (-629 (-523))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-693)))) (-1461 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-629 (-203))) (-5 *6 (-108)) (-5 *7 (-629 (-523))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-523)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693)))) (-3663 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-693)))) (-3965 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-962)) (-5 *1 (-693)))) (-3285 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-962)) (-5 *1 (-693)))) (-2020 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-962)) (-5 *1 (-693)))) (-2162 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-523)) (-5 *5 (-108)) (-5 *6 (-629 (-203))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693))))) +(-10 -7 (-15 -2162 ((-962) (-523) (-203) (-203) (-523) (-203) (-108) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN))))) (-15 -2020 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1))))) (-15 -3285 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2))))) (-15 -3965 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1))))) (-15 -3663 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-523) (-523) (-629 (-203)) (-523))) (-15 -1461 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-108) (-108) (-523) (-523) (-629 (-203)) (-629 (-523)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS))))) (-15 -2692 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-108) (-203) (-523) (-203) (-203) (-108) (-203) (-203) (-203) (-203) (-108) (-523) (-523) (-523) (-523) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN))))) (-15 -2386 ((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-523) (-629 (-203)) (-523)))) +((-2260 (((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523)) 46)) (-2782 (((-962) (-1070) (-1070) (-523) (-523) (-629 (-155 (-203))) (-523) (-629 (-155 (-203))) (-523) (-523) (-629 (-155 (-203))) (-523)) 45)) (-2404 (((-962) (-523) (-523) (-523) (-629 (-155 (-203))) (-523)) 44)) (-1968 (((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 40)) (-2799 (((-962) (-1070) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-629 (-203)) (-523)) 39)) (-3915 (((-962) (-523) (-523) (-523) (-629 (-203)) (-523)) 36)) (-1294 (((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523)) 35)) (-1740 (((-962) (-523) (-523) (-523) (-523) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-203) (-203) (-523)) 34)) (-1521 (((-962) (-523) (-523) (-523) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-108) (-203) (-108) (-629 (-523)) (-629 (-203)) (-523)) 33)) (-3611 (((-962) (-523) (-523) (-523) (-523) (-203) (-108) (-108) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-523)) 32))) +(((-694) (-10 -7 (-15 -3611 ((-962) (-523) (-523) (-523) (-523) (-203) (-108) (-108) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-523))) (-15 -1521 ((-962) (-523) (-523) (-523) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-108) (-203) (-108) (-629 (-523)) (-629 (-203)) (-523))) (-15 -1740 ((-962) (-523) (-523) (-523) (-523) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-203) (-203) (-523))) (-15 -1294 ((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523))) (-15 -3915 ((-962) (-523) (-523) (-523) (-629 (-203)) (-523))) (-15 -2799 ((-962) (-1070) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-629 (-203)) (-523))) (-15 -1968 ((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2404 ((-962) (-523) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -2782 ((-962) (-1070) (-1070) (-523) (-523) (-629 (-155 (-203))) (-523) (-629 (-155 (-203))) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -2260 ((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523))))) (T -694)) +((-2260 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-694)))) (-2782 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-694)))) (-2404 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-694)))) (-1968 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-694)))) (-2799 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-694)))) (-3915 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-694)))) (-1294 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-694)))) (-1740 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-589 (-108))) (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) (-5 *7 (-203)) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-694)))) (-1521 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-629 (-523))) (-5 *5 (-108)) (-5 *7 (-629 (-203))) (-5 *3 (-523)) (-5 *6 (-203)) (-5 *2 (-962)) (-5 *1 (-694)))) (-3611 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-589 (-108))) (-5 *7 (-629 (-203))) (-5 *8 (-629 (-523))) (-5 *3 (-523)) (-5 *4 (-203)) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-694))))) +(-10 -7 (-15 -3611 ((-962) (-523) (-523) (-523) (-523) (-203) (-108) (-108) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-523))) (-15 -1521 ((-962) (-523) (-523) (-523) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-108) (-203) (-108) (-629 (-523)) (-629 (-203)) (-523))) (-15 -1740 ((-962) (-523) (-523) (-523) (-523) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-203) (-203) (-523))) (-15 -1294 ((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523))) (-15 -3915 ((-962) (-523) (-523) (-523) (-629 (-203)) (-523))) (-15 -2799 ((-962) (-1070) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-629 (-203)) (-523))) (-15 -1968 ((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2404 ((-962) (-523) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -2782 ((-962) (-1070) (-1070) (-523) (-523) (-629 (-155 (-203))) (-523) (-629 (-155 (-203))) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -2260 ((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523)))) +((-2586 (((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523)) 64)) (-2982 (((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523)) 60)) (-3485 (((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))) (-364)) 56) (((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) 55)) (-3751 (((-962) (-523) (-523) (-523) (-203) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523)) 37)) (-4043 (((-962) (-523) (-523) (-203) (-203) (-523) (-523) (-629 (-203)) (-523)) 33)) (-3080 (((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523) (-523)) 29)) (-3420 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 28)) (-1927 (((-962) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 27)) (-3624 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 26)) (-4211 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523)) 25)) (-2317 (((-962) (-523) (-523) (-629 (-203)) (-523)) 24)) (-4170 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 23)) (-1998 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 22)) (-3622 (((-962) (-629 (-203)) (-523) (-523) (-523) (-523)) 21)) (-3227 (((-962) (-523) (-523) (-629 (-203)) (-523)) 20))) +(((-695) (-10 -7 (-15 -3227 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -3622 ((-962) (-629 (-203)) (-523) (-523) (-523) (-523))) (-15 -1998 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -4170 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2317 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -4211 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523))) (-15 -3624 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1927 ((-962) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3420 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3080 ((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523) (-523))) (-15 -4043 ((-962) (-523) (-523) (-203) (-203) (-523) (-523) (-629 (-203)) (-523))) (-15 -3751 ((-962) (-523) (-523) (-523) (-203) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3485 ((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))))) (-15 -3485 ((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))) (-364))) (-15 -2982 ((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2586 ((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523))))) (T -695)) +((-2586 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-108)) (-5 *5 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-695)))) (-2982 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-108)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-3485 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-364)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695)))) (-3485 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695)))) (-3751 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-523)) (-5 *5 (-108)) (-5 *6 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695)))) (-4043 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695)))) (-3080 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-695)))) (-3420 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-1927 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-3624 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-4211 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-2317 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-4170 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-1998 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-3622 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-695)))) (-3227 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695))))) +(-10 -7 (-15 -3227 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -3622 ((-962) (-629 (-203)) (-523) (-523) (-523) (-523))) (-15 -1998 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -4170 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2317 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -4211 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523))) (-15 -3624 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1927 ((-962) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3420 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3080 ((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523) (-523))) (-15 -4043 ((-962) (-523) (-523) (-203) (-203) (-523) (-523) (-629 (-203)) (-523))) (-15 -3751 ((-962) (-523) (-523) (-523) (-203) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3485 ((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))))) (-15 -3485 ((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))) (-364))) (-15 -2982 ((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2586 ((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523)))) +((-2675 (((-962) (-523) (-523) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD)))) 60)) (-3571 (((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523)) 56)) (-3898 (((-962) (-523) (-629 (-203)) (-108) (-203) (-523) (-523) (-523) (-523) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE)))) 55)) (-3601 (((-962) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523)) 36)) (-1721 (((-962) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-523)) 35)) (-1609 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 31)) (-1805 (((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203))) 30)) (-3351 (((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523)) 26)) (-3360 (((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523)) 25)) (-1728 (((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523)) 24)) (-1658 (((-962) (-523) (-629 (-155 (-203))) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-523)) 20))) +(((-696) (-10 -7 (-15 -1658 ((-962) (-523) (-629 (-155 (-203))) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -1728 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -3360 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -3351 ((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523))) (-15 -1805 ((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)))) (-15 -1609 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1721 ((-962) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3601 ((-962) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523))) (-15 -3898 ((-962) (-523) (-629 (-203)) (-108) (-203) (-523) (-523) (-523) (-523) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE))))) (-15 -3571 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523))) (-15 -2675 ((-962) (-523) (-523) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD))))))) (T -696)) +((-2675 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD)))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-696)))) (-3571 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-696)))) (-3898 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-108)) (-5 *6 (-203)) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-962)) (-5 *1 (-696)))) (-3601 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-696)))) (-1721 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-696)))) (-1609 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-696)))) (-1805 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-696)))) (-3351 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-696)))) (-3360 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-696)))) (-1728 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-696)))) (-1658 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-696))))) +(-10 -7 (-15 -1658 ((-962) (-523) (-629 (-155 (-203))) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -1728 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -3360 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -3351 ((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523))) (-15 -1805 ((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)))) (-15 -1609 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1721 ((-962) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3601 ((-962) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523))) (-15 -3898 ((-962) (-523) (-629 (-203)) (-108) (-203) (-523) (-523) (-523) (-523) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE))))) (-15 -3571 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523))) (-15 -2675 ((-962) (-523) (-523) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD)))))) +((-3262 (((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-523) (-629 (-203))) 28)) (-1515 (((-962) (-1070) (-523) (-523) (-629 (-203))) 27)) (-1235 (((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-203))) 26)) (-2444 (((-962) (-523) (-523) (-523) (-629 (-203))) 20))) +(((-697) (-10 -7 (-15 -2444 ((-962) (-523) (-523) (-523) (-629 (-203)))) (-15 -1235 ((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-203)))) (-15 -1515 ((-962) (-1070) (-523) (-523) (-629 (-203)))) (-15 -3262 ((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-523) (-629 (-203)))))) (T -697)) +((-3262 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-697)))) (-1515 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-697)))) (-1235 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-697)))) (-2444 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-697))))) +(-10 -7 (-15 -2444 ((-962) (-523) (-523) (-523) (-629 (-203)))) (-15 -1235 ((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-203)))) (-15 -1515 ((-962) (-1070) (-523) (-523) (-629 (-203)))) (-15 -3262 ((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-523) (-629 (-203))))) +((-2935 (((-962) (-203) (-203) (-203) (-203) (-523)) 62)) (-1707 (((-962) (-203) (-203) (-203) (-523)) 61)) (-3834 (((-962) (-203) (-203) (-203) (-523)) 60)) (-2401 (((-962) (-203) (-203) (-523)) 59)) (-3683 (((-962) (-203) (-523)) 58)) (-2328 (((-962) (-203) (-523)) 57)) (-2668 (((-962) (-203) (-523)) 56)) (-3205 (((-962) (-203) (-523)) 55)) (-1215 (((-962) (-203) (-523)) 54)) (-3929 (((-962) (-203) (-523)) 53)) (-2292 (((-962) (-203) (-155 (-203)) (-523) (-1070) (-523)) 52)) (-2026 (((-962) (-203) (-155 (-203)) (-523) (-1070) (-523)) 51)) (-3364 (((-962) (-203) (-523)) 50)) (-3709 (((-962) (-203) (-523)) 49)) (-4055 (((-962) (-203) (-523)) 48)) (-4107 (((-962) (-203) (-523)) 47)) (-2962 (((-962) (-523) (-203) (-155 (-203)) (-523) (-1070) (-523)) 46)) (-1779 (((-962) (-1070) (-155 (-203)) (-1070) (-523)) 45)) (-2044 (((-962) (-1070) (-155 (-203)) (-1070) (-523)) 44)) (-2515 (((-962) (-203) (-155 (-203)) (-523) (-1070) (-523)) 43)) (-2750 (((-962) (-203) (-155 (-203)) (-523) (-1070) (-523)) 42)) (-2133 (((-962) (-203) (-523)) 39)) (-3864 (((-962) (-203) (-523)) 38)) (-2732 (((-962) (-203) (-523)) 37)) (-2928 (((-962) (-203) (-523)) 36)) (-3292 (((-962) (-203) (-523)) 35)) (-1228 (((-962) (-203) (-523)) 34)) (-2207 (((-962) (-203) (-523)) 33)) (-4054 (((-962) (-203) (-523)) 32)) (-1683 (((-962) (-203) (-523)) 31)) (-4019 (((-962) (-203) (-523)) 30)) (-3954 (((-962) (-203) (-203) (-203) (-523)) 29)) (-3436 (((-962) (-203) (-523)) 28)) (-2702 (((-962) (-203) (-523)) 27)) (-1784 (((-962) (-203) (-523)) 26)) (-2853 (((-962) (-203) (-523)) 25)) (-3408 (((-962) (-203) (-523)) 24)) (-2756 (((-962) (-155 (-203)) (-523)) 20))) +(((-698) (-10 -7 (-15 -2756 ((-962) (-155 (-203)) (-523))) (-15 -3408 ((-962) (-203) (-523))) (-15 -2853 ((-962) (-203) (-523))) (-15 -1784 ((-962) (-203) (-523))) (-15 -2702 ((-962) (-203) (-523))) (-15 -3436 ((-962) (-203) (-523))) (-15 -3954 ((-962) (-203) (-203) (-203) (-523))) (-15 -4019 ((-962) (-203) (-523))) (-15 -1683 ((-962) (-203) (-523))) (-15 -4054 ((-962) (-203) (-523))) (-15 -2207 ((-962) (-203) (-523))) (-15 -1228 ((-962) (-203) (-523))) (-15 -3292 ((-962) (-203) (-523))) (-15 -2928 ((-962) (-203) (-523))) (-15 -2732 ((-962) (-203) (-523))) (-15 -3864 ((-962) (-203) (-523))) (-15 -2133 ((-962) (-203) (-523))) (-15 -2750 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -2515 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -2044 ((-962) (-1070) (-155 (-203)) (-1070) (-523))) (-15 -1779 ((-962) (-1070) (-155 (-203)) (-1070) (-523))) (-15 -2962 ((-962) (-523) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -4107 ((-962) (-203) (-523))) (-15 -4055 ((-962) (-203) (-523))) (-15 -3709 ((-962) (-203) (-523))) (-15 -3364 ((-962) (-203) (-523))) (-15 -2026 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -2292 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3929 ((-962) (-203) (-523))) (-15 -1215 ((-962) (-203) (-523))) (-15 -3205 ((-962) (-203) (-523))) (-15 -2668 ((-962) (-203) (-523))) (-15 -2328 ((-962) (-203) (-523))) (-15 -3683 ((-962) (-203) (-523))) (-15 -2401 ((-962) (-203) (-203) (-523))) (-15 -3834 ((-962) (-203) (-203) (-203) (-523))) (-15 -1707 ((-962) (-203) (-203) (-203) (-523))) (-15 -2935 ((-962) (-203) (-203) (-203) (-203) (-523))))) (T -698)) +((-2935 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1707 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3834 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2401 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2668 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3205 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1215 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2292 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2026 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3364 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-4107 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2962 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-523)) (-5 *5 (-155 (-203))) (-5 *6 (-1070)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1779 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1070)) (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2044 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1070)) (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2515 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2750 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3864 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2928 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3292 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1228 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2207 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-4054 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1683 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-4019 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3954 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3436 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1784 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2853 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-155 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(-10 -7 (-15 -2756 ((-962) (-155 (-203)) (-523))) (-15 -3408 ((-962) (-203) (-523))) (-15 -2853 ((-962) (-203) (-523))) (-15 -1784 ((-962) (-203) (-523))) (-15 -2702 ((-962) (-203) (-523))) (-15 -3436 ((-962) (-203) (-523))) (-15 -3954 ((-962) (-203) (-203) (-203) (-523))) (-15 -4019 ((-962) (-203) (-523))) (-15 -1683 ((-962) (-203) (-523))) (-15 -4054 ((-962) (-203) (-523))) (-15 -2207 ((-962) (-203) (-523))) (-15 -1228 ((-962) (-203) (-523))) (-15 -3292 ((-962) (-203) (-523))) (-15 -2928 ((-962) (-203) (-523))) (-15 -2732 ((-962) (-203) (-523))) (-15 -3864 ((-962) (-203) (-523))) (-15 -2133 ((-962) (-203) (-523))) (-15 -2750 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -2515 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -2044 ((-962) (-1070) (-155 (-203)) (-1070) (-523))) (-15 -1779 ((-962) (-1070) (-155 (-203)) (-1070) (-523))) (-15 -2962 ((-962) (-523) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -4107 ((-962) (-203) (-523))) (-15 -4055 ((-962) (-203) (-523))) (-15 -3709 ((-962) (-203) (-523))) (-15 -3364 ((-962) (-203) (-523))) (-15 -2026 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -2292 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3929 ((-962) (-203) (-523))) (-15 -1215 ((-962) (-203) (-523))) (-15 -3205 ((-962) (-203) (-523))) (-15 -2668 ((-962) (-203) (-523))) (-15 -2328 ((-962) (-203) (-523))) (-15 -3683 ((-962) (-203) (-523))) (-15 -2401 ((-962) (-203) (-203) (-523))) (-15 -3834 ((-962) (-203) (-203) (-203) (-523))) (-15 -1707 ((-962) (-203) (-203) (-203) (-523))) (-15 -2935 ((-962) (-203) (-203) (-203) (-203) (-523)))) +((-1626 (((-1174)) 18)) (-1727 (((-1070)) 22)) (-1635 (((-1070)) 21)) (-3242 (((-1020) (-1087) (-629 (-523))) 35) (((-1020) (-1087) (-629 (-203))) 31)) (-3641 (((-108)) 16)) (-3636 (((-1070) (-1070)) 25))) +(((-699) (-10 -7 (-15 -1635 ((-1070))) (-15 -1727 ((-1070))) (-15 -3636 ((-1070) (-1070))) (-15 -3242 ((-1020) (-1087) (-629 (-203)))) (-15 -3242 ((-1020) (-1087) (-629 (-523)))) (-15 -3641 ((-108))) (-15 -1626 ((-1174))))) (T -699)) +((-1626 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-699)))) (-3641 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-699)))) (-3242 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-629 (-523))) (-5 *2 (-1020)) (-5 *1 (-699)))) (-3242 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-629 (-203))) (-5 *2 (-1020)) (-5 *1 (-699)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699)))) (-1727 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699)))) (-1635 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699))))) +(-10 -7 (-15 -1635 ((-1070))) (-15 -1727 ((-1070))) (-15 -3636 ((-1070) (-1070))) (-15 -3242 ((-1020) (-1087) (-629 (-203)))) (-15 -3242 ((-1020) (-1087) (-629 (-523)))) (-15 -3641 ((-108))) (-15 -1626 ((-1174)))) +((-2892 (($ $ $) 10)) (-2760 (($ $ $ $) 9)) (-3654 (($ $ $) 12))) +(((-700 |#1|) (-10 -8 (-15 -3654 (|#1| |#1| |#1|)) (-15 -2892 (|#1| |#1| |#1|)) (-15 -2760 (|#1| |#1| |#1| |#1|))) (-701)) (T -700)) +NIL +(-10 -8 (-15 -3654 (|#1| |#1| |#1|)) (-15 -2892 (|#1| |#1| |#1|)) (-15 -2760 (|#1| |#1| |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-3402 (($ $ (-852)) 28)) (-2237 (($ $ (-852)) 29)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-2892 (($ $ $) 25)) (-1691 (((-794) $) 11)) (-2760 (($ $ $ $) 26)) (-3654 (($ $ $) 24)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27))) (((-701) (-129)) (T -701)) -((-2022 (*1 *1 *1 *1 *1) (-4 *1 (-701))) (-1714 (*1 *1 *1 *1) (-4 *1 (-701))) (-1995 (*1 *1 *1 *1) (-4 *1 (-701)))) -(-13 (-21) (-660) (-10 -8 (-15 -2022 ($ $ $ $)) (-15 -1714 ($ $ $)) (-15 -1995 ($ $ $)))) +((-2760 (*1 *1 *1 *1 *1) (-4 *1 (-701))) (-2892 (*1 *1 *1 *1) (-4 *1 (-701))) (-3654 (*1 *1 *1 *1) (-4 *1 (-701)))) +(-13 (-21) (-660) (-10 -8 (-15 -2760 ($ $ $ $)) (-15 -2892 ($ $ $)) (-15 -3654 ($ $ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-660) . T) ((-1016) . T)) -((-1458 (((-794) $) NIL) (($ (-523)) 10))) -(((-702 |#1|) (-10 -8 (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-703)) (T -702)) +((-1691 (((-794) $) NIL) (($ (-523)) 10))) +(((-702 |#1|) (-10 -8 (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) (-703)) (T -702)) NIL -(-10 -8 (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2532 (((-3 $ "failed") $) 40)) (-1970 (($ $ (-852)) 28) (($ $ (-710)) 35)) (-2121 (((-3 $ "failed") $) 38)) (-2023 (((-108) $) 34)) (-1579 (((-3 $ "failed") $) 39)) (-1448 (($ $ (-852)) 29) (($ $ (-710)) 36)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1714 (($ $ $) 25)) (-1458 (((-794) $) 11) (($ (-523)) 31)) (-1621 (((-710)) 32)) (-2022 (($ $ $ $) 26)) (-1995 (($ $ $) 24)) (-2756 (($) 18 T CONST)) (-2767 (($) 33 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 30) (($ $ (-710)) 37)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27))) +(-10 -8 (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1307 (((-3 $ "failed") $) 40)) (-3402 (($ $ (-852)) 28) (($ $ (-710)) 35)) (-1444 (((-3 $ "failed") $) 38)) (-2769 (((-108) $) 34)) (-4097 (((-3 $ "failed") $) 39)) (-2237 (($ $ (-852)) 29) (($ $ (-710)) 36)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-2892 (($ $ $) 25)) (-1691 (((-794) $) 11) (($ (-523)) 31)) (-3272 (((-710)) 32)) (-2760 (($ $ $ $) 26)) (-3654 (($ $ $) 24)) (-1879 (($) 18 T CONST)) (-1891 (($) 33 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 30) (($ $ (-710)) 37)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27))) (((-703) (-129)) (T -703)) -((-1621 (*1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-710)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-703))))) -(-13 (-701) (-662) (-10 -8 (-15 -1621 ((-710))) (-15 -1458 ($ (-523))))) +((-3272 (*1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-710)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-703))))) +(-13 (-701) (-662) (-10 -8 (-15 -3272 ((-710))) (-15 -1691 ($ (-523))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-660) . T) ((-662) . T) ((-701) . T) ((-1016) . T)) -((-3372 (((-589 (-2 (|:| |outval| (-155 |#1|)) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 (-155 |#1|)))))) (-629 (-155 (-383 (-523)))) |#1|) 27)) (-1296 (((-589 (-155 |#1|)) (-629 (-155 (-383 (-523)))) |#1|) 19)) (-1807 (((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))) (-1087)) 16) (((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523))))) 15))) -(((-704 |#1|) (-10 -7 (-15 -1807 ((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))))) (-15 -1807 ((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))) (-1087))) (-15 -1296 ((-589 (-155 |#1|)) (-629 (-155 (-383 (-523)))) |#1|)) (-15 -3372 ((-589 (-2 (|:| |outval| (-155 |#1|)) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 (-155 |#1|)))))) (-629 (-155 (-383 (-523)))) |#1|))) (-13 (-339) (-784))) (T -704)) -((-3372 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 (-589 (-2 (|:| |outval| (-155 *4)) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 (-155 *4))))))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784))))) (-1296 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 (-589 (-155 *4))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784))))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *4 (-1087)) (-5 *2 (-883 (-155 (-383 (-523))))) (-5 *1 (-704 *5)) (-4 *5 (-13 (-339) (-784))))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 (-883 (-155 (-383 (-523))))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784)))))) -(-10 -7 (-15 -1807 ((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))))) (-15 -1807 ((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))) (-1087))) (-15 -1296 ((-589 (-155 |#1|)) (-629 (-155 (-383 (-523)))) |#1|)) (-15 -3372 ((-589 (-2 (|:| |outval| (-155 |#1|)) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 (-155 |#1|)))))) (-629 (-155 (-383 (-523)))) |#1|))) -((-2947 (((-159 (-523)) |#1|) 25))) -(((-705 |#1|) (-10 -7 (-15 -2947 ((-159 (-523)) |#1|))) (-380)) (T -705)) -((-2947 (*1 *2 *3) (-12 (-5 *2 (-159 (-523))) (-5 *1 (-705 *3)) (-4 *3 (-380))))) -(-10 -7 (-15 -2947 ((-159 (-523)) |#1|))) -((-3077 ((|#1| |#1| |#1|) 25)) (-3082 ((|#1| |#1| |#1|) 24)) (-2035 ((|#1| |#1| |#1|) 32)) (-2500 ((|#1| |#1| |#1|) 28)) (-1687 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3091 (((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|) 23))) -(((-706 |#1| |#2|) (-10 -7 (-15 -3091 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -1687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#1| |#1|))) (-648 |#2|) (-339)) (T -706)) -((-2035 (*1 *2 *2 *2) (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-2500 (*1 *2 *2 *2) (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-1687 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-3077 (*1 *2 *2 *2) (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-3082 (*1 *2 *2 *2) (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-3091 (*1 *2 *3 *3) (-12 (-4 *4 (-339)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-706 *3 *4)) (-4 *3 (-648 *4))))) -(-10 -7 (-15 -3091 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -1687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#1| |#1|))) -((-4029 (((-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))) (-523)) 58)) (-4158 (((-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523))))) 56)) (-3549 (((-523)) 68))) -(((-707 |#1| |#2|) (-10 -7 (-15 -3549 ((-523))) (-15 -4158 ((-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))))) (-15 -4029 ((-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))) (-523)))) (-1144 (-523)) (-385 (-523) |#1|)) (T -707)) -((-4029 (*1 *2 *3) (-12 (-5 *3 (-523)) (-4 *4 (-1144 *3)) (-5 *2 (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-707 *4 *5)) (-4 *5 (-385 *3 *4)))) (-4158 (*1 *2) (-12 (-4 *3 (-1144 (-523))) (-5 *2 (-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523))))) (-5 *1 (-707 *3 *4)) (-4 *4 (-385 (-523) *3)))) (-3549 (*1 *2) (-12 (-4 *3 (-1144 *2)) (-5 *2 (-523)) (-5 *1 (-707 *3 *4)) (-4 *4 (-385 *2 *3))))) -(-10 -7 (-15 -3549 ((-523))) (-15 -4158 ((-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))))) (-15 -4029 ((-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))) (-523)))) -((-3924 (((-108) $ $) NIL)) (-3474 (((-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) $) 15)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 14) (($ (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 8) (($ (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) 12)) (-3983 (((-108) $ $) NIL))) -(((-708) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1458 ($ (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1458 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) $))))) (T -708)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-708)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-708)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-708)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) (-5 *1 (-708)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) (-5 *1 (-708))))) -(-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1458 ($ (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1458 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) $)))) -((-3293 (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|))) 14) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087))) 13)) (-1940 (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|))) 16) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087))) 15))) -(((-709 |#1|) (-10 -7 (-15 -3293 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -3293 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|))))) (-515)) (T -709)) -((-1940 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-709 *4)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-709 *5)))) (-3293 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-709 *4)))) (-3293 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-709 *5))))) -(-10 -7 (-15 -3293 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -3293 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3596 (($ $ $) 8)) (-3212 (((-3 $ "failed") $ $) 11)) (-2041 (($ $ (-523)) 9)) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($ $) NIL)) (-3769 (($ $ $) NIL)) (-2023 (((-108) $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3278 (($ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1458 (((-794) $) NIL)) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-710) $) NIL) (($ (-852) $) NIL) (($ $ $) NIL))) -(((-710) (-13 (-732) (-666) (-10 -8 (-15 -3769 ($ $ $)) (-15 -3796 ($ $ $)) (-15 -3278 ($ $ $)) (-15 -3462 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -3746 ((-3 $ "failed") $ $)) (-15 -2041 ($ $ (-523))) (-15 -4032 ($ $)) (-6 (-4246 "*"))))) (T -710)) -((-3769 (*1 *1 *1 *1) (-5 *1 (-710))) (-3796 (*1 *1 *1 *1) (-5 *1 (-710))) (-3278 (*1 *1 *1 *1) (-5 *1 (-710))) (-3462 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3445 (-710)) (|:| -3282 (-710)))) (-5 *1 (-710)))) (-3746 (*1 *1 *1 *1) (|partial| -5 *1 (-710))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-710)))) (-4032 (*1 *1 *1) (-5 *1 (-710)))) -(-13 (-732) (-666) (-10 -8 (-15 -3769 ($ $ $)) (-15 -3796 ($ $ $)) (-15 -3278 ($ $ $)) (-15 -3462 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -3746 ((-3 $ "failed") $ $)) (-15 -2041 ($ $ (-523))) (-15 -4032 ($ $)) (-6 (-4246 "*")))) -((-1940 (((-3 |#2| "failed") |#2| |#2| (-110) (-1087)) 35))) -(((-711 |#1| |#2|) (-10 -7 (-15 -1940 ((-3 |#2| "failed") |#2| |#2| (-110) (-1087)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1108) (-889))) (T -711)) -((-1940 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1087)) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-711 *5 *2)) (-4 *2 (-13 (-29 *5) (-1108) (-889)))))) -(-10 -7 (-15 -1940 ((-3 |#2| "failed") |#2| |#2| (-110) (-1087)))) -((-1458 (((-713) |#1|) 8))) -(((-712 |#1|) (-10 -7 (-15 -1458 ((-713) |#1|))) (-1122)) (T -712)) -((-1458 (*1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-712 *3)) (-4 *3 (-1122))))) -(-10 -7 (-15 -1458 ((-713) |#1|))) -((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 7)) (-3983 (((-108) $ $) 9))) +((-3554 (((-589 (-2 (|:| |outval| (-155 |#1|)) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 (-155 |#1|)))))) (-629 (-155 (-383 (-523)))) |#1|) 27)) (-3074 (((-589 (-155 |#1|)) (-629 (-155 (-383 (-523)))) |#1|) 19)) (-1356 (((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))) (-1087)) 16) (((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523))))) 15))) +(((-704 |#1|) (-10 -7 (-15 -1356 ((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))))) (-15 -1356 ((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))) (-1087))) (-15 -3074 ((-589 (-155 |#1|)) (-629 (-155 (-383 (-523)))) |#1|)) (-15 -3554 ((-589 (-2 (|:| |outval| (-155 |#1|)) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 (-155 |#1|)))))) (-629 (-155 (-383 (-523)))) |#1|))) (-13 (-339) (-784))) (T -704)) +((-3554 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 (-589 (-2 (|:| |outval| (-155 *4)) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 (-155 *4))))))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784))))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 (-589 (-155 *4))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784))))) (-1356 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *4 (-1087)) (-5 *2 (-883 (-155 (-383 (-523))))) (-5 *1 (-704 *5)) (-4 *5 (-13 (-339) (-784))))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 (-883 (-155 (-383 (-523))))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784)))))) +(-10 -7 (-15 -1356 ((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))))) (-15 -1356 ((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))) (-1087))) (-15 -3074 ((-589 (-155 |#1|)) (-629 (-155 (-383 (-523)))) |#1|)) (-15 -3554 ((-589 (-2 (|:| |outval| (-155 |#1|)) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 (-155 |#1|)))))) (-629 (-155 (-383 (-523)))) |#1|))) +((-2748 (((-159 (-523)) |#1|) 25))) +(((-705 |#1|) (-10 -7 (-15 -2748 ((-159 (-523)) |#1|))) (-380)) (T -705)) +((-2748 (*1 *2 *3) (-12 (-5 *2 (-159 (-523))) (-5 *1 (-705 *3)) (-4 *3 (-380))))) +(-10 -7 (-15 -2748 ((-159 (-523)) |#1|))) +((-1601 ((|#1| |#1| |#1|) 24)) (-1651 ((|#1| |#1| |#1|) 23)) (-2869 ((|#1| |#1| |#1|) 32)) (-4017 ((|#1| |#1| |#1|) 28)) (-2687 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1735 (((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|) 22))) +(((-706 |#1| |#2|) (-10 -7 (-15 -1735 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -1651 (|#1| |#1| |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -2687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|))) (-648 |#2|) (-339)) (T -706)) +((-2869 (*1 *2 *2 *2) (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-4017 (*1 *2 *2 *2) (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-2687 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-1601 (*1 *2 *2 *2) (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-1651 (*1 *2 *2 *2) (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-1735 (*1 *2 *3 *3) (-12 (-4 *4 (-339)) (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-706 *3 *4)) (-4 *3 (-648 *4))))) +(-10 -7 (-15 -1735 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -1651 (|#1| |#1| |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -2687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|))) +((-3674 (((-2 (|:| -3760 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))) (-523)) 58)) (-2496 (((-2 (|:| -3760 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523))))) 56)) (-1744 (((-523)) 69))) +(((-707 |#1| |#2|) (-10 -7 (-15 -1744 ((-523))) (-15 -2496 ((-2 (|:| -3760 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))))) (-15 -3674 ((-2 (|:| -3760 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))) (-523)))) (-1145 (-523)) (-385 (-523) |#1|)) (T -707)) +((-3674 (*1 *2 *3) (-12 (-5 *3 (-523)) (-4 *4 (-1145 *3)) (-5 *2 (-2 (|:| -3760 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-707 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2496 (*1 *2) (-12 (-4 *3 (-1145 (-523))) (-5 *2 (-2 (|:| -3760 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523))))) (-5 *1 (-707 *3 *4)) (-4 *4 (-385 (-523) *3)))) (-1744 (*1 *2) (-12 (-4 *3 (-1145 *2)) (-5 *2 (-523)) (-5 *1 (-707 *3 *4)) (-4 *4 (-385 *2 *3))))) +(-10 -7 (-15 -1744 ((-523))) (-15 -2496 ((-2 (|:| -3760 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))))) (-15 -3674 ((-2 (|:| -3760 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))) (-523)))) +((-1680 (((-108) $ $) NIL)) (-3508 (((-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) $) 15)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 14) (($ (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 8) (($ (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) 12)) (-3941 (((-108) $ $) NIL))) +(((-708) (-13 (-1016) (-10 -8 (-15 -1691 ($ (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1691 ($ (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1691 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (-15 -1691 ((-794) $)) (-15 -3508 ((-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) $))))) (T -708)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-708)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-708)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-708)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) (-5 *1 (-708)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) (-5 *1 (-708))))) +(-13 (-1016) (-10 -8 (-15 -1691 ($ (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1691 ($ (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1691 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (-15 -1691 ((-794) $)) (-15 -3508 ((-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) $)))) +((-4076 (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|))) 14) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087))) 13)) (-3112 (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|))) 16) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087))) 15))) +(((-709 |#1|) (-10 -7 (-15 -4076 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -4076 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -3112 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -3112 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|))))) (-515)) (T -709)) +((-3112 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-709 *4)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-709 *5)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-709 *4)))) (-4076 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-709 *5))))) +(-10 -7 (-15 -4076 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -4076 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -3112 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -3112 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-4016 (($ $ $) 8)) (-3405 (((-3 $ "failed") $ $) 11)) (-2156 (($ $ (-523)) 9)) (-4189 (($) NIL T CONST)) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($ $) NIL)) (-4032 (($ $ $) NIL)) (-2769 (((-108) $) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3310 (($ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-1691 (((-794) $) NIL)) (-2423 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-710) $) NIL) (($ (-852) $) NIL) (($ $ $) NIL))) +(((-710) (-13 (-732) (-666) (-10 -8 (-15 -4032 ($ $ $)) (-15 -4059 ($ $ $)) (-15 -3310 ($ $ $)) (-15 -2083 ((-2 (|:| -3070 $) (|:| -3969 $)) $ $)) (-15 -4007 ((-3 $ "failed") $ $)) (-15 -2156 ($ $ (-523))) (-15 -1631 ($ $)) (-6 (-4250 "*"))))) (T -710)) +((-4032 (*1 *1 *1 *1) (-5 *1 (-710))) (-4059 (*1 *1 *1 *1) (-5 *1 (-710))) (-3310 (*1 *1 *1 *1) (-5 *1 (-710))) (-2083 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3070 (-710)) (|:| -3969 (-710)))) (-5 *1 (-710)))) (-4007 (*1 *1 *1 *1) (|partial| -5 *1 (-710))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-710)))) (-1631 (*1 *1 *1) (-5 *1 (-710)))) +(-13 (-732) (-666) (-10 -8 (-15 -4032 ($ $ $)) (-15 -4059 ($ $ $)) (-15 -3310 ($ $ $)) (-15 -2083 ((-2 (|:| -3070 $) (|:| -3969 $)) $ $)) (-15 -4007 ((-3 $ "failed") $ $)) (-15 -2156 ($ $ (-523))) (-15 -1631 ($ $)) (-6 (-4250 "*")))) +((-3112 (((-3 |#2| "failed") |#2| |#2| (-110) (-1087)) 35))) +(((-711 |#1| |#2|) (-10 -7 (-15 -3112 ((-3 |#2| "failed") |#2| |#2| (-110) (-1087)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1109) (-889))) (T -711)) +((-3112 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1087)) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-711 *5 *2)) (-4 *2 (-13 (-29 *5) (-1109) (-889)))))) +(-10 -7 (-15 -3112 ((-3 |#2| "failed") |#2| |#2| (-110) (-1087)))) +((-1691 (((-713) |#1|) 8))) +(((-712 |#1|) (-10 -7 (-15 -1691 ((-713) |#1|))) (-1123)) (T -712)) +((-1691 (*1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-712 *3)) (-4 *3 (-1123))))) +(-10 -7 (-15 -1691 ((-713) |#1|))) +((-1680 (((-108) $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 7)) (-3941 (((-108) $ $) 9))) (((-713) (-1016)) (T -713)) NIL (-1016) -((-3892 ((|#2| |#4|) 35))) -(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3892 (|#2| |#4|))) (-427) (-1144 |#1|) (-664 |#1| |#2|) (-1144 |#3|)) (T -714)) -((-3892 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-664 *4 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-714 *4 *2 *5 *3)) (-4 *3 (-1144 *5))))) -(-10 -7 (-15 -3892 (|#2| |#4|))) -((-2121 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1405 (((-1173) (-1070) (-1070) |#4| |#5|) 33)) (-3050 ((|#4| |#4| |#5|) 73)) (-2018 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|) 77)) (-3261 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|) 15))) -(((-715 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2121 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3050 (|#4| |#4| |#5|)) (-15 -2018 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -1405 ((-1173) (-1070) (-1070) |#4| |#5|)) (-15 -3261 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -715)) -((-3261 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1405 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1070)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *4 (-987 *6 *7 *8)) (-5 *2 (-1173)) (-5 *1 (-715 *6 *7 *8 *4 *5)) (-4 *5 (-992 *6 *7 *8 *4)))) (-2018 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3050 (*1 *2 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *2 (-987 *4 *5 *6)) (-5 *1 (-715 *4 *5 *6 *2 *3)) (-4 *3 (-992 *4 *5 *6 *2)))) (-2121 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(-10 -7 (-15 -2121 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3050 (|#4| |#4| |#5|)) (-15 -2018 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -1405 ((-1173) (-1070) (-1070) |#4| |#5|)) (-15 -3261 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|))) -((-3517 (((-3 (-1083 (-1083 |#1|)) "failed") |#4|) 44)) (-3636 (((-589 |#4|) |#4|) 15)) (-3454 ((|#4| |#4|) 11))) -(((-716 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3636 ((-589 |#4|) |#4|)) (-15 -3517 ((-3 (-1083 (-1083 |#1|)) "failed") |#4|)) (-15 -3454 (|#4| |#4|))) (-325) (-305 |#1|) (-1144 |#2|) (-1144 |#3|) (-852)) (T -716)) -((-3454 (*1 *2 *2) (-12 (-4 *3 (-325)) (-4 *4 (-305 *3)) (-4 *5 (-1144 *4)) (-5 *1 (-716 *3 *4 *5 *2 *6)) (-4 *2 (-1144 *5)) (-14 *6 (-852)))) (-3517 (*1 *2 *3) (|partial| -12 (-4 *4 (-325)) (-4 *5 (-305 *4)) (-4 *6 (-1144 *5)) (-5 *2 (-1083 (-1083 *4))) (-5 *1 (-716 *4 *5 *6 *3 *7)) (-4 *3 (-1144 *6)) (-14 *7 (-852)))) (-3636 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *5 (-305 *4)) (-4 *6 (-1144 *5)) (-5 *2 (-589 *3)) (-5 *1 (-716 *4 *5 *6 *3 *7)) (-4 *3 (-1144 *6)) (-14 *7 (-852))))) -(-10 -7 (-15 -3636 ((-589 |#4|) |#4|)) (-15 -3517 ((-3 (-1083 (-1083 |#1|)) "failed") |#4|)) (-15 -3454 (|#4| |#4|))) -((-3271 (((-2 (|:| |deter| (-589 (-1083 |#5|))) (|:| |dterm| (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-589 |#1|)) (|:| |nlead| (-589 |#5|))) (-1083 |#5|) (-589 |#1|) (-589 |#5|)) 53)) (-1988 (((-589 (-710)) |#1|) 12))) -(((-717 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3271 ((-2 (|:| |deter| (-589 (-1083 |#5|))) (|:| |dterm| (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-589 |#1|)) (|:| |nlead| (-589 |#5|))) (-1083 |#5|) (-589 |#1|) (-589 |#5|))) (-15 -1988 ((-589 (-710)) |#1|))) (-1144 |#4|) (-732) (-786) (-284) (-880 |#4| |#2| |#3|)) (T -717)) -((-1988 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-589 (-710))) (-5 *1 (-717 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *6)) (-4 *7 (-880 *6 *4 *5)))) (-3271 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1144 *9)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-284)) (-4 *10 (-880 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-589 (-1083 *10))) (|:| |dterm| (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| *10))))) (|:| |nfacts| (-589 *6)) (|:| |nlead| (-589 *10)))) (-5 *1 (-717 *6 *7 *8 *9 *10)) (-5 *3 (-1083 *10)) (-5 *4 (-589 *6)) (-5 *5 (-589 *10))))) -(-10 -7 (-15 -3271 ((-2 (|:| |deter| (-589 (-1083 |#5|))) (|:| |dterm| (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-589 |#1|)) (|:| |nlead| (-589 |#5|))) (-1083 |#5|) (-589 |#1|) (-589 |#5|))) (-15 -1988 ((-589 (-710)) |#1|))) -((-2799 (((-589 (-2 (|:| |outval| |#1|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#1|))))) (-629 (-383 (-523))) |#1|) 27)) (-2613 (((-589 |#1|) (-629 (-383 (-523))) |#1|) 19)) (-1807 (((-883 (-383 (-523))) (-629 (-383 (-523))) (-1087)) 16) (((-883 (-383 (-523))) (-629 (-383 (-523)))) 15))) -(((-718 |#1|) (-10 -7 (-15 -1807 ((-883 (-383 (-523))) (-629 (-383 (-523))))) (-15 -1807 ((-883 (-383 (-523))) (-629 (-383 (-523))) (-1087))) (-15 -2613 ((-589 |#1|) (-629 (-383 (-523))) |#1|)) (-15 -2799 ((-589 (-2 (|:| |outval| |#1|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#1|))))) (-629 (-383 (-523))) |#1|))) (-13 (-339) (-784))) (T -718)) -((-2799 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-589 (-2 (|:| |outval| *4) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 *4)))))) (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-589 *4)) (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784))))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *4 (-1087)) (-5 *2 (-883 (-383 (-523)))) (-5 *1 (-718 *5)) (-4 *5 (-13 (-339) (-784))))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-883 (-383 (-523)))) (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784)))))) -(-10 -7 (-15 -1807 ((-883 (-383 (-523))) (-629 (-383 (-523))))) (-15 -1807 ((-883 (-383 (-523))) (-629 (-383 (-523))) (-1087))) (-15 -2613 ((-589 |#1|) (-629 (-383 (-523))) |#1|)) (-15 -2799 ((-589 (-2 (|:| |outval| |#1|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#1|))))) (-629 (-383 (-523))) |#1|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 34)) (-1957 (((-589 |#2|) $) NIL)) (-1786 (((-1083 $) $ |#2|) NIL) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 |#2|)) NIL)) (-4039 (($ $) 28)) (-2090 (((-108) $ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2407 (($ $ $) 93 (|has| |#1| (-515)))) (-3301 (((-589 $) $ $) 106 (|has| |#1| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-883 (-383 (-523)))) NIL (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))))) (((-3 $ "failed") (-883 (-523))) NIL (-3262 (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523)))))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087)))))) (((-3 $ "failed") (-883 |#1|)) NIL (-3262 (-12 (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523))))) (-3900 (|has| |#1| (-37 (-523))))) (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523))))) (-3900 (|has| |#1| (-508)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-921 (-523))))))) (((-3 (-1039 |#1| |#2|) "failed") $) 18)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) ((|#2| $) NIL) (($ (-883 (-383 (-523)))) NIL (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))))) (($ (-883 (-523))) NIL (-3262 (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523)))))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087)))))) (($ (-883 |#1|)) NIL (-3262 (-12 (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523))))) (-3900 (|has| |#1| (-37 (-523))))) (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523))))) (-3900 (|has| |#1| (-508)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-921 (-523))))))) (((-1039 |#1| |#2|) $) NIL)) (-3078 (($ $ $ |#2|) NIL (|has| |#1| (-158))) (($ $ $) 104 (|has| |#1| (-515)))) (-3810 (($ $) NIL) (($ $ |#2|) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2663 (((-108) $ $) NIL) (((-108) $ (-589 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1906 (((-108) $) NIL)) (-2815 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 70)) (-1978 (($ $) 119 (|has| |#1| (-427)))) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ |#2|) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-2611 (($ $) NIL (|has| |#1| (-515)))) (-3058 (($ $) NIL (|has| |#1| (-515)))) (-1351 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-1239 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1284 (($ $ |#1| (-495 |#2|) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| |#1| (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| |#1| (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-4172 (((-108) $ $) NIL) (((-108) $ (-589 $)) NIL)) (-3870 (($ $ $ $ $) 90 (|has| |#1| (-515)))) (-2907 ((|#2| $) 19)) (-1945 (($ (-1083 |#1|) |#2|) NIL) (($ (-1083 $) |#2|) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-495 |#2|)) NIL) (($ $ |#2| (-710)) 36) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2055 (($ $ $) 60)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#2|) NIL)) (-2132 (((-108) $) NIL)) (-1575 (((-495 |#2|) $) NIL) (((-710) $ |#2|) NIL) (((-589 (-710)) $ (-589 |#2|)) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2457 (((-710) $) 20)) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-495 |#2|) (-495 |#2|)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2520 (((-3 |#2| "failed") $) NIL)) (-1246 (($ $) NIL (|has| |#1| (-427)))) (-3661 (($ $) NIL (|has| |#1| (-427)))) (-1871 (((-589 $) $) NIL)) (-1298 (($ $) 37)) (-2236 (($ $) NIL (|has| |#1| (-427)))) (-2748 (((-589 $) $) 41)) (-4220 (($ $) 39)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2929 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3829 (-710))) $ $) 82)) (-3369 (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $) 67) (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $ |#2|) NIL)) (-1236 (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $) NIL) (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $ |#2|) NIL)) (-3055 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2077 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3779 (((-1070) $) NIL)) (-1611 (($ $ $) 108 (|has| |#1| (-515)))) (-2800 (((-589 $) $) 30)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| |#2|) (|:| -2735 (-710))) "failed") $) NIL)) (-2112 (((-108) $ $) NIL) (((-108) $ (-589 $)) NIL)) (-2648 (($ $ $) NIL)) (-2262 (($ $) 21)) (-2391 (((-108) $ $) NIL)) (-2001 (((-108) $ $) NIL) (((-108) $ (-589 $)) NIL)) (-1398 (($ $ $) NIL)) (-3729 (($ $) 23)) (-2783 (((-1034) $) NIL)) (-3630 (((-2 (|:| -3278 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-515)))) (-1740 (((-2 (|:| -3278 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-515)))) (-3749 (((-108) $) 52)) (-3760 ((|#1| $) 55)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 ((|#1| |#1| $) 116 (|has| |#1| (-427))) (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-2490 (((-2 (|:| -3278 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-515)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-515)))) (-2477 (($ $ |#1|) 112 (|has| |#1| (-515))) (($ $ $) NIL (|has| |#1| (-515)))) (-4119 (($ $ |#1|) 111 (|has| |#1| (-515))) (($ $ $) NIL (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-589 |#2|) (-589 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-589 |#2|) (-589 $)) NIL)) (-3549 (($ $ |#2|) NIL (|has| |#1| (-158)))) (-3523 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2299 (((-495 |#2|) $) NIL) (((-710) $ |#2|) 43) (((-589 (-710)) $ (-589 |#2|)) NIL)) (-3190 (($ $) NIL)) (-2752 (($ $) 33)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| |#1| (-564 (-499))) (|has| |#2| (-564 (-499))))) (($ (-883 (-383 (-523)))) NIL (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))))) (($ (-883 (-523))) NIL (-3262 (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523)))))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087)))))) (($ (-883 |#1|)) NIL (|has| |#2| (-564 (-1087)))) (((-1070) $) NIL (-12 (|has| |#1| (-964 (-523))) (|has| |#2| (-564 (-1087))))) (((-883 |#1|) $) NIL (|has| |#2| (-564 (-1087))))) (-2438 ((|#1| $) 115 (|has| |#1| (-427))) (($ $ |#2|) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-883 |#1|) $) NIL (|has| |#2| (-564 (-1087)))) (((-1039 |#1| |#2|) $) 15) (($ (-1039 |#1| |#2|)) 16) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-495 |#2|)) NIL) (($ $ |#2| (-710)) 44) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 13 T CONST)) (-3754 (((-3 (-108) "failed") $ $) NIL)) (-2767 (($) 35 T CONST)) (-3090 (($ $ $ $ (-710)) 88 (|has| |#1| (-515)))) (-3720 (($ $ $ (-710)) 87 (|has| |#1| (-515)))) (-2862 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 54)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) 64)) (-4075 (($ $ $) 74)) (** (($ $ (-852)) NIL) (($ $ (-710)) 61)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 59) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +((-1863 ((|#2| |#4|) 35))) +(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1863 (|#2| |#4|))) (-427) (-1145 |#1|) (-664 |#1| |#2|) (-1145 |#3|)) (T -714)) +((-1863 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-664 *4 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-714 *4 *2 *5 *3)) (-4 *3 (-1145 *5))))) +(-10 -7 (-15 -1863 (|#2| |#4|))) +((-1444 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2967 (((-1174) (-1070) (-1070) |#4| |#5|) 33)) (-2517 ((|#4| |#4| |#5|) 73)) (-2722 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#5|) 77)) (-3759 (((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|) 15))) +(((-715 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1444 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2517 (|#4| |#4| |#5|)) (-15 -2722 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#5|)) (-15 -2967 ((-1174) (-1070) (-1070) |#4| |#5|)) (-15 -3759 ((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -715)) +((-3759 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3643 *4)))) (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2967 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1070)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *4 (-987 *6 *7 *8)) (-5 *2 (-1174)) (-5 *1 (-715 *6 *7 *8 *4 *5)) (-4 *5 (-992 *6 *7 *8 *4)))) (-2722 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2517 (*1 *2 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *2 (-987 *4 *5 *6)) (-5 *1 (-715 *4 *5 *6 *2 *3)) (-4 *3 (-992 *4 *5 *6 *2)))) (-1444 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(-10 -7 (-15 -1444 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2517 (|#4| |#4| |#5|)) (-15 -2722 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#5|)) (-15 -2967 ((-1174) (-1070) (-1070) |#4| |#5|)) (-15 -3759 ((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|))) +((-1220 (((-3 (-1083 (-1083 |#1|)) "failed") |#4|) 43)) (-3170 (((-589 |#4|) |#4|) 15)) (-2009 ((|#4| |#4|) 11))) +(((-716 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3170 ((-589 |#4|) |#4|)) (-15 -1220 ((-3 (-1083 (-1083 |#1|)) "failed") |#4|)) (-15 -2009 (|#4| |#4|))) (-325) (-305 |#1|) (-1145 |#2|) (-1145 |#3|) (-852)) (T -716)) +((-2009 (*1 *2 *2) (-12 (-4 *3 (-325)) (-4 *4 (-305 *3)) (-4 *5 (-1145 *4)) (-5 *1 (-716 *3 *4 *5 *2 *6)) (-4 *2 (-1145 *5)) (-14 *6 (-852)))) (-1220 (*1 *2 *3) (|partial| -12 (-4 *4 (-325)) (-4 *5 (-305 *4)) (-4 *6 (-1145 *5)) (-5 *2 (-1083 (-1083 *4))) (-5 *1 (-716 *4 *5 *6 *3 *7)) (-4 *3 (-1145 *6)) (-14 *7 (-852)))) (-3170 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *5 (-305 *4)) (-4 *6 (-1145 *5)) (-5 *2 (-589 *3)) (-5 *1 (-716 *4 *5 *6 *3 *7)) (-4 *3 (-1145 *6)) (-14 *7 (-852))))) +(-10 -7 (-15 -3170 ((-589 |#4|) |#4|)) (-15 -1220 ((-3 (-1083 (-1083 |#1|)) "failed") |#4|)) (-15 -2009 (|#4| |#4|))) +((-3862 (((-2 (|:| |deter| (-589 (-1083 |#5|))) (|:| |dterm| (-589 (-589 (-2 (|:| -2981 (-710)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-589 |#1|)) (|:| |nlead| (-589 |#5|))) (-1083 |#5|) (-589 |#1|) (-589 |#5|)) 53)) (-3580 (((-589 (-710)) |#1|) 12))) +(((-717 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3862 ((-2 (|:| |deter| (-589 (-1083 |#5|))) (|:| |dterm| (-589 (-589 (-2 (|:| -2981 (-710)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-589 |#1|)) (|:| |nlead| (-589 |#5|))) (-1083 |#5|) (-589 |#1|) (-589 |#5|))) (-15 -3580 ((-589 (-710)) |#1|))) (-1145 |#4|) (-732) (-786) (-284) (-880 |#4| |#2| |#3|)) (T -717)) +((-3580 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-589 (-710))) (-5 *1 (-717 *3 *4 *5 *6 *7)) (-4 *3 (-1145 *6)) (-4 *7 (-880 *6 *4 *5)))) (-3862 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1145 *9)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-284)) (-4 *10 (-880 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-589 (-1083 *10))) (|:| |dterm| (-589 (-589 (-2 (|:| -2981 (-710)) (|:| |pcoef| *10))))) (|:| |nfacts| (-589 *6)) (|:| |nlead| (-589 *10)))) (-5 *1 (-717 *6 *7 *8 *9 *10)) (-5 *3 (-1083 *10)) (-5 *4 (-589 *6)) (-5 *5 (-589 *10))))) +(-10 -7 (-15 -3862 ((-2 (|:| |deter| (-589 (-1083 |#5|))) (|:| |dterm| (-589 (-589 (-2 (|:| -2981 (-710)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-589 |#1|)) (|:| |nlead| (-589 |#5|))) (-1083 |#5|) (-589 |#1|) (-589 |#5|))) (-15 -3580 ((-589 (-710)) |#1|))) +((-3829 (((-589 (-2 (|:| |outval| |#1|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#1|))))) (-629 (-383 (-523))) |#1|) 27)) (-2636 (((-589 |#1|) (-629 (-383 (-523))) |#1|) 19)) (-1356 (((-883 (-383 (-523))) (-629 (-383 (-523))) (-1087)) 16) (((-883 (-383 (-523))) (-629 (-383 (-523)))) 15))) +(((-718 |#1|) (-10 -7 (-15 -1356 ((-883 (-383 (-523))) (-629 (-383 (-523))))) (-15 -1356 ((-883 (-383 (-523))) (-629 (-383 (-523))) (-1087))) (-15 -2636 ((-589 |#1|) (-629 (-383 (-523))) |#1|)) (-15 -3829 ((-589 (-2 (|:| |outval| |#1|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#1|))))) (-629 (-383 (-523))) |#1|))) (-13 (-339) (-784))) (T -718)) +((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-589 (-2 (|:| |outval| *4) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 *4)))))) (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784))))) (-2636 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-589 *4)) (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784))))) (-1356 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *4 (-1087)) (-5 *2 (-883 (-383 (-523)))) (-5 *1 (-718 *5)) (-4 *5 (-13 (-339) (-784))))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-883 (-383 (-523)))) (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784)))))) +(-10 -7 (-15 -1356 ((-883 (-383 (-523))) (-629 (-383 (-523))))) (-15 -1356 ((-883 (-383 (-523))) (-629 (-383 (-523))) (-1087))) (-15 -2636 ((-589 |#1|) (-629 (-383 (-523))) |#1|)) (-15 -3829 ((-589 (-2 (|:| |outval| |#1|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#1|))))) (-629 (-383 (-523))) |#1|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 34)) (-1292 (((-589 |#2|) $) NIL)) (-2389 (((-1083 $) $ |#2|) NIL) (((-1083 |#1|) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 |#2|)) NIL)) (-2227 (($ $) 28)) (-2248 (((-108) $ $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2485 (($ $ $) 93 (|has| |#1| (-515)))) (-4158 (((-589 $) $ $) 106 (|has| |#1| (-515)))) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3718 (($ $) NIL (|has| |#1| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-883 (-383 (-523)))) NIL (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))))) (((-3 $ "failed") (-883 (-523))) NIL (-3172 (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-4179 (|has| |#1| (-37 (-383 (-523)))))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087)))))) (((-3 $ "failed") (-883 |#1|)) NIL (-3172 (-12 (|has| |#2| (-564 (-1087))) (-4179 (|has| |#1| (-37 (-383 (-523))))) (-4179 (|has| |#1| (-37 (-523))))) (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-4179 (|has| |#1| (-37 (-383 (-523))))) (-4179 (|has| |#1| (-508)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))) (-4179 (|has| |#1| (-921 (-523))))))) (((-3 (-1039 |#1| |#2|) "failed") $) 18)) (-3508 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) ((|#2| $) NIL) (($ (-883 (-383 (-523)))) NIL (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))))) (($ (-883 (-523))) NIL (-3172 (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-4179 (|has| |#1| (-37 (-383 (-523)))))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087)))))) (($ (-883 |#1|)) NIL (-3172 (-12 (|has| |#2| (-564 (-1087))) (-4179 (|has| |#1| (-37 (-383 (-523))))) (-4179 (|has| |#1| (-37 (-523))))) (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-4179 (|has| |#1| (-37 (-383 (-523))))) (-4179 (|has| |#1| (-508)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))) (-4179 (|has| |#1| (-921 (-523))))))) (((-1039 |#1| |#2|) $) NIL)) (-1611 (($ $ $ |#2|) NIL (|has| |#1| (-158))) (($ $ $) 104 (|has| |#1| (-515)))) (-1457 (($ $) NIL) (($ $ |#2|) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-3087 (((-108) $ $) NIL) (((-108) $ (-589 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-4015 (((-108) $) NIL)) (-3999 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 70)) (-3480 (($ $) 119 (|has| |#1| (-427)))) (-1272 (($ $) NIL (|has| |#1| (-427))) (($ $ |#2|) NIL (|has| |#1| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#1| (-840)))) (-2618 (($ $) NIL (|has| |#1| (-515)))) (-2587 (($ $) NIL (|has| |#1| (-515)))) (-2468 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3685 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-4222 (($ $ |#1| (-495 |#2|) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| |#1| (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| |#1| (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-2605 (((-108) $ $) NIL) (((-108) $ (-589 $)) NIL)) (-1656 (($ $ $ $ $) 90 (|has| |#1| (-515)))) (-3556 ((|#2| $) 19)) (-1280 (($ (-1083 |#1|) |#2|) NIL) (($ (-1083 $) |#2|) NIL)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-495 |#2|)) NIL) (($ $ |#2| (-710)) 36) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-3056 (($ $ $) 60)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ |#2|) NIL)) (-1543 (((-108) $) NIL)) (-4047 (((-495 |#2|) $) NIL) (((-710) $ |#2|) NIL) (((-589 (-710)) $ (-589 |#2|)) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-1780 (((-710) $) 20)) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2041 (($ (-1 (-495 |#2|) (-495 |#2|)) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-4213 (((-3 |#2| "failed") $) NIL)) (-3763 (($ $) NIL (|has| |#1| (-427)))) (-3382 (($ $) NIL (|has| |#1| (-427)))) (-1866 (((-589 $) $) NIL)) (-3093 (($ $) 37)) (-3164 (($ $) NIL (|has| |#1| (-427)))) (-1606 (((-589 $) $) 41)) (-1310 (($ $) 39)) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3761 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2426 (-710))) $ $) 82)) (-3529 (((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3070 $) (|:| -3969 $)) $ $) 67) (((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3070 $) (|:| -3969 $)) $ $ |#2|) NIL)) (-3653 (((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3969 $)) $ $) NIL) (((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3969 $)) $ $ |#2|) NIL)) (-2558 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2109 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2032 (((-1070) $) NIL)) (-3173 (($ $ $) 108 (|has| |#1| (-515)))) (-3841 (((-589 $) $) 30)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| |#2|) (|:| -1475 (-710))) "failed") $) NIL)) (-2490 (((-108) $ $) NIL) (((-108) $ (-589 $)) NIL)) (-2960 (($ $ $) NIL)) (-2773 (($ $) 21)) (-2303 (((-108) $ $) NIL)) (-2569 (((-108) $ $) NIL) (((-108) $ (-589 $)) NIL)) (-2897 (($ $ $) NIL)) (-2781 (($ $) 23)) (-3951 (((-1034) $) NIL)) (-1383 (((-2 (|:| -3310 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-515)))) (-1961 (((-2 (|:| -3310 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-515)))) (-1408 (((-108) $) 52)) (-1419 ((|#1| $) 55)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3310 ((|#1| |#1| $) 116 (|has| |#1| (-427))) (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-840)))) (-3904 (((-2 (|:| -3310 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-515)))) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-515)))) (-1963 (($ $ |#1|) 112 (|has| |#1| (-515))) (($ $ $) NIL (|has| |#1| (-515)))) (-2105 (($ $ |#1|) 111 (|has| |#1| (-515))) (($ $ $) NIL (|has| |#1| (-515)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-589 |#2|) (-589 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-589 |#2|) (-589 $)) NIL)) (-1744 (($ $ |#2|) NIL (|has| |#1| (-158)))) (-3984 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2640 (((-495 |#2|) $) NIL) (((-710) $ |#2|) 43) (((-589 (-710)) $ (-589 |#2|)) NIL)) (-1472 (($ $) NIL)) (-1644 (($ $) 33)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| |#1| (-564 (-499))) (|has| |#2| (-564 (-499))))) (($ (-883 (-383 (-523)))) NIL (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))))) (($ (-883 (-523))) NIL (-3172 (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-4179 (|has| |#1| (-37 (-383 (-523)))))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087)))))) (($ (-883 |#1|)) NIL (|has| |#2| (-564 (-1087)))) (((-1070) $) NIL (-12 (|has| |#1| (-964 (-523))) (|has| |#2| (-564 (-1087))))) (((-883 |#1|) $) NIL (|has| |#2| (-564 (-1087))))) (-1618 ((|#1| $) 115 (|has| |#1| (-427))) (($ $ |#2|) NIL (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-883 |#1|) $) NIL (|has| |#2| (-564 (-1087)))) (((-1039 |#1| |#2|) $) 15) (($ (-1039 |#1| |#2|)) 16) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-495 |#2|)) NIL) (($ $ |#2| (-710)) 44) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 13 T CONST)) (-3000 (((-3 (-108) "failed") $ $) NIL)) (-1891 (($) 35 T CONST)) (-1724 (($ $ $ $ (-710)) 88 (|has| |#1| (-515)))) (-2713 (($ $ $ (-710)) 87 (|has| |#1| (-515)))) (-2909 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) 54)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) 64)) (-4045 (($ $ $) 74)) (** (($ $ (-852)) NIL) (($ $ (-710)) 61)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 59) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) (((-719 |#1| |#2|) (-13 (-987 |#1| (-495 |#2|) |#2|) (-563 (-1039 |#1| |#2|)) (-964 (-1039 |#1| |#2|))) (-973) (-786)) (T -719)) NIL (-13 (-987 |#1| (-495 |#2|) |#2|) (-563 (-1039 |#1| |#2|)) (-964 (-1039 |#1| |#2|))) -((-3612 (((-721 |#2|) (-1 |#2| |#1|) (-721 |#1|)) 13))) -(((-720 |#1| |#2|) (-10 -7 (-15 -3612 ((-721 |#2|) (-1 |#2| |#1|) (-721 |#1|)))) (-973) (-973)) (T -720)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-721 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-721 *6)) (-5 *1 (-720 *5 *6))))) -(-10 -7 (-15 -3612 ((-721 |#2|) (-1 |#2| |#1|) (-721 |#1|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 12)) (-2854 (((-1168 |#1|) $ (-710)) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-3131 (($ (-1083 |#1|)) NIL)) (-1786 (((-1083 $) $ (-1001)) NIL) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1001))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2741 (((-589 $) $ $) 39 (|has| |#1| (-515)))) (-2407 (($ $ $) 35 (|has| |#1| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-2692 (($ $ (-710)) NIL)) (-2482 (($ $ (-710)) NIL)) (-3444 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-427)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1001) "failed") $) NIL) (((-3 (-1083 |#1|) "failed") $) 10)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1001) $) NIL) (((-1083 |#1|) $) NIL)) (-3078 (($ $ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $ $) 43 (|has| |#1| (-158)))) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-3666 (($ $ $) NIL)) (-2349 (($ $ $) 71 (|has| |#1| (-515)))) (-2815 (((-2 (|:| -2935 |#1|) (|:| -3445 $) (|:| -3282 $)) $ $) 70 (|has| |#1| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-710) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1640 (((-710) $ $) NIL (|has| |#1| (-515)))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-1063)))) (-1945 (($ (-1083 |#1|) (-1001)) NIL) (($ (-1083 $) (-1001)) NIL)) (-1349 (($ $ (-710)) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-2055 (($ $ $) 20)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1001)) NIL) (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1575 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-710) (-710)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (((-1083 |#1|) $) NIL)) (-2520 (((-3 (-1001) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2929 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3829 (-710))) $ $) 26)) (-3257 (($ $ $) 29)) (-2984 (($ $ $) 32)) (-3369 (((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $) 31)) (-3779 (((-1070) $) NIL)) (-1611 (($ $ $) 41 (|has| |#1| (-515)))) (-2150 (((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710)) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-1001)) (|:| -2735 (-710))) "failed") $) NIL)) (-3417 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2262 (($) NIL (|has| |#1| (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-3630 (((-2 (|:| -3278 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-515)))) (-1740 (((-2 (|:| -3278 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-515)))) (-3997 (((-2 (|:| -3078 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-515)))) (-1556 (((-2 (|:| -3078 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-515)))) (-3749 (((-108) $) 13)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-4034 (($ $ (-710) |#1| $) 19)) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-2490 (((-2 (|:| -3278 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-515)))) (-2954 (((-2 (|:| -3078 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-515)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#1|) NIL) (($ $ (-589 (-1001)) (-589 |#1|)) NIL) (($ $ (-1001) $) NIL) (($ $ (-589 (-1001)) (-589 $)) NIL)) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-383 $) (-383 $) (-383 $)) NIL (|has| |#1| (-515))) ((|#1| (-383 $) |#1|) NIL (|has| |#1| (-339))) (((-383 $) $ (-383 $)) NIL (|has| |#1| (-515)))) (-3255 (((-3 $ "failed") $ (-710)) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3549 (($ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $) NIL (|has| |#1| (-158)))) (-3523 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2299 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1260 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515))) (((-3 (-383 $) "failed") (-383 $) $) NIL (|has| |#1| (-515)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-1001)) NIL) (((-1083 |#1|) $) 7) (($ (-1083 |#1|)) 8) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 21 T CONST)) (-2767 (($) 24 T CONST)) (-2862 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) 28) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-721 |#1|) (-13 (-1144 |#1|) (-563 (-1083 |#1|)) (-964 (-1083 |#1|)) (-10 -8 (-15 -4034 ($ $ (-710) |#1| $)) (-15 -2055 ($ $ $)) (-15 -2929 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3829 (-710))) $ $)) (-15 -3257 ($ $ $)) (-15 -3369 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -2984 ($ $ $)) (IF (|has| |#1| (-515)) (PROGN (-15 -2741 ((-589 $) $ $)) (-15 -1611 ($ $ $)) (-15 -2490 ((-2 (|:| -3278 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1740 ((-2 (|:| -3278 $) (|:| |coef1| $)) $ $)) (-15 -3630 ((-2 (|:| -3278 $) (|:| |coef2| $)) $ $)) (-15 -2954 ((-2 (|:| -3078 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1556 ((-2 (|:| -3078 |#1|) (|:| |coef1| $)) $ $)) (-15 -3997 ((-2 (|:| -3078 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-973)) (T -721)) -((-4034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-710)) (-5 *1 (-721 *3)) (-4 *3 (-973)))) (-2055 (*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973)))) (-2929 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-721 *3)) (|:| |polden| *3) (|:| -3829 (-710)))) (-5 *1 (-721 *3)) (-4 *3 (-973)))) (-3257 (*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973)))) (-3369 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2935 *3) (|:| |gap| (-710)) (|:| -3445 (-721 *3)) (|:| -3282 (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-973)))) (-2984 (*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973)))) (-2741 (*1 *2 *1 *1) (-12 (-5 *2 (-589 (-721 *3))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-1611 (*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-515)) (-4 *2 (-973)))) (-2490 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3278 (-721 *3)) (|:| |coef1| (-721 *3)) (|:| |coef2| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-1740 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3278 (-721 *3)) (|:| |coef1| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-3630 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3278 (-721 *3)) (|:| |coef2| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-2954 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3078 *3) (|:| |coef1| (-721 *3)) (|:| |coef2| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-1556 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3078 *3) (|:| |coef1| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-3997 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3078 *3) (|:| |coef2| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) -(-13 (-1144 |#1|) (-563 (-1083 |#1|)) (-964 (-1083 |#1|)) (-10 -8 (-15 -4034 ($ $ (-710) |#1| $)) (-15 -2055 ($ $ $)) (-15 -2929 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3829 (-710))) $ $)) (-15 -3257 ($ $ $)) (-15 -3369 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -2984 ($ $ $)) (IF (|has| |#1| (-515)) (PROGN (-15 -2741 ((-589 $) $ $)) (-15 -1611 ($ $ $)) (-15 -2490 ((-2 (|:| -3278 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1740 ((-2 (|:| -3278 $) (|:| |coef1| $)) $ $)) (-15 -3630 ((-2 (|:| -3278 $) (|:| |coef2| $)) $ $)) (-15 -2954 ((-2 (|:| -3078 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1556 ((-2 (|:| -3078 |#1|) (|:| |coef1| $)) $ $)) (-15 -3997 ((-2 (|:| -3078 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-2336 ((|#1| (-710) |#1|) 33 (|has| |#1| (-37 (-383 (-523)))))) (-1625 ((|#1| (-710) |#1|) 23)) (-1941 ((|#1| (-710) |#1|) 35 (|has| |#1| (-37 (-383 (-523))))))) -(((-722 |#1|) (-10 -7 (-15 -1625 (|#1| (-710) |#1|)) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -1941 (|#1| (-710) |#1|)) (-15 -2336 (|#1| (-710) |#1|))) |%noBranch|)) (-158)) (T -722)) -((-2336 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-158)))) (-1941 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-158)))) (-1625 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-158))))) -(-10 -7 (-15 -1625 (|#1| (-710) |#1|)) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -1941 (|#1| (-710) |#1|)) (-15 -2336 (|#1| (-710) |#1|))) |%noBranch|)) -((-3924 (((-108) $ $) 7)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) 85)) (-3846 (((-589 $) (-589 |#4|)) 86) (((-589 $) (-589 |#4|) (-108)) 111)) (-1957 (((-589 |#3|) $) 33)) (-2100 (((-108) $) 26)) (-2376 (((-108) $) 17 (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) 101) (((-108) $) 97)) (-2308 ((|#4| |#4| $) 92)) (-2291 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| $) 126)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) 27)) (-3079 (((-108) $ (-710)) 44)) (-3724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 79)) (-2518 (($) 45 T CONST)) (-3595 (((-108) $) 22 (|has| |#1| (-515)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3225 (((-108) $ $) 23 (|has| |#1| (-515)))) (-3393 (((-108) $) 25 (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3956 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 36)) (-3474 (($ (-589 |#4|)) 35)) (-1751 (((-3 $ "failed") $) 82)) (-4014 ((|#4| |#4| $) 89)) (-1773 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2636 ((|#4| |#4| $) 87)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) 105)) (-2005 (((-108) |#4| $) 136)) (-3785 (((-108) |#4| $) 133)) (-1944 (((-108) |#4| $) 137) (((-108) $) 134)) (-1666 (((-589 |#4|) $) 52 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) 104) (((-108) $) 103)) (-2907 ((|#3| $) 34)) (-2346 (((-108) $ (-710)) 43)) (-2136 (((-589 |#4|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 47)) (-4055 (((-589 |#3|) $) 32)) (-1357 (((-108) |#3| $) 31)) (-2866 (((-108) $ (-710)) 42)) (-3779 (((-1070) $) 9)) (-3246 (((-3 |#4| (-589 $)) |#4| |#4| $) 128)) (-1611 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| |#4| $) 127)) (-2579 (((-3 |#4| "failed") $) 83)) (-2668 (((-589 $) |#4| $) 129)) (-3320 (((-3 (-108) (-589 $)) |#4| $) 132)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1309 (((-589 $) |#4| $) 125) (((-589 $) (-589 |#4|) $) 124) (((-589 $) (-589 |#4|) (-589 $)) 123) (((-589 $) |#4| (-589 $)) 122)) (-1770 (($ |#4| $) 117) (($ (-589 |#4|) $) 116)) (-2404 (((-589 |#4|) $) 107)) (-2112 (((-108) |#4| $) 99) (((-108) $) 95)) (-2648 ((|#4| |#4| $) 90)) (-2391 (((-108) $ $) 110)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) 100) (((-108) $) 96)) (-1398 ((|#4| |#4| $) 91)) (-2783 (((-1034) $) 10)) (-1738 (((-3 |#4| "failed") $) 84)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2890 (((-3 $ "failed") $ |#4|) 78)) (-4097 (($ $ |#4|) 77) (((-589 $) |#4| $) 115) (((-589 $) |#4| (-589 $)) 114) (((-589 $) (-589 |#4|) $) 113) (((-589 $) (-589 |#4|) (-589 $)) 112)) (-1327 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) 38)) (-3883 (((-108) $) 41)) (-3988 (($) 40)) (-2299 (((-710) $) 106)) (-2792 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4244)))) (-1664 (($ $) 39)) (-3663 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 60)) (-2621 (($ $ |#3|) 28)) (-2624 (($ $ |#3|) 30)) (-1824 (($ $) 88)) (-3076 (($ $ |#3|) 29)) (-1458 (((-794) $) 11) (((-589 |#4|) $) 37)) (-1395 (((-710) $) 76 (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-3910 (((-589 $) |#4| $) 121) (((-589 $) |#4| (-589 $)) 120) (((-589 $) (-589 |#4|) $) 119) (((-589 $) (-589 |#4|) (-589 $)) 118)) (-2096 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) 81)) (-4062 (((-108) |#4| $) 135)) (-2153 (((-108) |#3| $) 80)) (-3983 (((-108) $ $) 6)) (-2676 (((-710) $) 46 (|has| $ (-6 -4244))))) +((-1345 (((-721 |#2|) (-1 |#2| |#1|) (-721 |#1|)) 13))) +(((-720 |#1| |#2|) (-10 -7 (-15 -1345 ((-721 |#2|) (-1 |#2| |#1|) (-721 |#1|)))) (-973) (-973)) (T -720)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-721 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-721 *6)) (-5 *1 (-720 *5 *6))))) +(-10 -7 (-15 -1345 ((-721 |#2|) (-1 |#2| |#1|) (-721 |#1|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 12)) (-1317 (((-1169 |#1|) $ (-710)) NIL)) (-1292 (((-589 (-1001)) $) NIL)) (-3859 (($ (-1083 |#1|)) NIL)) (-2389 (((-1083 $) $ (-1001)) NIL) (((-1083 |#1|) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 (-1001))) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1536 (((-589 $) $ $) 39 (|has| |#1| (-515)))) (-2485 (($ $ $) 35 (|has| |#1| (-515)))) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3718 (($ $) NIL (|has| |#1| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-2199 (($ $ (-710)) NIL)) (-3811 (($ $ (-710)) NIL)) (-3061 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-427)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1001) "failed") $) NIL) (((-3 (-1083 |#1|) "failed") $) 10)) (-3508 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1001) $) NIL) (((-1083 |#1|) $) NIL)) (-1611 (($ $ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $ $) 43 (|has| |#1| (-158)))) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-1457 (($ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-3425 (($ $ $) NIL)) (-3082 (($ $ $) 71 (|has| |#1| (-515)))) (-3999 (((-2 (|:| -3474 |#1|) (|:| -3070 $) (|:| -3969 $)) $ $) 70 (|has| |#1| (-515)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-1272 (($ $) NIL (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#1| (-840)))) (-4222 (($ $ |#1| (-710) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-3437 (((-710) $ $) NIL (|has| |#1| (-515)))) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-2738 (((-3 $ "failed") $) NIL (|has| |#1| (-1063)))) (-1280 (($ (-1083 |#1|) (-1001)) NIL) (($ (-1083 $) (-1001)) NIL)) (-3590 (($ $ (-710)) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-710)) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3056 (($ $ $) 20)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ (-1001)) NIL) (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-4047 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2041 (($ (-1 (-710) (-710)) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-3805 (((-1083 |#1|) $) NIL)) (-4213 (((-3 (-1001) "failed") $) NIL)) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3761 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2426 (-710))) $ $) 26)) (-3823 (($ $ $) 29)) (-3073 (($ $ $) 32)) (-3529 (((-2 (|:| -3474 |#1|) (|:| |gap| (-710)) (|:| -3070 $) (|:| -3969 $)) $ $) 31)) (-2032 (((-1070) $) NIL)) (-3173 (($ $ $) 41 (|has| |#1| (-515)))) (-1716 (((-2 (|:| -3070 $) (|:| -3969 $)) $ (-710)) NIL)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| (-1001)) (|:| -1475 (-710))) "failed") $) NIL)) (-2814 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2773 (($) NIL (|has| |#1| (-1063)) CONST)) (-3951 (((-1034) $) NIL)) (-1383 (((-2 (|:| -3310 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-515)))) (-1961 (((-2 (|:| -3310 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-515)))) (-3389 (((-2 (|:| -1611 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-515)))) (-3848 (((-2 (|:| -1611 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-515)))) (-1408 (((-108) $) 13)) (-1419 ((|#1| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3707 (($ $ (-710) |#1| $) 19)) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-840)))) (-3904 (((-2 (|:| -3310 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-515)))) (-2795 (((-2 (|:| -1611 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-515)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#1|) NIL) (($ $ (-589 (-1001)) (-589 |#1|)) NIL) (($ $ (-1001) $) NIL) (($ $ (-589 (-1001)) (-589 $)) NIL)) (-3413 (((-710) $) NIL (|has| |#1| (-339)))) (-1937 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-383 $) (-383 $) (-383 $)) NIL (|has| |#1| (-515))) ((|#1| (-383 $) |#1|) NIL (|has| |#1| (-339))) (((-383 $) $ (-383 $)) NIL (|has| |#1| (-515)))) (-3801 (((-3 $ "failed") $ (-710)) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $) NIL (|has| |#1| (-158)))) (-3984 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2640 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-1618 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-3923 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515))) (((-3 (-383 $) "failed") (-383 $) $) NIL (|has| |#1| (-515)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-1001)) NIL) (((-1083 |#1|) $) 7) (($ (-1083 |#1|)) 8) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-710)) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 21 T CONST)) (-1891 (($) 24 T CONST)) (-2909 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $) 28) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-721 |#1|) (-13 (-1145 |#1|) (-563 (-1083 |#1|)) (-964 (-1083 |#1|)) (-10 -8 (-15 -3707 ($ $ (-710) |#1| $)) (-15 -3056 ($ $ $)) (-15 -3761 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2426 (-710))) $ $)) (-15 -3823 ($ $ $)) (-15 -3529 ((-2 (|:| -3474 |#1|) (|:| |gap| (-710)) (|:| -3070 $) (|:| -3969 $)) $ $)) (-15 -3073 ($ $ $)) (IF (|has| |#1| (-515)) (PROGN (-15 -1536 ((-589 $) $ $)) (-15 -3173 ($ $ $)) (-15 -3904 ((-2 (|:| -3310 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1961 ((-2 (|:| -3310 $) (|:| |coef1| $)) $ $)) (-15 -1383 ((-2 (|:| -3310 $) (|:| |coef2| $)) $ $)) (-15 -2795 ((-2 (|:| -1611 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3848 ((-2 (|:| -1611 |#1|) (|:| |coef1| $)) $ $)) (-15 -3389 ((-2 (|:| -1611 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-973)) (T -721)) +((-3707 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-710)) (-5 *1 (-721 *3)) (-4 *3 (-973)))) (-3056 (*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973)))) (-3761 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-721 *3)) (|:| |polden| *3) (|:| -2426 (-710)))) (-5 *1 (-721 *3)) (-4 *3 (-973)))) (-3823 (*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973)))) (-3529 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3474 *3) (|:| |gap| (-710)) (|:| -3070 (-721 *3)) (|:| -3969 (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-973)))) (-3073 (*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973)))) (-1536 (*1 *2 *1 *1) (-12 (-5 *2 (-589 (-721 *3))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-3173 (*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-515)) (-4 *2 (-973)))) (-3904 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3310 (-721 *3)) (|:| |coef1| (-721 *3)) (|:| |coef2| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-1961 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3310 (-721 *3)) (|:| |coef1| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-1383 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3310 (-721 *3)) (|:| |coef2| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-2795 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1611 *3) (|:| |coef1| (-721 *3)) (|:| |coef2| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-3848 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1611 *3) (|:| |coef1| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-3389 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1611 *3) (|:| |coef2| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) +(-13 (-1145 |#1|) (-563 (-1083 |#1|)) (-964 (-1083 |#1|)) (-10 -8 (-15 -3707 ($ $ (-710) |#1| $)) (-15 -3056 ($ $ $)) (-15 -3761 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2426 (-710))) $ $)) (-15 -3823 ($ $ $)) (-15 -3529 ((-2 (|:| -3474 |#1|) (|:| |gap| (-710)) (|:| -3070 $) (|:| -3969 $)) $ $)) (-15 -3073 ($ $ $)) (IF (|has| |#1| (-515)) (PROGN (-15 -1536 ((-589 $) $ $)) (-15 -3173 ($ $ $)) (-15 -3904 ((-2 (|:| -3310 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1961 ((-2 (|:| -3310 $) (|:| |coef1| $)) $ $)) (-15 -1383 ((-2 (|:| -3310 $) (|:| |coef2| $)) $ $)) (-15 -2795 ((-2 (|:| -1611 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3848 ((-2 (|:| -1611 |#1|) (|:| |coef1| $)) $ $)) (-15 -3389 ((-2 (|:| -1611 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-2964 ((|#1| (-710) |#1|) 32 (|has| |#1| (-37 (-383 (-523)))))) (-3315 ((|#1| (-710) |#1|) 22)) (-3119 ((|#1| (-710) |#1|) 34 (|has| |#1| (-37 (-383 (-523))))))) +(((-722 |#1|) (-10 -7 (-15 -3315 (|#1| (-710) |#1|)) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3119 (|#1| (-710) |#1|)) (-15 -2964 (|#1| (-710) |#1|))) |%noBranch|)) (-158)) (T -722)) +((-2964 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-158)))) (-3119 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-158)))) (-3315 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-158))))) +(-10 -7 (-15 -3315 (|#1| (-710) |#1|)) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3119 (|#1| (-710) |#1|)) (-15 -2964 (|#1| (-710) |#1|))) |%noBranch|)) +((-1680 (((-108) $ $) 7)) (-3385 (((-589 (-2 (|:| -1214 $) (|:| -2647 (-589 |#4|)))) (-589 |#4|)) 85)) (-2591 (((-589 $) (-589 |#4|)) 86) (((-589 $) (-589 |#4|) (-108)) 111)) (-1292 (((-589 |#3|) $) 33)) (-2356 (((-108) $) 26)) (-2192 (((-108) $) 17 (|has| |#1| (-515)))) (-2219 (((-108) |#4| $) 101) (((-108) $) 97)) (-2717 ((|#4| |#4| $) 92)) (-3718 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 $))) |#4| $) 126)) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |#3|) 27)) (-1620 (((-108) $ (-710)) 44)) (-1903 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4248))) (((-3 |#4| "failed") $ |#3|) 79)) (-4189 (($) 45 T CONST)) (-4002 (((-108) $) 22 (|has| |#1| (-515)))) (-3577 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3527 (((-108) $ $) 23 (|has| |#1| (-515)))) (-2611 (((-108) $) 25 (|has| |#1| (-515)))) (-3586 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1291 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-1804 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-1220 (((-3 $ "failed") (-589 |#4|)) 36)) (-3508 (($ (-589 |#4|)) 35)) (-2441 (((-3 $ "failed") $) 82)) (-3546 ((|#4| |#4| $) 89)) (-2462 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4248)))) (-3969 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-3087 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2848 ((|#4| |#4| $) 87)) (-2116 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4248))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4248))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2860 (((-2 (|:| -1214 (-589 |#4|)) (|:| -2647 (-589 |#4|))) $) 105)) (-2607 (((-108) |#4| $) 136)) (-2072 (((-108) |#4| $) 133)) (-3149 (((-108) |#4| $) 137) (((-108) $) 134)) (-1871 (((-589 |#4|) $) 52 (|has| $ (-6 -4248)))) (-2605 (((-108) |#4| $) 104) (((-108) $) 103)) (-3556 ((|#3| $) 34)) (-3051 (((-108) $ (-710)) 43)) (-1584 (((-589 |#4|) $) 53 (|has| $ (-6 -4248)))) (-3423 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#4| |#4|) $) 47)) (-2709 (((-589 |#3|) $) 32)) (-2528 (((-108) |#3| $) 31)) (-1418 (((-108) $ (-710)) 42)) (-2032 (((-1070) $) 9)) (-3715 (((-3 |#4| (-589 $)) |#4| |#4| $) 128)) (-3173 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 $))) |#4| |#4| $) 127)) (-2535 (((-3 |#4| "failed") $) 83)) (-3130 (((-589 $) |#4| $) 129)) (-1338 (((-3 (-108) (-589 $)) |#4| $) 132)) (-1446 (((-589 (-2 (|:| |val| (-108)) (|:| -3643 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3196 (((-589 $) |#4| $) 125) (((-589 $) (-589 |#4|) $) 124) (((-589 $) (-589 |#4|) (-589 $)) 123) (((-589 $) |#4| (-589 $)) 122)) (-2190 (($ |#4| $) 117) (($ (-589 |#4|) $) 116)) (-2455 (((-589 |#4|) $) 107)) (-2490 (((-108) |#4| $) 99) (((-108) $) 95)) (-2960 ((|#4| |#4| $) 90)) (-2303 (((-108) $ $) 110)) (-3473 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2569 (((-108) |#4| $) 100) (((-108) $) 96)) (-2897 ((|#4| |#4| $) 91)) (-3951 (((-1034) $) 10)) (-2428 (((-3 |#4| "failed") $) 84)) (-2509 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3367 (((-3 $ "failed") $ |#4|) 78)) (-3053 (($ $ |#4|) 77) (((-589 $) |#4| $) 115) (((-589 $) |#4| (-589 $)) 114) (((-589 $) (-589 |#4|) $) 113) (((-589 $) (-589 |#4|) (-589 $)) 112)) (-3379 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-2267 (((-108) $ $) 38)) (-1777 (((-108) $) 41)) (-3320 (($) 40)) (-2640 (((-710) $) 106)) (-3977 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4248)))) (-1874 (($ $) 39)) (-1400 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1704 (($ (-589 |#4|)) 60)) (-2712 (($ $ |#3|) 28)) (-2742 (($ $ |#3|) 30)) (-1494 (($ $) 88)) (-1591 (($ $ |#3|) 29)) (-1691 (((-794) $) 11) (((-589 |#4|) $) 37)) (-2868 (((-710) $) 76 (|has| |#3| (-344)))) (-1645 (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3684 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-3817 (((-589 $) |#4| $) 121) (((-589 $) |#4| (-589 $)) 120) (((-589 $) (-589 |#4|) $) 119) (((-589 $) (-589 |#4|) (-589 $)) 118)) (-2308 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4248)))) (-1574 (((-589 |#3|) $) 81)) (-2776 (((-108) |#4| $) 135)) (-1747 (((-108) |#3| $) 80)) (-3941 (((-108) $ $) 6)) (-2810 (((-710) $) 46 (|has| $ (-6 -4248))))) (((-723 |#1| |#2| |#3| |#4|) (-129) (-427) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -723)) NIL (-13 (-992 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-905 |#1| |#2| |#3| |#4|) . T) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1116 |#1| |#2| |#3| |#4|) . T) ((-1122) . T)) -((-4073 (((-3 (-355) "failed") (-292 |#1|) (-852)) 60 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-355) "failed") (-292 |#1|)) 52 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-355) "failed") (-383 (-883 |#1|)) (-852)) 39 (|has| |#1| (-515))) (((-3 (-355) "failed") (-383 (-883 |#1|))) 35 (|has| |#1| (-515))) (((-3 (-355) "failed") (-883 |#1|) (-852)) 30 (|has| |#1| (-973))) (((-3 (-355) "failed") (-883 |#1|)) 24 (|has| |#1| (-973)))) (-3232 (((-355) (-292 |#1|) (-852)) 92 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-355) (-292 |#1|)) 87 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-355) (-383 (-883 |#1|)) (-852)) 84 (|has| |#1| (-515))) (((-355) (-383 (-883 |#1|))) 81 (|has| |#1| (-515))) (((-355) (-883 |#1|) (-852)) 80 (|has| |#1| (-973))) (((-355) (-883 |#1|)) 77 (|has| |#1| (-973))) (((-355) |#1| (-852)) 73) (((-355) |#1|) 22)) (-2932 (((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)) (-852)) 68 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-155 (-355)) "failed") (-292 (-155 |#1|))) 58 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-155 (-355)) "failed") (-292 |#1|) (-852)) 61 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-155 (-355)) "failed") (-292 |#1|)) 59 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))) (-852)) 44 (|has| |#1| (-515))) (((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|)))) 43 (|has| |#1| (-515))) (((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)) (-852)) 38 (|has| |#1| (-515))) (((-3 (-155 (-355)) "failed") (-383 (-883 |#1|))) 37 (|has| |#1| (-515))) (((-3 (-155 (-355)) "failed") (-883 |#1|) (-852)) 28 (|has| |#1| (-973))) (((-3 (-155 (-355)) "failed") (-883 |#1|)) 26 (|has| |#1| (-973))) (((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)) (-852)) 17 (|has| |#1| (-158))) (((-3 (-155 (-355)) "failed") (-883 (-155 |#1|))) 14 (|has| |#1| (-158)))) (-1747 (((-155 (-355)) (-292 (-155 |#1|)) (-852)) 95 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-155 (-355)) (-292 (-155 |#1|))) 94 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-155 (-355)) (-292 |#1|) (-852)) 93 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-155 (-355)) (-292 |#1|)) 91 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-155 (-355)) (-383 (-883 (-155 |#1|))) (-852)) 86 (|has| |#1| (-515))) (((-155 (-355)) (-383 (-883 (-155 |#1|)))) 85 (|has| |#1| (-515))) (((-155 (-355)) (-383 (-883 |#1|)) (-852)) 83 (|has| |#1| (-515))) (((-155 (-355)) (-383 (-883 |#1|))) 82 (|has| |#1| (-515))) (((-155 (-355)) (-883 |#1|) (-852)) 79 (|has| |#1| (-973))) (((-155 (-355)) (-883 |#1|)) 78 (|has| |#1| (-973))) (((-155 (-355)) (-883 (-155 |#1|)) (-852)) 75 (|has| |#1| (-158))) (((-155 (-355)) (-883 (-155 |#1|))) 74 (|has| |#1| (-158))) (((-155 (-355)) (-155 |#1|) (-852)) 16 (|has| |#1| (-158))) (((-155 (-355)) (-155 |#1|)) 12 (|has| |#1| (-158))) (((-155 (-355)) |#1| (-852)) 27) (((-155 (-355)) |#1|) 25))) -(((-724 |#1|) (-10 -7 (-15 -3232 ((-355) |#1|)) (-15 -3232 ((-355) |#1| (-852))) (-15 -1747 ((-155 (-355)) |#1|)) (-15 -1747 ((-155 (-355)) |#1| (-852))) (IF (|has| |#1| (-158)) (PROGN (-15 -1747 ((-155 (-355)) (-155 |#1|))) (-15 -1747 ((-155 (-355)) (-155 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-883 (-155 |#1|)))) (-15 -1747 ((-155 (-355)) (-883 (-155 |#1|)) (-852)))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-15 -3232 ((-355) (-883 |#1|))) (-15 -3232 ((-355) (-883 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-883 |#1|))) (-15 -1747 ((-155 (-355)) (-883 |#1|) (-852)))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3232 ((-355) (-383 (-883 |#1|)))) (-15 -3232 ((-355) (-383 (-883 |#1|)) (-852))) (-15 -1747 ((-155 (-355)) (-383 (-883 |#1|)))) (-15 -1747 ((-155 (-355)) (-383 (-883 |#1|)) (-852))) (-15 -1747 ((-155 (-355)) (-383 (-883 (-155 |#1|))))) (-15 -1747 ((-155 (-355)) (-383 (-883 (-155 |#1|))) (-852))) (IF (|has| |#1| (-786)) (PROGN (-15 -3232 ((-355) (-292 |#1|))) (-15 -3232 ((-355) (-292 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-292 |#1|))) (-15 -1747 ((-155 (-355)) (-292 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-292 (-155 |#1|)))) (-15 -1747 ((-155 (-355)) (-292 (-155 |#1|)) (-852)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)) (-852)))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-15 -4073 ((-3 (-355) "failed") (-883 |#1|))) (-15 -4073 ((-3 (-355) "failed") (-883 |#1|) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 |#1|))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 |#1|) (-852)))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -4073 ((-3 (-355) "failed") (-383 (-883 |#1|)))) (-15 -4073 ((-3 (-355) "failed") (-383 (-883 |#1|)) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))) (-852))) (IF (|has| |#1| (-786)) (PROGN (-15 -4073 ((-3 (-355) "failed") (-292 |#1|))) (-15 -4073 ((-3 (-355) "failed") (-292 |#1|) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 |#1|))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 |#1|) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)) (-852)))) |%noBranch|)) |%noBranch|)) (-564 (-355))) (T -724)) -((-2932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-292 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-292 (-155 *4))) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-4073 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-4073 (*1 *2 *3) (|partial| -12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-2932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-383 (-883 (-155 *5)))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 (-155 *4)))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-4073 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-4073 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-2932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-4073 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-4073 (*1 *2 *3) (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-2932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-883 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-158)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-883 (-155 *4))) (-4 *4 (-158)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-292 (-155 *4))) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-155 *5)))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 (-155 *4)))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-158)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-883 (-155 *4))) (-4 *4 (-158)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-155 *5)) (-5 *4 (-852)) (-4 *5 (-158)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-155 *4)) (-4 *4 (-158)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-5 *2 (-155 (-355))) (-5 *1 (-724 *3)) (-4 *3 (-564 (-355))))) (-1747 (*1 *2 *3) (-12 (-5 *2 (-155 (-355))) (-5 *1 (-724 *3)) (-4 *3 (-564 (-355))))) (-3232 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-5 *2 (-355)) (-5 *1 (-724 *3)) (-4 *3 (-564 *2)))) (-3232 (*1 *2 *3) (-12 (-5 *2 (-355)) (-5 *1 (-724 *3)) (-4 *3 (-564 *2))))) -(-10 -7 (-15 -3232 ((-355) |#1|)) (-15 -3232 ((-355) |#1| (-852))) (-15 -1747 ((-155 (-355)) |#1|)) (-15 -1747 ((-155 (-355)) |#1| (-852))) (IF (|has| |#1| (-158)) (PROGN (-15 -1747 ((-155 (-355)) (-155 |#1|))) (-15 -1747 ((-155 (-355)) (-155 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-883 (-155 |#1|)))) (-15 -1747 ((-155 (-355)) (-883 (-155 |#1|)) (-852)))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-15 -3232 ((-355) (-883 |#1|))) (-15 -3232 ((-355) (-883 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-883 |#1|))) (-15 -1747 ((-155 (-355)) (-883 |#1|) (-852)))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3232 ((-355) (-383 (-883 |#1|)))) (-15 -3232 ((-355) (-383 (-883 |#1|)) (-852))) (-15 -1747 ((-155 (-355)) (-383 (-883 |#1|)))) (-15 -1747 ((-155 (-355)) (-383 (-883 |#1|)) (-852))) (-15 -1747 ((-155 (-355)) (-383 (-883 (-155 |#1|))))) (-15 -1747 ((-155 (-355)) (-383 (-883 (-155 |#1|))) (-852))) (IF (|has| |#1| (-786)) (PROGN (-15 -3232 ((-355) (-292 |#1|))) (-15 -3232 ((-355) (-292 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-292 |#1|))) (-15 -1747 ((-155 (-355)) (-292 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-292 (-155 |#1|)))) (-15 -1747 ((-155 (-355)) (-292 (-155 |#1|)) (-852)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)) (-852)))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-15 -4073 ((-3 (-355) "failed") (-883 |#1|))) (-15 -4073 ((-3 (-355) "failed") (-883 |#1|) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 |#1|))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 |#1|) (-852)))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -4073 ((-3 (-355) "failed") (-383 (-883 |#1|)))) (-15 -4073 ((-3 (-355) "failed") (-383 (-883 |#1|)) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))) (-852))) (IF (|has| |#1| (-786)) (PROGN (-15 -4073 ((-3 (-355) "failed") (-292 |#1|))) (-15 -4073 ((-3 (-355) "failed") (-292 |#1|) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 |#1|))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 |#1|) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)) (-852)))) |%noBranch|)) |%noBranch|)) -((-1570 (((-852) (-1070)) 64)) (-3199 (((-3 (-355) "failed") (-1070)) 33)) (-1423 (((-355) (-1070)) 31)) (-1560 (((-852) (-1070)) 54)) (-2170 (((-1070) (-852)) 55)) (-1314 (((-1070) (-852)) 53))) -(((-725) (-10 -7 (-15 -1314 ((-1070) (-852))) (-15 -1560 ((-852) (-1070))) (-15 -2170 ((-1070) (-852))) (-15 -1570 ((-852) (-1070))) (-15 -1423 ((-355) (-1070))) (-15 -3199 ((-3 (-355) "failed") (-1070))))) (T -725)) -((-3199 (*1 *2 *3) (|partial| -12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-725)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-725)))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-852)) (-5 *1 (-725)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1070)) (-5 *1 (-725)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-852)) (-5 *1 (-725)))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1070)) (-5 *1 (-725))))) -(-10 -7 (-15 -1314 ((-1070) (-852))) (-15 -1560 ((-852) (-1070))) (-15 -2170 ((-1070) (-852))) (-15 -1570 ((-852) (-1070))) (-15 -1423 ((-355) (-1070))) (-15 -3199 ((-3 (-355) "failed") (-1070)))) -((-3924 (((-108) $ $) 7)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 15) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 13)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 16) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-905 |#1| |#2| |#3| |#4|) . T) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1117 |#1| |#2| |#3| |#4|) . T) ((-1123) . T)) +((-2876 (((-3 (-355) "failed") (-292 |#1|) (-852)) 60 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-355) "failed") (-292 |#1|)) 52 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-355) "failed") (-383 (-883 |#1|)) (-852)) 39 (|has| |#1| (-515))) (((-3 (-355) "failed") (-383 (-883 |#1|))) 35 (|has| |#1| (-515))) (((-3 (-355) "failed") (-883 |#1|) (-852)) 30 (|has| |#1| (-973))) (((-3 (-355) "failed") (-883 |#1|)) 24 (|has| |#1| (-973)))) (-2200 (((-355) (-292 |#1|) (-852)) 92 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-355) (-292 |#1|)) 87 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-355) (-383 (-883 |#1|)) (-852)) 84 (|has| |#1| (-515))) (((-355) (-383 (-883 |#1|))) 81 (|has| |#1| (-515))) (((-355) (-883 |#1|) (-852)) 80 (|has| |#1| (-973))) (((-355) (-883 |#1|)) 77 (|has| |#1| (-973))) (((-355) |#1| (-852)) 73) (((-355) |#1|) 22)) (-3782 (((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)) (-852)) 68 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-155 (-355)) "failed") (-292 (-155 |#1|))) 58 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-155 (-355)) "failed") (-292 |#1|) (-852)) 61 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-155 (-355)) "failed") (-292 |#1|)) 59 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))) (-852)) 44 (|has| |#1| (-515))) (((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|)))) 43 (|has| |#1| (-515))) (((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)) (-852)) 38 (|has| |#1| (-515))) (((-3 (-155 (-355)) "failed") (-383 (-883 |#1|))) 37 (|has| |#1| (-515))) (((-3 (-155 (-355)) "failed") (-883 |#1|) (-852)) 28 (|has| |#1| (-973))) (((-3 (-155 (-355)) "failed") (-883 |#1|)) 26 (|has| |#1| (-973))) (((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)) (-852)) 17 (|has| |#1| (-158))) (((-3 (-155 (-355)) "failed") (-883 (-155 |#1|))) 14 (|has| |#1| (-158)))) (-2355 (((-155 (-355)) (-292 (-155 |#1|)) (-852)) 95 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-155 (-355)) (-292 (-155 |#1|))) 94 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-155 (-355)) (-292 |#1|) (-852)) 93 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-155 (-355)) (-292 |#1|)) 91 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-155 (-355)) (-383 (-883 (-155 |#1|))) (-852)) 86 (|has| |#1| (-515))) (((-155 (-355)) (-383 (-883 (-155 |#1|)))) 85 (|has| |#1| (-515))) (((-155 (-355)) (-383 (-883 |#1|)) (-852)) 83 (|has| |#1| (-515))) (((-155 (-355)) (-383 (-883 |#1|))) 82 (|has| |#1| (-515))) (((-155 (-355)) (-883 |#1|) (-852)) 79 (|has| |#1| (-973))) (((-155 (-355)) (-883 |#1|)) 78 (|has| |#1| (-973))) (((-155 (-355)) (-883 (-155 |#1|)) (-852)) 75 (|has| |#1| (-158))) (((-155 (-355)) (-883 (-155 |#1|))) 74 (|has| |#1| (-158))) (((-155 (-355)) (-155 |#1|) (-852)) 16 (|has| |#1| (-158))) (((-155 (-355)) (-155 |#1|)) 12 (|has| |#1| (-158))) (((-155 (-355)) |#1| (-852)) 27) (((-155 (-355)) |#1|) 25))) +(((-724 |#1|) (-10 -7 (-15 -2200 ((-355) |#1|)) (-15 -2200 ((-355) |#1| (-852))) (-15 -2355 ((-155 (-355)) |#1|)) (-15 -2355 ((-155 (-355)) |#1| (-852))) (IF (|has| |#1| (-158)) (PROGN (-15 -2355 ((-155 (-355)) (-155 |#1|))) (-15 -2355 ((-155 (-355)) (-155 |#1|) (-852))) (-15 -2355 ((-155 (-355)) (-883 (-155 |#1|)))) (-15 -2355 ((-155 (-355)) (-883 (-155 |#1|)) (-852)))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-15 -2200 ((-355) (-883 |#1|))) (-15 -2200 ((-355) (-883 |#1|) (-852))) (-15 -2355 ((-155 (-355)) (-883 |#1|))) (-15 -2355 ((-155 (-355)) (-883 |#1|) (-852)))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -2200 ((-355) (-383 (-883 |#1|)))) (-15 -2200 ((-355) (-383 (-883 |#1|)) (-852))) (-15 -2355 ((-155 (-355)) (-383 (-883 |#1|)))) (-15 -2355 ((-155 (-355)) (-383 (-883 |#1|)) (-852))) (-15 -2355 ((-155 (-355)) (-383 (-883 (-155 |#1|))))) (-15 -2355 ((-155 (-355)) (-383 (-883 (-155 |#1|))) (-852))) (IF (|has| |#1| (-786)) (PROGN (-15 -2200 ((-355) (-292 |#1|))) (-15 -2200 ((-355) (-292 |#1|) (-852))) (-15 -2355 ((-155 (-355)) (-292 |#1|))) (-15 -2355 ((-155 (-355)) (-292 |#1|) (-852))) (-15 -2355 ((-155 (-355)) (-292 (-155 |#1|)))) (-15 -2355 ((-155 (-355)) (-292 (-155 |#1|)) (-852)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-15 -3782 ((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)) (-852)))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-15 -2876 ((-3 (-355) "failed") (-883 |#1|))) (-15 -2876 ((-3 (-355) "failed") (-883 |#1|) (-852))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-883 |#1|))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-883 |#1|) (-852)))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -2876 ((-3 (-355) "failed") (-383 (-883 |#1|)))) (-15 -2876 ((-3 (-355) "failed") (-383 (-883 |#1|)) (-852))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)) (-852))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))) (-852))) (IF (|has| |#1| (-786)) (PROGN (-15 -2876 ((-3 (-355) "failed") (-292 |#1|))) (-15 -2876 ((-3 (-355) "failed") (-292 |#1|) (-852))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-292 |#1|))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-292 |#1|) (-852))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)) (-852)))) |%noBranch|)) |%noBranch|)) (-564 (-355))) (T -724)) +((-3782 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-292 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-3782 (*1 *2 *3) (|partial| -12 (-5 *3 (-292 (-155 *4))) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-3782 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-3782 (*1 *2 *3) (|partial| -12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2876 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-2876 (*1 *2 *3) (|partial| -12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-3782 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-383 (-883 (-155 *5)))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-3782 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 (-155 *4)))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-3782 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-3782 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2876 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-2876 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-3782 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-3782 (*1 *2 *3) (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2876 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-2876 (*1 *2 *3) (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-3782 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-883 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-158)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-3782 (*1 *2 *3) (|partial| -12 (-5 *3 (-883 (-155 *4))) (-4 *4 (-158)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-292 (-155 *4))) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2200 (*1 *2 *3 *4) (-12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-155 *5)))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 (-155 *4)))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2200 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2200 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-158)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-883 (-155 *4))) (-4 *4 (-158)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-155 *5)) (-5 *4 (-852)) (-4 *5 (-158)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-155 *4)) (-4 *4 (-158)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-5 *2 (-155 (-355))) (-5 *1 (-724 *3)) (-4 *3 (-564 (-355))))) (-2355 (*1 *2 *3) (-12 (-5 *2 (-155 (-355))) (-5 *1 (-724 *3)) (-4 *3 (-564 (-355))))) (-2200 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-5 *2 (-355)) (-5 *1 (-724 *3)) (-4 *3 (-564 *2)))) (-2200 (*1 *2 *3) (-12 (-5 *2 (-355)) (-5 *1 (-724 *3)) (-4 *3 (-564 *2))))) +(-10 -7 (-15 -2200 ((-355) |#1|)) (-15 -2200 ((-355) |#1| (-852))) (-15 -2355 ((-155 (-355)) |#1|)) (-15 -2355 ((-155 (-355)) |#1| (-852))) (IF (|has| |#1| (-158)) (PROGN (-15 -2355 ((-155 (-355)) (-155 |#1|))) (-15 -2355 ((-155 (-355)) (-155 |#1|) (-852))) (-15 -2355 ((-155 (-355)) (-883 (-155 |#1|)))) (-15 -2355 ((-155 (-355)) (-883 (-155 |#1|)) (-852)))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-15 -2200 ((-355) (-883 |#1|))) (-15 -2200 ((-355) (-883 |#1|) (-852))) (-15 -2355 ((-155 (-355)) (-883 |#1|))) (-15 -2355 ((-155 (-355)) (-883 |#1|) (-852)))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -2200 ((-355) (-383 (-883 |#1|)))) (-15 -2200 ((-355) (-383 (-883 |#1|)) (-852))) (-15 -2355 ((-155 (-355)) (-383 (-883 |#1|)))) (-15 -2355 ((-155 (-355)) (-383 (-883 |#1|)) (-852))) (-15 -2355 ((-155 (-355)) (-383 (-883 (-155 |#1|))))) (-15 -2355 ((-155 (-355)) (-383 (-883 (-155 |#1|))) (-852))) (IF (|has| |#1| (-786)) (PROGN (-15 -2200 ((-355) (-292 |#1|))) (-15 -2200 ((-355) (-292 |#1|) (-852))) (-15 -2355 ((-155 (-355)) (-292 |#1|))) (-15 -2355 ((-155 (-355)) (-292 |#1|) (-852))) (-15 -2355 ((-155 (-355)) (-292 (-155 |#1|)))) (-15 -2355 ((-155 (-355)) (-292 (-155 |#1|)) (-852)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-15 -3782 ((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)) (-852)))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-15 -2876 ((-3 (-355) "failed") (-883 |#1|))) (-15 -2876 ((-3 (-355) "failed") (-883 |#1|) (-852))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-883 |#1|))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-883 |#1|) (-852)))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -2876 ((-3 (-355) "failed") (-383 (-883 |#1|)))) (-15 -2876 ((-3 (-355) "failed") (-383 (-883 |#1|)) (-852))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)) (-852))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))) (-852))) (IF (|has| |#1| (-786)) (PROGN (-15 -2876 ((-3 (-355) "failed") (-292 |#1|))) (-15 -2876 ((-3 (-355) "failed") (-292 |#1|) (-852))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-292 |#1|))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-292 |#1|) (-852))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)))) (-15 -3782 ((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)) (-852)))) |%noBranch|)) |%noBranch|)) +((-3995 (((-852) (-1070)) 65)) (-3283 (((-3 (-355) "failed") (-1070)) 33)) (-1995 (((-355) (-1070)) 31)) (-3895 (((-852) (-1070)) 54)) (-1915 (((-1070) (-852)) 55)) (-3246 (((-1070) (-852)) 53))) +(((-725) (-10 -7 (-15 -3246 ((-1070) (-852))) (-15 -3895 ((-852) (-1070))) (-15 -1915 ((-1070) (-852))) (-15 -3995 ((-852) (-1070))) (-15 -1995 ((-355) (-1070))) (-15 -3283 ((-3 (-355) "failed") (-1070))))) (T -725)) +((-3283 (*1 *2 *3) (|partial| -12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-725)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-725)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-852)) (-5 *1 (-725)))) (-1915 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1070)) (-5 *1 (-725)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-852)) (-5 *1 (-725)))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1070)) (-5 *1 (-725))))) +(-10 -7 (-15 -3246 ((-1070) (-852))) (-15 -3895 ((-852) (-1070))) (-15 -1915 ((-1070) (-852))) (-15 -3995 ((-852) (-1070))) (-15 -1995 ((-355) (-1070))) (-15 -3283 ((-3 (-355) "failed") (-1070)))) +((-1680 (((-108) $ $) 7)) (-3077 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 15) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 13)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 16) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-3941 (((-108) $ $) 6))) (((-726) (-129)) (T -726)) -((-1228 (*1 *2 *3 *4) (-12 (-4 *1 (-726)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962)))))) (-3765 (*1 *2 *3 *2) (-12 (-4 *1 (-726)) (-5 *2 (-962)) (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) (-1228 (*1 *2 *3 *4) (-12 (-4 *1 (-726)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962)))))) (-3765 (*1 *2 *3 *2) (-12 (-4 *1 (-726)) (-5 *2 (-962)) (-5 *3 (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) -(-13 (-1016) (-10 -7 (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3765 ((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3765 ((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962))))) +((-1796 (*1 *2 *3 *4) (-12 (-4 *1 (-726)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962)))))) (-3077 (*1 *2 *3 *2) (-12 (-4 *1 (-726)) (-5 *2 (-962)) (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) (-1796 (*1 *2 *3 *4) (-12 (-4 *1 (-726)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962)))))) (-3077 (*1 *2 *3 *2) (-12 (-4 *1 (-726)) (-5 *2 (-962)) (-5 *3 (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) +(-13 (-1016) (-10 -7 (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3077 ((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3077 ((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962))))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-1768 (((-1173) (-1168 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355))) (-355) (-1168 (-355)) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355))) 44) (((-1173) (-1168 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355))) (-355) (-1168 (-355)) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355))) 43)) (-2379 (((-1173) (-1168 (-355)) (-523) (-355) (-355) (-523) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355))) 50)) (-1781 (((-1173) (-1168 (-355)) (-523) (-355) (-355) (-355) (-355) (-523) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355))) 41)) (-1596 (((-1173) (-1168 (-355)) (-523) (-355) (-355) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355))) 52) (((-1173) (-1168 (-355)) (-523) (-355) (-355) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355))) 51))) -(((-727) (-10 -7 (-15 -1596 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))) (-15 -1596 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)))) (-15 -1781 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-355) (-355) (-523) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))) (-15 -1768 ((-1173) (-1168 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355))) (-355) (-1168 (-355)) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))) (-15 -1768 ((-1173) (-1168 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355))) (-355) (-1168 (-355)) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)))) (-15 -2379 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-523) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))))) (T -727)) -((-2379 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) (-5 *1 (-727)))) (-1768 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-523)) (-5 *6 (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355)))) (-5 *7 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) (-5 *1 (-727)))) (-1768 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-523)) (-5 *6 (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355)))) (-5 *7 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) (-5 *1 (-727)))) (-1781 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) (-5 *1 (-727)))) (-1596 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) (-5 *1 (-727)))) (-1596 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) (-5 *1 (-727))))) -(-10 -7 (-15 -1596 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))) (-15 -1596 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)))) (-15 -1781 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-355) (-355) (-523) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))) (-15 -1768 ((-1173) (-1168 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355))) (-355) (-1168 (-355)) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))) (-15 -1768 ((-1173) (-1168 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355))) (-355) (-1168 (-355)) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)))) (-15 -2379 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-523) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355))))) -((-3605 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 53)) (-3695 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 30)) (-3230 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 52)) (-2476 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 28)) (-3172 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 51)) (-2177 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 18)) (-2876 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523)) 31)) (-3932 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523)) 29)) (-3664 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523)) 27))) -(((-728) (-10 -7 (-15 -3664 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -3932 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -2876 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -2177 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -2476 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3695 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3172 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3230 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3605 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))))) (T -728)) -((-3605 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3230 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3172 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3695 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-2177 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-2876 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3932 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3664 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523))))) -(-10 -7 (-15 -3664 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -3932 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -2876 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -2177 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -2476 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3695 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3172 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3230 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3605 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)))) -((-2501 (((-1118 |#1|) |#1| (-203) (-523)) 45))) -(((-729 |#1|) (-10 -7 (-15 -2501 ((-1118 |#1|) |#1| (-203) (-523)))) (-903)) (T -729)) -((-2501 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-203)) (-5 *5 (-523)) (-5 *2 (-1118 *3)) (-5 *1 (-729 *3)) (-4 *3 (-903))))) -(-10 -7 (-15 -2501 ((-1118 |#1|) |#1| (-203) (-523)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 24)) (-3212 (((-3 $ "failed") $ $) 26)) (-2518 (($) 23 T CONST)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 22 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4087 (($ $ $) 28) (($ $) 27)) (-4075 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21) (($ (-523) $) 29))) +((-2181 (((-1174) (-1169 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1832 (-355))) (-355) (-1169 (-355)) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355))) 44) (((-1174) (-1169 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1832 (-355))) (-355) (-1169 (-355)) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355))) 43)) (-2222 (((-1174) (-1169 (-355)) (-523) (-355) (-355) (-523) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355))) 50)) (-2270 (((-1174) (-1169 (-355)) (-523) (-355) (-355) (-355) (-355) (-523) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355))) 41)) (-1262 (((-1174) (-1169 (-355)) (-523) (-355) (-355) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355))) 52) (((-1174) (-1169 (-355)) (-523) (-355) (-355) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355))) 51))) +(((-727) (-10 -7 (-15 -1262 ((-1174) (-1169 (-355)) (-523) (-355) (-355) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)))) (-15 -1262 ((-1174) (-1169 (-355)) (-523) (-355) (-355) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)))) (-15 -2270 ((-1174) (-1169 (-355)) (-523) (-355) (-355) (-355) (-355) (-523) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)))) (-15 -2181 ((-1174) (-1169 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1832 (-355))) (-355) (-1169 (-355)) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)))) (-15 -2181 ((-1174) (-1169 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1832 (-355))) (-355) (-1169 (-355)) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)))) (-15 -2222 ((-1174) (-1169 (-355)) (-523) (-355) (-355) (-523) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)))))) (T -727)) +((-2222 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1174) (-1169 *5) (-1169 *5) (-355))) (-5 *3 (-1169 (-355))) (-5 *5 (-355)) (-5 *2 (-1174)) (-5 *1 (-727)))) (-2181 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-523)) (-5 *6 (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1832 (-355)))) (-5 *7 (-1 (-1174) (-1169 *5) (-1169 *5) (-355))) (-5 *3 (-1169 (-355))) (-5 *5 (-355)) (-5 *2 (-1174)) (-5 *1 (-727)))) (-2181 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-523)) (-5 *6 (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1832 (-355)))) (-5 *7 (-1 (-1174) (-1169 *5) (-1169 *5) (-355))) (-5 *3 (-1169 (-355))) (-5 *5 (-355)) (-5 *2 (-1174)) (-5 *1 (-727)))) (-2270 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1174) (-1169 *5) (-1169 *5) (-355))) (-5 *3 (-1169 (-355))) (-5 *5 (-355)) (-5 *2 (-1174)) (-5 *1 (-727)))) (-1262 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1174) (-1169 *5) (-1169 *5) (-355))) (-5 *3 (-1169 (-355))) (-5 *5 (-355)) (-5 *2 (-1174)) (-5 *1 (-727)))) (-1262 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1174) (-1169 *5) (-1169 *5) (-355))) (-5 *3 (-1169 (-355))) (-5 *5 (-355)) (-5 *2 (-1174)) (-5 *1 (-727))))) +(-10 -7 (-15 -1262 ((-1174) (-1169 (-355)) (-523) (-355) (-355) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)))) (-15 -1262 ((-1174) (-1169 (-355)) (-523) (-355) (-355) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)))) (-15 -2270 ((-1174) (-1169 (-355)) (-523) (-355) (-355) (-355) (-355) (-523) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)))) (-15 -2181 ((-1174) (-1169 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1832 (-355))) (-355) (-1169 (-355)) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)))) (-15 -2181 ((-1174) (-1169 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1832 (-355))) (-355) (-1169 (-355)) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)) (-1169 (-355)))) (-15 -2222 ((-1174) (-1169 (-355)) (-523) (-355) (-355) (-523) (-1 (-1174) (-1169 (-355)) (-1169 (-355)) (-355))))) +((-4128 (((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 53)) (-3677 (((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 30)) (-3583 (((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 52)) (-1953 (((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 28)) (-1286 (((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 51)) (-3768 (((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 18)) (-3233 (((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523)) 31)) (-4050 (((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523)) 29)) (-3404 (((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523)) 27))) +(((-728) (-10 -7 (-15 -3404 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -4050 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -3233 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -3768 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -1953 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3677 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -1286 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3583 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -4128 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))))) (T -728)) +((-4128 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3583 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-1286 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3677 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-1953 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3768 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3233 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-4050 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3404 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523))))) +(-10 -7 (-15 -3404 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -4050 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -3233 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -3768 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -1953 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3677 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -1286 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3583 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -4128 ((-2 (|:| -3370 (-355)) (|:| -3460 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)))) +((-4029 (((-1119 |#1|) |#1| (-203) (-523)) 45))) +(((-729 |#1|) (-10 -7 (-15 -4029 ((-1119 |#1|) |#1| (-203) (-523)))) (-903)) (T -729)) +((-4029 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-203)) (-5 *5 (-523)) (-5 *2 (-1119 *3)) (-5 *1 (-729 *3)) (-4 *3 (-903))))) +(-10 -7 (-15 -4029 ((-1119 |#1|) |#1| (-203) (-523)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 24)) (-3405 (((-3 $ "failed") $ $) 26)) (-4189 (($) 23 T CONST)) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1879 (($) 22 T CONST)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18)) (-4060 (($ $ $) 28) (($ $) 27)) (-4045 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21) (($ (-523) $) 29))) (((-730) (-129)) (T -730)) NIL (-13 (-734) (-21)) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-786) . T) ((-1016) . T)) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 24)) (-2518 (($) 23 T CONST)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 22 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4075 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 24)) (-4189 (($) 23 T CONST)) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1879 (($) 22 T CONST)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18)) (-4045 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21))) (((-731) (-129)) (T -731)) NIL (-13 (-733) (-23)) (((-23) . T) ((-25) . T) ((-97) . T) ((-563 (-794)) . T) ((-733) . T) ((-786) . T) ((-1016) . T)) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 24)) (-3596 (($ $ $) 27)) (-3212 (((-3 $ "failed") $ $) 26)) (-2518 (($) 23 T CONST)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 22 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4075 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 24)) (-4016 (($ $ $) 27)) (-3405 (((-3 $ "failed") $ $) 26)) (-4189 (($) 23 T CONST)) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1879 (($) 22 T CONST)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18)) (-4045 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21))) (((-732) (-129)) (T -732)) -((-3596 (*1 *1 *1 *1) (-4 *1 (-732)))) -(-13 (-734) (-10 -8 (-15 -3596 ($ $ $)))) +((-4016 (*1 *1 *1 *1) (-4 *1 (-732)))) +(-13 (-734) (-10 -8 (-15 -4016 ($ $ $)))) (((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-786) . T) ((-1016) . T)) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 24)) (-2518 (($) 23 T CONST)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 22 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4075 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 24)) (-4189 (($) 23 T CONST)) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1879 (($) 22 T CONST)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18)) (-4045 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21))) (((-733) (-129)) (T -733)) NIL (-13 (-786) (-23)) (((-23) . T) ((-25) . T) ((-97) . T) ((-563 (-794)) . T) ((-786) . T) ((-1016) . T)) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 24)) (-3212 (((-3 $ "failed") $ $) 26)) (-2518 (($) 23 T CONST)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 22 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4075 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 24)) (-3405 (((-3 $ "failed") $ $) 26)) (-4189 (($) 23 T CONST)) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1879 (($) 22 T CONST)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18)) (-4045 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21))) (((-734) (-129)) (T -734)) NIL (-13 (-731) (-124)) (((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-731) . T) ((-733) . T) ((-786) . T) ((-1016) . T)) -((-2295 (((-108) $) 41)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3474 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#2| $) 42)) (-3346 (((-3 (-383 (-523)) "failed") $) 78)) (-1292 (((-108) $) 72)) (-2146 (((-383 (-523)) $) 76)) (-3892 ((|#2| $) 26)) (-3612 (($ (-1 |#2| |#2|) $) 23)) (-3738 (($ $) 61)) (-3663 (((-499) $) 67)) (-3208 (($ $) 21)) (-1458 (((-794) $) 56) (($ (-523)) 39) (($ |#2|) 37) (($ (-383 (-523))) NIL)) (-1621 (((-710)) 10)) (-2619 ((|#2| $) 71)) (-3983 (((-108) $ $) 29)) (-4007 (((-108) $ $) 69)) (-4087 (($ $) 31) (($ $ $) NIL)) (-4075 (($ $ $) 30)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-735 |#1| |#2|) (-10 -8 (-15 -4007 ((-108) |#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -2619 (|#2| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -1458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 -2295 ((-108) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-736 |#2|) (-158)) (T -735)) -((-1621 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-735 *3 *4)) (-4 *3 (-736 *4))))) -(-10 -8 (-15 -4007 ((-108) |#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -2619 (|#2| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -1458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 -2295 ((-108) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-1703 (((-710)) 53 (|has| |#1| (-344)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 94 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 92 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 90)) (-3474 (((-523) $) 95 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 93 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 89)) (-2121 (((-3 $ "failed") $) 34)) (-1842 ((|#1| $) 79)) (-3346 (((-3 (-383 (-523)) "failed") $) 66 (|has| |#1| (-508)))) (-1292 (((-108) $) 68 (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) 67 (|has| |#1| (-508)))) (-4032 (($) 56 (|has| |#1| (-344)))) (-2023 (((-108) $) 31)) (-2853 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-3892 ((|#1| $) 71)) (-2454 (($ $ $) 62 (|has| |#1| (-786)))) (-2062 (($ $ $) 61 (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) 81)) (-2072 (((-852) $) 55 (|has| |#1| (-344)))) (-3779 (((-1070) $) 9)) (-3738 (($ $) 65 (|has| |#1| (-339)))) (-3878 (($ (-852)) 54 (|has| |#1| (-344)))) (-3938 ((|#1| $) 76)) (-3615 ((|#1| $) 77)) (-2410 ((|#1| $) 78)) (-1401 ((|#1| $) 72)) (-3972 ((|#1| $) 73)) (-1605 ((|#1| $) 74)) (-3362 ((|#1| $) 75)) (-2783 (((-1034) $) 10)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) 87 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 85 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 84 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 83 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) 82 (|has| |#1| (-484 (-1087) |#1|)))) (-3223 (($ $ |#1|) 88 (|has| |#1| (-263 |#1| |#1|)))) (-3663 (((-499) $) 63 (|has| |#1| (-564 (-499))))) (-3208 (($ $) 80)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37) (($ (-383 (-523))) 91 (|has| |#1| (-964 (-383 (-523)))))) (-3901 (((-3 $ "failed") $) 64 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-2619 ((|#1| $) 69 (|has| |#1| (-982)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 59 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 58 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 60 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 57 (|has| |#1| (-786)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +((-2603 (((-108) $) 41)) (-1220 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3508 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#2| $) 42)) (-3317 (((-3 (-383 (-523)) "failed") $) 78)) (-3045 (((-108) $) 72)) (-1682 (((-383 (-523)) $) 76)) (-1863 ((|#2| $) 26)) (-1345 (($ (-1 |#2| |#2|) $) 23)) (-1396 (($ $) 61)) (-1400 (((-499) $) 67)) (-3361 (($ $) 21)) (-1691 (((-794) $) 56) (($ (-523)) 39) (($ |#2|) 37) (($ (-383 (-523))) NIL)) (-3272 (((-710)) 10)) (-2695 ((|#2| $) 71)) (-3941 (((-108) $ $) 29)) (-3966 (((-108) $ $) 69)) (-4060 (($ $) 31) (($ $ $) NIL)) (-4045 (($ $ $) 30)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-735 |#1| |#2|) (-10 -8 (-15 -3966 ((-108) |#1| |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -1396 (|#1| |#1|)) (-15 -3317 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1682 ((-383 (-523)) |#1|)) (-15 -3045 ((-108) |#1|)) (-15 -2695 (|#2| |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3361 (|#1| |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1691 (|#1| (-523))) (-15 -3272 ((-710))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 -2603 ((-108) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|))) (-736 |#2|) (-158)) (T -735)) +((-3272 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-735 *3 *4)) (-4 *3 (-736 *4))))) +(-10 -8 (-15 -3966 ((-108) |#1| |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -1396 (|#1| |#1|)) (-15 -3317 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1682 ((-383 (-523)) |#1|)) (-15 -3045 ((-108) |#1|)) (-15 -2695 (|#2| |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3361 (|#1| |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1691 (|#1| (-523))) (-15 -3272 ((-710))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 -2603 ((-108) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-2395 (((-710)) 53 (|has| |#1| (-344)))) (-4189 (($) 17 T CONST)) (-1220 (((-3 (-523) "failed") $) 94 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 92 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 90)) (-3508 (((-523) $) 95 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 93 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 89)) (-1444 (((-3 $ "failed") $) 34)) (-2448 ((|#1| $) 79)) (-3317 (((-3 (-383 (-523)) "failed") $) 66 (|has| |#1| (-508)))) (-3045 (((-108) $) 68 (|has| |#1| (-508)))) (-1682 (((-383 (-523)) $) 67 (|has| |#1| (-508)))) (-1631 (($) 56 (|has| |#1| (-344)))) (-2769 (((-108) $) 31)) (-1304 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-1863 ((|#1| $) 71)) (-3239 (($ $ $) 62 (|has| |#1| (-786)))) (-3158 (($ $ $) 61 (|has| |#1| (-786)))) (-1345 (($ (-1 |#1| |#1|) $) 81)) (-2060 (((-852) $) 55 (|has| |#1| (-344)))) (-2032 (((-1070) $) 9)) (-1396 (($ $) 65 (|has| |#1| (-339)))) (-4013 (($ (-852)) 54 (|has| |#1| (-344)))) (-4124 ((|#1| $) 76)) (-1207 ((|#1| $) 77)) (-2516 ((|#1| $) 78)) (-2929 ((|#1| $) 72)) (-3195 ((|#1| $) 73)) (-3115 ((|#1| $) 74)) (-3462 ((|#1| $) 75)) (-3951 (((-1034) $) 10)) (-2812 (($ $ (-589 |#1|) (-589 |#1|)) 87 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 85 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 84 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 83 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) 82 (|has| |#1| (-484 (-1087) |#1|)))) (-1937 (($ $ |#1|) 88 (|has| |#1| (-263 |#1| |#1|)))) (-1400 (((-499) $) 63 (|has| |#1| (-564 (-499))))) (-3361 (($ $) 80)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37) (($ (-383 (-523))) 91 (|has| |#1| (-964 (-383 (-523)))))) (-1942 (((-3 $ "failed") $) 64 (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-2695 ((|#1| $) 69 (|has| |#1| (-982)))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-4006 (((-108) $ $) 59 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 58 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 60 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 57 (|has| |#1| (-786)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) (((-736 |#1|) (-129) (-158)) (T -736)) -((-3208 (*1 *1 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-2853 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523))))) (-3346 (*1 *2 *1) (|partial| -12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523))))) (-3738 (*1 *1 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)) (-4 *2 (-339))))) -(-13 (-37 |t#1|) (-387 |t#1|) (-314 |t#1|) (-10 -8 (-15 -3208 ($ $)) (-15 -1842 (|t#1| $)) (-15 -2410 (|t#1| $)) (-15 -3615 (|t#1| $)) (-15 -3938 (|t#1| $)) (-15 -3362 (|t#1| $)) (-15 -1605 (|t#1| $)) (-15 -3972 (|t#1| $)) (-15 -1401 (|t#1| $)) (-15 -3892 (|t#1| $)) (-15 -2853 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-982)) (-15 -2619 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-339)) (-15 -3738 ($ $)) |%noBranch|))) +((-3361 (*1 *1 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3195 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-1304 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) (-1682 (*1 *2 *1) (-12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523))))) (-3317 (*1 *2 *1) (|partial| -12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523))))) (-1396 (*1 *1 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)) (-4 *2 (-339))))) +(-13 (-37 |t#1|) (-387 |t#1|) (-314 |t#1|) (-10 -8 (-15 -3361 ($ $)) (-15 -2448 (|t#1| $)) (-15 -2516 (|t#1| $)) (-15 -1207 (|t#1| $)) (-15 -4124 (|t#1| $)) (-15 -3462 (|t#1| $)) (-15 -3115 (|t#1| $)) (-15 -3195 (|t#1| $)) (-15 -2929 (|t#1| $)) (-15 -1863 (|t#1| $)) (-15 -1304 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-982)) (-15 -2695 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -3045 ((-108) $)) (-15 -1682 ((-383 (-523)) $)) (-15 -3317 ((-3 (-383 (-523)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-339)) (-15 -1396 ($ $)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-344) |has| |#1| (-344)) ((-314 |#1|) . T) ((-387 |#1|) . T) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|)) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) . T) ((-666) . T) ((-786) |has| |#1| (-786)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3612 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#3| (-1 |#4| |#2|) |#1|))) (-736 |#2|) (-158) (-736 |#4|) (-158)) (T -737)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) (-4 *2 (-736 *6)) (-5 *1 (-737 *4 *5 *2 *6)) (-4 *4 (-736 *5))))) -(-10 -7 (-15 -3612 (|#3| (-1 |#4| |#2|) |#1|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-927 |#1|) "failed") $) 35) (((-3 (-523) "failed") $) NIL (-3262 (|has| (-927 |#1|) (-964 (-523))) (|has| |#1| (-964 (-523))))) (((-3 (-383 (-523)) "failed") $) NIL (-3262 (|has| (-927 |#1|) (-964 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3474 ((|#1| $) NIL) (((-927 |#1|) $) 33) (((-523) $) NIL (-3262 (|has| (-927 |#1|) (-964 (-523))) (|has| |#1| (-964 (-523))))) (((-383 (-523)) $) NIL (-3262 (|has| (-927 |#1|) (-964 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-2121 (((-3 $ "failed") $) NIL)) (-1842 ((|#1| $) 16)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-508)))) (-1292 (((-108) $) NIL (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) NIL (|has| |#1| (-508)))) (-4032 (($) NIL (|has| |#1| (-344)))) (-2023 (((-108) $) NIL)) (-2853 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-927 |#1|) (-927 |#1|)) 29)) (-3892 ((|#1| $) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-3938 ((|#1| $) 22)) (-3615 ((|#1| $) 20)) (-2410 ((|#1| $) 18)) (-1401 ((|#1| $) 26)) (-3972 ((|#1| $) 25)) (-1605 ((|#1| $) 24)) (-3362 ((|#1| $) 23)) (-2783 (((-1034) $) NIL)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|)))) (-3223 (($ $ |#1|) NIL (|has| |#1| (-263 |#1| |#1|)))) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-3208 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-927 |#1|)) 30) (($ (-383 (-523))) NIL (-3262 (|has| (-927 |#1|) (-964 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-2619 ((|#1| $) NIL (|has| |#1| (-982)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 8 T CONST)) (-2767 (($) 12 T CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-738 |#1|) (-13 (-736 |#1|) (-387 (-927 |#1|)) (-10 -8 (-15 -2853 ($ (-927 |#1|) (-927 |#1|))))) (-158)) (T -738)) -((-2853 (*1 *1 *2 *2) (-12 (-5 *2 (-927 *3)) (-4 *3 (-158)) (-5 *1 (-738 *3))))) -(-13 (-736 |#1|) (-387 (-927 |#1|)) (-10 -8 (-15 -2853 ($ (-927 |#1|) (-927 |#1|))))) -((-3924 (((-108) $ $) 7)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3098 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 13)) (-3983 (((-108) $ $) 6))) +((-1345 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1345 (|#3| (-1 |#4| |#2|) |#1|))) (-736 |#2|) (-158) (-736 |#4|) (-158)) (T -737)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) (-4 *2 (-736 *6)) (-5 *1 (-737 *4 *5 *2 *6)) (-4 *4 (-736 *5))))) +(-10 -7 (-15 -1345 (|#3| (-1 |#4| |#2|) |#1|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2395 (((-710)) NIL (|has| |#1| (-344)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL) (((-3 (-927 |#1|) "failed") $) 35) (((-3 (-523) "failed") $) NIL (-3172 (|has| (-927 |#1|) (-964 (-523))) (|has| |#1| (-964 (-523))))) (((-3 (-383 (-523)) "failed") $) NIL (-3172 (|has| (-927 |#1|) (-964 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3508 ((|#1| $) NIL) (((-927 |#1|) $) 33) (((-523) $) NIL (-3172 (|has| (-927 |#1|) (-964 (-523))) (|has| |#1| (-964 (-523))))) (((-383 (-523)) $) NIL (-3172 (|has| (-927 |#1|) (-964 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-1444 (((-3 $ "failed") $) NIL)) (-2448 ((|#1| $) 16)) (-3317 (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-508)))) (-3045 (((-108) $) NIL (|has| |#1| (-508)))) (-1682 (((-383 (-523)) $) NIL (|has| |#1| (-508)))) (-1631 (($) NIL (|has| |#1| (-344)))) (-2769 (((-108) $) NIL)) (-1304 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-927 |#1|) (-927 |#1|)) 29)) (-1863 ((|#1| $) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-2060 (((-852) $) NIL (|has| |#1| (-344)))) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-339)))) (-4013 (($ (-852)) NIL (|has| |#1| (-344)))) (-4124 ((|#1| $) 22)) (-1207 ((|#1| $) 20)) (-2516 ((|#1| $) 18)) (-2929 ((|#1| $) 26)) (-3195 ((|#1| $) 25)) (-3115 ((|#1| $) 24)) (-3462 ((|#1| $) 23)) (-3951 (((-1034) $) NIL)) (-2812 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|)))) (-1937 (($ $ |#1|) NIL (|has| |#1| (-263 |#1| |#1|)))) (-1400 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-3361 (($ $) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-927 |#1|)) 30) (($ (-383 (-523))) NIL (-3172 (|has| (-927 |#1|) (-964 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-2695 ((|#1| $) NIL (|has| |#1| (-982)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 8 T CONST)) (-1891 (($) 12 T CONST)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-738 |#1|) (-13 (-736 |#1|) (-387 (-927 |#1|)) (-10 -8 (-15 -1304 ($ (-927 |#1|) (-927 |#1|))))) (-158)) (T -738)) +((-1304 (*1 *1 *2 *2) (-12 (-5 *2 (-927 *3)) (-4 *3 (-158)) (-5 *1 (-738 *3))))) +(-13 (-736 |#1|) (-387 (-927 |#1|)) (-10 -8 (-15 -1304 ($ (-927 |#1|) (-927 |#1|))))) +((-1680 (((-108) $ $) 7)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1791 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 13)) (-3941 (((-108) $ $) 6))) (((-739) (-129)) (T -739)) -((-1228 (*1 *2 *3 *4) (-12 (-4 *1 (-739)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) (-3098 (*1 *2 *3) (-12 (-4 *1 (-739)) (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-962))))) -(-13 (-1016) (-10 -7 (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3098 ((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) +((-1796 (*1 *2 *3 *4) (-12 (-4 *1 (-739)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)))))) (-1791 (*1 *2 *3) (-12 (-4 *1 (-739)) (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-962))))) +(-13 (-1016) (-10 -7 (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1791 ((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-2067 (((-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#3| |#2| (-1087)) 19))) -(((-740 |#1| |#2| |#3|) (-10 -7 (-15 -2067 ((-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#3| |#2| (-1087)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1108) (-889)) (-599 |#2|)) (T -740)) -((-2067 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1087)) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-4 *4 (-13 (-29 *6) (-1108) (-889))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4041 (-589 *4)))) (-5 *1 (-740 *6 *4 *3)) (-4 *3 (-599 *4))))) -(-10 -7 (-15 -2067 ((-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#3| |#2| (-1087)))) -((-1940 (((-3 |#2| "failed") |#2| (-110) (-271 |#2|) (-589 |#2|)) 26) (((-3 |#2| "failed") (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#2| "failed") |#2| (-110) (-1087)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#2| "failed") (-271 |#2|) (-110) (-1087)) 17) (((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-589 |#2|) (-589 (-110)) (-1087)) 22) (((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-589 (-271 |#2|)) (-589 (-110)) (-1087)) 24) (((-3 (-589 (-1168 |#2|)) "failed") (-629 |#2|) (-1087)) 36) (((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-629 |#2|) (-1168 |#2|) (-1087)) 34))) -(((-741 |#1| |#2|) (-10 -7 (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-629 |#2|) (-1168 |#2|) (-1087))) (-15 -1940 ((-3 (-589 (-1168 |#2|)) "failed") (-629 |#2|) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-589 (-271 |#2|)) (-589 (-110)) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-589 |#2|) (-589 (-110)) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#2| "failed") (-271 |#2|) (-110) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#2| "failed") |#2| (-110) (-1087))) (-15 -1940 ((-3 |#2| "failed") (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|))) (-15 -1940 ((-3 |#2| "failed") |#2| (-110) (-271 |#2|) (-589 |#2|)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1108) (-889))) (T -741)) -((-1940 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-271 *2)) (-5 *5 (-589 *2)) (-4 *2 (-13 (-29 *6) (-1108) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-741 *6 *2)))) (-1940 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-271 *2)) (-5 *4 (-110)) (-5 *5 (-589 *2)) (-4 *2 (-13 (-29 *6) (-1108) (-889))) (-5 *1 (-741 *6 *2)) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))))) (-1940 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1087)) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4041 (-589 *3))) *3 "failed")) (-5 *1 (-741 *6 *3)) (-4 *3 (-13 (-29 *6) (-1108) (-889))))) (-1940 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-271 *7)) (-5 *4 (-110)) (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1108) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4041 (-589 *7))) *7 "failed")) (-5 *1 (-741 *6 *7)))) (-1940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-589 *7)) (-5 *4 (-589 (-110))) (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1108) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-2 (|:| |particular| (-1168 *7)) (|:| -4041 (-589 (-1168 *7))))) (-5 *1 (-741 *6 *7)))) (-1940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-589 (-271 *7))) (-5 *4 (-589 (-110))) (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1108) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-2 (|:| |particular| (-1168 *7)) (|:| -4041 (-589 (-1168 *7))))) (-5 *1 (-741 *6 *7)))) (-1940 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-629 *6)) (-5 *4 (-1087)) (-4 *6 (-13 (-29 *5) (-1108) (-889))) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-1168 *6))) (-5 *1 (-741 *5 *6)))) (-1940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-629 *7)) (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1108) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-2 (|:| |particular| (-1168 *7)) (|:| -4041 (-589 (-1168 *7))))) (-5 *1 (-741 *6 *7)) (-5 *4 (-1168 *7))))) -(-10 -7 (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-629 |#2|) (-1168 |#2|) (-1087))) (-15 -1940 ((-3 (-589 (-1168 |#2|)) "failed") (-629 |#2|) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-589 (-271 |#2|)) (-589 (-110)) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-589 |#2|) (-589 (-110)) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#2| "failed") (-271 |#2|) (-110) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#2| "failed") |#2| (-110) (-1087))) (-15 -1940 ((-3 |#2| "failed") (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|))) (-15 -1940 ((-3 |#2| "failed") |#2| (-110) (-271 |#2|) (-589 |#2|)))) -((-3268 (($) 9)) (-1342 (((-3 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))) "failed") (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 26)) (-1330 (((-589 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $) 23)) (-3450 (($ (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))))) 20)) (-3736 (($ (-589 (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))))) 18)) (-3337 (((-1173)) 12))) -(((-742) (-10 -8 (-15 -3268 ($)) (-15 -3337 ((-1173))) (-15 -1330 ((-589 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $)) (-15 -3736 ($ (-589 (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))))))) (-15 -3450 ($ (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))))) (-15 -1342 ((-3 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))) "failed") (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (T -742)) -((-1342 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))) (-5 *1 (-742)))) (-3450 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))))) (-5 *1 (-742)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))))) (-5 *1 (-742)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-5 *1 (-742)))) (-3337 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-742)))) (-3268 (*1 *1) (-5 *1 (-742)))) -(-10 -8 (-15 -3268 ($)) (-15 -3337 ((-1173))) (-15 -1330 ((-589 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $)) (-15 -3736 ($ (-589 (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))))))) (-15 -3450 ($ (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))))) (-15 -1342 ((-3 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))) "failed") (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) -((-1464 ((|#2| |#2| (-1087)) 15)) (-2375 ((|#2| |#2| (-1087)) 47)) (-4168 (((-1 |#2| |#2|) (-1087)) 11))) -(((-743 |#1| |#2|) (-10 -7 (-15 -1464 (|#2| |#2| (-1087))) (-15 -2375 (|#2| |#2| (-1087))) (-15 -4168 ((-1 |#2| |#2|) (-1087)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1108) (-889))) (T -743)) -((-4168 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-1 *5 *5)) (-5 *1 (-743 *4 *5)) (-4 *5 (-13 (-29 *4) (-1108) (-889))))) (-2375 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-743 *4 *2)) (-4 *2 (-13 (-29 *4) (-1108) (-889))))) (-1464 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-743 *4 *2)) (-4 *2 (-13 (-29 *4) (-1108) (-889)))))) -(-10 -7 (-15 -1464 (|#2| |#2| (-1087))) (-15 -2375 (|#2| |#2| (-1087))) (-15 -4168 ((-1 |#2| |#2|) (-1087)))) -((-1940 (((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355) (-355)) 114) (((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355)) 115) (((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-589 (-355)) (-355)) 117) (((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-355)) 118) (((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-355)) 119) (((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355))) 120) (((-962) (-747) (-985)) 105) (((-962) (-747)) 106)) (-1228 (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747) (-985)) 71) (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747)) 73))) -(((-744) (-10 -7 (-15 -1940 ((-962) (-747))) (-15 -1940 ((-962) (-747) (-985))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-589 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355) (-355))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747) (-985))))) (T -744)) -((-1228 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-985)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-744)))) (-1228 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1168 (-292 *4))) (-5 *5 (-589 (-355))) (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1168 (-292 *4))) (-5 *5 (-589 (-355))) (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1168 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1168 (-292 *4))) (-5 *5 (-589 (-355))) (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1168 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1168 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-962)) (-5 *1 (-744))))) -(-10 -7 (-15 -1940 ((-962) (-747))) (-15 -1940 ((-962) (-747) (-985))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-589 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355) (-355))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747) (-985)))) -((-3725 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4041 (-589 |#4|))) (-596 |#4|) |#4|) 32))) -(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3725 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4041 (-589 |#4|))) (-596 |#4|) |#4|))) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -745)) -((-3725 (*1 *2 *3 *4) (-12 (-5 *3 (-596 *4)) (-4 *4 (-318 *5 *6 *7)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-745 *5 *6 *7 *4))))) -(-10 -7 (-15 -3725 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4041 (-589 |#4|))) (-596 |#4|) |#4|))) -((-1199 (((-2 (|:| -1710 |#3|) (|:| |rh| (-589 (-383 |#2|)))) |#4| (-589 (-383 |#2|))) 52)) (-3285 (((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#4| |#2|) 60) (((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#4|) 59) (((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#3| |#2|) 20) (((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#3|) 21)) (-2530 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-1455 ((|#2| |#3| (-589 (-383 |#2|))) 94) (((-3 |#2| "failed") |#3| (-383 |#2|)) 91))) -(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1455 ((-3 |#2| "failed") |#3| (-383 |#2|))) (-15 -1455 (|#2| |#3| (-589 (-383 |#2|)))) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#3|)) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#3| |#2|)) (-15 -2530 (|#2| |#3| |#1|)) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#4|)) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#4| |#2|)) (-15 -2530 (|#2| |#4| |#1|)) (-15 -1199 ((-2 (|:| -1710 |#3|) (|:| |rh| (-589 (-383 |#2|)))) |#4| (-589 (-383 |#2|))))) (-13 (-339) (-136) (-964 (-383 (-523)))) (-1144 |#1|) (-599 |#2|) (-599 (-383 |#2|))) (T -746)) -((-1199 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-2 (|:| -1710 *7) (|:| |rh| (-589 (-383 *6))))) (-5 *1 (-746 *5 *6 *7 *3)) (-5 *4 (-589 (-383 *6))) (-4 *7 (-599 *6)) (-4 *3 (-599 (-383 *6))))) (-2530 (*1 *2 *3 *4) (-12 (-4 *2 (-1144 *4)) (-5 *1 (-746 *4 *2 *5 *3)) (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-599 *2)) (-4 *3 (-599 (-383 *2))))) (-3285 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *4 (-1144 *5)) (-5 *2 (-589 (-2 (|:| -1288 *4) (|:| -1915 *4)))) (-5 *1 (-746 *5 *4 *6 *3)) (-4 *6 (-599 *4)) (-4 *3 (-599 (-383 *4))))) (-3285 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *2 (-589 (-2 (|:| -1288 *5) (|:| -1915 *5)))) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *6 (-599 *5)) (-4 *3 (-599 (-383 *5))))) (-2530 (*1 *2 *3 *4) (-12 (-4 *2 (-1144 *4)) (-5 *1 (-746 *4 *2 *3 *5)) (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) (-4 *5 (-599 (-383 *2))))) (-3285 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *4 (-1144 *5)) (-5 *2 (-589 (-2 (|:| -1288 *4) (|:| -1915 *4)))) (-5 *1 (-746 *5 *4 *3 *6)) (-4 *3 (-599 *4)) (-4 *6 (-599 (-383 *4))))) (-3285 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *2 (-589 (-2 (|:| -1288 *5) (|:| -1915 *5)))) (-5 *1 (-746 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-599 (-383 *5))))) (-1455 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-383 *2))) (-4 *2 (-1144 *5)) (-5 *1 (-746 *5 *2 *3 *6)) (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) (-4 *6 (-599 (-383 *2))))) (-1455 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-383 *2)) (-4 *2 (-1144 *5)) (-5 *1 (-746 *5 *2 *3 *6)) (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) (-4 *6 (-599 *4))))) -(-10 -7 (-15 -1455 ((-3 |#2| "failed") |#3| (-383 |#2|))) (-15 -1455 (|#2| |#3| (-589 (-383 |#2|)))) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#3|)) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#3| |#2|)) (-15 -2530 (|#2| |#3| |#1|)) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#4|)) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#4| |#2|)) (-15 -2530 (|#2| |#4| |#1|)) (-15 -1199 ((-2 (|:| -1710 |#3|) (|:| |rh| (-589 (-383 |#2|)))) |#4| (-589 (-383 |#2|))))) -((-3924 (((-108) $ $) NIL)) (-3474 (((-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) $) 9)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 11) (($ (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 8)) (-3983 (((-108) $ $) NIL))) -(((-747) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) $))))) (T -747)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-747)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-747)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-747))))) -(-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) $)))) -((-1334 (((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -1710 |#3|))) |#3| (-1 (-589 |#2|) |#2| (-1083 |#2|)) (-1 (-394 |#2|) |#2|)) 117)) (-1471 (((-589 (-2 (|:| |poly| |#2|) (|:| -1710 |#3|))) |#3| (-1 (-589 |#1|) |#2|)) 45)) (-2666 (((-589 (-2 (|:| |deg| (-710)) (|:| -1710 |#2|))) |#3|) 94)) (-2478 ((|#2| |#3|) 37)) (-4205 (((-589 (-2 (|:| -3059 |#1|) (|:| -1710 |#3|))) |#3| (-1 (-589 |#1|) |#2|)) 81)) (-2690 ((|#3| |#3| (-383 |#2|)) 62) ((|#3| |#3| |#2|) 78))) -(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2478 (|#2| |#3|)) (-15 -2666 ((-589 (-2 (|:| |deg| (-710)) (|:| -1710 |#2|))) |#3|)) (-15 -4205 ((-589 (-2 (|:| -3059 |#1|) (|:| -1710 |#3|))) |#3| (-1 (-589 |#1|) |#2|))) (-15 -1471 ((-589 (-2 (|:| |poly| |#2|) (|:| -1710 |#3|))) |#3| (-1 (-589 |#1|) |#2|))) (-15 -1334 ((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -1710 |#3|))) |#3| (-1 (-589 |#2|) |#2| (-1083 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -2690 (|#3| |#3| |#2|)) (-15 -2690 (|#3| |#3| (-383 |#2|)))) (-13 (-339) (-136) (-964 (-383 (-523)))) (-1144 |#1|) (-599 |#2|) (-599 (-383 |#2|))) (T -748)) -((-2690 (*1 *2 *2 *3) (-12 (-5 *3 (-383 *5)) (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *1 (-748 *4 *5 *2 *6)) (-4 *2 (-599 *5)) (-4 *6 (-599 *3)))) (-2690 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-1144 *4)) (-5 *1 (-748 *4 *3 *2 *5)) (-4 *2 (-599 *3)) (-4 *5 (-599 (-383 *3))))) (-1334 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-589 *7) *7 (-1083 *7))) (-5 *5 (-1 (-394 *7) *7)) (-4 *7 (-1144 *6)) (-4 *6 (-13 (-339) (-136) (-964 (-383 (-523))))) (-5 *2 (-589 (-2 (|:| |frac| (-383 *7)) (|:| -1710 *3)))) (-5 *1 (-748 *6 *7 *3 *8)) (-4 *3 (-599 *7)) (-4 *8 (-599 (-383 *7))))) (-1471 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-2 (|:| |poly| *6) (|:| -1710 *3)))) (-5 *1 (-748 *5 *6 *3 *7)) (-4 *3 (-599 *6)) (-4 *7 (-599 (-383 *6))))) (-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-2 (|:| -3059 *5) (|:| -1710 *3)))) (-5 *1 (-748 *5 *6 *3 *7)) (-4 *3 (-599 *6)) (-4 *7 (-599 (-383 *6))))) (-2666 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *2 (-589 (-2 (|:| |deg| (-710)) (|:| -1710 *5)))) (-5 *1 (-748 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-599 (-383 *5))))) (-2478 (*1 *2 *3) (-12 (-4 *2 (-1144 *4)) (-5 *1 (-748 *4 *2 *3 *5)) (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) (-4 *5 (-599 (-383 *2)))))) -(-10 -7 (-15 -2478 (|#2| |#3|)) (-15 -2666 ((-589 (-2 (|:| |deg| (-710)) (|:| -1710 |#2|))) |#3|)) (-15 -4205 ((-589 (-2 (|:| -3059 |#1|) (|:| -1710 |#3|))) |#3| (-1 (-589 |#1|) |#2|))) (-15 -1471 ((-589 (-2 (|:| |poly| |#2|) (|:| -1710 |#3|))) |#3| (-1 (-589 |#1|) |#2|))) (-15 -1334 ((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -1710 |#3|))) |#3| (-1 (-589 |#2|) |#2| (-1083 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -2690 (|#3| |#3| |#2|)) (-15 -2690 (|#3| |#3| (-383 |#2|)))) -((-2698 (((-2 (|:| -4041 (-589 (-383 |#2|))) (|:| -3392 (-629 |#1|))) (-597 |#2| (-383 |#2|)) (-589 (-383 |#2|))) 118) (((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -4041 (-589 (-383 |#2|)))) (-597 |#2| (-383 |#2|)) (-383 |#2|)) 117) (((-2 (|:| -4041 (-589 (-383 |#2|))) (|:| -3392 (-629 |#1|))) (-596 (-383 |#2|)) (-589 (-383 |#2|))) 112) (((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -4041 (-589 (-383 |#2|)))) (-596 (-383 |#2|)) (-383 |#2|)) 110)) (-4157 ((|#2| (-597 |#2| (-383 |#2|))) 77) ((|#2| (-596 (-383 |#2|))) 81))) -(((-749 |#1| |#2|) (-10 -7 (-15 -2698 ((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -4041 (-589 (-383 |#2|)))) (-596 (-383 |#2|)) (-383 |#2|))) (-15 -2698 ((-2 (|:| -4041 (-589 (-383 |#2|))) (|:| -3392 (-629 |#1|))) (-596 (-383 |#2|)) (-589 (-383 |#2|)))) (-15 -2698 ((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -4041 (-589 (-383 |#2|)))) (-597 |#2| (-383 |#2|)) (-383 |#2|))) (-15 -2698 ((-2 (|:| -4041 (-589 (-383 |#2|))) (|:| -3392 (-629 |#1|))) (-597 |#2| (-383 |#2|)) (-589 (-383 |#2|)))) (-15 -4157 (|#2| (-596 (-383 |#2|)))) (-15 -4157 (|#2| (-597 |#2| (-383 |#2|))))) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))) (-1144 |#1|)) (T -749)) -((-4157 (*1 *2 *3) (-12 (-5 *3 (-597 *2 (-383 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-749 *4 *2)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-596 (-383 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-749 *4 *2)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-383 *6))) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-2 (|:| -4041 (-589 (-383 *6))) (|:| -3392 (-629 *5)))) (-5 *1 (-749 *5 *6)) (-5 *4 (-589 (-383 *6))))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-383 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-749 *5 *6)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-383 *6))) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-2 (|:| -4041 (-589 (-383 *6))) (|:| -3392 (-629 *5)))) (-5 *1 (-749 *5 *6)) (-5 *4 (-589 (-383 *6))))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-383 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-749 *5 *6))))) -(-10 -7 (-15 -2698 ((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -4041 (-589 (-383 |#2|)))) (-596 (-383 |#2|)) (-383 |#2|))) (-15 -2698 ((-2 (|:| -4041 (-589 (-383 |#2|))) (|:| -3392 (-629 |#1|))) (-596 (-383 |#2|)) (-589 (-383 |#2|)))) (-15 -2698 ((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -4041 (-589 (-383 |#2|)))) (-597 |#2| (-383 |#2|)) (-383 |#2|))) (-15 -2698 ((-2 (|:| -4041 (-589 (-383 |#2|))) (|:| -3392 (-629 |#1|))) (-597 |#2| (-383 |#2|)) (-589 (-383 |#2|)))) (-15 -4157 (|#2| (-596 (-383 |#2|)))) (-15 -4157 (|#2| (-597 |#2| (-383 |#2|))))) -((-1377 (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#1|))) |#5| |#4|) 47))) -(((-750 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1377 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#1|))) |#5| |#4|))) (-339) (-599 |#1|) (-1144 |#1|) (-664 |#1| |#3|) (-599 |#4|)) (T -750)) -((-1377 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *7 (-1144 *5)) (-4 *4 (-664 *5 *7)) (-5 *2 (-2 (|:| -3392 (-629 *6)) (|:| |vec| (-1168 *5)))) (-5 *1 (-750 *5 *6 *7 *4 *3)) (-4 *6 (-599 *5)) (-4 *3 (-599 *4))))) -(-10 -7 (-15 -1377 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#1|))) |#5| |#4|))) -((-1334 (((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -1710 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|)) 43)) (-3040 (((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|))) 135 (|has| |#1| (-27))) (((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-394 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-589 (-383 |#2|)) (-596 (-383 |#2|))) 137 (|has| |#1| (-27))) (((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|)) 36) (((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|)) 37) (((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|)) 34) (((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|)) 35)) (-1471 (((-589 (-2 (|:| |poly| |#2|) (|:| -1710 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|)) 81))) -(((-751 |#1| |#2|) (-10 -7 (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|))) (-15 -1334 ((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -1710 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -1471 ((-589 (-2 (|:| |poly| |#2|) (|:| -1710 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)))) (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|)))) |%noBranch|)) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))) (-1144 |#1|)) (T -751)) -((-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-597 *5 (-383 *5))) (-4 *5 (-1144 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-383 *5))) (-5 *1 (-751 *4 *5)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-596 (-383 *5))) (-4 *5 (-1144 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-383 *5))) (-5 *1 (-751 *4 *5)))) (-1471 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-2 (|:| |poly| *6) (|:| -1710 (-597 *6 (-383 *6)))))) (-5 *1 (-751 *5 *6)) (-5 *3 (-597 *6 (-383 *6))))) (-1334 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-2 (|:| |frac| (-383 *6)) (|:| -1710 (-597 *6 (-383 *6)))))) (-5 *1 (-751 *5 *6)) (-5 *3 (-597 *6 (-383 *6))))) (-3040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *7 (-383 *7))) (-5 *4 (-1 (-589 *6) *7)) (-5 *5 (-1 (-394 *7) *7)) (-4 *6 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *7 (-1144 *6)) (-5 *2 (-589 (-383 *7))) (-5 *1 (-751 *6 *7)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) (-3040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-596 (-383 *7))) (-5 *4 (-1 (-589 *6) *7)) (-5 *5 (-1 (-394 *7) *7)) (-4 *6 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *7 (-1144 *6)) (-5 *2 (-589 (-383 *7))) (-5 *1 (-751 *6 *7)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6))))) -(-10 -7 (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|))) (-15 -1334 ((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -1710 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -1471 ((-589 (-2 (|:| |poly| |#2|) (|:| -1710 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)))) (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|)))) |%noBranch|)) -((-2037 (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#1|))) (-629 |#2|) (-1168 |#1|)) 85) (((-2 (|:| A (-629 |#1|)) (|:| |eqs| (-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1168 |#1|)) (|:| -1710 |#2|) (|:| |rh| |#1|))))) (-629 |#1|) (-1168 |#1|)) 14)) (-3293 (((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-629 |#2|) (-1168 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4041 (-589 |#1|))) |#2| |#1|)) 91)) (-1940 (((-3 (-2 (|:| |particular| (-1168 |#1|)) (|:| -4041 (-629 |#1|))) "failed") (-629 |#1|) (-1168 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed") |#2| |#1|)) 44))) -(((-752 |#1| |#2|) (-10 -7 (-15 -2037 ((-2 (|:| A (-629 |#1|)) (|:| |eqs| (-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1168 |#1|)) (|:| -1710 |#2|) (|:| |rh| |#1|))))) (-629 |#1|) (-1168 |#1|))) (-15 -2037 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#1|))) (-629 |#2|) (-1168 |#1|))) (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#1|)) (|:| -4041 (-629 |#1|))) "failed") (-629 |#1|) (-1168 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed") |#2| |#1|))) (-15 -3293 ((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-629 |#2|) (-1168 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4041 (-589 |#1|))) |#2| |#1|)))) (-339) (-599 |#1|)) (T -752)) -((-3293 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4041 (-589 *6))) *7 *6)) (-4 *6 (-339)) (-4 *7 (-599 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1168 *6) "failed")) (|:| -4041 (-589 (-1168 *6))))) (-5 *1 (-752 *6 *7)) (-5 *4 (-1168 *6)))) (-1940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4041 (-589 *6))) "failed") *7 *6)) (-4 *6 (-339)) (-4 *7 (-599 *6)) (-5 *2 (-2 (|:| |particular| (-1168 *6)) (|:| -4041 (-629 *6)))) (-5 *1 (-752 *6 *7)) (-5 *3 (-629 *6)) (-5 *4 (-1168 *6)))) (-2037 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-599 *5)) (-5 *2 (-2 (|:| -3392 (-629 *6)) (|:| |vec| (-1168 *5)))) (-5 *1 (-752 *5 *6)) (-5 *3 (-629 *6)) (-5 *4 (-1168 *5)))) (-2037 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-5 *2 (-2 (|:| A (-629 *5)) (|:| |eqs| (-589 (-2 (|:| C (-629 *5)) (|:| |g| (-1168 *5)) (|:| -1710 *6) (|:| |rh| *5)))))) (-5 *1 (-752 *5 *6)) (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)) (-4 *6 (-599 *5))))) -(-10 -7 (-15 -2037 ((-2 (|:| A (-629 |#1|)) (|:| |eqs| (-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1168 |#1|)) (|:| -1710 |#2|) (|:| |rh| |#1|))))) (-629 |#1|) (-1168 |#1|))) (-15 -2037 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#1|))) (-629 |#2|) (-1168 |#1|))) (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#1|)) (|:| -4041 (-629 |#1|))) "failed") (-629 |#1|) (-1168 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed") |#2| |#1|))) (-15 -3293 ((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-629 |#2|) (-1168 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4041 (-589 |#1|))) |#2| |#1|)))) -((-3551 (((-629 |#1|) (-589 |#1|) (-710)) 13) (((-629 |#1|) (-589 |#1|)) 14)) (-2632 (((-3 (-1168 |#1|) "failed") |#2| |#1| (-589 |#1|)) 34)) (-1848 (((-3 |#1| "failed") |#2| |#1| (-589 |#1|) (-1 |#1| |#1|)) 42))) -(((-753 |#1| |#2|) (-10 -7 (-15 -3551 ((-629 |#1|) (-589 |#1|))) (-15 -3551 ((-629 |#1|) (-589 |#1|) (-710))) (-15 -2632 ((-3 (-1168 |#1|) "failed") |#2| |#1| (-589 |#1|))) (-15 -1848 ((-3 |#1| "failed") |#2| |#1| (-589 |#1|) (-1 |#1| |#1|)))) (-339) (-599 |#1|)) (T -753)) -((-1848 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-589 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-339)) (-5 *1 (-753 *2 *3)) (-4 *3 (-599 *2)))) (-2632 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-589 *4)) (-4 *4 (-339)) (-5 *2 (-1168 *4)) (-5 *1 (-753 *4 *3)) (-4 *3 (-599 *4)))) (-3551 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-710)) (-4 *5 (-339)) (-5 *2 (-629 *5)) (-5 *1 (-753 *5 *6)) (-4 *6 (-599 *5)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-339)) (-5 *2 (-629 *4)) (-5 *1 (-753 *4 *5)) (-4 *5 (-599 *4))))) -(-10 -7 (-15 -3551 ((-629 |#1|) (-589 |#1|))) (-15 -3551 ((-629 |#1|) (-589 |#1|) (-710))) (-15 -2632 ((-3 (-1168 |#1|) "failed") |#2| |#1| (-589 |#1|))) (-15 -1848 ((-3 |#1| "failed") |#2| |#1| (-589 |#1|) (-1 |#1| |#1|)))) -((-3924 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-2295 (((-108) $) NIL (|has| |#2| (-124)))) (-1890 (($ (-852)) NIL (|has| |#2| (-973)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-3596 (($ $ $) NIL (|has| |#2| (-732)))) (-3212 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| |#2| (-344)))) (-3671 (((-523) $) NIL (|has| |#2| (-784)))) (-1641 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1016)))) (-3474 (((-523) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((|#2| $) NIL (|has| |#2| (-1016)))) (-2381 (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL (|has| |#2| (-973))) (((-629 |#2|) (-629 $)) NIL (|has| |#2| (-973)))) (-2121 (((-3 $ "failed") $) NIL (|has| |#2| (-973)))) (-4032 (($) NIL (|has| |#2| (-344)))) (-2863 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ (-523)) NIL)) (-2604 (((-108) $) NIL (|has| |#2| (-784)))) (-1666 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL (|has| |#2| (-973)))) (-4114 (((-108) $) NIL (|has| |#2| (-784)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2136 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2852 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#2| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#2| (-1016)))) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-3878 (($ (-852)) NIL (|has| |#2| (-344)))) (-2783 (((-1034) $) NIL (|has| |#2| (-1016)))) (-1738 ((|#2| $) NIL (|has| (-523) (-786)))) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-523)) NIL)) (-3269 ((|#2| $ $) NIL (|has| |#2| (-973)))) (-1868 (($ (-1168 |#2|)) NIL)) (-3203 (((-126)) NIL (|has| |#2| (-339)))) (-3523 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-2792 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1168 |#2|) $) NIL) (($ (-523)) NIL (-3262 (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (|has| |#2| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (($ |#2|) NIL (|has| |#2| (-1016))) (((-794) $) NIL (|has| |#2| (-563 (-794))))) (-1621 (((-710)) NIL (|has| |#2| (-973)))) (-2096 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2619 (($ $) NIL (|has| |#2| (-784)))) (-2364 (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (-2756 (($) NIL (|has| |#2| (-124)) CONST)) (-2767 (($) NIL (|has| |#2| (-973)) CONST)) (-2862 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-4043 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3983 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-4030 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4007 (((-108) $ $) 11 (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $ $) NIL (|has| |#2| (-973))) (($ $) NIL (|has| |#2| (-973)))) (-4075 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (* (($ $ $) NIL (|has| |#2| (-973))) (($ (-523) $) NIL (|has| |#2| (-973))) (($ $ |#2|) NIL (|has| |#2| (-666))) (($ |#2| $) NIL (|has| |#2| (-666))) (($ (-710) $) NIL (|has| |#2| (-124))) (($ (-852) $) NIL (|has| |#2| (-25)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-754 |#1| |#2| |#3|) (-216 |#1| |#2|) (-710) (-732) (-1 (-108) (-1168 |#2|) (-1168 |#2|))) (T -754)) +((-2012 (((-2 (|:| |particular| |#2|) (|:| -3760 (-589 |#2|))) |#3| |#2| (-1087)) 19))) +(((-740 |#1| |#2| |#3|) (-10 -7 (-15 -2012 ((-2 (|:| |particular| |#2|) (|:| -3760 (-589 |#2|))) |#3| |#2| (-1087)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1109) (-889)) (-599 |#2|)) (T -740)) +((-2012 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1087)) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-4 *4 (-13 (-29 *6) (-1109) (-889))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3760 (-589 *4)))) (-5 *1 (-740 *6 *4 *3)) (-4 *3 (-599 *4))))) +(-10 -7 (-15 -2012 ((-2 (|:| |particular| |#2|) (|:| -3760 (-589 |#2|))) |#3| |#2| (-1087)))) +((-3112 (((-3 |#2| "failed") |#2| (-110) (-271 |#2|) (-589 |#2|)) 26) (((-3 |#2| "failed") (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -3760 (-589 |#2|))) |#2| "failed") |#2| (-110) (-1087)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -3760 (-589 |#2|))) |#2| "failed") (-271 |#2|) (-110) (-1087)) 17) (((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -3760 (-589 (-1169 |#2|)))) "failed") (-589 |#2|) (-589 (-110)) (-1087)) 22) (((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -3760 (-589 (-1169 |#2|)))) "failed") (-589 (-271 |#2|)) (-589 (-110)) (-1087)) 24) (((-3 (-589 (-1169 |#2|)) "failed") (-629 |#2|) (-1087)) 36) (((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -3760 (-589 (-1169 |#2|)))) "failed") (-629 |#2|) (-1169 |#2|) (-1087)) 34))) +(((-741 |#1| |#2|) (-10 -7 (-15 -3112 ((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -3760 (-589 (-1169 |#2|)))) "failed") (-629 |#2|) (-1169 |#2|) (-1087))) (-15 -3112 ((-3 (-589 (-1169 |#2|)) "failed") (-629 |#2|) (-1087))) (-15 -3112 ((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -3760 (-589 (-1169 |#2|)))) "failed") (-589 (-271 |#2|)) (-589 (-110)) (-1087))) (-15 -3112 ((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -3760 (-589 (-1169 |#2|)))) "failed") (-589 |#2|) (-589 (-110)) (-1087))) (-15 -3112 ((-3 (-2 (|:| |particular| |#2|) (|:| -3760 (-589 |#2|))) |#2| "failed") (-271 |#2|) (-110) (-1087))) (-15 -3112 ((-3 (-2 (|:| |particular| |#2|) (|:| -3760 (-589 |#2|))) |#2| "failed") |#2| (-110) (-1087))) (-15 -3112 ((-3 |#2| "failed") (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|))) (-15 -3112 ((-3 |#2| "failed") |#2| (-110) (-271 |#2|) (-589 |#2|)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1109) (-889))) (T -741)) +((-3112 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-271 *2)) (-5 *5 (-589 *2)) (-4 *2 (-13 (-29 *6) (-1109) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-741 *6 *2)))) (-3112 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-271 *2)) (-5 *4 (-110)) (-5 *5 (-589 *2)) (-4 *2 (-13 (-29 *6) (-1109) (-889))) (-5 *1 (-741 *6 *2)) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))))) (-3112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1087)) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3760 (-589 *3))) *3 "failed")) (-5 *1 (-741 *6 *3)) (-4 *3 (-13 (-29 *6) (-1109) (-889))))) (-3112 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-271 *7)) (-5 *4 (-110)) (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1109) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3760 (-589 *7))) *7 "failed")) (-5 *1 (-741 *6 *7)))) (-3112 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-589 *7)) (-5 *4 (-589 (-110))) (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1109) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-2 (|:| |particular| (-1169 *7)) (|:| -3760 (-589 (-1169 *7))))) (-5 *1 (-741 *6 *7)))) (-3112 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-589 (-271 *7))) (-5 *4 (-589 (-110))) (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1109) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-2 (|:| |particular| (-1169 *7)) (|:| -3760 (-589 (-1169 *7))))) (-5 *1 (-741 *6 *7)))) (-3112 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-629 *6)) (-5 *4 (-1087)) (-4 *6 (-13 (-29 *5) (-1109) (-889))) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-1169 *6))) (-5 *1 (-741 *5 *6)))) (-3112 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-629 *7)) (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1109) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-2 (|:| |particular| (-1169 *7)) (|:| -3760 (-589 (-1169 *7))))) (-5 *1 (-741 *6 *7)) (-5 *4 (-1169 *7))))) +(-10 -7 (-15 -3112 ((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -3760 (-589 (-1169 |#2|)))) "failed") (-629 |#2|) (-1169 |#2|) (-1087))) (-15 -3112 ((-3 (-589 (-1169 |#2|)) "failed") (-629 |#2|) (-1087))) (-15 -3112 ((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -3760 (-589 (-1169 |#2|)))) "failed") (-589 (-271 |#2|)) (-589 (-110)) (-1087))) (-15 -3112 ((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -3760 (-589 (-1169 |#2|)))) "failed") (-589 |#2|) (-589 (-110)) (-1087))) (-15 -3112 ((-3 (-2 (|:| |particular| |#2|) (|:| -3760 (-589 |#2|))) |#2| "failed") (-271 |#2|) (-110) (-1087))) (-15 -3112 ((-3 (-2 (|:| |particular| |#2|) (|:| -3760 (-589 |#2|))) |#2| "failed") |#2| (-110) (-1087))) (-15 -3112 ((-3 |#2| "failed") (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|))) (-15 -3112 ((-3 |#2| "failed") |#2| (-110) (-271 |#2|) (-589 |#2|)))) +((-3827 (($) 9)) (-3533 (((-3 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))) "failed") (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 26)) (-1255 (((-589 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $) 23)) (-3108 (($ (-2 (|:| -3772 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))))) 20)) (-2847 (($ (-589 (-2 (|:| -3772 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))))) 18)) (-3221 (((-1174)) 12))) +(((-742) (-10 -8 (-15 -3827 ($)) (-15 -3221 ((-1174))) (-15 -1255 ((-589 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $)) (-15 -2847 ($ (-589 (-2 (|:| -3772 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))))))) (-15 -3108 ($ (-2 (|:| -3772 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))))) (-15 -3533 ((-3 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))) "failed") (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (T -742)) +((-3533 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))) (-5 *1 (-742)))) (-3108 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3772 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))))) (-5 *1 (-742)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -3772 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))))) (-5 *1 (-742)))) (-1255 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-5 *1 (-742)))) (-3221 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-742)))) (-3827 (*1 *1) (-5 *1 (-742)))) +(-10 -8 (-15 -3827 ($)) (-15 -3221 ((-1174))) (-15 -1255 ((-589 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $)) (-15 -2847 ($ (-589 (-2 (|:| -3772 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))))))) (-15 -3108 ($ (-2 (|:| -3772 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2482 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))))) (-15 -3533 ((-3 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))) "failed") (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) +((-2387 ((|#2| |#2| (-1087)) 15)) (-2183 ((|#2| |#2| (-1087)) 47)) (-2576 (((-1 |#2| |#2|) (-1087)) 11))) +(((-743 |#1| |#2|) (-10 -7 (-15 -2387 (|#2| |#2| (-1087))) (-15 -2183 (|#2| |#2| (-1087))) (-15 -2576 ((-1 |#2| |#2|) (-1087)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1109) (-889))) (T -743)) +((-2576 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-1 *5 *5)) (-5 *1 (-743 *4 *5)) (-4 *5 (-13 (-29 *4) (-1109) (-889))))) (-2183 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-743 *4 *2)) (-4 *2 (-13 (-29 *4) (-1109) (-889))))) (-2387 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-743 *4 *2)) (-4 *2 (-13 (-29 *4) (-1109) (-889)))))) +(-10 -7 (-15 -2387 (|#2| |#2| (-1087))) (-15 -2183 (|#2| |#2| (-1087))) (-15 -2576 ((-1 |#2| |#2|) (-1087)))) +((-3112 (((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355) (-355)) 114) (((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355)) 115) (((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-589 (-355)) (-355)) 117) (((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-355)) 118) (((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-355)) 119) (((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355))) 120) (((-962) (-747) (-985)) 105) (((-962) (-747)) 106)) (-1796 (((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747) (-985)) 71) (((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747)) 73))) +(((-744) (-10 -7 (-15 -3112 ((-962) (-747))) (-15 -3112 ((-962) (-747) (-985))) (-15 -3112 ((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)))) (-15 -3112 ((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-355))) (-15 -3112 ((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-355))) (-15 -3112 ((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-589 (-355)) (-355))) (-15 -3112 ((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355))) (-15 -3112 ((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355) (-355))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747) (-985))))) (T -744)) +((-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-985)) (-5 *2 (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-744)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-744)))) (-3112 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1169 (-292 *4))) (-5 *5 (-589 (-355))) (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) (-3112 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1169 (-292 *4))) (-5 *5 (-589 (-355))) (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) (-3112 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1169 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) (-5 *2 (-962)) (-5 *1 (-744)))) (-3112 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1169 (-292 *4))) (-5 *5 (-589 (-355))) (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) (-3112 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1169 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) (-5 *2 (-962)) (-5 *1 (-744)))) (-3112 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1169 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) (-5 *2 (-962)) (-5 *1 (-744)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-744)))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-962)) (-5 *1 (-744))))) +(-10 -7 (-15 -3112 ((-962) (-747))) (-15 -3112 ((-962) (-747) (-985))) (-15 -3112 ((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)))) (-15 -3112 ((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-355))) (-15 -3112 ((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-355))) (-15 -3112 ((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-589 (-355)) (-355))) (-15 -3112 ((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355))) (-15 -3112 ((-962) (-1169 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355) (-355))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747) (-985)))) +((-2741 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3760 (-589 |#4|))) (-596 |#4|) |#4|) 32))) +(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2741 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3760 (-589 |#4|))) (-596 |#4|) |#4|))) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))) (-1145 |#1|) (-1145 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -745)) +((-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-596 *4)) (-4 *4 (-318 *5 *6 *7)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-383 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) (-5 *1 (-745 *5 *6 *7 *4))))) +(-10 -7 (-15 -2741 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3760 (-589 |#4|))) (-596 |#4|) |#4|))) +((-1505 (((-2 (|:| -2849 |#3|) (|:| |rh| (-589 (-383 |#2|)))) |#4| (-589 (-383 |#2|))) 51)) (-3997 (((-589 (-2 (|:| -3710 |#2|) (|:| -1948 |#2|))) |#4| |#2|) 59) (((-589 (-2 (|:| -3710 |#2|) (|:| -1948 |#2|))) |#4|) 58) (((-589 (-2 (|:| -3710 |#2|) (|:| -1948 |#2|))) |#3| |#2|) 20) (((-589 (-2 (|:| -3710 |#2|) (|:| -1948 |#2|))) |#3|) 21)) (-1283 ((|#2| |#4| |#1|) 60) ((|#2| |#3| |#1|) 27)) (-2307 ((|#2| |#3| (-589 (-383 |#2|))) 93) (((-3 |#2| "failed") |#3| (-383 |#2|)) 90))) +(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2307 ((-3 |#2| "failed") |#3| (-383 |#2|))) (-15 -2307 (|#2| |#3| (-589 (-383 |#2|)))) (-15 -3997 ((-589 (-2 (|:| -3710 |#2|) (|:| -1948 |#2|))) |#3|)) (-15 -3997 ((-589 (-2 (|:| -3710 |#2|) (|:| -1948 |#2|))) |#3| |#2|)) (-15 -1283 (|#2| |#3| |#1|)) (-15 -3997 ((-589 (-2 (|:| -3710 |#2|) (|:| -1948 |#2|))) |#4|)) (-15 -3997 ((-589 (-2 (|:| -3710 |#2|) (|:| -1948 |#2|))) |#4| |#2|)) (-15 -1283 (|#2| |#4| |#1|)) (-15 -1505 ((-2 (|:| -2849 |#3|) (|:| |rh| (-589 (-383 |#2|)))) |#4| (-589 (-383 |#2|))))) (-13 (-339) (-136) (-964 (-383 (-523)))) (-1145 |#1|) (-599 |#2|) (-599 (-383 |#2|))) (T -746)) +((-1505 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1145 *5)) (-5 *2 (-2 (|:| -2849 *7) (|:| |rh| (-589 (-383 *6))))) (-5 *1 (-746 *5 *6 *7 *3)) (-5 *4 (-589 (-383 *6))) (-4 *7 (-599 *6)) (-4 *3 (-599 (-383 *6))))) (-1283 (*1 *2 *3 *4) (-12 (-4 *2 (-1145 *4)) (-5 *1 (-746 *4 *2 *5 *3)) (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-599 *2)) (-4 *3 (-599 (-383 *2))))) (-3997 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *4 (-1145 *5)) (-5 *2 (-589 (-2 (|:| -3710 *4) (|:| -1948 *4)))) (-5 *1 (-746 *5 *4 *6 *3)) (-4 *6 (-599 *4)) (-4 *3 (-599 (-383 *4))))) (-3997 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1145 *4)) (-5 *2 (-589 (-2 (|:| -3710 *5) (|:| -1948 *5)))) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *6 (-599 *5)) (-4 *3 (-599 (-383 *5))))) (-1283 (*1 *2 *3 *4) (-12 (-4 *2 (-1145 *4)) (-5 *1 (-746 *4 *2 *3 *5)) (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) (-4 *5 (-599 (-383 *2))))) (-3997 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *4 (-1145 *5)) (-5 *2 (-589 (-2 (|:| -3710 *4) (|:| -1948 *4)))) (-5 *1 (-746 *5 *4 *3 *6)) (-4 *3 (-599 *4)) (-4 *6 (-599 (-383 *4))))) (-3997 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1145 *4)) (-5 *2 (-589 (-2 (|:| -3710 *5) (|:| -1948 *5)))) (-5 *1 (-746 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-599 (-383 *5))))) (-2307 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-383 *2))) (-4 *2 (-1145 *5)) (-5 *1 (-746 *5 *2 *3 *6)) (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) (-4 *6 (-599 (-383 *2))))) (-2307 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-383 *2)) (-4 *2 (-1145 *5)) (-5 *1 (-746 *5 *2 *3 *6)) (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) (-4 *6 (-599 *4))))) +(-10 -7 (-15 -2307 ((-3 |#2| "failed") |#3| (-383 |#2|))) (-15 -2307 (|#2| |#3| (-589 (-383 |#2|)))) (-15 -3997 ((-589 (-2 (|:| -3710 |#2|) (|:| -1948 |#2|))) |#3|)) (-15 -3997 ((-589 (-2 (|:| -3710 |#2|) (|:| -1948 |#2|))) |#3| |#2|)) (-15 -1283 (|#2| |#3| |#1|)) (-15 -3997 ((-589 (-2 (|:| -3710 |#2|) (|:| -1948 |#2|))) |#4|)) (-15 -3997 ((-589 (-2 (|:| -3710 |#2|) (|:| -1948 |#2|))) |#4| |#2|)) (-15 -1283 (|#2| |#4| |#1|)) (-15 -1505 ((-2 (|:| -2849 |#3|) (|:| |rh| (-589 (-383 |#2|)))) |#4| (-589 (-383 |#2|))))) +((-1680 (((-108) $ $) NIL)) (-3508 (((-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) $) 9)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 11) (($ (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 8)) (-3941 (((-108) $ $) NIL))) +(((-747) (-13 (-1016) (-10 -8 (-15 -1691 ($ (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1691 ((-794) $)) (-15 -3508 ((-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) $))))) (T -747)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-747)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-747)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-747))))) +(-13 (-1016) (-10 -8 (-15 -1691 ($ (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1691 ((-794) $)) (-15 -3508 ((-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) $)))) +((-3442 (((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -2849 |#3|))) |#3| (-1 (-589 |#2|) |#2| (-1083 |#2|)) (-1 (-394 |#2|) |#2|)) 117)) (-2446 (((-589 (-2 (|:| |poly| |#2|) (|:| -2849 |#3|))) |#3| (-1 (-589 |#1|) |#2|)) 45)) (-3113 (((-589 (-2 (|:| |deg| (-710)) (|:| -2849 |#2|))) |#3|) 94)) (-1971 ((|#2| |#3|) 37)) (-4167 (((-589 (-2 (|:| -2501 |#1|) (|:| -2849 |#3|))) |#3| (-1 (-589 |#1|) |#2|)) 81)) (-2180 ((|#3| |#3| (-383 |#2|)) 62) ((|#3| |#3| |#2|) 78))) +(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1971 (|#2| |#3|)) (-15 -3113 ((-589 (-2 (|:| |deg| (-710)) (|:| -2849 |#2|))) |#3|)) (-15 -4167 ((-589 (-2 (|:| -2501 |#1|) (|:| -2849 |#3|))) |#3| (-1 (-589 |#1|) |#2|))) (-15 -2446 ((-589 (-2 (|:| |poly| |#2|) (|:| -2849 |#3|))) |#3| (-1 (-589 |#1|) |#2|))) (-15 -3442 ((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -2849 |#3|))) |#3| (-1 (-589 |#2|) |#2| (-1083 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -2180 (|#3| |#3| |#2|)) (-15 -2180 (|#3| |#3| (-383 |#2|)))) (-13 (-339) (-136) (-964 (-383 (-523)))) (-1145 |#1|) (-599 |#2|) (-599 (-383 |#2|))) (T -748)) +((-2180 (*1 *2 *2 *3) (-12 (-5 *3 (-383 *5)) (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1145 *4)) (-5 *1 (-748 *4 *5 *2 *6)) (-4 *2 (-599 *5)) (-4 *6 (-599 *3)))) (-2180 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-1145 *4)) (-5 *1 (-748 *4 *3 *2 *5)) (-4 *2 (-599 *3)) (-4 *5 (-599 (-383 *3))))) (-3442 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-589 *7) *7 (-1083 *7))) (-5 *5 (-1 (-394 *7) *7)) (-4 *7 (-1145 *6)) (-4 *6 (-13 (-339) (-136) (-964 (-383 (-523))))) (-5 *2 (-589 (-2 (|:| |frac| (-383 *7)) (|:| -2849 *3)))) (-5 *1 (-748 *6 *7 *3 *8)) (-4 *3 (-599 *7)) (-4 *8 (-599 (-383 *7))))) (-2446 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1145 *5)) (-5 *2 (-589 (-2 (|:| |poly| *6) (|:| -2849 *3)))) (-5 *1 (-748 *5 *6 *3 *7)) (-4 *3 (-599 *6)) (-4 *7 (-599 (-383 *6))))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1145 *5)) (-5 *2 (-589 (-2 (|:| -2501 *5) (|:| -2849 *3)))) (-5 *1 (-748 *5 *6 *3 *7)) (-4 *3 (-599 *6)) (-4 *7 (-599 (-383 *6))))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1145 *4)) (-5 *2 (-589 (-2 (|:| |deg| (-710)) (|:| -2849 *5)))) (-5 *1 (-748 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-599 (-383 *5))))) (-1971 (*1 *2 *3) (-12 (-4 *2 (-1145 *4)) (-5 *1 (-748 *4 *2 *3 *5)) (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) (-4 *5 (-599 (-383 *2)))))) +(-10 -7 (-15 -1971 (|#2| |#3|)) (-15 -3113 ((-589 (-2 (|:| |deg| (-710)) (|:| -2849 |#2|))) |#3|)) (-15 -4167 ((-589 (-2 (|:| -2501 |#1|) (|:| -2849 |#3|))) |#3| (-1 (-589 |#1|) |#2|))) (-15 -2446 ((-589 (-2 (|:| |poly| |#2|) (|:| -2849 |#3|))) |#3| (-1 (-589 |#1|) |#2|))) (-15 -3442 ((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -2849 |#3|))) |#3| (-1 (-589 |#2|) |#2| (-1083 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -2180 (|#3| |#3| |#2|)) (-15 -2180 (|#3| |#3| (-383 |#2|)))) +((-2259 (((-2 (|:| -3760 (-589 (-383 |#2|))) (|:| -2600 (-629 |#1|))) (-597 |#2| (-383 |#2|)) (-589 (-383 |#2|))) 118) (((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -3760 (-589 (-383 |#2|)))) (-597 |#2| (-383 |#2|)) (-383 |#2|)) 117) (((-2 (|:| -3760 (-589 (-383 |#2|))) (|:| -2600 (-629 |#1|))) (-596 (-383 |#2|)) (-589 (-383 |#2|))) 112) (((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -3760 (-589 (-383 |#2|)))) (-596 (-383 |#2|)) (-383 |#2|)) 110)) (-2487 ((|#2| (-597 |#2| (-383 |#2|))) 77) ((|#2| (-596 (-383 |#2|))) 81))) +(((-749 |#1| |#2|) (-10 -7 (-15 -2259 ((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -3760 (-589 (-383 |#2|)))) (-596 (-383 |#2|)) (-383 |#2|))) (-15 -2259 ((-2 (|:| -3760 (-589 (-383 |#2|))) (|:| -2600 (-629 |#1|))) (-596 (-383 |#2|)) (-589 (-383 |#2|)))) (-15 -2259 ((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -3760 (-589 (-383 |#2|)))) (-597 |#2| (-383 |#2|)) (-383 |#2|))) (-15 -2259 ((-2 (|:| -3760 (-589 (-383 |#2|))) (|:| -2600 (-629 |#1|))) (-597 |#2| (-383 |#2|)) (-589 (-383 |#2|)))) (-15 -2487 (|#2| (-596 (-383 |#2|)))) (-15 -2487 (|#2| (-597 |#2| (-383 |#2|))))) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))) (-1145 |#1|)) (T -749)) +((-2487 (*1 *2 *3) (-12 (-5 *3 (-597 *2 (-383 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-749 *4 *2)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-596 (-383 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-749 *4 *2)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))))) (-2259 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-383 *6))) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-2 (|:| -3760 (-589 (-383 *6))) (|:| -2600 (-629 *5)))) (-5 *1 (-749 *5 *6)) (-5 *4 (-589 (-383 *6))))) (-2259 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-383 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) (-5 *1 (-749 *5 *6)))) (-2259 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-383 *6))) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-2 (|:| -3760 (-589 (-383 *6))) (|:| -2600 (-629 *5)))) (-5 *1 (-749 *5 *6)) (-5 *4 (-589 (-383 *6))))) (-2259 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-383 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) (-5 *1 (-749 *5 *6))))) +(-10 -7 (-15 -2259 ((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -3760 (-589 (-383 |#2|)))) (-596 (-383 |#2|)) (-383 |#2|))) (-15 -2259 ((-2 (|:| -3760 (-589 (-383 |#2|))) (|:| -2600 (-629 |#1|))) (-596 (-383 |#2|)) (-589 (-383 |#2|)))) (-15 -2259 ((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -3760 (-589 (-383 |#2|)))) (-597 |#2| (-383 |#2|)) (-383 |#2|))) (-15 -2259 ((-2 (|:| -3760 (-589 (-383 |#2|))) (|:| -2600 (-629 |#1|))) (-597 |#2| (-383 |#2|)) (-589 (-383 |#2|)))) (-15 -2487 (|#2| (-596 (-383 |#2|)))) (-15 -2487 (|#2| (-597 |#2| (-383 |#2|))))) +((-2701 (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#1|))) |#5| |#4|) 47))) +(((-750 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2701 ((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#1|))) |#5| |#4|))) (-339) (-599 |#1|) (-1145 |#1|) (-664 |#1| |#3|) (-599 |#4|)) (T -750)) +((-2701 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *7 (-1145 *5)) (-4 *4 (-664 *5 *7)) (-5 *2 (-2 (|:| -2600 (-629 *6)) (|:| |vec| (-1169 *5)))) (-5 *1 (-750 *5 *6 *7 *4 *3)) (-4 *6 (-599 *5)) (-4 *3 (-599 *4))))) +(-10 -7 (-15 -2701 ((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#1|))) |#5| |#4|))) +((-3442 (((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -2849 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|)) 43)) (-2419 (((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|))) 135 (|has| |#1| (-27))) (((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-394 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-589 (-383 |#2|)) (-596 (-383 |#2|))) 137 (|has| |#1| (-27))) (((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|)) 36) (((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|)) 37) (((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|)) 34) (((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|)) 35)) (-2446 (((-589 (-2 (|:| |poly| |#2|) (|:| -2849 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|)) 80))) +(((-751 |#1| |#2|) (-10 -7 (-15 -2419 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (-15 -2419 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|))) (-15 -2419 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (-15 -2419 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|))) (-15 -3442 ((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -2849 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -2446 ((-589 (-2 (|:| |poly| |#2|) (|:| -2849 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2419 ((-589 (-383 |#2|)) (-596 (-383 |#2|)))) (-15 -2419 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -2419 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)))) (-15 -2419 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|)))) |%noBranch|)) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))) (-1145 |#1|)) (T -751)) +((-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1145 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) (-2419 (*1 *2 *3) (-12 (-5 *3 (-597 *5 (-383 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-383 *5))) (-5 *1 (-751 *4 *5)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1145 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) (-2419 (*1 *2 *3) (-12 (-5 *3 (-596 (-383 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-383 *5))) (-5 *1 (-751 *4 *5)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1145 *5)) (-5 *2 (-589 (-2 (|:| |poly| *6) (|:| -2849 (-597 *6 (-383 *6)))))) (-5 *1 (-751 *5 *6)) (-5 *3 (-597 *6 (-383 *6))))) (-3442 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-2 (|:| |frac| (-383 *6)) (|:| -2849 (-597 *6 (-383 *6)))))) (-5 *1 (-751 *5 *6)) (-5 *3 (-597 *6 (-383 *6))))) (-2419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *7 (-383 *7))) (-5 *4 (-1 (-589 *6) *7)) (-5 *5 (-1 (-394 *7) *7)) (-4 *6 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *7 (-1145 *6)) (-5 *2 (-589 (-383 *7))) (-5 *1 (-751 *6 *7)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1145 *5)) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) (-2419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-596 (-383 *7))) (-5 *4 (-1 (-589 *6) *7)) (-5 *5 (-1 (-394 *7) *7)) (-4 *6 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *7 (-1145 *6)) (-5 *2 (-589 (-383 *7))) (-5 *1 (-751 *6 *7)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1145 *5)) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6))))) +(-10 -7 (-15 -2419 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (-15 -2419 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|))) (-15 -2419 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (-15 -2419 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|))) (-15 -3442 ((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -2849 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -2446 ((-589 (-2 (|:| |poly| |#2|) (|:| -2849 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2419 ((-589 (-383 |#2|)) (-596 (-383 |#2|)))) (-15 -2419 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -2419 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)))) (-15 -2419 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|)))) |%noBranch|)) +((-2889 (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#1|))) (-629 |#2|) (-1169 |#1|)) 85) (((-2 (|:| A (-629 |#1|)) (|:| |eqs| (-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1169 |#1|)) (|:| -2849 |#2|) (|:| |rh| |#1|))))) (-629 |#1|) (-1169 |#1|)) 14)) (-4076 (((-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|)))) (-629 |#2|) (-1169 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3760 (-589 |#1|))) |#2| |#1|)) 91)) (-3112 (((-3 (-2 (|:| |particular| (-1169 |#1|)) (|:| -3760 (-629 |#1|))) "failed") (-629 |#1|) (-1169 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3760 (-589 |#1|))) "failed") |#2| |#1|)) 43))) +(((-752 |#1| |#2|) (-10 -7 (-15 -2889 ((-2 (|:| A (-629 |#1|)) (|:| |eqs| (-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1169 |#1|)) (|:| -2849 |#2|) (|:| |rh| |#1|))))) (-629 |#1|) (-1169 |#1|))) (-15 -2889 ((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#1|))) (-629 |#2|) (-1169 |#1|))) (-15 -3112 ((-3 (-2 (|:| |particular| (-1169 |#1|)) (|:| -3760 (-629 |#1|))) "failed") (-629 |#1|) (-1169 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3760 (-589 |#1|))) "failed") |#2| |#1|))) (-15 -4076 ((-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|)))) (-629 |#2|) (-1169 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3760 (-589 |#1|))) |#2| |#1|)))) (-339) (-599 |#1|)) (T -752)) +((-4076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3760 (-589 *6))) *7 *6)) (-4 *6 (-339)) (-4 *7 (-599 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1169 *6) "failed")) (|:| -3760 (-589 (-1169 *6))))) (-5 *1 (-752 *6 *7)) (-5 *4 (-1169 *6)))) (-3112 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3760 (-589 *6))) "failed") *7 *6)) (-4 *6 (-339)) (-4 *7 (-599 *6)) (-5 *2 (-2 (|:| |particular| (-1169 *6)) (|:| -3760 (-629 *6)))) (-5 *1 (-752 *6 *7)) (-5 *3 (-629 *6)) (-5 *4 (-1169 *6)))) (-2889 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-599 *5)) (-5 *2 (-2 (|:| -2600 (-629 *6)) (|:| |vec| (-1169 *5)))) (-5 *1 (-752 *5 *6)) (-5 *3 (-629 *6)) (-5 *4 (-1169 *5)))) (-2889 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-5 *2 (-2 (|:| A (-629 *5)) (|:| |eqs| (-589 (-2 (|:| C (-629 *5)) (|:| |g| (-1169 *5)) (|:| -2849 *6) (|:| |rh| *5)))))) (-5 *1 (-752 *5 *6)) (-5 *3 (-629 *5)) (-5 *4 (-1169 *5)) (-4 *6 (-599 *5))))) +(-10 -7 (-15 -2889 ((-2 (|:| A (-629 |#1|)) (|:| |eqs| (-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1169 |#1|)) (|:| -2849 |#2|) (|:| |rh| |#1|))))) (-629 |#1|) (-1169 |#1|))) (-15 -2889 ((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#1|))) (-629 |#2|) (-1169 |#1|))) (-15 -3112 ((-3 (-2 (|:| |particular| (-1169 |#1|)) (|:| -3760 (-629 |#1|))) "failed") (-629 |#1|) (-1169 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3760 (-589 |#1|))) "failed") |#2| |#1|))) (-15 -4076 ((-2 (|:| |particular| (-3 (-1169 |#1|) "failed")) (|:| -3760 (-589 (-1169 |#1|)))) (-629 |#2|) (-1169 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3760 (-589 |#1|))) |#2| |#1|)))) +((-1763 (((-629 |#1|) (-589 |#1|) (-710)) 13) (((-629 |#1|) (-589 |#1|)) 14)) (-2809 (((-3 (-1169 |#1|) "failed") |#2| |#1| (-589 |#1|)) 34)) (-1698 (((-3 |#1| "failed") |#2| |#1| (-589 |#1|) (-1 |#1| |#1|)) 42))) +(((-753 |#1| |#2|) (-10 -7 (-15 -1763 ((-629 |#1|) (-589 |#1|))) (-15 -1763 ((-629 |#1|) (-589 |#1|) (-710))) (-15 -2809 ((-3 (-1169 |#1|) "failed") |#2| |#1| (-589 |#1|))) (-15 -1698 ((-3 |#1| "failed") |#2| |#1| (-589 |#1|) (-1 |#1| |#1|)))) (-339) (-599 |#1|)) (T -753)) +((-1698 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-589 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-339)) (-5 *1 (-753 *2 *3)) (-4 *3 (-599 *2)))) (-2809 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-589 *4)) (-4 *4 (-339)) (-5 *2 (-1169 *4)) (-5 *1 (-753 *4 *3)) (-4 *3 (-599 *4)))) (-1763 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-710)) (-4 *5 (-339)) (-5 *2 (-629 *5)) (-5 *1 (-753 *5 *6)) (-4 *6 (-599 *5)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-339)) (-5 *2 (-629 *4)) (-5 *1 (-753 *4 *5)) (-4 *5 (-599 *4))))) +(-10 -7 (-15 -1763 ((-629 |#1|) (-589 |#1|))) (-15 -1763 ((-629 |#1|) (-589 |#1|) (-710))) (-15 -2809 ((-3 (-1169 |#1|) "failed") |#2| |#1| (-589 |#1|))) (-15 -1698 ((-3 |#1| "failed") |#2| |#1| (-589 |#1|) (-1 |#1| |#1|)))) +((-1680 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-2603 (((-108) $) NIL (|has| |#2| (-124)))) (-3845 (($ (-852)) NIL (|has| |#2| (-973)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-4016 (($ $ $) NIL (|has| |#2| (-732)))) (-3405 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-1620 (((-108) $ (-710)) NIL)) (-2395 (((-710)) NIL (|has| |#2| (-344)))) (-3482 (((-523) $) NIL (|has| |#2| (-784)))) (-1849 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1016)))) (-3508 (((-523) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((|#2| $) NIL (|has| |#2| (-1016)))) (-2243 (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL (|has| |#2| (-973))) (((-629 |#2|) (-629 $)) NIL (|has| |#2| (-973)))) (-1444 (((-3 $ "failed") $) NIL (|has| |#2| (-973)))) (-1631 (($) NIL (|has| |#2| (-344)))) (-2053 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#2| $ (-523)) NIL)) (-3712 (((-108) $) NIL (|has| |#2| (-784)))) (-1871 (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-2769 (((-108) $) NIL (|has| |#2| (-973)))) (-2057 (((-108) $) NIL (|has| |#2| (-784)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-1584 (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2043 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#2| |#2|) $) NIL)) (-2060 (((-852) $) NIL (|has| |#2| (-344)))) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#2| (-1016)))) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-4013 (($ (-852)) NIL (|has| |#2| (-344)))) (-3951 (((-1034) $) NIL (|has| |#2| (-1016)))) (-2428 ((|#2| $) NIL (|has| (-523) (-786)))) (-4141 (($ $ |#2|) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3973 (((-589 |#2|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-523)) NIL)) (-3839 ((|#2| $ $) NIL (|has| |#2| (-973)))) (-2469 (($ (-1169 |#2|)) NIL)) (-3314 (((-126)) NIL (|has| |#2| (-339)))) (-3984 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-3977 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-1169 |#2|) $) NIL) (($ (-523)) NIL (-3172 (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (|has| |#2| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (($ |#2|) NIL (|has| |#2| (-1016))) (((-794) $) NIL (|has| |#2| (-563 (-794))))) (-3272 (((-710)) NIL (|has| |#2| (-973)))) (-2308 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2695 (($ $) NIL (|has| |#2| (-784)))) (-2423 (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (-1879 (($) NIL (|has| |#2| (-124)) CONST)) (-1891 (($) NIL (|has| |#2| (-973)) CONST)) (-2909 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-4006 (((-108) $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3980 (((-108) $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3941 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-3993 (((-108) $ $) NIL (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3966 (((-108) $ $) 11 (-3172 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4074 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4060 (($ $ $) NIL (|has| |#2| (-973))) (($ $) NIL (|has| |#2| (-973)))) (-4045 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (* (($ $ $) NIL (|has| |#2| (-973))) (($ (-523) $) NIL (|has| |#2| (-973))) (($ $ |#2|) NIL (|has| |#2| (-666))) (($ |#2| $) NIL (|has| |#2| (-666))) (($ (-710) $) NIL (|has| |#2| (-124))) (($ (-852) $) NIL (|has| |#2| (-25)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-754 |#1| |#2| |#3|) (-216 |#1| |#2|) (-710) (-732) (-1 (-108) (-1169 |#2|) (-1169 |#2|))) (T -754)) NIL (-216 |#1| |#2|) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1854 (((-589 (-710)) $) NIL) (((-589 (-710)) $ (-1087)) NIL)) (-2656 (((-710) $) NIL) (((-710) $ (-1087)) NIL)) (-1957 (((-589 (-757 (-1087))) $) NIL)) (-1786 (((-1083 $) $ (-757 (-1087))) NIL) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-757 (-1087)))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1413 (($ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-757 (-1087)) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL) (((-3 (-1039 |#1| (-1087)) "failed") $) NIL)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-757 (-1087)) $) NIL) (((-1087) $) NIL) (((-1039 |#1| (-1087)) $) NIL)) (-3078 (($ $ $ (-757 (-1087))) NIL (|has| |#1| (-158)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ (-757 (-1087))) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-495 (-757 (-1087))) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-757 (-1087)) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-757 (-1087)) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1640 (((-710) $ (-1087)) NIL) (((-710) $) NIL)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#1|) (-757 (-1087))) NIL) (($ (-1083 $) (-757 (-1087))) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-495 (-757 (-1087)))) NIL) (($ $ (-757 (-1087)) (-710)) NIL) (($ $ (-589 (-757 (-1087))) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-757 (-1087))) NIL)) (-1575 (((-495 (-757 (-1087))) $) NIL) (((-710) $ (-757 (-1087))) NIL) (((-589 (-710)) $ (-589 (-757 (-1087)))) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-495 (-757 (-1087))) (-495 (-757 (-1087)))) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3178 (((-1 $ (-710)) (-1087)) NIL) (((-1 $ (-710)) $) NIL (|has| |#1| (-211)))) (-2520 (((-3 (-757 (-1087)) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3415 (((-757 (-1087)) $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-1453 (((-108) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-757 (-1087))) (|:| -2735 (-710))) "failed") $) NIL)) (-3197 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-757 (-1087)) |#1|) NIL) (($ $ (-589 (-757 (-1087))) (-589 |#1|)) NIL) (($ $ (-757 (-1087)) $) NIL) (($ $ (-589 (-757 (-1087))) (-589 $)) NIL) (($ $ (-1087) $) NIL (|has| |#1| (-211))) (($ $ (-589 (-1087)) (-589 $)) NIL (|has| |#1| (-211))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-211))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-211)))) (-3549 (($ $ (-757 (-1087))) NIL (|has| |#1| (-158)))) (-3523 (($ $ (-757 (-1087))) NIL) (($ $ (-589 (-757 (-1087)))) NIL) (($ $ (-757 (-1087)) (-710)) NIL) (($ $ (-589 (-757 (-1087))) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1748 (((-589 (-1087)) $) NIL)) (-2299 (((-495 (-757 (-1087))) $) NIL) (((-710) $ (-757 (-1087))) NIL) (((-589 (-710)) $ (-589 (-757 (-1087)))) NIL) (((-710) $ (-1087)) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-757 (-1087)) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-757 (-1087)) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-757 (-1087)) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-757 (-1087))) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-757 (-1087))) NIL) (($ (-1087)) NIL) (($ (-1039 |#1| (-1087))) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-495 (-757 (-1087)))) NIL) (($ $ (-757 (-1087)) (-710)) NIL) (($ $ (-589 (-757 (-1087))) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-757 (-1087))) NIL) (($ $ (-589 (-757 (-1087)))) NIL) (($ $ (-757 (-1087)) (-710)) NIL) (($ $ (-589 (-757 (-1087))) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1741 (((-589 (-710)) $) NIL) (((-589 (-710)) $ (-1087)) NIL)) (-3038 (((-710) $) NIL) (((-710) $ (-1087)) NIL)) (-1292 (((-589 (-757 (-1087))) $) NIL)) (-2389 (((-1083 $) $ (-757 (-1087))) NIL) (((-1083 |#1|) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 (-757 (-1087)))) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3718 (($ $) NIL (|has| |#1| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1914 (($ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-757 (-1087)) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL) (((-3 (-1039 |#1| (-1087)) "failed") $) NIL)) (-3508 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-757 (-1087)) $) NIL) (((-1087) $) NIL) (((-1039 |#1| (-1087)) $) NIL)) (-1611 (($ $ $ (-757 (-1087))) NIL (|has| |#1| (-158)))) (-1457 (($ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#1| (-427))) (($ $ (-757 (-1087))) NIL (|has| |#1| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#1| (-840)))) (-4222 (($ $ |#1| (-495 (-757 (-1087))) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-757 (-1087)) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-757 (-1087)) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-3437 (((-710) $ (-1087)) NIL) (((-710) $) NIL)) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-1280 (($ (-1083 |#1|) (-757 (-1087))) NIL) (($ (-1083 $) (-757 (-1087))) NIL)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-495 (-757 (-1087)))) NIL) (($ $ (-757 (-1087)) (-710)) NIL) (($ $ (-589 (-757 (-1087))) (-589 (-710))) NIL)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ (-757 (-1087))) NIL)) (-4047 (((-495 (-757 (-1087))) $) NIL) (((-710) $ (-757 (-1087))) NIL) (((-589 (-710)) $ (-589 (-757 (-1087)))) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2041 (($ (-1 (-495 (-757 (-1087))) (-495 (-757 (-1087)))) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1360 (((-1 $ (-710)) (-1087)) NIL) (((-1 $ (-710)) $) NIL (|has| |#1| (-211)))) (-4213 (((-3 (-757 (-1087)) "failed") $) NIL)) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3994 (((-757 (-1087)) $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2032 (((-1070) $) NIL)) (-2286 (((-108) $) NIL)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| (-757 (-1087))) (|:| -1475 (-710))) "failed") $) NIL)) (-3865 (($ $) NIL)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) NIL)) (-1419 ((|#1| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-840)))) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-757 (-1087)) |#1|) NIL) (($ $ (-589 (-757 (-1087))) (-589 |#1|)) NIL) (($ $ (-757 (-1087)) $) NIL) (($ $ (-589 (-757 (-1087))) (-589 $)) NIL) (($ $ (-1087) $) NIL (|has| |#1| (-211))) (($ $ (-589 (-1087)) (-589 $)) NIL (|has| |#1| (-211))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-211))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-211)))) (-1744 (($ $ (-757 (-1087))) NIL (|has| |#1| (-158)))) (-3984 (($ $ (-757 (-1087))) NIL) (($ $ (-589 (-757 (-1087)))) NIL) (($ $ (-757 (-1087)) (-710)) NIL) (($ $ (-589 (-757 (-1087))) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2007 (((-589 (-1087)) $) NIL)) (-2640 (((-495 (-757 (-1087))) $) NIL) (((-710) $ (-757 (-1087))) NIL) (((-589 (-710)) $ (-589 (-757 (-1087)))) NIL) (((-710) $ (-1087)) NIL)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| (-757 (-1087)) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-757 (-1087)) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-757 (-1087)) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-1618 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-757 (-1087))) NIL (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-757 (-1087))) NIL) (($ (-1087)) NIL) (($ (-1039 |#1| (-1087))) NIL) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-495 (-757 (-1087)))) NIL) (($ $ (-757 (-1087)) (-710)) NIL) (($ $ (-589 (-757 (-1087))) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-757 (-1087))) NIL) (($ $ (-589 (-757 (-1087)))) NIL) (($ $ (-757 (-1087)) (-710)) NIL) (($ $ (-589 (-757 (-1087))) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) (((-755 |#1|) (-13 (-230 |#1| (-1087) (-757 (-1087)) (-495 (-757 (-1087)))) (-964 (-1039 |#1| (-1087)))) (-973)) (T -755)) NIL (-13 (-230 |#1| (-1087) (-757 (-1087)) (-495 (-757 (-1087)))) (-964 (-1039 |#1| (-1087)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#2| (-339)))) (-3345 (($ $) NIL (|has| |#2| (-339)))) (-3331 (((-108) $) NIL (|has| |#2| (-339)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#2| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#2| (-339)))) (-1387 (((-108) $ $) NIL (|has| |#2| (-339)))) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL (|has| |#2| (-339)))) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL (|has| |#2| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#2| (-339)))) (-2657 (((-108) $) NIL (|has| |#2| (-339)))) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#2| (-339)))) (-3244 (($ (-589 $)) NIL (|has| |#2| (-339))) (($ $ $) NIL (|has| |#2| (-339)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 20 (|has| |#2| (-339)))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-339))) (($ $ $) NIL (|has| |#2| (-339)))) (-1820 (((-394 $) $) NIL (|has| |#2| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#2| (-339)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#2| (-339)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#2| (-339)))) (-1972 (((-710) $) NIL (|has| |#2| (-339)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-339)))) (-3523 (($ $ (-710)) NIL) (($ $) 13)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-383 (-523))) NIL (|has| |#2| (-339))) (($ $) NIL (|has| |#2| (-339)))) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL (|has| |#2| (-339)))) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL) (($ $ (-523)) NIL (|has| |#2| (-339)))) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) 15 (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL) (($ $ (-523)) 18 (|has| |#2| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-383 (-523)) $) NIL (|has| |#2| (-339))) (($ $ (-383 (-523))) NIL (|has| |#2| (-339))))) -(((-756 |#1| |#2| |#3|) (-13 (-107 $ $) (-211) (-10 -8 (IF (|has| |#2| (-339)) (-6 (-339)) |%noBranch|) (-15 -1458 ($ |#2|)) (-15 -1458 (|#2| $)))) (-1016) (-831 |#1|) |#1|) (T -756)) -((-1458 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-14 *4 *3) (-5 *1 (-756 *3 *2 *4)) (-4 *2 (-831 *3)))) (-1458 (*1 *2 *1) (-12 (-4 *2 (-831 *3)) (-5 *1 (-756 *3 *2 *4)) (-4 *3 (-1016)) (-14 *4 *3)))) -(-13 (-107 $ $) (-211) (-10 -8 (IF (|has| |#2| (-339)) (-6 (-339)) |%noBranch|) (-15 -1458 ($ |#2|)) (-15 -1458 (|#2| $)))) -((-3924 (((-108) $ $) NIL)) (-2656 (((-710) $) NIL)) (-2700 ((|#1| $) 10)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-1640 (((-710) $) 11)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3178 (($ |#1| (-710)) 9)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3523 (($ $) NIL) (($ $ (-710)) NIL)) (-1458 (((-794) $) NIL) (($ |#1|) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#2| (-339)))) (-3306 (($ $) NIL (|has| |#2| (-339)))) (-3174 (((-108) $) NIL (|has| |#2| (-339)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL (|has| |#2| (-339)))) (-4226 (((-394 $) $) NIL (|has| |#2| (-339)))) (-2787 (((-108) $ $) NIL (|has| |#2| (-339)))) (-4189 (($) NIL T CONST)) (-4059 (($ $ $) NIL (|has| |#2| (-339)))) (-1444 (((-3 $ "failed") $) NIL)) (-4032 (($ $ $) NIL (|has| |#2| (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#2| (-339)))) (-3049 (((-108) $) NIL (|has| |#2| (-339)))) (-2769 (((-108) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#2| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-339))) (($ $ $) NIL (|has| |#2| (-339)))) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 20 (|has| |#2| (-339)))) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-339)))) (-3310 (($ (-589 $)) NIL (|has| |#2| (-339))) (($ $ $) NIL (|has| |#2| (-339)))) (-2424 (((-394 $) $) NIL (|has| |#2| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#2| (-339)))) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#2| (-339)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#2| (-339)))) (-3413 (((-710) $) NIL (|has| |#2| (-339)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#2| (-339)))) (-3984 (($ $ (-710)) NIL) (($ $) 13)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-383 (-523))) NIL (|has| |#2| (-339))) (($ $) NIL (|has| |#2| (-339)))) (-3272 (((-710)) NIL)) (-2801 (((-108) $ $) NIL (|has| |#2| (-339)))) (-2423 (($ $ (-710)) NIL) (($ $ (-852)) NIL) (($ $ (-523)) NIL (|has| |#2| (-339)))) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-710)) NIL) (($ $) NIL)) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) 15 (|has| |#2| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL) (($ $ (-523)) 18 (|has| |#2| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-383 (-523)) $) NIL (|has| |#2| (-339))) (($ $ (-383 (-523))) NIL (|has| |#2| (-339))))) +(((-756 |#1| |#2| |#3|) (-13 (-107 $ $) (-211) (-10 -8 (IF (|has| |#2| (-339)) (-6 (-339)) |%noBranch|) (-15 -1691 ($ |#2|)) (-15 -1691 (|#2| $)))) (-1016) (-831 |#1|) |#1|) (T -756)) +((-1691 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-14 *4 *3) (-5 *1 (-756 *3 *2 *4)) (-4 *2 (-831 *3)))) (-1691 (*1 *2 *1) (-12 (-4 *2 (-831 *3)) (-5 *1 (-756 *3 *2 *4)) (-4 *3 (-1016)) (-14 *4 *3)))) +(-13 (-107 $ $) (-211) (-10 -8 (IF (|has| |#2| (-339)) (-6 (-339)) |%noBranch|) (-15 -1691 ($ |#2|)) (-15 -1691 (|#2| $)))) +((-1680 (((-108) $ $) NIL)) (-3038 (((-710) $) NIL)) (-2724 ((|#1| $) 10)) (-1220 (((-3 |#1| "failed") $) NIL)) (-3508 ((|#1| $) NIL)) (-3437 (((-710) $) 11)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-1360 (($ |#1| (-710)) 9)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3984 (($ $) NIL) (($ $ (-710)) NIL)) (-1691 (((-794) $) NIL) (($ |#1|) NIL)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) NIL))) (((-757 |#1|) (-243 |#1|) (-786)) (T -757)) NIL (-243 |#1|) -((-3924 (((-108) $ $) NIL)) (-2061 (((-589 |#1|) $) 29)) (-1703 (((-710) $) NIL)) (-2518 (($) NIL T CONST)) (-4111 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-1751 (($ $) 31)) (-2121 (((-3 $ "failed") $) NIL)) (-1655 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2023 (((-108) $) NIL)) (-2378 ((|#1| $ (-523)) NIL)) (-3731 (((-710) $ (-523)) NIL)) (-1419 (($ $) 36)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2701 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-2964 (((-108) $ $) 34)) (-2996 (((-710) $) 25)) (-3779 (((-1070) $) NIL)) (-2259 (($ $ $) NIL)) (-3206 (($ $ $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 ((|#1| $) 30)) (-1979 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $) NIL)) (-3757 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1458 (((-794) $) NIL) (($ |#1|) NIL)) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2767 (($) 14 T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 35)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL) (($ |#1| (-710)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-758 |#1|) (-13 (-782) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-710))) (-15 -1738 (|#1| $)) (-15 -1751 ($ $)) (-15 -1419 ($ $)) (-15 -2964 ((-108) $ $)) (-15 -3206 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -2701 ((-3 $ "failed") $ $)) (-15 -4111 ((-3 $ "failed") $ $)) (-15 -2701 ((-3 $ "failed") $ |#1|)) (-15 -4111 ((-3 $ "failed") $ |#1|)) (-15 -3757 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1655 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1703 ((-710) $)) (-15 -3731 ((-710) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -1979 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $)) (-15 -2996 ((-710) $)) (-15 -2061 ((-589 |#1|) $)))) (-786)) (T -758)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-1738 (*1 *2 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-1751 (*1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-1419 (*1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2964 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-3206 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2259 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2701 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-4111 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2701 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-4111 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-3757 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-758 *3)) (|:| |rm| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-1655 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-758 *3)) (|:| |mm| (-758 *3)) (|:| |rm| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-710)) (-5 *1 (-758 *4)) (-4 *4 (-786)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 (-710))))) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-758 *3)) (-4 *3 (-786))))) -(-13 (-782) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-710))) (-15 -1738 (|#1| $)) (-15 -1751 ($ $)) (-15 -1419 ($ $)) (-15 -2964 ((-108) $ $)) (-15 -3206 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -2701 ((-3 $ "failed") $ $)) (-15 -4111 ((-3 $ "failed") $ $)) (-15 -2701 ((-3 $ "failed") $ |#1|)) (-15 -4111 ((-3 $ "failed") $ |#1|)) (-15 -3757 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1655 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1703 ((-710) $)) (-15 -3731 ((-710) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -1979 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $)) (-15 -2996 ((-710) $)) (-15 -2061 ((-589 |#1|) $)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-3671 (((-523) $) 53)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2604 (((-108) $) 51)) (-2023 (((-108) $) 31)) (-4114 (((-108) $) 52)) (-2454 (($ $ $) 50)) (-2062 (($ $ $) 49)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ $) 42)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2619 (($ $) 54)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 47)) (-4019 (((-108) $ $) 46)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 48)) (-4007 (((-108) $ $) 45)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-1680 (((-108) $ $) NIL)) (-2634 (((-589 |#1|) $) 29)) (-2395 (((-710) $) NIL)) (-4189 (($) NIL T CONST)) (-3166 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-1220 (((-3 |#1| "failed") $) NIL)) (-3508 ((|#1| $) NIL)) (-2441 (($ $) 31)) (-1444 (((-3 $ "failed") $) NIL)) (-3574 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2769 (((-108) $) NIL)) (-2212 ((|#1| $ (-523)) NIL)) (-2800 (((-710) $ (-523)) NIL)) (-1965 (($ $) 36)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2278 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-2886 (((-108) $ $) 34)) (-2616 (((-710) $) 25)) (-2032 (((-1070) $) NIL)) (-3387 (($ $ $) NIL)) (-3350 (($ $ $) NIL)) (-3951 (((-1034) $) NIL)) (-2428 ((|#1| $) 30)) (-3491 (((-589 (-2 (|:| |gen| |#1|) (|:| -2922 (-710)))) $) NIL)) (-4020 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1691 (((-794) $) NIL) (($ |#1|) NIL)) (-2423 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-1891 (($) 14 T CONST)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 35)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL) (($ |#1| (-710)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-758 |#1|) (-13 (-782) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-710))) (-15 -2428 (|#1| $)) (-15 -2441 ($ $)) (-15 -1965 ($ $)) (-15 -2886 ((-108) $ $)) (-15 -3350 ($ $ $)) (-15 -3387 ($ $ $)) (-15 -2278 ((-3 $ "failed") $ $)) (-15 -3166 ((-3 $ "failed") $ $)) (-15 -2278 ((-3 $ "failed") $ |#1|)) (-15 -3166 ((-3 $ "failed") $ |#1|)) (-15 -4020 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3574 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2395 ((-710) $)) (-15 -2800 ((-710) $ (-523))) (-15 -2212 (|#1| $ (-523))) (-15 -3491 ((-589 (-2 (|:| |gen| |#1|) (|:| -2922 (-710)))) $)) (-15 -2616 ((-710) $)) (-15 -2634 ((-589 |#1|) $)))) (-786)) (T -758)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2428 (*1 *2 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2441 (*1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-1965 (*1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2886 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-3350 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-3387 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2278 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-3166 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2278 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-3166 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-4020 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-758 *3)) (|:| |rm| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-3574 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-758 *3)) (|:| |mm| (-758 *3)) (|:| |rm| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-2800 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-710)) (-5 *1 (-758 *4)) (-4 *4 (-786)))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -2922 (-710))))) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-758 *3)) (-4 *3 (-786))))) +(-13 (-782) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-710))) (-15 -2428 (|#1| $)) (-15 -2441 ($ $)) (-15 -1965 ($ $)) (-15 -2886 ((-108) $ $)) (-15 -3350 ($ $ $)) (-15 -3387 ($ $ $)) (-15 -2278 ((-3 $ "failed") $ $)) (-15 -3166 ((-3 $ "failed") $ $)) (-15 -2278 ((-3 $ "failed") $ |#1|)) (-15 -3166 ((-3 $ "failed") $ |#1|)) (-15 -4020 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3574 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2395 ((-710) $)) (-15 -2800 ((-710) $ (-523))) (-15 -2212 (|#1| $ (-523))) (-15 -3491 ((-589 (-2 (|:| |gen| |#1|) (|:| -2922 (-710)))) $)) (-15 -2616 ((-710) $)) (-15 -2634 ((-589 |#1|) $)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-3482 (((-523) $) 53)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-3712 (((-108) $) 51)) (-2769 (((-108) $) 31)) (-2057 (((-108) $) 52)) (-3239 (($ $ $) 50)) (-3158 (($ $ $) 49)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-4007 (((-3 $ "failed") $ $) 42)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-2695 (($ $) 54)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-4006 (((-108) $ $) 47)) (-3980 (((-108) $ $) 46)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 48)) (-3966 (((-108) $ $) 45)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-759) (-129)) (T -759)) NIL (-13 (-515) (-784)) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-784) . T) ((-786) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-4046 (($ (-1034)) 7)) (-2832 (((-108) $ (-1070) (-1034)) 15)) (-2338 (((-761) $) 12)) (-3073 (((-761) $) 11)) (-2344 (((-1173) $) 9)) (-4196 (((-108) $ (-1034)) 16))) -(((-760) (-10 -8 (-15 -4046 ($ (-1034))) (-15 -2344 ((-1173) $)) (-15 -3073 ((-761) $)) (-15 -2338 ((-761) $)) (-15 -2832 ((-108) $ (-1070) (-1034))) (-15 -4196 ((-108) $ (-1034))))) (T -760)) -((-4196 (*1 *2 *1 *3) (-12 (-5 *3 (-1034)) (-5 *2 (-108)) (-5 *1 (-760)))) (-2832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-1034)) (-5 *2 (-108)) (-5 *1 (-760)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-760)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-760)))) (-2344 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-760)))) (-4046 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-760))))) -(-10 -8 (-15 -4046 ($ (-1034))) (-15 -2344 ((-1173) $)) (-15 -3073 ((-761) $)) (-15 -2338 ((-761) $)) (-15 -2832 ((-108) $ (-1070) (-1034))) (-15 -4196 ((-108) $ (-1034)))) -((-4118 (((-1173) $ (-762)) 12)) (-1552 (((-1173) $ (-1087)) 32)) (-3063 (((-1173) $ (-1070) (-1070)) 34)) (-3216 (((-1173) $ (-1070)) 33)) (-3358 (((-1173) $) 19)) (-3037 (((-1173) $ (-523)) 28)) (-1268 (((-1173) $ (-203)) 30)) (-2603 (((-1173) $) 18)) (-2696 (((-1173) $) 26)) (-3950 (((-1173) $) 25)) (-3351 (((-1173) $) 23)) (-1481 (((-1173) $) 24)) (-1578 (((-1173) $) 22)) (-3520 (((-1173) $) 21)) (-4085 (((-1173) $) 20)) (-1585 (((-1173) $) 16)) (-4047 (((-1173) $) 17)) (-3704 (((-1173) $) 15)) (-1724 (((-1173) $) 14)) (-2306 (((-1173) $) 13)) (-3842 (($ (-1070) (-762)) 9)) (-4151 (($ (-1070) (-1070) (-762)) 8)) (-1935 (((-1087) $) 51)) (-4094 (((-1087) $) 55)) (-2722 (((-2 (|:| |cd| (-1070)) (|:| -4038 (-1070))) $) 54)) (-2670 (((-1070) $) 52)) (-3918 (((-1173) $) 41)) (-3158 (((-523) $) 49)) (-3873 (((-203) $) 50)) (-2125 (((-1173) $) 40)) (-1693 (((-1173) $) 48)) (-3340 (((-1173) $) 47)) (-3696 (((-1173) $) 45)) (-2578 (((-1173) $) 46)) (-2017 (((-1173) $) 44)) (-1754 (((-1173) $) 43)) (-1430 (((-1173) $) 42)) (-2628 (((-1173) $) 38)) (-1918 (((-1173) $) 39)) (-2265 (((-1173) $) 37)) (-1233 (((-1173) $) 36)) (-2181 (((-1173) $) 35)) (-3461 (((-1173) $) 11))) -(((-761) (-10 -8 (-15 -4151 ($ (-1070) (-1070) (-762))) (-15 -3842 ($ (-1070) (-762))) (-15 -3461 ((-1173) $)) (-15 -4118 ((-1173) $ (-762))) (-15 -2306 ((-1173) $)) (-15 -1724 ((-1173) $)) (-15 -3704 ((-1173) $)) (-15 -1585 ((-1173) $)) (-15 -4047 ((-1173) $)) (-15 -2603 ((-1173) $)) (-15 -3358 ((-1173) $)) (-15 -4085 ((-1173) $)) (-15 -3520 ((-1173) $)) (-15 -1578 ((-1173) $)) (-15 -3351 ((-1173) $)) (-15 -1481 ((-1173) $)) (-15 -3950 ((-1173) $)) (-15 -2696 ((-1173) $)) (-15 -3037 ((-1173) $ (-523))) (-15 -1268 ((-1173) $ (-203))) (-15 -1552 ((-1173) $ (-1087))) (-15 -3216 ((-1173) $ (-1070))) (-15 -3063 ((-1173) $ (-1070) (-1070))) (-15 -2181 ((-1173) $)) (-15 -1233 ((-1173) $)) (-15 -2265 ((-1173) $)) (-15 -2628 ((-1173) $)) (-15 -1918 ((-1173) $)) (-15 -2125 ((-1173) $)) (-15 -3918 ((-1173) $)) (-15 -1430 ((-1173) $)) (-15 -1754 ((-1173) $)) (-15 -2017 ((-1173) $)) (-15 -3696 ((-1173) $)) (-15 -2578 ((-1173) $)) (-15 -3340 ((-1173) $)) (-15 -1693 ((-1173) $)) (-15 -3158 ((-523) $)) (-15 -3873 ((-203) $)) (-15 -1935 ((-1087) $)) (-15 -2670 ((-1070) $)) (-15 -2722 ((-2 (|:| |cd| (-1070)) (|:| -4038 (-1070))) $)) (-15 -4094 ((-1087) $)))) (T -761)) -((-4094 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-761)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1070)) (|:| -4038 (-1070)))) (-5 *1 (-761)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-761)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-761)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-761)))) (-3158 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-761)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1233 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3063 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-761)))) (-3216 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-761)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-761)))) (-1268 (*1 *2 *1 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1173)) (-5 *1 (-761)))) (-3037 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-761)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1173)) (-5 *1 (-761)))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3842 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-762)) (-5 *1 (-761)))) (-4151 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-762)) (-5 *1 (-761))))) -(-10 -8 (-15 -4151 ($ (-1070) (-1070) (-762))) (-15 -3842 ($ (-1070) (-762))) (-15 -3461 ((-1173) $)) (-15 -4118 ((-1173) $ (-762))) (-15 -2306 ((-1173) $)) (-15 -1724 ((-1173) $)) (-15 -3704 ((-1173) $)) (-15 -1585 ((-1173) $)) (-15 -4047 ((-1173) $)) (-15 -2603 ((-1173) $)) (-15 -3358 ((-1173) $)) (-15 -4085 ((-1173) $)) (-15 -3520 ((-1173) $)) (-15 -1578 ((-1173) $)) (-15 -3351 ((-1173) $)) (-15 -1481 ((-1173) $)) (-15 -3950 ((-1173) $)) (-15 -2696 ((-1173) $)) (-15 -3037 ((-1173) $ (-523))) (-15 -1268 ((-1173) $ (-203))) (-15 -1552 ((-1173) $ (-1087))) (-15 -3216 ((-1173) $ (-1070))) (-15 -3063 ((-1173) $ (-1070) (-1070))) (-15 -2181 ((-1173) $)) (-15 -1233 ((-1173) $)) (-15 -2265 ((-1173) $)) (-15 -2628 ((-1173) $)) (-15 -1918 ((-1173) $)) (-15 -2125 ((-1173) $)) (-15 -3918 ((-1173) $)) (-15 -1430 ((-1173) $)) (-15 -1754 ((-1173) $)) (-15 -2017 ((-1173) $)) (-15 -3696 ((-1173) $)) (-15 -2578 ((-1173) $)) (-15 -3340 ((-1173) $)) (-15 -1693 ((-1173) $)) (-15 -3158 ((-523) $)) (-15 -3873 ((-203) $)) (-15 -1935 ((-1087) $)) (-15 -2670 ((-1070) $)) (-15 -2722 ((-2 (|:| |cd| (-1070)) (|:| -4038 (-1070))) $)) (-15 -4094 ((-1087) $))) -((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 12)) (-3993 (($) 15)) (-2527 (($) 13)) (-1899 (($) 16)) (-3600 (($) 14)) (-3983 (((-108) $ $) 8))) -(((-762) (-13 (-1016) (-10 -8 (-15 -2527 ($)) (-15 -3993 ($)) (-15 -1899 ($)) (-15 -3600 ($))))) (T -762)) -((-2527 (*1 *1) (-5 *1 (-762))) (-3993 (*1 *1) (-5 *1 (-762))) (-1899 (*1 *1) (-5 *1 (-762))) (-3600 (*1 *1) (-5 *1 (-762)))) -(-13 (-1016) (-10 -8 (-15 -2527 ($)) (-15 -3993 ($)) (-15 -1899 ($)) (-15 -3600 ($)))) -((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 21) (($ (-1087)) 17)) (-2444 (((-108) $) 10)) (-2000 (((-108) $) 9)) (-3413 (((-108) $) 11)) (-3933 (((-108) $) 8)) (-3983 (((-108) $ $) 19))) -(((-763) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-1087))) (-15 -3933 ((-108) $)) (-15 -2000 ((-108) $)) (-15 -2444 ((-108) $)) (-15 -3413 ((-108) $))))) (T -763)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-763)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763)))) (-2000 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763)))) (-2444 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) -(-13 (-1016) (-10 -8 (-15 -1458 ($ (-1087))) (-15 -3933 ((-108) $)) (-15 -2000 ((-108) $)) (-15 -2444 ((-108) $)) (-15 -3413 ((-108) $)))) -((-3924 (((-108) $ $) NIL)) (-3660 (($ (-763) (-589 (-1087))) 24)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3403 (((-763) $) 25)) (-2026 (((-589 (-1087)) $) 26)) (-1458 (((-794) $) 23)) (-3983 (((-108) $ $) NIL))) -(((-764) (-13 (-1016) (-10 -8 (-15 -3403 ((-763) $)) (-15 -2026 ((-589 (-1087)) $)) (-15 -3660 ($ (-763) (-589 (-1087))))))) (T -764)) -((-3403 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-764)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-764)))) (-3660 (*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *3 (-589 (-1087))) (-5 *1 (-764))))) -(-13 (-1016) (-10 -8 (-15 -3403 ((-763) $)) (-15 -2026 ((-589 (-1087)) $)) (-15 -3660 ($ (-763) (-589 (-1087)))))) -((-3790 (((-1173) (-761) (-292 |#1|) (-108)) 22) (((-1173) (-761) (-292 |#1|)) 76) (((-1070) (-292 |#1|) (-108)) 75) (((-1070) (-292 |#1|)) 74))) -(((-765 |#1|) (-10 -7 (-15 -3790 ((-1070) (-292 |#1|))) (-15 -3790 ((-1070) (-292 |#1|) (-108))) (-15 -3790 ((-1173) (-761) (-292 |#1|))) (-15 -3790 ((-1173) (-761) (-292 |#1|) (-108)))) (-13 (-767) (-786) (-973))) (T -765)) -((-3790 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-761)) (-5 *4 (-292 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-767) (-786) (-973))) (-5 *2 (-1173)) (-5 *1 (-765 *6)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-761)) (-5 *4 (-292 *5)) (-4 *5 (-13 (-767) (-786) (-973))) (-5 *2 (-1173)) (-5 *1 (-765 *5)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-292 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-767) (-786) (-973))) (-5 *2 (-1070)) (-5 *1 (-765 *5)))) (-3790 (*1 *2 *3) (-12 (-5 *3 (-292 *4)) (-4 *4 (-13 (-767) (-786) (-973))) (-5 *2 (-1070)) (-5 *1 (-765 *4))))) -(-10 -7 (-15 -3790 ((-1070) (-292 |#1|))) (-15 -3790 ((-1070) (-292 |#1|) (-108))) (-15 -3790 ((-1173) (-761) (-292 |#1|))) (-15 -3790 ((-1173) (-761) (-292 |#1|) (-108)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4071 ((|#1| $) 10)) (-3013 (($ |#1|) 9)) (-2023 (((-108) $) NIL)) (-1933 (($ |#2| (-710)) NIL)) (-1575 (((-710) $) NIL)) (-3786 ((|#2| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3523 (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $) NIL (|has| |#1| (-211)))) (-2299 (((-710) $) NIL)) (-1458 (((-794) $) 17) (($ (-523)) NIL) (($ |#2|) NIL (|has| |#2| (-158)))) (-2365 ((|#2| $ (-710)) NIL)) (-1621 (((-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $) NIL (|has| |#1| (-211)))) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-766 |#1| |#2|) (-13 (-648 |#2|) (-10 -8 (IF (|has| |#1| (-211)) (-6 (-211)) |%noBranch|) (-15 -3013 ($ |#1|)) (-15 -4071 (|#1| $)))) (-648 |#2|) (-973)) (T -766)) -((-3013 (*1 *1 *2) (-12 (-4 *3 (-973)) (-5 *1 (-766 *2 *3)) (-4 *2 (-648 *3)))) (-4071 (*1 *2 *1) (-12 (-4 *2 (-648 *3)) (-5 *1 (-766 *2 *3)) (-4 *3 (-973))))) -(-13 (-648 |#2|) (-10 -8 (IF (|has| |#1| (-211)) (-6 (-211)) |%noBranch|) (-15 -3013 ($ |#1|)) (-15 -4071 (|#1| $)))) -((-3790 (((-1173) (-761) $ (-108)) 9) (((-1173) (-761) $) 8) (((-1070) $ (-108)) 7) (((-1070) $) 6))) +((-3795 (($ (-1034)) 7)) (-4136 (((-108) $ (-1070) (-1034)) 15)) (-2973 (((-761) $) 12)) (-1559 (((-761) $) 11)) (-3033 (((-1174) $) 9)) (-4072 (((-108) $ (-1034)) 16))) +(((-760) (-10 -8 (-15 -3795 ($ (-1034))) (-15 -3033 ((-1174) $)) (-15 -1559 ((-761) $)) (-15 -2973 ((-761) $)) (-15 -4136 ((-108) $ (-1070) (-1034))) (-15 -4072 ((-108) $ (-1034))))) (T -760)) +((-4072 (*1 *2 *1 *3) (-12 (-5 *3 (-1034)) (-5 *2 (-108)) (-5 *1 (-760)))) (-4136 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-1034)) (-5 *2 (-108)) (-5 *1 (-760)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-760)))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-760)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-760)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-760))))) +(-10 -8 (-15 -3795 ($ (-1034))) (-15 -3033 ((-1174) $)) (-15 -1559 ((-761) $)) (-15 -2973 ((-761) $)) (-15 -4136 ((-108) $ (-1070) (-1034))) (-15 -4072 ((-108) $ (-1034)))) +((-2094 (((-1174) $ (-762)) 12)) (-3803 (((-1174) $ (-1087)) 32)) (-2614 (((-1174) $ (-1070) (-1070)) 34)) (-3446 (((-1174) $ (-1070)) 33)) (-3419 (((-1174) $) 19)) (-2399 (((-1174) $ (-523)) 28)) (-4026 (((-1174) $ (-203)) 30)) (-3698 (((-1174) $) 18)) (-2240 (((-1174) $) 26)) (-1241 (((-1174) $) 25)) (-3376 (((-1174) $) 23)) (-1392 (((-1174) $) 24)) (-4086 (((-1174) $) 22)) (-1497 (((-1174) $) 21)) (-2976 (((-1174) $) 20)) (-4156 (((-1174) $) 16)) (-2642 (((-1174) $) 17)) (-2608 (((-1174) $) 15)) (-2972 (((-1174) $) 14)) (-2697 (((-1174) $) 13)) (-2554 (($ (-1070) (-762)) 9)) (-2420 (($ (-1070) (-1070) (-762)) 8)) (-1306 (((-1087) $) 51)) (-3024 (((-1087) $) 55)) (-2492 (((-2 (|:| |cd| (-1070)) (|:| -4198 (-1070))) $) 54)) (-2014 (((-1070) $) 52)) (-3899 (((-1174) $) 41)) (-4155 (((-523) $) 49)) (-1684 (((-203) $) 50)) (-1484 (((-1174) $) 40)) (-2725 (((-1174) $) 48)) (-3253 (((-1174) $) 47)) (-3686 (((-1174) $) 45)) (-3481 (((-1174) $) 46)) (-2711 (((-1174) $) 44)) (-2054 (((-1174) $) 43)) (-2049 (((-1174) $) 42)) (-2770 (((-1174) $) 38)) (-4151 (((-1174) $) 39)) (-3438 (((-1174) $) 37)) (-3619 (((-1174) $) 36)) (-3815 (((-1174) $) 35)) (-2074 (((-1174) $) 11))) +(((-761) (-10 -8 (-15 -2420 ($ (-1070) (-1070) (-762))) (-15 -2554 ($ (-1070) (-762))) (-15 -2074 ((-1174) $)) (-15 -2094 ((-1174) $ (-762))) (-15 -2697 ((-1174) $)) (-15 -2972 ((-1174) $)) (-15 -2608 ((-1174) $)) (-15 -4156 ((-1174) $)) (-15 -2642 ((-1174) $)) (-15 -3698 ((-1174) $)) (-15 -3419 ((-1174) $)) (-15 -2976 ((-1174) $)) (-15 -1497 ((-1174) $)) (-15 -4086 ((-1174) $)) (-15 -3376 ((-1174) $)) (-15 -1392 ((-1174) $)) (-15 -1241 ((-1174) $)) (-15 -2240 ((-1174) $)) (-15 -2399 ((-1174) $ (-523))) (-15 -4026 ((-1174) $ (-203))) (-15 -3803 ((-1174) $ (-1087))) (-15 -3446 ((-1174) $ (-1070))) (-15 -2614 ((-1174) $ (-1070) (-1070))) (-15 -3815 ((-1174) $)) (-15 -3619 ((-1174) $)) (-15 -3438 ((-1174) $)) (-15 -2770 ((-1174) $)) (-15 -4151 ((-1174) $)) (-15 -1484 ((-1174) $)) (-15 -3899 ((-1174) $)) (-15 -2049 ((-1174) $)) (-15 -2054 ((-1174) $)) (-15 -2711 ((-1174) $)) (-15 -3686 ((-1174) $)) (-15 -3481 ((-1174) $)) (-15 -3253 ((-1174) $)) (-15 -2725 ((-1174) $)) (-15 -4155 ((-523) $)) (-15 -1684 ((-203) $)) (-15 -1306 ((-1087) $)) (-15 -2014 ((-1070) $)) (-15 -2492 ((-2 (|:| |cd| (-1070)) (|:| -4198 (-1070))) $)) (-15 -3024 ((-1087) $)))) (T -761)) +((-3024 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-761)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1070)) (|:| -4198 (-1070)))) (-5 *1 (-761)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-761)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-761)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-761)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-761)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-2711 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-1484 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-4151 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-2614 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-761)))) (-3446 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-761)))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-761)))) (-4026 (*1 *2 *1 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1174)) (-5 *1 (-761)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-761)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-1241 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-3698 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-2094 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1174)) (-5 *1 (-761)))) (-2074 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761)))) (-2554 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-762)) (-5 *1 (-761)))) (-2420 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-762)) (-5 *1 (-761))))) +(-10 -8 (-15 -2420 ($ (-1070) (-1070) (-762))) (-15 -2554 ($ (-1070) (-762))) (-15 -2074 ((-1174) $)) (-15 -2094 ((-1174) $ (-762))) (-15 -2697 ((-1174) $)) (-15 -2972 ((-1174) $)) (-15 -2608 ((-1174) $)) (-15 -4156 ((-1174) $)) (-15 -2642 ((-1174) $)) (-15 -3698 ((-1174) $)) (-15 -3419 ((-1174) $)) (-15 -2976 ((-1174) $)) (-15 -1497 ((-1174) $)) (-15 -4086 ((-1174) $)) (-15 -3376 ((-1174) $)) (-15 -1392 ((-1174) $)) (-15 -1241 ((-1174) $)) (-15 -2240 ((-1174) $)) (-15 -2399 ((-1174) $ (-523))) (-15 -4026 ((-1174) $ (-203))) (-15 -3803 ((-1174) $ (-1087))) (-15 -3446 ((-1174) $ (-1070))) (-15 -2614 ((-1174) $ (-1070) (-1070))) (-15 -3815 ((-1174) $)) (-15 -3619 ((-1174) $)) (-15 -3438 ((-1174) $)) (-15 -2770 ((-1174) $)) (-15 -4151 ((-1174) $)) (-15 -1484 ((-1174) $)) (-15 -3899 ((-1174) $)) (-15 -2049 ((-1174) $)) (-15 -2054 ((-1174) $)) (-15 -2711 ((-1174) $)) (-15 -3686 ((-1174) $)) (-15 -3481 ((-1174) $)) (-15 -3253 ((-1174) $)) (-15 -2725 ((-1174) $)) (-15 -4155 ((-523) $)) (-15 -1684 ((-203) $)) (-15 -1306 ((-1087) $)) (-15 -2014 ((-1070) $)) (-15 -2492 ((-2 (|:| |cd| (-1070)) (|:| -4198 (-1070))) $)) (-15 -3024 ((-1087) $))) +((-1680 (((-108) $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 12)) (-3356 (($) 15)) (-1259 (($) 13)) (-3936 (($) 16)) (-4070 (($) 14)) (-3941 (((-108) $ $) 8))) +(((-762) (-13 (-1016) (-10 -8 (-15 -1259 ($)) (-15 -3356 ($)) (-15 -3936 ($)) (-15 -4070 ($))))) (T -762)) +((-1259 (*1 *1) (-5 *1 (-762))) (-3356 (*1 *1) (-5 *1 (-762))) (-3936 (*1 *1) (-5 *1 (-762))) (-4070 (*1 *1) (-5 *1 (-762)))) +(-13 (-1016) (-10 -8 (-15 -1259 ($)) (-15 -3356 ($)) (-15 -3936 ($)) (-15 -4070 ($)))) +((-1680 (((-108) $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 21) (($ (-1087)) 17)) (-1668 (((-108) $) 10)) (-2561 (((-108) $) 9)) (-2783 (((-108) $) 11)) (-4064 (((-108) $) 8)) (-3941 (((-108) $ $) 19))) +(((-763) (-13 (-1016) (-10 -8 (-15 -1691 ($ (-1087))) (-15 -4064 ((-108) $)) (-15 -2561 ((-108) $)) (-15 -1668 ((-108) $)) (-15 -2783 ((-108) $))))) (T -763)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-763)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) +(-13 (-1016) (-10 -8 (-15 -1691 ($ (-1087))) (-15 -4064 ((-108) $)) (-15 -2561 ((-108) $)) (-15 -1668 ((-108) $)) (-15 -2783 ((-108) $)))) +((-1680 (((-108) $ $) NIL)) (-3371 (($ (-763) (-589 (-1087))) 24)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2698 (((-763) $) 25)) (-2798 (((-589 (-1087)) $) 26)) (-1691 (((-794) $) 23)) (-3941 (((-108) $ $) NIL))) +(((-764) (-13 (-1016) (-10 -8 (-15 -2698 ((-763) $)) (-15 -2798 ((-589 (-1087)) $)) (-15 -3371 ($ (-763) (-589 (-1087))))))) (T -764)) +((-2698 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-764)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-764)))) (-3371 (*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *3 (-589 (-1087))) (-5 *1 (-764))))) +(-13 (-1016) (-10 -8 (-15 -2698 ((-763) $)) (-15 -2798 ((-589 (-1087)) $)) (-15 -3371 ($ (-763) (-589 (-1087)))))) +((-2111 (((-1174) (-761) (-292 |#1|) (-108)) 22) (((-1174) (-761) (-292 |#1|)) 78) (((-1070) (-292 |#1|) (-108)) 77) (((-1070) (-292 |#1|)) 76))) +(((-765 |#1|) (-10 -7 (-15 -2111 ((-1070) (-292 |#1|))) (-15 -2111 ((-1070) (-292 |#1|) (-108))) (-15 -2111 ((-1174) (-761) (-292 |#1|))) (-15 -2111 ((-1174) (-761) (-292 |#1|) (-108)))) (-13 (-767) (-786) (-973))) (T -765)) +((-2111 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-761)) (-5 *4 (-292 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-767) (-786) (-973))) (-5 *2 (-1174)) (-5 *1 (-765 *6)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-761)) (-5 *4 (-292 *5)) (-4 *5 (-13 (-767) (-786) (-973))) (-5 *2 (-1174)) (-5 *1 (-765 *5)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-292 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-767) (-786) (-973))) (-5 *2 (-1070)) (-5 *1 (-765 *5)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-292 *4)) (-4 *4 (-13 (-767) (-786) (-973))) (-5 *2 (-1070)) (-5 *1 (-765 *4))))) +(-10 -7 (-15 -2111 ((-1070) (-292 |#1|))) (-15 -2111 ((-1070) (-292 |#1|) (-108))) (-15 -2111 ((-1174) (-761) (-292 |#1|))) (-15 -2111 ((-1174) (-761) (-292 |#1|) (-108)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-2855 ((|#1| $) 10)) (-2888 (($ |#1|) 9)) (-2769 (((-108) $) NIL)) (-1267 (($ |#2| (-710)) NIL)) (-4047 (((-710) $) NIL)) (-1437 ((|#2| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3984 (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $) NIL (|has| |#1| (-211)))) (-2640 (((-710) $) NIL)) (-1691 (((-794) $) 17) (($ (-523)) NIL) (($ |#2|) NIL (|has| |#2| (-158)))) (-2084 ((|#2| $ (-710)) NIL)) (-3272 (((-710)) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $) NIL (|has| |#1| (-211)))) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-766 |#1| |#2|) (-13 (-648 |#2|) (-10 -8 (IF (|has| |#1| (-211)) (-6 (-211)) |%noBranch|) (-15 -2888 ($ |#1|)) (-15 -2855 (|#1| $)))) (-648 |#2|) (-973)) (T -766)) +((-2888 (*1 *1 *2) (-12 (-4 *3 (-973)) (-5 *1 (-766 *2 *3)) (-4 *2 (-648 *3)))) (-2855 (*1 *2 *1) (-12 (-4 *2 (-648 *3)) (-5 *1 (-766 *2 *3)) (-4 *3 (-973))))) +(-13 (-648 |#2|) (-10 -8 (IF (|has| |#1| (-211)) (-6 (-211)) |%noBranch|) (-15 -2888 ($ |#1|)) (-15 -2855 (|#1| $)))) +((-2111 (((-1174) (-761) $ (-108)) 9) (((-1174) (-761) $) 8) (((-1070) $ (-108)) 7) (((-1070) $) 6))) (((-767) (-129)) (T -767)) -((-3790 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-767)) (-5 *3 (-761)) (-5 *4 (-108)) (-5 *2 (-1173)))) (-3790 (*1 *2 *3 *1) (-12 (-4 *1 (-767)) (-5 *3 (-761)) (-5 *2 (-1173)))) (-3790 (*1 *2 *1 *3) (-12 (-4 *1 (-767)) (-5 *3 (-108)) (-5 *2 (-1070)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-767)) (-5 *2 (-1070))))) -(-13 (-10 -8 (-15 -3790 ((-1070) $)) (-15 -3790 ((-1070) $ (-108))) (-15 -3790 ((-1173) (-761) $)) (-15 -3790 ((-1173) (-761) $ (-108))))) -((-3424 (((-288) (-1070) (-1070)) 12)) (-2425 (((-108) (-1070) (-1070)) 34)) (-3685 (((-108) (-1070)) 33)) (-3242 (((-51) (-1070)) 25)) (-2416 (((-51) (-1070)) 23)) (-1833 (((-51) (-761)) 17)) (-1930 (((-589 (-1070)) (-1070)) 28)) (-2098 (((-589 (-1070))) 27))) -(((-768) (-10 -7 (-15 -1833 ((-51) (-761))) (-15 -2416 ((-51) (-1070))) (-15 -3242 ((-51) (-1070))) (-15 -2098 ((-589 (-1070)))) (-15 -1930 ((-589 (-1070)) (-1070))) (-15 -3685 ((-108) (-1070))) (-15 -2425 ((-108) (-1070) (-1070))) (-15 -3424 ((-288) (-1070) (-1070))))) (T -768)) -((-3424 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-768)))) (-2425 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-768)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-768)))) (-1930 (*1 *2 *3) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-768)) (-5 *3 (-1070)))) (-2098 (*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-768)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-768)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-768)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-761)) (-5 *2 (-51)) (-5 *1 (-768))))) -(-10 -7 (-15 -1833 ((-51) (-761))) (-15 -2416 ((-51) (-1070))) (-15 -3242 ((-51) (-1070))) (-15 -2098 ((-589 (-1070)))) (-15 -1930 ((-589 (-1070)) (-1070))) (-15 -3685 ((-108) (-1070))) (-15 -2425 ((-108) (-1070) (-1070))) (-15 -3424 ((-288) (-1070) (-1070)))) -((-3924 (((-108) $ $) 19)) (-3288 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1922 (($ $ $) 72)) (-3471 (((-108) $ $) 73)) (-3079 (((-108) $ (-710)) 8)) (-4086 (($ (-589 |#1|)) 68) (($) 67)) (-3387 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-3941 (($ $) 62)) (-1773 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2454 ((|#1| $) 78)) (-2158 (($ $ $) 81)) (-2178 (($ $ $) 80)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2062 ((|#1| $) 79)) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22)) (-1309 (($ $ $) 69)) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40) (($ |#1| $ (-710)) 63)) (-2783 (((-1034) $) 21)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2766 (((-589 (-2 (|:| -2433 |#1|) (|:| -2792 (-710)))) $) 61)) (-3682 (($ $ |#1|) 71) (($ $ $) 70)) (-3433 (($) 49) (($ (-589 |#1|)) 48)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 50)) (-1458 (((-794) $) 18)) (-1684 (($ (-589 |#1|)) 66) (($) 65)) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20)) (-4007 (((-108) $ $) 64)) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-2111 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-767)) (-5 *3 (-761)) (-5 *4 (-108)) (-5 *2 (-1174)))) (-2111 (*1 *2 *3 *1) (-12 (-4 *1 (-767)) (-5 *3 (-761)) (-5 *2 (-1174)))) (-2111 (*1 *2 *1 *3) (-12 (-4 *1 (-767)) (-5 *3 (-108)) (-5 *2 (-1070)))) (-2111 (*1 *2 *1) (-12 (-4 *1 (-767)) (-5 *2 (-1070))))) +(-13 (-10 -8 (-15 -2111 ((-1070) $)) (-15 -2111 ((-1070) $ (-108))) (-15 -2111 ((-1174) (-761) $)) (-15 -2111 ((-1174) (-761) $ (-108))))) +((-2884 (((-288) (-1070) (-1070)) 12)) (-1519 (((-108) (-1070) (-1070)) 34)) (-3612 (((-108) (-1070)) 33)) (-3689 (((-51) (-1070)) 25)) (-1440 (((-51) (-1070)) 23)) (-1565 (((-51) (-761)) 17)) (-1256 (((-589 (-1070)) (-1070)) 28)) (-2332 (((-589 (-1070))) 27))) +(((-768) (-10 -7 (-15 -1565 ((-51) (-761))) (-15 -1440 ((-51) (-1070))) (-15 -3689 ((-51) (-1070))) (-15 -2332 ((-589 (-1070)))) (-15 -1256 ((-589 (-1070)) (-1070))) (-15 -3612 ((-108) (-1070))) (-15 -1519 ((-108) (-1070) (-1070))) (-15 -2884 ((-288) (-1070) (-1070))))) (T -768)) +((-2884 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-768)))) (-1519 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-768)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-768)))) (-1256 (*1 *2 *3) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-768)) (-5 *3 (-1070)))) (-2332 (*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-768)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-768)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-768)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-761)) (-5 *2 (-51)) (-5 *1 (-768))))) +(-10 -7 (-15 -1565 ((-51) (-761))) (-15 -1440 ((-51) (-1070))) (-15 -3689 ((-51) (-1070))) (-15 -2332 ((-589 (-1070)))) (-15 -1256 ((-589 (-1070)) (-1070))) (-15 -3612 ((-108) (-1070))) (-15 -1519 ((-108) (-1070) (-1070))) (-15 -2884 ((-288) (-1070) (-1070)))) +((-1680 (((-108) $ $) 19)) (-3321 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-4199 (($ $ $) 72)) (-2172 (((-108) $ $) 73)) (-1620 (((-108) $ (-710)) 8)) (-1365 (($ (-589 |#1|)) 68) (($) 67)) (-3703 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-4160 (($ $) 62)) (-2462 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3286 (($ |#1| $) 47 (|has| $ (-6 -4248))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4248)))) (-2514 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4248)))) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-3239 ((|#1| $) 78)) (-1793 (($ $ $) 81)) (-3780 (($ $ $) 80)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3158 ((|#1| $) 79)) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22)) (-3196 (($ $ $) 69)) (-1293 ((|#1| $) 39)) (-3108 (($ |#1| $) 40) (($ |#1| $ (-710)) 63)) (-3951 (((-1034) $) 21)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3048 ((|#1| $) 41)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1767 (((-589 (-2 (|:| -2482 |#1|) (|:| -3977 (-710)))) $) 61)) (-3582 (($ $ |#1|) 71) (($ $ $) 70)) (-2963 (($) 49) (($ (-589 |#1|)) 48)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1400 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 50)) (-1691 (((-794) $) 18)) (-3324 (($ (-589 |#1|)) 66) (($) 65)) (-2417 (($ (-589 |#1|)) 42)) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20)) (-3966 (((-108) $ $) 64)) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-769 |#1|) (-129) (-786)) (T -769)) -((-2454 (*1 *2 *1) (-12 (-4 *1 (-769 *2)) (-4 *2 (-786))))) -(-13 (-676 |t#1|) (-898 |t#1|) (-10 -8 (-15 -2454 (|t#1| $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-634 |#1|) . T) ((-676 |#1|) . T) ((-898 |#1|) . T) ((-1014 |#1|) . T) ((-1016) . T) ((-1122) . T)) -((-3470 (((-1173) (-1034) (-1034)) 47)) (-2721 (((-1173) (-760) (-51)) 44)) (-3665 (((-51) (-760)) 16))) -(((-770) (-10 -7 (-15 -3665 ((-51) (-760))) (-15 -2721 ((-1173) (-760) (-51))) (-15 -3470 ((-1173) (-1034) (-1034))))) (T -770)) -((-3470 (*1 *2 *3 *3) (-12 (-5 *3 (-1034)) (-5 *2 (-1173)) (-5 *1 (-770)))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-760)) (-5 *4 (-51)) (-5 *2 (-1173)) (-5 *1 (-770)))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-760)) (-5 *2 (-51)) (-5 *1 (-770))))) -(-10 -7 (-15 -3665 ((-51) (-760))) (-15 -2721 ((-1173) (-760) (-51))) (-15 -3470 ((-1173) (-1034) (-1034)))) -((-3612 (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|)) 12) (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|)) 13))) -(((-771 |#1| |#2|) (-10 -7 (-15 -3612 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -3612 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|)))) (-1016) (-1016)) (T -771)) -((-3612 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *1 (-771 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6))))) -(-10 -7 (-15 -3612 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -3612 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL (|has| |#1| (-21)))) (-3212 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3671 (((-523) $) NIL (|has| |#1| (-784)))) (-2518 (($) NIL (|has| |#1| (-21)) CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 15)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 9)) (-2121 (((-3 $ "failed") $) 40 (|has| |#1| (-784)))) (-3346 (((-3 (-383 (-523)) "failed") $) 48 (|has| |#1| (-508)))) (-1292 (((-108) $) 43 (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) 45 (|has| |#1| (-508)))) (-2604 (((-108) $) NIL (|has| |#1| (-784)))) (-2023 (((-108) $) NIL (|has| |#1| (-784)))) (-4114 (((-108) $) NIL (|has| |#1| (-784)))) (-2454 (($ $ $) NIL (|has| |#1| (-784)))) (-2062 (($ $ $) NIL (|has| |#1| (-784)))) (-3779 (((-1070) $) NIL)) (-2833 (($) 13)) (-1615 (((-108) $) 12)) (-2783 (((-1034) $) NIL)) (-1997 (((-108) $) 11)) (-1458 (((-794) $) 18) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 8) (($ (-523)) NIL (-3262 (|has| |#1| (-784)) (|has| |#1| (-964 (-523)))))) (-1621 (((-710)) 34 (|has| |#1| (-784)))) (-2619 (($ $) NIL (|has| |#1| (-784)))) (-2364 (($ $ (-852)) NIL (|has| |#1| (-784))) (($ $ (-710)) NIL (|has| |#1| (-784)))) (-2756 (($) 22 (|has| |#1| (-21)) CONST)) (-2767 (($) 31 (|has| |#1| (-784)) CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3983 (((-108) $ $) 20)) (-4030 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4007 (((-108) $ $) 42 (|has| |#1| (-784)))) (-4087 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4075 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-852)) NIL (|has| |#1| (-784))) (($ $ (-710)) NIL (|has| |#1| (-784)))) (* (($ $ $) 37 (|has| |#1| (-784))) (($ (-523) $) 25 (|has| |#1| (-21))) (($ (-710) $) NIL (|has| |#1| (-21))) (($ (-852) $) NIL (|has| |#1| (-21))))) -(((-772 |#1|) (-13 (-1016) (-387 |#1|) (-10 -8 (-15 -2833 ($)) (-15 -1997 ((-108) $)) (-15 -1615 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) (-1016)) (T -772)) -((-2833 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1016)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-1016)))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-1016)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-772 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) (-3346 (*1 *2 *1) (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-772 *3)) (-4 *3 (-508)) (-4 *3 (-1016))))) -(-13 (-1016) (-387 |#1|) (-10 -8 (-15 -2833 ($)) (-15 -1997 ((-108) $)) (-15 -1615 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-3474 ((|#1| $) NIL) (((-110) $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1257 ((|#1| (-110) |#1|) NIL)) (-2023 (((-108) $) NIL)) (-4209 (($ |#1| (-337 (-110))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3512 (($ $ (-1 |#1| |#1|)) NIL)) (-2038 (($ $ (-1 |#1| |#1|)) NIL)) (-3223 ((|#1| $ |#1|) NIL)) (-4056 ((|#1| |#1|) NIL (|has| |#1| (-158)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-2708 (($ $) NIL (|has| |#1| (-158))) (($ $ $) NIL (|has| |#1| (-158)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ (-110) (-523)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))))) -(((-773 |#1|) (-13 (-973) (-964 |#1|) (-964 (-110)) (-263 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-6 (-37 |#1|)) (-15 -2708 ($ $)) (-15 -2708 ($ $ $)) (-15 -4056 (|#1| |#1|))) |%noBranch|) (-15 -2038 ($ $ (-1 |#1| |#1|))) (-15 -3512 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-523))) (-15 ** ($ $ (-523))) (-15 -1257 (|#1| (-110) |#1|)) (-15 -4209 ($ |#1| (-337 (-110)))))) (-973)) (T -773)) -((-2708 (*1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973)))) (-2708 (*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973)))) (-4056 (*1 *2 *2) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973)))) (-2038 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-773 *3)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-773 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-523)) (-5 *1 (-773 *4)) (-4 *4 (-973)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-773 *3)) (-4 *3 (-973)))) (-1257 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-773 *2)) (-4 *2 (-973)))) (-4209 (*1 *1 *2 *3) (-12 (-5 *3 (-337 (-110))) (-5 *1 (-773 *2)) (-4 *2 (-973))))) -(-13 (-973) (-964 |#1|) (-964 (-110)) (-263 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-6 (-37 |#1|)) (-15 -2708 ($ $)) (-15 -2708 ($ $ $)) (-15 -4056 (|#1| |#1|))) |%noBranch|) (-15 -2038 ($ $ (-1 |#1| |#1|))) (-15 -3512 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-523))) (-15 ** ($ $ (-523))) (-15 -1257 (|#1| (-110) |#1|)) (-15 -4209 ($ |#1| (-337 (-110)))))) -((-4152 (((-193 (-473)) (-1070)) 8))) -(((-774) (-10 -7 (-15 -4152 ((-193 (-473)) (-1070))))) (T -774)) -((-4152 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-193 (-473))) (-5 *1 (-774))))) -(-10 -7 (-15 -4152 ((-193 (-473)) (-1070)))) -((-3924 (((-108) $ $) 7)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 14) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 13)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 16) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 15)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +((-3239 (*1 *2 *1) (-12 (-4 *1 (-769 *2)) (-4 *2 (-786))))) +(-13 (-676 |t#1|) (-898 |t#1|) (-10 -8 (-15 -3239 (|t#1| $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-634 |#1|) . T) ((-676 |#1|) . T) ((-898 |#1|) . T) ((-1014 |#1|) . T) ((-1016) . T) ((-1123) . T)) +((-2159 (((-1174) (-1034) (-1034)) 47)) (-2481 (((-1174) (-760) (-51)) 44)) (-3414 (((-51) (-760)) 16))) +(((-770) (-10 -7 (-15 -3414 ((-51) (-760))) (-15 -2481 ((-1174) (-760) (-51))) (-15 -2159 ((-1174) (-1034) (-1034))))) (T -770)) +((-2159 (*1 *2 *3 *3) (-12 (-5 *3 (-1034)) (-5 *2 (-1174)) (-5 *1 (-770)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-760)) (-5 *4 (-51)) (-5 *2 (-1174)) (-5 *1 (-770)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-760)) (-5 *2 (-51)) (-5 *1 (-770))))) +(-10 -7 (-15 -3414 ((-51) (-760))) (-15 -2481 ((-1174) (-760) (-51))) (-15 -2159 ((-1174) (-1034) (-1034)))) +((-1345 (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|)) 12) (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|)) 13))) +(((-771 |#1| |#2|) (-10 -7 (-15 -1345 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -1345 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|)))) (-1016) (-1016)) (T -771)) +((-1345 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *1 (-771 *5 *6)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6))))) +(-10 -7 (-15 -1345 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -1345 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL (|has| |#1| (-21)))) (-3405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3482 (((-523) $) NIL (|has| |#1| (-784)))) (-4189 (($) NIL (|has| |#1| (-21)) CONST)) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 15)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 9)) (-1444 (((-3 $ "failed") $) 40 (|has| |#1| (-784)))) (-3317 (((-3 (-383 (-523)) "failed") $) 48 (|has| |#1| (-508)))) (-3045 (((-108) $) 43 (|has| |#1| (-508)))) (-1682 (((-383 (-523)) $) 45 (|has| |#1| (-508)))) (-3712 (((-108) $) NIL (|has| |#1| (-784)))) (-2769 (((-108) $) NIL (|has| |#1| (-784)))) (-2057 (((-108) $) NIL (|has| |#1| (-784)))) (-3239 (($ $ $) NIL (|has| |#1| (-784)))) (-3158 (($ $ $) NIL (|has| |#1| (-784)))) (-2032 (((-1070) $) NIL)) (-3362 (($) 13)) (-3210 (((-108) $) 12)) (-3951 (((-1034) $) NIL)) (-3676 (((-108) $) 11)) (-1691 (((-794) $) 18) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 8) (($ (-523)) NIL (-3172 (|has| |#1| (-784)) (|has| |#1| (-964 (-523)))))) (-3272 (((-710)) 34 (|has| |#1| (-784)))) (-2695 (($ $) NIL (|has| |#1| (-784)))) (-2423 (($ $ (-852)) NIL (|has| |#1| (-784))) (($ $ (-710)) NIL (|has| |#1| (-784)))) (-1879 (($) 22 (|has| |#1| (-21)) CONST)) (-1891 (($) 31 (|has| |#1| (-784)) CONST)) (-4006 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3941 (((-108) $ $) 20)) (-3993 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3966 (((-108) $ $) 42 (|has| |#1| (-784)))) (-4060 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4045 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-852)) NIL (|has| |#1| (-784))) (($ $ (-710)) NIL (|has| |#1| (-784)))) (* (($ $ $) 37 (|has| |#1| (-784))) (($ (-523) $) 25 (|has| |#1| (-21))) (($ (-710) $) NIL (|has| |#1| (-21))) (($ (-852) $) NIL (|has| |#1| (-21))))) +(((-772 |#1|) (-13 (-1016) (-387 |#1|) (-10 -8 (-15 -3362 ($)) (-15 -3676 ((-108) $)) (-15 -3210 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -3045 ((-108) $)) (-15 -1682 ((-383 (-523)) $)) (-15 -3317 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) (-1016)) (T -772)) +((-3362 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1016)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-1016)))) (-3210 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-1016)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) (-1682 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-772 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) (-3317 (*1 *2 *1) (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-772 *3)) (-4 *3 (-508)) (-4 *3 (-1016))))) +(-13 (-1016) (-387 |#1|) (-10 -8 (-15 -3362 ($)) (-15 -3676 ((-108) $)) (-15 -3210 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -3045 ((-108) $)) (-15 -1682 ((-383 (-523)) $)) (-15 -3317 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-3508 ((|#1| $) NIL) (((-110) $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-3888 ((|#1| (-110) |#1|) NIL)) (-2769 (((-108) $) NIL)) (-4214 (($ |#1| (-337 (-110))) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1450 (($ $ (-1 |#1| |#1|)) NIL)) (-2898 (($ $ (-1 |#1| |#1|)) NIL)) (-1937 ((|#1| $ |#1|) NIL)) (-2718 ((|#1| |#1|) NIL (|has| |#1| (-158)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-2346 (($ $) NIL (|has| |#1| (-158))) (($ $ $) NIL (|has| |#1| (-158)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ (-110) (-523)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))))) +(((-773 |#1|) (-13 (-973) (-964 |#1|) (-964 (-110)) (-263 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-6 (-37 |#1|)) (-15 -2346 ($ $)) (-15 -2346 ($ $ $)) (-15 -2718 (|#1| |#1|))) |%noBranch|) (-15 -2898 ($ $ (-1 |#1| |#1|))) (-15 -1450 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-523))) (-15 ** ($ $ (-523))) (-15 -3888 (|#1| (-110) |#1|)) (-15 -4214 ($ |#1| (-337 (-110)))))) (-973)) (T -773)) +((-2346 (*1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973)))) (-2346 (*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973)))) (-2718 (*1 *2 *2) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973)))) (-2898 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-773 *3)))) (-1450 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-773 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-523)) (-5 *1 (-773 *4)) (-4 *4 (-973)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-773 *3)) (-4 *3 (-973)))) (-3888 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-773 *2)) (-4 *2 (-973)))) (-4214 (*1 *1 *2 *3) (-12 (-5 *3 (-337 (-110))) (-5 *1 (-773 *2)) (-4 *2 (-973))))) +(-13 (-973) (-964 |#1|) (-964 (-110)) (-263 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-6 (-37 |#1|)) (-15 -2346 ($ $)) (-15 -2346 ($ $ $)) (-15 -2718 (|#1| |#1|))) |%noBranch|) (-15 -2898 ($ $ (-1 |#1| |#1|))) (-15 -1450 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-523))) (-15 ** ($ $ (-523))) (-15 -3888 (|#1| (-110) |#1|)) (-15 -4214 ($ |#1| (-337 (-110)))))) +((-2431 (((-193 (-473)) (-1070)) 8))) +(((-774) (-10 -7 (-15 -2431 ((-193 (-473)) (-1070))))) (T -774)) +((-2431 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-193 (-473))) (-5 *1 (-774))))) +(-10 -7 (-15 -2431 ((-193 (-473)) (-1070)))) +((-1680 (((-108) $ $) 7)) (-2268 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) 14) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 13)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 16) (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) 15)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-3941 (((-108) $ $) 6))) (((-775) (-129)) (T -775)) -((-1228 (*1 *2 *3 *4) (-12 (-4 *1 (-775)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) (-1228 (*1 *2 *3 *4) (-12 (-4 *1 (-775)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) (-2699 (*1 *2 *3) (-12 (-4 *1 (-775)) (-5 *3 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) (-5 *2 (-962)))) (-2699 (*1 *2 *3) (-12 (-4 *1 (-775)) (-5 *3 (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *2 (-962))))) -(-13 (-1016) (-10 -7 (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -2699 ((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -2699 ((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))))) +((-1796 (*1 *2 *3 *4) (-12 (-4 *1 (-775)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *2 (-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)))))) (-1796 (*1 *2 *3 *4) (-12 (-4 *1 (-775)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) (-5 *2 (-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)))))) (-2268 (*1 *2 *3) (-12 (-4 *1 (-775)) (-5 *3 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) (-5 *2 (-962)))) (-2268 (*1 *2 *3) (-12 (-4 *1 (-775)) (-5 *3 (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *2 (-962))))) +(-13 (-1016) (-10 -7 (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))) (-15 -2268 ((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))) (-15 -2268 ((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-2703 (((-962) (-589 (-292 (-355))) (-589 (-355))) 143) (((-962) (-292 (-355)) (-589 (-355))) 141) (((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-779 (-355)))) 140) (((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-292 (-355))) (-589 (-779 (-355)))) 139) (((-962) (-777)) 112) (((-962) (-777) (-985)) 111)) (-1228 (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777) (-985)) 76) (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777)) 78)) (-2986 (((-962) (-589 (-292 (-355))) (-589 (-355))) 144) (((-962) (-777)) 128))) -(((-776) (-10 -7 (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777) (-985))) (-15 -2703 ((-962) (-777) (-985))) (-15 -2703 ((-962) (-777))) (-15 -2986 ((-962) (-777))) (-15 -2703 ((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-292 (-355))) (-589 (-779 (-355))))) (-15 -2703 ((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-779 (-355))))) (-15 -2703 ((-962) (-292 (-355)) (-589 (-355)))) (-15 -2703 ((-962) (-589 (-292 (-355))) (-589 (-355)))) (-15 -2986 ((-962) (-589 (-292 (-355))) (-589 (-355)))))) (T -776)) -((-2986 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-292 (-355)))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2703 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-292 (-355)))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2703 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2703 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-355))) (-5 *5 (-589 (-779 (-355)))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2703 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-589 (-355))) (-5 *5 (-589 (-779 (-355)))) (-5 *6 (-589 (-292 (-355)))) (-5 *3 (-292 (-355))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2986 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-962)) (-5 *1 (-776)))) (-2703 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-962)) (-5 *1 (-776)))) (-2703 (*1 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-776)))) (-1228 (*1 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-985)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-776)))) (-1228 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-776))))) -(-10 -7 (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777) (-985))) (-15 -2703 ((-962) (-777) (-985))) (-15 -2703 ((-962) (-777))) (-15 -2986 ((-962) (-777))) (-15 -2703 ((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-292 (-355))) (-589 (-779 (-355))))) (-15 -2703 ((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-779 (-355))))) (-15 -2703 ((-962) (-292 (-355)) (-589 (-355)))) (-15 -2703 ((-962) (-589 (-292 (-355))) (-589 (-355)))) (-15 -2986 ((-962) (-589 (-292 (-355))) (-589 (-355))))) -((-3924 (((-108) $ $) NIL)) (-3474 (((-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) $) 15)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 14) (($ (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 8) (($ (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))))) 12)) (-3983 (((-108) $ $) NIL))) -(((-777) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -1458 ($ (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -1458 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) $))))) (T -777)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-777)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *1 (-777)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) (-5 *1 (-777)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))))) (-5 *1 (-777)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))))) (-5 *1 (-777))))) -(-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -1458 ($ (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -1458 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) $)))) -((-3612 (((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|) (-779 |#2|) (-779 |#2|)) 13) (((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)) 14))) -(((-778 |#1| |#2|) (-10 -7 (-15 -3612 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|))) (-15 -3612 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|) (-779 |#2|) (-779 |#2|)))) (-1016) (-1016)) (T -778)) -((-3612 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-779 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *1 (-778 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6))))) -(-10 -7 (-15 -3612 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|))) (-15 -3612 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|) (-779 |#2|) (-779 |#2|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL (|has| |#1| (-21)))) (-2570 (((-1034) $) 24)) (-3212 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3671 (((-523) $) NIL (|has| |#1| (-784)))) (-2518 (($) NIL (|has| |#1| (-21)) CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 16)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 9)) (-2121 (((-3 $ "failed") $) 47 (|has| |#1| (-784)))) (-3346 (((-3 (-383 (-523)) "failed") $) 54 (|has| |#1| (-508)))) (-1292 (((-108) $) 49 (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) 52 (|has| |#1| (-508)))) (-2604 (((-108) $) NIL (|has| |#1| (-784)))) (-1891 (($) 13)) (-2023 (((-108) $) NIL (|has| |#1| (-784)))) (-4114 (((-108) $) NIL (|has| |#1| (-784)))) (-1903 (($) 14)) (-2454 (($ $ $) NIL (|has| |#1| (-784)))) (-2062 (($ $ $) NIL (|has| |#1| (-784)))) (-3779 (((-1070) $) NIL)) (-1615 (((-108) $) 12)) (-2783 (((-1034) $) NIL)) (-1997 (((-108) $) 11)) (-1458 (((-794) $) 22) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 8) (($ (-523)) NIL (-3262 (|has| |#1| (-784)) (|has| |#1| (-964 (-523)))))) (-1621 (((-710)) 41 (|has| |#1| (-784)))) (-2619 (($ $) NIL (|has| |#1| (-784)))) (-2364 (($ $ (-852)) NIL (|has| |#1| (-784))) (($ $ (-710)) NIL (|has| |#1| (-784)))) (-2756 (($) 29 (|has| |#1| (-21)) CONST)) (-2767 (($) 38 (|has| |#1| (-784)) CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3983 (((-108) $ $) 27)) (-4030 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4007 (((-108) $ $) 48 (|has| |#1| (-784)))) (-4087 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4075 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-852)) NIL (|has| |#1| (-784))) (($ $ (-710)) NIL (|has| |#1| (-784)))) (* (($ $ $) 44 (|has| |#1| (-784))) (($ (-523) $) 32 (|has| |#1| (-21))) (($ (-710) $) NIL (|has| |#1| (-21))) (($ (-852) $) NIL (|has| |#1| (-21))))) -(((-779 |#1|) (-13 (-1016) (-387 |#1|) (-10 -8 (-15 -1891 ($)) (-15 -1903 ($)) (-15 -1997 ((-108) $)) (-15 -1615 ((-108) $)) (-15 -2570 ((-1034) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) (-1016)) (T -779)) -((-1891 (*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1016)))) (-1903 (*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1016)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-1016)))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-1016)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-779 *3)) (-4 *3 (-1016)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-779 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) (-3346 (*1 *2 *1) (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-779 *3)) (-4 *3 (-508)) (-4 *3 (-1016))))) -(-13 (-1016) (-387 |#1|) (-10 -8 (-15 -1891 ($)) (-15 -1903 ($)) (-15 -1997 ((-108) $)) (-15 -1615 ((-108) $)) (-15 -2570 ((-1034) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) -((-3924 (((-108) $ $) 7)) (-1703 (((-710)) 20)) (-4032 (($) 23)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-2072 (((-852) $) 22)) (-3779 (((-1070) $) 9)) (-3878 (($ (-852)) 21)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18))) +((-2743 (((-962) (-589 (-292 (-355))) (-589 (-355))) 143) (((-962) (-292 (-355)) (-589 (-355))) 141) (((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-779 (-355)))) 140) (((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-292 (-355))) (-589 (-779 (-355)))) 139) (((-962) (-777)) 112) (((-962) (-777) (-985)) 111)) (-1796 (((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777) (-985)) 76) (((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777)) 78)) (-3092 (((-962) (-589 (-292 (-355))) (-589 (-355))) 144) (((-962) (-777)) 128))) +(((-776) (-10 -7 (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777) (-985))) (-15 -2743 ((-962) (-777) (-985))) (-15 -2743 ((-962) (-777))) (-15 -3092 ((-962) (-777))) (-15 -2743 ((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-292 (-355))) (-589 (-779 (-355))))) (-15 -2743 ((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-779 (-355))))) (-15 -2743 ((-962) (-292 (-355)) (-589 (-355)))) (-15 -2743 ((-962) (-589 (-292 (-355))) (-589 (-355)))) (-15 -3092 ((-962) (-589 (-292 (-355))) (-589 (-355)))))) (T -776)) +((-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-292 (-355)))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-292 (-355)))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2743 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-355))) (-5 *5 (-589 (-779 (-355)))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2743 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-589 (-355))) (-5 *5 (-589 (-779 (-355)))) (-5 *6 (-589 (-292 (-355)))) (-5 *3 (-292 (-355))) (-5 *2 (-962)) (-5 *1 (-776)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-962)) (-5 *1 (-776)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-962)) (-5 *1 (-776)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-776)))) (-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-985)) (-5 *2 (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-776)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-776))))) +(-10 -7 (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777) (-985))) (-15 -2743 ((-962) (-777) (-985))) (-15 -2743 ((-962) (-777))) (-15 -3092 ((-962) (-777))) (-15 -2743 ((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-292 (-355))) (-589 (-779 (-355))))) (-15 -2743 ((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-779 (-355))))) (-15 -2743 ((-962) (-292 (-355)) (-589 (-355)))) (-15 -2743 ((-962) (-589 (-292 (-355))) (-589 (-355)))) (-15 -3092 ((-962) (-589 (-292 (-355))) (-589 (-355))))) +((-1680 (((-108) $ $) NIL)) (-3508 (((-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))) $) 15)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 14) (($ (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 8) (($ (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))))) 12)) (-3941 (((-108) $ $) NIL))) +(((-777) (-13 (-1016) (-10 -8 (-15 -1691 ($ (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -1691 ($ (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))) (-15 -1691 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))))) (-15 -1691 ((-794) $)) (-15 -3508 ((-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))) $))))) (T -777)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-777)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *1 (-777)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) (-5 *1 (-777)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))))) (-5 *1 (-777)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))))) (-5 *1 (-777))))) +(-13 (-1016) (-10 -8 (-15 -1691 ($ (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -1691 ($ (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))) (-15 -1691 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))))) (-15 -1691 ((-794) $)) (-15 -3508 ((-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203)))))) $)))) +((-1345 (((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|) (-779 |#2|) (-779 |#2|)) 13) (((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)) 14))) +(((-778 |#1| |#2|) (-10 -7 (-15 -1345 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|))) (-15 -1345 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|) (-779 |#2|) (-779 |#2|)))) (-1016) (-1016)) (T -778)) +((-1345 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-779 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *1 (-778 *5 *6)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6))))) +(-10 -7 (-15 -1345 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|))) (-15 -1345 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|) (-779 |#2|) (-779 |#2|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL (|has| |#1| (-21)))) (-3415 (((-1034) $) 24)) (-3405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3482 (((-523) $) NIL (|has| |#1| (-784)))) (-4189 (($) NIL (|has| |#1| (-21)) CONST)) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 16)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 9)) (-1444 (((-3 $ "failed") $) 47 (|has| |#1| (-784)))) (-3317 (((-3 (-383 (-523)) "failed") $) 54 (|has| |#1| (-508)))) (-3045 (((-108) $) 49 (|has| |#1| (-508)))) (-1682 (((-383 (-523)) $) 52 (|has| |#1| (-508)))) (-3712 (((-108) $) NIL (|has| |#1| (-784)))) (-1873 (($) 13)) (-2769 (((-108) $) NIL (|has| |#1| (-784)))) (-2057 (((-108) $) NIL (|has| |#1| (-784)))) (-3659 (($) 14)) (-3239 (($ $ $) NIL (|has| |#1| (-784)))) (-3158 (($ $ $) NIL (|has| |#1| (-784)))) (-2032 (((-1070) $) NIL)) (-3210 (((-108) $) 12)) (-3951 (((-1034) $) NIL)) (-3676 (((-108) $) 11)) (-1691 (((-794) $) 22) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 8) (($ (-523)) NIL (-3172 (|has| |#1| (-784)) (|has| |#1| (-964 (-523)))))) (-3272 (((-710)) 41 (|has| |#1| (-784)))) (-2695 (($ $) NIL (|has| |#1| (-784)))) (-2423 (($ $ (-852)) NIL (|has| |#1| (-784))) (($ $ (-710)) NIL (|has| |#1| (-784)))) (-1879 (($) 29 (|has| |#1| (-21)) CONST)) (-1891 (($) 38 (|has| |#1| (-784)) CONST)) (-4006 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3941 (((-108) $ $) 27)) (-3993 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3966 (((-108) $ $) 48 (|has| |#1| (-784)))) (-4060 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4045 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-852)) NIL (|has| |#1| (-784))) (($ $ (-710)) NIL (|has| |#1| (-784)))) (* (($ $ $) 44 (|has| |#1| (-784))) (($ (-523) $) 32 (|has| |#1| (-21))) (($ (-710) $) NIL (|has| |#1| (-21))) (($ (-852) $) NIL (|has| |#1| (-21))))) +(((-779 |#1|) (-13 (-1016) (-387 |#1|) (-10 -8 (-15 -1873 ($)) (-15 -3659 ($)) (-15 -3676 ((-108) $)) (-15 -3210 ((-108) $)) (-15 -3415 ((-1034) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -3045 ((-108) $)) (-15 -1682 ((-383 (-523)) $)) (-15 -3317 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) (-1016)) (T -779)) +((-1873 (*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1016)))) (-3659 (*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1016)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-1016)))) (-3210 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-1016)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-779 *3)) (-4 *3 (-1016)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) (-1682 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-779 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) (-3317 (*1 *2 *1) (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-779 *3)) (-4 *3 (-508)) (-4 *3 (-1016))))) +(-13 (-1016) (-387 |#1|) (-10 -8 (-15 -1873 ($)) (-15 -3659 ($)) (-15 -3676 ((-108) $)) (-15 -3210 ((-108) $)) (-15 -3415 ((-1034) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -3045 ((-108) $)) (-15 -1682 ((-383 (-523)) $)) (-15 -3317 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) +((-1680 (((-108) $ $) 7)) (-2395 (((-710)) 20)) (-1631 (($) 23)) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-2060 (((-852) $) 22)) (-2032 (((-1070) $) 9)) (-4013 (($ (-852)) 21)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18))) (((-780) (-129)) (T -780)) NIL (-13 (-786) (-344)) (((-97) . T) ((-563 (-794)) . T) ((-344) . T) ((-786) . T) ((-1016) . T)) -((-2396 (((-108) (-1168 |#2|) (-1168 |#2|)) 17)) (-2431 (((-108) (-1168 |#2|) (-1168 |#2|)) 18)) (-2850 (((-108) (-1168 |#2|) (-1168 |#2|)) 14))) -(((-781 |#1| |#2|) (-10 -7 (-15 -2850 ((-108) (-1168 |#2|) (-1168 |#2|))) (-15 -2396 ((-108) (-1168 |#2|) (-1168 |#2|))) (-15 -2431 ((-108) (-1168 |#2|) (-1168 |#2|)))) (-710) (-731)) (T -781)) -((-2431 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *5)) (-4 *5 (-731)) (-5 *2 (-108)) (-5 *1 (-781 *4 *5)) (-14 *4 (-710)))) (-2396 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *5)) (-4 *5 (-731)) (-5 *2 (-108)) (-5 *1 (-781 *4 *5)) (-14 *4 (-710)))) (-2850 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *5)) (-4 *5 (-731)) (-5 *2 (-108)) (-5 *1 (-781 *4 *5)) (-14 *4 (-710))))) -(-10 -7 (-15 -2850 ((-108) (-1168 |#2|) (-1168 |#2|))) (-15 -2396 ((-108) (-1168 |#2|) (-1168 |#2|))) (-15 -2431 ((-108) (-1168 |#2|) (-1168 |#2|)))) -((-3924 (((-108) $ $) 7)) (-2518 (($) 24 T CONST)) (-2121 (((-3 $ "failed") $) 28)) (-2023 (((-108) $) 25)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2364 (($ $ (-710)) 27) (($ $ (-852)) 22)) (-2767 (($) 23 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (** (($ $ (-710)) 26) (($ $ (-852)) 21)) (* (($ $ $) 20))) +((-2362 (((-108) (-1169 |#2|) (-1169 |#2|)) 17)) (-1568 (((-108) (-1169 |#2|) (-1169 |#2|)) 18)) (-1279 (((-108) (-1169 |#2|) (-1169 |#2|)) 14))) +(((-781 |#1| |#2|) (-10 -7 (-15 -1279 ((-108) (-1169 |#2|) (-1169 |#2|))) (-15 -2362 ((-108) (-1169 |#2|) (-1169 |#2|))) (-15 -1568 ((-108) (-1169 |#2|) (-1169 |#2|)))) (-710) (-731)) (T -781)) +((-1568 (*1 *2 *3 *3) (-12 (-5 *3 (-1169 *5)) (-4 *5 (-731)) (-5 *2 (-108)) (-5 *1 (-781 *4 *5)) (-14 *4 (-710)))) (-2362 (*1 *2 *3 *3) (-12 (-5 *3 (-1169 *5)) (-4 *5 (-731)) (-5 *2 (-108)) (-5 *1 (-781 *4 *5)) (-14 *4 (-710)))) (-1279 (*1 *2 *3 *3) (-12 (-5 *3 (-1169 *5)) (-4 *5 (-731)) (-5 *2 (-108)) (-5 *1 (-781 *4 *5)) (-14 *4 (-710))))) +(-10 -7 (-15 -1279 ((-108) (-1169 |#2|) (-1169 |#2|))) (-15 -2362 ((-108) (-1169 |#2|) (-1169 |#2|))) (-15 -1568 ((-108) (-1169 |#2|) (-1169 |#2|)))) +((-1680 (((-108) $ $) 7)) (-4189 (($) 24 T CONST)) (-1444 (((-3 $ "failed") $) 28)) (-2769 (((-108) $) 25)) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-2423 (($ $ (-710)) 27) (($ $ (-852)) 22)) (-1891 (($) 23 T CONST)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18)) (** (($ $ (-710)) 26) (($ $ (-852)) 21)) (* (($ $ $) 20))) (((-782) (-129)) (T -782)) NIL (-13 (-786) (-666)) (((-97) . T) ((-563 (-794)) . T) ((-666) . T) ((-786) . T) ((-1028) . T) ((-1016) . T)) -((-3671 (((-523) $) 17)) (-2604 (((-108) $) 10)) (-4114 (((-108) $) 11)) (-2619 (($ $) 19))) -(((-783 |#1|) (-10 -8 (-15 -2619 (|#1| |#1|)) (-15 -3671 ((-523) |#1|)) (-15 -4114 ((-108) |#1|)) (-15 -2604 ((-108) |#1|))) (-784)) (T -783)) +((-3482 (((-523) $) 17)) (-3712 (((-108) $) 10)) (-2057 (((-108) $) 11)) (-2695 (($ $) 19))) +(((-783 |#1|) (-10 -8 (-15 -2695 (|#1| |#1|)) (-15 -3482 ((-523) |#1|)) (-15 -2057 ((-108) |#1|)) (-15 -3712 ((-108) |#1|))) (-784)) (T -783)) NIL -(-10 -8 (-15 -2619 (|#1| |#1|)) (-15 -3671 ((-523) |#1|)) (-15 -4114 ((-108) |#1|)) (-15 -2604 ((-108) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 24)) (-3212 (((-3 $ "failed") $ $) 26)) (-3671 (((-523) $) 33)) (-2518 (($) 23 T CONST)) (-2121 (((-3 $ "failed") $) 39)) (-2604 (((-108) $) 35)) (-2023 (((-108) $) 42)) (-4114 (((-108) $) 34)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 45)) (-1621 (((-710)) 44)) (-2619 (($ $) 32)) (-2364 (($ $ (-710)) 40) (($ $ (-852)) 36)) (-2756 (($) 22 T CONST)) (-2767 (($) 43 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4087 (($ $ $) 28) (($ $) 27)) (-4075 (($ $ $) 20)) (** (($ $ (-710)) 41) (($ $ (-852)) 37)) (* (($ (-710) $) 25) (($ (-852) $) 21) (($ (-523) $) 29) (($ $ $) 38))) +(-10 -8 (-15 -2695 (|#1| |#1|)) (-15 -3482 ((-523) |#1|)) (-15 -2057 ((-108) |#1|)) (-15 -3712 ((-108) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 24)) (-3405 (((-3 $ "failed") $ $) 26)) (-3482 (((-523) $) 33)) (-4189 (($) 23 T CONST)) (-1444 (((-3 $ "failed") $) 39)) (-3712 (((-108) $) 35)) (-2769 (((-108) $) 42)) (-2057 (((-108) $) 34)) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ (-523)) 45)) (-3272 (((-710)) 44)) (-2695 (($ $) 32)) (-2423 (($ $ (-710)) 40) (($ $ (-852)) 36)) (-1879 (($) 22 T CONST)) (-1891 (($) 43 T CONST)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18)) (-4060 (($ $ $) 28) (($ $) 27)) (-4045 (($ $ $) 20)) (** (($ $ (-710)) 41) (($ $ (-852)) 37)) (* (($ (-710) $) 25) (($ (-852) $) 21) (($ (-523) $) 29) (($ $ $) 38))) (((-784) (-129)) (T -784)) -((-2604 (*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-523)))) (-2619 (*1 *1 *1) (-4 *1 (-784)))) -(-13 (-730) (-973) (-666) (-10 -8 (-15 -2604 ((-108) $)) (-15 -4114 ((-108) $)) (-15 -3671 ((-523) $)) (-15 -2619 ($ $)))) +((-3712 (*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-523)))) (-2695 (*1 *1 *1) (-4 *1 (-784)))) +(-13 (-730) (-973) (-666) (-10 -8 (-15 -3712 ((-108) $)) (-15 -2057 ((-108) $)) (-15 -3482 ((-523) $)) (-15 -2695 ($ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-786) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-2454 (($ $ $) 10)) (-2062 (($ $ $) 9)) (-4043 (((-108) $ $) 13)) (-4019 (((-108) $ $) 11)) (-4030 (((-108) $ $) 14))) -(((-785 |#1|) (-10 -8 (-15 -2454 (|#1| |#1| |#1|)) (-15 -2062 (|#1| |#1| |#1|)) (-15 -4030 ((-108) |#1| |#1|)) (-15 -4043 ((-108) |#1| |#1|)) (-15 -4019 ((-108) |#1| |#1|))) (-786)) (T -785)) +((-3239 (($ $ $) 10)) (-3158 (($ $ $) 9)) (-4006 (((-108) $ $) 13)) (-3980 (((-108) $ $) 11)) (-3993 (((-108) $ $) 14))) +(((-785 |#1|) (-10 -8 (-15 -3239 (|#1| |#1| |#1|)) (-15 -3158 (|#1| |#1| |#1|)) (-15 -3993 ((-108) |#1| |#1|)) (-15 -4006 ((-108) |#1| |#1|)) (-15 -3980 ((-108) |#1| |#1|))) (-786)) (T -785)) NIL -(-10 -8 (-15 -2454 (|#1| |#1| |#1|)) (-15 -2062 (|#1| |#1| |#1|)) (-15 -4030 ((-108) |#1| |#1|)) (-15 -4043 ((-108) |#1| |#1|)) (-15 -4019 ((-108) |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18))) +(-10 -8 (-15 -3239 (|#1| |#1| |#1|)) (-15 -3158 (|#1| |#1| |#1|)) (-15 -3993 ((-108) |#1| |#1|)) (-15 -4006 ((-108) |#1| |#1|)) (-15 -3980 ((-108) |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-3239 (($ $ $) 13)) (-3158 (($ $ $) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-4006 (((-108) $ $) 16)) (-3980 (((-108) $ $) 17)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 15)) (-3966 (((-108) $ $) 18))) (((-786) (-129)) (T -786)) -((-4007 (*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-4019 (*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-4043 (*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-4030 (*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-2062 (*1 *1 *1 *1) (-4 *1 (-786))) (-2454 (*1 *1 *1 *1) (-4 *1 (-786)))) -(-13 (-1016) (-10 -8 (-15 -4007 ((-108) $ $)) (-15 -4019 ((-108) $ $)) (-15 -4043 ((-108) $ $)) (-15 -4030 ((-108) $ $)) (-15 -2062 ($ $ $)) (-15 -2454 ($ $ $)))) +((-3966 (*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-3980 (*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-4006 (*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-3993 (*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-3158 (*1 *1 *1 *1) (-4 *1 (-786))) (-3239 (*1 *1 *1 *1) (-4 *1 (-786)))) +(-13 (-1016) (-10 -8 (-15 -3966 ((-108) $ $)) (-15 -3980 ((-108) $ $)) (-15 -4006 ((-108) $ $)) (-15 -3993 ((-108) $ $)) (-15 -3158 ($ $ $)) (-15 -3239 ($ $ $)))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-2383 (($ $ $) 46)) (-2324 (($ $ $) 45)) (-1354 (($ $ $) 43)) (-1470 (($ $ $) 52)) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 47)) (-1371 (((-3 $ "failed") $ $) 50)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2528 (($ $) 36)) (-3077 (($ $ $) 40)) (-3082 (($ $ $) 39)) (-2035 (($ $ $) 48)) (-2500 (($ $ $) 54)) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 42)) (-1687 (((-3 $ "failed") $ $) 49)) (-3746 (((-3 $ "failed") $ |#2|) 29)) (-2438 ((|#2| $) 33)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ |#2|) 12)) (-1251 (((-589 |#2|) $) 19)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 23))) -(((-787 |#1| |#2|) (-10 -8 (-15 -2035 (|#1| |#1| |#1|)) (-15 -3852 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -1470 (|#1| |#1| |#1|)) (-15 -1371 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| |#1|)) (-15 -1354 (|#1| |#1| |#1|)) (-15 -3645 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -1687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1251 ((-589 |#2|) |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -1458 ((-794) |#1|))) (-788 |#2|) (-973)) (T -787)) +((-2261 (($ $ $) 45)) (-2863 (($ $ $) 44)) (-2497 (($ $ $) 42)) (-2435 (($ $ $) 51)) (-1503 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 46)) (-2643 (((-3 $ "failed") $ $) 49)) (-1220 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1272 (($ $) 35)) (-1601 (($ $ $) 39)) (-1651 (($ $ $) 38)) (-2869 (($ $ $) 47)) (-4017 (($ $ $) 53)) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 41)) (-2687 (((-3 $ "failed") $ $) 48)) (-4007 (((-3 $ "failed") $ |#2|) 28)) (-1618 ((|#2| $) 32)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ |#2|) 12)) (-3819 (((-589 |#2|) $) 18)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-787 |#1| |#2|) (-10 -8 (-15 -2869 (|#1| |#1| |#1|)) (-15 -1503 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1621 |#1|)) |#1| |#1|)) (-15 -2435 (|#1| |#1| |#1|)) (-15 -2643 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2261 (|#1| |#1| |#1|)) (-15 -2863 (|#1| |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -3249 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1621 |#1|)) |#1| |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -2687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -1651 (|#1| |#1| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3819 ((-589 |#2|) |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1691 (|#1| (-523))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -1691 ((-794) |#1|))) (-788 |#2|) (-973)) (T -787)) NIL -(-10 -8 (-15 -2035 (|#1| |#1| |#1|)) (-15 -3852 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -1470 (|#1| |#1| |#1|)) (-15 -1371 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| |#1|)) (-15 -1354 (|#1| |#1| |#1|)) (-15 -3645 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -1687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1251 ((-589 |#2|) |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2383 (($ $ $) 45 (|has| |#1| (-339)))) (-2324 (($ $ $) 46 (|has| |#1| (-339)))) (-1354 (($ $ $) 48 (|has| |#1| (-339)))) (-1470 (($ $ $) 43 (|has| |#1| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 42 (|has| |#1| (-339)))) (-1371 (((-3 $ "failed") $ $) 44 (|has| |#1| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 47 (|has| |#1| (-339)))) (-3517 (((-3 (-523) "failed") $) 74 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 72 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 69)) (-3474 (((-523) $) 75 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 73 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 68)) (-3810 (($ $) 64)) (-2121 (((-3 $ "failed") $) 34)) (-2528 (($ $) 55 (|has| |#1| (-427)))) (-2023 (((-108) $) 31)) (-1933 (($ |#1| (-710)) 62)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57 (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 58 (|has| |#1| (-515)))) (-1575 (((-710) $) 66)) (-3077 (($ $ $) 52 (|has| |#1| (-339)))) (-3082 (($ $ $) 53 (|has| |#1| (-339)))) (-2035 (($ $ $) 41 (|has| |#1| (-339)))) (-2500 (($ $ $) 50 (|has| |#1| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 49 (|has| |#1| (-339)))) (-1687 (((-3 $ "failed") $ $) 51 (|has| |#1| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 54 (|has| |#1| (-339)))) (-3786 ((|#1| $) 65)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-515)))) (-2299 (((-710) $) 67)) (-2438 ((|#1| $) 56 (|has| |#1| (-427)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 71 (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 70)) (-1251 (((-589 |#1|) $) 61)) (-2365 ((|#1| $ (-710)) 63)) (-1621 (((-710)) 29)) (-1677 ((|#1| $ |#1| |#1|) 60)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) +(-10 -8 (-15 -2869 (|#1| |#1| |#1|)) (-15 -1503 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1621 |#1|)) |#1| |#1|)) (-15 -2435 (|#1| |#1| |#1|)) (-15 -2643 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2261 (|#1| |#1| |#1|)) (-15 -2863 (|#1| |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -3249 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1621 |#1|)) |#1| |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -2687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -1651 (|#1| |#1| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -4007 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3819 ((-589 |#2|) |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1691 (|#1| (-523))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2261 (($ $ $) 45 (|has| |#1| (-339)))) (-2863 (($ $ $) 46 (|has| |#1| (-339)))) (-2497 (($ $ $) 48 (|has| |#1| (-339)))) (-2435 (($ $ $) 43 (|has| |#1| (-339)))) (-1503 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 42 (|has| |#1| (-339)))) (-2643 (((-3 $ "failed") $ $) 44 (|has| |#1| (-339)))) (-2930 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 47 (|has| |#1| (-339)))) (-1220 (((-3 (-523) "failed") $) 74 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 72 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 69)) (-3508 (((-523) $) 75 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 73 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 68)) (-1457 (($ $) 64)) (-1444 (((-3 $ "failed") $) 34)) (-1272 (($ $) 55 (|has| |#1| (-427)))) (-2769 (((-108) $) 31)) (-1267 (($ |#1| (-710)) 62)) (-1301 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57 (|has| |#1| (-515)))) (-2779 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 58 (|has| |#1| (-515)))) (-4047 (((-710) $) 66)) (-1601 (($ $ $) 52 (|has| |#1| (-339)))) (-1651 (($ $ $) 53 (|has| |#1| (-339)))) (-2869 (($ $ $) 41 (|has| |#1| (-339)))) (-4017 (($ $ $) 50 (|has| |#1| (-339)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 49 (|has| |#1| (-339)))) (-2687 (((-3 $ "failed") $ $) 51 (|has| |#1| (-339)))) (-1735 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 54 (|has| |#1| (-339)))) (-1437 ((|#1| $) 65)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-4007 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-515)))) (-2640 (((-710) $) 67)) (-1618 ((|#1| $) 56 (|has| |#1| (-427)))) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 71 (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 70)) (-3819 (((-589 |#1|) $) 61)) (-2084 ((|#1| $ (-710)) 63)) (-3272 (((-710)) 29)) (-2372 ((|#1| $ |#1| |#1|) 60)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) (((-788 |#1|) (-129) (-973)) (T -788)) -((-2299 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-589 *3)))) (-1677 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-3746 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) (-2024 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) (-2225 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-427)))) (-2528 (*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-427)))) (-3091 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) (-3082 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3077 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-1687 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2500 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3645 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *3 (-973)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) (-4 *1 (-788 *3)))) (-1354 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2042 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) (-2324 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2383 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-1371 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-1470 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3852 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *3 (-973)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) (-4 *1 (-788 *3)))) (-2035 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) -(-13 (-973) (-107 |t#1| |t#1|) (-387 |t#1|) (-10 -8 (-15 -2299 ((-710) $)) (-15 -1575 ((-710) $)) (-15 -3786 (|t#1| $)) (-15 -3810 ($ $)) (-15 -2365 (|t#1| $ (-710))) (-15 -1933 ($ |t#1| (-710))) (-15 -1251 ((-589 |t#1|) $)) (-15 -1677 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-158)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3746 ((-3 $ "failed") $ |t#1|)) (-15 -2024 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -2225 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-427)) (PROGN (-15 -2438 (|t#1| $)) (-15 -2528 ($ $))) |%noBranch|) (IF (|has| |t#1| (-339)) (PROGN (-15 -3091 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -3082 ($ $ $)) (-15 -3077 ($ $ $)) (-15 -1687 ((-3 $ "failed") $ $)) (-15 -2500 ($ $ $)) (-15 -3645 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $)) (-15 -1354 ($ $ $)) (-15 -2042 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -2324 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -1371 ((-3 $ "failed") $ $)) (-15 -1470 ($ $ $)) (-15 -3852 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $)) (-15 -2035 ($ $ $))) |%noBranch|))) +((-2640 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-4047 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-1457 (*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-2084 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-1267 (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-589 *3)))) (-2372 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-4007 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) (-2779 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-788 *3)))) (-1301 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-788 *3)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-427)))) (-1272 (*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-427)))) (-1735 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-788 *3)))) (-1651 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-1601 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2687 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-4017 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3249 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *3 (-973)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1621 *1))) (-4 *1 (-788 *3)))) (-2497 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2930 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-788 *3)))) (-2863 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2261 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2643 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2435 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-1503 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *3 (-973)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1621 *1))) (-4 *1 (-788 *3)))) (-2869 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(-13 (-973) (-107 |t#1| |t#1|) (-387 |t#1|) (-10 -8 (-15 -2640 ((-710) $)) (-15 -4047 ((-710) $)) (-15 -1437 (|t#1| $)) (-15 -1457 ($ $)) (-15 -2084 (|t#1| $ (-710))) (-15 -1267 ($ |t#1| (-710))) (-15 -3819 ((-589 |t#1|) $)) (-15 -2372 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-158)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -4007 ((-3 $ "failed") $ |t#1|)) (-15 -2779 ((-2 (|:| -3070 $) (|:| -3969 $)) $ $)) (-15 -1301 ((-2 (|:| -3070 $) (|:| -3969 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-427)) (PROGN (-15 -1618 (|t#1| $)) (-15 -1272 ($ $))) |%noBranch|) (IF (|has| |t#1| (-339)) (PROGN (-15 -1735 ((-2 (|:| -3070 $) (|:| -3969 $)) $ $)) (-15 -1651 ($ $ $)) (-15 -1601 ($ $ $)) (-15 -2687 ((-3 $ "failed") $ $)) (-15 -4017 ($ $ $)) (-15 -3249 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $)) (-15 -2497 ($ $ $)) (-15 -2930 ((-2 (|:| -3070 $) (|:| -3969 $)) $ $)) (-15 -2863 ($ $ $)) (-15 -2261 ($ $ $)) (-15 -2643 ((-3 $ "failed") $ $)) (-15 -2435 ($ $ $)) (-15 -1503 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $)) (-15 -2869 ($ $ $))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-158)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-387 |#1|) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) |has| |#1| (-158)) ((-666) . T) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-2255 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 21)) (-2042 (((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)) 44 (|has| |#1| (-339)))) (-2225 (((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)) 41 (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-515)))) (-3091 (((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-339)))) (-1677 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 32))) -(((-789 |#1| |#2|) (-10 -7 (-15 -2255 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1677 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-515)) (PROGN (-15 -2024 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2225 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -3091 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2042 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-973) (-788 |#1|)) (T -789)) -((-2042 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) (-4 *3 (-788 *5)))) (-3091 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) (-4 *3 (-788 *5)))) (-2225 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-515)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) (-4 *3 (-788 *5)))) (-2024 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-515)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) (-4 *3 (-788 *5)))) (-1677 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-973)) (-5 *1 (-789 *2 *3)) (-4 *3 (-788 *2)))) (-2255 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-973)) (-5 *1 (-789 *5 *2)) (-4 *2 (-788 *5))))) -(-10 -7 (-15 -2255 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1677 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-515)) (PROGN (-15 -2024 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2225 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -3091 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2042 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-339)))) (-2324 (($ $ $) NIL (|has| |#1| (-339)))) (-1354 (($ $ $) NIL (|has| |#1| (-339)))) (-1470 (($ $ $) NIL (|has| |#1| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1371 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 25 (|has| |#1| (-339)))) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427)))) (-3553 (((-794) $ (-794)) NIL)) (-2023 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) NIL)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 21 (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 19 (|has| |#1| (-515)))) (-1575 (((-710) $) NIL)) (-3077 (($ $ $) NIL (|has| |#1| (-339)))) (-3082 (($ $ $) NIL (|has| |#1| (-339)))) (-2035 (($ $ $) NIL (|has| |#1| (-339)))) (-2500 (($ $ $) NIL (|has| |#1| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 23 (|has| |#1| (-339)))) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-2299 (((-710) $) NIL)) (-2438 ((|#1| $) NIL (|has| |#1| (-427)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) NIL)) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) NIL)) (-1621 (((-710)) NIL)) (-1677 ((|#1| $ |#1| |#1|) 15)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-790 |#1| |#2| |#3|) (-13 (-788 |#1|) (-10 -8 (-15 -3553 ((-794) $ (-794))))) (-973) (-94 |#1|) (-1 |#1| |#1|)) (T -790)) -((-3553 (*1 *2 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-790 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-788 |#1|) (-10 -8 (-15 -3553 ((-794) $ (-794))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#2| (-339)))) (-2324 (($ $ $) NIL (|has| |#2| (-339)))) (-1354 (($ $ $) NIL (|has| |#2| (-339)))) (-1470 (($ $ $) NIL (|has| |#2| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#2| (-339)))) (-1371 (((-3 $ "failed") $ $) NIL (|has| |#2| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-339)))) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 |#2| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) ((|#2| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#2| (-427)))) (-2023 (((-108) $) NIL)) (-1933 (($ |#2| (-710)) 16)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-515)))) (-1575 (((-710) $) NIL)) (-3077 (($ $ $) NIL (|has| |#2| (-339)))) (-3082 (($ $ $) NIL (|has| |#2| (-339)))) (-2035 (($ $ $) NIL (|has| |#2| (-339)))) (-2500 (($ $ $) NIL (|has| |#2| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#2| (-339)))) (-1687 (((-3 $ "failed") $ $) NIL (|has| |#2| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-339)))) (-3786 ((|#2| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515)))) (-2299 (((-710) $) NIL)) (-2438 ((|#2| $) NIL (|has| |#2| (-427)))) (-1458 (((-794) $) 23) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#2| (-964 (-383 (-523))))) (($ |#2|) NIL) (($ (-1164 |#1|)) 18)) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-710)) NIL)) (-1621 (((-710)) NIL)) (-1677 ((|#2| $ |#2| |#2|) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) 13 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-791 |#1| |#2| |#3| |#4|) (-13 (-788 |#2|) (-10 -8 (-15 -1458 ($ (-1164 |#1|))))) (-1087) (-973) (-94 |#2|) (-1 |#2| |#2|)) (T -791)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-14 *3 (-1087)) (-5 *1 (-791 *3 *4 *5 *6)) (-4 *4 (-973)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-788 |#2|) (-10 -8 (-15 -1458 ($ (-1164 |#1|))))) -((-1336 ((|#1| (-710) |#1|) 35 (|has| |#1| (-37 (-383 (-523)))))) (-2374 ((|#1| (-710) (-710) |#1|) 27) ((|#1| (-710) |#1|) 20)) (-3435 ((|#1| (-710) |#1|) 31)) (-3448 ((|#1| (-710) |#1|) 29)) (-2505 ((|#1| (-710) |#1|) 28))) -(((-792 |#1|) (-10 -7 (-15 -2505 (|#1| (-710) |#1|)) (-15 -3448 (|#1| (-710) |#1|)) (-15 -3435 (|#1| (-710) |#1|)) (-15 -2374 (|#1| (-710) |#1|)) (-15 -2374 (|#1| (-710) (-710) |#1|)) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -1336 (|#1| (-710) |#1|)) |%noBranch|)) (-158)) (T -792)) -((-1336 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-158)))) (-2374 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) (-2374 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) (-3435 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) (-3448 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) (-2505 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158))))) -(-10 -7 (-15 -2505 (|#1| (-710) |#1|)) (-15 -3448 (|#1| (-710) |#1|)) (-15 -3435 (|#1| (-710) |#1|)) (-15 -2374 (|#1| (-710) |#1|)) (-15 -2374 (|#1| (-710) (-710) |#1|)) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -1336 (|#1| (-710) |#1|)) |%noBranch|)) -((-3924 (((-108) $ $) NIL)) (-1733 (((-523) $) 12)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 18) (($ (-523)) 11)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 8)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 9))) -(((-793) (-13 (-786) (-10 -8 (-15 -1458 ($ (-523))) (-15 -1733 ((-523) $))))) (T -793)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-793)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-793))))) -(-13 (-786) (-10 -8 (-15 -1458 ($ (-523))) (-15 -1733 ((-523) $)))) -((-3924 (((-108) $ $) NIL)) (-3509 (($ $ $) 115)) (-3919 (((-523) $) 30) (((-523)) 35)) (-2126 (($ (-523)) 44)) (-2555 (($ $ $) 45) (($ (-589 $)) 76)) (-3764 (($ $ (-589 $)) 74)) (-2350 (((-523) $) 33)) (-3175 (($ $ $) 63)) (-1923 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-1616 (((-523) $) 32)) (-3602 (($ $ $) 62)) (-3207 (($ $) 105)) (-1674 (($ $ $) 119)) (-2218 (($ (-589 $)) 52)) (-3005 (($ $ (-589 $)) 69)) (-1372 (($ (-523) (-523)) 46)) (-2635 (($ $) 116) (($ $ $) 117)) (-3159 (($ $ (-523)) 40) (($ $) 43)) (-3796 (($ $ $) 89)) (-4194 (($ $ $) 122)) (-3295 (($ $) 106)) (-3769 (($ $ $) 90)) (-1992 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2948 (((-1173) $) 8)) (-3287 (($ $) 109) (($ $ (-710)) 112)) (-2354 (($ $ $) 65)) (-1892 (($ $ $) 64)) (-3977 (($ $ (-589 $)) 100)) (-3457 (($ $ $) 104)) (-3531 (($ (-589 $)) 50)) (-2361 (($ $) 60) (($ (-589 $)) 61)) (-3597 (($ $ $) 113)) (-3882 (($ $) 107)) (-3815 (($ $ $) 118)) (-3553 (($ (-523)) 20) (($ (-1087)) 22) (($ (-1070)) 29) (($ (-203)) 24)) (-4090 (($ $ $) 93)) (-3900 (($ $) 94)) (-1443 (((-1173) (-1070)) 14)) (-3991 (($ (-1070)) 13)) (-3068 (($ (-589 (-589 $))) 48)) (-3149 (($ $ (-523)) 39) (($ $) 42)) (-3779 (((-1070) $) NIL)) (-2273 (($ $ $) 121)) (-1464 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1634 (((-108) $) 98)) (-4219 (($ $ (-589 $)) 102) (($ $ $ $) 103)) (-3634 (($ (-523)) 36)) (-2510 (((-523) $) 31) (((-523)) 34)) (-2612 (($ $ $) 37) (($ (-589 $)) 75)) (-2783 (((-1034) $) NIL)) (-3746 (($ $ $) 91)) (-3988 (($) 12)) (-3223 (($ $ (-589 $)) 99)) (-3269 (($ $) 108) (($ $ (-710)) 111)) (-3757 (($ $ $) 88)) (-3523 (($ $ (-710)) 127)) (-1622 (($ (-589 $)) 51)) (-1458 (((-794) $) 18)) (-1288 (($ $ (-523)) 38) (($ $) 41)) (-1889 (($ $) 58) (($ (-589 $)) 59)) (-1684 (($ $) 56) (($ (-589 $)) 57)) (-3822 (($ $) 114)) (-3942 (($ (-589 $)) 55)) (-2574 (($ $ $) 97)) (-3122 (($ $ $) 120)) (-4099 (($ $ $) 92)) (-1690 (($ $ $) 77)) (-3410 (($ $ $) 95) (($ $) 96)) (-4043 (($ $ $) 81)) (-4019 (($ $ $) 79)) (-3983 (((-108) $ $) 15) (($ $ $) 16)) (-4030 (($ $ $) 80)) (-4007 (($ $ $) 78)) (-4098 (($ $ $) 86)) (-4087 (($ $ $) 83) (($ $) 84)) (-4075 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-794) (-13 (-1016) (-10 -8 (-15 -2948 ((-1173) $)) (-15 -3991 ($ (-1070))) (-15 -1443 ((-1173) (-1070))) (-15 -3553 ($ (-523))) (-15 -3553 ($ (-1087))) (-15 -3553 ($ (-1070))) (-15 -3553 ($ (-203))) (-15 -3988 ($)) (-15 -3919 ((-523) $)) (-15 -2510 ((-523) $)) (-15 -3919 ((-523))) (-15 -2510 ((-523))) (-15 -1616 ((-523) $)) (-15 -2350 ((-523) $)) (-15 -3634 ($ (-523))) (-15 -2126 ($ (-523))) (-15 -1372 ($ (-523) (-523))) (-15 -3149 ($ $ (-523))) (-15 -3159 ($ $ (-523))) (-15 -1288 ($ $ (-523))) (-15 -3149 ($ $)) (-15 -3159 ($ $)) (-15 -1288 ($ $)) (-15 -2612 ($ $ $)) (-15 -2555 ($ $ $)) (-15 -2612 ($ (-589 $))) (-15 -2555 ($ (-589 $))) (-15 -3977 ($ $ (-589 $))) (-15 -4219 ($ $ (-589 $))) (-15 -4219 ($ $ $ $)) (-15 -3457 ($ $ $)) (-15 -1634 ((-108) $)) (-15 -3223 ($ $ (-589 $))) (-15 -3207 ($ $)) (-15 -2273 ($ $ $)) (-15 -3822 ($ $)) (-15 -3068 ($ (-589 (-589 $)))) (-15 -3509 ($ $ $)) (-15 -2635 ($ $)) (-15 -2635 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -1674 ($ $ $)) (-15 -3122 ($ $ $)) (-15 -4194 ($ $ $)) (-15 -3523 ($ $ (-710))) (-15 -2574 ($ $ $)) (-15 -3602 ($ $ $)) (-15 -3175 ($ $ $)) (-15 -1892 ($ $ $)) (-15 -2354 ($ $ $)) (-15 -3005 ($ $ (-589 $))) (-15 -3764 ($ $ (-589 $))) (-15 -3295 ($ $)) (-15 -3269 ($ $)) (-15 -3269 ($ $ (-710))) (-15 -3287 ($ $)) (-15 -3287 ($ $ (-710))) (-15 -3882 ($ $)) (-15 -3597 ($ $ $)) (-15 -1923 ($ $)) (-15 -1923 ($ $ $)) (-15 -1923 ($ $ $ $)) (-15 -1992 ($ $)) (-15 -1992 ($ $ $)) (-15 -1992 ($ $ $ $)) (-15 -1464 ($ $)) (-15 -1464 ($ $ $)) (-15 -1464 ($ $ $ $)) (-15 -1684 ($ $)) (-15 -1684 ($ (-589 $))) (-15 -1889 ($ $)) (-15 -1889 ($ (-589 $))) (-15 -2361 ($ $)) (-15 -2361 ($ (-589 $))) (-15 -3531 ($ (-589 $))) (-15 -1622 ($ (-589 $))) (-15 -2218 ($ (-589 $))) (-15 -3942 ($ (-589 $))) (-15 -3983 ($ $ $)) (-15 -1690 ($ $ $)) (-15 -4007 ($ $ $)) (-15 -4019 ($ $ $)) (-15 -4030 ($ $ $)) (-15 -4043 ($ $ $)) (-15 -4075 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -4087 ($ $)) (-15 * ($ $ $)) (-15 -4098 ($ $ $)) (-15 ** ($ $ $)) (-15 -3757 ($ $ $)) (-15 -3796 ($ $ $)) (-15 -3769 ($ $ $)) (-15 -3746 ($ $ $)) (-15 -4099 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -3900 ($ $)) (-15 -3410 ($ $ $)) (-15 -3410 ($ $))))) (T -794)) -((-2948 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-794)))) (-3991 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-794)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-794)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-794)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-794)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-794)))) (-3988 (*1 *1) (-5 *1 (-794))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3919 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-2510 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3634 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-1372 (*1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3149 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3159 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3149 (*1 *1 *1) (-5 *1 (-794))) (-3159 (*1 *1 *1) (-5 *1 (-794))) (-1288 (*1 *1 *1) (-5 *1 (-794))) (-2612 (*1 *1 *1 *1) (-5 *1 (-794))) (-2555 (*1 *1 *1 *1) (-5 *1 (-794))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3977 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-4219 (*1 *1 *1 *1 *1) (-5 *1 (-794))) (-3457 (*1 *1 *1 *1) (-5 *1 (-794))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-794)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3207 (*1 *1 *1) (-5 *1 (-794))) (-2273 (*1 *1 *1 *1) (-5 *1 (-794))) (-3822 (*1 *1 *1) (-5 *1 (-794))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-794)))) (-5 *1 (-794)))) (-3509 (*1 *1 *1 *1) (-5 *1 (-794))) (-2635 (*1 *1 *1) (-5 *1 (-794))) (-2635 (*1 *1 *1 *1) (-5 *1 (-794))) (-3815 (*1 *1 *1 *1) (-5 *1 (-794))) (-1674 (*1 *1 *1 *1) (-5 *1 (-794))) (-3122 (*1 *1 *1 *1) (-5 *1 (-794))) (-4194 (*1 *1 *1 *1) (-5 *1 (-794))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) (-2574 (*1 *1 *1 *1) (-5 *1 (-794))) (-3602 (*1 *1 *1 *1) (-5 *1 (-794))) (-3175 (*1 *1 *1 *1) (-5 *1 (-794))) (-1892 (*1 *1 *1 *1) (-5 *1 (-794))) (-2354 (*1 *1 *1 *1) (-5 *1 (-794))) (-3005 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3295 (*1 *1 *1) (-5 *1 (-794))) (-3269 (*1 *1 *1) (-5 *1 (-794))) (-3269 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) (-3287 (*1 *1 *1) (-5 *1 (-794))) (-3287 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) (-3882 (*1 *1 *1) (-5 *1 (-794))) (-3597 (*1 *1 *1 *1) (-5 *1 (-794))) (-1923 (*1 *1 *1) (-5 *1 (-794))) (-1923 (*1 *1 *1 *1) (-5 *1 (-794))) (-1923 (*1 *1 *1 *1 *1) (-5 *1 (-794))) (-1992 (*1 *1 *1) (-5 *1 (-794))) (-1992 (*1 *1 *1 *1) (-5 *1 (-794))) (-1992 (*1 *1 *1 *1 *1) (-5 *1 (-794))) (-1464 (*1 *1 *1) (-5 *1 (-794))) (-1464 (*1 *1 *1 *1) (-5 *1 (-794))) (-1464 (*1 *1 *1 *1 *1) (-5 *1 (-794))) (-1684 (*1 *1 *1) (-5 *1 (-794))) (-1684 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-1889 (*1 *1 *1) (-5 *1 (-794))) (-1889 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-2361 (*1 *1 *1) (-5 *1 (-794))) (-2361 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-1622 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-2218 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3983 (*1 *1 *1 *1) (-5 *1 (-794))) (-1690 (*1 *1 *1 *1) (-5 *1 (-794))) (-4007 (*1 *1 *1 *1) (-5 *1 (-794))) (-4019 (*1 *1 *1 *1) (-5 *1 (-794))) (-4030 (*1 *1 *1 *1) (-5 *1 (-794))) (-4043 (*1 *1 *1 *1) (-5 *1 (-794))) (-4075 (*1 *1 *1 *1) (-5 *1 (-794))) (-4087 (*1 *1 *1 *1) (-5 *1 (-794))) (-4087 (*1 *1 *1) (-5 *1 (-794))) (* (*1 *1 *1 *1) (-5 *1 (-794))) (-4098 (*1 *1 *1 *1) (-5 *1 (-794))) (** (*1 *1 *1 *1) (-5 *1 (-794))) (-3757 (*1 *1 *1 *1) (-5 *1 (-794))) (-3796 (*1 *1 *1 *1) (-5 *1 (-794))) (-3769 (*1 *1 *1 *1) (-5 *1 (-794))) (-3746 (*1 *1 *1 *1) (-5 *1 (-794))) (-4099 (*1 *1 *1 *1) (-5 *1 (-794))) (-4090 (*1 *1 *1 *1) (-5 *1 (-794))) (-3900 (*1 *1 *1) (-5 *1 (-794))) (-3410 (*1 *1 *1 *1) (-5 *1 (-794))) (-3410 (*1 *1 *1) (-5 *1 (-794)))) -(-13 (-1016) (-10 -8 (-15 -2948 ((-1173) $)) (-15 -3991 ($ (-1070))) (-15 -1443 ((-1173) (-1070))) (-15 -3553 ($ (-523))) (-15 -3553 ($ (-1087))) (-15 -3553 ($ (-1070))) (-15 -3553 ($ (-203))) (-15 -3988 ($)) (-15 -3919 ((-523) $)) (-15 -2510 ((-523) $)) (-15 -3919 ((-523))) (-15 -2510 ((-523))) (-15 -1616 ((-523) $)) (-15 -2350 ((-523) $)) (-15 -3634 ($ (-523))) (-15 -2126 ($ (-523))) (-15 -1372 ($ (-523) (-523))) (-15 -3149 ($ $ (-523))) (-15 -3159 ($ $ (-523))) (-15 -1288 ($ $ (-523))) (-15 -3149 ($ $)) (-15 -3159 ($ $)) (-15 -1288 ($ $)) (-15 -2612 ($ $ $)) (-15 -2555 ($ $ $)) (-15 -2612 ($ (-589 $))) (-15 -2555 ($ (-589 $))) (-15 -3977 ($ $ (-589 $))) (-15 -4219 ($ $ (-589 $))) (-15 -4219 ($ $ $ $)) (-15 -3457 ($ $ $)) (-15 -1634 ((-108) $)) (-15 -3223 ($ $ (-589 $))) (-15 -3207 ($ $)) (-15 -2273 ($ $ $)) (-15 -3822 ($ $)) (-15 -3068 ($ (-589 (-589 $)))) (-15 -3509 ($ $ $)) (-15 -2635 ($ $)) (-15 -2635 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -1674 ($ $ $)) (-15 -3122 ($ $ $)) (-15 -4194 ($ $ $)) (-15 -3523 ($ $ (-710))) (-15 -2574 ($ $ $)) (-15 -3602 ($ $ $)) (-15 -3175 ($ $ $)) (-15 -1892 ($ $ $)) (-15 -2354 ($ $ $)) (-15 -3005 ($ $ (-589 $))) (-15 -3764 ($ $ (-589 $))) (-15 -3295 ($ $)) (-15 -3269 ($ $)) (-15 -3269 ($ $ (-710))) (-15 -3287 ($ $)) (-15 -3287 ($ $ (-710))) (-15 -3882 ($ $)) (-15 -3597 ($ $ $)) (-15 -1923 ($ $)) (-15 -1923 ($ $ $)) (-15 -1923 ($ $ $ $)) (-15 -1992 ($ $)) (-15 -1992 ($ $ $)) (-15 -1992 ($ $ $ $)) (-15 -1464 ($ $)) (-15 -1464 ($ $ $)) (-15 -1464 ($ $ $ $)) (-15 -1684 ($ $)) (-15 -1684 ($ (-589 $))) (-15 -1889 ($ $)) (-15 -1889 ($ (-589 $))) (-15 -2361 ($ $)) (-15 -2361 ($ (-589 $))) (-15 -3531 ($ (-589 $))) (-15 -1622 ($ (-589 $))) (-15 -2218 ($ (-589 $))) (-15 -3942 ($ (-589 $))) (-15 -3983 ($ $ $)) (-15 -1690 ($ $ $)) (-15 -4007 ($ $ $)) (-15 -4019 ($ $ $)) (-15 -4030 ($ $ $)) (-15 -4043 ($ $ $)) (-15 -4075 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -4087 ($ $)) (-15 * ($ $ $)) (-15 -4098 ($ $ $)) (-15 ** ($ $ $)) (-15 -3757 ($ $ $)) (-15 -3796 ($ $ $)) (-15 -3769 ($ $ $)) (-15 -3746 ($ $ $)) (-15 -4099 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -3900 ($ $)) (-15 -3410 ($ $ $)) (-15 -3410 ($ $)))) -((-2192 (((-1173) (-589 (-51))) 24)) (-3324 (((-1173) (-1070) (-794)) 14) (((-1173) (-794)) 9) (((-1173) (-1070)) 11))) -(((-795) (-10 -7 (-15 -3324 ((-1173) (-1070))) (-15 -3324 ((-1173) (-794))) (-15 -3324 ((-1173) (-1070) (-794))) (-15 -2192 ((-1173) (-589 (-51)))))) (T -795)) -((-2192 (*1 *2 *3) (-12 (-5 *3 (-589 (-51))) (-5 *2 (-1173)) (-5 *1 (-795)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-794)) (-5 *2 (-1173)) (-5 *1 (-795)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-795)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-795))))) -(-10 -7 (-15 -3324 ((-1173) (-1070))) (-15 -3324 ((-1173) (-794))) (-15 -3324 ((-1173) (-1070) (-794))) (-15 -2192 ((-1173) (-589 (-51))))) -((-3924 (((-108) $ $) NIL)) (-2700 (((-3 $ "failed") (-1087)) 32)) (-1703 (((-710)) 30)) (-4032 (($) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2072 (((-852) $) 28)) (-3779 (((-1070) $) 38)) (-3878 (($ (-852)) 27)) (-2783 (((-1034) $) NIL)) (-3663 (((-1087) $) 13) (((-499) $) 19) (((-823 (-355)) $) 25) (((-823 (-523)) $) 22)) (-1458 (((-794) $) 16)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 35)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 34))) -(((-796 |#1|) (-13 (-780) (-564 (-1087)) (-564 (-499)) (-564 (-823 (-355))) (-564 (-823 (-523))) (-10 -8 (-15 -2700 ((-3 $ "failed") (-1087))))) (-589 (-1087))) (T -796)) -((-2700 (*1 *1 *2) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-796 *3)) (-14 *3 (-589 *2))))) -(-13 (-780) (-564 (-1087)) (-564 (-499)) (-564 (-823 (-355))) (-564 (-823 (-523))) (-10 -8 (-15 -2700 ((-3 $ "failed") (-1087))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (((-883 |#1|) $) NIL) (($ (-883 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-158)))) (-1621 (((-710)) NIL)) (-2924 (((-1173) (-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4098 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))))) -(((-797 |#1| |#2| |#3| |#4|) (-13 (-973) (-10 -8 (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1458 ((-883 |#1|) $)) (-15 -1458 ($ (-883 |#1|))) (IF (|has| |#1| (-339)) (-15 -4098 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2924 ((-1173) (-710))))) (-973) (-589 (-1087)) (-589 (-710)) (-710)) (T -797)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-883 *3)) (-5 *1 (-797 *3 *4 *5 *6)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))) (-14 *5 (-589 (-710))) (-14 *6 (-710)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-5 *1 (-797 *3 *4 *5 *6)) (-14 *4 (-589 (-1087))) (-14 *5 (-589 (-710))) (-14 *6 (-710)))) (-4098 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2 *3 *4 *5)) (-4 *2 (-339)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-710))) (-14 *5 (-710)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-797 *4 *5 *6 *7)) (-4 *4 (-973)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 *3)) (-14 *7 *3)))) -(-13 (-973) (-10 -8 (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1458 ((-883 |#1|) $)) (-15 -1458 ($ (-883 |#1|))) (IF (|has| |#1| (-339)) (-15 -4098 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2924 ((-1173) (-710))))) -((-2411 (((-3 (-159 |#3|) "failed") (-710) (-710) |#2| |#2|) 31)) (-2665 (((-3 (-383 |#3|) "failed") (-710) (-710) |#2| |#2|) 24))) -(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -2665 ((-3 (-383 |#3|) "failed") (-710) (-710) |#2| |#2|)) (-15 -2411 ((-3 (-159 |#3|) "failed") (-710) (-710) |#2| |#2|))) (-339) (-1159 |#1|) (-1144 |#1|)) (T -798)) -((-2411 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-710)) (-4 *5 (-339)) (-5 *2 (-159 *6)) (-5 *1 (-798 *5 *4 *6)) (-4 *4 (-1159 *5)) (-4 *6 (-1144 *5)))) (-2665 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-710)) (-4 *5 (-339)) (-5 *2 (-383 *6)) (-5 *1 (-798 *5 *4 *6)) (-4 *4 (-1159 *5)) (-4 *6 (-1144 *5))))) -(-10 -7 (-15 -2665 ((-3 (-383 |#3|) "failed") (-710) (-710) |#2| |#2|)) (-15 -2411 ((-3 (-159 |#3|) "failed") (-710) (-710) |#2| |#2|))) -((-2665 (((-3 (-383 (-1141 |#2| |#1|)) "failed") (-710) (-710) (-1160 |#1| |#2| |#3|)) 28) (((-3 (-383 (-1141 |#2| |#1|)) "failed") (-710) (-710) (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) 26))) -(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -2665 ((-3 (-383 (-1141 |#2| |#1|)) "failed") (-710) (-710) (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) (-15 -2665 ((-3 (-383 (-1141 |#2| |#1|)) "failed") (-710) (-710) (-1160 |#1| |#2| |#3|)))) (-339) (-1087) |#1|) (T -799)) -((-2665 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-710)) (-5 *4 (-1160 *5 *6 *7)) (-4 *5 (-339)) (-14 *6 (-1087)) (-14 *7 *5) (-5 *2 (-383 (-1141 *6 *5))) (-5 *1 (-799 *5 *6 *7)))) (-2665 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-710)) (-5 *4 (-1160 *5 *6 *7)) (-4 *5 (-339)) (-14 *6 (-1087)) (-14 *7 *5) (-5 *2 (-383 (-1141 *6 *5))) (-5 *1 (-799 *5 *6 *7))))) -(-10 -7 (-15 -2665 ((-3 (-383 (-1141 |#2| |#1|)) "failed") (-710) (-710) (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) (-15 -2665 ((-3 (-383 (-1141 |#2| |#1|)) "failed") (-710) (-710) (-1160 |#1| |#2| |#3|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-1832 (($ $ (-523)) 62)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-2635 (($ (-1083 (-523)) (-523)) 61)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-2816 (($ $) 64)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-1640 (((-710) $) 69)) (-2023 (((-108) $) 31)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3507 (((-523)) 66)) (-2329 (((-523) $) 65)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4097 (($ $ (-523)) 68)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-1617 (((-1068 (-523)) $) 70)) (-1353 (($ $) 67)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2562 (((-523) $ (-523)) 63)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-2796 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-2930 (((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-339)))) (-1301 (((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-515)))) (-2779 (((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-515)))) (-1735 (((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-339)))) (-2372 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31))) +(((-789 |#1| |#2|) (-10 -7 (-15 -2796 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -2372 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-515)) (PROGN (-15 -2779 ((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1301 ((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -1735 ((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2930 ((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-973) (-788 |#1|)) (T -789)) +((-2930 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-789 *5 *3)) (-4 *3 (-788 *5)))) (-1735 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-789 *5 *3)) (-4 *3 (-788 *5)))) (-1301 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-515)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-789 *5 *3)) (-4 *3 (-788 *5)))) (-2779 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-515)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-789 *5 *3)) (-4 *3 (-788 *5)))) (-2372 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-973)) (-5 *1 (-789 *2 *3)) (-4 *3 (-788 *2)))) (-2796 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-973)) (-5 *1 (-789 *5 *2)) (-4 *2 (-788 *5))))) +(-10 -7 (-15 -2796 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -2372 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-515)) (PROGN (-15 -2779 ((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1301 ((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -1735 ((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2930 ((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-2261 (($ $ $) NIL (|has| |#1| (-339)))) (-2863 (($ $ $) NIL (|has| |#1| (-339)))) (-2497 (($ $ $) NIL (|has| |#1| (-339)))) (-2435 (($ $ $) NIL (|has| |#1| (-339)))) (-1503 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-2643 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-2930 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 25 (|has| |#1| (-339)))) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#1| (-427)))) (-1781 (((-794) $ (-794)) NIL)) (-2769 (((-108) $) NIL)) (-1267 (($ |#1| (-710)) NIL)) (-1301 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 21 (|has| |#1| (-515)))) (-2779 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 19 (|has| |#1| (-515)))) (-4047 (((-710) $) NIL)) (-1601 (($ $ $) NIL (|has| |#1| (-339)))) (-1651 (($ $ $) NIL (|has| |#1| (-339)))) (-2869 (($ $ $) NIL (|has| |#1| (-339)))) (-4017 (($ $ $) NIL (|has| |#1| (-339)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-2687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-1735 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 23 (|has| |#1| (-339)))) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-2640 (((-710) $) NIL)) (-1618 ((|#1| $) NIL (|has| |#1| (-427)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) NIL)) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-710)) NIL)) (-3272 (((-710)) NIL)) (-2372 ((|#1| $ |#1| |#1|) 15)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-790 |#1| |#2| |#3|) (-13 (-788 |#1|) (-10 -8 (-15 -1781 ((-794) $ (-794))))) (-973) (-94 |#1|) (-1 |#1| |#1|)) (T -790)) +((-1781 (*1 *2 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-790 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-788 |#1|) (-10 -8 (-15 -1781 ((-794) $ (-794))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-2261 (($ $ $) NIL (|has| |#2| (-339)))) (-2863 (($ $ $) NIL (|has| |#2| (-339)))) (-2497 (($ $ $) NIL (|has| |#2| (-339)))) (-2435 (($ $ $) NIL (|has| |#2| (-339)))) (-1503 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#2| (-339)))) (-2643 (((-3 $ "failed") $ $) NIL (|has| |#2| (-339)))) (-2930 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#2| (-339)))) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 |#2| "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) ((|#2| $) NIL)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#2| (-427)))) (-2769 (((-108) $) NIL)) (-1267 (($ |#2| (-710)) 16)) (-1301 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#2| (-515)))) (-2779 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#2| (-515)))) (-4047 (((-710) $) NIL)) (-1601 (($ $ $) NIL (|has| |#2| (-339)))) (-1651 (($ $ $) NIL (|has| |#2| (-339)))) (-2869 (($ $ $) NIL (|has| |#2| (-339)))) (-4017 (($ $ $) NIL (|has| |#2| (-339)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#2| (-339)))) (-2687 (((-3 $ "failed") $ $) NIL (|has| |#2| (-339)))) (-1735 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#2| (-339)))) (-1437 ((|#2| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-4007 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515)))) (-2640 (((-710) $) NIL)) (-1618 ((|#2| $) NIL (|has| |#2| (-427)))) (-1691 (((-794) $) 23) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#2| (-964 (-383 (-523))))) (($ |#2|) NIL) (($ (-1165 |#1|)) 18)) (-3819 (((-589 |#2|) $) NIL)) (-2084 ((|#2| $ (-710)) NIL)) (-3272 (((-710)) NIL)) (-2372 ((|#2| $ |#2| |#2|) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) 13 T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-791 |#1| |#2| |#3| |#4|) (-13 (-788 |#2|) (-10 -8 (-15 -1691 ($ (-1165 |#1|))))) (-1087) (-973) (-94 |#2|) (-1 |#2| |#2|)) (T -791)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-14 *3 (-1087)) (-5 *1 (-791 *3 *4 *5 *6)) (-4 *4 (-973)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-788 |#2|) (-10 -8 (-15 -1691 ($ (-1165 |#1|))))) +((-3466 ((|#1| (-710) |#1|) 35 (|has| |#1| (-37 (-383 (-523)))))) (-2171 ((|#1| (-710) (-710) |#1|) 27) ((|#1| (-710) |#1|) 20)) (-2983 ((|#1| (-710) |#1|) 31)) (-3099 ((|#1| (-710) |#1|) 29)) (-4082 ((|#1| (-710) |#1|) 28))) +(((-792 |#1|) (-10 -7 (-15 -4082 (|#1| (-710) |#1|)) (-15 -3099 (|#1| (-710) |#1|)) (-15 -2983 (|#1| (-710) |#1|)) (-15 -2171 (|#1| (-710) |#1|)) (-15 -2171 (|#1| (-710) (-710) |#1|)) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3466 (|#1| (-710) |#1|)) |%noBranch|)) (-158)) (T -792)) +((-3466 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-158)))) (-2171 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) (-2171 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) (-2983 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) (-3099 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) (-4082 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158))))) +(-10 -7 (-15 -4082 (|#1| (-710) |#1|)) (-15 -3099 (|#1| (-710) |#1|)) (-15 -2983 (|#1| (-710) |#1|)) (-15 -2171 (|#1| (-710) |#1|)) (-15 -2171 (|#1| (-710) (-710) |#1|)) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3466 (|#1| (-710) |#1|)) |%noBranch|)) +((-1680 (((-108) $ $) NIL)) (-3370 (((-523) $) 12)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 18) (($ (-523)) 11)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 8)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 9))) +(((-793) (-13 (-786) (-10 -8 (-15 -1691 ($ (-523))) (-15 -3370 ((-523) $))))) (T -793)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-793)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-793))))) +(-13 (-786) (-10 -8 (-15 -1691 ($ (-523))) (-15 -3370 ((-523) $)))) +((-1680 (((-108) $ $) NIL) (($ $ $) 77)) (-1430 (($ $ $) 115)) (-2872 (((-523) $) 30) (((-523)) 35)) (-1491 (($ (-523)) 44)) (-3269 (($ $ $) 45) (($ (-589 $)) 76)) (-3068 (($ $ (-589 $)) 74)) (-3089 (((-523) $) 33)) (-1323 (($ $ $) 63)) (-2990 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3219 (((-523) $) 32)) (-4094 (($ $ $) 62)) (-3279 (($ $) 105)) (-2583 (($ $ $) 119)) (-1213 (($ (-589 $)) 52)) (-2625 (($ $ (-589 $)) 69)) (-2653 (($ (-523) (-523)) 46)) (-2838 (($ $) 116) (($ $ $) 117)) (-3855 (($ $ (-523)) 40) (($ $) 43)) (-4059 (($ $ $) 89)) (-4044 (($ $ $) 122)) (-4099 (($ $) 106)) (-4032 (($ $ $) 90)) (-3620 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2999 (((-1174) $) 8)) (-4022 (($ $) 109) (($ $ (-710)) 112)) (-1992 (($ $ $) 65)) (-3854 (($ $ $) 64)) (-1600 (($ $ (-589 $)) 100)) (-2034 (($ $ $) 104)) (-1590 (($ (-589 $)) 50)) (-2055 (($ $) 60) (($ (-589 $)) 61)) (-4028 (($ $ $) 113)) (-1768 (($ $) 107)) (-2309 (($ $ $) 118)) (-1781 (($ (-523)) 20) (($ (-1087)) 22) (($ (-1070)) 29) (($ (-203)) 24)) (-3135 (($ $ $) 93)) (-4179 (($ $) 94)) (-2186 (((-1174) (-1070)) 14)) (-4149 (($ (-1070)) 13)) (-3648 (($ (-589 (-589 $))) 48)) (-3844 (($ $ (-523)) 39) (($ $) 42)) (-2032 (((-1070) $) NIL)) (-2343 (($ $ $) 121)) (-2387 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2225 (((-108) $) 98)) (-1297 (($ $ (-589 $)) 102) (($ $ $ $) 103)) (-1410 (($ (-523)) 36)) (-1933 (((-523) $) 31) (((-523)) 34)) (-2628 (($ $ $) 37) (($ (-589 $)) 75)) (-3951 (((-1034) $) NIL)) (-4007 (($ $ $) 91)) (-3320 (($) 12)) (-1937 (($ $ (-589 $)) 99)) (-3839 (($ $) 108) (($ $ (-710)) 111)) (-4020 (($ $ $) 88)) (-3984 (($ $ (-710)) 127)) (-3284 (($ (-589 $)) 51)) (-1691 (((-794) $) 18)) (-3710 (($ $ (-523)) 38) (($ $) 41)) (-3832 (($ $) 58) (($ (-589 $)) 59)) (-3324 (($ $) 56) (($ (-589 $)) 57)) (-2850 (($ $) 114)) (-4172 (($ (-589 $)) 55)) (-3435 (($ $ $) 97)) (-1986 (($ $ $) 120)) (-3147 (($ $ $) 92)) (-3447 (($ $ $) 95) (($ $) 96)) (-4006 (($ $ $) 81)) (-3980 (($ $ $) 79)) (-3941 (((-108) $ $) 15) (($ $ $) 16)) (-3993 (($ $ $) 80)) (-3966 (($ $ $) 78)) (-4074 (($ $ $) 86)) (-4060 (($ $ $) 83) (($ $) 84)) (-4045 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-794) (-13 (-1016) (-10 -8 (-15 -2999 ((-1174) $)) (-15 -4149 ($ (-1070))) (-15 -2186 ((-1174) (-1070))) (-15 -1781 ($ (-523))) (-15 -1781 ($ (-1087))) (-15 -1781 ($ (-1070))) (-15 -1781 ($ (-203))) (-15 -3320 ($)) (-15 -2872 ((-523) $)) (-15 -1933 ((-523) $)) (-15 -2872 ((-523))) (-15 -1933 ((-523))) (-15 -3219 ((-523) $)) (-15 -3089 ((-523) $)) (-15 -1410 ($ (-523))) (-15 -1491 ($ (-523))) (-15 -2653 ($ (-523) (-523))) (-15 -3844 ($ $ (-523))) (-15 -3855 ($ $ (-523))) (-15 -3710 ($ $ (-523))) (-15 -3844 ($ $)) (-15 -3855 ($ $)) (-15 -3710 ($ $)) (-15 -2628 ($ $ $)) (-15 -3269 ($ $ $)) (-15 -2628 ($ (-589 $))) (-15 -3269 ($ (-589 $))) (-15 -1600 ($ $ (-589 $))) (-15 -1297 ($ $ (-589 $))) (-15 -1297 ($ $ $ $)) (-15 -2034 ($ $ $)) (-15 -2225 ((-108) $)) (-15 -1937 ($ $ (-589 $))) (-15 -3279 ($ $)) (-15 -2343 ($ $ $)) (-15 -2850 ($ $)) (-15 -3648 ($ (-589 (-589 $)))) (-15 -1430 ($ $ $)) (-15 -2838 ($ $)) (-15 -2838 ($ $ $)) (-15 -2309 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -1986 ($ $ $)) (-15 -4044 ($ $ $)) (-15 -3984 ($ $ (-710))) (-15 -3435 ($ $ $)) (-15 -4094 ($ $ $)) (-15 -1323 ($ $ $)) (-15 -3854 ($ $ $)) (-15 -1992 ($ $ $)) (-15 -2625 ($ $ (-589 $))) (-15 -3068 ($ $ (-589 $))) (-15 -4099 ($ $)) (-15 -3839 ($ $)) (-15 -3839 ($ $ (-710))) (-15 -4022 ($ $)) (-15 -4022 ($ $ (-710))) (-15 -1768 ($ $)) (-15 -4028 ($ $ $)) (-15 -2990 ($ $)) (-15 -2990 ($ $ $)) (-15 -2990 ($ $ $ $)) (-15 -3620 ($ $)) (-15 -3620 ($ $ $)) (-15 -3620 ($ $ $ $)) (-15 -2387 ($ $)) (-15 -2387 ($ $ $)) (-15 -2387 ($ $ $ $)) (-15 -3324 ($ $)) (-15 -3324 ($ (-589 $))) (-15 -3832 ($ $)) (-15 -3832 ($ (-589 $))) (-15 -2055 ($ $)) (-15 -2055 ($ (-589 $))) (-15 -1590 ($ (-589 $))) (-15 -3284 ($ (-589 $))) (-15 -1213 ($ (-589 $))) (-15 -4172 ($ (-589 $))) (-15 -3941 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -3966 ($ $ $)) (-15 -3980 ($ $ $)) (-15 -3993 ($ $ $)) (-15 -4006 ($ $ $)) (-15 -4045 ($ $ $)) (-15 -4060 ($ $ $)) (-15 -4060 ($ $)) (-15 * ($ $ $)) (-15 -4074 ($ $ $)) (-15 ** ($ $ $)) (-15 -4020 ($ $ $)) (-15 -4059 ($ $ $)) (-15 -4032 ($ $ $)) (-15 -4007 ($ $ $)) (-15 -3147 ($ $ $)) (-15 -3135 ($ $ $)) (-15 -4179 ($ $)) (-15 -3447 ($ $ $)) (-15 -3447 ($ $))))) (T -794)) +((-2999 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-794)))) (-4149 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-794)))) (-2186 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-794)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-794)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-794)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-794)))) (-3320 (*1 *1) (-5 *1 (-794))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-2872 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-1933 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-1491 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-2653 (*1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3844 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3855 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3710 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3844 (*1 *1 *1) (-5 *1 (-794))) (-3855 (*1 *1 *1) (-5 *1 (-794))) (-3710 (*1 *1 *1) (-5 *1 (-794))) (-2628 (*1 *1 *1 *1) (-5 *1 (-794))) (-3269 (*1 *1 *1 *1) (-5 *1 (-794))) (-2628 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3269 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-1600 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-1297 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-1297 (*1 *1 *1 *1 *1) (-5 *1 (-794))) (-2034 (*1 *1 *1 *1) (-5 *1 (-794))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-794)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3279 (*1 *1 *1) (-5 *1 (-794))) (-2343 (*1 *1 *1 *1) (-5 *1 (-794))) (-2850 (*1 *1 *1) (-5 *1 (-794))) (-3648 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-794)))) (-5 *1 (-794)))) (-1430 (*1 *1 *1 *1) (-5 *1 (-794))) (-2838 (*1 *1 *1) (-5 *1 (-794))) (-2838 (*1 *1 *1 *1) (-5 *1 (-794))) (-2309 (*1 *1 *1 *1) (-5 *1 (-794))) (-2583 (*1 *1 *1 *1) (-5 *1 (-794))) (-1986 (*1 *1 *1 *1) (-5 *1 (-794))) (-4044 (*1 *1 *1 *1) (-5 *1 (-794))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) (-3435 (*1 *1 *1 *1) (-5 *1 (-794))) (-4094 (*1 *1 *1 *1) (-5 *1 (-794))) (-1323 (*1 *1 *1 *1) (-5 *1 (-794))) (-3854 (*1 *1 *1 *1) (-5 *1 (-794))) (-1992 (*1 *1 *1 *1) (-5 *1 (-794))) (-2625 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3068 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-4099 (*1 *1 *1) (-5 *1 (-794))) (-3839 (*1 *1 *1) (-5 *1 (-794))) (-3839 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) (-4022 (*1 *1 *1) (-5 *1 (-794))) (-4022 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) (-1768 (*1 *1 *1) (-5 *1 (-794))) (-4028 (*1 *1 *1 *1) (-5 *1 (-794))) (-2990 (*1 *1 *1) (-5 *1 (-794))) (-2990 (*1 *1 *1 *1) (-5 *1 (-794))) (-2990 (*1 *1 *1 *1 *1) (-5 *1 (-794))) (-3620 (*1 *1 *1) (-5 *1 (-794))) (-3620 (*1 *1 *1 *1) (-5 *1 (-794))) (-3620 (*1 *1 *1 *1 *1) (-5 *1 (-794))) (-2387 (*1 *1 *1) (-5 *1 (-794))) (-2387 (*1 *1 *1 *1) (-5 *1 (-794))) (-2387 (*1 *1 *1 *1 *1) (-5 *1 (-794))) (-3324 (*1 *1 *1) (-5 *1 (-794))) (-3324 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3832 (*1 *1 *1) (-5 *1 (-794))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-2055 (*1 *1 *1) (-5 *1 (-794))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3284 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-1213 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3941 (*1 *1 *1 *1) (-5 *1 (-794))) (-1680 (*1 *1 *1 *1) (-5 *1 (-794))) (-3966 (*1 *1 *1 *1) (-5 *1 (-794))) (-3980 (*1 *1 *1 *1) (-5 *1 (-794))) (-3993 (*1 *1 *1 *1) (-5 *1 (-794))) (-4006 (*1 *1 *1 *1) (-5 *1 (-794))) (-4045 (*1 *1 *1 *1) (-5 *1 (-794))) (-4060 (*1 *1 *1 *1) (-5 *1 (-794))) (-4060 (*1 *1 *1) (-5 *1 (-794))) (* (*1 *1 *1 *1) (-5 *1 (-794))) (-4074 (*1 *1 *1 *1) (-5 *1 (-794))) (** (*1 *1 *1 *1) (-5 *1 (-794))) (-4020 (*1 *1 *1 *1) (-5 *1 (-794))) (-4059 (*1 *1 *1 *1) (-5 *1 (-794))) (-4032 (*1 *1 *1 *1) (-5 *1 (-794))) (-4007 (*1 *1 *1 *1) (-5 *1 (-794))) (-3147 (*1 *1 *1 *1) (-5 *1 (-794))) (-3135 (*1 *1 *1 *1) (-5 *1 (-794))) (-4179 (*1 *1 *1) (-5 *1 (-794))) (-3447 (*1 *1 *1 *1) (-5 *1 (-794))) (-3447 (*1 *1 *1) (-5 *1 (-794)))) +(-13 (-1016) (-10 -8 (-15 -2999 ((-1174) $)) (-15 -4149 ($ (-1070))) (-15 -2186 ((-1174) (-1070))) (-15 -1781 ($ (-523))) (-15 -1781 ($ (-1087))) (-15 -1781 ($ (-1070))) (-15 -1781 ($ (-203))) (-15 -3320 ($)) (-15 -2872 ((-523) $)) (-15 -1933 ((-523) $)) (-15 -2872 ((-523))) (-15 -1933 ((-523))) (-15 -3219 ((-523) $)) (-15 -3089 ((-523) $)) (-15 -1410 ($ (-523))) (-15 -1491 ($ (-523))) (-15 -2653 ($ (-523) (-523))) (-15 -3844 ($ $ (-523))) (-15 -3855 ($ $ (-523))) (-15 -3710 ($ $ (-523))) (-15 -3844 ($ $)) (-15 -3855 ($ $)) (-15 -3710 ($ $)) (-15 -2628 ($ $ $)) (-15 -3269 ($ $ $)) (-15 -2628 ($ (-589 $))) (-15 -3269 ($ (-589 $))) (-15 -1600 ($ $ (-589 $))) (-15 -1297 ($ $ (-589 $))) (-15 -1297 ($ $ $ $)) (-15 -2034 ($ $ $)) (-15 -2225 ((-108) $)) (-15 -1937 ($ $ (-589 $))) (-15 -3279 ($ $)) (-15 -2343 ($ $ $)) (-15 -2850 ($ $)) (-15 -3648 ($ (-589 (-589 $)))) (-15 -1430 ($ $ $)) (-15 -2838 ($ $)) (-15 -2838 ($ $ $)) (-15 -2309 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -1986 ($ $ $)) (-15 -4044 ($ $ $)) (-15 -3984 ($ $ (-710))) (-15 -3435 ($ $ $)) (-15 -4094 ($ $ $)) (-15 -1323 ($ $ $)) (-15 -3854 ($ $ $)) (-15 -1992 ($ $ $)) (-15 -2625 ($ $ (-589 $))) (-15 -3068 ($ $ (-589 $))) (-15 -4099 ($ $)) (-15 -3839 ($ $)) (-15 -3839 ($ $ (-710))) (-15 -4022 ($ $)) (-15 -4022 ($ $ (-710))) (-15 -1768 ($ $)) (-15 -4028 ($ $ $)) (-15 -2990 ($ $)) (-15 -2990 ($ $ $)) (-15 -2990 ($ $ $ $)) (-15 -3620 ($ $)) (-15 -3620 ($ $ $)) (-15 -3620 ($ $ $ $)) (-15 -2387 ($ $)) (-15 -2387 ($ $ $)) (-15 -2387 ($ $ $ $)) (-15 -3324 ($ $)) (-15 -3324 ($ (-589 $))) (-15 -3832 ($ $)) (-15 -3832 ($ (-589 $))) (-15 -2055 ($ $)) (-15 -2055 ($ (-589 $))) (-15 -1590 ($ (-589 $))) (-15 -3284 ($ (-589 $))) (-15 -1213 ($ (-589 $))) (-15 -4172 ($ (-589 $))) (-15 -3941 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -3966 ($ $ $)) (-15 -3980 ($ $ $)) (-15 -3993 ($ $ $)) (-15 -4006 ($ $ $)) (-15 -4045 ($ $ $)) (-15 -4060 ($ $ $)) (-15 -4060 ($ $)) (-15 * ($ $ $)) (-15 -4074 ($ $ $)) (-15 ** ($ $ $)) (-15 -4020 ($ $ $)) (-15 -4059 ($ $ $)) (-15 -4032 ($ $ $)) (-15 -4007 ($ $ $)) (-15 -3147 ($ $ $)) (-15 -3135 ($ $ $)) (-15 -4179 ($ $)) (-15 -3447 ($ $ $)) (-15 -3447 ($ $)))) +((-2715 (((-1174) (-589 (-51))) 24)) (-3930 (((-1174) (-1070) (-794)) 14) (((-1174) (-794)) 9) (((-1174) (-1070)) 11))) +(((-795) (-10 -7 (-15 -3930 ((-1174) (-1070))) (-15 -3930 ((-1174) (-794))) (-15 -3930 ((-1174) (-1070) (-794))) (-15 -2715 ((-1174) (-589 (-51)))))) (T -795)) +((-2715 (*1 *2 *3) (-12 (-5 *3 (-589 (-51))) (-5 *2 (-1174)) (-5 *1 (-795)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-794)) (-5 *2 (-1174)) (-5 *1 (-795)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1174)) (-5 *1 (-795)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-795))))) +(-10 -7 (-15 -3930 ((-1174) (-1070))) (-15 -3930 ((-1174) (-794))) (-15 -3930 ((-1174) (-1070) (-794))) (-15 -2715 ((-1174) (-589 (-51))))) +((-1680 (((-108) $ $) NIL)) (-2724 (((-3 $ "failed") (-1087)) 32)) (-2395 (((-710)) 30)) (-1631 (($) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2060 (((-852) $) 28)) (-2032 (((-1070) $) 38)) (-4013 (($ (-852)) 27)) (-3951 (((-1034) $) NIL)) (-1400 (((-1087) $) 13) (((-499) $) 19) (((-823 (-355)) $) 25) (((-823 (-523)) $) 22)) (-1691 (((-794) $) 16)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 35)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 34))) +(((-796 |#1|) (-13 (-780) (-564 (-1087)) (-564 (-499)) (-564 (-823 (-355))) (-564 (-823 (-523))) (-10 -8 (-15 -2724 ((-3 $ "failed") (-1087))))) (-589 (-1087))) (T -796)) +((-2724 (*1 *1 *2) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-796 *3)) (-14 *3 (-589 *2))))) +(-13 (-780) (-564 (-1087)) (-564 (-499)) (-564 (-823 (-355))) (-564 (-823 (-523))) (-10 -8 (-15 -2724 ((-3 $ "failed") (-1087))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) NIL)) (-2769 (((-108) $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (((-883 |#1|) $) NIL) (($ (-883 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-158)))) (-3272 (((-710)) NIL)) (-3720 (((-1174) (-710)) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4074 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))))) +(((-797 |#1| |#2| |#3| |#4|) (-13 (-973) (-10 -8 (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1691 ((-883 |#1|) $)) (-15 -1691 ($ (-883 |#1|))) (IF (|has| |#1| (-339)) (-15 -4074 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3720 ((-1174) (-710))))) (-973) (-589 (-1087)) (-589 (-710)) (-710)) (T -797)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-883 *3)) (-5 *1 (-797 *3 *4 *5 *6)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))) (-14 *5 (-589 (-710))) (-14 *6 (-710)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-5 *1 (-797 *3 *4 *5 *6)) (-14 *4 (-589 (-1087))) (-14 *5 (-589 (-710))) (-14 *6 (-710)))) (-4074 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2 *3 *4 *5)) (-4 *2 (-339)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-710))) (-14 *5 (-710)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-797 *4 *5 *6 *7)) (-4 *4 (-973)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 *3)) (-14 *7 *3)))) +(-13 (-973) (-10 -8 (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1691 ((-883 |#1|) $)) (-15 -1691 ($ (-883 |#1|))) (IF (|has| |#1| (-339)) (-15 -4074 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3720 ((-1174) (-710))))) +((-2525 (((-3 (-159 |#3|) "failed") (-710) (-710) |#2| |#2|) 31)) (-3104 (((-3 (-383 |#3|) "failed") (-710) (-710) |#2| |#2|) 24))) +(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -3104 ((-3 (-383 |#3|) "failed") (-710) (-710) |#2| |#2|)) (-15 -2525 ((-3 (-159 |#3|) "failed") (-710) (-710) |#2| |#2|))) (-339) (-1160 |#1|) (-1145 |#1|)) (T -798)) +((-2525 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-710)) (-4 *5 (-339)) (-5 *2 (-159 *6)) (-5 *1 (-798 *5 *4 *6)) (-4 *4 (-1160 *5)) (-4 *6 (-1145 *5)))) (-3104 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-710)) (-4 *5 (-339)) (-5 *2 (-383 *6)) (-5 *1 (-798 *5 *4 *6)) (-4 *4 (-1160 *5)) (-4 *6 (-1145 *5))))) +(-10 -7 (-15 -3104 ((-3 (-383 |#3|) "failed") (-710) (-710) |#2| |#2|)) (-15 -2525 ((-3 (-159 |#3|) "failed") (-710) (-710) |#2| |#2|))) +((-3104 (((-3 (-383 (-1142 |#2| |#1|)) "failed") (-710) (-710) (-1161 |#1| |#2| |#3|)) 28) (((-3 (-383 (-1142 |#2| |#1|)) "failed") (-710) (-710) (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) 26))) +(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -3104 ((-3 (-383 (-1142 |#2| |#1|)) "failed") (-710) (-710) (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) (-15 -3104 ((-3 (-383 (-1142 |#2| |#1|)) "failed") (-710) (-710) (-1161 |#1| |#2| |#3|)))) (-339) (-1087) |#1|) (T -799)) +((-3104 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-710)) (-5 *4 (-1161 *5 *6 *7)) (-4 *5 (-339)) (-14 *6 (-1087)) (-14 *7 *5) (-5 *2 (-383 (-1142 *6 *5))) (-5 *1 (-799 *5 *6 *7)))) (-3104 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-710)) (-5 *4 (-1161 *5 *6 *7)) (-4 *5 (-339)) (-14 *6 (-1087)) (-14 *7 *5) (-5 *2 (-383 (-1142 *6 *5))) (-5 *1 (-799 *5 *6 *7))))) +(-10 -7 (-15 -3104 ((-3 (-383 (-1142 |#2| |#1|)) "failed") (-710) (-710) (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) (-15 -3104 ((-3 (-383 (-1142 |#2| |#1|)) "failed") (-710) (-710) (-1161 |#1| |#2| |#3|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-2437 (($ $ (-523)) 62)) (-2787 (((-108) $ $) 59)) (-4189 (($) 17 T CONST)) (-2838 (($ (-1083 (-523)) (-523)) 61)) (-4059 (($ $ $) 55)) (-1444 (((-3 $ "failed") $) 34)) (-4012 (($ $) 64)) (-4032 (($ $ $) 56)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-3437 (((-710) $) 69)) (-2769 (((-108) $) 31)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-2547 (((-523)) 66)) (-2903 (((-523) $) 65)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3053 (($ $ (-523)) 68)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-3413 (((-710) $) 58)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57)) (-3229 (((-1068 (-523)) $) 70)) (-2488 (($ $) 67)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-4108 (((-523) $ (-523)) 63)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-800 |#1|) (-129) (-523)) (T -800)) -((-1617 (*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-1068 (-523))))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-710)))) (-4097 (*1 *1 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-1353 (*1 *1 *1) (-4 *1 (-800 *2))) (-3507 (*1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-2816 (*1 *1 *1) (-4 *1 (-800 *2))) (-2562 (*1 *2 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-1832 (*1 *1 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-2635 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *3 (-523)) (-4 *1 (-800 *4))))) -(-13 (-284) (-136) (-10 -8 (-15 -1617 ((-1068 (-523)) $)) (-15 -1640 ((-710) $)) (-15 -4097 ($ $ (-523))) (-15 -1353 ($ $)) (-15 -3507 ((-523))) (-15 -2329 ((-523) $)) (-15 -2816 ($ $)) (-15 -2562 ((-523) $ (-523))) (-15 -1832 ($ $ (-523))) (-15 -2635 ($ (-1083 (-523)) (-523))))) +((-3229 (*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-1068 (-523))))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-710)))) (-3053 (*1 *1 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-2488 (*1 *1 *1) (-4 *1 (-800 *2))) (-2547 (*1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-4012 (*1 *1 *1) (-4 *1 (-800 *2))) (-4108 (*1 *2 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-2437 (*1 *1 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-2838 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *3 (-523)) (-4 *1 (-800 *4))))) +(-13 (-284) (-136) (-10 -8 (-15 -3229 ((-1068 (-523)) $)) (-15 -3437 ((-710) $)) (-15 -3053 ($ $ (-523))) (-15 -2488 ($ $)) (-15 -2547 ((-523))) (-15 -2903 ((-523) $)) (-15 -4012 ($ $)) (-15 -4108 ((-523) $ (-523))) (-15 -2437 ($ $ (-523))) (-15 -2838 ($ (-1083 (-523)) (-523))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-284) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $ (-523)) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2635 (($ (-1083 (-523)) (-523)) NIL)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2816 (($ $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1640 (((-710) $) NIL)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3507 (((-523)) NIL)) (-2329 (((-523) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4097 (($ $ (-523)) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1617 (((-1068 (-523)) $) NIL)) (-1353 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL)) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL)) (-2562 (((-523) $ (-523)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2437 (($ $ (-523)) NIL)) (-2787 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-2838 (($ (-1083 (-523)) (-523)) NIL)) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-4012 (($ $) NIL)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3437 (((-710) $) NIL)) (-2769 (((-108) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2547 (((-523)) NIL)) (-2903 (((-523) $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3053 (($ $ (-523)) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3229 (((-1068 (-523)) $) NIL)) (-2488 (($ $) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL)) (-3272 (((-710)) NIL)) (-2801 (((-108) $ $) NIL)) (-4108 (((-523) $ (-523)) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL))) (((-801 |#1|) (-800 |#1|) (-523)) (T -801)) NIL (-800 |#1|) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-801 |#1|) $) NIL (|has| (-801 |#1|) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-801 |#1|) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-801 |#1|) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-801 |#1|) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-801 |#1|) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-801 |#1|) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-801 |#1|) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-801 |#1|) (-964 (-523))))) (-3474 (((-801 |#1|) $) NIL) (((-1087) $) NIL (|has| (-801 |#1|) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-801 |#1|) (-964 (-523)))) (((-523) $) NIL (|has| (-801 |#1|) (-964 (-523))))) (-1819 (($ $) NIL) (($ (-523) $) NIL)) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-801 |#1|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-801 |#1|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-801 |#1|))) (|:| |vec| (-1168 (-801 |#1|)))) (-629 $) (-1168 $)) NIL) (((-629 (-801 |#1|)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-801 |#1|) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| (-801 |#1|) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-801 |#1|) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-801 |#1|) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-801 |#1|) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| (-801 |#1|) (-1063)))) (-4114 (((-108) $) NIL (|has| (-801 |#1|) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-801 |#1|) (-786)))) (-2062 (($ $ $) NIL (|has| (-801 |#1|) (-786)))) (-3612 (($ (-1 (-801 |#1|) (-801 |#1|)) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-801 |#1|) (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-801 |#1|) (-284)))) (-3722 (((-801 |#1|) $) NIL (|has| (-801 |#1|) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-801 |#1|) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-801 |#1|) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-801 |#1|)) (-589 (-801 |#1|))) NIL (|has| (-801 |#1|) (-286 (-801 |#1|)))) (($ $ (-801 |#1|) (-801 |#1|)) NIL (|has| (-801 |#1|) (-286 (-801 |#1|)))) (($ $ (-271 (-801 |#1|))) NIL (|has| (-801 |#1|) (-286 (-801 |#1|)))) (($ $ (-589 (-271 (-801 |#1|)))) NIL (|has| (-801 |#1|) (-286 (-801 |#1|)))) (($ $ (-589 (-1087)) (-589 (-801 |#1|))) NIL (|has| (-801 |#1|) (-484 (-1087) (-801 |#1|)))) (($ $ (-1087) (-801 |#1|)) NIL (|has| (-801 |#1|) (-484 (-1087) (-801 |#1|))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-801 |#1|)) NIL (|has| (-801 |#1|) (-263 (-801 |#1|) (-801 |#1|))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| (-801 |#1|) (-211))) (($ $ (-710)) NIL (|has| (-801 |#1|) (-211))) (($ $ (-1087)) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-1 (-801 |#1|) (-801 |#1|)) (-710)) NIL) (($ $ (-1 (-801 |#1|) (-801 |#1|))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-801 |#1|) $) NIL)) (-3663 (((-823 (-523)) $) NIL (|has| (-801 |#1|) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-801 |#1|) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-801 |#1|) (-564 (-499)))) (((-355) $) NIL (|has| (-801 |#1|) (-949))) (((-203) $) NIL (|has| (-801 |#1|) (-949)))) (-2947 (((-159 (-383 (-523))) $) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-801 |#1|) (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-801 |#1|)) NIL) (($ (-1087)) NIL (|has| (-801 |#1|) (-964 (-1087))))) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-801 |#1|) (-840))) (|has| (-801 |#1|) (-134))))) (-1621 (((-710)) NIL)) (-1886 (((-801 |#1|) $) NIL (|has| (-801 |#1|) (-508)))) (-1704 (((-108) $ $) NIL)) (-2562 (((-383 (-523)) $ (-523)) NIL)) (-2619 (($ $) NIL (|has| (-801 |#1|) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL (|has| (-801 |#1|) (-211))) (($ $ (-710)) NIL (|has| (-801 |#1|) (-211))) (($ $ (-1087)) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-1 (-801 |#1|) (-801 |#1|)) (-710)) NIL) (($ $ (-1 (-801 |#1|) (-801 |#1|))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-801 |#1|) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-801 |#1|) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-801 |#1|) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-801 |#1|) (-786)))) (-4098 (($ $ $) NIL) (($ (-801 |#1|) (-801 |#1|)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-801 |#1|) $) NIL) (($ $ (-801 |#1|)) NIL))) -(((-802 |#1|) (-13 (-921 (-801 |#1|)) (-10 -8 (-15 -2562 ((-383 (-523)) $ (-523))) (-15 -2947 ((-159 (-383 (-523))) $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)))) (-523)) (T -802)) -((-2562 (*1 *2 *1 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-802 *4)) (-14 *4 *3) (-5 *3 (-523)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-802 *3)) (-14 *3 (-523)))) (-1819 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-14 *2 (-523)))) (-1819 (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-802 *3)) (-14 *3 *2)))) -(-13 (-921 (-801 |#1|)) (-10 -8 (-15 -2562 ((-383 (-523)) $ (-523))) (-15 -2947 ((-159 (-383 (-523))) $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 ((|#2| $) NIL (|has| |#2| (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| |#2| (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| |#2| (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523))))) (-3474 ((|#2| $) NIL) (((-1087) $) NIL (|has| |#2| (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-523)))) (((-523) $) NIL (|has| |#2| (-964 (-523))))) (-1819 (($ $) 31) (($ (-523) $) 32)) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) 53)) (-4032 (($) NIL (|has| |#2| (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| |#2| (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| |#2| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| |#2| (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 ((|#2| $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| |#2| (-1063)))) (-4114 (((-108) $) NIL (|has| |#2| (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| |#2| (-786)))) (-2062 (($ $ $) NIL (|has| |#2| (-786)))) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 49)) (-2262 (($) NIL (|has| |#2| (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| |#2| (-284)))) (-3722 ((|#2| $) NIL (|has| |#2| (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 |#2|) (-589 |#2|)) NIL (|has| |#2| (-286 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-286 |#2|))) (($ $ (-271 |#2|)) NIL (|has| |#2| (-286 |#2|))) (($ $ (-589 (-271 |#2|))) NIL (|has| |#2| (-286 |#2|))) (($ $ (-589 (-1087)) (-589 |#2|)) NIL (|has| |#2| (-484 (-1087) |#2|))) (($ $ (-1087) |#2|) NIL (|has| |#2| (-484 (-1087) |#2|)))) (-1972 (((-710) $) NIL)) (-3223 (($ $ |#2|) NIL (|has| |#2| (-263 |#2| |#2|)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| |#2| (-211))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3414 (($ $) NIL)) (-2797 ((|#2| $) NIL)) (-3663 (((-823 (-523)) $) NIL (|has| |#2| (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| |#2| (-564 (-823 (-355))))) (((-499) $) NIL (|has| |#2| (-564 (-499)))) (((-355) $) NIL (|has| |#2| (-949))) (((-203) $) NIL (|has| |#2| (-949)))) (-2947 (((-159 (-383 (-523))) $) 68)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1458 (((-794) $) 86) (($ (-523)) 19) (($ $) NIL) (($ (-383 (-523))) 24) (($ |#2|) 18) (($ (-1087)) NIL (|has| |#2| (-964 (-1087))))) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-1621 (((-710)) NIL)) (-1886 ((|#2| $) NIL (|has| |#2| (-508)))) (-1704 (((-108) $ $) NIL)) (-2562 (((-383 (-523)) $ (-523)) 60)) (-2619 (($ $) NIL (|has| |#2| (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 14 T CONST)) (-2767 (($) 16 T CONST)) (-2862 (($ $) NIL (|has| |#2| (-211))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3983 (((-108) $ $) 35)) (-4030 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4098 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4087 (($ $) 39) (($ $ $) 41)) (-4075 (($ $ $) 37)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 50)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 42) (($ $ $) 44) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-803 |#1| |#2|) (-13 (-921 |#2|) (-10 -8 (-15 -2562 ((-383 (-523)) $ (-523))) (-15 -2947 ((-159 (-383 (-523))) $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)))) (-523) (-800 |#1|)) (T -803)) -((-2562 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-383 (-523))) (-5 *1 (-803 *4 *5)) (-5 *3 (-523)) (-4 *5 (-800 *4)))) (-2947 (*1 *2 *1) (-12 (-14 *3 (-523)) (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-803 *3 *4)) (-4 *4 (-800 *3)))) (-1819 (*1 *1 *1) (-12 (-14 *2 (-523)) (-5 *1 (-803 *2 *3)) (-4 *3 (-800 *2)))) (-1819 (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-14 *3 *2) (-5 *1 (-803 *3 *4)) (-4 *4 (-800 *3))))) -(-13 (-921 |#2|) (-10 -8 (-15 -2562 ((-383 (-523)) $ (-523))) (-15 -2947 ((-159 (-383 (-523))) $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)))) -((-3924 (((-108) $ $) NIL (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))))) (-1532 ((|#2| $) 12)) (-3908 (($ |#1| |#2|) 9)) (-3779 (((-1070) $) NIL (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))))) (-2783 (((-1034) $) NIL (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#1| $) 11)) (-1472 (($ |#1| |#2|) 10)) (-1458 (((-794) $) 18 (-3262 (-12 (|has| |#1| (-563 (-794))) (|has| |#2| (-563 (-794)))) (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016)))))) (-3983 (((-108) $ $) 22 (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016)))))) -(((-804 |#1| |#2|) (-13 (-1122) (-10 -8 (IF (|has| |#1| (-563 (-794))) (IF (|has| |#2| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1016)) (IF (|has| |#2| (-1016)) (-6 (-1016)) |%noBranch|) |%noBranch|) (-15 -3908 ($ |#1| |#2|)) (-15 -1472 ($ |#1| |#2|)) (-15 -1738 (|#1| $)) (-15 -1532 (|#2| $)))) (-1122) (-1122)) (T -804)) -((-3908 (*1 *1 *2 *3) (-12 (-5 *1 (-804 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-1472 (*1 *1 *2 *3) (-12 (-5 *1 (-804 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-1738 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-804 *2 *3)) (-4 *3 (-1122)))) (-1532 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-804 *3 *2)) (-4 *3 (-1122))))) -(-13 (-1122) (-10 -8 (IF (|has| |#1| (-563 (-794))) (IF (|has| |#2| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1016)) (IF (|has| |#2| (-1016)) (-6 (-1016)) |%noBranch|) |%noBranch|) (-15 -3908 ($ |#1| |#2|)) (-15 -1472 ($ |#1| |#2|)) (-15 -1738 (|#1| $)) (-15 -1532 (|#2| $)))) -((-3924 (((-108) $ $) NIL)) (-2398 (((-523) $) 15)) (-2542 (($ (-144)) 11)) (-3573 (($ (-144)) 12)) (-3779 (((-1070) $) NIL)) (-1804 (((-144) $) 13)) (-2783 (((-1034) $) NIL)) (-1346 (($ (-144)) 9)) (-3258 (($ (-144)) 8)) (-1458 (((-794) $) 23) (($ (-144)) 16)) (-1427 (($ (-144)) 10)) (-3983 (((-108) $ $) NIL))) -(((-805) (-13 (-1016) (-10 -8 (-15 -3258 ($ (-144))) (-15 -1346 ($ (-144))) (-15 -1427 ($ (-144))) (-15 -2542 ($ (-144))) (-15 -3573 ($ (-144))) (-15 -1804 ((-144) $)) (-15 -2398 ((-523) $)) (-15 -1458 ($ (-144)))))) (T -805)) -((-3258 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-1346 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-2542 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-805)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) -(-13 (-1016) (-10 -8 (-15 -3258 ($ (-144))) (-15 -1346 ($ (-144))) (-15 -1427 ($ (-144))) (-15 -2542 ($ (-144))) (-15 -3573 ($ (-144))) (-15 -1804 ((-144) $)) (-15 -2398 ((-523) $)) (-15 -1458 ($ (-144))))) -((-1458 (((-292 (-523)) (-383 (-883 (-47)))) 21) (((-292 (-523)) (-883 (-47))) 16))) -(((-806) (-10 -7 (-15 -1458 ((-292 (-523)) (-883 (-47)))) (-15 -1458 ((-292 (-523)) (-383 (-883 (-47))))))) (T -806)) -((-1458 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 (-47)))) (-5 *2 (-292 (-523))) (-5 *1 (-806)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-883 (-47))) (-5 *2 (-292 (-523))) (-5 *1 (-806))))) -(-10 -7 (-15 -1458 ((-292 (-523)) (-883 (-47)))) (-15 -1458 ((-292 (-523)) (-383 (-883 (-47)))))) -((-3612 (((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)) 14))) -(((-807 |#1| |#2|) (-10 -7 (-15 -3612 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)))) (-1122) (-1122)) (T -807)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-808 *6)) (-5 *1 (-807 *5 *6))))) -(-10 -7 (-15 -3612 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)))) -((-3349 (($ |#1| |#1|) 8)) (-3038 ((|#1| $ (-710)) 10))) -(((-808 |#1|) (-10 -8 (-15 -3349 ($ |#1| |#1|)) (-15 -3038 (|#1| $ (-710)))) (-1122)) (T -808)) -((-3038 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-808 *2)) (-4 *2 (-1122)))) (-3349 (*1 *1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1122))))) -(-10 -8 (-15 -3349 ($ |#1| |#1|)) (-15 -3038 (|#1| $ (-710)))) -((-3612 (((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)) 14))) -(((-809 |#1| |#2|) (-10 -7 (-15 -3612 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) (-1122) (-1122)) (T -809)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-810 *6)) (-5 *1 (-809 *5 *6))))) -(-10 -7 (-15 -3612 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) -((-3349 (($ |#1| |#1| |#1|) 8)) (-3038 ((|#1| $ (-710)) 10))) -(((-810 |#1|) (-10 -8 (-15 -3349 ($ |#1| |#1| |#1|)) (-15 -3038 (|#1| $ (-710)))) (-1122)) (T -810)) -((-3038 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-810 *2)) (-4 *2 (-1122)))) (-3349 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1122))))) -(-10 -8 (-15 -3349 ($ |#1| |#1| |#1|)) (-15 -3038 (|#1| $ (-710)))) -((-1750 (((-589 (-1092)) (-1070)) 8))) -(((-811) (-10 -7 (-15 -1750 ((-589 (-1092)) (-1070))))) (T -811)) -((-1750 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-589 (-1092))) (-5 *1 (-811))))) -(-10 -7 (-15 -1750 ((-589 (-1092)) (-1070)))) -((-3612 (((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)) 14))) -(((-812 |#1| |#2|) (-10 -7 (-15 -3612 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)))) (-1122) (-1122)) (T -812)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6))))) -(-10 -7 (-15 -3612 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)))) -((-1537 (($ |#1| |#1| |#1|) 8)) (-3038 ((|#1| $ (-710)) 10))) -(((-813 |#1|) (-10 -8 (-15 -1537 ($ |#1| |#1| |#1|)) (-15 -3038 (|#1| $ (-710)))) (-1122)) (T -813)) -((-3038 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-813 *2)) (-4 *2 (-1122)))) (-1537 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1122))))) -(-10 -8 (-15 -1537 ($ |#1| |#1| |#1|)) (-15 -3038 (|#1| $ (-710)))) -((-2993 (((-1068 (-589 (-523))) (-589 (-523)) (-1068 (-589 (-523)))) 32)) (-2104 (((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523))) 28)) (-2449 (((-1068 (-589 (-523))) (-589 (-523))) 41) (((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523))) 40)) (-3701 (((-1068 (-589 (-523))) (-523)) 42)) (-3322 (((-1068 (-589 (-523))) (-523) (-523)) 22) (((-1068 (-589 (-523))) (-523)) 16) (((-1068 (-589 (-523))) (-523) (-523) (-523)) 12)) (-2991 (((-1068 (-589 (-523))) (-1068 (-589 (-523)))) 26)) (-3208 (((-589 (-523)) (-589 (-523))) 25))) -(((-814) (-10 -7 (-15 -3322 ((-1068 (-589 (-523))) (-523) (-523) (-523))) (-15 -3322 ((-1068 (-589 (-523))) (-523))) (-15 -3322 ((-1068 (-589 (-523))) (-523) (-523))) (-15 -3208 ((-589 (-523)) (-589 (-523)))) (-15 -2991 ((-1068 (-589 (-523))) (-1068 (-589 (-523))))) (-15 -2104 ((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523)))) (-15 -2993 ((-1068 (-589 (-523))) (-589 (-523)) (-1068 (-589 (-523))))) (-15 -2449 ((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523)))) (-15 -2449 ((-1068 (-589 (-523))) (-589 (-523)))) (-15 -3701 ((-1068 (-589 (-523))) (-523))))) (T -814)) -((-3701 (*1 *2 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) (-2449 (*1 *2 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-589 (-523))))) (-2449 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-589 (-523))))) (-2993 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *3 (-589 (-523))) (-5 *1 (-814)))) (-2104 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-589 (-523))))) (-2991 (*1 *2 *2) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)))) (-3208 (*1 *2 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-814)))) (-3322 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) (-3322 (*1 *2 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) (-3322 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523))))) -(-10 -7 (-15 -3322 ((-1068 (-589 (-523))) (-523) (-523) (-523))) (-15 -3322 ((-1068 (-589 (-523))) (-523))) (-15 -3322 ((-1068 (-589 (-523))) (-523) (-523))) (-15 -3208 ((-589 (-523)) (-589 (-523)))) (-15 -2991 ((-1068 (-589 (-523))) (-1068 (-589 (-523))))) (-15 -2104 ((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523)))) (-15 -2993 ((-1068 (-589 (-523))) (-589 (-523)) (-1068 (-589 (-523))))) (-15 -2449 ((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523)))) (-15 -2449 ((-1068 (-589 (-523))) (-589 (-523)))) (-15 -3701 ((-1068 (-589 (-523))) (-523)))) -((-3663 (((-823 (-355)) $) 9 (|has| |#1| (-564 (-823 (-355))))) (((-823 (-523)) $) 8 (|has| |#1| (-564 (-823 (-523))))))) -(((-815 |#1|) (-129) (-1122)) (T -815)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2046 (((-801 |#1|) $) NIL (|has| (-801 |#1|) (-284)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-801 |#1|) (-840)))) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-801 |#1|) (-840)))) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL (|has| (-801 |#1|) (-759)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-801 |#1|) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-801 |#1|) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-801 |#1|) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-801 |#1|) (-964 (-523))))) (-3508 (((-801 |#1|) $) NIL) (((-1087) $) NIL (|has| (-801 |#1|) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-801 |#1|) (-964 (-523)))) (((-523) $) NIL (|has| (-801 |#1|) (-964 (-523))))) (-1458 (($ $) NIL) (($ (-523) $) NIL)) (-4059 (($ $ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| (-801 |#1|) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| (-801 |#1|) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-801 |#1|))) (|:| |vec| (-1169 (-801 |#1|)))) (-629 $) (-1169 $)) NIL) (((-629 (-801 |#1|)) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| (-801 |#1|) (-508)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-3712 (((-108) $) NIL (|has| (-801 |#1|) (-759)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-801 |#1|) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-801 |#1|) (-817 (-355))))) (-2769 (((-108) $) NIL)) (-1296 (($ $) NIL)) (-3316 (((-801 |#1|) $) NIL)) (-2738 (((-3 $ "failed") $) NIL (|has| (-801 |#1|) (-1063)))) (-2057 (((-108) $) NIL (|has| (-801 |#1|) (-759)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3239 (($ $ $) NIL (|has| (-801 |#1|) (-786)))) (-3158 (($ $ $) NIL (|has| (-801 |#1|) (-786)))) (-1345 (($ (-1 (-801 |#1|) (-801 |#1|)) $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| (-801 |#1|) (-1063)) CONST)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4110 (($ $) NIL (|has| (-801 |#1|) (-284)))) (-2733 (((-801 |#1|) $) NIL (|has| (-801 |#1|) (-508)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-801 |#1|) (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-801 |#1|) (-840)))) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2812 (($ $ (-589 (-801 |#1|)) (-589 (-801 |#1|))) NIL (|has| (-801 |#1|) (-286 (-801 |#1|)))) (($ $ (-801 |#1|) (-801 |#1|)) NIL (|has| (-801 |#1|) (-286 (-801 |#1|)))) (($ $ (-271 (-801 |#1|))) NIL (|has| (-801 |#1|) (-286 (-801 |#1|)))) (($ $ (-589 (-271 (-801 |#1|)))) NIL (|has| (-801 |#1|) (-286 (-801 |#1|)))) (($ $ (-589 (-1087)) (-589 (-801 |#1|))) NIL (|has| (-801 |#1|) (-484 (-1087) (-801 |#1|)))) (($ $ (-1087) (-801 |#1|)) NIL (|has| (-801 |#1|) (-484 (-1087) (-801 |#1|))))) (-3413 (((-710) $) NIL)) (-1937 (($ $ (-801 |#1|)) NIL (|has| (-801 |#1|) (-263 (-801 |#1|) (-801 |#1|))))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3984 (($ $) NIL (|has| (-801 |#1|) (-211))) (($ $ (-710)) NIL (|has| (-801 |#1|) (-211))) (($ $ (-1087)) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-1 (-801 |#1|) (-801 |#1|)) (-710)) NIL) (($ $ (-1 (-801 |#1|) (-801 |#1|))) NIL)) (-2793 (($ $) NIL)) (-3329 (((-801 |#1|) $) NIL)) (-1400 (((-823 (-523)) $) NIL (|has| (-801 |#1|) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-801 |#1|) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-801 |#1|) (-564 (-499)))) (((-355) $) NIL (|has| (-801 |#1|) (-949))) (((-203) $) NIL (|has| (-801 |#1|) (-949)))) (-2748 (((-159 (-383 (-523))) $) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-801 |#1|) (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-801 |#1|)) NIL) (($ (-1087)) NIL (|has| (-801 |#1|) (-964 (-1087))))) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| (-801 |#1|) (-840))) (|has| (-801 |#1|) (-134))))) (-3272 (((-710)) NIL)) (-3809 (((-801 |#1|) $) NIL (|has| (-801 |#1|) (-508)))) (-2801 (((-108) $ $) NIL)) (-4108 (((-383 (-523)) $ (-523)) NIL)) (-2695 (($ $) NIL (|has| (-801 |#1|) (-759)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $) NIL (|has| (-801 |#1|) (-211))) (($ $ (-710)) NIL (|has| (-801 |#1|) (-211))) (($ $ (-1087)) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-1 (-801 |#1|) (-801 |#1|)) (-710)) NIL) (($ $ (-1 (-801 |#1|) (-801 |#1|))) NIL)) (-4006 (((-108) $ $) NIL (|has| (-801 |#1|) (-786)))) (-3980 (((-108) $ $) NIL (|has| (-801 |#1|) (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| (-801 |#1|) (-786)))) (-3966 (((-108) $ $) NIL (|has| (-801 |#1|) (-786)))) (-4074 (($ $ $) NIL) (($ (-801 |#1|) (-801 |#1|)) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-801 |#1|) $) NIL) (($ $ (-801 |#1|)) NIL))) +(((-802 |#1|) (-13 (-921 (-801 |#1|)) (-10 -8 (-15 -4108 ((-383 (-523)) $ (-523))) (-15 -2748 ((-159 (-383 (-523))) $)) (-15 -1458 ($ $)) (-15 -1458 ($ (-523) $)))) (-523)) (T -802)) +((-4108 (*1 *2 *1 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-802 *4)) (-14 *4 *3) (-5 *3 (-523)))) (-2748 (*1 *2 *1) (-12 (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-802 *3)) (-14 *3 (-523)))) (-1458 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-14 *2 (-523)))) (-1458 (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-802 *3)) (-14 *3 *2)))) +(-13 (-921 (-801 |#1|)) (-10 -8 (-15 -4108 ((-383 (-523)) $ (-523))) (-15 -2748 ((-159 (-383 (-523))) $)) (-15 -1458 ($ $)) (-15 -1458 ($ (-523) $)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2046 ((|#2| $) NIL (|has| |#2| (-284)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL (|has| |#2| (-759)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#2| "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| |#2| (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523))))) (-3508 ((|#2| $) NIL) (((-1087) $) NIL (|has| |#2| (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-523)))) (((-523) $) NIL (|has| |#2| (-964 (-523))))) (-1458 (($ $) 31) (($ (-523) $) 32)) (-4059 (($ $ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) 53)) (-1631 (($) NIL (|has| |#2| (-508)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-3712 (((-108) $) NIL (|has| |#2| (-759)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| |#2| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| |#2| (-817 (-355))))) (-2769 (((-108) $) NIL)) (-1296 (($ $) NIL)) (-3316 ((|#2| $) NIL)) (-2738 (((-3 $ "failed") $) NIL (|has| |#2| (-1063)))) (-2057 (((-108) $) NIL (|has| |#2| (-759)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3239 (($ $ $) NIL (|has| |#2| (-786)))) (-3158 (($ $ $) NIL (|has| |#2| (-786)))) (-1345 (($ (-1 |#2| |#2|) $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 49)) (-2773 (($) NIL (|has| |#2| (-1063)) CONST)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4110 (($ $) NIL (|has| |#2| (-284)))) (-2733 ((|#2| $) NIL (|has| |#2| (-508)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2812 (($ $ (-589 |#2|) (-589 |#2|)) NIL (|has| |#2| (-286 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-286 |#2|))) (($ $ (-271 |#2|)) NIL (|has| |#2| (-286 |#2|))) (($ $ (-589 (-271 |#2|))) NIL (|has| |#2| (-286 |#2|))) (($ $ (-589 (-1087)) (-589 |#2|)) NIL (|has| |#2| (-484 (-1087) |#2|))) (($ $ (-1087) |#2|) NIL (|has| |#2| (-484 (-1087) |#2|)))) (-3413 (((-710) $) NIL)) (-1937 (($ $ |#2|) NIL (|has| |#2| (-263 |#2| |#2|)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3984 (($ $) NIL (|has| |#2| (-211))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2793 (($ $) NIL)) (-3329 ((|#2| $) NIL)) (-1400 (((-823 (-523)) $) NIL (|has| |#2| (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| |#2| (-564 (-823 (-355))))) (((-499) $) NIL (|has| |#2| (-564 (-499)))) (((-355) $) NIL (|has| |#2| (-949))) (((-203) $) NIL (|has| |#2| (-949)))) (-2748 (((-159 (-383 (-523))) $) 68)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1691 (((-794) $) 87) (($ (-523)) 19) (($ $) NIL) (($ (-383 (-523))) 24) (($ |#2|) 18) (($ (-1087)) NIL (|has| |#2| (-964 (-1087))))) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-3272 (((-710)) NIL)) (-3809 ((|#2| $) NIL (|has| |#2| (-508)))) (-2801 (((-108) $ $) NIL)) (-4108 (((-383 (-523)) $ (-523)) 60)) (-2695 (($ $) NIL (|has| |#2| (-759)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 14 T CONST)) (-1891 (($) 16 T CONST)) (-2909 (($ $) NIL (|has| |#2| (-211))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4006 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3941 (((-108) $ $) 35)) (-3993 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4074 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4060 (($ $) 39) (($ $ $) 41)) (-4045 (($ $ $) 37)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 50)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 42) (($ $ $) 44) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-803 |#1| |#2|) (-13 (-921 |#2|) (-10 -8 (-15 -4108 ((-383 (-523)) $ (-523))) (-15 -2748 ((-159 (-383 (-523))) $)) (-15 -1458 ($ $)) (-15 -1458 ($ (-523) $)))) (-523) (-800 |#1|)) (T -803)) +((-4108 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-383 (-523))) (-5 *1 (-803 *4 *5)) (-5 *3 (-523)) (-4 *5 (-800 *4)))) (-2748 (*1 *2 *1) (-12 (-14 *3 (-523)) (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-803 *3 *4)) (-4 *4 (-800 *3)))) (-1458 (*1 *1 *1) (-12 (-14 *2 (-523)) (-5 *1 (-803 *2 *3)) (-4 *3 (-800 *2)))) (-1458 (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-14 *3 *2) (-5 *1 (-803 *3 *4)) (-4 *4 (-800 *3))))) +(-13 (-921 |#2|) (-10 -8 (-15 -4108 ((-383 (-523)) $ (-523))) (-15 -2748 ((-159 (-383 (-523))) $)) (-15 -1458 ($ $)) (-15 -1458 ($ (-523) $)))) +((-1680 (((-108) $ $) NIL (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))))) (-2165 ((|#2| $) 12)) (-4052 (($ |#1| |#2|) 9)) (-2032 (((-1070) $) NIL (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))))) (-3951 (((-1034) $) NIL (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))))) (-2428 ((|#1| $) 11)) (-1704 (($ |#1| |#2|) 10)) (-1691 (((-794) $) 18 (-3172 (-12 (|has| |#1| (-563 (-794))) (|has| |#2| (-563 (-794)))) (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016)))))) (-3941 (((-108) $ $) 22 (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016)))))) +(((-804 |#1| |#2|) (-13 (-1123) (-10 -8 (IF (|has| |#1| (-563 (-794))) (IF (|has| |#2| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1016)) (IF (|has| |#2| (-1016)) (-6 (-1016)) |%noBranch|) |%noBranch|) (-15 -4052 ($ |#1| |#2|)) (-15 -1704 ($ |#1| |#2|)) (-15 -2428 (|#1| $)) (-15 -2165 (|#2| $)))) (-1123) (-1123)) (T -804)) +((-4052 (*1 *1 *2 *3) (-12 (-5 *1 (-804 *2 *3)) (-4 *2 (-1123)) (-4 *3 (-1123)))) (-1704 (*1 *1 *2 *3) (-12 (-5 *1 (-804 *2 *3)) (-4 *2 (-1123)) (-4 *3 (-1123)))) (-2428 (*1 *2 *1) (-12 (-4 *2 (-1123)) (-5 *1 (-804 *2 *3)) (-4 *3 (-1123)))) (-2165 (*1 *2 *1) (-12 (-4 *2 (-1123)) (-5 *1 (-804 *3 *2)) (-4 *3 (-1123))))) +(-13 (-1123) (-10 -8 (IF (|has| |#1| (-563 (-794))) (IF (|has| |#2| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1016)) (IF (|has| |#2| (-1016)) (-6 (-1016)) |%noBranch|) |%noBranch|) (-15 -4052 ($ |#1| |#2|)) (-15 -1704 ($ |#1| |#2|)) (-15 -2428 (|#1| $)) (-15 -2165 (|#2| $)))) +((-1680 (((-108) $ $) NIL)) (-2384 (((-523) $) 15)) (-1411 (($ (-144)) 11)) (-1954 (($ (-144)) 12)) (-2032 (((-1070) $) NIL)) (-2473 (((-144) $) 13)) (-3951 (((-1034) $) NIL)) (-1996 (($ (-144)) 9)) (-3836 (($ (-144)) 8)) (-1691 (((-794) $) 23) (($ (-144)) 16)) (-1464 (($ (-144)) 10)) (-3941 (((-108) $ $) NIL))) +(((-805) (-13 (-1016) (-10 -8 (-15 -3836 ($ (-144))) (-15 -1996 ($ (-144))) (-15 -1464 ($ (-144))) (-15 -1411 ($ (-144))) (-15 -1954 ($ (-144))) (-15 -2473 ((-144) $)) (-15 -2384 ((-523) $)) (-15 -1691 ($ (-144)))))) (T -805)) +((-3836 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-1996 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-1464 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-1954 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-805)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) +(-13 (-1016) (-10 -8 (-15 -3836 ($ (-144))) (-15 -1996 ($ (-144))) (-15 -1464 ($ (-144))) (-15 -1411 ($ (-144))) (-15 -1954 ($ (-144))) (-15 -2473 ((-144) $)) (-15 -2384 ((-523) $)) (-15 -1691 ($ (-144))))) +((-1691 (((-292 (-523)) (-383 (-883 (-47)))) 21) (((-292 (-523)) (-883 (-47))) 16))) +(((-806) (-10 -7 (-15 -1691 ((-292 (-523)) (-883 (-47)))) (-15 -1691 ((-292 (-523)) (-383 (-883 (-47))))))) (T -806)) +((-1691 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 (-47)))) (-5 *2 (-292 (-523))) (-5 *1 (-806)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-883 (-47))) (-5 *2 (-292 (-523))) (-5 *1 (-806))))) +(-10 -7 (-15 -1691 ((-292 (-523)) (-883 (-47)))) (-15 -1691 ((-292 (-523)) (-383 (-883 (-47)))))) +((-1345 (((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)) 14))) +(((-807 |#1| |#2|) (-10 -7 (-15 -1345 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)))) (-1123) (-1123)) (T -807)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-808 *6)) (-5 *1 (-807 *5 *6))))) +(-10 -7 (-15 -1345 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)))) +((-3353 (($ |#1| |#1|) 8)) (-2410 ((|#1| $ (-710)) 10))) +(((-808 |#1|) (-10 -8 (-15 -3353 ($ |#1| |#1|)) (-15 -2410 (|#1| $ (-710)))) (-1123)) (T -808)) +((-2410 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-808 *2)) (-4 *2 (-1123)))) (-3353 (*1 *1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1123))))) +(-10 -8 (-15 -3353 ($ |#1| |#1|)) (-15 -2410 (|#1| $ (-710)))) +((-1345 (((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)) 14))) +(((-809 |#1| |#2|) (-10 -7 (-15 -1345 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) (-1123) (-1123)) (T -809)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-810 *6)) (-5 *1 (-809 *5 *6))))) +(-10 -7 (-15 -1345 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) +((-3353 (($ |#1| |#1| |#1|) 8)) (-2410 ((|#1| $ (-710)) 10))) +(((-810 |#1|) (-10 -8 (-15 -3353 ($ |#1| |#1| |#1|)) (-15 -2410 (|#1| $ (-710)))) (-1123)) (T -810)) +((-2410 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-810 *2)) (-4 *2 (-1123)))) (-3353 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1123))))) +(-10 -8 (-15 -3353 ($ |#1| |#1| |#1|)) (-15 -2410 (|#1| $ (-710)))) +((-2024 (((-589 (-1092)) (-1070)) 8))) +(((-811) (-10 -7 (-15 -2024 ((-589 (-1092)) (-1070))))) (T -811)) +((-2024 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-589 (-1092))) (-5 *1 (-811))))) +(-10 -7 (-15 -2024 ((-589 (-1092)) (-1070)))) +((-1345 (((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)) 14))) +(((-812 |#1| |#2|) (-10 -7 (-15 -1345 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)))) (-1123) (-1123)) (T -812)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6))))) +(-10 -7 (-15 -1345 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)))) +((-3680 (($ |#1| |#1| |#1|) 8)) (-2410 ((|#1| $ (-710)) 10))) +(((-813 |#1|) (-10 -8 (-15 -3680 ($ |#1| |#1| |#1|)) (-15 -2410 (|#1| $ (-710)))) (-1123)) (T -813)) +((-2410 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-813 *2)) (-4 *2 (-1123)))) (-3680 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1123))))) +(-10 -8 (-15 -3680 ($ |#1| |#1| |#1|)) (-15 -2410 (|#1| $ (-710)))) +((-3154 (((-1068 (-589 (-523))) (-589 (-523)) (-1068 (-589 (-523)))) 32)) (-2403 (((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523))) 28)) (-1723 (((-1068 (-589 (-523))) (-589 (-523))) 41) (((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523))) 40)) (-3734 (((-1068 (-589 (-523))) (-523)) 42)) (-1364 (((-1068 (-589 (-523))) (-523) (-523)) 22) (((-1068 (-589 (-523))) (-523)) 16) (((-1068 (-589 (-523))) (-523) (-523) (-523)) 12)) (-3136 (((-1068 (-589 (-523))) (-1068 (-589 (-523)))) 26)) (-3361 (((-589 (-523)) (-589 (-523))) 25))) +(((-814) (-10 -7 (-15 -1364 ((-1068 (-589 (-523))) (-523) (-523) (-523))) (-15 -1364 ((-1068 (-589 (-523))) (-523))) (-15 -1364 ((-1068 (-589 (-523))) (-523) (-523))) (-15 -3361 ((-589 (-523)) (-589 (-523)))) (-15 -3136 ((-1068 (-589 (-523))) (-1068 (-589 (-523))))) (-15 -2403 ((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523)))) (-15 -3154 ((-1068 (-589 (-523))) (-589 (-523)) (-1068 (-589 (-523))))) (-15 -1723 ((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523)))) (-15 -1723 ((-1068 (-589 (-523))) (-589 (-523)))) (-15 -3734 ((-1068 (-589 (-523))) (-523))))) (T -814)) +((-3734 (*1 *2 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) (-1723 (*1 *2 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-589 (-523))))) (-1723 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-589 (-523))))) (-3154 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *3 (-589 (-523))) (-5 *1 (-814)))) (-2403 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-589 (-523))))) (-3136 (*1 *2 *2) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-814)))) (-1364 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) (-1364 (*1 *2 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) (-1364 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523))))) +(-10 -7 (-15 -1364 ((-1068 (-589 (-523))) (-523) (-523) (-523))) (-15 -1364 ((-1068 (-589 (-523))) (-523))) (-15 -1364 ((-1068 (-589 (-523))) (-523) (-523))) (-15 -3361 ((-589 (-523)) (-589 (-523)))) (-15 -3136 ((-1068 (-589 (-523))) (-1068 (-589 (-523))))) (-15 -2403 ((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523)))) (-15 -3154 ((-1068 (-589 (-523))) (-589 (-523)) (-1068 (-589 (-523))))) (-15 -1723 ((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523)))) (-15 -1723 ((-1068 (-589 (-523))) (-589 (-523)))) (-15 -3734 ((-1068 (-589 (-523))) (-523)))) +((-1400 (((-823 (-355)) $) 9 (|has| |#1| (-564 (-823 (-355))))) (((-823 (-523)) $) 8 (|has| |#1| (-564 (-823 (-523))))))) +(((-815 |#1|) (-129) (-1123)) (T -815)) NIL (-13 (-10 -7 (IF (|has| |t#1| (-564 (-823 (-523)))) (-6 (-564 (-823 (-523)))) |%noBranch|) (IF (|has| |t#1| (-564 (-823 (-355)))) (-6 (-564 (-823 (-355)))) |%noBranch|))) (((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523))))) -((-3924 (((-108) $ $) NIL)) (-3052 (($) 14)) (-2941 (($ (-820 |#1| |#2|) (-820 |#1| |#3|)) 27)) (-1384 (((-820 |#1| |#3|) $) 16)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1489 (((-108) $) 22)) (-2494 (($) 19)) (-1458 (((-794) $) 30)) (-2163 (((-820 |#1| |#2|) $) 15)) (-3983 (((-108) $ $) 25))) -(((-816 |#1| |#2| |#3|) (-13 (-1016) (-10 -8 (-15 -1489 ((-108) $)) (-15 -2494 ($)) (-15 -3052 ($)) (-15 -2941 ($ (-820 |#1| |#2|) (-820 |#1| |#3|))) (-15 -2163 ((-820 |#1| |#2|) $)) (-15 -1384 ((-820 |#1| |#3|) $)))) (-1016) (-1016) (-609 |#2|)) (T -816)) -((-1489 (*1 *2 *1) (-12 (-4 *4 (-1016)) (-5 *2 (-108)) (-5 *1 (-816 *3 *4 *5)) (-4 *3 (-1016)) (-4 *5 (-609 *4)))) (-2494 (*1 *1) (-12 (-4 *3 (-1016)) (-5 *1 (-816 *2 *3 *4)) (-4 *2 (-1016)) (-4 *4 (-609 *3)))) (-3052 (*1 *1) (-12 (-4 *3 (-1016)) (-5 *1 (-816 *2 *3 *4)) (-4 *2 (-1016)) (-4 *4 (-609 *3)))) (-2941 (*1 *1 *2 *3) (-12 (-5 *2 (-820 *4 *5)) (-5 *3 (-820 *4 *6)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-609 *5)) (-5 *1 (-816 *4 *5 *6)))) (-2163 (*1 *2 *1) (-12 (-4 *4 (-1016)) (-5 *2 (-820 *3 *4)) (-5 *1 (-816 *3 *4 *5)) (-4 *3 (-1016)) (-4 *5 (-609 *4)))) (-1384 (*1 *2 *1) (-12 (-4 *4 (-1016)) (-5 *2 (-820 *3 *5)) (-5 *1 (-816 *3 *4 *5)) (-4 *3 (-1016)) (-4 *5 (-609 *4))))) -(-13 (-1016) (-10 -8 (-15 -1489 ((-108) $)) (-15 -2494 ($)) (-15 -3052 ($)) (-15 -2941 ($ (-820 |#1| |#2|) (-820 |#1| |#3|))) (-15 -2163 ((-820 |#1| |#2|) $)) (-15 -1384 ((-820 |#1| |#3|) $)))) -((-3924 (((-108) $ $) 7)) (-2130 (((-820 |#1| $) $ (-823 |#1|) (-820 |#1| $)) 13)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +((-1680 (((-108) $ $) NIL)) (-3733 (($) 14)) (-2699 (($ (-820 |#1| |#2|) (-820 |#1| |#3|)) 27)) (-3631 (((-820 |#1| |#3|) $) 16)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1473 (((-108) $) 22)) (-2453 (($) 19)) (-1691 (((-794) $) 30)) (-1841 (((-820 |#1| |#2|) $) 15)) (-3941 (((-108) $ $) 25))) +(((-816 |#1| |#2| |#3|) (-13 (-1016) (-10 -8 (-15 -1473 ((-108) $)) (-15 -2453 ($)) (-15 -3733 ($)) (-15 -2699 ($ (-820 |#1| |#2|) (-820 |#1| |#3|))) (-15 -1841 ((-820 |#1| |#2|) $)) (-15 -3631 ((-820 |#1| |#3|) $)))) (-1016) (-1016) (-609 |#2|)) (T -816)) +((-1473 (*1 *2 *1) (-12 (-4 *4 (-1016)) (-5 *2 (-108)) (-5 *1 (-816 *3 *4 *5)) (-4 *3 (-1016)) (-4 *5 (-609 *4)))) (-2453 (*1 *1) (-12 (-4 *3 (-1016)) (-5 *1 (-816 *2 *3 *4)) (-4 *2 (-1016)) (-4 *4 (-609 *3)))) (-3733 (*1 *1) (-12 (-4 *3 (-1016)) (-5 *1 (-816 *2 *3 *4)) (-4 *2 (-1016)) (-4 *4 (-609 *3)))) (-2699 (*1 *1 *2 *3) (-12 (-5 *2 (-820 *4 *5)) (-5 *3 (-820 *4 *6)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-609 *5)) (-5 *1 (-816 *4 *5 *6)))) (-1841 (*1 *2 *1) (-12 (-4 *4 (-1016)) (-5 *2 (-820 *3 *4)) (-5 *1 (-816 *3 *4 *5)) (-4 *3 (-1016)) (-4 *5 (-609 *4)))) (-3631 (*1 *2 *1) (-12 (-4 *4 (-1016)) (-5 *2 (-820 *3 *5)) (-5 *1 (-816 *3 *4 *5)) (-4 *3 (-1016)) (-4 *5 (-609 *4))))) +(-13 (-1016) (-10 -8 (-15 -1473 ((-108) $)) (-15 -2453 ($)) (-15 -3733 ($)) (-15 -2699 ($ (-820 |#1| |#2|) (-820 |#1| |#3|))) (-15 -1841 ((-820 |#1| |#2|) $)) (-15 -3631 ((-820 |#1| |#3|) $)))) +((-1680 (((-108) $ $) 7)) (-1524 (((-820 |#1| $) $ (-823 |#1|) (-820 |#1| $)) 13)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-3941 (((-108) $ $) 6))) (((-817 |#1|) (-129) (-1016)) (T -817)) -((-2130 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-820 *4 *1)) (-5 *3 (-823 *4)) (-4 *1 (-817 *4)) (-4 *4 (-1016))))) -(-13 (-1016) (-10 -8 (-15 -2130 ((-820 |t#1| $) $ (-823 |t#1|) (-820 |t#1| $))))) +((-1524 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-820 *4 *1)) (-5 *3 (-823 *4)) (-4 *1 (-817 *4)) (-4 *4 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -1524 ((-820 |t#1| $) $ (-823 |t#1|) (-820 |t#1| $))))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3259 (((-108) (-589 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-3267 (((-820 |#1| |#2|) |#2| |#3|) 43 (-12 (-3900 (|has| |#2| (-964 (-1087)))) (-3900 (|has| |#2| (-973))))) (((-589 (-271 (-883 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-973)) (-3900 (|has| |#2| (-964 (-1087)))))) (((-589 (-271 |#2|)) |#2| |#3|) 35 (|has| |#2| (-964 (-1087)))) (((-816 |#1| |#2| (-589 |#2|)) (-589 |#2|) |#3|) 21))) -(((-818 |#1| |#2| |#3|) (-10 -7 (-15 -3259 ((-108) |#2| |#3|)) (-15 -3259 ((-108) (-589 |#2|) |#3|)) (-15 -3267 ((-816 |#1| |#2| (-589 |#2|)) (-589 |#2|) |#3|)) (IF (|has| |#2| (-964 (-1087))) (-15 -3267 ((-589 (-271 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-973)) (-15 -3267 ((-589 (-271 (-883 |#2|))) |#2| |#3|)) (-15 -3267 ((-820 |#1| |#2|) |#2| |#3|))))) (-1016) (-817 |#1|) (-564 (-823 |#1|))) (T -818)) -((-3267 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-5 *2 (-820 *5 *3)) (-5 *1 (-818 *5 *3 *4)) (-3900 (-4 *3 (-964 (-1087)))) (-3900 (-4 *3 (-973))) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) (-3267 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-5 *2 (-589 (-271 (-883 *3)))) (-5 *1 (-818 *5 *3 *4)) (-4 *3 (-973)) (-3900 (-4 *3 (-964 (-1087)))) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) (-3267 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-5 *2 (-589 (-271 *3))) (-5 *1 (-818 *5 *3 *4)) (-4 *3 (-964 (-1087))) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) (-3267 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *6 (-817 *5)) (-5 *2 (-816 *5 *6 (-589 *6))) (-5 *1 (-818 *5 *6 *4)) (-5 *3 (-589 *6)) (-4 *4 (-564 (-823 *5))))) (-3259 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-4 *6 (-817 *5)) (-4 *5 (-1016)) (-5 *2 (-108)) (-5 *1 (-818 *5 *6 *4)) (-4 *4 (-564 (-823 *5))))) (-3259 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-5 *2 (-108)) (-5 *1 (-818 *5 *3 *4)) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5)))))) -(-10 -7 (-15 -3259 ((-108) |#2| |#3|)) (-15 -3259 ((-108) (-589 |#2|) |#3|)) (-15 -3267 ((-816 |#1| |#2| (-589 |#2|)) (-589 |#2|) |#3|)) (IF (|has| |#2| (-964 (-1087))) (-15 -3267 ((-589 (-271 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-973)) (-15 -3267 ((-589 (-271 (-883 |#2|))) |#2| |#3|)) (-15 -3267 ((-820 |#1| |#2|) |#2| |#3|))))) -((-3612 (((-820 |#1| |#3|) (-1 |#3| |#2|) (-820 |#1| |#2|)) 21))) -(((-819 |#1| |#2| |#3|) (-10 -7 (-15 -3612 ((-820 |#1| |#3|) (-1 |#3| |#2|) (-820 |#1| |#2|)))) (-1016) (-1016) (-1016)) (T -819)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-820 *5 *6)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-820 *5 *7)) (-5 *1 (-819 *5 *6 *7))))) -(-10 -7 (-15 -3612 ((-820 |#1| |#3|) (-1 |#3| |#2|) (-820 |#1| |#2|)))) -((-3924 (((-108) $ $) NIL)) (-3288 (($ $ $) 37)) (-1473 (((-3 (-108) "failed") $ (-823 |#1|)) 34)) (-3052 (($) 11)) (-3779 (((-1070) $) NIL)) (-1447 (($ (-823 |#1|) |#2| $) 20)) (-2783 (((-1034) $) NIL)) (-3357 (((-3 |#2| "failed") (-823 |#1|) $) 48)) (-1489 (((-108) $) 14)) (-2494 (($) 12)) (-1887 (((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 |#2|))) $) 25)) (-1472 (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 |#2|)))) 23)) (-1458 (((-794) $) 42)) (-1847 (($ (-823 |#1|) |#2| $ |#2|) 46)) (-1711 (($ (-823 |#1|) |#2| $) 45)) (-3983 (((-108) $ $) 39))) -(((-820 |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -1489 ((-108) $)) (-15 -2494 ($)) (-15 -3052 ($)) (-15 -3288 ($ $ $)) (-15 -3357 ((-3 |#2| "failed") (-823 |#1|) $)) (-15 -1711 ($ (-823 |#1|) |#2| $)) (-15 -1447 ($ (-823 |#1|) |#2| $)) (-15 -1847 ($ (-823 |#1|) |#2| $ |#2|)) (-15 -1887 ((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 |#2|))) $)) (-15 -1472 ($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 |#2|))))) (-15 -1473 ((-3 (-108) "failed") $ (-823 |#1|))))) (-1016) (-1016)) (T -820)) -((-1489 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-2494 (*1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-3052 (*1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-3288 (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-3357 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-4 *2 (-1016)) (-5 *1 (-820 *4 *2)))) (-1711 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) (-4 *3 (-1016)))) (-1447 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) (-4 *3 (-1016)))) (-1847 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) (-4 *3 (-1016)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 *4)))) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 *4)))) (-4 *4 (-1016)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)))) (-1473 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-108)) (-5 *1 (-820 *4 *5)) (-4 *5 (-1016))))) -(-13 (-1016) (-10 -8 (-15 -1489 ((-108) $)) (-15 -2494 ($)) (-15 -3052 ($)) (-15 -3288 ($ $ $)) (-15 -3357 ((-3 |#2| "failed") (-823 |#1|) $)) (-15 -1711 ($ (-823 |#1|) |#2| $)) (-15 -1447 ($ (-823 |#1|) |#2| $)) (-15 -1847 ($ (-823 |#1|) |#2| $ |#2|)) (-15 -1887 ((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 |#2|))) $)) (-15 -1472 ($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 |#2|))))) (-15 -1473 ((-3 (-108) "failed") $ (-823 |#1|))))) -((-3547 (((-823 |#1|) (-823 |#1|) (-589 (-1087)) (-1 (-108) (-589 |#2|))) 30) (((-823 |#1|) (-823 |#1|) (-589 (-1 (-108) |#2|))) 42) (((-823 |#1|) (-823 |#1|) (-1 (-108) |#2|)) 33)) (-1473 (((-108) (-589 |#2|) (-823 |#1|)) 39) (((-108) |#2| (-823 |#1|)) 35)) (-3195 (((-1 (-108) |#2|) (-823 |#1|)) 14)) (-1200 (((-589 |#2|) (-823 |#1|)) 23)) (-3434 (((-823 |#1|) (-823 |#1|) |#2|) 19))) -(((-821 |#1| |#2|) (-10 -7 (-15 -3547 ((-823 |#1|) (-823 |#1|) (-1 (-108) |#2|))) (-15 -3547 ((-823 |#1|) (-823 |#1|) (-589 (-1 (-108) |#2|)))) (-15 -3547 ((-823 |#1|) (-823 |#1|) (-589 (-1087)) (-1 (-108) (-589 |#2|)))) (-15 -3195 ((-1 (-108) |#2|) (-823 |#1|))) (-15 -1473 ((-108) |#2| (-823 |#1|))) (-15 -1473 ((-108) (-589 |#2|) (-823 |#1|))) (-15 -3434 ((-823 |#1|) (-823 |#1|) |#2|)) (-15 -1200 ((-589 |#2|) (-823 |#1|)))) (-1016) (-1122)) (T -821)) -((-1200 (*1 *2 *3) (-12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-589 *5)) (-5 *1 (-821 *4 *5)) (-4 *5 (-1122)))) (-3434 (*1 *2 *2 *3) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-821 *4 *3)) (-4 *3 (-1122)))) (-1473 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *6 (-1122)) (-5 *2 (-108)) (-5 *1 (-821 *5 *6)))) (-1473 (*1 *2 *3 *4) (-12 (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-5 *2 (-108)) (-5 *1 (-821 *5 *3)) (-4 *3 (-1122)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-821 *4 *5)) (-4 *5 (-1122)))) (-3547 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-823 *5)) (-5 *3 (-589 (-1087))) (-5 *4 (-1 (-108) (-589 *6))) (-4 *5 (-1016)) (-4 *6 (-1122)) (-5 *1 (-821 *5 *6)))) (-3547 (*1 *2 *2 *3) (-12 (-5 *2 (-823 *4)) (-5 *3 (-589 (-1 (-108) *5))) (-4 *4 (-1016)) (-4 *5 (-1122)) (-5 *1 (-821 *4 *5)))) (-3547 (*1 *2 *2 *3) (-12 (-5 *2 (-823 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1016)) (-4 *5 (-1122)) (-5 *1 (-821 *4 *5))))) -(-10 -7 (-15 -3547 ((-823 |#1|) (-823 |#1|) (-1 (-108) |#2|))) (-15 -3547 ((-823 |#1|) (-823 |#1|) (-589 (-1 (-108) |#2|)))) (-15 -3547 ((-823 |#1|) (-823 |#1|) (-589 (-1087)) (-1 (-108) (-589 |#2|)))) (-15 -3195 ((-1 (-108) |#2|) (-823 |#1|))) (-15 -1473 ((-108) |#2| (-823 |#1|))) (-15 -1473 ((-108) (-589 |#2|) (-823 |#1|))) (-15 -3434 ((-823 |#1|) (-823 |#1|) |#2|)) (-15 -1200 ((-589 |#2|) (-823 |#1|)))) -((-3612 (((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)) 17))) -(((-822 |#1| |#2|) (-10 -7 (-15 -3612 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)))) (-1016) (-1016)) (T -822)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6))))) -(-10 -7 (-15 -3612 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)))) -((-3924 (((-108) $ $) NIL)) (-1817 (($ $ (-589 (-51))) 63)) (-1957 (((-589 $) $) 117)) (-3459 (((-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51))) $) 23)) (-3129 (((-108) $) 30)) (-3325 (($ $ (-589 (-1087)) (-51)) 25)) (-3095 (($ $ (-589 (-51))) 62)) (-3517 (((-3 |#1| "failed") $) 60) (((-3 (-1087) "failed") $) 139)) (-3474 ((|#1| $) 56) (((-1087) $) NIL)) (-3407 (($ $) 107)) (-1297 (((-108) $) 46)) (-1789 (((-589 (-51)) $) 44)) (-2278 (($ (-1087) (-108) (-108) (-108)) 64)) (-1514 (((-3 (-589 $) "failed") (-589 $)) 71)) (-2115 (((-108) $) 49)) (-2658 (((-108) $) 48)) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) 35)) (-2463 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-1295 (((-3 (-2 (|:| |val| $) (|:| -2735 $)) "failed") $) 82)) (-4006 (((-3 (-589 $) "failed") $) 32)) (-2743 (((-3 (-589 $) "failed") $ (-110)) 106) (((-3 (-2 (|:| -3013 (-110)) (|:| |arg| (-589 $))) "failed") $) 94)) (-1548 (((-3 (-589 $) "failed") $) 36)) (-2630 (((-3 (-2 (|:| |val| $) (|:| -2735 (-710))) "failed") $) 39)) (-3182 (((-108) $) 29)) (-2783 (((-1034) $) NIL)) (-2044 (((-108) $) 21)) (-3594 (((-108) $) 45)) (-3982 (((-589 (-51)) $) 110)) (-3899 (((-108) $) 47)) (-3223 (($ (-110) (-589 $)) 91)) (-1583 (((-710) $) 28)) (-1664 (($ $) 61)) (-3663 (($ (-589 $)) 58)) (-1869 (((-108) $) 26)) (-1458 (((-794) $) 51) (($ |#1|) 18) (($ (-1087)) 65)) (-3434 (($ $ (-51)) 109)) (-2756 (($) 90 T CONST)) (-2767 (($) 72 T CONST)) (-3983 (((-108) $ $) 78)) (-4098 (($ $ $) 99)) (-4075 (($ $ $) 103)) (** (($ $ (-710)) 98) (($ $ $) 52)) (* (($ $ $) 104))) -(((-823 |#1|) (-13 (-1016) (-964 |#1|) (-964 (-1087)) (-10 -8 (-15 0 ($) -3059) (-15 1 ($) -3059) (-15 -4006 ((-3 (-589 $) "failed") $)) (-15 -3226 ((-3 (-589 $) "failed") $)) (-15 -2743 ((-3 (-589 $) "failed") $ (-110))) (-15 -2743 ((-3 (-2 (|:| -3013 (-110)) (|:| |arg| (-589 $))) "failed") $)) (-15 -2630 ((-3 (-2 (|:| |val| $) (|:| -2735 (-710))) "failed") $)) (-15 -2463 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1548 ((-3 (-589 $) "failed") $)) (-15 -1295 ((-3 (-2 (|:| |val| $) (|:| -2735 $)) "failed") $)) (-15 -3223 ($ (-110) (-589 $))) (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710))) (-15 ** ($ $ $)) (-15 -4098 ($ $ $)) (-15 -1583 ((-710) $)) (-15 -3663 ($ (-589 $))) (-15 -1664 ($ $)) (-15 -3182 ((-108) $)) (-15 -1297 ((-108) $)) (-15 -3129 ((-108) $)) (-15 -1869 ((-108) $)) (-15 -3899 ((-108) $)) (-15 -2658 ((-108) $)) (-15 -2115 ((-108) $)) (-15 -3594 ((-108) $)) (-15 -1789 ((-589 (-51)) $)) (-15 -3095 ($ $ (-589 (-51)))) (-15 -1817 ($ $ (-589 (-51)))) (-15 -2278 ($ (-1087) (-108) (-108) (-108))) (-15 -3325 ($ $ (-589 (-1087)) (-51))) (-15 -3459 ((-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51))) $)) (-15 -2044 ((-108) $)) (-15 -3407 ($ $)) (-15 -3434 ($ $ (-51))) (-15 -3982 ((-589 (-51)) $)) (-15 -1957 ((-589 $) $)) (-15 -1514 ((-3 (-589 $) "failed") (-589 $))))) (-1016)) (T -823)) -((-2756 (*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-2767 (*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-4006 (*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3226 (*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2743 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-589 (-823 *4))) (-5 *1 (-823 *4)) (-4 *4 (-1016)))) (-2743 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3013 (-110)) (|:| |arg| (-589 (-823 *3))))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2630 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-823 *3)) (|:| -2735 (-710)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2463 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-823 *3)) (|:| |den| (-823 *3)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1548 (*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1295 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-823 *3)) (|:| -2735 (-823 *3)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3223 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 (-823 *4))) (-5 *1 (-823 *4)) (-4 *4 (-1016)))) (-4075 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-4098 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1664 (*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1297 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3129 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3095 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1817 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2278 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-108)) (-5 *1 (-823 *4)) (-4 *4 (-1016)))) (-3325 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-51)) (-5 *1 (-823 *4)) (-4 *4 (-1016)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3407 (*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-3434 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1514 (*1 *2 *2) (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(-13 (-1016) (-964 |#1|) (-964 (-1087)) (-10 -8 (-15 (-2756) ($) -3059) (-15 (-2767) ($) -3059) (-15 -4006 ((-3 (-589 $) "failed") $)) (-15 -3226 ((-3 (-589 $) "failed") $)) (-15 -2743 ((-3 (-589 $) "failed") $ (-110))) (-15 -2743 ((-3 (-2 (|:| -3013 (-110)) (|:| |arg| (-589 $))) "failed") $)) (-15 -2630 ((-3 (-2 (|:| |val| $) (|:| -2735 (-710))) "failed") $)) (-15 -2463 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1548 ((-3 (-589 $) "failed") $)) (-15 -1295 ((-3 (-2 (|:| |val| $) (|:| -2735 $)) "failed") $)) (-15 -3223 ($ (-110) (-589 $))) (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710))) (-15 ** ($ $ $)) (-15 -4098 ($ $ $)) (-15 -1583 ((-710) $)) (-15 -3663 ($ (-589 $))) (-15 -1664 ($ $)) (-15 -3182 ((-108) $)) (-15 -1297 ((-108) $)) (-15 -3129 ((-108) $)) (-15 -1869 ((-108) $)) (-15 -3899 ((-108) $)) (-15 -2658 ((-108) $)) (-15 -2115 ((-108) $)) (-15 -3594 ((-108) $)) (-15 -1789 ((-589 (-51)) $)) (-15 -3095 ($ $ (-589 (-51)))) (-15 -1817 ($ $ (-589 (-51)))) (-15 -2278 ($ (-1087) (-108) (-108) (-108))) (-15 -3325 ($ $ (-589 (-1087)) (-51))) (-15 -3459 ((-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51))) $)) (-15 -2044 ((-108) $)) (-15 -3407 ($ $)) (-15 -3434 ($ $ (-51))) (-15 -3982 ((-589 (-51)) $)) (-15 -1957 ((-589 $) $)) (-15 -1514 ((-3 (-589 $) "failed") (-589 $))))) -((-3924 (((-108) $ $) NIL)) (-2061 (((-589 |#1|) $) 16)) (-1406 (((-108) $) 38)) (-3517 (((-3 (-614 |#1|) "failed") $) 41)) (-3474 (((-614 |#1|) $) 39)) (-1751 (($ $) 18)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2996 (((-710) $) 45)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-614 |#1|) $) 17)) (-1458 (((-794) $) 37) (($ (-614 |#1|)) 21) (((-758 |#1|) $) 27) (($ |#1|) 20)) (-2767 (($) 8 T CONST)) (-1643 (((-589 (-614 |#1|)) $) 23)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 11)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 48))) -(((-824 |#1|) (-13 (-786) (-964 (-614 |#1|)) (-10 -8 (-15 1 ($) -3059) (-15 -1458 ((-758 |#1|) $)) (-15 -1458 ($ |#1|)) (-15 -1738 ((-614 |#1|) $)) (-15 -2996 ((-710) $)) (-15 -1643 ((-589 (-614 |#1|)) $)) (-15 -1751 ($ $)) (-15 -1406 ((-108) $)) (-15 -2061 ((-589 |#1|) $)))) (-786)) (T -824)) -((-2767 (*1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-758 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-1458 (*1 *1 *2) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-589 (-614 *3))) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-1751 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786))))) -(-13 (-786) (-964 (-614 |#1|)) (-10 -8 (-15 (-2767) ($) -3059) (-15 -1458 ((-758 |#1|) $)) (-15 -1458 ($ |#1|)) (-15 -1738 ((-614 |#1|) $)) (-15 -2996 ((-710) $)) (-15 -1643 ((-589 (-614 |#1|)) $)) (-15 -1751 ($ $)) (-15 -1406 ((-108) $)) (-15 -2061 ((-589 |#1|) $)))) -((-4100 ((|#1| |#1| |#1|) 20))) -(((-825 |#1| |#2|) (-10 -7 (-15 -4100 (|#1| |#1| |#1|))) (-1144 |#2|) (-973)) (T -825)) -((-4100 (*1 *2 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-825 *2 *3)) (-4 *2 (-1144 *3))))) -(-10 -7 (-15 -4100 (|#1| |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-1864 (((-962) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 13)) (-3983 (((-108) $ $) 6))) +((-3739 (((-108) (-589 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-3816 (((-820 |#1| |#2|) |#2| |#3|) 43 (-12 (-4179 (|has| |#2| (-964 (-1087)))) (-4179 (|has| |#2| (-973))))) (((-589 (-271 (-883 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-973)) (-4179 (|has| |#2| (-964 (-1087)))))) (((-589 (-271 |#2|)) |#2| |#3|) 35 (|has| |#2| (-964 (-1087)))) (((-816 |#1| |#2| (-589 |#2|)) (-589 |#2|) |#3|) 21))) +(((-818 |#1| |#2| |#3|) (-10 -7 (-15 -3739 ((-108) |#2| |#3|)) (-15 -3739 ((-108) (-589 |#2|) |#3|)) (-15 -3816 ((-816 |#1| |#2| (-589 |#2|)) (-589 |#2|) |#3|)) (IF (|has| |#2| (-964 (-1087))) (-15 -3816 ((-589 (-271 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-973)) (-15 -3816 ((-589 (-271 (-883 |#2|))) |#2| |#3|)) (-15 -3816 ((-820 |#1| |#2|) |#2| |#3|))))) (-1016) (-817 |#1|) (-564 (-823 |#1|))) (T -818)) +((-3816 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-5 *2 (-820 *5 *3)) (-5 *1 (-818 *5 *3 *4)) (-4179 (-4 *3 (-964 (-1087)))) (-4179 (-4 *3 (-973))) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) (-3816 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-5 *2 (-589 (-271 (-883 *3)))) (-5 *1 (-818 *5 *3 *4)) (-4 *3 (-973)) (-4179 (-4 *3 (-964 (-1087)))) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) (-3816 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-5 *2 (-589 (-271 *3))) (-5 *1 (-818 *5 *3 *4)) (-4 *3 (-964 (-1087))) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) (-3816 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *6 (-817 *5)) (-5 *2 (-816 *5 *6 (-589 *6))) (-5 *1 (-818 *5 *6 *4)) (-5 *3 (-589 *6)) (-4 *4 (-564 (-823 *5))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-4 *6 (-817 *5)) (-4 *5 (-1016)) (-5 *2 (-108)) (-5 *1 (-818 *5 *6 *4)) (-4 *4 (-564 (-823 *5))))) (-3739 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-5 *2 (-108)) (-5 *1 (-818 *5 *3 *4)) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5)))))) +(-10 -7 (-15 -3739 ((-108) |#2| |#3|)) (-15 -3739 ((-108) (-589 |#2|) |#3|)) (-15 -3816 ((-816 |#1| |#2| (-589 |#2|)) (-589 |#2|) |#3|)) (IF (|has| |#2| (-964 (-1087))) (-15 -3816 ((-589 (-271 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-973)) (-15 -3816 ((-589 (-271 (-883 |#2|))) |#2| |#3|)) (-15 -3816 ((-820 |#1| |#2|) |#2| |#3|))))) +((-1345 (((-820 |#1| |#3|) (-1 |#3| |#2|) (-820 |#1| |#2|)) 21))) +(((-819 |#1| |#2| |#3|) (-10 -7 (-15 -1345 ((-820 |#1| |#3|) (-1 |#3| |#2|) (-820 |#1| |#2|)))) (-1016) (-1016) (-1016)) (T -819)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-820 *5 *6)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-820 *5 *7)) (-5 *1 (-819 *5 *6 *7))))) +(-10 -7 (-15 -1345 ((-820 |#1| |#3|) (-1 |#3| |#2|) (-820 |#1| |#2|)))) +((-1680 (((-108) $ $) NIL)) (-3321 (($ $ $) 37)) (-1311 (((-3 (-108) "failed") $ (-823 |#1|)) 34)) (-3733 (($) 11)) (-2032 (((-1070) $) NIL)) (-2226 (($ (-823 |#1|) |#2| $) 20)) (-3951 (((-1034) $) NIL)) (-3409 (((-3 |#2| "failed") (-823 |#1|) $) 48)) (-1473 (((-108) $) 14)) (-2453 (($) 12)) (-2489 (((-589 (-2 (|:| -3772 (-1087)) (|:| -2482 |#2|))) $) 25)) (-1704 (($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 |#2|)))) 23)) (-1691 (((-794) $) 42)) (-1686 (($ (-823 |#1|) |#2| $ |#2|) 46)) (-2862 (($ (-823 |#1|) |#2| $) 45)) (-3941 (((-108) $ $) 39))) +(((-820 |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -1473 ((-108) $)) (-15 -2453 ($)) (-15 -3733 ($)) (-15 -3321 ($ $ $)) (-15 -3409 ((-3 |#2| "failed") (-823 |#1|) $)) (-15 -2862 ($ (-823 |#1|) |#2| $)) (-15 -2226 ($ (-823 |#1|) |#2| $)) (-15 -1686 ($ (-823 |#1|) |#2| $ |#2|)) (-15 -2489 ((-589 (-2 (|:| -3772 (-1087)) (|:| -2482 |#2|))) $)) (-15 -1704 ($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 |#2|))))) (-15 -1311 ((-3 (-108) "failed") $ (-823 |#1|))))) (-1016) (-1016)) (T -820)) +((-1473 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-2453 (*1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-3733 (*1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-3321 (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-3409 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-4 *2 (-1016)) (-5 *1 (-820 *4 *2)))) (-2862 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) (-4 *3 (-1016)))) (-2226 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) (-4 *3 (-1016)))) (-1686 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) (-4 *3 (-1016)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 *4)))) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1704 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 *4)))) (-4 *4 (-1016)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)))) (-1311 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-108)) (-5 *1 (-820 *4 *5)) (-4 *5 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -1473 ((-108) $)) (-15 -2453 ($)) (-15 -3733 ($)) (-15 -3321 ($ $ $)) (-15 -3409 ((-3 |#2| "failed") (-823 |#1|) $)) (-15 -2862 ($ (-823 |#1|) |#2| $)) (-15 -2226 ($ (-823 |#1|) |#2| $)) (-15 -1686 ($ (-823 |#1|) |#2| $ |#2|)) (-15 -2489 ((-589 (-2 (|:| -3772 (-1087)) (|:| -2482 |#2|))) $)) (-15 -1704 ($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 |#2|))))) (-15 -1311 ((-3 (-108) "failed") $ (-823 |#1|))))) +((-3035 (((-823 |#1|) (-823 |#1|) (-589 (-1087)) (-1 (-108) (-589 |#2|))) 30) (((-823 |#1|) (-823 |#1|) (-589 (-1 (-108) |#2|))) 42) (((-823 |#1|) (-823 |#1|) (-1 (-108) |#2|)) 33)) (-1311 (((-108) (-589 |#2|) (-823 |#1|)) 39) (((-108) |#2| (-823 |#1|)) 35)) (-2150 (((-1 (-108) |#2|) (-823 |#1|)) 14)) (-1517 (((-589 |#2|) (-823 |#1|)) 23)) (-2974 (((-823 |#1|) (-823 |#1|) |#2|) 19))) +(((-821 |#1| |#2|) (-10 -7 (-15 -3035 ((-823 |#1|) (-823 |#1|) (-1 (-108) |#2|))) (-15 -3035 ((-823 |#1|) (-823 |#1|) (-589 (-1 (-108) |#2|)))) (-15 -3035 ((-823 |#1|) (-823 |#1|) (-589 (-1087)) (-1 (-108) (-589 |#2|)))) (-15 -2150 ((-1 (-108) |#2|) (-823 |#1|))) (-15 -1311 ((-108) |#2| (-823 |#1|))) (-15 -1311 ((-108) (-589 |#2|) (-823 |#1|))) (-15 -2974 ((-823 |#1|) (-823 |#1|) |#2|)) (-15 -1517 ((-589 |#2|) (-823 |#1|)))) (-1016) (-1123)) (T -821)) +((-1517 (*1 *2 *3) (-12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-589 *5)) (-5 *1 (-821 *4 *5)) (-4 *5 (-1123)))) (-2974 (*1 *2 *2 *3) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-821 *4 *3)) (-4 *3 (-1123)))) (-1311 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *6 (-1123)) (-5 *2 (-108)) (-5 *1 (-821 *5 *6)))) (-1311 (*1 *2 *3 *4) (-12 (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-5 *2 (-108)) (-5 *1 (-821 *5 *3)) (-4 *3 (-1123)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-821 *4 *5)) (-4 *5 (-1123)))) (-3035 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-823 *5)) (-5 *3 (-589 (-1087))) (-5 *4 (-1 (-108) (-589 *6))) (-4 *5 (-1016)) (-4 *6 (-1123)) (-5 *1 (-821 *5 *6)))) (-3035 (*1 *2 *2 *3) (-12 (-5 *2 (-823 *4)) (-5 *3 (-589 (-1 (-108) *5))) (-4 *4 (-1016)) (-4 *5 (-1123)) (-5 *1 (-821 *4 *5)))) (-3035 (*1 *2 *2 *3) (-12 (-5 *2 (-823 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1016)) (-4 *5 (-1123)) (-5 *1 (-821 *4 *5))))) +(-10 -7 (-15 -3035 ((-823 |#1|) (-823 |#1|) (-1 (-108) |#2|))) (-15 -3035 ((-823 |#1|) (-823 |#1|) (-589 (-1 (-108) |#2|)))) (-15 -3035 ((-823 |#1|) (-823 |#1|) (-589 (-1087)) (-1 (-108) (-589 |#2|)))) (-15 -2150 ((-1 (-108) |#2|) (-823 |#1|))) (-15 -1311 ((-108) |#2| (-823 |#1|))) (-15 -1311 ((-108) (-589 |#2|) (-823 |#1|))) (-15 -2974 ((-823 |#1|) (-823 |#1|) |#2|)) (-15 -1517 ((-589 |#2|) (-823 |#1|)))) +((-1345 (((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)) 17))) +(((-822 |#1| |#2|) (-10 -7 (-15 -1345 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)))) (-1016) (-1016)) (T -822)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6))))) +(-10 -7 (-15 -1345 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)))) +((-1680 (((-108) $ $) NIL)) (-1448 (($ $ (-589 (-51))) 64)) (-1292 (((-589 $) $) 118)) (-2056 (((-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51))) $) 23)) (-2028 (((-108) $) 30)) (-3123 (($ $ (-589 (-1087)) (-51)) 25)) (-1764 (($ $ (-589 (-51))) 63)) (-1220 (((-3 |#1| "failed") $) 61) (((-3 (-1087) "failed") $) 140)) (-3508 ((|#1| $) 57) (((-1087) $) NIL)) (-2735 (($ $) 108)) (-3085 (((-108) $) 46)) (-2324 (((-589 (-51)) $) 44)) (-3576 (($ (-1087) (-108) (-108) (-108)) 65)) (-1703 (((-3 (-589 $) "failed") (-589 $)) 72)) (-2520 (((-108) $) 49)) (-3058 (((-108) $) 48)) (-2032 (((-1070) $) NIL)) (-3538 (((-3 (-589 $) "failed") $) 35)) (-1887 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-3064 (((-3 (-2 (|:| |val| $) (|:| -1475 $)) "failed") $) 83)) (-3478 (((-3 (-589 $) "failed") $) 32)) (-1554 (((-3 (-589 $) "failed") $ (-110)) 107) (((-3 (-2 (|:| -2888 (-110)) (|:| |arg| (-589 $))) "failed") $) 95)) (-3757 (((-3 (-589 $) "failed") $) 36)) (-2790 (((-3 (-2 (|:| |val| $) (|:| -1475 (-710))) "failed") $) 39)) (-1402 (((-108) $) 29)) (-3951 (((-1034) $) NIL)) (-2948 (((-108) $) 21)) (-3989 (((-108) $) 45)) (-3265 (((-589 (-51)) $) 111)) (-1931 (((-108) $) 47)) (-1937 (($ (-110) (-589 $)) 92)) (-1576 (((-710) $) 28)) (-1874 (($ $) 62)) (-1400 (($ (-589 $)) 59)) (-1844 (((-108) $) 26)) (-1691 (((-794) $) 52) (($ |#1|) 18) (($ (-1087)) 66)) (-2974 (($ $ (-51)) 110)) (-1879 (($) 91 T CONST)) (-1891 (($) 73 T CONST)) (-3941 (((-108) $ $) 79)) (-4074 (($ $ $) 100)) (-4045 (($ $ $) 104)) (** (($ $ (-710)) 99) (($ $ $) 53)) (* (($ $ $) 105))) +(((-823 |#1|) (-13 (-1016) (-964 |#1|) (-964 (-1087)) (-10 -8 (-15 0 ($) -2501) (-15 1 ($) -2501) (-15 -3478 ((-3 (-589 $) "failed") $)) (-15 -3538 ((-3 (-589 $) "failed") $)) (-15 -1554 ((-3 (-589 $) "failed") $ (-110))) (-15 -1554 ((-3 (-2 (|:| -2888 (-110)) (|:| |arg| (-589 $))) "failed") $)) (-15 -2790 ((-3 (-2 (|:| |val| $) (|:| -1475 (-710))) "failed") $)) (-15 -1887 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3757 ((-3 (-589 $) "failed") $)) (-15 -3064 ((-3 (-2 (|:| |val| $) (|:| -1475 $)) "failed") $)) (-15 -1937 ($ (-110) (-589 $))) (-15 -4045 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710))) (-15 ** ($ $ $)) (-15 -4074 ($ $ $)) (-15 -1576 ((-710) $)) (-15 -1400 ($ (-589 $))) (-15 -1874 ($ $)) (-15 -1402 ((-108) $)) (-15 -3085 ((-108) $)) (-15 -2028 ((-108) $)) (-15 -1844 ((-108) $)) (-15 -1931 ((-108) $)) (-15 -3058 ((-108) $)) (-15 -2520 ((-108) $)) (-15 -3989 ((-108) $)) (-15 -2324 ((-589 (-51)) $)) (-15 -1764 ($ $ (-589 (-51)))) (-15 -1448 ($ $ (-589 (-51)))) (-15 -3576 ($ (-1087) (-108) (-108) (-108))) (-15 -3123 ($ $ (-589 (-1087)) (-51))) (-15 -2056 ((-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51))) $)) (-15 -2948 ((-108) $)) (-15 -2735 ($ $)) (-15 -2974 ($ $ (-51))) (-15 -3265 ((-589 (-51)) $)) (-15 -1292 ((-589 $) $)) (-15 -1703 ((-3 (-589 $) "failed") (-589 $))))) (-1016)) (T -823)) +((-1879 (*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-1891 (*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-3478 (*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3538 (*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1554 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-589 (-823 *4))) (-5 *1 (-823 *4)) (-4 *4 (-1016)))) (-1554 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2888 (-110)) (|:| |arg| (-589 (-823 *3))))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2790 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-823 *3)) (|:| -1475 (-710)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1887 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-823 *3)) (|:| |den| (-823 *3)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3757 (*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3064 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-823 *3)) (|:| -1475 (-823 *3)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1937 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 (-823 *4))) (-5 *1 (-823 *4)) (-4 *4 (-1016)))) (-4045 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-4074 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3085 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1931 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1764 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1448 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3576 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-108)) (-5 *1 (-823 *4)) (-4 *4 (-1016)))) (-3123 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-51)) (-5 *1 (-823 *4)) (-4 *4 (-1016)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2735 (*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-2974 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1703 (*1 *2 *2) (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(-13 (-1016) (-964 |#1|) (-964 (-1087)) (-10 -8 (-15 (-1879) ($) -2501) (-15 (-1891) ($) -2501) (-15 -3478 ((-3 (-589 $) "failed") $)) (-15 -3538 ((-3 (-589 $) "failed") $)) (-15 -1554 ((-3 (-589 $) "failed") $ (-110))) (-15 -1554 ((-3 (-2 (|:| -2888 (-110)) (|:| |arg| (-589 $))) "failed") $)) (-15 -2790 ((-3 (-2 (|:| |val| $) (|:| -1475 (-710))) "failed") $)) (-15 -1887 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3757 ((-3 (-589 $) "failed") $)) (-15 -3064 ((-3 (-2 (|:| |val| $) (|:| -1475 $)) "failed") $)) (-15 -1937 ($ (-110) (-589 $))) (-15 -4045 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710))) (-15 ** ($ $ $)) (-15 -4074 ($ $ $)) (-15 -1576 ((-710) $)) (-15 -1400 ($ (-589 $))) (-15 -1874 ($ $)) (-15 -1402 ((-108) $)) (-15 -3085 ((-108) $)) (-15 -2028 ((-108) $)) (-15 -1844 ((-108) $)) (-15 -1931 ((-108) $)) (-15 -3058 ((-108) $)) (-15 -2520 ((-108) $)) (-15 -3989 ((-108) $)) (-15 -2324 ((-589 (-51)) $)) (-15 -1764 ($ $ (-589 (-51)))) (-15 -1448 ($ $ (-589 (-51)))) (-15 -3576 ($ (-1087) (-108) (-108) (-108))) (-15 -3123 ($ $ (-589 (-1087)) (-51))) (-15 -2056 ((-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51))) $)) (-15 -2948 ((-108) $)) (-15 -2735 ($ $)) (-15 -2974 ($ $ (-51))) (-15 -3265 ((-589 (-51)) $)) (-15 -1292 ((-589 $) $)) (-15 -1703 ((-3 (-589 $) "failed") (-589 $))))) +((-1680 (((-108) $ $) NIL)) (-2634 (((-589 |#1|) $) 16)) (-2977 (((-108) $) 38)) (-1220 (((-3 (-614 |#1|) "failed") $) 43)) (-3508 (((-614 |#1|) $) 41)) (-2441 (($ $) 18)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2616 (((-710) $) 46)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2428 (((-614 |#1|) $) 17)) (-1691 (((-794) $) 37) (($ (-614 |#1|)) 21) (((-758 |#1|) $) 27) (($ |#1|) 20)) (-1891 (($) 8 T CONST)) (-3461 (((-589 (-614 |#1|)) $) 23)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 11)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 49))) +(((-824 |#1|) (-13 (-786) (-964 (-614 |#1|)) (-10 -8 (-15 1 ($) -2501) (-15 -1691 ((-758 |#1|) $)) (-15 -1691 ($ |#1|)) (-15 -2428 ((-614 |#1|) $)) (-15 -2616 ((-710) $)) (-15 -3461 ((-589 (-614 |#1|)) $)) (-15 -2441 ($ $)) (-15 -2977 ((-108) $)) (-15 -2634 ((-589 |#1|) $)))) (-786)) (T -824)) +((-1891 (*1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-758 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-1691 (*1 *1 *2) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-589 (-614 *3))) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-2441 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786))))) +(-13 (-786) (-964 (-614 |#1|)) (-10 -8 (-15 (-1891) ($) -2501) (-15 -1691 ((-758 |#1|) $)) (-15 -1691 ($ |#1|)) (-15 -2428 ((-614 |#1|) $)) (-15 -2616 ((-710) $)) (-15 -3461 ((-589 (-614 |#1|)) $)) (-15 -2441 ($ $)) (-15 -2977 ((-108) $)) (-15 -2634 ((-589 |#1|) $)))) +((-3063 ((|#1| |#1| |#1|) 19))) +(((-825 |#1| |#2|) (-10 -7 (-15 -3063 (|#1| |#1| |#1|))) (-1145 |#2|) (-973)) (T -825)) +((-3063 (*1 *2 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-825 *2 *3)) (-4 *2 (-1145 *3))))) +(-10 -7 (-15 -3063 (|#1| |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-1796 (((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 14)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1824 (((-962) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 13)) (-3941 (((-108) $ $) 6))) (((-826) (-129)) (T -826)) -((-1228 (*1 *2 *3 *4) (-12 (-4 *1 (-826)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) (-1864 (*1 *2 *3) (-12 (-4 *1 (-826)) (-5 *3 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *2 (-962))))) -(-13 (-1016) (-10 -7 (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))) (-15 -1864 ((-962) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))))) +((-1796 (*1 *2 *3 *4) (-12 (-4 *1 (-826)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *2 (-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)))))) (-1824 (*1 *2 *3) (-12 (-4 *1 (-826)) (-5 *3 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *2 (-962))))) +(-13 (-1016) (-10 -7 (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))) (-15 -1824 ((-962) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-2253 ((|#1| |#1| (-710)) 24)) (-1338 (((-3 |#1| "failed") |#1| |#1|) 23)) (-2274 (((-3 (-2 (|:| -3149 |#1|) (|:| -3159 |#1|)) "failed") |#1| (-710) (-710)) 27) (((-589 |#1|) |#1|) 29))) -(((-827 |#1| |#2|) (-10 -7 (-15 -2274 ((-589 |#1|) |#1|)) (-15 -2274 ((-3 (-2 (|:| -3149 |#1|) (|:| -3159 |#1|)) "failed") |#1| (-710) (-710))) (-15 -1338 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2253 (|#1| |#1| (-710)))) (-1144 |#2|) (-339)) (T -827)) -((-2253 (*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-339)) (-5 *1 (-827 *2 *4)) (-4 *2 (-1144 *4)))) (-1338 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-339)) (-5 *1 (-827 *2 *3)) (-4 *2 (-1144 *3)))) (-2274 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-710)) (-4 *5 (-339)) (-5 *2 (-2 (|:| -3149 *3) (|:| -3159 *3))) (-5 *1 (-827 *3 *5)) (-4 *3 (-1144 *5)))) (-2274 (*1 *2 *3) (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-827 *3 *4)) (-4 *3 (-1144 *4))))) -(-10 -7 (-15 -2274 ((-589 |#1|) |#1|)) (-15 -2274 ((-3 (-2 (|:| -3149 |#1|) (|:| -3159 |#1|)) "failed") |#1| (-710) (-710))) (-15 -1338 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2253 (|#1| |#1| (-710)))) -((-1940 (((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070)) 92) (((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070) (-203)) 87) (((-962) (-829) (-985)) 76) (((-962) (-829)) 77)) (-1228 (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829) (-985)) 50) (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829)) 52))) -(((-828) (-10 -7 (-15 -1940 ((-962) (-829))) (-15 -1940 ((-962) (-829) (-985))) (-15 -1940 ((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070) (-203))) (-15 -1940 ((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829) (-985))))) (T -828)) -((-1228 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-985)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-828)))) (-1228 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-828)))) (-1940 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-710)) (-5 *6 (-589 (-589 (-292 *3)))) (-5 *7 (-1070)) (-5 *5 (-589 (-292 (-355)))) (-5 *3 (-355)) (-5 *2 (-962)) (-5 *1 (-828)))) (-1940 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-710)) (-5 *6 (-589 (-589 (-292 *3)))) (-5 *7 (-1070)) (-5 *8 (-203)) (-5 *5 (-589 (-292 (-355)))) (-5 *3 (-355)) (-5 *2 (-962)) (-5 *1 (-828)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-828)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-962)) (-5 *1 (-828))))) -(-10 -7 (-15 -1940 ((-962) (-829))) (-15 -1940 ((-962) (-829) (-985))) (-15 -1940 ((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070) (-203))) (-15 -1940 ((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829) (-985)))) -((-3924 (((-108) $ $) NIL)) (-3474 (((-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))) $) 10)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 12) (($ (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 9)) (-3983 (((-108) $ $) NIL))) -(((-829) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))) $))))) (T -829)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-829)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *1 (-829)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *1 (-829))))) -(-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))) $)))) -((-3523 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) 10) (($ $ |#2| (-710)) 12) (($ $ (-589 |#2|) (-589 (-710))) 15)) (-2862 (($ $ |#2|) 16) (($ $ (-589 |#2|)) 18) (($ $ |#2| (-710)) 19) (($ $ (-589 |#2|) (-589 (-710))) 21))) -(((-830 |#1| |#2|) (-10 -8 (-15 -2862 (|#1| |#1| (-589 |#2|) (-589 (-710)))) (-15 -2862 (|#1| |#1| |#2| (-710))) (-15 -2862 (|#1| |#1| (-589 |#2|))) (-15 -2862 (|#1| |#1| |#2|)) (-15 -3523 (|#1| |#1| (-589 |#2|) (-589 (-710)))) (-15 -3523 (|#1| |#1| |#2| (-710))) (-15 -3523 (|#1| |#1| (-589 |#2|))) (-15 -3523 (|#1| |#1| |#2|))) (-831 |#2|) (-1016)) (T -830)) -NIL -(-10 -8 (-15 -2862 (|#1| |#1| (-589 |#2|) (-589 (-710)))) (-15 -2862 (|#1| |#1| |#2| (-710))) (-15 -2862 (|#1| |#1| (-589 |#2|))) (-15 -2862 (|#1| |#1| |#2|)) (-15 -3523 (|#1| |#1| (-589 |#2|) (-589 (-710)))) (-15 -3523 (|#1| |#1| |#2| (-710))) (-15 -3523 (|#1| |#1| (-589 |#2|))) (-15 -3523 (|#1| |#1| |#2|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3523 (($ $ |#1|) 42) (($ $ (-589 |#1|)) 41) (($ $ |#1| (-710)) 40) (($ $ (-589 |#1|) (-589 (-710))) 39)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ |#1|) 38) (($ $ (-589 |#1|)) 37) (($ $ |#1| (-710)) 36) (($ $ (-589 |#1|) (-589 (-710))) 35)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-3330 ((|#1| |#1| (-710)) 24)) (-3490 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3530 (((-3 (-2 (|:| -3844 |#1|) (|:| -3855 |#1|)) "failed") |#1| (-710) (-710)) 27) (((-589 |#1|) |#1|) 29))) +(((-827 |#1| |#2|) (-10 -7 (-15 -3530 ((-589 |#1|) |#1|)) (-15 -3530 ((-3 (-2 (|:| -3844 |#1|) (|:| -3855 |#1|)) "failed") |#1| (-710) (-710))) (-15 -3490 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3330 (|#1| |#1| (-710)))) (-1145 |#2|) (-339)) (T -827)) +((-3330 (*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-339)) (-5 *1 (-827 *2 *4)) (-4 *2 (-1145 *4)))) (-3490 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-339)) (-5 *1 (-827 *2 *3)) (-4 *2 (-1145 *3)))) (-3530 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-710)) (-4 *5 (-339)) (-5 *2 (-2 (|:| -3844 *3) (|:| -3855 *3))) (-5 *1 (-827 *3 *5)) (-4 *3 (-1145 *5)))) (-3530 (*1 *2 *3) (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-827 *3 *4)) (-4 *3 (-1145 *4))))) +(-10 -7 (-15 -3530 ((-589 |#1|) |#1|)) (-15 -3530 ((-3 (-2 (|:| -3844 |#1|) (|:| -3855 |#1|)) "failed") |#1| (-710) (-710))) (-15 -3490 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3330 (|#1| |#1| (-710)))) +((-3112 (((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070)) 92) (((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070) (-203)) 87) (((-962) (-829) (-985)) 76) (((-962) (-829)) 77)) (-1796 (((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829) (-985)) 50) (((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829)) 52))) +(((-828) (-10 -7 (-15 -3112 ((-962) (-829))) (-15 -3112 ((-962) (-829) (-985))) (-15 -3112 ((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070) (-203))) (-15 -3112 ((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829) (-985))))) (T -828)) +((-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-985)) (-5 *2 (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-828)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-828)))) (-3112 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-710)) (-5 *6 (-589 (-589 (-292 *3)))) (-5 *7 (-1070)) (-5 *5 (-589 (-292 (-355)))) (-5 *3 (-355)) (-5 *2 (-962)) (-5 *1 (-828)))) (-3112 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-710)) (-5 *6 (-589 (-589 (-292 *3)))) (-5 *7 (-1070)) (-5 *8 (-203)) (-5 *5 (-589 (-292 (-355)))) (-5 *3 (-355)) (-5 *2 (-962)) (-5 *1 (-828)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-828)))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-962)) (-5 *1 (-828))))) +(-10 -7 (-15 -3112 ((-962) (-829))) (-15 -3112 ((-962) (-829) (-985))) (-15 -3112 ((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070) (-203))) (-15 -3112 ((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829))) (-15 -1796 ((-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829) (-985)))) +((-1680 (((-108) $ $) NIL)) (-3508 (((-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))) $) 10)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 12) (($ (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 9)) (-3941 (((-108) $ $) NIL))) +(((-829) (-13 (-1016) (-10 -8 (-15 -1691 ($ (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))) (-15 -1691 ((-794) $)) (-15 -3508 ((-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))) $))))) (T -829)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-829)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *1 (-829)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *1 (-829))))) +(-13 (-1016) (-10 -8 (-15 -1691 ($ (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))) (-15 -1691 ((-794) $)) (-15 -3508 ((-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))) $)))) +((-3984 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) 10) (($ $ |#2| (-710)) 12) (($ $ (-589 |#2|) (-589 (-710))) 15)) (-2909 (($ $ |#2|) 16) (($ $ (-589 |#2|)) 18) (($ $ |#2| (-710)) 19) (($ $ (-589 |#2|) (-589 (-710))) 21))) +(((-830 |#1| |#2|) (-10 -8 (-15 -2909 (|#1| |#1| (-589 |#2|) (-589 (-710)))) (-15 -2909 (|#1| |#1| |#2| (-710))) (-15 -2909 (|#1| |#1| (-589 |#2|))) (-15 -2909 (|#1| |#1| |#2|)) (-15 -3984 (|#1| |#1| (-589 |#2|) (-589 (-710)))) (-15 -3984 (|#1| |#1| |#2| (-710))) (-15 -3984 (|#1| |#1| (-589 |#2|))) (-15 -3984 (|#1| |#1| |#2|))) (-831 |#2|) (-1016)) (T -830)) +NIL +(-10 -8 (-15 -2909 (|#1| |#1| (-589 |#2|) (-589 (-710)))) (-15 -2909 (|#1| |#1| |#2| (-710))) (-15 -2909 (|#1| |#1| (-589 |#2|))) (-15 -2909 (|#1| |#1| |#2|)) (-15 -3984 (|#1| |#1| (-589 |#2|) (-589 (-710)))) (-15 -3984 (|#1| |#1| |#2| (-710))) (-15 -3984 (|#1| |#1| (-589 |#2|))) (-15 -3984 (|#1| |#1| |#2|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3984 (($ $ |#1|) 42) (($ $ (-589 |#1|)) 41) (($ $ |#1| (-710)) 40) (($ $ (-589 |#1|) (-589 (-710))) 39)) (-1691 (((-794) $) 11) (($ (-523)) 28)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ |#1|) 38) (($ $ (-589 |#1|)) 37) (($ $ |#1| (-710)) 36) (($ $ (-589 |#1|) (-589 (-710))) 35)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-831 |#1|) (-129) (-1016)) (T -831)) -((-3523 (*1 *1 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1016)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *1 (-831 *3)) (-4 *3 (-1016)))) (-3523 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-831 *2)) (-4 *2 (-1016)))) (-3523 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 (-710))) (-4 *1 (-831 *4)) (-4 *4 (-1016)))) (-2862 (*1 *1 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1016)))) (-2862 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *1 (-831 *3)) (-4 *3 (-1016)))) (-2862 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-831 *2)) (-4 *2 (-1016)))) (-2862 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 (-710))) (-4 *1 (-831 *4)) (-4 *4 (-1016))))) -(-13 (-973) (-10 -8 (-15 -3523 ($ $ |t#1|)) (-15 -3523 ($ $ (-589 |t#1|))) (-15 -3523 ($ $ |t#1| (-710))) (-15 -3523 ($ $ (-589 |t#1|) (-589 (-710)))) (-15 -2862 ($ $ |t#1|)) (-15 -2862 ($ $ (-589 |t#1|))) (-15 -2862 ($ $ |t#1| (-710))) (-15 -2862 ($ $ (-589 |t#1|) (-589 (-710)))))) +((-3984 (*1 *1 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1016)))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *1 (-831 *3)) (-4 *3 (-1016)))) (-3984 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-831 *2)) (-4 *2 (-1016)))) (-3984 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 (-710))) (-4 *1 (-831 *4)) (-4 *4 (-1016)))) (-2909 (*1 *1 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1016)))) (-2909 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *1 (-831 *3)) (-4 *3 (-1016)))) (-2909 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-831 *2)) (-4 *2 (-1016)))) (-2909 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 (-710))) (-4 *1 (-831 *4)) (-4 *4 (-1016))))) +(-13 (-973) (-10 -8 (-15 -3984 ($ $ |t#1|)) (-15 -3984 ($ $ (-589 |t#1|))) (-15 -3984 ($ $ |t#1| (-710))) (-15 -3984 ($ $ (-589 |t#1|) (-589 (-710)))) (-15 -2909 ($ $ |t#1|)) (-15 -2909 ($ $ (-589 |t#1|))) (-15 -2909 ($ $ |t#1| (-710))) (-15 -2909 ($ $ (-589 |t#1|) (-589 (-710)))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) 26)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-2541 (($ $ $) NIL (|has| $ (-6 -4245)))) (-2971 (($ $ $) NIL (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "left" $) NIL (|has| $ (-6 -4245))) (($ $ "right" $) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3159 (($ $) 25)) (-2825 (($ |#1|) 12) (($ $ $) 17)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3149 (($ $) 23)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) 20)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1549 (((-523) $ $) NIL)) (-2524 (((-108) $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1109 |#1|) $) 9) (((-794) $) 29 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 21 (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-832 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -2825 ($ |#1|)) (-15 -2825 ($ $ $)) (-15 -1458 ((-1109 |#1|) $)))) (-1016)) (T -832)) -((-2825 (*1 *1 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1016)))) (-2825 (*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1016)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1109 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1016))))) -(-13 (-115 |#1|) (-10 -8 (-15 -2825 ($ |#1|)) (-15 -2825 ($ $ $)) (-15 -1458 ((-1109 |#1|) $)))) -((-4021 ((|#2| (-1054 |#1| |#2|)) 41))) -(((-833 |#1| |#2|) (-10 -7 (-15 -4021 (|#2| (-1054 |#1| |#2|)))) (-852) (-13 (-973) (-10 -7 (-6 (-4246 "*"))))) (T -833)) -((-4021 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *2)) (-14 *4 (-852)) (-4 *2 (-13 (-973) (-10 -7 (-6 (-4246 "*"))))) (-5 *1 (-833 *4 *2))))) -(-10 -7 (-15 -4021 (|#2| (-1054 |#1| |#2|)))) -((-3924 (((-108) $ $) 7)) (-2518 (($) 20 T CONST)) (-2121 (((-3 $ "failed") $) 16)) (-1512 (((-1018 |#1|) $ |#1|) 35)) (-2023 (((-108) $) 19)) (-2454 (($ $ $) 33 (-3262 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-2062 (($ $ $) 32 (-3262 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-3779 (((-1070) $) 9)) (-3738 (($ $) 27)) (-2783 (((-1034) $) 10)) (-2679 ((|#1| $ |#1|) 37)) (-3223 ((|#1| $ |#1|) 36)) (-3770 (($ (-589 (-589 |#1|))) 38)) (-2348 (($ (-589 |#1|)) 39)) (-3208 (($ $ $) 23)) (-1714 (($ $ $) 22)) (-1458 (((-794) $) 11)) (-2364 (($ $ (-852)) 13) (($ $ (-710)) 17) (($ $ (-523)) 24)) (-2767 (($) 21 T CONST)) (-4043 (((-108) $ $) 30 (-3262 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-4019 (((-108) $ $) 29 (-3262 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 31 (-3262 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-4007 (((-108) $ $) 34)) (-4098 (($ $ $) 26)) (** (($ $ (-852)) 14) (($ $ (-710)) 18) (($ $ (-523)) 25)) (* (($ $ $) 15))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3370 ((|#1| $) 26)) (-1620 (((-108) $ (-710)) NIL)) (-1487 ((|#1| $ |#1|) NIL (|has| $ (-6 -4249)))) (-1398 (($ $ $) NIL (|has| $ (-6 -4249)))) (-2955 (($ $ $) NIL (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4249))) (($ $ "left" $) NIL (|has| $ (-6 -4249))) (($ $ "right" $) NIL (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) NIL (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-3855 (($ $) 25)) (-3334 (($ |#1|) 12) (($ $ $) 17)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) NIL)) (-3675 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-3844 (($ $) 23)) (-1701 (((-589 |#1|) $) NIL)) (-1799 (((-108) $) 20)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3766 (((-523) $ $) NIL)) (-1221 (((-108) $) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-1110 |#1|) $) 9) (((-794) $) 29 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) NIL)) (-3313 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 21 (|has| |#1| (-1016)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-832 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -3334 ($ |#1|)) (-15 -3334 ($ $ $)) (-15 -1691 ((-1110 |#1|) $)))) (-1016)) (T -832)) +((-3334 (*1 *1 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1016)))) (-3334 (*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1016)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1016))))) +(-13 (-115 |#1|) (-10 -8 (-15 -3334 ($ |#1|)) (-15 -3334 ($ $ $)) (-15 -1691 ((-1110 |#1|) $)))) +((-3599 ((|#2| (-1054 |#1| |#2|)) 41))) +(((-833 |#1| |#2|) (-10 -7 (-15 -3599 (|#2| (-1054 |#1| |#2|)))) (-852) (-13 (-973) (-10 -7 (-6 (-4250 "*"))))) (T -833)) +((-3599 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *2)) (-14 *4 (-852)) (-4 *2 (-13 (-973) (-10 -7 (-6 (-4250 "*"))))) (-5 *1 (-833 *4 *2))))) +(-10 -7 (-15 -3599 (|#2| (-1054 |#1| |#2|)))) +((-1680 (((-108) $ $) 7)) (-4189 (($) 20 T CONST)) (-1444 (((-3 $ "failed") $) 16)) (-1681 (((-1018 |#1|) $ |#1|) 35)) (-2769 (((-108) $) 19)) (-3239 (($ $ $) 33 (-3172 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-3158 (($ $ $) 32 (-3172 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-2032 (((-1070) $) 9)) (-1396 (($ $) 27)) (-3951 (((-1034) $) 10)) (-2812 ((|#1| $ |#1|) 37)) (-1937 ((|#1| $ |#1|) 36)) (-3105 (($ (-589 (-589 |#1|))) 38)) (-3071 (($ (-589 |#1|)) 39)) (-3361 (($ $ $) 23)) (-2892 (($ $ $) 22)) (-1691 (((-794) $) 11)) (-2423 (($ $ (-852)) 13) (($ $ (-710)) 17) (($ $ (-523)) 24)) (-1891 (($) 21 T CONST)) (-4006 (((-108) $ $) 30 (-3172 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-3980 (((-108) $ $) 29 (-3172 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 31 (-3172 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-3966 (((-108) $ $) 34)) (-4074 (($ $ $) 26)) (** (($ $ (-852)) 14) (($ $ (-710)) 18) (($ $ (-523)) 25)) (* (($ $ $) 15))) (((-834 |#1|) (-129) (-1016)) (T -834)) -((-2348 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-834 *3)))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-4 *1 (-834 *3)))) (-2679 (*1 *2 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1016)))) (-3223 (*1 *2 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1016)))) (-1512 (*1 *2 *1 *3) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1016)) (-5 *2 (-1018 *3)))) (-4007 (*1 *2 *1 *1) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1016)) (-5 *2 (-108))))) -(-13 (-448) (-10 -8 (-15 -2348 ($ (-589 |t#1|))) (-15 -3770 ($ (-589 (-589 |t#1|)))) (-15 -2679 (|t#1| $ |t#1|)) (-15 -3223 (|t#1| $ |t#1|)) (-15 -1512 ((-1018 |t#1|) $ |t#1|)) (-15 -4007 ((-108) $ $)) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-786)) |%noBranch|))) -(((-97) . T) ((-563 (-794)) . T) ((-448) . T) ((-666) . T) ((-786) -3262 (|has| |#1| (-786)) (|has| |#1| (-344))) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2301 (((-589 (-589 (-710))) $) 108)) (-1270 (((-589 (-710)) (-836 |#1|) $) 130)) (-3164 (((-589 (-710)) (-836 |#1|) $) 131)) (-4023 (((-589 (-836 |#1|)) $) 98)) (-4032 (((-836 |#1|) $ (-523)) 103) (((-836 |#1|) $) 104)) (-3386 (($ (-589 (-836 |#1|))) 110)) (-1640 (((-710) $) 105)) (-3333 (((-1018 (-1018 |#1|)) $) 128)) (-1512 (((-1018 |#1|) $ |#1|) 121) (((-1018 (-1018 |#1|)) $ (-1018 |#1|)) 139) (((-1018 (-589 |#1|)) $ (-589 |#1|)) 142)) (-2864 (((-1018 |#1|) $) 101)) (-1973 (((-108) (-836 |#1|) $) 92)) (-3779 (((-1070) $) NIL)) (-2066 (((-1173) $) 95) (((-1173) $ (-523) (-523)) 143)) (-2783 (((-1034) $) NIL)) (-2773 (((-589 (-836 |#1|)) $) 96)) (-3223 (((-836 |#1|) $ (-710)) 99)) (-2299 (((-710) $) 106)) (-1458 (((-794) $) 119) (((-589 (-836 |#1|)) $) 22) (($ (-589 (-836 |#1|))) 109)) (-3007 (((-589 |#1|) $) 107)) (-3983 (((-108) $ $) 136)) (-4030 (((-108) $ $) 134)) (-4007 (((-108) $ $) 133))) -(((-835 |#1|) (-13 (-1016) (-10 -8 (-15 -1458 ((-589 (-836 |#1|)) $)) (-15 -2773 ((-589 (-836 |#1|)) $)) (-15 -3223 ((-836 |#1|) $ (-710))) (-15 -4032 ((-836 |#1|) $ (-523))) (-15 -4032 ((-836 |#1|) $)) (-15 -1640 ((-710) $)) (-15 -2299 ((-710) $)) (-15 -3007 ((-589 |#1|) $)) (-15 -4023 ((-589 (-836 |#1|)) $)) (-15 -2301 ((-589 (-589 (-710))) $)) (-15 -1458 ($ (-589 (-836 |#1|)))) (-15 -3386 ($ (-589 (-836 |#1|)))) (-15 -1512 ((-1018 |#1|) $ |#1|)) (-15 -3333 ((-1018 (-1018 |#1|)) $)) (-15 -1512 ((-1018 (-1018 |#1|)) $ (-1018 |#1|))) (-15 -1512 ((-1018 (-589 |#1|)) $ (-589 |#1|))) (-15 -1973 ((-108) (-836 |#1|) $)) (-15 -1270 ((-589 (-710)) (-836 |#1|) $)) (-15 -3164 ((-589 (-710)) (-836 |#1|) $)) (-15 -2864 ((-1018 |#1|) $)) (-15 -4007 ((-108) $ $)) (-15 -4030 ((-108) $ $)) (-15 -2066 ((-1173) $)) (-15 -2066 ((-1173) $ (-523) (-523))))) (-1016)) (T -835)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-836 *4)) (-5 *1 (-835 *4)) (-4 *4 (-1016)))) (-4032 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-836 *4)) (-5 *1 (-835 *4)) (-4 *4 (-1016)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-836 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2301 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-710)))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-836 *3))) (-4 *3 (-1016)) (-5 *1 (-835 *3)))) (-3386 (*1 *1 *2) (-12 (-5 *2 (-589 (-836 *3))) (-4 *3 (-1016)) (-5 *1 (-835 *3)))) (-1512 (*1 *2 *1 *3) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-1018 (-1018 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-1512 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-1018 (-1018 *4))) (-5 *1 (-835 *4)) (-5 *3 (-1018 *4)))) (-1512 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-1018 (-589 *4))) (-5 *1 (-835 *4)) (-5 *3 (-589 *4)))) (-1973 (*1 *2 *3 *1) (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-108)) (-5 *1 (-835 *4)))) (-1270 (*1 *2 *3 *1) (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-589 (-710))) (-5 *1 (-835 *4)))) (-3164 (*1 *2 *3 *1) (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-589 (-710))) (-5 *1 (-835 *4)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-4007 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-4030 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2066 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-835 *4)) (-4 *4 (-1016))))) -(-13 (-1016) (-10 -8 (-15 -1458 ((-589 (-836 |#1|)) $)) (-15 -2773 ((-589 (-836 |#1|)) $)) (-15 -3223 ((-836 |#1|) $ (-710))) (-15 -4032 ((-836 |#1|) $ (-523))) (-15 -4032 ((-836 |#1|) $)) (-15 -1640 ((-710) $)) (-15 -2299 ((-710) $)) (-15 -3007 ((-589 |#1|) $)) (-15 -4023 ((-589 (-836 |#1|)) $)) (-15 -2301 ((-589 (-589 (-710))) $)) (-15 -1458 ($ (-589 (-836 |#1|)))) (-15 -3386 ($ (-589 (-836 |#1|)))) (-15 -1512 ((-1018 |#1|) $ |#1|)) (-15 -3333 ((-1018 (-1018 |#1|)) $)) (-15 -1512 ((-1018 (-1018 |#1|)) $ (-1018 |#1|))) (-15 -1512 ((-1018 (-589 |#1|)) $ (-589 |#1|))) (-15 -1973 ((-108) (-836 |#1|) $)) (-15 -1270 ((-589 (-710)) (-836 |#1|) $)) (-15 -3164 ((-589 (-710)) (-836 |#1|) $)) (-15 -2864 ((-1018 |#1|) $)) (-15 -4007 ((-108) $ $)) (-15 -4030 ((-108) $ $)) (-15 -2066 ((-1173) $)) (-15 -2066 ((-1173) $ (-523) (-523))))) -((-3924 (((-108) $ $) NIL)) (-3974 (((-589 $) (-589 $)) 77)) (-3671 (((-523) $) 60)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-1640 (((-710) $) 58)) (-1512 (((-1018 |#1|) $ |#1|) 49)) (-2023 (((-108) $) NIL)) (-1557 (((-108) $) 63)) (-3406 (((-710) $) 61)) (-2864 (((-1018 |#1|) $) 42)) (-2454 (($ $ $) NIL (-3262 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-2062 (($ $ $) NIL (-3262 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-3341 (((-2 (|:| |preimage| (-589 |#1|)) (|:| |image| (-589 |#1|))) $) 36)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 93)) (-2783 (((-1034) $) NIL)) (-2049 (((-1018 |#1|) $) 99 (|has| |#1| (-344)))) (-4104 (((-108) $) 59)) (-2679 ((|#1| $ |#1|) 47)) (-3223 ((|#1| $ |#1|) 94)) (-2299 (((-710) $) 44)) (-3770 (($ (-589 (-589 |#1|))) 85)) (-3703 (((-900) $) 53)) (-2348 (($ (-589 |#1|)) 21)) (-3208 (($ $ $) NIL)) (-1714 (($ $ $) NIL)) (-1286 (($ (-589 (-589 |#1|))) 39)) (-2352 (($ (-589 (-589 |#1|))) 88)) (-1496 (($ (-589 |#1|)) 96)) (-1458 (((-794) $) 84) (($ (-589 (-589 |#1|))) 66) (($ (-589 |#1|)) 67)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2767 (($) 16 T CONST)) (-4043 (((-108) $ $) NIL (-3262 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-3983 (((-108) $ $) 45)) (-4030 (((-108) $ $) NIL (-3262 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-4007 (((-108) $ $) 65)) (-4098 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ $ $) 22))) -(((-836 |#1|) (-13 (-834 |#1|) (-10 -8 (-15 -3341 ((-2 (|:| |preimage| (-589 |#1|)) (|:| |image| (-589 |#1|))) $)) (-15 -1286 ($ (-589 (-589 |#1|)))) (-15 -1458 ($ (-589 (-589 |#1|)))) (-15 -1458 ($ (-589 |#1|))) (-15 -2352 ($ (-589 (-589 |#1|)))) (-15 -2299 ((-710) $)) (-15 -2864 ((-1018 |#1|) $)) (-15 -3703 ((-900) $)) (-15 -1640 ((-710) $)) (-15 -3406 ((-710) $)) (-15 -3671 ((-523) $)) (-15 -4104 ((-108) $)) (-15 -1557 ((-108) $)) (-15 -3974 ((-589 $) (-589 $))) (IF (|has| |#1| (-344)) (-15 -2049 ((-1018 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-508)) (-15 -1496 ($ (-589 |#1|))) (IF (|has| |#1| (-344)) (-15 -1496 ($ (-589 |#1|))) |%noBranch|)))) (-1016)) (T -836)) -((-3341 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-589 *3)) (|:| |image| (-589 *3)))) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-1286 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) (-2352 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-836 *3)) (-4 *3 (-344)) (-4 *3 (-1016)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-836 *3))))) -(-13 (-834 |#1|) (-10 -8 (-15 -3341 ((-2 (|:| |preimage| (-589 |#1|)) (|:| |image| (-589 |#1|))) $)) (-15 -1286 ($ (-589 (-589 |#1|)))) (-15 -1458 ($ (-589 (-589 |#1|)))) (-15 -1458 ($ (-589 |#1|))) (-15 -2352 ($ (-589 (-589 |#1|)))) (-15 -2299 ((-710) $)) (-15 -2864 ((-1018 |#1|) $)) (-15 -3703 ((-900) $)) (-15 -1640 ((-710) $)) (-15 -3406 ((-710) $)) (-15 -3671 ((-523) $)) (-15 -4104 ((-108) $)) (-15 -1557 ((-108) $)) (-15 -3974 ((-589 $) (-589 $))) (IF (|has| |#1| (-344)) (-15 -2049 ((-1018 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-508)) (-15 -1496 ($ (-589 |#1|))) (IF (|has| |#1| (-344)) (-15 -1496 ($ (-589 |#1|))) |%noBranch|)))) -((-3572 (((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|)) 128)) (-3625 ((|#1|) 76)) (-1776 (((-394 (-1083 |#4|)) (-1083 |#4|)) 137)) (-1267 (((-394 (-1083 |#4|)) (-589 |#3|) (-1083 |#4|)) 68)) (-2887 (((-394 (-1083 |#4|)) (-1083 |#4|)) 147)) (-2309 (((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|) |#3|) 92))) -(((-837 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3572 ((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|))) (-15 -2887 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -1776 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -3625 (|#1|)) (-15 -2309 ((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|) |#3|)) (-15 -1267 ((-394 (-1083 |#4|)) (-589 |#3|) (-1083 |#4|)))) (-840) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -837)) -((-1267 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *7)) (-4 *7 (-786)) (-4 *5 (-840)) (-4 *6 (-732)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-394 (-1083 *8))) (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-1083 *8)))) (-2309 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-589 (-1083 *7))) (-5 *3 (-1083 *7)) (-4 *7 (-880 *5 *6 *4)) (-4 *5 (-840)) (-4 *6 (-732)) (-4 *4 (-786)) (-5 *1 (-837 *5 *6 *4 *7)))) (-3625 (*1 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-840)) (-5 *1 (-837 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-1776 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-2887 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3572 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *7))) (-5 *3 (-1083 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-837 *4 *5 *6 *7))))) -(-10 -7 (-15 -3572 ((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|))) (-15 -2887 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -1776 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -3625 (|#1|)) (-15 -2309 ((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|) |#3|)) (-15 -1267 ((-394 (-1083 |#4|)) (-589 |#3|) (-1083 |#4|)))) -((-3572 (((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|)) 36)) (-3625 ((|#1|) 54)) (-1776 (((-394 (-1083 |#2|)) (-1083 |#2|)) 102)) (-1267 (((-394 (-1083 |#2|)) (-1083 |#2|)) 89)) (-2887 (((-394 (-1083 |#2|)) (-1083 |#2|)) 113))) -(((-838 |#1| |#2|) (-10 -7 (-15 -3572 ((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|))) (-15 -2887 ((-394 (-1083 |#2|)) (-1083 |#2|))) (-15 -1776 ((-394 (-1083 |#2|)) (-1083 |#2|))) (-15 -3625 (|#1|)) (-15 -1267 ((-394 (-1083 |#2|)) (-1083 |#2|)))) (-840) (-1144 |#1|)) (T -838)) -((-1267 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-1144 *4)) (-5 *2 (-394 (-1083 *5))) (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5)))) (-3625 (*1 *2) (-12 (-4 *2 (-840)) (-5 *1 (-838 *2 *3)) (-4 *3 (-1144 *2)))) (-1776 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-1144 *4)) (-5 *2 (-394 (-1083 *5))) (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5)))) (-2887 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-1144 *4)) (-5 *2 (-394 (-1083 *5))) (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5)))) (-3572 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-840)) (-5 *1 (-838 *4 *5))))) -(-10 -7 (-15 -3572 ((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|))) (-15 -2887 ((-394 (-1083 |#2|)) (-1083 |#2|))) (-15 -1776 ((-394 (-1083 |#2|)) (-1083 |#2|))) (-15 -3625 (|#1|)) (-15 -1267 ((-394 (-1083 |#2|)) (-1083 |#2|)))) -((-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 39)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 18)) (-3901 (((-3 $ "failed") $) 33))) -(((-839 |#1|) (-10 -8 (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) (-840)) (T -839)) -NIL -(-10 -8 (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-3156 (((-394 (-1083 $)) (-1083 $)) 60)) (-2291 (($ $) 51)) (-3614 (((-394 $) $) 52)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 57)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2657 (((-108) $) 53)) (-2023 (((-108) $) 31)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1219 (((-394 (-1083 $)) (-1083 $)) 58)) (-3967 (((-394 (-1083 $)) (-1083 $)) 59)) (-1820 (((-394 $) $) 50)) (-3746 (((-3 $ "failed") $ $) 42)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 56 (|has| $ (-134)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-3901 (((-3 $ "failed") $) 55 (|has| $ (-134)))) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-3071 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-834 *3)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-4 *1 (-834 *3)))) (-2812 (*1 *2 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1016)))) (-1937 (*1 *2 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1016)))) (-1681 (*1 *2 *1 *3) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1016)) (-5 *2 (-1018 *3)))) (-3966 (*1 *2 *1 *1) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1016)) (-5 *2 (-108))))) +(-13 (-448) (-10 -8 (-15 -3071 ($ (-589 |t#1|))) (-15 -3105 ($ (-589 (-589 |t#1|)))) (-15 -2812 (|t#1| $ |t#1|)) (-15 -1937 (|t#1| $ |t#1|)) (-15 -1681 ((-1018 |t#1|) $ |t#1|)) (-15 -3966 ((-108) $ $)) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-786)) |%noBranch|))) +(((-97) . T) ((-563 (-794)) . T) ((-448) . T) ((-666) . T) ((-786) -3172 (|has| |#1| (-786)) (|has| |#1| (-344))) ((-1028) . T) ((-1016) . T)) +((-1680 (((-108) $ $) NIL)) (-2659 (((-589 (-589 (-710))) $) 109)) (-4053 (((-589 (-710)) (-836 |#1|) $) 131)) (-4215 (((-589 (-710)) (-836 |#1|) $) 132)) (-3617 (((-589 (-836 |#1|)) $) 99)) (-1631 (((-836 |#1|) $ (-523)) 104) (((-836 |#1|) $) 105)) (-3691 (($ (-589 (-836 |#1|))) 111)) (-3437 (((-710) $) 106)) (-3193 (((-1018 (-1018 |#1|)) $) 129)) (-1681 (((-1018 |#1|) $ |#1|) 122) (((-1018 (-1018 |#1|)) $ (-1018 |#1|)) 140) (((-1018 (-589 |#1|)) $ (-589 |#1|)) 143)) (-1394 (((-1018 |#1|) $) 102)) (-3423 (((-108) (-836 |#1|) $) 93)) (-2032 (((-1070) $) NIL)) (-2006 (((-1174) $) 96) (((-1174) $ (-523) (-523)) 144)) (-3951 (((-1034) $) NIL)) (-1821 (((-589 (-836 |#1|)) $) 97)) (-1937 (((-836 |#1|) $ (-710)) 100)) (-2640 (((-710) $) 107)) (-1691 (((-794) $) 120) (((-589 (-836 |#1|)) $) 22) (($ (-589 (-836 |#1|))) 110)) (-1416 (((-589 |#1|) $) 108)) (-3941 (((-108) $ $) 137)) (-3993 (((-108) $ $) 135)) (-3966 (((-108) $ $) 134))) +(((-835 |#1|) (-13 (-1016) (-10 -8 (-15 -1691 ((-589 (-836 |#1|)) $)) (-15 -1821 ((-589 (-836 |#1|)) $)) (-15 -1937 ((-836 |#1|) $ (-710))) (-15 -1631 ((-836 |#1|) $ (-523))) (-15 -1631 ((-836 |#1|) $)) (-15 -3437 ((-710) $)) (-15 -2640 ((-710) $)) (-15 -1416 ((-589 |#1|) $)) (-15 -3617 ((-589 (-836 |#1|)) $)) (-15 -2659 ((-589 (-589 (-710))) $)) (-15 -1691 ($ (-589 (-836 |#1|)))) (-15 -3691 ($ (-589 (-836 |#1|)))) (-15 -1681 ((-1018 |#1|) $ |#1|)) (-15 -3193 ((-1018 (-1018 |#1|)) $)) (-15 -1681 ((-1018 (-1018 |#1|)) $ (-1018 |#1|))) (-15 -1681 ((-1018 (-589 |#1|)) $ (-589 |#1|))) (-15 -3423 ((-108) (-836 |#1|) $)) (-15 -4053 ((-589 (-710)) (-836 |#1|) $)) (-15 -4215 ((-589 (-710)) (-836 |#1|) $)) (-15 -1394 ((-1018 |#1|) $)) (-15 -3966 ((-108) $ $)) (-15 -3993 ((-108) $ $)) (-15 -2006 ((-1174) $)) (-15 -2006 ((-1174) $ (-523) (-523))))) (-1016)) (T -835)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-1821 (*1 *2 *1) (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-836 *4)) (-5 *1 (-835 *4)) (-4 *4 (-1016)))) (-1631 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-836 *4)) (-5 *1 (-835 *4)) (-4 *4 (-1016)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-836 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-710)))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-589 (-836 *3))) (-4 *3 (-1016)) (-5 *1 (-835 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-589 (-836 *3))) (-4 *3 (-1016)) (-5 *1 (-835 *3)))) (-1681 (*1 *2 *1 *3) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-1018 (-1018 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-1681 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-1018 (-1018 *4))) (-5 *1 (-835 *4)) (-5 *3 (-1018 *4)))) (-1681 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-1018 (-589 *4))) (-5 *1 (-835 *4)) (-5 *3 (-589 *4)))) (-3423 (*1 *2 *3 *1) (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-108)) (-5 *1 (-835 *4)))) (-4053 (*1 *2 *3 *1) (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-589 (-710))) (-5 *1 (-835 *4)))) (-4215 (*1 *2 *3 *1) (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-589 (-710))) (-5 *1 (-835 *4)))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-3966 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-3993 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2006 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-835 *4)) (-4 *4 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -1691 ((-589 (-836 |#1|)) $)) (-15 -1821 ((-589 (-836 |#1|)) $)) (-15 -1937 ((-836 |#1|) $ (-710))) (-15 -1631 ((-836 |#1|) $ (-523))) (-15 -1631 ((-836 |#1|) $)) (-15 -3437 ((-710) $)) (-15 -2640 ((-710) $)) (-15 -1416 ((-589 |#1|) $)) (-15 -3617 ((-589 (-836 |#1|)) $)) (-15 -2659 ((-589 (-589 (-710))) $)) (-15 -1691 ($ (-589 (-836 |#1|)))) (-15 -3691 ($ (-589 (-836 |#1|)))) (-15 -1681 ((-1018 |#1|) $ |#1|)) (-15 -3193 ((-1018 (-1018 |#1|)) $)) (-15 -1681 ((-1018 (-1018 |#1|)) $ (-1018 |#1|))) (-15 -1681 ((-1018 (-589 |#1|)) $ (-589 |#1|))) (-15 -3423 ((-108) (-836 |#1|) $)) (-15 -4053 ((-589 (-710)) (-836 |#1|) $)) (-15 -4215 ((-589 (-710)) (-836 |#1|) $)) (-15 -1394 ((-1018 |#1|) $)) (-15 -3966 ((-108) $ $)) (-15 -3993 ((-108) $ $)) (-15 -2006 ((-1174) $)) (-15 -2006 ((-1174) $ (-523) (-523))))) +((-1680 (((-108) $ $) NIL)) (-1581 (((-589 $) (-589 $)) 77)) (-3482 (((-523) $) 60)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) NIL)) (-3437 (((-710) $) 58)) (-1681 (((-1018 |#1|) $ |#1|) 49)) (-2769 (((-108) $) NIL)) (-3860 (((-108) $) 63)) (-2726 (((-710) $) 61)) (-1394 (((-1018 |#1|) $) 42)) (-3239 (($ $ $) NIL (-3172 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-3158 (($ $ $) NIL (-3172 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-3263 (((-2 (|:| |preimage| (-589 |#1|)) (|:| |image| (-589 |#1|))) $) 37)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 93)) (-3951 (((-1034) $) NIL)) (-2998 (((-1018 |#1|) $) 99 (|has| |#1| (-344)))) (-3101 (((-108) $) 59)) (-2812 ((|#1| $ |#1|) 47)) (-1937 ((|#1| $ |#1|) 94)) (-2640 (((-710) $) 44)) (-3105 (($ (-589 (-589 |#1|))) 85)) (-3754 (((-900) $) 53)) (-3071 (($ (-589 |#1|)) 21)) (-3361 (($ $ $) NIL)) (-2892 (($ $ $) NIL)) (-1218 (($ (-589 (-589 |#1|))) 39)) (-3107 (($ (-589 (-589 |#1|))) 88)) (-1542 (($ (-589 |#1|)) 96)) (-1691 (((-794) $) 84) (($ (-589 (-589 |#1|))) 66) (($ (-589 |#1|)) 67)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1891 (($) 16 T CONST)) (-4006 (((-108) $ $) NIL (-3172 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-3980 (((-108) $ $) NIL (-3172 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-3941 (((-108) $ $) 45)) (-3993 (((-108) $ $) NIL (-3172 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-3966 (((-108) $ $) 65)) (-4074 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ $ $) 22))) +(((-836 |#1|) (-13 (-834 |#1|) (-10 -8 (-15 -3263 ((-2 (|:| |preimage| (-589 |#1|)) (|:| |image| (-589 |#1|))) $)) (-15 -1218 ($ (-589 (-589 |#1|)))) (-15 -1691 ($ (-589 (-589 |#1|)))) (-15 -1691 ($ (-589 |#1|))) (-15 -3107 ($ (-589 (-589 |#1|)))) (-15 -2640 ((-710) $)) (-15 -1394 ((-1018 |#1|) $)) (-15 -3754 ((-900) $)) (-15 -3437 ((-710) $)) (-15 -2726 ((-710) $)) (-15 -3482 ((-523) $)) (-15 -3101 ((-108) $)) (-15 -3860 ((-108) $)) (-15 -1581 ((-589 $) (-589 $))) (IF (|has| |#1| (-344)) (-15 -2998 ((-1018 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-508)) (-15 -1542 ($ (-589 |#1|))) (IF (|has| |#1| (-344)) (-15 -1542 ($ (-589 |#1|))) |%noBranch|)))) (-1016)) (T -836)) +((-3263 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-589 *3)) (|:| |image| (-589 *3)))) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-1218 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) (-3107 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-1581 (*1 *2 *2) (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-836 *3)) (-4 *3 (-344)) (-4 *3 (-1016)))) (-1542 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-836 *3))))) +(-13 (-834 |#1|) (-10 -8 (-15 -3263 ((-2 (|:| |preimage| (-589 |#1|)) (|:| |image| (-589 |#1|))) $)) (-15 -1218 ($ (-589 (-589 |#1|)))) (-15 -1691 ($ (-589 (-589 |#1|)))) (-15 -1691 ($ (-589 |#1|))) (-15 -3107 ($ (-589 (-589 |#1|)))) (-15 -2640 ((-710) $)) (-15 -1394 ((-1018 |#1|) $)) (-15 -3754 ((-900) $)) (-15 -3437 ((-710) $)) (-15 -2726 ((-710) $)) (-15 -3482 ((-523) $)) (-15 -3101 ((-108) $)) (-15 -3860 ((-108) $)) (-15 -1581 ((-589 $) (-589 $))) (IF (|has| |#1| (-344)) (-15 -2998 ((-1018 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-508)) (-15 -1542 ($ (-589 |#1|))) (IF (|has| |#1| (-344)) (-15 -1542 ($ (-589 |#1|))) |%noBranch|)))) +((-1946 (((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|)) 128)) (-1333 ((|#1|) 76)) (-2231 (((-394 (-1083 |#4|)) (-1083 |#4|)) 137)) (-4014 (((-394 (-1083 |#4|)) (-589 |#3|) (-1083 |#4|)) 68)) (-3332 (((-394 (-1083 |#4|)) (-1083 |#4|)) 147)) (-2727 (((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|) |#3|) 92))) +(((-837 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1946 ((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|))) (-15 -3332 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -2231 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -1333 (|#1|)) (-15 -2727 ((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|) |#3|)) (-15 -4014 ((-394 (-1083 |#4|)) (-589 |#3|) (-1083 |#4|)))) (-840) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -837)) +((-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *7)) (-4 *7 (-786)) (-4 *5 (-840)) (-4 *6 (-732)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-394 (-1083 *8))) (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-1083 *8)))) (-2727 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-589 (-1083 *7))) (-5 *3 (-1083 *7)) (-4 *7 (-880 *5 *6 *4)) (-4 *5 (-840)) (-4 *6 (-732)) (-4 *4 (-786)) (-5 *1 (-837 *5 *6 *4 *7)))) (-1333 (*1 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-840)) (-5 *1 (-837 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-2231 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3332 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-1946 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *7))) (-5 *3 (-1083 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-837 *4 *5 *6 *7))))) +(-10 -7 (-15 -1946 ((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|))) (-15 -3332 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -2231 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -1333 (|#1|)) (-15 -2727 ((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|) |#3|)) (-15 -4014 ((-394 (-1083 |#4|)) (-589 |#3|) (-1083 |#4|)))) +((-1946 (((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|)) 36)) (-1333 ((|#1|) 54)) (-2231 (((-394 (-1083 |#2|)) (-1083 |#2|)) 102)) (-4014 (((-394 (-1083 |#2|)) (-1083 |#2|)) 89)) (-3332 (((-394 (-1083 |#2|)) (-1083 |#2|)) 113))) +(((-838 |#1| |#2|) (-10 -7 (-15 -1946 ((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|))) (-15 -3332 ((-394 (-1083 |#2|)) (-1083 |#2|))) (-15 -2231 ((-394 (-1083 |#2|)) (-1083 |#2|))) (-15 -1333 (|#1|)) (-15 -4014 ((-394 (-1083 |#2|)) (-1083 |#2|)))) (-840) (-1145 |#1|)) (T -838)) +((-4014 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-1145 *4)) (-5 *2 (-394 (-1083 *5))) (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5)))) (-1333 (*1 *2) (-12 (-4 *2 (-840)) (-5 *1 (-838 *2 *3)) (-4 *3 (-1145 *2)))) (-2231 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-1145 *4)) (-5 *2 (-394 (-1083 *5))) (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5)))) (-3332 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-1145 *4)) (-5 *2 (-394 (-1083 *5))) (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5)))) (-1946 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-840)) (-5 *1 (-838 *4 *5))))) +(-10 -7 (-15 -1946 ((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|))) (-15 -3332 ((-394 (-1083 |#2|)) (-1083 |#2|))) (-15 -2231 ((-394 (-1083 |#2|)) (-1083 |#2|))) (-15 -1333 (|#1|)) (-15 -4014 ((-394 (-1083 |#2|)) (-1083 |#2|)))) +((-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 39)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 18)) (-1942 (((-3 $ "failed") $) 33))) +(((-839 |#1|) (-10 -8 (-15 -1942 ((-3 |#1| "failed") |#1|)) (-15 -3302 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -3120 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) (-840)) (T -839)) +NIL +(-10 -8 (-15 -1942 ((-3 |#1| "failed") |#1|)) (-15 -3302 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -3120 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-4130 (((-394 (-1083 $)) (-1083 $)) 60)) (-3718 (($ $) 51)) (-4226 (((-394 $) $) 52)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 57)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-3049 (((-108) $) 53)) (-2769 (((-108) $) 31)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-1708 (((-394 (-1083 $)) (-1083 $)) 58)) (-1417 (((-394 (-1083 $)) (-1083 $)) 59)) (-2424 (((-394 $) $) 50)) (-4007 (((-3 $ "failed") $ $) 42)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 56 (|has| $ (-134)))) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1942 (((-3 $ "failed") $) 55 (|has| $ (-134)))) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-840) (-129)) (T -840)) -((-2667 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-840)))) (-3156 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1)))) (-3967 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1)))) (-1219 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1)))) (-3652 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *1))) (-5 *3 (-1083 *1)) (-4 *1 (-840)))) (-3391 (*1 *2 *3) (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-134)) (-4 *1 (-840)) (-5 *2 (-1168 *1)))) (-3901 (*1 *1 *1) (|partial| -12 (-4 *1 (-134)) (-4 *1 (-840))))) -(-13 (-1126) (-10 -8 (-15 -3156 ((-394 (-1083 $)) (-1083 $))) (-15 -3967 ((-394 (-1083 $)) (-1083 $))) (-15 -1219 ((-394 (-1083 $)) (-1083 $))) (-15 -2667 ((-1083 $) (-1083 $) (-1083 $))) (-15 -3652 ((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $))) (IF (|has| $ (-134)) (PROGN (-15 -3391 ((-3 (-1168 $) "failed") (-629 $))) (-15 -3901 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 (($ $ (-852)) NIL (|has| $ (-344))) (($ $) NIL)) (-2430 (((-1096 (-852) (-710)) (-523)) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 $ "failed") $) NIL)) (-3474 (($ $) NIL)) (-3409 (($ (-1168 $)) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL)) (-2155 (((-108) $) NIL)) (-1991 (($ $) NIL) (($ $ (-710)) NIL)) (-2657 (((-108) $) NIL)) (-1640 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| $ (-344)))) (-2307 (((-108) $) NIL (|has| $ (-344)))) (-3892 (($ $ (-852)) NIL (|has| $ (-344))) (($ $) NIL)) (-4058 (((-3 $ "failed") $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 $) $ (-852)) NIL (|has| $ (-344))) (((-1083 $) $) NIL)) (-2072 (((-852) $) NIL)) (-3943 (((-1083 $) $) NIL (|has| $ (-344)))) (-2122 (((-3 (-1083 $) "failed") $ $) NIL (|has| $ (-344))) (((-1083 $) $) NIL (|has| $ (-344)))) (-3865 (($ $ (-1083 $)) NIL (|has| $ (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL T CONST)) (-3878 (($ (-852)) NIL)) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-3441 (($) NIL (|has| $ (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL)) (-1820 (((-394 $) $) NIL)) (-4124 (((-852)) NIL) (((-772 (-852))) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-3 (-710) "failed") $ $) NIL) (((-710) $) NIL)) (-3203 (((-126)) NIL)) (-3523 (($ $ (-710)) NIL) (($ $) NIL)) (-2299 (((-852) $) NIL) (((-772 (-852)) $) NIL)) (-3727 (((-1083 $)) NIL)) (-3425 (($) NIL)) (-2749 (($) NIL (|has| $ (-344)))) (-2966 (((-629 $) (-1168 $)) NIL) (((-1168 $) $) NIL)) (-3663 (((-523) $) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL)) (-3901 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1621 (((-710)) NIL)) (-4041 (((-1168 $) (-852)) NIL) (((-1168 $)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $ (-710)) NIL (|has| $ (-344))) (($ $) NIL (|has| $ (-344)))) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +((-3120 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-840)))) (-4130 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1)))) (-1417 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1)))) (-1708 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1)))) (-3302 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *1))) (-5 *3 (-1083 *1)) (-4 *1 (-840)))) (-2593 (*1 *2 *3) (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-134)) (-4 *1 (-840)) (-5 *2 (-1169 *1)))) (-1942 (*1 *1 *1) (|partial| -12 (-4 *1 (-134)) (-4 *1 (-840))))) +(-13 (-1127) (-10 -8 (-15 -4130 ((-394 (-1083 $)) (-1083 $))) (-15 -1417 ((-394 (-1083 $)) (-1083 $))) (-15 -1708 ((-394 (-1083 $)) (-1083 $))) (-15 -3120 ((-1083 $) (-1083 $) (-1083 $))) (-15 -3302 ((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $))) (IF (|has| $ (-134)) (PROGN (-15 -2593 ((-3 (-1169 $) "failed") (-629 $))) (-15 -1942 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1127) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2803 (((-108) $) NIL)) (-3019 (((-710)) NIL)) (-1477 (($ $ (-852)) NIL (|has| $ (-344))) (($ $) NIL)) (-1557 (((-1097 (-852) (-710)) (-523)) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-2395 (((-710)) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 $ "failed") $) NIL)) (-3508 (($ $) NIL)) (-2754 (($ (-1169 $)) NIL)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3665 (($) NIL)) (-1766 (((-108) $) NIL)) (-3610 (($ $) NIL) (($ $ (-710)) NIL)) (-3049 (((-108) $) NIL)) (-3437 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2769 (((-108) $) NIL)) (-3753 (($) NIL (|has| $ (-344)))) (-2706 (((-108) $) NIL (|has| $ (-344)))) (-1863 (($ $ (-852)) NIL (|has| $ (-344))) (($ $) NIL)) (-2738 (((-3 $ "failed") $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2887 (((-1083 $) $ (-852)) NIL (|has| $ (-344))) (((-1083 $) $) NIL)) (-2060 (((-852) $) NIL)) (-4183 (((-1083 $) $) NIL (|has| $ (-344)))) (-1455 (((-3 (-1083 $) "failed") $ $) NIL (|has| $ (-344))) (((-1083 $) $) NIL (|has| $ (-344)))) (-1605 (($ $ (-1083 $)) NIL (|has| $ (-344)))) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL T CONST)) (-4013 (($ (-852)) NIL)) (-3026 (((-108) $) NIL)) (-3951 (((-1034) $) NIL)) (-1621 (($) NIL (|has| $ (-344)))) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL)) (-2424 (((-394 $) $) NIL)) (-2151 (((-852)) NIL) (((-772 (-852))) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-2984 (((-3 (-710) "failed") $ $) NIL) (((-710) $) NIL)) (-3314 (((-126)) NIL)) (-3984 (($ $ (-710)) NIL) (($ $) NIL)) (-2640 (((-852) $) NIL) (((-772 (-852)) $) NIL)) (-2762 (((-1083 $)) NIL)) (-2893 (($) NIL)) (-1614 (($) NIL (|has| $ (-344)))) (-2906 (((-629 $) (-1169 $)) NIL) (((-1169 $) $) NIL)) (-1400 (((-523) $) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL)) (-1942 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3272 (((-710)) NIL)) (-3760 (((-1169 $) (-852)) NIL) (((-1169 $)) NIL)) (-2801 (((-108) $ $) NIL)) (-1747 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2009 (($ $ (-710)) NIL (|has| $ (-344))) (($ $) NIL (|has| $ (-344)))) (-2909 (($ $ (-710)) NIL) (($ $) NIL)) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) (((-841 |#1|) (-13 (-325) (-305 $) (-564 (-523))) (-852)) (T -841)) NIL (-13 (-325) (-305 $) (-564 (-523))) -((-3064 (((-3 (-2 (|:| -1640 (-710)) (|:| -3121 |#5|)) "failed") (-312 |#2| |#3| |#4| |#5|)) 76)) (-4112 (((-108) (-312 |#2| |#3| |#4| |#5|)) 16)) (-1640 (((-3 (-710) "failed") (-312 |#2| |#3| |#4| |#5|)) 14))) -(((-842 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1640 ((-3 (-710) "failed") (-312 |#2| |#3| |#4| |#5|))) (-15 -4112 ((-108) (-312 |#2| |#3| |#4| |#5|))) (-15 -3064 ((-3 (-2 (|:| -1640 (-710)) (|:| -3121 |#5|)) "failed") (-312 |#2| |#3| |#4| |#5|)))) (-13 (-786) (-515) (-964 (-523))) (-406 |#1|) (-1144 |#2|) (-1144 (-383 |#3|)) (-318 |#2| |#3| |#4|)) (T -842)) -((-3064 (*1 *2 *3) (|partial| -12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-2 (|:| -1640 (-710)) (|:| -3121 *8))) (-5 *1 (-842 *4 *5 *6 *7 *8)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-108)) (-5 *1 (-842 *4 *5 *6 *7 *8)))) (-1640 (*1 *2 *3) (|partial| -12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-710)) (-5 *1 (-842 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -1640 ((-3 (-710) "failed") (-312 |#2| |#3| |#4| |#5|))) (-15 -4112 ((-108) (-312 |#2| |#3| |#4| |#5|))) (-15 -3064 ((-3 (-2 (|:| -1640 (-710)) (|:| -3121 |#5|)) "failed") (-312 |#2| |#3| |#4| |#5|)))) -((-3064 (((-3 (-2 (|:| -1640 (-710)) (|:| -3121 |#3|)) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|)) 56)) (-4112 (((-108) (-312 (-383 (-523)) |#1| |#2| |#3|)) 13)) (-1640 (((-3 (-710) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|)) 11))) -(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -1640 ((-3 (-710) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|))) (-15 -4112 ((-108) (-312 (-383 (-523)) |#1| |#2| |#3|))) (-15 -3064 ((-3 (-2 (|:| -1640 (-710)) (|:| -3121 |#3|)) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|)))) (-1144 (-383 (-523))) (-1144 (-383 |#1|)) (-318 (-383 (-523)) |#1| |#2|)) (T -843)) -((-3064 (*1 *2 *3) (|partial| -12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-2 (|:| -1640 (-710)) (|:| -3121 *6))) (-5 *1 (-843 *4 *5 *6)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-843 *4 *5 *6)))) (-1640 (*1 *2 *3) (|partial| -12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-710)) (-5 *1 (-843 *4 *5 *6))))) -(-10 -7 (-15 -1640 ((-3 (-710) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|))) (-15 -4112 ((-108) (-312 (-383 (-523)) |#1| |#2| |#3|))) (-15 -3064 ((-3 (-2 (|:| -1640 (-710)) (|:| -3121 |#3|)) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|)))) -((-1305 ((|#2| |#2|) 25)) (-2088 (((-523) (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))))) 15)) (-1580 (((-852) (-523)) 35)) (-2713 (((-523) |#2|) 42)) (-3045 (((-523) |#2|) 21) (((-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))) |#1|) 20))) -(((-844 |#1| |#2|) (-10 -7 (-15 -1580 ((-852) (-523))) (-15 -3045 ((-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))) |#1|)) (-15 -3045 ((-523) |#2|)) (-15 -2088 ((-523) (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523)))))) (-15 -2713 ((-523) |#2|)) (-15 -1305 (|#2| |#2|))) (-1144 (-383 (-523))) (-1144 (-383 |#1|))) (T -844)) -((-1305 (*1 *2 *2) (-12 (-4 *3 (-1144 (-383 (-523)))) (-5 *1 (-844 *3 *2)) (-4 *2 (-1144 (-383 *3))))) (-2713 (*1 *2 *3) (-12 (-4 *4 (-1144 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *3)) (-4 *3 (-1144 (-383 *4))))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))))) (-4 *4 (-1144 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *5)) (-4 *5 (-1144 (-383 *4))))) (-3045 (*1 *2 *3) (-12 (-4 *4 (-1144 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *3)) (-4 *3 (-1144 (-383 *4))))) (-3045 (*1 *2 *3) (-12 (-4 *3 (-1144 (-383 (-523)))) (-5 *2 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523)))) (-5 *1 (-844 *3 *4)) (-4 *4 (-1144 (-383 *3))))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-523)) (-4 *4 (-1144 (-383 *3))) (-5 *2 (-852)) (-5 *1 (-844 *4 *5)) (-4 *5 (-1144 (-383 *4)))))) -(-10 -7 (-15 -1580 ((-852) (-523))) (-15 -3045 ((-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))) |#1|)) (-15 -3045 ((-523) |#2|)) (-15 -2088 ((-523) (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523)))))) (-15 -2713 ((-523) |#2|)) (-15 -1305 (|#2| |#2|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 ((|#1| $) 81)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) 75)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-4083 (($ |#1| (-394 |#1|)) 73)) (-2131 (((-1083 |#1|) |#1| |#1|) 40)) (-3897 (($ $) 49)) (-2023 (((-108) $) NIL)) (-1663 (((-523) $) 78)) (-1393 (($ $ (-523)) 80)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4182 ((|#1| $) 77)) (-2896 (((-394 |#1|) $) 76)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) 74)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1900 (($ $) 38)) (-1458 (((-794) $) 99) (($ (-523)) 54) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 30) (((-383 |#1|) $) 59) (($ (-383 (-394 |#1|))) 67)) (-1621 (((-710)) 52)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 23 T CONST)) (-2767 (($) 11 T CONST)) (-3983 (((-108) $ $) 68)) (-4098 (($ $ $) NIL)) (-4087 (($ $) 88) (($ $ $) NIL)) (-4075 (($ $ $) 37)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 90) (($ $ $) 36) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-845 |#1|) (-13 (-339) (-37 |#1|) (-10 -8 (-15 -1458 ((-383 |#1|) $)) (-15 -1458 ($ (-383 (-394 |#1|)))) (-15 -1900 ($ $)) (-15 -2896 ((-394 |#1|) $)) (-15 -4182 (|#1| $)) (-15 -1393 ($ $ (-523))) (-15 -1663 ((-523) $)) (-15 -2131 ((-1083 |#1|) |#1| |#1|)) (-15 -3897 ($ $)) (-15 -4083 ($ |#1| (-394 |#1|))) (-15 -3458 (|#1| $)))) (-284)) (T -845)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-383 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-383 (-394 *3))) (-4 *3 (-284)) (-5 *1 (-845 *3)))) (-1900 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-394 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-4182 (*1 *2 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284)))) (-1393 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-2131 (*1 *2 *3 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-3897 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284)))) (-4083 (*1 *1 *2 *3) (-12 (-5 *3 (-394 *2)) (-4 *2 (-284)) (-5 *1 (-845 *2)))) (-3458 (*1 *2 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284))))) -(-13 (-339) (-37 |#1|) (-10 -8 (-15 -1458 ((-383 |#1|) $)) (-15 -1458 ($ (-383 (-394 |#1|)))) (-15 -1900 ($ $)) (-15 -2896 ((-394 |#1|) $)) (-15 -4182 (|#1| $)) (-15 -1393 ($ $ (-523))) (-15 -1663 ((-523) $)) (-15 -2131 ((-1083 |#1|) |#1| |#1|)) (-15 -3897 ($ $)) (-15 -4083 ($ |#1| (-394 |#1|))) (-15 -3458 (|#1| $)))) -((-4083 (((-51) (-883 |#1|) (-394 (-883 |#1|)) (-1087)) 16) (((-51) (-383 (-883 |#1|)) (-1087)) 17))) -(((-846 |#1|) (-10 -7 (-15 -4083 ((-51) (-383 (-883 |#1|)) (-1087))) (-15 -4083 ((-51) (-883 |#1|) (-394 (-883 |#1|)) (-1087)))) (-13 (-284) (-136))) (T -846)) -((-4083 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-394 (-883 *6))) (-5 *5 (-1087)) (-5 *3 (-883 *6)) (-4 *6 (-13 (-284) (-136))) (-5 *2 (-51)) (-5 *1 (-846 *6)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-136))) (-5 *2 (-51)) (-5 *1 (-846 *5))))) -(-10 -7 (-15 -4083 ((-51) (-383 (-883 |#1|)) (-1087))) (-15 -4083 ((-51) (-883 |#1|) (-394 (-883 |#1|)) (-1087)))) -((-3916 ((|#4| (-589 |#4|)) 119) (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 66) ((|#4| |#4| |#4|) 118)) (-3278 (((-1083 |#4|) (-589 (-1083 |#4|))) 112) (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 49) ((|#4| (-589 |#4|)) 54) ((|#4| |#4| |#4|) 83))) -(((-847 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3278 (|#4| |#4| |#4|)) (-15 -3278 (|#4| (-589 |#4|))) (-15 -3278 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3278 ((-1083 |#4|) (-589 (-1083 |#4|)))) (-15 -3916 (|#4| |#4| |#4|)) (-15 -3916 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3916 (|#4| (-589 |#4|)))) (-732) (-786) (-284) (-880 |#3| |#1| |#2|)) (T -847)) -((-3916 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *6 *4 *5)) (-5 *1 (-847 *4 *5 *6 *2)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)))) (-3916 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *6)))) (-3916 (*1 *2 *2 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-880 *5 *3 *4)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-589 (-1083 *7))) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-1083 *7)) (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-3278 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *6)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *6 *4 *5)) (-5 *1 (-847 *4 *5 *6 *2)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)))) (-3278 (*1 *2 *2 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-880 *5 *3 *4))))) -(-10 -7 (-15 -3278 (|#4| |#4| |#4|)) (-15 -3278 (|#4| (-589 |#4|))) (-15 -3278 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3278 ((-1083 |#4|) (-589 (-1083 |#4|)))) (-15 -3916 (|#4| |#4| |#4|)) (-15 -3916 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3916 (|#4| (-589 |#4|)))) -((-3253 (((-835 (-523)) (-900)) 22) (((-835 (-523)) (-589 (-523))) 19)) (-3830 (((-835 (-523)) (-589 (-523))) 46) (((-835 (-523)) (-852)) 47)) (-1279 (((-835 (-523))) 23)) (-2845 (((-835 (-523))) 36) (((-835 (-523)) (-589 (-523))) 35)) (-3469 (((-835 (-523))) 34) (((-835 (-523)) (-589 (-523))) 33)) (-2019 (((-835 (-523))) 32) (((-835 (-523)) (-589 (-523))) 31)) (-3644 (((-835 (-523))) 30) (((-835 (-523)) (-589 (-523))) 29)) (-1340 (((-835 (-523))) 28) (((-835 (-523)) (-589 (-523))) 27)) (-1713 (((-835 (-523))) 38) (((-835 (-523)) (-589 (-523))) 37)) (-2933 (((-835 (-523)) (-589 (-523))) 50) (((-835 (-523)) (-852)) 51)) (-1792 (((-835 (-523)) (-589 (-523))) 48) (((-835 (-523)) (-852)) 49)) (-4188 (((-835 (-523)) (-589 (-523))) 43) (((-835 (-523)) (-852)) 45)) (-2226 (((-835 (-523)) (-589 (-852))) 40))) -(((-848) (-10 -7 (-15 -3830 ((-835 (-523)) (-852))) (-15 -3830 ((-835 (-523)) (-589 (-523)))) (-15 -4188 ((-835 (-523)) (-852))) (-15 -4188 ((-835 (-523)) (-589 (-523)))) (-15 -2226 ((-835 (-523)) (-589 (-852)))) (-15 -1792 ((-835 (-523)) (-852))) (-15 -1792 ((-835 (-523)) (-589 (-523)))) (-15 -2933 ((-835 (-523)) (-852))) (-15 -2933 ((-835 (-523)) (-589 (-523)))) (-15 -1340 ((-835 (-523)) (-589 (-523)))) (-15 -1340 ((-835 (-523)))) (-15 -3644 ((-835 (-523)) (-589 (-523)))) (-15 -3644 ((-835 (-523)))) (-15 -2019 ((-835 (-523)) (-589 (-523)))) (-15 -2019 ((-835 (-523)))) (-15 -3469 ((-835 (-523)) (-589 (-523)))) (-15 -3469 ((-835 (-523)))) (-15 -2845 ((-835 (-523)) (-589 (-523)))) (-15 -2845 ((-835 (-523)))) (-15 -1713 ((-835 (-523)) (-589 (-523)))) (-15 -1713 ((-835 (-523)))) (-15 -1279 ((-835 (-523)))) (-15 -3253 ((-835 (-523)) (-589 (-523)))) (-15 -3253 ((-835 (-523)) (-900))))) (T -848)) -((-3253 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1279 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1713 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2845 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3469 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2019 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3644 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1340 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-589 (-852))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(-10 -7 (-15 -3830 ((-835 (-523)) (-852))) (-15 -3830 ((-835 (-523)) (-589 (-523)))) (-15 -4188 ((-835 (-523)) (-852))) (-15 -4188 ((-835 (-523)) (-589 (-523)))) (-15 -2226 ((-835 (-523)) (-589 (-852)))) (-15 -1792 ((-835 (-523)) (-852))) (-15 -1792 ((-835 (-523)) (-589 (-523)))) (-15 -2933 ((-835 (-523)) (-852))) (-15 -2933 ((-835 (-523)) (-589 (-523)))) (-15 -1340 ((-835 (-523)) (-589 (-523)))) (-15 -1340 ((-835 (-523)))) (-15 -3644 ((-835 (-523)) (-589 (-523)))) (-15 -3644 ((-835 (-523)))) (-15 -2019 ((-835 (-523)) (-589 (-523)))) (-15 -2019 ((-835 (-523)))) (-15 -3469 ((-835 (-523)) (-589 (-523)))) (-15 -3469 ((-835 (-523)))) (-15 -2845 ((-835 (-523)) (-589 (-523)))) (-15 -2845 ((-835 (-523)))) (-15 -1713 ((-835 (-523)) (-589 (-523)))) (-15 -1713 ((-835 (-523)))) (-15 -1279 ((-835 (-523)))) (-15 -3253 ((-835 (-523)) (-589 (-523)))) (-15 -3253 ((-835 (-523)) (-900)))) -((-3436 (((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087))) 10)) (-2446 (((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087))) 9))) -(((-849 |#1|) (-10 -7 (-15 -2446 ((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -3436 ((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087))))) (-427)) (T -849)) -((-3436 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-883 *4))) (-5 *3 (-589 (-1087))) (-4 *4 (-427)) (-5 *1 (-849 *4)))) (-2446 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-883 *4))) (-5 *3 (-589 (-1087))) (-4 *4 (-427)) (-5 *1 (-849 *4))))) -(-10 -7 (-15 -2446 ((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -3436 ((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087))))) -((-1458 (((-292 |#1|) (-452)) 15))) -(((-850 |#1|) (-10 -7 (-15 -1458 ((-292 |#1|) (-452)))) (-13 (-786) (-515))) (T -850)) -((-1458 (*1 *2 *3) (-12 (-5 *3 (-452)) (-5 *2 (-292 *4)) (-5 *1 (-850 *4)) (-4 *4 (-13 (-786) (-515)))))) -(-10 -7 (-15 -1458 ((-292 |#1|) (-452)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2023 (((-108) $) 31)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-2624 (((-3 (-2 (|:| -3437 (-710)) (|:| -3155 |#5|)) "failed") (-312 |#2| |#3| |#4| |#5|)) 76)) (-3177 (((-108) (-312 |#2| |#3| |#4| |#5|)) 16)) (-3437 (((-3 (-710) "failed") (-312 |#2| |#3| |#4| |#5|)) 14))) +(((-842 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3437 ((-3 (-710) "failed") (-312 |#2| |#3| |#4| |#5|))) (-15 -3177 ((-108) (-312 |#2| |#3| |#4| |#5|))) (-15 -2624 ((-3 (-2 (|:| -3437 (-710)) (|:| -3155 |#5|)) "failed") (-312 |#2| |#3| |#4| |#5|)))) (-13 (-786) (-515) (-964 (-523))) (-406 |#1|) (-1145 |#2|) (-1145 (-383 |#3|)) (-318 |#2| |#3| |#4|)) (T -842)) +((-2624 (*1 *2 *3) (|partial| -12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-2 (|:| -3437 (-710)) (|:| -3155 *8))) (-5 *1 (-842 *4 *5 *6 *7 *8)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-108)) (-5 *1 (-842 *4 *5 *6 *7 *8)))) (-3437 (*1 *2 *3) (|partial| -12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-710)) (-5 *1 (-842 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -3437 ((-3 (-710) "failed") (-312 |#2| |#3| |#4| |#5|))) (-15 -3177 ((-108) (-312 |#2| |#3| |#4| |#5|))) (-15 -2624 ((-3 (-2 (|:| -3437 (-710)) (|:| -3155 |#5|)) "failed") (-312 |#2| |#3| |#4| |#5|)))) +((-2624 (((-3 (-2 (|:| -3437 (-710)) (|:| -3155 |#3|)) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|)) 56)) (-3177 (((-108) (-312 (-383 (-523)) |#1| |#2| |#3|)) 13)) (-3437 (((-3 (-710) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|)) 11))) +(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -3437 ((-3 (-710) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|))) (-15 -3177 ((-108) (-312 (-383 (-523)) |#1| |#2| |#3|))) (-15 -2624 ((-3 (-2 (|:| -3437 (-710)) (|:| -3155 |#3|)) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|)))) (-1145 (-383 (-523))) (-1145 (-383 |#1|)) (-318 (-383 (-523)) |#1| |#2|)) (T -843)) +((-2624 (*1 *2 *3) (|partial| -12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) (-4 *4 (-1145 (-383 (-523)))) (-4 *5 (-1145 (-383 *4))) (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-2 (|:| -3437 (-710)) (|:| -3155 *6))) (-5 *1 (-843 *4 *5 *6)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) (-4 *4 (-1145 (-383 (-523)))) (-4 *5 (-1145 (-383 *4))) (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-843 *4 *5 *6)))) (-3437 (*1 *2 *3) (|partial| -12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) (-4 *4 (-1145 (-383 (-523)))) (-4 *5 (-1145 (-383 *4))) (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-710)) (-5 *1 (-843 *4 *5 *6))))) +(-10 -7 (-15 -3437 ((-3 (-710) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|))) (-15 -3177 ((-108) (-312 (-383 (-523)) |#1| |#2| |#3|))) (-15 -2624 ((-3 (-2 (|:| -3437 (-710)) (|:| -3155 |#3|)) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|)))) +((-3156 ((|#2| |#2|) 25)) (-2228 (((-523) (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))))) 15)) (-4109 (((-852) (-523)) 35)) (-2390 (((-523) |#2|) 42)) (-2466 (((-523) |#2|) 21) (((-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))) |#1|) 20))) +(((-844 |#1| |#2|) (-10 -7 (-15 -4109 ((-852) (-523))) (-15 -2466 ((-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))) |#1|)) (-15 -2466 ((-523) |#2|)) (-15 -2228 ((-523) (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523)))))) (-15 -2390 ((-523) |#2|)) (-15 -3156 (|#2| |#2|))) (-1145 (-383 (-523))) (-1145 (-383 |#1|))) (T -844)) +((-3156 (*1 *2 *2) (-12 (-4 *3 (-1145 (-383 (-523)))) (-5 *1 (-844 *3 *2)) (-4 *2 (-1145 (-383 *3))))) (-2390 (*1 *2 *3) (-12 (-4 *4 (-1145 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *3)) (-4 *3 (-1145 (-383 *4))))) (-2228 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))))) (-4 *4 (-1145 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *5)) (-4 *5 (-1145 (-383 *4))))) (-2466 (*1 *2 *3) (-12 (-4 *4 (-1145 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *3)) (-4 *3 (-1145 (-383 *4))))) (-2466 (*1 *2 *3) (-12 (-4 *3 (-1145 (-383 (-523)))) (-5 *2 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523)))) (-5 *1 (-844 *3 *4)) (-4 *4 (-1145 (-383 *3))))) (-4109 (*1 *2 *3) (-12 (-5 *3 (-523)) (-4 *4 (-1145 (-383 *3))) (-5 *2 (-852)) (-5 *1 (-844 *4 *5)) (-4 *5 (-1145 (-383 *4)))))) +(-10 -7 (-15 -4109 ((-852) (-523))) (-15 -2466 ((-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))) |#1|)) (-15 -2466 ((-523) |#2|)) (-15 -2228 ((-523) (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523)))))) (-15 -2390 ((-523) |#2|)) (-15 -3156 (|#2| |#2|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2046 ((|#1| $) 81)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-4059 (($ $ $) NIL)) (-1444 (((-3 $ "failed") $) 75)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-2956 (($ |#1| (-394 |#1|)) 73)) (-1534 (((-1083 |#1|) |#1| |#1|) 41)) (-1916 (($ $) 49)) (-2769 (((-108) $) NIL)) (-2502 (((-523) $) 78)) (-2845 (($ $ (-523)) 80)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3917 ((|#1| $) 77)) (-3430 (((-394 |#1|) $) 76)) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) 74)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3948 (($ $) 39)) (-1691 (((-794) $) 99) (($ (-523)) 54) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 31) (((-383 |#1|) $) 59) (($ (-383 (-394 |#1|))) 67)) (-3272 (((-710)) 52)) (-2801 (((-108) $ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 23 T CONST)) (-1891 (($) 11 T CONST)) (-3941 (((-108) $ $) 68)) (-4074 (($ $ $) NIL)) (-4060 (($ $) 88) (($ $ $) NIL)) (-4045 (($ $ $) 38)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 90) (($ $ $) 37) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-845 |#1|) (-13 (-339) (-37 |#1|) (-10 -8 (-15 -1691 ((-383 |#1|) $)) (-15 -1691 ($ (-383 (-394 |#1|)))) (-15 -3948 ($ $)) (-15 -3430 ((-394 |#1|) $)) (-15 -3917 (|#1| $)) (-15 -2845 ($ $ (-523))) (-15 -2502 ((-523) $)) (-15 -1534 ((-1083 |#1|) |#1| |#1|)) (-15 -1916 ($ $)) (-15 -2956 ($ |#1| (-394 |#1|))) (-15 -2046 (|#1| $)))) (-284)) (T -845)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-383 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-383 (-394 *3))) (-4 *3 (-284)) (-5 *1 (-845 *3)))) (-3948 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-394 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-3917 (*1 *2 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284)))) (-2845 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-1534 (*1 *2 *3 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-1916 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284)))) (-2956 (*1 *1 *2 *3) (-12 (-5 *3 (-394 *2)) (-4 *2 (-284)) (-5 *1 (-845 *2)))) (-2046 (*1 *2 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284))))) +(-13 (-339) (-37 |#1|) (-10 -8 (-15 -1691 ((-383 |#1|) $)) (-15 -1691 ($ (-383 (-394 |#1|)))) (-15 -3948 ($ $)) (-15 -3430 ((-394 |#1|) $)) (-15 -3917 (|#1| $)) (-15 -2845 ($ $ (-523))) (-15 -2502 ((-523) $)) (-15 -1534 ((-1083 |#1|) |#1| |#1|)) (-15 -1916 ($ $)) (-15 -2956 ($ |#1| (-394 |#1|))) (-15 -2046 (|#1| $)))) +((-2956 (((-51) (-883 |#1|) (-394 (-883 |#1|)) (-1087)) 16) (((-51) (-383 (-883 |#1|)) (-1087)) 17))) +(((-846 |#1|) (-10 -7 (-15 -2956 ((-51) (-383 (-883 |#1|)) (-1087))) (-15 -2956 ((-51) (-883 |#1|) (-394 (-883 |#1|)) (-1087)))) (-13 (-284) (-136))) (T -846)) +((-2956 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-394 (-883 *6))) (-5 *5 (-1087)) (-5 *3 (-883 *6)) (-4 *6 (-13 (-284) (-136))) (-5 *2 (-51)) (-5 *1 (-846 *6)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-136))) (-5 *2 (-51)) (-5 *1 (-846 *5))))) +(-10 -7 (-15 -2956 ((-51) (-383 (-883 |#1|)) (-1087))) (-15 -2956 ((-51) (-883 |#1|) (-394 (-883 |#1|)) (-1087)))) +((-3875 ((|#4| (-589 |#4|)) 121) (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3310 (((-1083 |#4|) (-589 (-1083 |#4|))) 114) (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 50) ((|#4| (-589 |#4|)) 55) ((|#4| |#4| |#4|) 84))) +(((-847 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3310 (|#4| |#4| |#4|)) (-15 -3310 (|#4| (-589 |#4|))) (-15 -3310 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3310 ((-1083 |#4|) (-589 (-1083 |#4|)))) (-15 -3875 (|#4| |#4| |#4|)) (-15 -3875 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3875 (|#4| (-589 |#4|)))) (-732) (-786) (-284) (-880 |#3| |#1| |#2|)) (T -847)) +((-3875 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *6 *4 *5)) (-5 *1 (-847 *4 *5 *6 *2)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)))) (-3875 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *6)))) (-3875 (*1 *2 *2 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-880 *5 *3 *4)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-589 (-1083 *7))) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-1083 *7)) (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-3310 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *6)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *6 *4 *5)) (-5 *1 (-847 *4 *5 *6 *2)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)))) (-3310 (*1 *2 *2 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-880 *5 *3 *4))))) +(-10 -7 (-15 -3310 (|#4| |#4| |#4|)) (-15 -3310 (|#4| (-589 |#4|))) (-15 -3310 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3310 ((-1083 |#4|) (-589 (-1083 |#4|)))) (-15 -3875 (|#4| |#4| |#4|)) (-15 -3875 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3875 (|#4| (-589 |#4|)))) +((-3776 (((-835 (-523)) (-900)) 22) (((-835 (-523)) (-589 (-523))) 19)) (-2438 (((-835 (-523)) (-589 (-523))) 48) (((-835 (-523)) (-852)) 49)) (-4161 (((-835 (-523))) 23)) (-1229 (((-835 (-523))) 38) (((-835 (-523)) (-589 (-523))) 37)) (-2148 (((-835 (-523))) 36) (((-835 (-523)) (-589 (-523))) 35)) (-2731 (((-835 (-523))) 34) (((-835 (-523)) (-589 (-523))) 33)) (-3238 (((-835 (-523))) 32) (((-835 (-523)) (-589 (-523))) 31)) (-3511 (((-835 (-523))) 30) (((-835 (-523)) (-589 (-523))) 29)) (-2882 (((-835 (-523))) 40) (((-835 (-523)) (-589 (-523))) 39)) (-3796 (((-835 (-523)) (-589 (-523))) 52) (((-835 (-523)) (-852)) 53)) (-2361 (((-835 (-523)) (-589 (-523))) 50) (((-835 (-523)) (-852)) 51)) (-3978 (((-835 (-523)) (-589 (-523))) 45) (((-835 (-523)) (-852)) 47)) (-1315 (((-835 (-523)) (-589 (-852))) 42))) +(((-848) (-10 -7 (-15 -2438 ((-835 (-523)) (-852))) (-15 -2438 ((-835 (-523)) (-589 (-523)))) (-15 -3978 ((-835 (-523)) (-852))) (-15 -3978 ((-835 (-523)) (-589 (-523)))) (-15 -1315 ((-835 (-523)) (-589 (-852)))) (-15 -2361 ((-835 (-523)) (-852))) (-15 -2361 ((-835 (-523)) (-589 (-523)))) (-15 -3796 ((-835 (-523)) (-852))) (-15 -3796 ((-835 (-523)) (-589 (-523)))) (-15 -3511 ((-835 (-523)) (-589 (-523)))) (-15 -3511 ((-835 (-523)))) (-15 -3238 ((-835 (-523)) (-589 (-523)))) (-15 -3238 ((-835 (-523)))) (-15 -2731 ((-835 (-523)) (-589 (-523)))) (-15 -2731 ((-835 (-523)))) (-15 -2148 ((-835 (-523)) (-589 (-523)))) (-15 -2148 ((-835 (-523)))) (-15 -1229 ((-835 (-523)) (-589 (-523)))) (-15 -1229 ((-835 (-523)))) (-15 -2882 ((-835 (-523)) (-589 (-523)))) (-15 -2882 ((-835 (-523)))) (-15 -4161 ((-835 (-523)))) (-15 -3776 ((-835 (-523)) (-589 (-523)))) (-15 -3776 ((-835 (-523)) (-900))))) (T -848)) +((-3776 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-4161 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2882 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1229 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1229 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2148 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2731 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3238 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3511 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-589 (-852))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2438 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2438 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(-10 -7 (-15 -2438 ((-835 (-523)) (-852))) (-15 -2438 ((-835 (-523)) (-589 (-523)))) (-15 -3978 ((-835 (-523)) (-852))) (-15 -3978 ((-835 (-523)) (-589 (-523)))) (-15 -1315 ((-835 (-523)) (-589 (-852)))) (-15 -2361 ((-835 (-523)) (-852))) (-15 -2361 ((-835 (-523)) (-589 (-523)))) (-15 -3796 ((-835 (-523)) (-852))) (-15 -3796 ((-835 (-523)) (-589 (-523)))) (-15 -3511 ((-835 (-523)) (-589 (-523)))) (-15 -3511 ((-835 (-523)))) (-15 -3238 ((-835 (-523)) (-589 (-523)))) (-15 -3238 ((-835 (-523)))) (-15 -2731 ((-835 (-523)) (-589 (-523)))) (-15 -2731 ((-835 (-523)))) (-15 -2148 ((-835 (-523)) (-589 (-523)))) (-15 -2148 ((-835 (-523)))) (-15 -1229 ((-835 (-523)) (-589 (-523)))) (-15 -1229 ((-835 (-523)))) (-15 -2882 ((-835 (-523)) (-589 (-523)))) (-15 -2882 ((-835 (-523)))) (-15 -4161 ((-835 (-523)))) (-15 -3776 ((-835 (-523)) (-589 (-523)))) (-15 -3776 ((-835 (-523)) (-900)))) +((-2993 (((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087))) 10)) (-1688 (((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087))) 9))) +(((-849 |#1|) (-10 -7 (-15 -1688 ((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -2993 ((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087))))) (-427)) (T -849)) +((-2993 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-883 *4))) (-5 *3 (-589 (-1087))) (-4 *4 (-427)) (-5 *1 (-849 *4)))) (-1688 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-883 *4))) (-5 *3 (-589 (-1087))) (-4 *4 (-427)) (-5 *1 (-849 *4))))) +(-10 -7 (-15 -1688 ((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -2993 ((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087))))) +((-1691 (((-292 |#1|) (-452)) 15))) +(((-850 |#1|) (-10 -7 (-15 -1691 ((-292 |#1|) (-452)))) (-13 (-786) (-515))) (T -850)) +((-1691 (*1 *2 *3) (-12 (-5 *3 (-452)) (-5 *2 (-292 *4)) (-5 *1 (-850 *4)) (-4 *4 (-13 (-786) (-515)))))) +(-10 -7 (-15 -1691 ((-292 |#1|) (-452)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-2769 (((-108) $) 31)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-851) (-129)) (T -851)) -((-1590 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *2 (-2 (|:| -2935 (-589 *1)) (|:| -3441 *1))) (-5 *3 (-589 *1)))) (-3312 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-589 *1)) (-4 *1 (-851))))) -(-13 (-427) (-10 -8 (-15 -1590 ((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $))) (-15 -3312 ((-3 (-589 $) "failed") (-589 $) $)))) +((-4217 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *2 (-2 (|:| -3474 (-589 *1)) (|:| -1621 *1))) (-5 *3 (-589 *1)))) (-1251 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-589 *1)) (-4 *1 (-851))))) +(-13 (-427) (-10 -8 (-15 -4217 ((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $))) (-15 -1251 ((-3 (-589 $) "failed") (-589 $) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3278 (($ $ $) NIL)) (-1458 (((-794) $) NIL)) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2767 (($) NIL T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ $ $) NIL))) -(((-852) (-13 (-25) (-786) (-666) (-10 -8 (-15 -3278 ($ $ $)) (-6 (-4246 "*"))))) (T -852)) -((-3278 (*1 *1 *1 *1) (-5 *1 (-852)))) -(-13 (-25) (-786) (-666) (-10 -8 (-15 -3278 ($ $ $)) (-6 (-4246 "*")))) -((-4089 ((|#2| (-589 |#1|) (-589 |#1|)) 24))) -(((-853 |#1| |#2|) (-10 -7 (-15 -4089 (|#2| (-589 |#1|) (-589 |#1|)))) (-339) (-1144 |#1|)) (T -853)) -((-4089 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-339)) (-4 *2 (-1144 *4)) (-5 *1 (-853 *4 *2))))) -(-10 -7 (-15 -4089 (|#2| (-589 |#1|) (-589 |#1|)))) -((-1201 (((-1083 |#2|) (-589 |#2|) (-589 |#2|)) 17) (((-1141 |#1| |#2|) (-1141 |#1| |#2|) (-589 |#2|) (-589 |#2|)) 13))) -(((-854 |#1| |#2|) (-10 -7 (-15 -1201 ((-1141 |#1| |#2|) (-1141 |#1| |#2|) (-589 |#2|) (-589 |#2|))) (-15 -1201 ((-1083 |#2|) (-589 |#2|) (-589 |#2|)))) (-1087) (-339)) (T -854)) -((-1201 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *5)) (-4 *5 (-339)) (-5 *2 (-1083 *5)) (-5 *1 (-854 *4 *5)) (-14 *4 (-1087)))) (-1201 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1141 *4 *5)) (-5 *3 (-589 *5)) (-14 *4 (-1087)) (-4 *5 (-339)) (-5 *1 (-854 *4 *5))))) -(-10 -7 (-15 -1201 ((-1141 |#1| |#2|) (-1141 |#1| |#2|) (-589 |#2|) (-589 |#2|))) (-15 -1201 ((-1083 |#2|) (-589 |#2|) (-589 |#2|)))) -((-1223 (((-523) (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-1070)) 138)) (-3976 ((|#4| |#4|) 154)) (-3234 (((-589 (-383 (-883 |#1|))) (-589 (-1087))) 117)) (-3558 (((-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-589 (-589 |#4|)) (-710) (-710) (-523)) 73)) (-3277 (((-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-589 |#4|)) 57)) (-1328 (((-629 |#4|) (-629 |#4|) (-589 |#4|)) 53)) (-2238 (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-1070)) 150)) (-2483 (((-523) (-629 |#4|) (-852) (-1070)) 131) (((-523) (-629 |#4|) (-589 (-1087)) (-852) (-1070)) 130) (((-523) (-629 |#4|) (-589 |#4|) (-852) (-1070)) 129) (((-523) (-629 |#4|) (-1070)) 126) (((-523) (-629 |#4|) (-589 (-1087)) (-1070)) 125) (((-523) (-629 |#4|) (-589 |#4|) (-1070)) 124) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-852)) 123) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)) (-852)) 122) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|) (-852)) 121) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|)) 119) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087))) 118) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|)) 115)) (-2504 ((|#4| (-883 |#1|)) 66)) (-1428 (((-108) (-589 |#4|) (-589 (-589 |#4|))) 151)) (-3379 (((-589 (-589 (-523))) (-523) (-523)) 128)) (-2706 (((-589 (-589 |#4|)) (-589 (-589 |#4|))) 85)) (-2787 (((-710) (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|))))) 83)) (-2776 (((-710) (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|))))) 82)) (-1383 (((-108) (-589 (-883 |#1|))) 17) (((-108) (-589 |#4|)) 13)) (-2215 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-589 |#4|)) (|:| |n0| (-589 |#4|))) (-589 |#4|) (-589 |#4|)) 69)) (-1368 (((-589 |#4|) |#4|) 47)) (-3642 (((-589 (-383 (-883 |#1|))) (-589 |#4|)) 113) (((-629 (-383 (-883 |#1|))) (-629 |#4|)) 54) (((-383 (-883 |#1|)) |#4|) 110)) (-2778 (((-2 (|:| |rgl| (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))))))) (|:| |rgsz| (-523))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-710) (-1070) (-523)) 89)) (-2975 (((-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))) (-629 |#4|) (-710)) 81)) (-3586 (((-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-629 |#4|) (-710)) 98)) (-4054 (((-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-2 (|:| -3392 (-629 (-383 (-883 |#1|)))) (|:| |vec| (-589 (-383 (-883 |#1|)))) (|:| -1319 (-710)) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) 46))) -(((-855 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|) (-852))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)) (-852))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-852))) (-15 -2483 ((-523) (-629 |#4|) (-589 |#4|) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-589 (-1087)) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-589 |#4|) (-852) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-589 (-1087)) (-852) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-852) (-1070))) (-15 -1223 ((-523) (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-1070))) (-15 -2238 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-1070))) (-15 -2778 ((-2 (|:| |rgl| (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))))))) (|:| |rgsz| (-523))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-710) (-1070) (-523))) (-15 -3642 ((-383 (-883 |#1|)) |#4|)) (-15 -3642 ((-629 (-383 (-883 |#1|))) (-629 |#4|))) (-15 -3642 ((-589 (-383 (-883 |#1|))) (-589 |#4|))) (-15 -3234 ((-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -2504 (|#4| (-883 |#1|))) (-15 -2215 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-589 |#4|)) (|:| |n0| (-589 |#4|))) (-589 |#4|) (-589 |#4|))) (-15 -2975 ((-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))) (-629 |#4|) (-710))) (-15 -3277 ((-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-589 |#4|))) (-15 -4054 ((-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-2 (|:| -3392 (-629 (-383 (-883 |#1|)))) (|:| |vec| (-589 (-383 (-883 |#1|)))) (|:| -1319 (-710)) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (-15 -1368 ((-589 |#4|) |#4|)) (-15 -2776 ((-710) (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))))) (-15 -2787 ((-710) (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))))) (-15 -2706 ((-589 (-589 |#4|)) (-589 (-589 |#4|)))) (-15 -3379 ((-589 (-589 (-523))) (-523) (-523))) (-15 -1428 ((-108) (-589 |#4|) (-589 (-589 |#4|)))) (-15 -3586 ((-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-629 |#4|) (-710))) (-15 -1328 ((-629 |#4|) (-629 |#4|) (-589 |#4|))) (-15 -3558 ((-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-589 (-589 |#4|)) (-710) (-710) (-523))) (-15 -3976 (|#4| |#4|)) (-15 -1383 ((-108) (-589 |#4|))) (-15 -1383 ((-108) (-589 (-883 |#1|))))) (-13 (-284) (-136)) (-13 (-786) (-564 (-1087))) (-732) (-880 |#1| |#3| |#2|)) (T -855)) -((-1383 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-108)) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5)))) (-1383 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-108)) (-5 *1 (-855 *4 *5 *6 *7)))) (-3976 (*1 *2 *2) (-12 (-4 *3 (-13 (-284) (-136))) (-4 *4 (-13 (-786) (-564 (-1087)))) (-4 *5 (-732)) (-5 *1 (-855 *3 *4 *5 *2)) (-4 *2 (-880 *3 *5 *4)))) (-3558 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-5 *4 (-629 *12)) (-5 *5 (-589 (-383 (-883 *9)))) (-5 *6 (-589 (-589 *12))) (-5 *7 (-710)) (-5 *8 (-523)) (-4 *9 (-13 (-284) (-136))) (-4 *12 (-880 *9 *11 *10)) (-4 *10 (-13 (-786) (-564 (-1087)))) (-4 *11 (-732)) (-5 *2 (-2 (|:| |eqzro| (-589 *12)) (|:| |neqzro| (-589 *12)) (|:| |wcond| (-589 (-883 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *9)))) (|:| -4041 (-589 (-1168 (-383 (-883 *9))))))))) (-5 *1 (-855 *9 *10 *11 *12)))) (-1328 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *7)) (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *1 (-855 *4 *5 *6 *7)))) (-3586 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-710)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| |det| *8) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (-5 *1 (-855 *5 *6 *7 *8)))) (-1428 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-589 *8))) (-5 *3 (-589 *8)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-108)) (-5 *1 (-855 *5 *6 *7 *8)))) (-3379 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-589 (-523)))) (-5 *1 (-855 *4 *5 *6 *7)) (-5 *3 (-523)) (-4 *7 (-880 *4 *6 *5)))) (-2706 (*1 *2 *2) (-12 (-5 *2 (-589 (-589 *6))) (-4 *6 (-880 *3 *5 *4)) (-4 *3 (-13 (-284) (-136))) (-4 *4 (-13 (-786) (-564 (-1087)))) (-4 *5 (-732)) (-5 *1 (-855 *3 *4 *5 *6)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| *7) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 *7))))) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-710)) (-5 *1 (-855 *4 *5 *6 *7)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| *7) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 *7))))) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-710)) (-5 *1 (-855 *4 *5 *6 *7)))) (-1368 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 *3)) (-5 *1 (-855 *4 *5 *6 *3)) (-4 *3 (-880 *4 *6 *5)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3392 (-629 (-383 (-883 *4)))) (|:| |vec| (-589 (-383 (-883 *4)))) (|:| -1319 (-710)) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) (|:| -4041 (-589 (-1168 (-383 (-883 *4))))))) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5)))) (-3277 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) (|:| -4041 (-589 (-1168 (-383 (-883 *4))))))) (-5 *3 (-589 *7)) (-4 *4 (-13 (-284) (-136))) (-4 *7 (-880 *4 *6 *5)) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *1 (-855 *4 *5 *6 *7)))) (-2975 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| *8) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 *8))))) (-5 *1 (-855 *5 *6 *7 *8)) (-5 *4 (-710)))) (-2215 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-4 *7 (-880 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-589 *7)) (|:| |n0| (-589 *7)))) (-5 *1 (-855 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-13 (-284) (-136))) (-4 *2 (-880 *4 *6 *5)) (-5 *1 (-855 *4 *5 *6 *2)) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-383 (-883 *4)))) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-383 (-883 *4)))) (-5 *1 (-855 *4 *5 *6 *7)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-629 (-383 (-883 *4)))) (-5 *1 (-855 *4 *5 *6 *7)))) (-3642 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-383 (-883 *4))) (-5 *1 (-855 *4 *5 *6 *3)) (-4 *3 (-880 *4 *6 *5)))) (-2778 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-629 *11)) (-5 *4 (-589 (-383 (-883 *8)))) (-5 *5 (-710)) (-5 *6 (-1070)) (-4 *8 (-13 (-284) (-136))) (-4 *11 (-880 *8 *10 *9)) (-4 *9 (-13 (-786) (-564 (-1087)))) (-4 *10 (-732)) (-5 *2 (-2 (|:| |rgl| (-589 (-2 (|:| |eqzro| (-589 *11)) (|:| |neqzro| (-589 *11)) (|:| |wcond| (-589 (-883 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *8)))) (|:| -4041 (-589 (-1168 (-383 (-883 *8)))))))))) (|:| |rgsz| (-523)))) (-5 *1 (-855 *8 *9 *10 *11)) (-5 *7 (-523)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *7)) (|:| |neqzro| (-589 *7)) (|:| |wcond| (-589 (-883 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) (|:| -4041 (-589 (-1168 (-383 (-883 *4)))))))))) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5)))) (-1223 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) (|:| |wcond| (-589 (-883 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) (-5 *4 (-1070)) (-4 *5 (-13 (-284) (-136))) (-4 *8 (-880 *5 *7 *6)) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *5 *6 *7 *8)))) (-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-852)) (-5 *5 (-1070)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *6 *7 *8 *9)))) (-2483 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-629 *10)) (-5 *4 (-589 (-1087))) (-5 *5 (-852)) (-5 *6 (-1070)) (-4 *10 (-880 *7 *9 *8)) (-4 *7 (-13 (-284) (-136))) (-4 *8 (-13 (-786) (-564 (-1087)))) (-4 *9 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *7 *8 *9 *10)))) (-2483 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-629 *10)) (-5 *4 (-589 *10)) (-5 *5 (-852)) (-5 *6 (-1070)) (-4 *10 (-880 *7 *9 *8)) (-4 *7 (-13 (-284) (-136))) (-4 *8 (-13 (-786) (-564 (-1087)))) (-4 *9 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *7 *8 *9 *10)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-1070)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *5 *6 *7 *8)))) (-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 (-1087))) (-5 *5 (-1070)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *6 *7 *8 *9)))) (-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 *9)) (-5 *5 (-1070)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *6 *7 *8 *9)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-852)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) (|:| |wcond| (-589 (-883 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) (-5 *1 (-855 *5 *6 *7 *8)))) (-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 (-1087))) (-5 *5 (-852)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *9)) (|:| |neqzro| (-589 *9)) (|:| |wcond| (-589 (-883 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *6)))) (|:| -4041 (-589 (-1168 (-383 (-883 *6)))))))))) (-5 *1 (-855 *6 *7 *8 *9)))) (-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *5 (-852)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *9)) (|:| |neqzro| (-589 *9)) (|:| |wcond| (-589 (-883 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *6)))) (|:| -4041 (-589 (-1168 (-383 (-883 *6)))))))))) (-5 *1 (-855 *6 *7 *8 *9)) (-5 *4 (-589 *9)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *7)) (|:| |neqzro| (-589 *7)) (|:| |wcond| (-589 (-883 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) (|:| -4041 (-589 (-1168 (-383 (-883 *4)))))))))) (-5 *1 (-855 *4 *5 *6 *7)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-589 (-1087))) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) (|:| |wcond| (-589 (-883 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) (-5 *1 (-855 *5 *6 *7 *8)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) (|:| |wcond| (-589 (-883 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) (-5 *1 (-855 *5 *6 *7 *8)) (-5 *4 (-589 *8))))) -(-10 -7 (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|) (-852))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)) (-852))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-852))) (-15 -2483 ((-523) (-629 |#4|) (-589 |#4|) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-589 (-1087)) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-589 |#4|) (-852) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-589 (-1087)) (-852) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-852) (-1070))) (-15 -1223 ((-523) (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-1070))) (-15 -2238 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-1070))) (-15 -2778 ((-2 (|:| |rgl| (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))))))) (|:| |rgsz| (-523))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-710) (-1070) (-523))) (-15 -3642 ((-383 (-883 |#1|)) |#4|)) (-15 -3642 ((-629 (-383 (-883 |#1|))) (-629 |#4|))) (-15 -3642 ((-589 (-383 (-883 |#1|))) (-589 |#4|))) (-15 -3234 ((-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -2504 (|#4| (-883 |#1|))) (-15 -2215 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-589 |#4|)) (|:| |n0| (-589 |#4|))) (-589 |#4|) (-589 |#4|))) (-15 -2975 ((-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))) (-629 |#4|) (-710))) (-15 -3277 ((-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-589 |#4|))) (-15 -4054 ((-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-2 (|:| -3392 (-629 (-383 (-883 |#1|)))) (|:| |vec| (-589 (-383 (-883 |#1|)))) (|:| -1319 (-710)) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (-15 -1368 ((-589 |#4|) |#4|)) (-15 -2776 ((-710) (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))))) (-15 -2787 ((-710) (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))))) (-15 -2706 ((-589 (-589 |#4|)) (-589 (-589 |#4|)))) (-15 -3379 ((-589 (-589 (-523))) (-523) (-523))) (-15 -1428 ((-108) (-589 |#4|) (-589 (-589 |#4|)))) (-15 -3586 ((-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-629 |#4|) (-710))) (-15 -1328 ((-629 |#4|) (-629 |#4|) (-589 |#4|))) (-15 -3558 ((-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-589 (-589 |#4|)) (-710) (-710) (-523))) (-15 -3976 (|#4| |#4|)) (-15 -1383 ((-108) (-589 |#4|))) (-15 -1383 ((-108) (-589 (-883 |#1|))))) -((-3476 (((-858) |#1| (-1087)) 16) (((-858) |#1| (-1087) (-1011 (-203))) 20)) (-2007 (((-858) |#1| |#1| (-1087) (-1011 (-203))) 18) (((-858) |#1| (-1087) (-1011 (-203))) 14))) -(((-856 |#1|) (-10 -7 (-15 -2007 ((-858) |#1| (-1087) (-1011 (-203)))) (-15 -2007 ((-858) |#1| |#1| (-1087) (-1011 (-203)))) (-15 -3476 ((-858) |#1| (-1087) (-1011 (-203)))) (-15 -3476 ((-858) |#1| (-1087)))) (-564 (-499))) (T -856)) -((-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) (-3476 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) (-2007 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) (-2007 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499)))))) -(-10 -7 (-15 -2007 ((-858) |#1| (-1087) (-1011 (-203)))) (-15 -2007 ((-858) |#1| |#1| (-1087) (-1011 (-203)))) (-15 -3476 ((-858) |#1| (-1087) (-1011 (-203)))) (-15 -3476 ((-858) |#1| (-1087)))) -((-4197 (($ $ (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 69)) (-2842 (((-1011 (-203)) $) 40)) (-2831 (((-1011 (-203)) $) 39)) (-2817 (((-1011 (-203)) $) 38)) (-2294 (((-589 (-589 (-203))) $) 43)) (-2495 (((-1011 (-203)) $) 41)) (-3959 (((-523) (-523)) 32)) (-1339 (((-523) (-523)) 28)) (-2994 (((-523) (-523)) 30)) (-3709 (((-108) (-108)) 35)) (-3279 (((-523)) 31)) (-3747 (($ $ (-1011 (-203))) 72) (($ $) 73)) (-4224 (($ (-1 (-874 (-203)) (-203)) (-1011 (-203))) 77) (($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 78)) (-2007 (($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203))) 80) (($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 81) (($ $ (-1011 (-203))) 75)) (-2695 (((-523)) 36)) (-1550 (((-523)) 27)) (-4116 (((-523)) 29)) (-4068 (((-589 (-589 (-874 (-203)))) $) 93)) (-3132 (((-108) (-108)) 37)) (-1458 (((-794) $) 92)) (-3071 (((-108)) 34))) -(((-857) (-13 (-903) (-10 -8 (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)))) (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ $ (-1011 (-203)))) (-15 -4197 ($ $ (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -3747 ($ $ (-1011 (-203)))) (-15 -3747 ($ $)) (-15 -2495 ((-1011 (-203)) $)) (-15 -2294 ((-589 (-589 (-203))) $)) (-15 -1550 ((-523))) (-15 -1339 ((-523) (-523))) (-15 -4116 ((-523))) (-15 -2994 ((-523) (-523))) (-15 -3279 ((-523))) (-15 -3959 ((-523) (-523))) (-15 -3071 ((-108))) (-15 -3709 ((-108) (-108))) (-15 -2695 ((-523))) (-15 -3132 ((-108) (-108)))))) (T -857)) -((-4224 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-857)))) (-4224 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-857)))) (-2007 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-857)))) (-2007 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-857)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) (-4197 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) (-3747 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) (-3747 (*1 *1 *1) (-5 *1 (-857))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) (-2294 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-203)))) (-5 *1 (-857)))) (-1550 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-1339 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-4116 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-2994 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-3279 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-3071 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857)))) (-2695 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-3132 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857))))) -(-13 (-903) (-10 -8 (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)))) (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ $ (-1011 (-203)))) (-15 -4197 ($ $ (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -3747 ($ $ (-1011 (-203)))) (-15 -3747 ($ $)) (-15 -2495 ((-1011 (-203)) $)) (-15 -2294 ((-589 (-589 (-203))) $)) (-15 -1550 ((-523))) (-15 -1339 ((-523) (-523))) (-15 -4116 ((-523))) (-15 -2994 ((-523) (-523))) (-15 -3279 ((-523))) (-15 -3959 ((-523) (-523))) (-15 -3071 ((-108))) (-15 -3709 ((-108) (-108))) (-15 -2695 ((-523))) (-15 -3132 ((-108) (-108))))) -((-4197 (($ $ (-1011 (-203))) 70) (($ $ (-1011 (-203)) (-1011 (-203))) 71)) (-2831 (((-1011 (-203)) $) 43)) (-2817 (((-1011 (-203)) $) 42)) (-2495 (((-1011 (-203)) $) 44)) (-3452 (((-523) (-523)) 36)) (-2459 (((-523) (-523)) 32)) (-2272 (((-523) (-523)) 34)) (-1624 (((-108) (-108)) 38)) (-1214 (((-523)) 35)) (-3747 (($ $ (-1011 (-203))) 74) (($ $) 75)) (-4224 (($ (-1 (-874 (-203)) (-203)) (-1011 (-203))) 84) (($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 85)) (-3476 (($ (-1 (-203) (-203)) (-1011 (-203))) 92) (($ (-1 (-203) (-203))) 95)) (-2007 (($ (-1 (-203) (-203)) (-1011 (-203))) 79) (($ (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203))) 80) (($ (-589 (-1 (-203) (-203))) (-1011 (-203))) 87) (($ (-589 (-1 (-203) (-203))) (-1011 (-203)) (-1011 (-203))) 88) (($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203))) 81) (($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 82) (($ $ (-1011 (-203))) 76)) (-3265 (((-108) $) 39)) (-2662 (((-523)) 40)) (-1790 (((-523)) 31)) (-3229 (((-523)) 33)) (-4068 (((-589 (-589 (-874 (-203)))) $) 22)) (-1459 (((-108) (-108)) 41)) (-1458 (((-794) $) 106)) (-1388 (((-108)) 37))) -(((-858) (-13 (-885) (-10 -8 (-15 -2007 ($ (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ (-589 (-1 (-203) (-203))) (-1011 (-203)))) (-15 -2007 ($ (-589 (-1 (-203) (-203))) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)))) (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -3476 ($ (-1 (-203) (-203)) (-1011 (-203)))) (-15 -3476 ($ (-1 (-203) (-203)))) (-15 -2007 ($ $ (-1011 (-203)))) (-15 -3265 ((-108) $)) (-15 -4197 ($ $ (-1011 (-203)))) (-15 -4197 ($ $ (-1011 (-203)) (-1011 (-203)))) (-15 -3747 ($ $ (-1011 (-203)))) (-15 -3747 ($ $)) (-15 -2495 ((-1011 (-203)) $)) (-15 -1790 ((-523))) (-15 -2459 ((-523) (-523))) (-15 -3229 ((-523))) (-15 -2272 ((-523) (-523))) (-15 -1214 ((-523))) (-15 -3452 ((-523) (-523))) (-15 -1388 ((-108))) (-15 -1624 ((-108) (-108))) (-15 -2662 ((-523))) (-15 -1459 ((-108) (-108)))))) (T -858)) -((-2007 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2007 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2007 (*1 *1 *2 *3) (-12 (-5 *2 (-589 (-1 (-203) (-203)))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2007 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-589 (-1 (-203) (-203)))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2007 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2007 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-4224 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-4224 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-3476 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-3476 (*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-858)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-858)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-4197 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-3747 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-3747 (*1 *1 *1) (-5 *1 (-858))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-1790 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-3229 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-2272 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-1214 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-1388 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858)))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858)))) (-2662 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-1459 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) -(-13 (-885) (-10 -8 (-15 -2007 ($ (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ (-589 (-1 (-203) (-203))) (-1011 (-203)))) (-15 -2007 ($ (-589 (-1 (-203) (-203))) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)))) (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -3476 ($ (-1 (-203) (-203)) (-1011 (-203)))) (-15 -3476 ($ (-1 (-203) (-203)))) (-15 -2007 ($ $ (-1011 (-203)))) (-15 -3265 ((-108) $)) (-15 -4197 ($ $ (-1011 (-203)))) (-15 -4197 ($ $ (-1011 (-203)) (-1011 (-203)))) (-15 -3747 ($ $ (-1011 (-203)))) (-15 -3747 ($ $)) (-15 -2495 ((-1011 (-203)) $)) (-15 -1790 ((-523))) (-15 -2459 ((-523) (-523))) (-15 -3229 ((-523))) (-15 -2272 ((-523) (-523))) (-15 -1214 ((-523))) (-15 -3452 ((-523) (-523))) (-15 -1388 ((-108))) (-15 -1624 ((-108) (-108))) (-15 -2662 ((-523))) (-15 -1459 ((-108) (-108))))) -((-3422 (((-589 (-1011 (-203))) (-589 (-589 (-874 (-203))))) 23))) -(((-859) (-10 -7 (-15 -3422 ((-589 (-1011 (-203))) (-589 (-589 (-874 (-203)))))))) (T -859)) -((-3422 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-589 (-1011 (-203)))) (-5 *1 (-859))))) -(-10 -7 (-15 -3422 ((-589 (-1011 (-203))) (-589 (-589 (-874 (-203))))))) -((-3969 ((|#2| |#2|) 25)) (-2515 ((|#2| |#2|) 26)) (-3059 ((|#2| |#2|) 24)) (-3326 ((|#2| |#2| (-1070)) 23))) -(((-860 |#1| |#2|) (-10 -7 (-15 -3326 (|#2| |#2| (-1070))) (-15 -3059 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -2515 (|#2| |#2|))) (-786) (-406 |#1|)) (T -860)) -((-2515 (*1 *2 *2) (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) (-3969 (*1 *2 *2) (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) (-3059 (*1 *2 *2) (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) (-3326 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-786)) (-5 *1 (-860 *4 *2)) (-4 *2 (-406 *4))))) -(-10 -7 (-15 -3326 (|#2| |#2| (-1070))) (-15 -3059 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -2515 (|#2| |#2|))) -((-3969 (((-292 (-523)) (-1087)) 15)) (-2515 (((-292 (-523)) (-1087)) 13)) (-3059 (((-292 (-523)) (-1087)) 11)) (-3326 (((-292 (-523)) (-1087) (-1070)) 18))) -(((-861) (-10 -7 (-15 -3326 ((-292 (-523)) (-1087) (-1070))) (-15 -3059 ((-292 (-523)) (-1087))) (-15 -3969 ((-292 (-523)) (-1087))) (-15 -2515 ((-292 (-523)) (-1087))))) (T -861)) -((-2515 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861)))) (-3326 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-1070)) (-5 *2 (-292 (-523))) (-5 *1 (-861))))) -(-10 -7 (-15 -3326 ((-292 (-523)) (-1087) (-1070))) (-15 -3059 ((-292 (-523)) (-1087))) (-15 -3969 ((-292 (-523)) (-1087))) (-15 -2515 ((-292 (-523)) (-1087)))) -((-2130 (((-820 |#1| |#3|) |#2| (-823 |#1|) (-820 |#1| |#3|)) 24)) (-1283 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 12))) -(((-862 |#1| |#2| |#3|) (-10 -7 (-15 -1283 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -2130 ((-820 |#1| |#3|) |#2| (-823 |#1|) (-820 |#1| |#3|)))) (-1016) (-817 |#1|) (-13 (-1016) (-964 |#2|))) (T -862)) -((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *6)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *6 (-13 (-1016) (-964 *3))) (-4 *3 (-817 *5)) (-5 *1 (-862 *5 *3 *6)))) (-1283 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1016) (-964 *5))) (-4 *5 (-817 *4)) (-4 *4 (-1016)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-862 *4 *5 *6))))) -(-10 -7 (-15 -1283 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -2130 ((-820 |#1| |#3|) |#2| (-823 |#1|) (-820 |#1| |#3|)))) -((-2130 (((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)) 29))) -(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -2130 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) (-1016) (-13 (-515) (-786) (-817 |#1|)) (-13 (-406 |#2|) (-564 (-823 |#1|)) (-817 |#1|) (-964 (-562 $)))) (T -863)) -((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) (-4 *3 (-13 (-406 *6) (-564 *4) (-817 *5) (-964 (-562 $)))) (-5 *4 (-823 *5)) (-4 *6 (-13 (-515) (-786) (-817 *5))) (-5 *1 (-863 *5 *6 *3))))) -(-10 -7 (-15 -2130 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) -((-2130 (((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|)) 12))) -(((-864 |#1|) (-10 -7 (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|)))) (-508)) (T -864)) -((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 (-523) *3)) (-5 *4 (-823 (-523))) (-4 *3 (-508)) (-5 *1 (-864 *3))))) -(-10 -7 (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|)))) -((-2130 (((-820 |#1| |#2|) (-562 |#2|) (-823 |#1|) (-820 |#1| |#2|)) 52))) -(((-865 |#1| |#2|) (-10 -7 (-15 -2130 ((-820 |#1| |#2|) (-562 |#2|) (-823 |#1|) (-820 |#1| |#2|)))) (-1016) (-13 (-786) (-964 (-562 $)) (-564 (-823 |#1|)) (-817 |#1|))) (T -865)) -((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *6)) (-5 *3 (-562 *6)) (-4 *5 (-1016)) (-4 *6 (-13 (-786) (-964 (-562 $)) (-564 *4) (-817 *5))) (-5 *4 (-823 *5)) (-5 *1 (-865 *5 *6))))) -(-10 -7 (-15 -2130 ((-820 |#1| |#2|) (-562 |#2|) (-823 |#1|) (-820 |#1| |#2|)))) -((-2130 (((-816 |#1| |#2| |#3|) |#3| (-823 |#1|) (-816 |#1| |#2| |#3|)) 14))) -(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -2130 ((-816 |#1| |#2| |#3|) |#3| (-823 |#1|) (-816 |#1| |#2| |#3|)))) (-1016) (-817 |#1|) (-609 |#2|)) (T -866)) -((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 *5 *6 *3)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *6 (-817 *5)) (-4 *3 (-609 *6)) (-5 *1 (-866 *5 *6 *3))))) -(-10 -7 (-15 -2130 ((-816 |#1| |#2| |#3|) |#3| (-823 |#1|) (-816 |#1| |#2| |#3|)))) -((-2130 (((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|)) 17 (|has| |#3| (-817 |#1|))) (((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|) (-1 (-820 |#1| |#5|) |#3| (-823 |#1|) (-820 |#1| |#5|))) 16))) -(((-867 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2130 ((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|) (-1 (-820 |#1| |#5|) |#3| (-823 |#1|) (-820 |#1| |#5|)))) (IF (|has| |#3| (-817 |#1|)) (-15 -2130 ((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|))) |%noBranch|)) (-1016) (-732) (-786) (-13 (-973) (-786) (-817 |#1|)) (-13 (-880 |#4| |#2| |#3|) (-564 (-823 |#1|)))) (T -867)) -((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) (-4 *3 (-13 (-880 *8 *6 *7) (-564 *4))) (-5 *4 (-823 *5)) (-4 *7 (-817 *5)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-13 (-973) (-786) (-817 *5))) (-5 *1 (-867 *5 *6 *7 *8 *3)))) (-2130 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-820 *6 *3) *8 (-823 *6) (-820 *6 *3))) (-4 *8 (-786)) (-5 *2 (-820 *6 *3)) (-5 *4 (-823 *6)) (-4 *6 (-1016)) (-4 *3 (-13 (-880 *9 *7 *8) (-564 *4))) (-4 *7 (-732)) (-4 *9 (-13 (-973) (-786) (-817 *6))) (-5 *1 (-867 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -2130 ((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|) (-1 (-820 |#1| |#5|) |#3| (-823 |#1|) (-820 |#1| |#5|)))) (IF (|has| |#3| (-817 |#1|)) (-15 -2130 ((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|))) |%noBranch|)) -((-3547 ((|#2| |#2| (-589 (-1 (-108) |#3|))) 11) ((|#2| |#2| (-1 (-108) |#3|)) 12))) -(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -3547 (|#2| |#2| (-1 (-108) |#3|))) (-15 -3547 (|#2| |#2| (-589 (-1 (-108) |#3|))))) (-786) (-406 |#1|) (-1122)) (T -868)) -((-3547 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-1 (-108) *5))) (-4 *5 (-1122)) (-4 *4 (-786)) (-5 *1 (-868 *4 *2 *5)) (-4 *2 (-406 *4)))) (-3547 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1122)) (-4 *4 (-786)) (-5 *1 (-868 *4 *2 *5)) (-4 *2 (-406 *4))))) -(-10 -7 (-15 -3547 (|#2| |#2| (-1 (-108) |#3|))) (-15 -3547 (|#2| |#2| (-589 (-1 (-108) |#3|))))) -((-3547 (((-292 (-523)) (-1087) (-589 (-1 (-108) |#1|))) 16) (((-292 (-523)) (-1087) (-1 (-108) |#1|)) 13))) -(((-869 |#1|) (-10 -7 (-15 -3547 ((-292 (-523)) (-1087) (-1 (-108) |#1|))) (-15 -3547 ((-292 (-523)) (-1087) (-589 (-1 (-108) |#1|))))) (-1122)) (T -869)) -((-3547 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-589 (-1 (-108) *5))) (-4 *5 (-1122)) (-5 *2 (-292 (-523))) (-5 *1 (-869 *5)))) (-3547 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1122)) (-5 *2 (-292 (-523))) (-5 *1 (-869 *5))))) -(-10 -7 (-15 -3547 ((-292 (-523)) (-1087) (-1 (-108) |#1|))) (-15 -3547 ((-292 (-523)) (-1087) (-589 (-1 (-108) |#1|))))) -((-2130 (((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)) 25))) -(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -2130 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) (-1016) (-13 (-515) (-817 |#1|) (-564 (-823 |#1|))) (-921 |#2|)) (T -870)) -((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) (-4 *3 (-921 *6)) (-4 *6 (-13 (-515) (-817 *5) (-564 *4))) (-5 *4 (-823 *5)) (-5 *1 (-870 *5 *6 *3))))) -(-10 -7 (-15 -2130 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) -((-2130 (((-820 |#1| (-1087)) (-1087) (-823 |#1|) (-820 |#1| (-1087))) 17))) -(((-871 |#1|) (-10 -7 (-15 -2130 ((-820 |#1| (-1087)) (-1087) (-823 |#1|) (-820 |#1| (-1087))))) (-1016)) (T -871)) -((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 (-1087))) (-5 *3 (-1087)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-5 *1 (-871 *5))))) -(-10 -7 (-15 -2130 ((-820 |#1| (-1087)) (-1087) (-823 |#1|) (-820 |#1| (-1087))))) -((-2245 (((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))) 33)) (-2130 (((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-1 |#3| (-589 |#3|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))) 32))) -(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -2130 ((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-1 |#3| (-589 |#3|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) (-15 -2245 ((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))))) (-1016) (-13 (-973) (-786)) (-13 (-973) (-564 (-823 |#1|)) (-964 |#2|))) (T -872)) -((-2245 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-823 *6))) (-5 *5 (-1 (-820 *6 *8) *8 (-823 *6) (-820 *6 *8))) (-4 *6 (-1016)) (-4 *8 (-13 (-973) (-564 (-823 *6)) (-964 *7))) (-5 *2 (-820 *6 *8)) (-4 *7 (-13 (-973) (-786))) (-5 *1 (-872 *6 *7 *8)))) (-2130 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-589 (-823 *7))) (-5 *5 (-1 *9 (-589 *9))) (-5 *6 (-1 (-820 *7 *9) *9 (-823 *7) (-820 *7 *9))) (-4 *7 (-1016)) (-4 *9 (-13 (-973) (-564 (-823 *7)) (-964 *8))) (-5 *2 (-820 *7 *9)) (-5 *3 (-589 *9)) (-4 *8 (-13 (-973) (-786))) (-5 *1 (-872 *7 *8 *9))))) -(-10 -7 (-15 -2130 ((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-1 |#3| (-589 |#3|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) (-15 -2245 ((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))))) -((-1220 (((-1083 (-383 (-523))) (-523)) 62)) (-3801 (((-1083 (-523)) (-523)) 65)) (-1632 (((-1083 (-523)) (-523)) 59)) (-2152 (((-523) (-1083 (-523))) 54)) (-1712 (((-1083 (-383 (-523))) (-523)) 48)) (-1625 (((-1083 (-523)) (-523)) 37)) (-3448 (((-1083 (-523)) (-523)) 67)) (-2505 (((-1083 (-523)) (-523)) 66)) (-3490 (((-1083 (-383 (-523))) (-523)) 50))) -(((-873) (-10 -7 (-15 -3490 ((-1083 (-383 (-523))) (-523))) (-15 -2505 ((-1083 (-523)) (-523))) (-15 -3448 ((-1083 (-523)) (-523))) (-15 -1625 ((-1083 (-523)) (-523))) (-15 -1712 ((-1083 (-383 (-523))) (-523))) (-15 -2152 ((-523) (-1083 (-523)))) (-15 -1632 ((-1083 (-523)) (-523))) (-15 -3801 ((-1083 (-523)) (-523))) (-15 -1220 ((-1083 (-383 (-523))) (-523))))) (T -873)) -((-1220 (*1 *2 *3) (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523)))) (-3801 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-1632 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-1083 (-523))) (-5 *2 (-523)) (-5 *1 (-873)))) (-1712 (*1 *2 *3) (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523)))) (-1625 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-3448 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-2505 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-3490 (*1 *2 *3) (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523))))) -(-10 -7 (-15 -3490 ((-1083 (-383 (-523))) (-523))) (-15 -2505 ((-1083 (-523)) (-523))) (-15 -3448 ((-1083 (-523)) (-523))) (-15 -1625 ((-1083 (-523)) (-523))) (-15 -1712 ((-1083 (-383 (-523))) (-523))) (-15 -2152 ((-523) (-1083 (-523)))) (-15 -1632 ((-1083 (-523)) (-523))) (-15 -3801 ((-1083 (-523)) (-523))) (-15 -1220 ((-1083 (-383 (-523))) (-523)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2821 (($ (-710)) NIL (|has| |#1| (-23)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) |#1|) 11 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-2388 (($ (-589 |#1|)) 13)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1777 (((-629 |#1|) $ $) NIL (|has| |#1| (-973)))) (-3052 (($ (-710) |#1|) 8)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 10 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3798 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-2866 (((-108) $ (-710)) NIL)) (-2996 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-4097 (($ $ (-589 |#1|)) 24)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) 18) (($ $ (-1135 (-523))) NIL)) (-3269 ((|#1| $ $) NIL (|has| |#1| (-973)))) (-3203 (((-852) $) 16)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2240 (($ $ $) 22)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499)))) (($ (-589 |#1|)) 17)) (-1472 (($ (-589 |#1|)) NIL)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4087 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4075 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-523) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-666))) (($ $ |#1|) NIL (|has| |#1| (-666)))) (-2676 (((-710) $) 14 (|has| $ (-6 -4244))))) +((-1680 (((-108) $ $) NIL)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) NIL)) (-2769 (((-108) $) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3310 (($ $ $) NIL)) (-1691 (((-794) $) NIL)) (-2423 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-1891 (($) NIL T CONST)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ $ $) NIL))) +(((-852) (-13 (-25) (-786) (-666) (-10 -8 (-15 -3310 ($ $ $)) (-6 (-4250 "*"))))) (T -852)) +((-3310 (*1 *1 *1 *1) (-5 *1 (-852)))) +(-13 (-25) (-786) (-666) (-10 -8 (-15 -3310 ($ $ $)) (-6 (-4250 "*")))) +((-2995 ((|#2| (-589 |#1|) (-589 |#1|)) 24))) +(((-853 |#1| |#2|) (-10 -7 (-15 -2995 (|#2| (-589 |#1|) (-589 |#1|)))) (-339) (-1145 |#1|)) (T -853)) +((-2995 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-339)) (-4 *2 (-1145 *4)) (-5 *1 (-853 *4 *2))))) +(-10 -7 (-15 -2995 (|#2| (-589 |#1|) (-589 |#1|)))) +((-1528 (((-1083 |#2|) (-589 |#2|) (-589 |#2|)) 17) (((-1142 |#1| |#2|) (-1142 |#1| |#2|) (-589 |#2|) (-589 |#2|)) 13))) +(((-854 |#1| |#2|) (-10 -7 (-15 -1528 ((-1142 |#1| |#2|) (-1142 |#1| |#2|) (-589 |#2|) (-589 |#2|))) (-15 -1528 ((-1083 |#2|) (-589 |#2|) (-589 |#2|)))) (-1087) (-339)) (T -854)) +((-1528 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *5)) (-4 *5 (-339)) (-5 *2 (-1083 *5)) (-5 *1 (-854 *4 *5)) (-14 *4 (-1087)))) (-1528 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1142 *4 *5)) (-5 *3 (-589 *5)) (-14 *4 (-1087)) (-4 *5 (-339)) (-5 *1 (-854 *4 *5))))) +(-10 -7 (-15 -1528 ((-1142 |#1| |#2|) (-1142 |#1| |#2|) (-589 |#2|) (-589 |#2|))) (-15 -1528 ((-1083 |#2|) (-589 |#2|) (-589 |#2|)))) +((-1750 (((-523) (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-1070)) 139)) (-3213 ((|#4| |#4|) 155)) (-3613 (((-589 (-383 (-883 |#1|))) (-589 (-1087))) 118)) (-1826 (((-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-589 (-589 |#4|)) (-710) (-710) (-523)) 74)) (-3920 (((-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))) (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))) (-589 |#4|)) 58)) (-3390 (((-629 |#4|) (-629 |#4|) (-589 |#4|)) 54)) (-3185 (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-1070)) 151)) (-3822 (((-523) (-629 |#4|) (-852) (-1070)) 132) (((-523) (-629 |#4|) (-589 (-1087)) (-852) (-1070)) 131) (((-523) (-629 |#4|) (-589 |#4|) (-852) (-1070)) 130) (((-523) (-629 |#4|) (-1070)) 127) (((-523) (-629 |#4|) (-589 (-1087)) (-1070)) 126) (((-523) (-629 |#4|) (-589 |#4|) (-1070)) 125) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-852)) 124) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)) (-852)) 123) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|) (-852)) 122) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|)) 120) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087))) 119) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|)) 116)) (-4071 ((|#4| (-883 |#1|)) 67)) (-2029 (((-108) (-589 |#4|) (-589 (-589 |#4|))) 152)) (-3625 (((-589 (-589 (-523))) (-523) (-523)) 129)) (-2323 (((-589 (-589 |#4|)) (-589 (-589 |#4|))) 86)) (-1943 (((-710) (-589 (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|))))) 84)) (-1852 (((-710) (-589 (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|))))) 83)) (-2759 (((-108) (-589 (-883 |#1|))) 17) (((-108) (-589 |#4|)) 13)) (-4206 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-589 |#4|)) (|:| |n0| (-589 |#4|))) (-589 |#4|) (-589 |#4|)) 70)) (-2626 (((-589 |#4|) |#4|) 48)) (-3217 (((-589 (-383 (-883 |#1|))) (-589 |#4|)) 114) (((-629 (-383 (-883 |#1|))) (-629 |#4|)) 55) (((-383 (-883 |#1|)) |#4|) 111)) (-1876 (((-2 (|:| |rgl| (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))))))) (|:| |rgsz| (-523))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-710) (-1070) (-523)) 90)) (-2996 (((-589 (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))) (-629 |#4|) (-710)) 82)) (-3891 (((-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-629 |#4|) (-710)) 99)) (-2700 (((-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))) (-2 (|:| -2600 (-629 (-383 (-883 |#1|)))) (|:| |vec| (-589 (-383 (-883 |#1|)))) (|:| -3569 (-710)) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) 47))) +(((-855 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3822 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|))) (-15 -3822 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)))) (-15 -3822 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|))) (-15 -3822 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|) (-852))) (-15 -3822 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)) (-852))) (-15 -3822 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-852))) (-15 -3822 ((-523) (-629 |#4|) (-589 |#4|) (-1070))) (-15 -3822 ((-523) (-629 |#4|) (-589 (-1087)) (-1070))) (-15 -3822 ((-523) (-629 |#4|) (-1070))) (-15 -3822 ((-523) (-629 |#4|) (-589 |#4|) (-852) (-1070))) (-15 -3822 ((-523) (-629 |#4|) (-589 (-1087)) (-852) (-1070))) (-15 -3822 ((-523) (-629 |#4|) (-852) (-1070))) (-15 -1750 ((-523) (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-1070))) (-15 -3185 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-1070))) (-15 -1876 ((-2 (|:| |rgl| (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))))))) (|:| |rgsz| (-523))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-710) (-1070) (-523))) (-15 -3217 ((-383 (-883 |#1|)) |#4|)) (-15 -3217 ((-629 (-383 (-883 |#1|))) (-629 |#4|))) (-15 -3217 ((-589 (-383 (-883 |#1|))) (-589 |#4|))) (-15 -3613 ((-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -4071 (|#4| (-883 |#1|))) (-15 -4206 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-589 |#4|)) (|:| |n0| (-589 |#4|))) (-589 |#4|) (-589 |#4|))) (-15 -2996 ((-589 (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))) (-629 |#4|) (-710))) (-15 -3920 ((-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))) (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))) (-589 |#4|))) (-15 -2700 ((-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))) (-2 (|:| -2600 (-629 (-383 (-883 |#1|)))) (|:| |vec| (-589 (-383 (-883 |#1|)))) (|:| -3569 (-710)) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (-15 -2626 ((-589 |#4|) |#4|)) (-15 -1852 ((-710) (-589 (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))))) (-15 -1943 ((-710) (-589 (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))))) (-15 -2323 ((-589 (-589 |#4|)) (-589 (-589 |#4|)))) (-15 -3625 ((-589 (-589 (-523))) (-523) (-523))) (-15 -2029 ((-108) (-589 |#4|) (-589 (-589 |#4|)))) (-15 -3891 ((-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-629 |#4|) (-710))) (-15 -3390 ((-629 |#4|) (-629 |#4|) (-589 |#4|))) (-15 -1826 ((-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-589 (-589 |#4|)) (-710) (-710) (-523))) (-15 -3213 (|#4| |#4|)) (-15 -2759 ((-108) (-589 |#4|))) (-15 -2759 ((-108) (-589 (-883 |#1|))))) (-13 (-284) (-136)) (-13 (-786) (-564 (-1087))) (-732) (-880 |#1| |#3| |#2|)) (T -855)) +((-2759 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-108)) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-108)) (-5 *1 (-855 *4 *5 *6 *7)))) (-3213 (*1 *2 *2) (-12 (-4 *3 (-13 (-284) (-136))) (-4 *4 (-13 (-786) (-564 (-1087)))) (-4 *5 (-732)) (-5 *1 (-855 *3 *4 *5 *2)) (-4 *2 (-880 *3 *5 *4)))) (-1826 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-5 *4 (-629 *12)) (-5 *5 (-589 (-383 (-883 *9)))) (-5 *6 (-589 (-589 *12))) (-5 *7 (-710)) (-5 *8 (-523)) (-4 *9 (-13 (-284) (-136))) (-4 *12 (-880 *9 *11 *10)) (-4 *10 (-13 (-786) (-564 (-1087)))) (-4 *11 (-732)) (-5 *2 (-2 (|:| |eqzro| (-589 *12)) (|:| |neqzro| (-589 *12)) (|:| |wcond| (-589 (-883 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 *9)))) (|:| -3760 (-589 (-1169 (-383 (-883 *9))))))))) (-5 *1 (-855 *9 *10 *11 *12)))) (-3390 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *7)) (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *1 (-855 *4 *5 *6 *7)))) (-3891 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-710)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| |det| *8) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (-5 *1 (-855 *5 *6 *7 *8)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-589 *8))) (-5 *3 (-589 *8)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-108)) (-5 *1 (-855 *5 *6 *7 *8)))) (-3625 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-589 (-523)))) (-5 *1 (-855 *4 *5 *6 *7)) (-5 *3 (-523)) (-4 *7 (-880 *4 *6 *5)))) (-2323 (*1 *2 *2) (-12 (-5 *2 (-589 (-589 *6))) (-4 *6 (-880 *3 *5 *4)) (-4 *3 (-13 (-284) (-136))) (-4 *4 (-13 (-786) (-564 (-1087)))) (-4 *5 (-732)) (-5 *1 (-855 *3 *4 *5 *6)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| *7) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 *7))))) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-710)) (-5 *1 (-855 *4 *5 *6 *7)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| *7) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 *7))))) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-710)) (-5 *1 (-855 *4 *5 *6 *7)))) (-2626 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 *3)) (-5 *1 (-855 *4 *5 *6 *3)) (-4 *3 (-880 *4 *6 *5)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2600 (-629 (-383 (-883 *4)))) (|:| |vec| (-589 (-383 (-883 *4)))) (|:| -3569 (-710)) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-2 (|:| |partsol| (-1169 (-383 (-883 *4)))) (|:| -3760 (-589 (-1169 (-383 (-883 *4))))))) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5)))) (-3920 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1169 (-383 (-883 *4)))) (|:| -3760 (-589 (-1169 (-383 (-883 *4))))))) (-5 *3 (-589 *7)) (-4 *4 (-13 (-284) (-136))) (-4 *7 (-880 *4 *6 *5)) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *1 (-855 *4 *5 *6 *7)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| *8) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 *8))))) (-5 *1 (-855 *5 *6 *7 *8)) (-5 *4 (-710)))) (-4206 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-4 *7 (-880 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-589 *7)) (|:| |n0| (-589 *7)))) (-5 *1 (-855 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-13 (-284) (-136))) (-4 *2 (-880 *4 *6 *5)) (-5 *1 (-855 *4 *5 *6 *2)) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-383 (-883 *4)))) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-383 (-883 *4)))) (-5 *1 (-855 *4 *5 *6 *7)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-629 (-383 (-883 *4)))) (-5 *1 (-855 *4 *5 *6 *7)))) (-3217 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-383 (-883 *4))) (-5 *1 (-855 *4 *5 *6 *3)) (-4 *3 (-880 *4 *6 *5)))) (-1876 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-629 *11)) (-5 *4 (-589 (-383 (-883 *8)))) (-5 *5 (-710)) (-5 *6 (-1070)) (-4 *8 (-13 (-284) (-136))) (-4 *11 (-880 *8 *10 *9)) (-4 *9 (-13 (-786) (-564 (-1087)))) (-4 *10 (-732)) (-5 *2 (-2 (|:| |rgl| (-589 (-2 (|:| |eqzro| (-589 *11)) (|:| |neqzro| (-589 *11)) (|:| |wcond| (-589 (-883 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 *8)))) (|:| -3760 (-589 (-1169 (-383 (-883 *8)))))))))) (|:| |rgsz| (-523)))) (-5 *1 (-855 *8 *9 *10 *11)) (-5 *7 (-523)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *7)) (|:| |neqzro| (-589 *7)) (|:| |wcond| (-589 (-883 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 *4)))) (|:| -3760 (-589 (-1169 (-383 (-883 *4)))))))))) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5)))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) (|:| |wcond| (-589 (-883 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 *5)))) (|:| -3760 (-589 (-1169 (-383 (-883 *5)))))))))) (-5 *4 (-1070)) (-4 *5 (-13 (-284) (-136))) (-4 *8 (-880 *5 *7 *6)) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *5 *6 *7 *8)))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-852)) (-5 *5 (-1070)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *6 *7 *8 *9)))) (-3822 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-629 *10)) (-5 *4 (-589 (-1087))) (-5 *5 (-852)) (-5 *6 (-1070)) (-4 *10 (-880 *7 *9 *8)) (-4 *7 (-13 (-284) (-136))) (-4 *8 (-13 (-786) (-564 (-1087)))) (-4 *9 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *7 *8 *9 *10)))) (-3822 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-629 *10)) (-5 *4 (-589 *10)) (-5 *5 (-852)) (-5 *6 (-1070)) (-4 *10 (-880 *7 *9 *8)) (-4 *7 (-13 (-284) (-136))) (-4 *8 (-13 (-786) (-564 (-1087)))) (-4 *9 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *7 *8 *9 *10)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-1070)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *5 *6 *7 *8)))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 (-1087))) (-5 *5 (-1070)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *6 *7 *8 *9)))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 *9)) (-5 *5 (-1070)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *6 *7 *8 *9)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-852)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) (|:| |wcond| (-589 (-883 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 *5)))) (|:| -3760 (-589 (-1169 (-383 (-883 *5)))))))))) (-5 *1 (-855 *5 *6 *7 *8)))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 (-1087))) (-5 *5 (-852)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *9)) (|:| |neqzro| (-589 *9)) (|:| |wcond| (-589 (-883 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 *6)))) (|:| -3760 (-589 (-1169 (-383 (-883 *6)))))))))) (-5 *1 (-855 *6 *7 *8 *9)))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *5 (-852)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *9)) (|:| |neqzro| (-589 *9)) (|:| |wcond| (-589 (-883 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 *6)))) (|:| -3760 (-589 (-1169 (-383 (-883 *6)))))))))) (-5 *1 (-855 *6 *7 *8 *9)) (-5 *4 (-589 *9)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *7)) (|:| |neqzro| (-589 *7)) (|:| |wcond| (-589 (-883 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 *4)))) (|:| -3760 (-589 (-1169 (-383 (-883 *4)))))))))) (-5 *1 (-855 *4 *5 *6 *7)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-589 (-1087))) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) (|:| |wcond| (-589 (-883 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 *5)))) (|:| -3760 (-589 (-1169 (-383 (-883 *5)))))))))) (-5 *1 (-855 *5 *6 *7 *8)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) (|:| |wcond| (-589 (-883 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 *5)))) (|:| -3760 (-589 (-1169 (-383 (-883 *5)))))))))) (-5 *1 (-855 *5 *6 *7 *8)) (-5 *4 (-589 *8))))) +(-10 -7 (-15 -3822 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|))) (-15 -3822 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)))) (-15 -3822 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|))) (-15 -3822 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|) (-852))) (-15 -3822 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)) (-852))) (-15 -3822 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-629 |#4|) (-852))) (-15 -3822 ((-523) (-629 |#4|) (-589 |#4|) (-1070))) (-15 -3822 ((-523) (-629 |#4|) (-589 (-1087)) (-1070))) (-15 -3822 ((-523) (-629 |#4|) (-1070))) (-15 -3822 ((-523) (-629 |#4|) (-589 |#4|) (-852) (-1070))) (-15 -3822 ((-523) (-629 |#4|) (-589 (-1087)) (-852) (-1070))) (-15 -3822 ((-523) (-629 |#4|) (-852) (-1070))) (-15 -1750 ((-523) (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-1070))) (-15 -3185 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|))))))))) (-1070))) (-15 -1876 ((-2 (|:| |rgl| (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))))))) (|:| |rgsz| (-523))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-710) (-1070) (-523))) (-15 -3217 ((-383 (-883 |#1|)) |#4|)) (-15 -3217 ((-629 (-383 (-883 |#1|))) (-629 |#4|))) (-15 -3217 ((-589 (-383 (-883 |#1|))) (-589 |#4|))) (-15 -3613 ((-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -4071 (|#4| (-883 |#1|))) (-15 -4206 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-589 |#4|)) (|:| |n0| (-589 |#4|))) (-589 |#4|) (-589 |#4|))) (-15 -2996 ((-589 (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))) (-629 |#4|) (-710))) (-15 -3920 ((-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))) (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))) (-589 |#4|))) (-15 -2700 ((-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))) (-2 (|:| -2600 (-629 (-383 (-883 |#1|)))) (|:| |vec| (-589 (-383 (-883 |#1|)))) (|:| -3569 (-710)) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (-15 -2626 ((-589 |#4|) |#4|)) (-15 -1852 ((-710) (-589 (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))))) (-15 -1943 ((-710) (-589 (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))))) (-15 -2323 ((-589 (-589 |#4|)) (-589 (-589 |#4|)))) (-15 -3625 ((-589 (-589 (-523))) (-523) (-523))) (-15 -2029 ((-108) (-589 |#4|) (-589 (-589 |#4|)))) (-15 -3891 ((-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-629 |#4|) (-710))) (-15 -3390 ((-629 |#4|) (-629 |#4|) (-589 |#4|))) (-15 -1826 ((-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-383 (-883 |#1|)))) (|:| -3760 (-589 (-1169 (-383 (-883 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-589 (-589 |#4|)) (-710) (-710) (-523))) (-15 -3213 (|#4| |#4|)) (-15 -2759 ((-108) (-589 |#4|))) (-15 -2759 ((-108) (-589 (-883 |#1|))))) +((-2213 (((-858) |#1| (-1087)) 16) (((-858) |#1| (-1087) (-1011 (-203))) 20)) (-2627 (((-858) |#1| |#1| (-1087) (-1011 (-203))) 18) (((-858) |#1| (-1087) (-1011 (-203))) 14))) +(((-856 |#1|) (-10 -7 (-15 -2627 ((-858) |#1| (-1087) (-1011 (-203)))) (-15 -2627 ((-858) |#1| |#1| (-1087) (-1011 (-203)))) (-15 -2213 ((-858) |#1| (-1087) (-1011 (-203)))) (-15 -2213 ((-858) |#1| (-1087)))) (-564 (-499))) (T -856)) +((-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) (-2213 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) (-2627 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) (-2627 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499)))))) +(-10 -7 (-15 -2627 ((-858) |#1| (-1087) (-1011 (-203)))) (-15 -2627 ((-858) |#1| |#1| (-1087) (-1011 (-203)))) (-15 -2213 ((-858) |#1| (-1087) (-1011 (-203)))) (-15 -2213 ((-858) |#1| (-1087)))) +((-4085 (($ $ (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 70)) (-2035 (((-1011 (-203)) $) 40)) (-2025 (((-1011 (-203)) $) 39)) (-2015 (((-1011 (-203)) $) 38)) (-2594 (((-589 (-589 (-203))) $) 43)) (-3949 (((-1011 (-203)) $) 41)) (-1329 (((-523) (-523)) 32)) (-3500 (((-523) (-523)) 28)) (-3165 (((-523) (-523)) 30)) (-2637 (((-108) (-108)) 35)) (-3931 (((-523)) 31)) (-2941 (($ $ (-1011 (-203))) 73) (($ $) 74)) (-1361 (($ (-1 (-874 (-203)) (-203)) (-1011 (-203))) 78) (($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 79)) (-2627 (($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203))) 81) (($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 82) (($ $ (-1011 (-203))) 76)) (-2230 (((-523)) 36)) (-3777 (((-523)) 27)) (-2077 (((-523)) 29)) (-2825 (((-589 (-589 (-874 (-203)))) $) 94)) (-3871 (((-108) (-108)) 37)) (-1691 (((-794) $) 93)) (-1550 (((-108)) 34))) +(((-857) (-13 (-903) (-10 -8 (-15 -1361 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)))) (-15 -1361 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2627 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2627 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2627 ($ $ (-1011 (-203)))) (-15 -4085 ($ $ (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2941 ($ $ (-1011 (-203)))) (-15 -2941 ($ $)) (-15 -3949 ((-1011 (-203)) $)) (-15 -2594 ((-589 (-589 (-203))) $)) (-15 -3777 ((-523))) (-15 -3500 ((-523) (-523))) (-15 -2077 ((-523))) (-15 -3165 ((-523) (-523))) (-15 -3931 ((-523))) (-15 -1329 ((-523) (-523))) (-15 -1550 ((-108))) (-15 -2637 ((-108) (-108))) (-15 -2230 ((-523))) (-15 -3871 ((-108) (-108)))))) (T -857)) +((-1361 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-857)))) (-1361 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-857)))) (-2627 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-857)))) (-2627 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-857)))) (-2627 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) (-4085 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) (-2941 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) (-2941 (*1 *1 *1) (-5 *1 (-857))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-203)))) (-5 *1 (-857)))) (-3777 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-2077 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-3165 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-3931 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-1329 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-1550 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857)))) (-2637 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857)))) (-2230 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857))))) +(-13 (-903) (-10 -8 (-15 -1361 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)))) (-15 -1361 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2627 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2627 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2627 ($ $ (-1011 (-203)))) (-15 -4085 ($ $ (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2941 ($ $ (-1011 (-203)))) (-15 -2941 ($ $)) (-15 -3949 ((-1011 (-203)) $)) (-15 -2594 ((-589 (-589 (-203))) $)) (-15 -3777 ((-523))) (-15 -3500 ((-523) (-523))) (-15 -2077 ((-523))) (-15 -3165 ((-523) (-523))) (-15 -3931 ((-523))) (-15 -1329 ((-523) (-523))) (-15 -1550 ((-108))) (-15 -2637 ((-108) (-108))) (-15 -2230 ((-523))) (-15 -3871 ((-108) (-108))))) +((-4085 (($ $ (-1011 (-203))) 70) (($ $ (-1011 (-203)) (-1011 (-203))) 71)) (-2025 (((-1011 (-203)) $) 43)) (-2015 (((-1011 (-203)) $) 42)) (-3949 (((-1011 (-203)) $) 44)) (-1993 (((-523) (-523)) 36)) (-1798 (((-523) (-523)) 32)) (-3519 (((-523) (-523)) 34)) (-3304 (((-108) (-108)) 38)) (-1657 (((-523)) 35)) (-2941 (($ $ (-1011 (-203))) 74) (($ $) 75)) (-1361 (($ (-1 (-874 (-203)) (-203)) (-1011 (-203))) 84) (($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 85)) (-2213 (($ (-1 (-203) (-203)) (-1011 (-203))) 92) (($ (-1 (-203) (-203))) 95)) (-2627 (($ (-1 (-203) (-203)) (-1011 (-203))) 79) (($ (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203))) 80) (($ (-589 (-1 (-203) (-203))) (-1011 (-203))) 87) (($ (-589 (-1 (-203) (-203))) (-1011 (-203)) (-1011 (-203))) 88) (($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203))) 81) (($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 82) (($ $ (-1011 (-203))) 76)) (-3792 (((-108) $) 39)) (-3078 (((-523)) 40)) (-2336 (((-523)) 31)) (-3572 (((-523)) 33)) (-2825 (((-589 (-589 (-874 (-203)))) $) 22)) (-1647 (((-108) (-108)) 41)) (-1691 (((-794) $) 106)) (-2797 (((-108)) 37))) +(((-858) (-13 (-885) (-10 -8 (-15 -2627 ($ (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2627 ($ (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2627 ($ (-589 (-1 (-203) (-203))) (-1011 (-203)))) (-15 -2627 ($ (-589 (-1 (-203) (-203))) (-1011 (-203)) (-1011 (-203)))) (-15 -2627 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2627 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -1361 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)))) (-15 -1361 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2213 ($ (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2213 ($ (-1 (-203) (-203)))) (-15 -2627 ($ $ (-1011 (-203)))) (-15 -3792 ((-108) $)) (-15 -4085 ($ $ (-1011 (-203)))) (-15 -4085 ($ $ (-1011 (-203)) (-1011 (-203)))) (-15 -2941 ($ $ (-1011 (-203)))) (-15 -2941 ($ $)) (-15 -3949 ((-1011 (-203)) $)) (-15 -2336 ((-523))) (-15 -1798 ((-523) (-523))) (-15 -3572 ((-523))) (-15 -3519 ((-523) (-523))) (-15 -1657 ((-523))) (-15 -1993 ((-523) (-523))) (-15 -2797 ((-108))) (-15 -3304 ((-108) (-108))) (-15 -3078 ((-523))) (-15 -1647 ((-108) (-108)))))) (T -858)) +((-2627 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2627 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2627 (*1 *1 *2 *3) (-12 (-5 *2 (-589 (-1 (-203) (-203)))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2627 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-589 (-1 (-203) (-203)))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2627 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2627 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-1361 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-1361 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2213 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2213 (*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-858)))) (-2627 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-3792 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-858)))) (-4085 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-4085 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-2941 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-2941 (*1 *1 *1) (-5 *1 (-858))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-2336 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-3572 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-3519 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-1657 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-1993 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-2797 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858)))) (-3304 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858)))) (-3078 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-1647 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) +(-13 (-885) (-10 -8 (-15 -2627 ($ (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2627 ($ (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2627 ($ (-589 (-1 (-203) (-203))) (-1011 (-203)))) (-15 -2627 ($ (-589 (-1 (-203) (-203))) (-1011 (-203)) (-1011 (-203)))) (-15 -2627 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2627 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -1361 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)))) (-15 -1361 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2213 ($ (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2213 ($ (-1 (-203) (-203)))) (-15 -2627 ($ $ (-1011 (-203)))) (-15 -3792 ((-108) $)) (-15 -4085 ($ $ (-1011 (-203)))) (-15 -4085 ($ $ (-1011 (-203)) (-1011 (-203)))) (-15 -2941 ($ $ (-1011 (-203)))) (-15 -2941 ($ $)) (-15 -3949 ((-1011 (-203)) $)) (-15 -2336 ((-523))) (-15 -1798 ((-523) (-523))) (-15 -3572 ((-523))) (-15 -3519 ((-523) (-523))) (-15 -1657 ((-523))) (-15 -1993 ((-523) (-523))) (-15 -2797 ((-108))) (-15 -3304 ((-108) (-108))) (-15 -3078 ((-523))) (-15 -1647 ((-108) (-108))))) +((-2864 (((-589 (-1011 (-203))) (-589 (-589 (-874 (-203))))) 23))) +(((-859) (-10 -7 (-15 -2864 ((-589 (-1011 (-203))) (-589 (-589 (-874 (-203)))))))) (T -859)) +((-2864 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-589 (-1011 (-203)))) (-5 *1 (-859))))) +(-10 -7 (-15 -2864 ((-589 (-1011 (-203))) (-589 (-589 (-874 (-203))))))) +((-2923 ((|#2| |#2|) 25)) (-2966 ((|#2| |#2|) 26)) (-2501 ((|#2| |#2|) 24)) (-3472 ((|#2| |#2| (-1070)) 23))) +(((-860 |#1| |#2|) (-10 -7 (-15 -3472 (|#2| |#2| (-1070))) (-15 -2501 (|#2| |#2|)) (-15 -2923 (|#2| |#2|)) (-15 -2966 (|#2| |#2|))) (-786) (-406 |#1|)) (T -860)) +((-2966 (*1 *2 *2) (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) (-2923 (*1 *2 *2) (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) (-2501 (*1 *2 *2) (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) (-3472 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-786)) (-5 *1 (-860 *4 *2)) (-4 *2 (-406 *4))))) +(-10 -7 (-15 -3472 (|#2| |#2| (-1070))) (-15 -2501 (|#2| |#2|)) (-15 -2923 (|#2| |#2|)) (-15 -2966 (|#2| |#2|))) +((-2923 (((-292 (-523)) (-1087)) 15)) (-2966 (((-292 (-523)) (-1087)) 13)) (-2501 (((-292 (-523)) (-1087)) 11)) (-3472 (((-292 (-523)) (-1087) (-1070)) 18))) +(((-861) (-10 -7 (-15 -3472 ((-292 (-523)) (-1087) (-1070))) (-15 -2501 ((-292 (-523)) (-1087))) (-15 -2923 ((-292 (-523)) (-1087))) (-15 -2966 ((-292 (-523)) (-1087))))) (T -861)) +((-2966 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-1070)) (-5 *2 (-292 (-523))) (-5 *1 (-861))))) +(-10 -7 (-15 -3472 ((-292 (-523)) (-1087) (-1070))) (-15 -2501 ((-292 (-523)) (-1087))) (-15 -2923 ((-292 (-523)) (-1087))) (-15 -2966 ((-292 (-523)) (-1087)))) +((-1524 (((-820 |#1| |#3|) |#2| (-823 |#1|) (-820 |#1| |#3|)) 24)) (-4209 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 12))) +(((-862 |#1| |#2| |#3|) (-10 -7 (-15 -4209 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -1524 ((-820 |#1| |#3|) |#2| (-823 |#1|) (-820 |#1| |#3|)))) (-1016) (-817 |#1|) (-13 (-1016) (-964 |#2|))) (T -862)) +((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *6)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *6 (-13 (-1016) (-964 *3))) (-4 *3 (-817 *5)) (-5 *1 (-862 *5 *3 *6)))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1016) (-964 *5))) (-4 *5 (-817 *4)) (-4 *4 (-1016)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-862 *4 *5 *6))))) +(-10 -7 (-15 -4209 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -1524 ((-820 |#1| |#3|) |#2| (-823 |#1|) (-820 |#1| |#3|)))) +((-1524 (((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)) 29))) +(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -1524 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) (-1016) (-13 (-515) (-786) (-817 |#1|)) (-13 (-406 |#2|) (-564 (-823 |#1|)) (-817 |#1|) (-964 (-562 $)))) (T -863)) +((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) (-4 *3 (-13 (-406 *6) (-564 *4) (-817 *5) (-964 (-562 $)))) (-5 *4 (-823 *5)) (-4 *6 (-13 (-515) (-786) (-817 *5))) (-5 *1 (-863 *5 *6 *3))))) +(-10 -7 (-15 -1524 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) +((-1524 (((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|)) 12))) +(((-864 |#1|) (-10 -7 (-15 -1524 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|)))) (-508)) (T -864)) +((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 (-523) *3)) (-5 *4 (-823 (-523))) (-4 *3 (-508)) (-5 *1 (-864 *3))))) +(-10 -7 (-15 -1524 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|)))) +((-1524 (((-820 |#1| |#2|) (-562 |#2|) (-823 |#1|) (-820 |#1| |#2|)) 54))) +(((-865 |#1| |#2|) (-10 -7 (-15 -1524 ((-820 |#1| |#2|) (-562 |#2|) (-823 |#1|) (-820 |#1| |#2|)))) (-1016) (-13 (-786) (-964 (-562 $)) (-564 (-823 |#1|)) (-817 |#1|))) (T -865)) +((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *6)) (-5 *3 (-562 *6)) (-4 *5 (-1016)) (-4 *6 (-13 (-786) (-964 (-562 $)) (-564 *4) (-817 *5))) (-5 *4 (-823 *5)) (-5 *1 (-865 *5 *6))))) +(-10 -7 (-15 -1524 ((-820 |#1| |#2|) (-562 |#2|) (-823 |#1|) (-820 |#1| |#2|)))) +((-1524 (((-816 |#1| |#2| |#3|) |#3| (-823 |#1|) (-816 |#1| |#2| |#3|)) 14))) +(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -1524 ((-816 |#1| |#2| |#3|) |#3| (-823 |#1|) (-816 |#1| |#2| |#3|)))) (-1016) (-817 |#1|) (-609 |#2|)) (T -866)) +((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 *5 *6 *3)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *6 (-817 *5)) (-4 *3 (-609 *6)) (-5 *1 (-866 *5 *6 *3))))) +(-10 -7 (-15 -1524 ((-816 |#1| |#2| |#3|) |#3| (-823 |#1|) (-816 |#1| |#2| |#3|)))) +((-1524 (((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|)) 17 (|has| |#3| (-817 |#1|))) (((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|) (-1 (-820 |#1| |#5|) |#3| (-823 |#1|) (-820 |#1| |#5|))) 16))) +(((-867 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1524 ((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|) (-1 (-820 |#1| |#5|) |#3| (-823 |#1|) (-820 |#1| |#5|)))) (IF (|has| |#3| (-817 |#1|)) (-15 -1524 ((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|))) |%noBranch|)) (-1016) (-732) (-786) (-13 (-973) (-786) (-817 |#1|)) (-13 (-880 |#4| |#2| |#3|) (-564 (-823 |#1|)))) (T -867)) +((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) (-4 *3 (-13 (-880 *8 *6 *7) (-564 *4))) (-5 *4 (-823 *5)) (-4 *7 (-817 *5)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-13 (-973) (-786) (-817 *5))) (-5 *1 (-867 *5 *6 *7 *8 *3)))) (-1524 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-820 *6 *3) *8 (-823 *6) (-820 *6 *3))) (-4 *8 (-786)) (-5 *2 (-820 *6 *3)) (-5 *4 (-823 *6)) (-4 *6 (-1016)) (-4 *3 (-13 (-880 *9 *7 *8) (-564 *4))) (-4 *7 (-732)) (-4 *9 (-13 (-973) (-786) (-817 *6))) (-5 *1 (-867 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -1524 ((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|) (-1 (-820 |#1| |#5|) |#3| (-823 |#1|) (-820 |#1| |#5|)))) (IF (|has| |#3| (-817 |#1|)) (-15 -1524 ((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|))) |%noBranch|)) +((-3035 ((|#2| |#2| (-589 (-1 (-108) |#3|))) 11) ((|#2| |#2| (-1 (-108) |#3|)) 12))) +(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -3035 (|#2| |#2| (-1 (-108) |#3|))) (-15 -3035 (|#2| |#2| (-589 (-1 (-108) |#3|))))) (-786) (-406 |#1|) (-1123)) (T -868)) +((-3035 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-1 (-108) *5))) (-4 *5 (-1123)) (-4 *4 (-786)) (-5 *1 (-868 *4 *2 *5)) (-4 *2 (-406 *4)))) (-3035 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1123)) (-4 *4 (-786)) (-5 *1 (-868 *4 *2 *5)) (-4 *2 (-406 *4))))) +(-10 -7 (-15 -3035 (|#2| |#2| (-1 (-108) |#3|))) (-15 -3035 (|#2| |#2| (-589 (-1 (-108) |#3|))))) +((-3035 (((-292 (-523)) (-1087) (-589 (-1 (-108) |#1|))) 16) (((-292 (-523)) (-1087) (-1 (-108) |#1|)) 13))) +(((-869 |#1|) (-10 -7 (-15 -3035 ((-292 (-523)) (-1087) (-1 (-108) |#1|))) (-15 -3035 ((-292 (-523)) (-1087) (-589 (-1 (-108) |#1|))))) (-1123)) (T -869)) +((-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-589 (-1 (-108) *5))) (-4 *5 (-1123)) (-5 *2 (-292 (-523))) (-5 *1 (-869 *5)))) (-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1123)) (-5 *2 (-292 (-523))) (-5 *1 (-869 *5))))) +(-10 -7 (-15 -3035 ((-292 (-523)) (-1087) (-1 (-108) |#1|))) (-15 -3035 ((-292 (-523)) (-1087) (-589 (-1 (-108) |#1|))))) +((-1524 (((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)) 25))) +(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -1524 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) (-1016) (-13 (-515) (-817 |#1|) (-564 (-823 |#1|))) (-921 |#2|)) (T -870)) +((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) (-4 *3 (-921 *6)) (-4 *6 (-13 (-515) (-817 *5) (-564 *4))) (-5 *4 (-823 *5)) (-5 *1 (-870 *5 *6 *3))))) +(-10 -7 (-15 -1524 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) +((-1524 (((-820 |#1| (-1087)) (-1087) (-823 |#1|) (-820 |#1| (-1087))) 17))) +(((-871 |#1|) (-10 -7 (-15 -1524 ((-820 |#1| (-1087)) (-1087) (-823 |#1|) (-820 |#1| (-1087))))) (-1016)) (T -871)) +((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 (-1087))) (-5 *3 (-1087)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-5 *1 (-871 *5))))) +(-10 -7 (-15 -1524 ((-820 |#1| (-1087)) (-1087) (-823 |#1|) (-820 |#1| (-1087))))) +((-3243 (((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))) 33)) (-1524 (((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-1 |#3| (-589 |#3|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))) 32))) +(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -1524 ((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-1 |#3| (-589 |#3|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) (-15 -3243 ((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))))) (-1016) (-13 (-973) (-786)) (-13 (-973) (-564 (-823 |#1|)) (-964 |#2|))) (T -872)) +((-3243 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-823 *6))) (-5 *5 (-1 (-820 *6 *8) *8 (-823 *6) (-820 *6 *8))) (-4 *6 (-1016)) (-4 *8 (-13 (-973) (-564 (-823 *6)) (-964 *7))) (-5 *2 (-820 *6 *8)) (-4 *7 (-13 (-973) (-786))) (-5 *1 (-872 *6 *7 *8)))) (-1524 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-589 (-823 *7))) (-5 *5 (-1 *9 (-589 *9))) (-5 *6 (-1 (-820 *7 *9) *9 (-823 *7) (-820 *7 *9))) (-4 *7 (-1016)) (-4 *9 (-13 (-973) (-564 (-823 *7)) (-964 *8))) (-5 *2 (-820 *7 *9)) (-5 *3 (-589 *9)) (-4 *8 (-13 (-973) (-786))) (-5 *1 (-872 *7 *8 *9))))) +(-10 -7 (-15 -1524 ((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-1 |#3| (-589 |#3|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) (-15 -3243 ((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))))) +((-1720 (((-1083 (-383 (-523))) (-523)) 63)) (-2189 (((-1083 (-523)) (-523)) 66)) (-3374 (((-1083 (-523)) (-523)) 60)) (-1737 (((-523) (-1083 (-523))) 55)) (-2873 (((-1083 (-383 (-523))) (-523)) 49)) (-3315 (((-1083 (-523)) (-523)) 38)) (-3099 (((-1083 (-523)) (-523)) 68)) (-4082 (((-1083 (-523)) (-523)) 67)) (-2363 (((-1083 (-383 (-523))) (-523)) 51))) +(((-873) (-10 -7 (-15 -2363 ((-1083 (-383 (-523))) (-523))) (-15 -4082 ((-1083 (-523)) (-523))) (-15 -3099 ((-1083 (-523)) (-523))) (-15 -3315 ((-1083 (-523)) (-523))) (-15 -2873 ((-1083 (-383 (-523))) (-523))) (-15 -1737 ((-523) (-1083 (-523)))) (-15 -3374 ((-1083 (-523)) (-523))) (-15 -2189 ((-1083 (-523)) (-523))) (-15 -1720 ((-1083 (-383 (-523))) (-523))))) (T -873)) +((-1720 (*1 *2 *3) (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523)))) (-2189 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-3374 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-1083 (-523))) (-5 *2 (-523)) (-5 *1 (-873)))) (-2873 (*1 *2 *3) (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523)))) (-3315 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-3099 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-4082 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-2363 (*1 *2 *3) (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523))))) +(-10 -7 (-15 -2363 ((-1083 (-383 (-523))) (-523))) (-15 -4082 ((-1083 (-523)) (-523))) (-15 -3099 ((-1083 (-523)) (-523))) (-15 -3315 ((-1083 (-523)) (-523))) (-15 -2873 ((-1083 (-383 (-523))) (-523))) (-15 -1737 ((-523) (-1083 (-523)))) (-15 -3374 ((-1083 (-523)) (-523))) (-15 -2189 ((-1083 (-523)) (-523))) (-15 -1720 ((-1083 (-383 (-523))) (-523)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1709 (($ (-710)) NIL (|has| |#1| (-23)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1632 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4249))) (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| |#1| (-786))))) (-1581 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#1| $ (-523) |#1|) 11 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) NIL (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) NIL)) (-3449 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-3171 (($ (-589 |#1|)) 13)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-2359 (((-629 |#1|) $ $) NIL (|has| |#1| (-973)))) (-3733 (($ (-710) |#1|) 8)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) 10 (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3780 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2169 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-1418 (((-108) $ (-710)) NIL)) (-2616 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2912 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2428 ((|#1| $) NIL (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4141 (($ $ |#1|) NIL (|has| $ (-6 -4249)))) (-3053 (($ $ (-589 |#1|)) 26)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) 20) (($ $ (-1136 (-523))) NIL)) (-3839 ((|#1| $ $) NIL (|has| |#1| (-973)))) (-3314 (((-852) $) 16)) (-1499 (($ $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-3203 (($ $ $) 24)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| |#1| (-564 (-499)))) (($ (-589 |#1|)) 17)) (-1704 (($ (-589 |#1|)) NIL)) (-2394 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-589 $)) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4060 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4045 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-523) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-666))) (($ $ |#1|) NIL (|has| |#1| (-666)))) (-2810 (((-710) $) 14 (|has| $ (-6 -4248))))) (((-874 |#1|) (-909 |#1|) (-973)) (T -874)) NIL (-909 |#1|) -((-1438 (((-455 |#1| |#2|) (-883 |#2|)) 17)) (-1276 (((-225 |#1| |#2|) (-883 |#2|)) 29)) (-2187 (((-883 |#2|) (-455 |#1| |#2|)) 22)) (-1734 (((-225 |#1| |#2|) (-455 |#1| |#2|)) 53)) (-3025 (((-883 |#2|) (-225 |#1| |#2|)) 26)) (-2740 (((-455 |#1| |#2|) (-225 |#1| |#2|)) 44))) -(((-875 |#1| |#2|) (-10 -7 (-15 -2740 ((-455 |#1| |#2|) (-225 |#1| |#2|))) (-15 -1734 ((-225 |#1| |#2|) (-455 |#1| |#2|))) (-15 -1438 ((-455 |#1| |#2|) (-883 |#2|))) (-15 -2187 ((-883 |#2|) (-455 |#1| |#2|))) (-15 -3025 ((-883 |#2|) (-225 |#1| |#2|))) (-15 -1276 ((-225 |#1| |#2|) (-883 |#2|)))) (-589 (-1087)) (-973)) (T -875)) -((-1276 (*1 *2 *3) (-12 (-5 *3 (-883 *5)) (-4 *5 (-973)) (-5 *2 (-225 *4 *5)) (-5 *1 (-875 *4 *5)) (-14 *4 (-589 (-1087))))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) (-5 *2 (-883 *5)) (-5 *1 (-875 *4 *5)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-455 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) (-5 *2 (-883 *5)) (-5 *1 (-875 *4 *5)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-883 *5)) (-4 *5 (-973)) (-5 *2 (-455 *4 *5)) (-5 *1 (-875 *4 *5)) (-14 *4 (-589 (-1087))))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-455 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) (-5 *2 (-225 *4 *5)) (-5 *1 (-875 *4 *5)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) (-5 *2 (-455 *4 *5)) (-5 *1 (-875 *4 *5))))) -(-10 -7 (-15 -2740 ((-455 |#1| |#2|) (-225 |#1| |#2|))) (-15 -1734 ((-225 |#1| |#2|) (-455 |#1| |#2|))) (-15 -1438 ((-455 |#1| |#2|) (-883 |#2|))) (-15 -2187 ((-883 |#2|) (-455 |#1| |#2|))) (-15 -3025 ((-883 |#2|) (-225 |#1| |#2|))) (-15 -1276 ((-225 |#1| |#2|) (-883 |#2|)))) -((-2949 (((-589 |#2|) |#2| |#2|) 10)) (-2560 (((-710) (-589 |#1|)) 38 (|has| |#1| (-784)))) (-1507 (((-589 |#2|) |#2|) 11)) (-1271 (((-710) (-589 |#1|) (-523) (-523)) 37 (|has| |#1| (-784)))) (-1478 ((|#1| |#2|) 33 (|has| |#1| (-784))))) -(((-876 |#1| |#2|) (-10 -7 (-15 -2949 ((-589 |#2|) |#2| |#2|)) (-15 -1507 ((-589 |#2|) |#2|)) (IF (|has| |#1| (-784)) (PROGN (-15 -1478 (|#1| |#2|)) (-15 -2560 ((-710) (-589 |#1|))) (-15 -1271 ((-710) (-589 |#1|) (-523) (-523)))) |%noBranch|)) (-339) (-1144 |#1|)) (T -876)) -((-1271 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-523)) (-4 *5 (-784)) (-4 *5 (-339)) (-5 *2 (-710)) (-5 *1 (-876 *5 *6)) (-4 *6 (-1144 *5)))) (-2560 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-784)) (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-876 *4 *5)) (-4 *5 (-1144 *4)))) (-1478 (*1 *2 *3) (-12 (-4 *2 (-339)) (-4 *2 (-784)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1144 *2)))) (-1507 (*1 *2 *3) (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1144 *4)))) (-2949 (*1 *2 *3 *3) (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1144 *4))))) -(-10 -7 (-15 -2949 ((-589 |#2|) |#2| |#2|)) (-15 -1507 ((-589 |#2|) |#2|)) (IF (|has| |#1| (-784)) (PROGN (-15 -1478 (|#1| |#2|)) (-15 -2560 ((-710) (-589 |#1|))) (-15 -1271 ((-710) (-589 |#1|) (-523) (-523)))) |%noBranch|)) -((-3612 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 18))) -(((-877 |#1| |#2|) (-10 -7 (-15 -3612 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-973) (-973)) (T -877)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-883 *6)) (-5 *1 (-877 *5 *6))))) -(-10 -7 (-15 -3612 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) -((-1786 (((-1141 |#1| (-883 |#2|)) (-883 |#2|) (-1164 |#1|)) 18))) -(((-878 |#1| |#2|) (-10 -7 (-15 -1786 ((-1141 |#1| (-883 |#2|)) (-883 |#2|) (-1164 |#1|)))) (-1087) (-973)) (T -878)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *4 (-1164 *5)) (-14 *5 (-1087)) (-4 *6 (-973)) (-5 *2 (-1141 *5 (-883 *6))) (-5 *1 (-878 *5 *6)) (-5 *3 (-883 *6))))) -(-10 -7 (-15 -1786 ((-1141 |#1| (-883 |#2|)) (-883 |#2|) (-1164 |#1|)))) -((-3893 (((-710) $) 70) (((-710) $ (-589 |#4|)) 73)) (-2291 (($ $) 170)) (-3614 (((-394 $) $) 162)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 113)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) NIL) (((-523) $) NIL) ((|#4| $) 58)) (-3078 (($ $ $ |#4|) 75)) (-2381 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) 103) (((-629 |#2|) (-629 $)) 96)) (-2528 (($ $) 177) (($ $ |#4|) 180)) (-3799 (((-589 $) $) 62)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 195) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 189)) (-3679 (((-589 $) $) 28)) (-1933 (($ |#2| |#3|) NIL) (($ $ |#4| (-710)) NIL) (($ $ (-589 |#4|) (-589 (-710))) 56)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#4|) 159)) (-3226 (((-3 (-589 $) "failed") $) 42)) (-4006 (((-3 (-589 $) "failed") $) 31)) (-2630 (((-3 (-2 (|:| |var| |#4|) (|:| -2735 (-710))) "failed") $) 46)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 106)) (-1219 (((-394 (-1083 $)) (-1083 $)) 119)) (-3967 (((-394 (-1083 $)) (-1083 $)) 117)) (-1820 (((-394 $) $) 137)) (-2679 (($ $ (-589 (-271 $))) 20) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-589 |#4|) (-589 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-589 |#4|) (-589 $)) NIL)) (-3549 (($ $ |#4|) 77)) (-3663 (((-823 (-355)) $) 209) (((-823 (-523)) $) 202) (((-499) $) 217)) (-2438 ((|#2| $) NIL) (($ $ |#4|) 172)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 151)) (-2365 ((|#2| $ |#3|) NIL) (($ $ |#4| (-710)) 51) (($ $ (-589 |#4|) (-589 (-710))) 54)) (-3901 (((-3 $ "failed") $) 153)) (-4007 (((-108) $ $) 183))) -(((-879 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3967 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1219 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -3391 ((-3 (-1168 |#1|) "failed") (-629 |#1|))) (-15 -2528 (|#1| |#1| |#4|)) (-15 -2438 (|#1| |#1| |#4|)) (-15 -3549 (|#1| |#1| |#4|)) (-15 -3078 (|#1| |#1| |#1| |#4|)) (-15 -3799 ((-589 |#1|) |#1|)) (-15 -3893 ((-710) |#1| (-589 |#4|))) (-15 -3893 ((-710) |#1|)) (-15 -2630 ((-3 (-2 (|:| |var| |#4|) (|:| -2735 (-710))) "failed") |#1|)) (-15 -3226 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -4006 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -1933 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -1933 (|#1| |#1| |#4| (-710))) (-15 -2981 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1| |#4|)) (-15 -3679 ((-589 |#1|) |#1|)) (-15 -2365 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -2365 (|#1| |#1| |#4| (-710))) (-15 -2381 ((-629 |#2|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3474 (|#4| |#1|)) (-15 -3517 ((-3 |#4| "failed") |#1|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#4| |#1|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#4| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -1933 (|#1| |#2| |#3|)) (-15 -2365 (|#2| |#1| |#3|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -2528 (|#1| |#1|))) (-880 |#2| |#3| |#4|) (-973) (-732) (-786)) (T -879)) -NIL -(-10 -8 (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3967 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1219 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -3391 ((-3 (-1168 |#1|) "failed") (-629 |#1|))) (-15 -2528 (|#1| |#1| |#4|)) (-15 -2438 (|#1| |#1| |#4|)) (-15 -3549 (|#1| |#1| |#4|)) (-15 -3078 (|#1| |#1| |#1| |#4|)) (-15 -3799 ((-589 |#1|) |#1|)) (-15 -3893 ((-710) |#1| (-589 |#4|))) (-15 -3893 ((-710) |#1|)) (-15 -2630 ((-3 (-2 (|:| |var| |#4|) (|:| -2735 (-710))) "failed") |#1|)) (-15 -3226 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -4006 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -1933 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -1933 (|#1| |#1| |#4| (-710))) (-15 -2981 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1| |#4|)) (-15 -3679 ((-589 |#1|) |#1|)) (-15 -2365 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -2365 (|#1| |#1| |#4| (-710))) (-15 -2381 ((-629 |#2|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3474 (|#4| |#1|)) (-15 -3517 ((-3 |#4| "failed") |#1|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#4| |#1|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#4| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -1933 (|#1| |#2| |#3|)) (-15 -2365 (|#2| |#1| |#3|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -2528 (|#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 |#3|) $) 110)) (-1786 (((-1083 $) $ |#3|) 125) (((-1083 |#1|) $) 124)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 87 (|has| |#1| (-515)))) (-3345 (($ $) 88 (|has| |#1| (-515)))) (-3331 (((-108) $) 90 (|has| |#1| (-515)))) (-3893 (((-710) $) 112) (((-710) $ (-589 |#3|)) 111)) (-3212 (((-3 $ "failed") $ $) 19)) (-3156 (((-394 (-1083 $)) (-1083 $)) 100 (|has| |#1| (-840)))) (-2291 (($ $) 98 (|has| |#1| (-427)))) (-3614 (((-394 $) $) 97 (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-840)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 164) (((-3 (-383 (-523)) "failed") $) 162 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 160 (|has| |#1| (-964 (-523)))) (((-3 |#3| "failed") $) 136)) (-3474 ((|#1| $) 165) (((-383 (-523)) $) 161 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 159 (|has| |#1| (-964 (-523)))) ((|#3| $) 135)) (-3078 (($ $ $ |#3|) 108 (|has| |#1| (-158)))) (-3810 (($ $) 154)) (-2381 (((-629 (-523)) (-629 $)) 134 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 133 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 132) (((-629 |#1|) (-629 $)) 131)) (-2121 (((-3 $ "failed") $) 34)) (-2528 (($ $) 176 (|has| |#1| (-427))) (($ $ |#3|) 105 (|has| |#1| (-427)))) (-3799 (((-589 $) $) 109)) (-2657 (((-108) $) 96 (|has| |#1| (-840)))) (-1284 (($ $ |#1| |#2| $) 172)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 84 (-12 (|has| |#3| (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 83 (-12 (|has| |#3| (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-2023 (((-108) $) 31)) (-3554 (((-710) $) 169)) (-1945 (($ (-1083 |#1|) |#3|) 117) (($ (-1083 $) |#3|) 116)) (-3679 (((-589 $) $) 126)) (-2620 (((-108) $) 152)) (-1933 (($ |#1| |#2|) 153) (($ $ |#3| (-710)) 119) (($ $ (-589 |#3|) (-589 (-710))) 118)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#3|) 120)) (-1575 ((|#2| $) 170) (((-710) $ |#3|) 122) (((-589 (-710)) $ (-589 |#3|)) 121)) (-2454 (($ $ $) 79 (|has| |#1| (-786)))) (-2062 (($ $ $) 78 (|has| |#1| (-786)))) (-3782 (($ (-1 |#2| |#2|) $) 171)) (-3612 (($ (-1 |#1| |#1|) $) 151)) (-2520 (((-3 |#3| "failed") $) 123)) (-3774 (($ $) 149)) (-3786 ((|#1| $) 148)) (-3244 (($ (-589 $)) 94 (|has| |#1| (-427))) (($ $ $) 93 (|has| |#1| (-427)))) (-3779 (((-1070) $) 9)) (-3226 (((-3 (-589 $) "failed") $) 114)) (-4006 (((-3 (-589 $) "failed") $) 115)) (-2630 (((-3 (-2 (|:| |var| |#3|) (|:| -2735 (-710))) "failed") $) 113)) (-2783 (((-1034) $) 10)) (-3749 (((-108) $) 166)) (-3760 ((|#1| $) 167)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 95 (|has| |#1| (-427)))) (-3278 (($ (-589 $)) 92 (|has| |#1| (-427))) (($ $ $) 91 (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 101 (|has| |#1| (-840)))) (-1820 (((-394 $) $) 99 (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) 145) (($ $ (-271 $)) 144) (($ $ $ $) 143) (($ $ (-589 $) (-589 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-589 |#3|) (-589 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-589 |#3|) (-589 $)) 138)) (-3549 (($ $ |#3|) 107 (|has| |#1| (-158)))) (-3523 (($ $ |#3|) 42) (($ $ (-589 |#3|)) 41) (($ $ |#3| (-710)) 40) (($ $ (-589 |#3|) (-589 (-710))) 39)) (-2299 ((|#2| $) 150) (((-710) $ |#3|) 130) (((-589 (-710)) $ (-589 |#3|)) 129)) (-3663 (((-823 (-355)) $) 82 (-12 (|has| |#3| (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) 81 (-12 (|has| |#3| (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) 80 (-12 (|has| |#3| (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) 175 (|has| |#1| (-427))) (($ $ |#3|) 106 (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 104 (-4099 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-515))) (($ (-383 (-523))) 72 (-3262 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523))))))) (-1251 (((-589 |#1|) $) 168)) (-2365 ((|#1| $ |#2|) 155) (($ $ |#3| (-710)) 128) (($ $ (-589 |#3|) (-589 (-710))) 127)) (-3901 (((-3 $ "failed") $) 73 (-3262 (-4099 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) 29)) (-2276 (($ $ $ (-710)) 173 (|has| |#1| (-158)))) (-1704 (((-108) $ $) 89 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ |#3|) 38) (($ $ (-589 |#3|)) 37) (($ $ |#3| (-710)) 36) (($ $ (-589 |#3|) (-589 (-710))) 35)) (-4043 (((-108) $ $) 76 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 75 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 77 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 74 (|has| |#1| (-786)))) (-4098 (($ $ |#1|) 156 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 157 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +((-2129 (((-455 |#1| |#2|) (-883 |#2|)) 17)) (-4126 (((-225 |#1| |#2|) (-883 |#2|)) 29)) (-3884 (((-883 |#2|) (-455 |#1| |#2|)) 22)) (-1925 (((-225 |#1| |#2|) (-455 |#1| |#2|)) 53)) (-2283 (((-883 |#2|) (-225 |#1| |#2|)) 26)) (-1525 (((-455 |#1| |#2|) (-225 |#1| |#2|)) 44))) +(((-875 |#1| |#2|) (-10 -7 (-15 -1525 ((-455 |#1| |#2|) (-225 |#1| |#2|))) (-15 -1925 ((-225 |#1| |#2|) (-455 |#1| |#2|))) (-15 -2129 ((-455 |#1| |#2|) (-883 |#2|))) (-15 -3884 ((-883 |#2|) (-455 |#1| |#2|))) (-15 -2283 ((-883 |#2|) (-225 |#1| |#2|))) (-15 -4126 ((-225 |#1| |#2|) (-883 |#2|)))) (-589 (-1087)) (-973)) (T -875)) +((-4126 (*1 *2 *3) (-12 (-5 *3 (-883 *5)) (-4 *5 (-973)) (-5 *2 (-225 *4 *5)) (-5 *1 (-875 *4 *5)) (-14 *4 (-589 (-1087))))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) (-5 *2 (-883 *5)) (-5 *1 (-875 *4 *5)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-455 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) (-5 *2 (-883 *5)) (-5 *1 (-875 *4 *5)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-883 *5)) (-4 *5 (-973)) (-5 *2 (-455 *4 *5)) (-5 *1 (-875 *4 *5)) (-14 *4 (-589 (-1087))))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-455 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) (-5 *2 (-225 *4 *5)) (-5 *1 (-875 *4 *5)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) (-5 *2 (-455 *4 *5)) (-5 *1 (-875 *4 *5))))) +(-10 -7 (-15 -1525 ((-455 |#1| |#2|) (-225 |#1| |#2|))) (-15 -1925 ((-225 |#1| |#2|) (-455 |#1| |#2|))) (-15 -2129 ((-455 |#1| |#2|) (-883 |#2|))) (-15 -3884 ((-883 |#2|) (-455 |#1| |#2|))) (-15 -2283 ((-883 |#2|) (-225 |#1| |#2|))) (-15 -4126 ((-225 |#1| |#2|) (-883 |#2|)))) +((-2757 (((-589 |#2|) |#2| |#2|) 10)) (-3312 (((-710) (-589 |#1|)) 37 (|has| |#1| (-784)))) (-1641 (((-589 |#2|) |#2|) 11)) (-4067 (((-710) (-589 |#1|) (-523) (-523)) 36 (|has| |#1| (-784)))) (-1375 ((|#1| |#2|) 32 (|has| |#1| (-784))))) +(((-876 |#1| |#2|) (-10 -7 (-15 -2757 ((-589 |#2|) |#2| |#2|)) (-15 -1641 ((-589 |#2|) |#2|)) (IF (|has| |#1| (-784)) (PROGN (-15 -1375 (|#1| |#2|)) (-15 -3312 ((-710) (-589 |#1|))) (-15 -4067 ((-710) (-589 |#1|) (-523) (-523)))) |%noBranch|)) (-339) (-1145 |#1|)) (T -876)) +((-4067 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-523)) (-4 *5 (-784)) (-4 *5 (-339)) (-5 *2 (-710)) (-5 *1 (-876 *5 *6)) (-4 *6 (-1145 *5)))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-784)) (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-876 *4 *5)) (-4 *5 (-1145 *4)))) (-1375 (*1 *2 *3) (-12 (-4 *2 (-339)) (-4 *2 (-784)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1145 *2)))) (-1641 (*1 *2 *3) (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2757 (*1 *2 *3 *3) (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) +(-10 -7 (-15 -2757 ((-589 |#2|) |#2| |#2|)) (-15 -1641 ((-589 |#2|) |#2|)) (IF (|has| |#1| (-784)) (PROGN (-15 -1375 (|#1| |#2|)) (-15 -3312 ((-710) (-589 |#1|))) (-15 -4067 ((-710) (-589 |#1|) (-523) (-523)))) |%noBranch|)) +((-1345 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 18))) +(((-877 |#1| |#2|) (-10 -7 (-15 -1345 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-973) (-973)) (T -877)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-883 *6)) (-5 *1 (-877 *5 *6))))) +(-10 -7 (-15 -1345 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) +((-2389 (((-1142 |#1| (-883 |#2|)) (-883 |#2|) (-1165 |#1|)) 18))) +(((-878 |#1| |#2|) (-10 -7 (-15 -2389 ((-1142 |#1| (-883 |#2|)) (-883 |#2|) (-1165 |#1|)))) (-1087) (-973)) (T -878)) +((-2389 (*1 *2 *3 *4) (-12 (-5 *4 (-1165 *5)) (-14 *5 (-1087)) (-4 *6 (-973)) (-5 *2 (-1142 *5 (-883 *6))) (-5 *1 (-878 *5 *6)) (-5 *3 (-883 *6))))) +(-10 -7 (-15 -2389 ((-1142 |#1| (-883 |#2|)) (-883 |#2|) (-1165 |#1|)))) +((-1877 (((-710) $) 70) (((-710) $ (-589 |#4|)) 73)) (-3718 (($ $) 171)) (-4226 (((-394 $) $) 163)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 114)) (-1220 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-3508 ((|#2| $) NIL) (((-383 (-523)) $) NIL) (((-523) $) NIL) ((|#4| $) 58)) (-1611 (($ $ $ |#4|) 75)) (-2243 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) 104) (((-629 |#2|) (-629 $)) 97)) (-1272 (($ $) 178) (($ $ |#4|) 181)) (-1447 (((-589 $) $) 62)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 196) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 190)) (-3560 (((-589 $) $) 27)) (-1267 (($ |#2| |#3|) NIL) (($ $ |#4| (-710)) NIL) (($ $ (-589 |#4|) (-589 (-710))) 56)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ |#4|) 160)) (-3538 (((-3 (-589 $) "failed") $) 41)) (-3478 (((-3 (-589 $) "failed") $) 30)) (-2790 (((-3 (-2 (|:| |var| |#4|) (|:| -1475 (-710))) "failed") $) 46)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 107)) (-1708 (((-394 (-1083 $)) (-1083 $)) 120)) (-1417 (((-394 (-1083 $)) (-1083 $)) 118)) (-2424 (((-394 $) $) 138)) (-2812 (($ $ (-589 (-271 $))) 20) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-589 |#4|) (-589 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-589 |#4|) (-589 $)) NIL)) (-1744 (($ $ |#4|) 77)) (-1400 (((-823 (-355)) $) 210) (((-823 (-523)) $) 203) (((-499) $) 218)) (-1618 ((|#2| $) NIL) (($ $ |#4|) 173)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 152)) (-2084 ((|#2| $ |#3|) NIL) (($ $ |#4| (-710)) 51) (($ $ (-589 |#4|) (-589 (-710))) 54)) (-1942 (((-3 $ "failed") $) 154)) (-3966 (((-108) $ $) 184))) +(((-879 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3120 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -4226 ((-394 |#1|) |#1|)) (-15 -3718 (|#1| |#1|)) (-15 -1942 ((-3 |#1| "failed") |#1|)) (-15 -3966 ((-108) |#1| |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -1400 ((-823 (-523)) |#1|)) (-15 -1400 ((-823 (-355)) |#1|)) (-15 -1524 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -1524 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -2424 ((-394 |#1|) |#1|)) (-15 -1417 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1708 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3302 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -2593 ((-3 (-1169 |#1|) "failed") (-629 |#1|))) (-15 -1272 (|#1| |#1| |#4|)) (-15 -1618 (|#1| |#1| |#4|)) (-15 -1744 (|#1| |#1| |#4|)) (-15 -1611 (|#1| |#1| |#1| |#4|)) (-15 -1447 ((-589 |#1|) |#1|)) (-15 -1877 ((-710) |#1| (-589 |#4|))) (-15 -1877 ((-710) |#1|)) (-15 -2790 ((-3 (-2 (|:| |var| |#4|) (|:| -1475 (-710))) "failed") |#1|)) (-15 -3538 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -3478 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -1267 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -1267 (|#1| |#1| |#4| (-710))) (-15 -3052 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1| |#4|)) (-15 -3560 ((-589 |#1|) |#1|)) (-15 -2084 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -2084 (|#1| |#1| |#4| (-710))) (-15 -2243 ((-629 |#2|) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-629 (-523)) (-629 |#1|))) (-15 -3508 (|#4| |#1|)) (-15 -1220 ((-3 |#4| "failed") |#1|)) (-15 -2812 (|#1| |#1| (-589 |#4|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#4| |#1|)) (-15 -2812 (|#1| |#1| (-589 |#4|) (-589 |#2|))) (-15 -2812 (|#1| |#1| |#4| |#2|)) (-15 -2812 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| (-271 |#1|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -1267 (|#1| |#2| |#3|)) (-15 -2084 (|#2| |#1| |#3|)) (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -1272 (|#1| |#1|))) (-880 |#2| |#3| |#4|) (-973) (-732) (-786)) (T -879)) +NIL +(-10 -8 (-15 -3120 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -4226 ((-394 |#1|) |#1|)) (-15 -3718 (|#1| |#1|)) (-15 -1942 ((-3 |#1| "failed") |#1|)) (-15 -3966 ((-108) |#1| |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -1400 ((-823 (-523)) |#1|)) (-15 -1400 ((-823 (-355)) |#1|)) (-15 -1524 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -1524 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -2424 ((-394 |#1|) |#1|)) (-15 -1417 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1708 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3302 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -2593 ((-3 (-1169 |#1|) "failed") (-629 |#1|))) (-15 -1272 (|#1| |#1| |#4|)) (-15 -1618 (|#1| |#1| |#4|)) (-15 -1744 (|#1| |#1| |#4|)) (-15 -1611 (|#1| |#1| |#1| |#4|)) (-15 -1447 ((-589 |#1|) |#1|)) (-15 -1877 ((-710) |#1| (-589 |#4|))) (-15 -1877 ((-710) |#1|)) (-15 -2790 ((-3 (-2 (|:| |var| |#4|) (|:| -1475 (-710))) "failed") |#1|)) (-15 -3538 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -3478 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -1267 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -1267 (|#1| |#1| |#4| (-710))) (-15 -3052 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1| |#4|)) (-15 -3560 ((-589 |#1|) |#1|)) (-15 -2084 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -2084 (|#1| |#1| |#4| (-710))) (-15 -2243 ((-629 |#2|) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-629 (-523)) (-629 |#1|))) (-15 -3508 (|#4| |#1|)) (-15 -1220 ((-3 |#4| "failed") |#1|)) (-15 -2812 (|#1| |#1| (-589 |#4|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#4| |#1|)) (-15 -2812 (|#1| |#1| (-589 |#4|) (-589 |#2|))) (-15 -2812 (|#1| |#1| |#4| |#2|)) (-15 -2812 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| (-271 |#1|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -1267 (|#1| |#2| |#3|)) (-15 -2084 (|#2| |#1| |#3|)) (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -1272 (|#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1292 (((-589 |#3|) $) 110)) (-2389 (((-1083 $) $ |#3|) 125) (((-1083 |#1|) $) 124)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 87 (|has| |#1| (-515)))) (-3306 (($ $) 88 (|has| |#1| (-515)))) (-3174 (((-108) $) 90 (|has| |#1| (-515)))) (-1877 (((-710) $) 112) (((-710) $ (-589 |#3|)) 111)) (-3405 (((-3 $ "failed") $ $) 19)) (-4130 (((-394 (-1083 $)) (-1083 $)) 100 (|has| |#1| (-840)))) (-3718 (($ $) 98 (|has| |#1| (-427)))) (-4226 (((-394 $) $) 97 (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-840)))) (-4189 (($) 17 T CONST)) (-1220 (((-3 |#1| "failed") $) 164) (((-3 (-383 (-523)) "failed") $) 162 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 160 (|has| |#1| (-964 (-523)))) (((-3 |#3| "failed") $) 136)) (-3508 ((|#1| $) 165) (((-383 (-523)) $) 161 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 159 (|has| |#1| (-964 (-523)))) ((|#3| $) 135)) (-1611 (($ $ $ |#3|) 108 (|has| |#1| (-158)))) (-1457 (($ $) 154)) (-2243 (((-629 (-523)) (-629 $)) 134 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 133 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 132) (((-629 |#1|) (-629 $)) 131)) (-1444 (((-3 $ "failed") $) 34)) (-1272 (($ $) 176 (|has| |#1| (-427))) (($ $ |#3|) 105 (|has| |#1| (-427)))) (-1447 (((-589 $) $) 109)) (-3049 (((-108) $) 96 (|has| |#1| (-840)))) (-4222 (($ $ |#1| |#2| $) 172)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 84 (-12 (|has| |#3| (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 83 (-12 (|has| |#3| (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-2769 (((-108) $) 31)) (-1789 (((-710) $) 169)) (-1280 (($ (-1083 |#1|) |#3|) 117) (($ (-1083 $) |#3|) 116)) (-3560 (((-589 $) $) 126)) (-2704 (((-108) $) 152)) (-1267 (($ |#1| |#2|) 153) (($ $ |#3| (-710)) 119) (($ $ (-589 |#3|) (-589 (-710))) 118)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ |#3|) 120)) (-4047 ((|#2| $) 170) (((-710) $ |#3|) 122) (((-589 (-710)) $ (-589 |#3|)) 121)) (-3239 (($ $ $) 79 (|has| |#1| (-786)))) (-3158 (($ $ $) 78 (|has| |#1| (-786)))) (-2041 (($ (-1 |#2| |#2|) $) 171)) (-1345 (($ (-1 |#1| |#1|) $) 151)) (-4213 (((-3 |#3| "failed") $) 123)) (-1427 (($ $) 149)) (-1437 ((|#1| $) 148)) (-3278 (($ (-589 $)) 94 (|has| |#1| (-427))) (($ $ $) 93 (|has| |#1| (-427)))) (-2032 (((-1070) $) 9)) (-3538 (((-3 (-589 $) "failed") $) 114)) (-3478 (((-3 (-589 $) "failed") $) 115)) (-2790 (((-3 (-2 (|:| |var| |#3|) (|:| -1475 (-710))) "failed") $) 113)) (-3951 (((-1034) $) 10)) (-1408 (((-108) $) 166)) (-1419 ((|#1| $) 167)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 95 (|has| |#1| (-427)))) (-3310 (($ (-589 $)) 92 (|has| |#1| (-427))) (($ $ $) 91 (|has| |#1| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) 101 (|has| |#1| (-840)))) (-2424 (((-394 $) $) 99 (|has| |#1| (-840)))) (-4007 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-515)))) (-2812 (($ $ (-589 (-271 $))) 145) (($ $ (-271 $)) 144) (($ $ $ $) 143) (($ $ (-589 $) (-589 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-589 |#3|) (-589 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-589 |#3|) (-589 $)) 138)) (-1744 (($ $ |#3|) 107 (|has| |#1| (-158)))) (-3984 (($ $ |#3|) 42) (($ $ (-589 |#3|)) 41) (($ $ |#3| (-710)) 40) (($ $ (-589 |#3|) (-589 (-710))) 39)) (-2640 ((|#2| $) 150) (((-710) $ |#3|) 130) (((-589 (-710)) $ (-589 |#3|)) 129)) (-1400 (((-823 (-355)) $) 82 (-12 (|has| |#3| (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) 81 (-12 (|has| |#3| (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) 80 (-12 (|has| |#3| (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-1618 ((|#1| $) 175 (|has| |#1| (-427))) (($ $ |#3|) 106 (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 104 (-3147 (|has| $ (-134)) (|has| |#1| (-840))))) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-515))) (($ (-383 (-523))) 72 (-3172 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523))))))) (-3819 (((-589 |#1|) $) 168)) (-2084 ((|#1| $ |#2|) 155) (($ $ |#3| (-710)) 128) (($ $ (-589 |#3|) (-589 (-710))) 127)) (-1942 (((-3 $ "failed") $) 73 (-3172 (-3147 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) 29)) (-3553 (($ $ $ (-710)) 173 (|has| |#1| (-158)))) (-2801 (((-108) $ $) 89 (|has| |#1| (-515)))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ |#3|) 38) (($ $ (-589 |#3|)) 37) (($ $ |#3| (-710)) 36) (($ $ (-589 |#3|) (-589 (-710))) 35)) (-4006 (((-108) $ $) 76 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 75 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 77 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 74 (|has| |#1| (-786)))) (-4074 (($ $ |#1|) 156 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 157 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 147) (($ $ |#1|) 146))) (((-880 |#1| |#2| |#3|) (-129) (-973) (-732) (-786)) (T -880)) -((-2528 (*1 *1 *1) (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-2299 (*1 *2 *1 *3) (-12 (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-710)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-710))))) (-2365 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-880 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *2 (-786)))) (-2365 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 (-710))) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)))) (-3679 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) (-1786 (*1 *2 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-1083 *1)) (-4 *1 (-880 *4 *5 *3)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-1083 *3)))) (-2520 (*1 *2 *1) (|partial| -12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-1575 (*1 *2 *1 *3) (-12 (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-710)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-710))))) (-2981 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-880 *4 *5 *3)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-880 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *2 (-786)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 (-710))) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *4)) (-4 *4 (-973)) (-4 *1 (-880 *4 *5 *3)) (-4 *5 (-732)) (-4 *3 (-786)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)))) (-4006 (*1 *2 *1) (|partial| -12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) (-3226 (*1 *2 *1) (|partial| -12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) (-2630 (*1 *2 *1) (|partial| -12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| |var| *5) (|:| -2735 (-710)))))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-710)))) (-3893 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-710)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *5)))) (-3799 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) (-3078 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *3 (-158)))) (-3549 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *3 (-158)))) (-2438 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *3 (-427)))) (-2528 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *3 (-427)))) (-2291 (*1 *1 *1) (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-3614 (*1 *2 *1) (-12 (-4 *3 (-427)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-394 *1)) (-4 *1 (-880 *3 *4 *5))))) -(-13 (-831 |t#3|) (-302 |t#1| |t#2|) (-286 $) (-484 |t#3| |t#1|) (-484 |t#3| $) (-964 |t#3|) (-353 |t#1|) (-10 -8 (-15 -2299 ((-710) $ |t#3|)) (-15 -2299 ((-589 (-710)) $ (-589 |t#3|))) (-15 -2365 ($ $ |t#3| (-710))) (-15 -2365 ($ $ (-589 |t#3|) (-589 (-710)))) (-15 -3679 ((-589 $) $)) (-15 -1786 ((-1083 $) $ |t#3|)) (-15 -1786 ((-1083 |t#1|) $)) (-15 -2520 ((-3 |t#3| "failed") $)) (-15 -1575 ((-710) $ |t#3|)) (-15 -1575 ((-589 (-710)) $ (-589 |t#3|))) (-15 -2981 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |t#3|)) (-15 -1933 ($ $ |t#3| (-710))) (-15 -1933 ($ $ (-589 |t#3|) (-589 (-710)))) (-15 -1945 ($ (-1083 |t#1|) |t#3|)) (-15 -1945 ($ (-1083 $) |t#3|)) (-15 -4006 ((-3 (-589 $) "failed") $)) (-15 -3226 ((-3 (-589 $) "failed") $)) (-15 -2630 ((-3 (-2 (|:| |var| |t#3|) (|:| -2735 (-710))) "failed") $)) (-15 -3893 ((-710) $)) (-15 -3893 ((-710) $ (-589 |t#3|))) (-15 -1957 ((-589 |t#3|) $)) (-15 -3799 ((-589 $) $)) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (IF (|has| |t#3| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-564 (-823 (-523)))) (IF (|has| |t#3| (-564 (-823 (-523)))) (-6 (-564 (-823 (-523)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-564 (-823 (-355)))) (IF (|has| |t#3| (-564 (-823 (-355)))) (-6 (-564 (-823 (-355)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-817 (-523))) (IF (|has| |t#3| (-817 (-523))) (-6 (-817 (-523))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-817 (-355))) (IF (|has| |t#3| (-817 (-355))) (-6 (-817 (-355))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-158)) (PROGN (-15 -3078 ($ $ $ |t#3|)) (-15 -3549 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-427)) (PROGN (-6 (-427)) (-15 -2438 ($ $ |t#3|)) (-15 -2528 ($ $)) (-15 -2528 ($ $ |t#3|)) (-15 -3614 ((-394 $) $)) (-15 -2291 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4242)) (-6 -4242) |%noBranch|) (IF (|has| |t#1| (-840)) (-6 (-840)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-564 (-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523))))) ((-267) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-286 $) . T) ((-302 |#1| |#2|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3262 (|has| |#1| (-840)) (|has| |#1| (-427))) ((-484 |#3| |#1|) . T) ((-484 |#3| $) . T) ((-484 $ $) . T) ((-515) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 |#3|) . T) ((-817 (-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355)))) ((-817 (-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))) ((-840) |has| |#1| (-840)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-964 |#3|) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) |has| |#1| (-840))) -((-1957 (((-589 |#2|) |#5|) 36)) (-1786 (((-1083 |#5|) |#5| |#2| (-1083 |#5|)) 23) (((-383 (-1083 |#5|)) |#5| |#2|) 16)) (-1945 ((|#5| (-383 (-1083 |#5|)) |#2|) 30)) (-2520 (((-3 |#2| "failed") |#5|) 61)) (-3226 (((-3 (-589 |#5|) "failed") |#5|) 55)) (-1295 (((-3 (-2 (|:| |val| |#5|) (|:| -2735 (-523))) "failed") |#5|) 45)) (-4006 (((-3 (-589 |#5|) "failed") |#5|) 57)) (-2630 (((-3 (-2 (|:| |var| |#2|) (|:| -2735 (-523))) "failed") |#5|) 48))) -(((-881 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1957 ((-589 |#2|) |#5|)) (-15 -2520 ((-3 |#2| "failed") |#5|)) (-15 -1786 ((-383 (-1083 |#5|)) |#5| |#2|)) (-15 -1945 (|#5| (-383 (-1083 |#5|)) |#2|)) (-15 -1786 ((-1083 |#5|) |#5| |#2| (-1083 |#5|))) (-15 -4006 ((-3 (-589 |#5|) "failed") |#5|)) (-15 -3226 ((-3 (-589 |#5|) "failed") |#5|)) (-15 -2630 ((-3 (-2 (|:| |var| |#2|) (|:| -2735 (-523))) "failed") |#5|)) (-15 -1295 ((-3 (-2 (|:| |val| |#5|) (|:| -2735 (-523))) "failed") |#5|))) (-732) (-786) (-973) (-880 |#3| |#1| |#2|) (-13 (-339) (-10 -8 (-15 -1458 ($ |#4|)) (-15 -2785 (|#4| $)) (-15 -2797 (|#4| $))))) (T -881)) -((-1295 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2735 (-523)))) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) (-2630 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2735 (-523)))) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) (-3226 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *3)) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) (-4006 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *3)) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) (-1786 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))) (-4 *7 (-880 *6 *5 *4)) (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-973)) (-5 *1 (-881 *5 *4 *6 *7 *3)))) (-1945 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-1083 *2))) (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-973)) (-4 *2 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))) (-5 *1 (-881 *5 *4 *6 *7 *2)) (-4 *7 (-880 *6 *5 *4)))) (-1786 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *5 *4)) (-5 *2 (-383 (-1083 *3))) (-5 *1 (-881 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) (-2520 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-973)) (-4 *6 (-880 *5 *4 *2)) (-4 *2 (-786)) (-5 *1 (-881 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *6)) (-15 -2785 (*6 $)) (-15 -2797 (*6 $))))))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *5)) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $)))))))) -(-10 -7 (-15 -1957 ((-589 |#2|) |#5|)) (-15 -2520 ((-3 |#2| "failed") |#5|)) (-15 -1786 ((-383 (-1083 |#5|)) |#5| |#2|)) (-15 -1945 (|#5| (-383 (-1083 |#5|)) |#2|)) (-15 -1786 ((-1083 |#5|) |#5| |#2| (-1083 |#5|))) (-15 -4006 ((-3 (-589 |#5|) "failed") |#5|)) (-15 -3226 ((-3 (-589 |#5|) "failed") |#5|)) (-15 -2630 ((-3 (-2 (|:| |var| |#2|) (|:| -2735 (-523))) "failed") |#5|)) (-15 -1295 ((-3 (-2 (|:| |val| |#5|) (|:| -2735 (-523))) "failed") |#5|))) -((-3612 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-882 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3612 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-732) (-786) (-973) (-880 |#3| |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710)))))) (T -882)) -((-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-786)) (-4 *8 (-973)) (-4 *6 (-732)) (-4 *2 (-13 (-1016) (-10 -8 (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710)))))) (-5 *1 (-882 *6 *7 *8 *5 *2)) (-4 *5 (-880 *8 *6 *7))))) -(-10 -7 (-15 -3612 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1087)) $) 15)) (-1786 (((-1083 $) $ (-1087)) 21) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1087))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 8) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1087) "failed") $) NIL)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1087) $) NIL)) (-3078 (($ $ $ (-1087)) NIL (|has| |#1| (-158)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ (-1087)) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-495 (-1087)) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1087) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1087) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#1|) (-1087)) NIL) (($ (-1083 $) (-1087)) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-495 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1087)) NIL)) (-1575 (((-495 (-1087)) $) NIL) (((-710) $ (-1087)) NIL) (((-589 (-710)) $ (-589 (-1087))) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-495 (-1087)) (-495 (-1087))) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2520 (((-3 (-1087) "failed") $) 19)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-1087)) (|:| -2735 (-710))) "failed") $) NIL)) (-3417 (($ $ (-1087)) 29 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1087) |#1|) NIL) (($ $ (-589 (-1087)) (-589 |#1|)) NIL) (($ $ (-1087) $) NIL) (($ $ (-589 (-1087)) (-589 $)) NIL)) (-3549 (($ $ (-1087)) NIL (|has| |#1| (-158)))) (-3523 (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-2299 (((-495 (-1087)) $) NIL) (((-710) $ (-1087)) NIL) (((-589 (-710)) $ (-589 (-1087))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-1087) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1087) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1087) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-1087)) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) 25) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-1087)) 27) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-495 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-883 |#1|) (-13 (-880 |#1| (-495 (-1087)) (-1087)) (-10 -8 (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1087))) |%noBranch|))) (-973)) (T -883)) -((-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-883 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973))))) -(-13 (-880 |#1| (-495 (-1087)) (-1087)) (-10 -8 (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1087))) |%noBranch|))) -((-2257 (((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) |#3| (-710)) 37)) (-3556 (((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) (-383 (-523)) (-710)) 33)) (-3961 (((-2 (|:| -2735 (-710)) (|:| -2935 |#4|) (|:| |radicand| (-589 |#4|))) |#4| (-710)) 52)) (-1735 (((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) |#5| (-710)) 62 (|has| |#3| (-427))))) -(((-884 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2257 ((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) |#3| (-710))) (-15 -3556 ((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) (-383 (-523)) (-710))) (IF (|has| |#3| (-427)) (-15 -1735 ((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) |#5| (-710))) |%noBranch|) (-15 -3961 ((-2 (|:| -2735 (-710)) (|:| -2935 |#4|) (|:| |radicand| (-589 |#4|))) |#4| (-710)))) (-732) (-786) (-515) (-880 |#3| |#1| |#2|) (-13 (-339) (-10 -8 (-15 -2785 (|#4| $)) (-15 -2797 (|#4| $)) (-15 -1458 ($ |#4|))))) (T -884)) -((-3961 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) (-4 *3 (-880 *7 *5 *6)) (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *3) (|:| |radicand| (-589 *3)))) (-5 *1 (-884 *5 *6 *7 *3 *8)) (-5 *4 (-710)) (-4 *8 (-13 (-339) (-10 -8 (-15 -2785 (*3 $)) (-15 -2797 (*3 $)) (-15 -1458 ($ *3))))))) (-1735 (*1 *2 *3 *4) (-12 (-4 *7 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) (-4 *8 (-880 *7 *5 *6)) (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *3) (|:| |radicand| *3))) (-5 *1 (-884 *5 *6 *7 *8 *3)) (-5 *4 (-710)) (-4 *3 (-13 (-339) (-10 -8 (-15 -2785 (*8 $)) (-15 -2797 (*8 $)) (-15 -1458 ($ *8))))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-523))) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) (-4 *8 (-880 *7 *5 *6)) (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *9) (|:| |radicand| *9))) (-5 *1 (-884 *5 *6 *7 *8 *9)) (-5 *4 (-710)) (-4 *9 (-13 (-339) (-10 -8 (-15 -2785 (*8 $)) (-15 -2797 (*8 $)) (-15 -1458 ($ *8))))))) (-2257 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-515)) (-4 *7 (-880 *3 *5 *6)) (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *8) (|:| |radicand| *8))) (-5 *1 (-884 *5 *6 *3 *7 *8)) (-5 *4 (-710)) (-4 *8 (-13 (-339) (-10 -8 (-15 -2785 (*7 $)) (-15 -2797 (*7 $)) (-15 -1458 ($ *7)))))))) -(-10 -7 (-15 -2257 ((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) |#3| (-710))) (-15 -3556 ((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) (-383 (-523)) (-710))) (IF (|has| |#3| (-427)) (-15 -1735 ((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) |#5| (-710))) |%noBranch|) (-15 -3961 ((-2 (|:| -2735 (-710)) (|:| -2935 |#4|) (|:| |radicand| (-589 |#4|))) |#4| (-710)))) -((-2831 (((-1011 (-203)) $) 8)) (-2817 (((-1011 (-203)) $) 9)) (-4068 (((-589 (-589 (-874 (-203)))) $) 10)) (-1458 (((-794) $) 6))) +((-1272 (*1 *1 *1) (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-2640 (*1 *2 *1 *3) (-12 (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-710)))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-710))))) (-2084 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-880 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *2 (-786)))) (-2084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 (-710))) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)))) (-3560 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) (-2389 (*1 *2 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-1083 *1)) (-4 *1 (-880 *4 *5 *3)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-1083 *3)))) (-4213 (*1 *2 *1) (|partial| -12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-4047 (*1 *2 *1 *3) (-12 (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-710)))) (-4047 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-710))))) (-3052 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-880 *4 *5 *3)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-880 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *2 (-786)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 (-710))) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)))) (-1280 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *4)) (-4 *4 (-973)) (-4 *1 (-880 *4 *5 *3)) (-4 *5 (-732)) (-4 *3 (-786)))) (-1280 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)))) (-3478 (*1 *2 *1) (|partial| -12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) (-3538 (*1 *2 *1) (|partial| -12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) (-2790 (*1 *2 *1) (|partial| -12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| |var| *5) (|:| -1475 (-710)))))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-710)))) (-1877 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-710)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *5)))) (-1447 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) (-1611 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *3 (-158)))) (-1744 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *3 (-158)))) (-1618 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *3 (-427)))) (-1272 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *3 (-427)))) (-3718 (*1 *1 *1) (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-4226 (*1 *2 *1) (-12 (-4 *3 (-427)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-394 *1)) (-4 *1 (-880 *3 *4 *5))))) +(-13 (-831 |t#3|) (-302 |t#1| |t#2|) (-286 $) (-484 |t#3| |t#1|) (-484 |t#3| $) (-964 |t#3|) (-353 |t#1|) (-10 -8 (-15 -2640 ((-710) $ |t#3|)) (-15 -2640 ((-589 (-710)) $ (-589 |t#3|))) (-15 -2084 ($ $ |t#3| (-710))) (-15 -2084 ($ $ (-589 |t#3|) (-589 (-710)))) (-15 -3560 ((-589 $) $)) (-15 -2389 ((-1083 $) $ |t#3|)) (-15 -2389 ((-1083 |t#1|) $)) (-15 -4213 ((-3 |t#3| "failed") $)) (-15 -4047 ((-710) $ |t#3|)) (-15 -4047 ((-589 (-710)) $ (-589 |t#3|))) (-15 -3052 ((-2 (|:| -3070 $) (|:| -3969 $)) $ $ |t#3|)) (-15 -1267 ($ $ |t#3| (-710))) (-15 -1267 ($ $ (-589 |t#3|) (-589 (-710)))) (-15 -1280 ($ (-1083 |t#1|) |t#3|)) (-15 -1280 ($ (-1083 $) |t#3|)) (-15 -3478 ((-3 (-589 $) "failed") $)) (-15 -3538 ((-3 (-589 $) "failed") $)) (-15 -2790 ((-3 (-2 (|:| |var| |t#3|) (|:| -1475 (-710))) "failed") $)) (-15 -1877 ((-710) $)) (-15 -1877 ((-710) $ (-589 |t#3|))) (-15 -1292 ((-589 |t#3|) $)) (-15 -1447 ((-589 $) $)) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (IF (|has| |t#3| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-564 (-823 (-523)))) (IF (|has| |t#3| (-564 (-823 (-523)))) (-6 (-564 (-823 (-523)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-564 (-823 (-355)))) (IF (|has| |t#3| (-564 (-823 (-355)))) (-6 (-564 (-823 (-355)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-817 (-523))) (IF (|has| |t#3| (-817 (-523))) (-6 (-817 (-523))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-817 (-355))) (IF (|has| |t#3| (-817 (-355))) (-6 (-817 (-355))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-158)) (PROGN (-15 -1611 ($ $ $ |t#3|)) (-15 -1744 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-427)) (PROGN (-6 (-427)) (-15 -1618 ($ $ |t#3|)) (-15 -1272 ($ $)) (-15 -1272 ($ $ |t#3|)) (-15 -4226 ((-394 $) $)) (-15 -3718 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4246)) (-6 -4246) |%noBranch|) (IF (|has| |t#1| (-840)) (-6 (-840)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-564 (-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523))))) ((-267) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-286 $) . T) ((-302 |#1| |#2|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3172 (|has| |#1| (-840)) (|has| |#1| (-427))) ((-484 |#3| |#1|) . T) ((-484 |#3| $) . T) ((-484 $ $) . T) ((-515) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 |#3|) . T) ((-817 (-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355)))) ((-817 (-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))) ((-840) |has| |#1| (-840)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-964 |#3|) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1127) |has| |#1| (-840))) +((-1292 (((-589 |#2|) |#5|) 36)) (-2389 (((-1083 |#5|) |#5| |#2| (-1083 |#5|)) 23) (((-383 (-1083 |#5|)) |#5| |#2|) 16)) (-1280 ((|#5| (-383 (-1083 |#5|)) |#2|) 30)) (-4213 (((-3 |#2| "failed") |#5|) 62)) (-3538 (((-3 (-589 |#5|) "failed") |#5|) 56)) (-3064 (((-3 (-2 (|:| |val| |#5|) (|:| -1475 (-523))) "failed") |#5|) 45)) (-3478 (((-3 (-589 |#5|) "failed") |#5|) 58)) (-2790 (((-3 (-2 (|:| |var| |#2|) (|:| -1475 (-523))) "failed") |#5|) 49))) +(((-881 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1292 ((-589 |#2|) |#5|)) (-15 -4213 ((-3 |#2| "failed") |#5|)) (-15 -2389 ((-383 (-1083 |#5|)) |#5| |#2|)) (-15 -1280 (|#5| (-383 (-1083 |#5|)) |#2|)) (-15 -2389 ((-1083 |#5|) |#5| |#2| (-1083 |#5|))) (-15 -3478 ((-3 (-589 |#5|) "failed") |#5|)) (-15 -3538 ((-3 (-589 |#5|) "failed") |#5|)) (-15 -2790 ((-3 (-2 (|:| |var| |#2|) (|:| -1475 (-523))) "failed") |#5|)) (-15 -3064 ((-3 (-2 (|:| |val| |#5|) (|:| -1475 (-523))) "failed") |#5|))) (-732) (-786) (-973) (-880 |#3| |#1| |#2|) (-13 (-339) (-10 -8 (-15 -1691 ($ |#4|)) (-15 -3316 (|#4| $)) (-15 -3329 (|#4| $))))) (T -881)) +((-3064 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1475 (-523)))) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $))))))) (-2790 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1475 (-523)))) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $))))))) (-3538 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *3)) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $))))))) (-3478 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *3)) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $))))))) (-2389 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $))))) (-4 *7 (-880 *6 *5 *4)) (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-973)) (-5 *1 (-881 *5 *4 *6 *7 *3)))) (-1280 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-1083 *2))) (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-973)) (-4 *2 (-13 (-339) (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $))))) (-5 *1 (-881 *5 *4 *6 *7 *2)) (-4 *7 (-880 *6 *5 *4)))) (-2389 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *5 *4)) (-5 *2 (-383 (-1083 *3))) (-5 *1 (-881 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $))))))) (-4213 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-973)) (-4 *6 (-880 *5 *4 *2)) (-4 *2 (-786)) (-5 *1 (-881 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1691 ($ *6)) (-15 -3316 (*6 $)) (-15 -3329 (*6 $))))))) (-1292 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *5)) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $)))))))) +(-10 -7 (-15 -1292 ((-589 |#2|) |#5|)) (-15 -4213 ((-3 |#2| "failed") |#5|)) (-15 -2389 ((-383 (-1083 |#5|)) |#5| |#2|)) (-15 -1280 (|#5| (-383 (-1083 |#5|)) |#2|)) (-15 -2389 ((-1083 |#5|) |#5| |#2| (-1083 |#5|))) (-15 -3478 ((-3 (-589 |#5|) "failed") |#5|)) (-15 -3538 ((-3 (-589 |#5|) "failed") |#5|)) (-15 -2790 ((-3 (-2 (|:| |var| |#2|) (|:| -1475 (-523))) "failed") |#5|)) (-15 -3064 ((-3 (-2 (|:| |val| |#5|) (|:| -1475 (-523))) "failed") |#5|))) +((-1345 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-882 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1345 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-732) (-786) (-973) (-880 |#3| |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -4045 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710)))))) (T -882)) +((-1345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-786)) (-4 *8 (-973)) (-4 *6 (-732)) (-4 *2 (-13 (-1016) (-10 -8 (-15 -4045 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710)))))) (-5 *1 (-882 *6 *7 *8 *5 *2)) (-4 *5 (-880 *8 *6 *7))))) +(-10 -7 (-15 -1345 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1292 (((-589 (-1087)) $) 15)) (-2389 (((-1083 $) $ (-1087)) 21) (((-1083 |#1|) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 (-1087))) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3718 (($ $) NIL (|has| |#1| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) 8) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1087) "failed") $) NIL)) (-3508 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1087) $) NIL)) (-1611 (($ $ $ (-1087)) NIL (|has| |#1| (-158)))) (-1457 (($ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#1| (-427))) (($ $ (-1087)) NIL (|has| |#1| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#1| (-840)))) (-4222 (($ $ |#1| (-495 (-1087)) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1087) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1087) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-1280 (($ (-1083 |#1|) (-1087)) NIL) (($ (-1083 $) (-1087)) NIL)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-495 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ (-1087)) NIL)) (-4047 (((-495 (-1087)) $) NIL) (((-710) $ (-1087)) NIL) (((-589 (-710)) $ (-589 (-1087))) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2041 (($ (-1 (-495 (-1087)) (-495 (-1087))) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-4213 (((-3 (-1087) "failed") $) 19)) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2032 (((-1070) $) NIL)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| (-1087)) (|:| -1475 (-710))) "failed") $) NIL)) (-2814 (($ $ (-1087)) 29 (|has| |#1| (-37 (-383 (-523)))))) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) NIL)) (-1419 ((|#1| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-840)))) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1087) |#1|) NIL) (($ $ (-589 (-1087)) (-589 |#1|)) NIL) (($ $ (-1087) $) NIL) (($ $ (-589 (-1087)) (-589 $)) NIL)) (-1744 (($ $ (-1087)) NIL (|has| |#1| (-158)))) (-3984 (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-2640 (((-495 (-1087)) $) NIL) (((-710) $ (-1087)) NIL) (((-589 (-710)) $ (-589 (-1087))) NIL)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| (-1087) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1087) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1087) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-1618 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-1087)) NIL (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1691 (((-794) $) 25) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-1087)) 27) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-495 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-883 |#1|) (-13 (-880 |#1| (-495 (-1087)) (-1087)) (-10 -8 (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1087))) |%noBranch|))) (-973)) (T -883)) +((-2814 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-883 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973))))) +(-13 (-880 |#1| (-495 (-1087)) (-1087)) (-10 -8 (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1087))) |%noBranch|))) +((-3365 (((-2 (|:| -1475 (-710)) (|:| -3474 |#5|) (|:| |radicand| |#5|)) |#3| (-710)) 37)) (-1807 (((-2 (|:| -1475 (-710)) (|:| -3474 |#5|) (|:| |radicand| |#5|)) (-383 (-523)) (-710)) 33)) (-1352 (((-2 (|:| -1475 (-710)) (|:| -3474 |#4|) (|:| |radicand| (-589 |#4|))) |#4| (-710)) 52)) (-1935 (((-2 (|:| -1475 (-710)) (|:| -3474 |#5|) (|:| |radicand| |#5|)) |#5| (-710)) 62 (|has| |#3| (-427))))) +(((-884 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3365 ((-2 (|:| -1475 (-710)) (|:| -3474 |#5|) (|:| |radicand| |#5|)) |#3| (-710))) (-15 -1807 ((-2 (|:| -1475 (-710)) (|:| -3474 |#5|) (|:| |radicand| |#5|)) (-383 (-523)) (-710))) (IF (|has| |#3| (-427)) (-15 -1935 ((-2 (|:| -1475 (-710)) (|:| -3474 |#5|) (|:| |radicand| |#5|)) |#5| (-710))) |%noBranch|) (-15 -1352 ((-2 (|:| -1475 (-710)) (|:| -3474 |#4|) (|:| |radicand| (-589 |#4|))) |#4| (-710)))) (-732) (-786) (-515) (-880 |#3| |#1| |#2|) (-13 (-339) (-10 -8 (-15 -3316 (|#4| $)) (-15 -3329 (|#4| $)) (-15 -1691 ($ |#4|))))) (T -884)) +((-1352 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) (-4 *3 (-880 *7 *5 *6)) (-5 *2 (-2 (|:| -1475 (-710)) (|:| -3474 *3) (|:| |radicand| (-589 *3)))) (-5 *1 (-884 *5 *6 *7 *3 *8)) (-5 *4 (-710)) (-4 *8 (-13 (-339) (-10 -8 (-15 -3316 (*3 $)) (-15 -3329 (*3 $)) (-15 -1691 ($ *3))))))) (-1935 (*1 *2 *3 *4) (-12 (-4 *7 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) (-4 *8 (-880 *7 *5 *6)) (-5 *2 (-2 (|:| -1475 (-710)) (|:| -3474 *3) (|:| |radicand| *3))) (-5 *1 (-884 *5 *6 *7 *8 *3)) (-5 *4 (-710)) (-4 *3 (-13 (-339) (-10 -8 (-15 -3316 (*8 $)) (-15 -3329 (*8 $)) (-15 -1691 ($ *8))))))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-523))) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) (-4 *8 (-880 *7 *5 *6)) (-5 *2 (-2 (|:| -1475 (-710)) (|:| -3474 *9) (|:| |radicand| *9))) (-5 *1 (-884 *5 *6 *7 *8 *9)) (-5 *4 (-710)) (-4 *9 (-13 (-339) (-10 -8 (-15 -3316 (*8 $)) (-15 -3329 (*8 $)) (-15 -1691 ($ *8))))))) (-3365 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-515)) (-4 *7 (-880 *3 *5 *6)) (-5 *2 (-2 (|:| -1475 (-710)) (|:| -3474 *8) (|:| |radicand| *8))) (-5 *1 (-884 *5 *6 *3 *7 *8)) (-5 *4 (-710)) (-4 *8 (-13 (-339) (-10 -8 (-15 -3316 (*7 $)) (-15 -3329 (*7 $)) (-15 -1691 ($ *7)))))))) +(-10 -7 (-15 -3365 ((-2 (|:| -1475 (-710)) (|:| -3474 |#5|) (|:| |radicand| |#5|)) |#3| (-710))) (-15 -1807 ((-2 (|:| -1475 (-710)) (|:| -3474 |#5|) (|:| |radicand| |#5|)) (-383 (-523)) (-710))) (IF (|has| |#3| (-427)) (-15 -1935 ((-2 (|:| -1475 (-710)) (|:| -3474 |#5|) (|:| |radicand| |#5|)) |#5| (-710))) |%noBranch|) (-15 -1352 ((-2 (|:| -1475 (-710)) (|:| -3474 |#4|) (|:| |radicand| (-589 |#4|))) |#4| (-710)))) +((-2025 (((-1011 (-203)) $) 8)) (-2015 (((-1011 (-203)) $) 9)) (-2825 (((-589 (-589 (-874 (-203)))) $) 10)) (-1691 (((-794) $) 6))) (((-885) (-129)) (T -885)) -((-4068 (*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-589 (-589 (-874 (-203))))))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-1011 (-203))))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-1011 (-203)))))) -(-13 (-563 (-794)) (-10 -8 (-15 -4068 ((-589 (-589 (-874 (-203)))) $)) (-15 -2817 ((-1011 (-203)) $)) (-15 -2831 ((-1011 (-203)) $)))) +((-2825 (*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-589 (-589 (-874 (-203))))))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-1011 (-203))))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-1011 (-203)))))) +(-13 (-563 (-794)) (-10 -8 (-15 -2825 ((-589 (-589 (-874 (-203)))) $)) (-15 -2015 ((-1011 (-203)) $)) (-15 -2025 ((-1011 (-203)) $)))) (((-563 (-794)) . T)) -((-2926 (((-3 (-629 |#1|) "failed") |#2| (-852)) 14))) -(((-886 |#1| |#2|) (-10 -7 (-15 -2926 ((-3 (-629 |#1|) "failed") |#2| (-852)))) (-515) (-599 |#1|)) (T -886)) -((-2926 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-852)) (-4 *5 (-515)) (-5 *2 (-629 *5)) (-5 *1 (-886 *5 *3)) (-4 *3 (-599 *5))))) -(-10 -7 (-15 -2926 ((-3 (-629 |#1|) "failed") |#2| (-852)))) -((-2837 (((-888 |#2|) (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|) 16)) (-2437 ((|#2| (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|) 18)) (-3612 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 13))) -(((-887 |#1| |#2|) (-10 -7 (-15 -2837 ((-888 |#2|) (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|)) (-15 -3612 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1122) (-1122)) (T -887)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-888 *5)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-887 *5 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-888 *6)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-5 *2 (-888 *5)) (-5 *1 (-887 *6 *5))))) -(-10 -7 (-15 -2837 ((-888 |#2|) (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|)) (-15 -3612 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) |#1|) 17 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 16 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 14)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 13)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 10 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) 12 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 11)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) 15) (($ $ (-1135 (-523))) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) 8 (|has| $ (-6 -4244))))) -(((-888 |#1|) (-19 |#1|) (-1122)) (T -888)) +((-3730 (((-3 (-629 |#1|) "failed") |#2| (-852)) 14))) +(((-886 |#1| |#2|) (-10 -7 (-15 -3730 ((-3 (-629 |#1|) "failed") |#2| (-852)))) (-515) (-599 |#1|)) (T -886)) +((-3730 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-852)) (-4 *5 (-515)) (-5 *2 (-629 *5)) (-5 *1 (-886 *5 *3)) (-4 *3 (-599 *5))))) +(-10 -7 (-15 -3730 ((-3 (-629 |#1|) "failed") |#2| (-852)))) +((-4184 (((-888 |#2|) (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|) 16)) (-2116 ((|#2| (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|) 18)) (-1345 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 13))) +(((-887 |#1| |#2|) (-10 -7 (-15 -4184 ((-888 |#2|) (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|)) (-15 -2116 (|#2| (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|)) (-15 -1345 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1123) (-1123)) (T -887)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) (-2116 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-888 *5)) (-4 *5 (-1123)) (-4 *2 (-1123)) (-5 *1 (-887 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-888 *6)) (-4 *6 (-1123)) (-4 *5 (-1123)) (-5 *2 (-888 *5)) (-5 *1 (-887 *6 *5))))) +(-10 -7 (-15 -4184 ((-888 |#2|) (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|)) (-15 -2116 (|#2| (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|)) (-15 -1345 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1632 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4249))) (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| |#1| (-786))))) (-1581 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#1| $ (-523) |#1|) 17 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) NIL (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) 16 (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) 14)) (-3449 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3733 (($ (-710) |#1|) 13)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) 10 (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3780 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2912 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2428 ((|#1| $) NIL (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4141 (($ $ |#1|) 12 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) 11)) (-1937 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) 15) (($ $ (-1136 (-523))) NIL)) (-1499 (($ $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) NIL)) (-2394 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2810 (((-710) $) 8 (|has| $ (-6 -4248))))) +(((-888 |#1|) (-19 |#1|) (-1123)) (T -888)) NIL (-19 |#1|) -((-1373 (($ $ (-1009 $)) 7) (($ $ (-1087)) 6))) +((-2663 (($ $ (-1009 $)) 7) (($ $ (-1087)) 6))) (((-889) (-129)) (T -889)) -((-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-889)))) (-1373 (*1 *1 *1 *2) (-12 (-4 *1 (-889)) (-5 *2 (-1087))))) -(-13 (-10 -8 (-15 -1373 ($ $ (-1087))) (-15 -1373 ($ $ (-1009 $))))) -((-1996 (((-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)) (-1087)) 23) (((-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087))) 24) (((-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) (|:| |prim| (-1083 |#1|))) (-883 |#1|) (-1087) (-883 |#1|) (-1087)) 41))) -(((-890 |#1|) (-10 -7 (-15 -1996 ((-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) (|:| |prim| (-1083 |#1|))) (-883 |#1|) (-1087) (-883 |#1|) (-1087))) (-15 -1996 ((-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -1996 ((-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)) (-1087)))) (-13 (-339) (-136))) (T -890)) -((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-5 *5 (-1087)) (-4 *6 (-13 (-339) (-136))) (-5 *2 (-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 *6))) (|:| |prim| (-1083 *6)))) (-5 *1 (-890 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-339) (-136))) (-5 *2 (-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 *5))) (|:| |prim| (-1083 *5)))) (-5 *1 (-890 *5)))) (-1996 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1087)) (-4 *5 (-13 (-339) (-136))) (-5 *2 (-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) (|:| |prim| (-1083 *5)))) (-5 *1 (-890 *5))))) -(-10 -7 (-15 -1996 ((-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) (|:| |prim| (-1083 |#1|))) (-883 |#1|) (-1087) (-883 |#1|) (-1087))) (-15 -1996 ((-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -1996 ((-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)) (-1087)))) -((-1608 (((-589 |#1|) |#1| |#1|) 42)) (-2657 (((-108) |#1|) 39)) (-2517 ((|#1| |#1|) 65)) (-1408 ((|#1| |#1|) 64))) -(((-891 |#1|) (-10 -7 (-15 -2657 ((-108) |#1|)) (-15 -1408 (|#1| |#1|)) (-15 -2517 (|#1| |#1|)) (-15 -1608 ((-589 |#1|) |#1| |#1|))) (-508)) (T -891)) -((-1608 (*1 *2 *3 *3) (-12 (-5 *2 (-589 *3)) (-5 *1 (-891 *3)) (-4 *3 (-508)))) (-2517 (*1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-508)))) (-1408 (*1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-508)))) (-2657 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-508))))) -(-10 -7 (-15 -2657 ((-108) |#1|)) (-15 -1408 (|#1| |#1|)) (-15 -2517 (|#1| |#1|)) (-15 -1608 ((-589 |#1|) |#1| |#1|))) -((-2948 (((-1173) (-794)) 9))) -(((-892) (-10 -7 (-15 -2948 ((-1173) (-794))))) (T -892)) -((-2948 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-892))))) -(-10 -7 (-15 -2948 ((-1173) (-794)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 63 (|has| |#1| (-515)))) (-3345 (($ $) 64 (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 28)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3810 (($ $) 24)) (-2121 (((-3 $ "failed") $) 35)) (-2528 (($ $) NIL (|has| |#1| (-427)))) (-1284 (($ $ |#1| |#2| $) 48)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) 16)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| |#2|) NIL)) (-1575 ((|#2| $) 19)) (-3782 (($ (-1 |#2| |#2|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3774 (($ $) 23)) (-3786 ((|#1| $) 21)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) 40)) (-3760 ((|#1| $) NIL)) (-4034 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-124)) (|has| |#1| (-515))))) (-3746 (((-3 $ "failed") $ $) 74 (|has| |#1| (-515))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-515)))) (-2299 ((|#2| $) 17)) (-2438 ((|#1| $) NIL (|has| |#1| (-427)))) (-1458 (((-794) $) NIL) (($ (-523)) 39) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) 34) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ |#2|) 31)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) 15)) (-2276 (($ $ $ (-710)) 59 (|has| |#1| (-158)))) (-1704 (((-108) $ $) 69 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 55) (($ $ (-710)) 56)) (-2756 (($) 22 T CONST)) (-2767 (($) 12 T CONST)) (-3983 (((-108) $ $) 68)) (-4098 (($ $ |#1|) 75 (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) 54) (($ $ (-710)) 52)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-893 |#1| |#2|) (-13 (-302 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-515)) (IF (|has| |#2| (-124)) (-15 -4034 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|))) (-973) (-731)) (T -893)) -((-4034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-893 *3 *2)) (-4 *2 (-124)) (-4 *3 (-515)) (-4 *3 (-973)) (-4 *2 (-731))))) -(-13 (-302 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-515)) (IF (|has| |#2| (-124)) (-15 -4034 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (-3596 (($ $ $) 63 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))) (-3212 (((-3 $ "failed") $ $) 50 (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (-1703 (((-710)) 34 (-12 (|has| |#1| (-344)) (|has| |#2| (-344))))) (-1490 ((|#2| $) 21)) (-2869 ((|#1| $) 20)) (-2518 (($) NIL (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) CONST)) (-2121 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))))) (-4032 (($) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-344))))) (-2023 (((-108) $) NIL (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))))) (-2454 (($ $ $) NIL (-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-2062 (($ $ $) NIL (-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-3211 (($ |#1| |#2|) 19)) (-2072 (((-852) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-344))))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 37 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))))) (-3878 (($ (-852)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-344))))) (-2783 (((-1034) $) NIL)) (-3208 (($ $ $) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448))))) (-1714 (($ $ $) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448))))) (-1458 (((-794) $) 14)) (-2364 (($ $ (-523)) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448)))) (($ $ (-710)) NIL (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666))))) (($ $ (-852)) NIL (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))))) (-2756 (($) 40 (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) CONST)) (-2767 (($) 24 (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))) CONST)) (-4043 (((-108) $ $) NIL (-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-4019 (((-108) $ $) NIL (-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-3983 (((-108) $ $) 18)) (-4030 (((-108) $ $) NIL (-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-4007 (((-108) $ $) 66 (-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-4098 (($ $ $) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448))))) (-4087 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4075 (($ $ $) 43 (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (** (($ $ (-523)) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448)))) (($ $ (-710)) 31 (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666))))) (($ $ (-852)) NIL (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))))) (* (($ (-523) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-710) $) 46 (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))) (($ (-852) $) NIL (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))) (($ $ $) 27 (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666))))))) -(((-894 |#1| |#2|) (-13 (-1016) (-10 -8 (IF (|has| |#1| (-344)) (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-666)) (IF (|has| |#2| (-666)) (-6 (-666)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-448)) (IF (|has| |#2| (-448)) (-6 (-448)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-732)) (IF (|has| |#2| (-732)) (-6 (-732)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-786)) (IF (|has| |#2| (-786)) (-6 (-786)) |%noBranch|) |%noBranch|) (-15 -3211 ($ |#1| |#2|)) (-15 -2869 (|#1| $)) (-15 -1490 (|#2| $)))) (-1016) (-1016)) (T -894)) -((-3211 (*1 *1 *2 *3) (-12 (-5 *1 (-894 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-2869 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1016)))) (-1490 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-894 *3 *2)) (-4 *3 (-1016))))) -(-13 (-1016) (-10 -8 (IF (|has| |#1| (-344)) (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-666)) (IF (|has| |#2| (-666)) (-6 (-666)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-448)) (IF (|has| |#2| (-448)) (-6 (-448)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-732)) (IF (|has| |#2| (-732)) (-6 (-732)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-786)) (IF (|has| |#2| (-786)) (-6 (-786)) |%noBranch|) |%noBranch|) (-15 -3211 ($ |#1| |#2|)) (-15 -2869 (|#1| $)) (-15 -1490 (|#2| $)))) -((-1733 (((-1020) $) 12)) (-3108 (($ (-1087) (-1020)) 13)) (-4038 (((-1087) $) 10)) (-1458 (((-794) $) 24))) -(((-895) (-13 (-563 (-794)) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -1733 ((-1020) $)) (-15 -3108 ($ (-1087) (-1020)))))) (T -895)) -((-4038 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-895)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-895)))) (-3108 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1020)) (-5 *1 (-895))))) -(-13 (-563 (-794)) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -1733 ((-1020) $)) (-15 -3108 ($ (-1087) (-1020))))) -((-1957 (((-1018 (-1087)) $) 19)) (-3677 (((-108) $) 26)) (-2700 (((-1087) $) 27)) (-3400 (((-108) $) 24)) (-2397 ((|#1| $) 25)) (-4044 (((-804 $ $) $) 34)) (-1834 (((-108) $) 33)) (-4090 (($ $ $) 12)) (-2664 (($ $) 29)) (-3705 (((-108) $) 28)) (-3900 (($ $) 10)) (-3092 (((-804 $ $) $) 36)) (-3003 (((-108) $) 35)) (-1971 (($ $ $) 13)) (-3017 (((-804 $ $) $) 38)) (-2849 (((-108) $) 37)) (-2471 (($ $ $) 14)) (-1458 (($ |#1|) 7) (($ (-1087)) 9) (((-794) $) 40 (|has| |#1| (-563 (-794))))) (-2884 (((-804 $ $) $) 32)) (-3632 (((-108) $) 30)) (-4099 (($ $ $) 11))) -(((-896 |#1|) (-13 (-897) (-10 -8 (IF (|has| |#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (-15 -1458 ($ |#1|)) (-15 -1458 ($ (-1087))) (-15 -1957 ((-1018 (-1087)) $)) (-15 -3400 ((-108) $)) (-15 -2397 (|#1| $)) (-15 -3677 ((-108) $)) (-15 -2700 ((-1087) $)) (-15 -3705 ((-108) $)) (-15 -2664 ($ $)) (-15 -3632 ((-108) $)) (-15 -2884 ((-804 $ $) $)) (-15 -1834 ((-108) $)) (-15 -4044 ((-804 $ $) $)) (-15 -3003 ((-108) $)) (-15 -3092 ((-804 $ $) $)) (-15 -2849 ((-108) $)) (-15 -3017 ((-804 $ $) $)))) (-897)) (T -896)) -((-1458 (*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-1018 (-1087))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2397 (*1 *2 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2664 (*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-897))))) -(-13 (-897) (-10 -8 (IF (|has| |#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (-15 -1458 ($ |#1|)) (-15 -1458 ($ (-1087))) (-15 -1957 ((-1018 (-1087)) $)) (-15 -3400 ((-108) $)) (-15 -2397 (|#1| $)) (-15 -3677 ((-108) $)) (-15 -2700 ((-1087) $)) (-15 -3705 ((-108) $)) (-15 -2664 ($ $)) (-15 -3632 ((-108) $)) (-15 -2884 ((-804 $ $) $)) (-15 -1834 ((-108) $)) (-15 -4044 ((-804 $ $) $)) (-15 -3003 ((-108) $)) (-15 -3092 ((-804 $ $) $)) (-15 -2849 ((-108) $)) (-15 -3017 ((-804 $ $) $)))) -((-4090 (($ $ $) 8)) (-3900 (($ $) 6)) (-1971 (($ $ $) 9)) (-2471 (($ $ $) 10)) (-4099 (($ $ $) 7))) +((-2663 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-889)))) (-2663 (*1 *1 *1 *2) (-12 (-4 *1 (-889)) (-5 *2 (-1087))))) +(-13 (-10 -8 (-15 -2663 ($ $ (-1087))) (-15 -2663 ($ $ (-1009 $))))) +((-3665 (((-2 (|:| -3474 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)) (-1087)) 23) (((-2 (|:| -3474 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087))) 24) (((-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) (|:| |prim| (-1083 |#1|))) (-883 |#1|) (-1087) (-883 |#1|) (-1087)) 41))) +(((-890 |#1|) (-10 -7 (-15 -3665 ((-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) (|:| |prim| (-1083 |#1|))) (-883 |#1|) (-1087) (-883 |#1|) (-1087))) (-15 -3665 ((-2 (|:| -3474 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -3665 ((-2 (|:| -3474 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)) (-1087)))) (-13 (-339) (-136))) (T -890)) +((-3665 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-5 *5 (-1087)) (-4 *6 (-13 (-339) (-136))) (-5 *2 (-2 (|:| -3474 (-589 (-523))) (|:| |poly| (-589 (-1083 *6))) (|:| |prim| (-1083 *6)))) (-5 *1 (-890 *6)))) (-3665 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-339) (-136))) (-5 *2 (-2 (|:| -3474 (-589 (-523))) (|:| |poly| (-589 (-1083 *5))) (|:| |prim| (-1083 *5)))) (-5 *1 (-890 *5)))) (-3665 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1087)) (-4 *5 (-13 (-339) (-136))) (-5 *2 (-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) (|:| |prim| (-1083 *5)))) (-5 *1 (-890 *5))))) +(-10 -7 (-15 -3665 ((-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) (|:| |prim| (-1083 |#1|))) (-883 |#1|) (-1087) (-883 |#1|) (-1087))) (-15 -3665 ((-2 (|:| -3474 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -3665 ((-2 (|:| -3474 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)) (-1087)))) +((-3142 (((-589 |#1|) |#1| |#1|) 42)) (-3049 (((-108) |#1|) 39)) (-4176 ((|#1| |#1|) 65)) (-2997 ((|#1| |#1|) 64))) +(((-891 |#1|) (-10 -7 (-15 -3049 ((-108) |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -4176 (|#1| |#1|)) (-15 -3142 ((-589 |#1|) |#1| |#1|))) (-508)) (T -891)) +((-3142 (*1 *2 *3 *3) (-12 (-5 *2 (-589 *3)) (-5 *1 (-891 *3)) (-4 *3 (-508)))) (-4176 (*1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-508)))) (-2997 (*1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-508)))) (-3049 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-508))))) +(-10 -7 (-15 -3049 ((-108) |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -4176 (|#1| |#1|)) (-15 -3142 ((-589 |#1|) |#1| |#1|))) +((-2999 (((-1174) (-794)) 9))) +(((-892) (-10 -7 (-15 -2999 ((-1174) (-794))))) (T -892)) +((-2999 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1174)) (-5 *1 (-892))))) +(-10 -7 (-15 -2999 ((-1174) (-794)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 63 (|has| |#1| (-515)))) (-3306 (($ $) 64 (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 28)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-1457 (($ $) 24)) (-1444 (((-3 $ "failed") $) 35)) (-1272 (($ $) NIL (|has| |#1| (-427)))) (-4222 (($ $ |#1| |#2| $) 48)) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) 16)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| |#2|) NIL)) (-4047 ((|#2| $) 19)) (-2041 (($ (-1 |#2| |#2|) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1427 (($ $) 23)) (-1437 ((|#1| $) 21)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) 40)) (-1419 ((|#1| $) NIL)) (-3707 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-124)) (|has| |#1| (-515))))) (-4007 (((-3 $ "failed") $ $) 75 (|has| |#1| (-515))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-515)))) (-2640 ((|#2| $) 17)) (-1618 ((|#1| $) NIL (|has| |#1| (-427)))) (-1691 (((-794) $) NIL) (($ (-523)) 39) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) 34) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ |#2|) 31)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) 15)) (-3553 (($ $ $ (-710)) 59 (|has| |#1| (-158)))) (-2801 (((-108) $ $) 69 (|has| |#1| (-515)))) (-2423 (($ $ (-852)) 55) (($ $ (-710)) 56)) (-1879 (($) 22 T CONST)) (-1891 (($) 12 T CONST)) (-3941 (((-108) $ $) 68)) (-4074 (($ $ |#1|) 76 (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) 54) (($ $ (-710)) 52)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-893 |#1| |#2|) (-13 (-302 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-515)) (IF (|has| |#2| (-124)) (-15 -3707 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4246)) (-6 -4246) |%noBranch|))) (-973) (-731)) (T -893)) +((-3707 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-893 *3 *2)) (-4 *2 (-124)) (-4 *3 (-515)) (-4 *3 (-973)) (-4 *2 (-731))))) +(-13 (-302 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-515)) (IF (|has| |#2| (-124)) (-15 -3707 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4246)) (-6 -4246) |%noBranch|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL (-3172 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (-4016 (($ $ $) 63 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))) (-3405 (((-3 $ "failed") $ $) 50 (-3172 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (-2395 (((-710)) 34 (-12 (|has| |#1| (-344)) (|has| |#2| (-344))))) (-1483 ((|#2| $) 21)) (-1436 ((|#1| $) 20)) (-4189 (($) NIL (-3172 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) CONST)) (-1444 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))))) (-1631 (($) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-344))))) (-2769 (((-108) $) NIL (-3172 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))))) (-3239 (($ $ $) NIL (-3172 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-3158 (($ $ $) NIL (-3172 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-3394 (($ |#1| |#2|) 19)) (-2060 (((-852) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-344))))) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 37 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))))) (-4013 (($ (-852)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-344))))) (-3951 (((-1034) $) NIL)) (-3361 (($ $ $) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448))))) (-2892 (($ $ $) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448))))) (-1691 (((-794) $) 14)) (-2423 (($ $ (-523)) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448)))) (($ $ (-710)) NIL (-3172 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666))))) (($ $ (-852)) NIL (-3172 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))))) (-1879 (($) 40 (-3172 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) CONST)) (-1891 (($) 24 (-3172 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))) CONST)) (-4006 (((-108) $ $) NIL (-3172 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-3980 (((-108) $ $) NIL (-3172 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-3941 (((-108) $ $) 18)) (-3993 (((-108) $ $) NIL (-3172 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-3966 (((-108) $ $) 66 (-3172 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-4074 (($ $ $) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448))))) (-4060 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4045 (($ $ $) 43 (-3172 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (** (($ $ (-523)) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448)))) (($ $ (-710)) 31 (-3172 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666))))) (($ $ (-852)) NIL (-3172 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))))) (* (($ (-523) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-710) $) 46 (-3172 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))) (($ (-852) $) NIL (-3172 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))) (($ $ $) 27 (-3172 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666))))))) +(((-894 |#1| |#2|) (-13 (-1016) (-10 -8 (IF (|has| |#1| (-344)) (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-666)) (IF (|has| |#2| (-666)) (-6 (-666)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-448)) (IF (|has| |#2| (-448)) (-6 (-448)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-732)) (IF (|has| |#2| (-732)) (-6 (-732)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-786)) (IF (|has| |#2| (-786)) (-6 (-786)) |%noBranch|) |%noBranch|) (-15 -3394 ($ |#1| |#2|)) (-15 -1436 (|#1| $)) (-15 -1483 (|#2| $)))) (-1016) (-1016)) (T -894)) +((-3394 (*1 *1 *2 *3) (-12 (-5 *1 (-894 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-1436 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1016)))) (-1483 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-894 *3 *2)) (-4 *3 (-1016))))) +(-13 (-1016) (-10 -8 (IF (|has| |#1| (-344)) (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-666)) (IF (|has| |#2| (-666)) (-6 (-666)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-448)) (IF (|has| |#2| (-448)) (-6 (-448)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-732)) (IF (|has| |#2| (-732)) (-6 (-732)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-786)) (IF (|has| |#2| (-786)) (-6 (-786)) |%noBranch|) |%noBranch|) (-15 -3394 ($ |#1| |#2|)) (-15 -1436 (|#1| $)) (-15 -1483 (|#2| $)))) +((-3370 (((-1020) $) 12)) (-2031 (($ (-1087) (-1020)) 13)) (-4198 (((-1087) $) 10)) (-1691 (((-794) $) 24))) +(((-895) (-13 (-563 (-794)) (-10 -8 (-15 -4198 ((-1087) $)) (-15 -3370 ((-1020) $)) (-15 -2031 ($ (-1087) (-1020)))))) (T -895)) +((-4198 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-895)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-895)))) (-2031 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1020)) (-5 *1 (-895))))) +(-13 (-563 (-794)) (-10 -8 (-15 -4198 ((-1087) $)) (-15 -3370 ((-1020) $)) (-15 -2031 ($ (-1087) (-1020))))) +((-1292 (((-1018 (-1087)) $) 19)) (-3537 (((-108) $) 26)) (-2724 (((-1087) $) 27)) (-2669 (((-108) $) 24)) (-2374 ((|#1| $) 25)) (-3769 (((-804 $ $) $) 34)) (-1577 (((-108) $) 33)) (-3135 (($ $ $) 12)) (-3095 (($ $) 29)) (-3831 (((-108) $) 28)) (-4179 (($ $) 10)) (-1745 (((-804 $ $) $) 36)) (-2095 (((-108) $) 35)) (-2530 (($ $ $) 13)) (-2215 (((-804 $ $) $) 38)) (-1266 (((-108) $) 37)) (-1911 (($ $ $) 14)) (-1691 (($ |#1|) 7) (($ (-1087)) 9) (((-794) $) 40 (|has| |#1| (-563 (-794))))) (-3298 (((-804 $ $) $) 32)) (-1390 (((-108) $) 30)) (-3147 (($ $ $) 11))) +(((-896 |#1|) (-13 (-897) (-10 -8 (IF (|has| |#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (-15 -1691 ($ |#1|)) (-15 -1691 ($ (-1087))) (-15 -1292 ((-1018 (-1087)) $)) (-15 -2669 ((-108) $)) (-15 -2374 (|#1| $)) (-15 -3537 ((-108) $)) (-15 -2724 ((-1087) $)) (-15 -3831 ((-108) $)) (-15 -3095 ($ $)) (-15 -1390 ((-108) $)) (-15 -3298 ((-804 $ $) $)) (-15 -1577 ((-108) $)) (-15 -3769 ((-804 $ $) $)) (-15 -2095 ((-108) $)) (-15 -1745 ((-804 $ $) $)) (-15 -1266 ((-108) $)) (-15 -2215 ((-804 $ $) $)))) (-897)) (T -896)) +((-1691 (*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-1018 (-1087))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2374 (*1 *2 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3095 (*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3769 (*1 *2 *1) (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-1745 (*1 *2 *1) (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-1266 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(-13 (-897) (-10 -8 (IF (|has| |#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (-15 -1691 ($ |#1|)) (-15 -1691 ($ (-1087))) (-15 -1292 ((-1018 (-1087)) $)) (-15 -2669 ((-108) $)) (-15 -2374 (|#1| $)) (-15 -3537 ((-108) $)) (-15 -2724 ((-1087) $)) (-15 -3831 ((-108) $)) (-15 -3095 ($ $)) (-15 -1390 ((-108) $)) (-15 -3298 ((-804 $ $) $)) (-15 -1577 ((-108) $)) (-15 -3769 ((-804 $ $) $)) (-15 -2095 ((-108) $)) (-15 -1745 ((-804 $ $) $)) (-15 -1266 ((-108) $)) (-15 -2215 ((-804 $ $) $)))) +((-3135 (($ $ $) 8)) (-4179 (($ $) 6)) (-2530 (($ $ $) 9)) (-1911 (($ $ $) 10)) (-3147 (($ $ $) 7))) (((-897) (-129)) (T -897)) -((-2471 (*1 *1 *1 *1) (-4 *1 (-897))) (-1971 (*1 *1 *1 *1) (-4 *1 (-897))) (-4090 (*1 *1 *1 *1) (-4 *1 (-897))) (-4099 (*1 *1 *1 *1) (-4 *1 (-897))) (-3900 (*1 *1 *1) (-4 *1 (-897)))) -(-13 (-10 -8 (-15 -3900 ($ $)) (-15 -4099 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -1971 ($ $ $)) (-15 -2471 ($ $ $)))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2158 (($ $ $) 43)) (-2178 (($ $ $) 44)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2062 ((|#1| $) 45)) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-1911 (*1 *1 *1 *1) (-4 *1 (-897))) (-2530 (*1 *1 *1 *1) (-4 *1 (-897))) (-3135 (*1 *1 *1 *1) (-4 *1 (-897))) (-3147 (*1 *1 *1 *1) (-4 *1 (-897))) (-4179 (*1 *1 *1) (-4 *1 (-897)))) +(-13 (-10 -8 (-15 -4179 ($ $)) (-15 -3147 ($ $ $)) (-15 -3135 ($ $ $)) (-15 -2530 ($ $ $)) (-15 -1911 ($ $ $)))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) 8)) (-4189 (($) 7 T CONST)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-1793 (($ $ $) 43)) (-3780 (($ $ $) 44)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-3158 ((|#1| $) 45)) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1293 ((|#1| $) 39)) (-3108 (($ |#1| $) 40)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3048 ((|#1| $) 41)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2417 (($ (-589 |#1|)) 42)) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-898 |#1|) (-129) (-786)) (T -898)) -((-2062 (*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786)))) (-2178 (*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786)))) (-2158 (*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4244) (-15 -2062 (|t#1| $)) (-15 -2178 ($ $ $)) (-15 -2158 ($ $ $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-2470 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3278 |#2|)) |#2| |#2|) 85)) (-2407 ((|#2| |#2| |#2|) 83)) (-2693 (((-2 (|:| |coef2| |#2|) (|:| -3278 |#2|)) |#2| |#2|) 87)) (-3535 (((-2 (|:| |coef1| |#2|) (|:| -3278 |#2|)) |#2| |#2|) 89)) (-1310 (((-2 (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2| |#2|) 107 (|has| |#1| (-427)))) (-2183 (((-2 (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|) 46)) (-3563 (((-2 (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|) 64)) (-4146 (((-2 (|:| |coef1| |#2|) (|:| -3078 |#1|)) |#2| |#2|) 66)) (-1551 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3473 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710)) 71)) (-3733 (((-2 (|:| |coef2| |#2|) (|:| -3549 |#1|)) |#2|) 97)) (-2191 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710)) 74)) (-2913 (((-589 (-710)) |#2| |#2|) 82)) (-3310 ((|#1| |#2| |#2|) 42)) (-3479 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2| |#2|) 105 (|has| |#1| (-427)))) (-4117 ((|#1| |#2| |#2|) 103 (|has| |#1| (-427)))) (-1879 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|) 44)) (-3126 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|) 63)) (-3078 ((|#1| |#2| |#2|) 61)) (-2815 (((-2 (|:| -2935 |#1|) (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2|) 35)) (-1582 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-1302 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-1611 ((|#2| |#2| |#2|) 75)) (-1799 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710)) 69)) (-3023 ((|#2| |#2| |#2| (-710)) 67)) (-3278 ((|#2| |#2| |#2|) 111 (|has| |#1| (-427)))) (-3746 (((-1168 |#2|) (-1168 |#2|) |#1|) 21)) (-3462 (((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2|) 39)) (-3958 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3549 |#1|)) |#2|) 95)) (-3549 ((|#1| |#2|) 92)) (-3768 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710)) 73)) (-3606 ((|#2| |#2| |#2| (-710)) 72)) (-3360 (((-589 |#2|) |#2| |#2|) 80)) (-3500 ((|#2| |#2| |#1| |#1| (-710)) 50)) (-4048 ((|#1| |#1| |#1| (-710)) 49)) (* (((-1168 |#2|) |#1| (-1168 |#2|)) 16))) -(((-899 |#1| |#2|) (-10 -7 (-15 -3078 (|#1| |#2| |#2|)) (-15 -3126 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -3563 ((-2 (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -4146 ((-2 (|:| |coef1| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -3023 (|#2| |#2| |#2| (-710))) (-15 -1799 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -3473 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -3606 (|#2| |#2| |#2| (-710))) (-15 -3768 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -2191 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -1611 (|#2| |#2| |#2|)) (-15 -1302 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1551 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2407 (|#2| |#2| |#2|)) (-15 -2470 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3278 |#2|)) |#2| |#2|)) (-15 -2693 ((-2 (|:| |coef2| |#2|) (|:| -3278 |#2|)) |#2| |#2|)) (-15 -3535 ((-2 (|:| |coef1| |#2|) (|:| -3278 |#2|)) |#2| |#2|)) (-15 -3549 (|#1| |#2|)) (-15 -3958 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3549 |#1|)) |#2|)) (-15 -3733 ((-2 (|:| |coef2| |#2|) (|:| -3549 |#1|)) |#2|)) (-15 -3360 ((-589 |#2|) |#2| |#2|)) (-15 -2913 ((-589 (-710)) |#2| |#2|)) (IF (|has| |#1| (-427)) (PROGN (-15 -4117 (|#1| |#2| |#2|)) (-15 -3479 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2| |#2|)) (-15 -1310 ((-2 (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2| |#2|)) (-15 -3278 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1168 |#2|) |#1| (-1168 |#2|))) (-15 -3746 ((-1168 |#2|) (-1168 |#2|) |#1|)) (-15 -2815 ((-2 (|:| -2935 |#1|) (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -3462 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -4048 (|#1| |#1| |#1| (-710))) (-15 -3500 (|#2| |#2| |#1| |#1| (-710))) (-15 -1582 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3310 (|#1| |#2| |#2|)) (-15 -1879 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -2183 ((-2 (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|))) (-515) (-1144 |#1|)) (T -899)) -((-2183 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3078 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-1879 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3078 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3310 (*1 *2 *3 *3) (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2)))) (-1582 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) (-3500 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) (-4048 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *2 (-515)) (-5 *1 (-899 *2 *4)) (-4 *4 (-1144 *2)))) (-3462 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-2815 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| -2935 *4) (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3746 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-515)) (-5 *1 (-899 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-515)) (-5 *1 (-899 *3 *4)))) (-3278 (*1 *2 *2 *2) (-12 (-4 *3 (-427)) (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) (-1310 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4117 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3479 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4117 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-4117 (*1 *2 *3 *3) (-12 (-4 *2 (-515)) (-4 *2 (-427)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2)))) (-2913 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 (-710))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3360 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3549 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3958 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3549 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3549 (*1 *2 *3) (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2)))) (-3535 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3278 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-2693 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3278 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-2470 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3278 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-2407 (*1 *2 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) (-1551 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-1302 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-1611 (*1 *2 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) (-2191 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5)))) (-3768 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5)))) (-3606 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-515)) (-5 *1 (-899 *4 *2)) (-4 *2 (-1144 *4)))) (-3473 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5)))) (-1799 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5)))) (-3023 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-515)) (-5 *1 (-899 *4 *2)) (-4 *2 (-1144 *4)))) (-4146 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3078 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3563 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3078 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3126 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3078 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3078 (*1 *2 *3 *3) (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2))))) -(-10 -7 (-15 -3078 (|#1| |#2| |#2|)) (-15 -3126 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -3563 ((-2 (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -4146 ((-2 (|:| |coef1| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -3023 (|#2| |#2| |#2| (-710))) (-15 -1799 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -3473 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -3606 (|#2| |#2| |#2| (-710))) (-15 -3768 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -2191 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -1611 (|#2| |#2| |#2|)) (-15 -1302 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1551 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2407 (|#2| |#2| |#2|)) (-15 -2470 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3278 |#2|)) |#2| |#2|)) (-15 -2693 ((-2 (|:| |coef2| |#2|) (|:| -3278 |#2|)) |#2| |#2|)) (-15 -3535 ((-2 (|:| |coef1| |#2|) (|:| -3278 |#2|)) |#2| |#2|)) (-15 -3549 (|#1| |#2|)) (-15 -3958 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3549 |#1|)) |#2|)) (-15 -3733 ((-2 (|:| |coef2| |#2|) (|:| -3549 |#1|)) |#2|)) (-15 -3360 ((-589 |#2|) |#2| |#2|)) (-15 -2913 ((-589 (-710)) |#2| |#2|)) (IF (|has| |#1| (-427)) (PROGN (-15 -4117 (|#1| |#2| |#2|)) (-15 -3479 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2| |#2|)) (-15 -1310 ((-2 (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2| |#2|)) (-15 -3278 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1168 |#2|) |#1| (-1168 |#2|))) (-15 -3746 ((-1168 |#2|) (-1168 |#2|) |#1|)) (-15 -2815 ((-2 (|:| -2935 |#1|) (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -3462 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -4048 (|#1| |#1| |#1| (-710))) (-15 -3500 (|#2| |#2| |#1| |#1| (-710))) (-15 -1582 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3310 (|#1| |#2| |#2|)) (-15 -1879 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -2183 ((-2 (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) 27)) (-2518 (($) NIL T CONST)) (-2325 (((-589 (-589 (-523))) (-589 (-523))) 29)) (-2464 (((-523) $) 45)) (-4199 (($ (-589 (-523))) 17)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3663 (((-589 (-523)) $) 11)) (-3208 (($ $) 32)) (-1458 (((-794) $) 43) (((-589 (-523)) $) 9)) (-2756 (($) 7 T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 20)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 19)) (-4075 (($ $ $) 21)) (* (($ (-710) $) 25) (($ (-852) $) NIL))) -(((-900) (-13 (-734) (-564 (-589 (-523))) (-10 -8 (-15 -4199 ($ (-589 (-523)))) (-15 -2325 ((-589 (-589 (-523))) (-589 (-523)))) (-15 -2464 ((-523) $)) (-15 -3208 ($ $)) (-15 -1458 ((-589 (-523)) $))))) (T -900)) -((-4199 (*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-900)))) (-2325 (*1 *2 *3) (-12 (-5 *2 (-589 (-589 (-523)))) (-5 *1 (-900)) (-5 *3 (-589 (-523))))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-900)))) (-3208 (*1 *1 *1) (-5 *1 (-900))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-900))))) -(-13 (-734) (-564 (-589 (-523))) (-10 -8 (-15 -4199 ($ (-589 (-523)))) (-15 -2325 ((-589 (-589 (-523))) (-589 (-523)))) (-15 -2464 ((-523) $)) (-15 -3208 ($ $)) (-15 -1458 ((-589 (-523)) $)))) -((-4098 (($ $ |#2|) 30)) (-4087 (($ $) 22) (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-383 (-523)) $) 26) (($ $ (-383 (-523))) 28))) -(((-901 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -4098 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-902 |#2| |#3| |#4|) (-973) (-731) (-786)) (T -901)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -4098 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 |#3|) $) 74)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-2003 (((-108) $) 73)) (-2023 (((-108) $) 31)) (-2620 (((-108) $) 62)) (-1933 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-589 |#3|) (-589 |#2|)) 75)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-2299 ((|#2| $) 64)) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47 (|has| |#1| (-158)))) (-2365 ((|#1| $ |#2|) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +((-3158 (*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786)))) (-3780 (*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786)))) (-1793 (*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4248) (-15 -3158 (|t#1| $)) (-15 -3780 ($ $ $)) (-15 -1793 ($ $ $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-1901 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3310 |#2|)) |#2| |#2|) 85)) (-2485 ((|#2| |#2| |#2|) 83)) (-2208 (((-2 (|:| |coef2| |#2|) (|:| -3310 |#2|)) |#2| |#2|) 87)) (-1629 (((-2 (|:| |coef1| |#2|) (|:| -3310 |#2|)) |#2| |#2|) 89)) (-3206 (((-2 (|:| |coef2| |#2|) (|:| -2086 |#1|)) |#2| |#2|) 107 (|has| |#1| (-427)))) (-3838 (((-2 (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2| |#2|) 46)) (-1880 (((-2 (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2| |#2|) 64)) (-2364 (((-2 (|:| |coef1| |#2|) (|:| -1611 |#1|)) |#2| |#2|) 66)) (-3790 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2191 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710)) 71)) (-2819 (((-2 (|:| |coef2| |#2|) (|:| -1744 |#1|)) |#2|) 97)) (-3932 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710)) 74)) (-3618 (((-589 (-710)) |#2| |#2|) 82)) (-1227 ((|#1| |#2| |#2|) 42)) (-2244 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2086 |#1|)) |#2| |#2|) 105 (|has| |#1| (-427)))) (-2086 ((|#1| |#2| |#2|) 103 (|has| |#1| (-427)))) (-3732 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2| |#2|) 44)) (-2010 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2| |#2|) 63)) (-1611 ((|#1| |#2| |#2|) 61)) (-3999 (((-2 (|:| -3474 |#1|) (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2|) 35)) (-4132 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3127 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3173 ((|#2| |#2| |#2|) 75)) (-2416 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710)) 69)) (-2273 ((|#2| |#2| |#2| (-710)) 67)) (-3310 ((|#2| |#2| |#2|) 111 (|has| |#1| (-427)))) (-4007 (((-1169 |#2|) (-1169 |#2|) |#1|) 21)) (-2083 (((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2|) 39)) (-1316 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1744 |#1|)) |#2|) 95)) (-1744 ((|#1| |#2|) 92)) (-3096 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710)) 73)) (-4140 ((|#2| |#2| |#2| (-710)) 72)) (-3439 (((-589 |#2|) |#2| |#2|) 80)) (-2475 ((|#2| |#2| |#1| |#1| (-710)) 50)) (-2651 ((|#1| |#1| |#1| (-710)) 49)) (* (((-1169 |#2|) |#1| (-1169 |#2|)) 16))) +(((-899 |#1| |#2|) (-10 -7 (-15 -1611 (|#1| |#2| |#2|)) (-15 -2010 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2| |#2|)) (-15 -1880 ((-2 (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2| |#2|)) (-15 -2364 ((-2 (|:| |coef1| |#2|) (|:| -1611 |#1|)) |#2| |#2|)) (-15 -2273 (|#2| |#2| |#2| (-710))) (-15 -2416 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -2191 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -4140 (|#2| |#2| |#2| (-710))) (-15 -3096 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -3932 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -3173 (|#2| |#2| |#2|)) (-15 -3127 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3790 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2485 (|#2| |#2| |#2|)) (-15 -1901 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3310 |#2|)) |#2| |#2|)) (-15 -2208 ((-2 (|:| |coef2| |#2|) (|:| -3310 |#2|)) |#2| |#2|)) (-15 -1629 ((-2 (|:| |coef1| |#2|) (|:| -3310 |#2|)) |#2| |#2|)) (-15 -1744 (|#1| |#2|)) (-15 -1316 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1744 |#1|)) |#2|)) (-15 -2819 ((-2 (|:| |coef2| |#2|) (|:| -1744 |#1|)) |#2|)) (-15 -3439 ((-589 |#2|) |#2| |#2|)) (-15 -3618 ((-589 (-710)) |#2| |#2|)) (IF (|has| |#1| (-427)) (PROGN (-15 -2086 (|#1| |#2| |#2|)) (-15 -2244 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2086 |#1|)) |#2| |#2|)) (-15 -3206 ((-2 (|:| |coef2| |#2|) (|:| -2086 |#1|)) |#2| |#2|)) (-15 -3310 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1169 |#2|) |#1| (-1169 |#2|))) (-15 -4007 ((-1169 |#2|) (-1169 |#2|) |#1|)) (-15 -3999 ((-2 (|:| -3474 |#1|) (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2|)) (-15 -2083 ((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2|)) (-15 -2651 (|#1| |#1| |#1| (-710))) (-15 -2475 (|#2| |#2| |#1| |#1| (-710))) (-15 -4132 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1227 (|#1| |#2| |#2|)) (-15 -3732 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2| |#2|)) (-15 -3838 ((-2 (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2| |#2|))) (-515) (-1145 |#1|)) (T -899)) +((-3838 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1611 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-3732 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1611 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-1227 (*1 *2 *3 *3) (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1145 *2)))) (-4132 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1145 *3)))) (-2475 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1145 *3)))) (-2651 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *2 (-515)) (-5 *1 (-899 *2 *4)) (-4 *4 (-1145 *2)))) (-2083 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-3999 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| -3474 *4) (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-4007 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-515)) (-5 *1 (-899 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-515)) (-5 *1 (-899 *3 *4)))) (-3310 (*1 *2 *2 *2) (-12 (-4 *3 (-427)) (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1145 *3)))) (-3206 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2086 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-2244 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2086 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-2086 (*1 *2 *3 *3) (-12 (-4 *2 (-515)) (-4 *2 (-427)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1145 *2)))) (-3618 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 (-710))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-3439 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-2819 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1744 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-1316 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1744 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-1744 (*1 *2 *3) (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1145 *2)))) (-1629 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3310 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-2208 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3310 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-1901 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3310 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-2485 (*1 *2 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1145 *3)))) (-3790 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-3127 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-3173 (*1 *2 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1145 *3)))) (-3932 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *5 *3)) (-4 *3 (-1145 *5)))) (-3096 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *5 *3)) (-4 *3 (-1145 *5)))) (-4140 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-515)) (-5 *1 (-899 *4 *2)) (-4 *2 (-1145 *4)))) (-2191 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *5 *3)) (-4 *3 (-1145 *5)))) (-2416 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *5 *3)) (-4 *3 (-1145 *5)))) (-2273 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-515)) (-5 *1 (-899 *4 *2)) (-4 *2 (-1145 *4)))) (-2364 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1611 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-1880 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1611 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-2010 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1611 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) (-1611 (*1 *2 *3 *3) (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1145 *2))))) +(-10 -7 (-15 -1611 (|#1| |#2| |#2|)) (-15 -2010 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2| |#2|)) (-15 -1880 ((-2 (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2| |#2|)) (-15 -2364 ((-2 (|:| |coef1| |#2|) (|:| -1611 |#1|)) |#2| |#2|)) (-15 -2273 (|#2| |#2| |#2| (-710))) (-15 -2416 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -2191 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -4140 (|#2| |#2| |#2| (-710))) (-15 -3096 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -3932 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -3173 (|#2| |#2| |#2|)) (-15 -3127 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3790 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2485 (|#2| |#2| |#2|)) (-15 -1901 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3310 |#2|)) |#2| |#2|)) (-15 -2208 ((-2 (|:| |coef2| |#2|) (|:| -3310 |#2|)) |#2| |#2|)) (-15 -1629 ((-2 (|:| |coef1| |#2|) (|:| -3310 |#2|)) |#2| |#2|)) (-15 -1744 (|#1| |#2|)) (-15 -1316 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1744 |#1|)) |#2|)) (-15 -2819 ((-2 (|:| |coef2| |#2|) (|:| -1744 |#1|)) |#2|)) (-15 -3439 ((-589 |#2|) |#2| |#2|)) (-15 -3618 ((-589 (-710)) |#2| |#2|)) (IF (|has| |#1| (-427)) (PROGN (-15 -2086 (|#1| |#2| |#2|)) (-15 -2244 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2086 |#1|)) |#2| |#2|)) (-15 -3206 ((-2 (|:| |coef2| |#2|) (|:| -2086 |#1|)) |#2| |#2|)) (-15 -3310 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1169 |#2|) |#1| (-1169 |#2|))) (-15 -4007 ((-1169 |#2|) (-1169 |#2|) |#1|)) (-15 -3999 ((-2 (|:| -3474 |#1|) (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2|)) (-15 -2083 ((-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) |#2| |#2|)) (-15 -2651 (|#1| |#1| |#1| (-710))) (-15 -2475 (|#2| |#2| |#1| |#1| (-710))) (-15 -4132 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1227 (|#1| |#2| |#2|)) (-15 -3732 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2| |#2|)) (-15 -3838 ((-2 (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2| |#2|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) 27)) (-4189 (($) NIL T CONST)) (-2875 (((-589 (-589 (-523))) (-589 (-523))) 29)) (-1837 (((-523) $) 45)) (-4096 (($ (-589 (-523))) 17)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1400 (((-589 (-523)) $) 11)) (-3361 (($ $) 32)) (-1691 (((-794) $) 43) (((-589 (-523)) $) 9)) (-1879 (($) 7 T CONST)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 20)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 19)) (-4045 (($ $ $) 21)) (* (($ (-710) $) 25) (($ (-852) $) NIL))) +(((-900) (-13 (-734) (-564 (-589 (-523))) (-10 -8 (-15 -4096 ($ (-589 (-523)))) (-15 -2875 ((-589 (-589 (-523))) (-589 (-523)))) (-15 -1837 ((-523) $)) (-15 -3361 ($ $)) (-15 -1691 ((-589 (-523)) $))))) (T -900)) +((-4096 (*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-900)))) (-2875 (*1 *2 *3) (-12 (-5 *2 (-589 (-589 (-523)))) (-5 *1 (-900)) (-5 *3 (-589 (-523))))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-900)))) (-3361 (*1 *1 *1) (-5 *1 (-900))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-900))))) +(-13 (-734) (-564 (-589 (-523))) (-10 -8 (-15 -4096 ($ (-589 (-523)))) (-15 -2875 ((-589 (-589 (-523))) (-589 (-523)))) (-15 -1837 ((-523) $)) (-15 -3361 ($ $)) (-15 -1691 ((-589 (-523)) $)))) +((-4074 (($ $ |#2|) 30)) (-4060 (($ $) 22) (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-383 (-523)) $) 26) (($ $ (-383 (-523))) 28))) +(((-901 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -4074 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-902 |#2| |#3| |#4|) (-973) (-731) (-786)) (T -901)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -4074 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1292 (((-589 |#3|) $) 74)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3306 (($ $) 52 (|has| |#1| (-515)))) (-3174 (((-108) $) 54 (|has| |#1| (-515)))) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1457 (($ $) 60)) (-1444 (((-3 $ "failed") $) 34)) (-2589 (((-108) $) 73)) (-2769 (((-108) $) 31)) (-2704 (((-108) $) 62)) (-1267 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-589 |#3|) (-589 |#2|)) 75)) (-1345 (($ (-1 |#1| |#1|) $) 63)) (-1427 (($ $) 65)) (-1437 ((|#1| $) 66)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-4007 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-2640 ((|#2| $) 64)) (-2488 (($ $) 72)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47 (|has| |#1| (-158)))) (-2084 ((|#1| $ |#2|) 59)) (-1942 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) (((-902 |#1| |#2| |#3|) (-129) (-973) (-731) (-786)) (T -902)) -((-3786 (*1 *2 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *3 (-731)) (-4 *4 (-786)) (-4 *2 (-973)))) (-3774 (*1 *1 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *4 (-786)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *2 *4)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *2 (-731)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-902 *4 *3 *2)) (-4 *4 (-973)) (-4 *3 (-731)) (-4 *2 (-786)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 *5)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-731)) (-4 *6 (-786)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-731)) (-4 *5 (-786)) (-5 *2 (-589 *5)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-731)) (-4 *5 (-786)) (-5 *2 (-108)))) (-1353 (*1 *1 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *4 (-786))))) -(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -1933 ($ $ |t#3| |t#2|)) (-15 -1933 ($ $ (-589 |t#3|) (-589 |t#2|))) (-15 -3774 ($ $)) (-15 -3786 (|t#1| $)) (-15 -2299 (|t#2| $)) (-15 -1957 ((-589 |t#3|) $)) (-15 -2003 ((-108) $)) (-15 -1353 ($ $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-267) |has| |#1| (-515)) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-2842 (((-1011 (-203)) $) 8)) (-2831 (((-1011 (-203)) $) 9)) (-2817 (((-1011 (-203)) $) 10)) (-4068 (((-589 (-589 (-874 (-203)))) $) 11)) (-1458 (((-794) $) 6))) +((-1437 (*1 *2 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *3 (-731)) (-4 *4 (-786)) (-4 *2 (-973)))) (-1427 (*1 *1 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *4 (-786)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *2 *4)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *2 (-731)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-902 *4 *3 *2)) (-4 *4 (-973)) (-4 *3 (-731)) (-4 *2 (-786)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 *5)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-731)) (-4 *6 (-786)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-731)) (-4 *5 (-786)) (-5 *2 (-589 *5)))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-731)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2488 (*1 *1 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *4 (-786))))) +(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -1267 ($ $ |t#3| |t#2|)) (-15 -1267 ($ $ (-589 |t#3|) (-589 |t#2|))) (-15 -1427 ($ $)) (-15 -1437 (|t#1| $)) (-15 -2640 (|t#2| $)) (-15 -1292 ((-589 |t#3|) $)) (-15 -2589 ((-108) $)) (-15 -2488 ($ $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-267) |has| |#1| (-515)) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-2035 (((-1011 (-203)) $) 8)) (-2025 (((-1011 (-203)) $) 9)) (-2015 (((-1011 (-203)) $) 10)) (-2825 (((-589 (-589 (-874 (-203)))) $) 11)) (-1691 (((-794) $) 6))) (((-903) (-129)) (T -903)) -((-4068 (*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-589 (-589 (-874 (-203))))))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203))))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203))))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203)))))) -(-13 (-563 (-794)) (-10 -8 (-15 -4068 ((-589 (-589 (-874 (-203)))) $)) (-15 -2817 ((-1011 (-203)) $)) (-15 -2831 ((-1011 (-203)) $)) (-15 -2842 ((-1011 (-203)) $)))) +((-2825 (*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-589 (-589 (-874 (-203))))))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203))))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203))))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203)))))) +(-13 (-563 (-794)) (-10 -8 (-15 -2825 ((-589 (-589 (-874 (-203)))) $)) (-15 -2015 ((-1011 (-203)) $)) (-15 -2025 ((-1011 (-203)) $)) (-15 -2035 ((-1011 (-203)) $)))) (((-563 (-794)) . T)) -((-1957 (((-589 |#4|) $) 23)) (-2100 (((-108) $) 48)) (-2376 (((-108) $) 47)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#4|) 36)) (-3595 (((-108) $) 49)) (-4017 (((-108) $ $) 55)) (-3225 (((-108) $ $) 58)) (-3393 (((-108) $) 53)) (-3956 (((-589 |#5|) (-589 |#5|) $) 90)) (-2771 (((-589 |#5|) (-589 |#5|) $) 87)) (-3282 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-4055 (((-589 |#4|) $) 27)) (-1357 (((-108) |#4| $) 30)) (-1644 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2621 (($ $ |#4|) 33)) (-2624 (($ $ |#4|) 32)) (-3076 (($ $ |#4|) 34)) (-3983 (((-108) $ $) 40))) -(((-904 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2376 ((-108) |#1|)) (-15 -3956 ((-589 |#5|) (-589 |#5|) |#1|)) (-15 -2771 ((-589 |#5|) (-589 |#5|) |#1|)) (-15 -3282 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1644 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3595 ((-108) |#1|)) (-15 -3225 ((-108) |#1| |#1|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -3393 ((-108) |#1|)) (-15 -2100 ((-108) |#1|)) (-15 -3974 ((-2 (|:| |under| |#1|) (|:| -3722 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2621 (|#1| |#1| |#4|)) (-15 -3076 (|#1| |#1| |#4|)) (-15 -2624 (|#1| |#1| |#4|)) (-15 -1357 ((-108) |#4| |#1|)) (-15 -4055 ((-589 |#4|) |#1|)) (-15 -1957 ((-589 |#4|) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-905 |#2| |#3| |#4| |#5|) (-973) (-732) (-786) (-987 |#2| |#3| |#4|)) (T -904)) +((-1292 (((-589 |#4|) $) 23)) (-2356 (((-108) $) 48)) (-2192 (((-108) $) 47)) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |#4|) 36)) (-4002 (((-108) $) 49)) (-3577 (((-108) $ $) 55)) (-3527 (((-108) $ $) 58)) (-2611 (((-108) $) 53)) (-1291 (((-589 |#5|) (-589 |#5|) $) 90)) (-1804 (((-589 |#5|) (-589 |#5|) $) 87)) (-3969 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2709 (((-589 |#4|) $) 27)) (-2528 (((-108) |#4| $) 30)) (-3473 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2712 (($ $ |#4|) 33)) (-2742 (($ $ |#4|) 32)) (-1591 (($ $ |#4|) 34)) (-3941 (((-108) $ $) 40))) +(((-904 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2192 ((-108) |#1|)) (-15 -1291 ((-589 |#5|) (-589 |#5|) |#1|)) (-15 -1804 ((-589 |#5|) (-589 |#5|) |#1|)) (-15 -3969 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3473 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4002 ((-108) |#1|)) (-15 -3527 ((-108) |#1| |#1|)) (-15 -3577 ((-108) |#1| |#1|)) (-15 -2611 ((-108) |#1|)) (-15 -2356 ((-108) |#1|)) (-15 -1581 ((-2 (|:| |under| |#1|) (|:| -2733 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2712 (|#1| |#1| |#4|)) (-15 -1591 (|#1| |#1| |#4|)) (-15 -2742 (|#1| |#1| |#4|)) (-15 -2528 ((-108) |#4| |#1|)) (-15 -2709 ((-589 |#4|) |#1|)) (-15 -1292 ((-589 |#4|) |#1|)) (-15 -3941 ((-108) |#1| |#1|))) (-905 |#2| |#3| |#4| |#5|) (-973) (-732) (-786) (-987 |#2| |#3| |#4|)) (T -904)) NIL -(-10 -8 (-15 -2376 ((-108) |#1|)) (-15 -3956 ((-589 |#5|) (-589 |#5|) |#1|)) (-15 -2771 ((-589 |#5|) (-589 |#5|) |#1|)) (-15 -3282 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1644 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3595 ((-108) |#1|)) (-15 -3225 ((-108) |#1| |#1|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -3393 ((-108) |#1|)) (-15 -2100 ((-108) |#1|)) (-15 -3974 ((-2 (|:| |under| |#1|) (|:| -3722 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2621 (|#1| |#1| |#4|)) (-15 -3076 (|#1| |#1| |#4|)) (-15 -2624 (|#1| |#1| |#4|)) (-15 -1357 ((-108) |#4| |#1|)) (-15 -4055 ((-589 |#4|) |#1|)) (-15 -1957 ((-589 |#4|) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-1957 (((-589 |#3|) $) 33)) (-2100 (((-108) $) 26)) (-2376 (((-108) $) 17 (|has| |#1| (-515)))) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) 27)) (-3079 (((-108) $ (-710)) 44)) (-3724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4244)))) (-2518 (($) 45 T CONST)) (-3595 (((-108) $) 22 (|has| |#1| (-515)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3225 (((-108) $ $) 23 (|has| |#1| (-515)))) (-3393 (((-108) $) 25 (|has| |#1| (-515)))) (-3956 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 36)) (-3474 (($ (-589 |#4|)) 35)) (-1773 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4244)))) (-1666 (((-589 |#4|) $) 52 (|has| $ (-6 -4244)))) (-2907 ((|#3| $) 34)) (-2346 (((-108) $ (-710)) 43)) (-2136 (((-589 |#4|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 47)) (-4055 (((-589 |#3|) $) 32)) (-1357 (((-108) |#3| $) 31)) (-2866 (((-108) $ (-710)) 42)) (-3779 (((-1070) $) 9)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2783 (((-1034) $) 10)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1327 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) 38)) (-3883 (((-108) $) 41)) (-3988 (($) 40)) (-2792 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4244)))) (-1664 (($ $) 39)) (-3663 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 60)) (-2621 (($ $ |#3|) 28)) (-2624 (($ $ |#3|) 30)) (-3076 (($ $ |#3|) 29)) (-1458 (((-794) $) 11) (((-589 |#4|) $) 37)) (-2096 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 6)) (-2676 (((-710) $) 46 (|has| $ (-6 -4244))))) +(-10 -8 (-15 -2192 ((-108) |#1|)) (-15 -1291 ((-589 |#5|) (-589 |#5|) |#1|)) (-15 -1804 ((-589 |#5|) (-589 |#5|) |#1|)) (-15 -3969 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3473 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4002 ((-108) |#1|)) (-15 -3527 ((-108) |#1| |#1|)) (-15 -3577 ((-108) |#1| |#1|)) (-15 -2611 ((-108) |#1|)) (-15 -2356 ((-108) |#1|)) (-15 -1581 ((-2 (|:| |under| |#1|) (|:| -2733 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2712 (|#1| |#1| |#4|)) (-15 -1591 (|#1| |#1| |#4|)) (-15 -2742 (|#1| |#1| |#4|)) (-15 -2528 ((-108) |#4| |#1|)) (-15 -2709 ((-589 |#4|) |#1|)) (-15 -1292 ((-589 |#4|) |#1|)) (-15 -3941 ((-108) |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-1292 (((-589 |#3|) $) 33)) (-2356 (((-108) $) 26)) (-2192 (((-108) $) 17 (|has| |#1| (-515)))) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |#3|) 27)) (-1620 (((-108) $ (-710)) 44)) (-1903 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4248)))) (-4189 (($) 45 T CONST)) (-4002 (((-108) $) 22 (|has| |#1| (-515)))) (-3577 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3527 (((-108) $ $) 23 (|has| |#1| (-515)))) (-2611 (((-108) $) 25 (|has| |#1| (-515)))) (-1291 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-1804 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-1220 (((-3 $ "failed") (-589 |#4|)) 36)) (-3508 (($ (-589 |#4|)) 35)) (-2462 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4248)))) (-3969 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2116 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4248))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4248)))) (-1871 (((-589 |#4|) $) 52 (|has| $ (-6 -4248)))) (-3556 ((|#3| $) 34)) (-3051 (((-108) $ (-710)) 43)) (-1584 (((-589 |#4|) $) 53 (|has| $ (-6 -4248)))) (-3423 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#4| |#4|) $) 47)) (-2709 (((-589 |#3|) $) 32)) (-2528 (((-108) |#3| $) 31)) (-1418 (((-108) $ (-710)) 42)) (-2032 (((-1070) $) 9)) (-3473 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-3951 (((-1034) $) 10)) (-2509 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3379 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-2267 (((-108) $ $) 38)) (-1777 (((-108) $) 41)) (-3320 (($) 40)) (-3977 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4248)))) (-1874 (($ $) 39)) (-1400 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1704 (($ (-589 |#4|)) 60)) (-2712 (($ $ |#3|) 28)) (-2742 (($ $ |#3|) 30)) (-1591 (($ $ |#3|) 29)) (-1691 (((-794) $) 11) (((-589 |#4|) $) 37)) (-2308 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 6)) (-2810 (((-710) $) 46 (|has| $ (-6 -4248))))) (((-905 |#1| |#2| |#3| |#4|) (-129) (-973) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -905)) -((-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *1 (-905 *3 *4 *5 *6)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *1 (-905 *3 *4 *5 *6)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-987 *3 *4 *2)) (-4 *2 (-786)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5)))) (-1357 (*1 *2 *3 *1) (-12 (-4 *1 (-905 *4 *5 *3 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-108)))) (-2624 (*1 *1 *1 *2) (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2)))) (-3076 (*1 *1 *1 *2) (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2)))) (-2621 (*1 *1 *1 *2) (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2)))) (-3974 (*1 *2 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3722 *1) (|:| |upper| *1))) (-4 *1 (-905 *4 *5 *3 *6)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108)))) (-4017 (*1 *2 *1 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108)))) (-3225 (*1 *2 *1 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108)))) (-1644 (*1 *2 *3 *1) (-12 (-4 *1 (-905 *4 *5 *6 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3282 (*1 *2 *3 *1) (-12 (-4 *1 (-905 *4 *5 *6 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2771 (*1 *2 *2 *1) (-12 (-5 *2 (-589 *6)) (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)))) (-3956 (*1 *2 *2 *1) (-12 (-5 *2 (-589 *6)) (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108))))) -(-13 (-1016) (-140 |t#4|) (-563 (-589 |t#4|)) (-10 -8 (-6 -4244) (-15 -3517 ((-3 $ "failed") (-589 |t#4|))) (-15 -3474 ($ (-589 |t#4|))) (-15 -2907 (|t#3| $)) (-15 -1957 ((-589 |t#3|) $)) (-15 -4055 ((-589 |t#3|) $)) (-15 -1357 ((-108) |t#3| $)) (-15 -2624 ($ $ |t#3|)) (-15 -3076 ($ $ |t#3|)) (-15 -2621 ($ $ |t#3|)) (-15 -3974 ((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |t#3|)) (-15 -2100 ((-108) $)) (IF (|has| |t#1| (-515)) (PROGN (-15 -3393 ((-108) $)) (-15 -4017 ((-108) $ $)) (-15 -3225 ((-108) $ $)) (-15 -3595 ((-108) $)) (-15 -1644 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3282 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2771 ((-589 |t#4|) (-589 |t#4|) $)) (-15 -3956 ((-589 |t#4|) (-589 |t#4|) $)) (-15 -2376 ((-108) $))) |%noBranch|))) -(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-1016) . T) ((-1122) . T)) -((-1482 (((-589 |#4|) |#4| |#4|) 115)) (-1667 (((-589 |#4|) (-589 |#4|) (-108)) 104 (|has| |#1| (-427))) (((-589 |#4|) (-589 |#4|)) 105 (|has| |#1| (-427)))) (-2222 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|)) 35)) (-3416 (((-108) |#4|) 34)) (-1337 (((-589 |#4|) |#4|) 101 (|has| |#1| (-427)))) (-1977 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-1 (-108) |#4|) (-589 |#4|)) 20)) (-3802 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|)) 22)) (-2458 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|)) 23)) (-2047 (((-3 (-2 (|:| |bas| (-451 |#1| |#2| |#3| |#4|)) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|)) 73)) (-1626 (((-589 |#4|) (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-1756 (((-589 |#4|) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-2229 (((-589 |#4|) (-589 |#4|)) 107)) (-2886 (((-589 |#4|) (-589 |#4|) (-589 |#4|) (-108)) 48) (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 50)) (-3836 ((|#4| |#4| (-589 |#4|)) 49)) (-1522 (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 111 (|has| |#1| (-427)))) (-3621 (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 114 (|has| |#1| (-427)))) (-3049 (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 113 (|has| |#1| (-427)))) (-3864 (((-589 |#4|) (-589 |#4|) (-589 |#4|) (-1 (-589 |#4|) (-589 |#4|))) 87) (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 89) (((-589 |#4|) (-589 |#4|) |#4|) 118) (((-589 |#4|) |#4| |#4|) 116) (((-589 |#4|) (-589 |#4|)) 88)) (-1450 (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 98 (-12 (|has| |#1| (-136)) (|has| |#1| (-284))))) (-3364 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|)) 41)) (-1530 (((-108) (-589 |#4|)) 62)) (-3133 (((-108) (-589 |#4|) (-589 (-589 |#4|))) 53)) (-3803 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|)) 29)) (-2715 (((-108) |#4|) 28)) (-2359 (((-589 |#4|) (-589 |#4|)) 97 (-12 (|has| |#1| (-136)) (|has| |#1| (-284))))) (-1631 (((-589 |#4|) (-589 |#4|)) 96 (-12 (|has| |#1| (-136)) (|has| |#1| (-284))))) (-2004 (((-589 |#4|) (-589 |#4|)) 66)) (-3307 (((-589 |#4|) (-589 |#4|)) 79)) (-2220 (((-108) (-589 |#4|) (-589 |#4|)) 51)) (-3081 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|)) 39)) (-1380 (((-108) |#4|) 36))) -(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3864 ((-589 |#4|) (-589 |#4|))) (-15 -3864 ((-589 |#4|) |#4| |#4|)) (-15 -2229 ((-589 |#4|) (-589 |#4|))) (-15 -1482 ((-589 |#4|) |#4| |#4|)) (-15 -3864 ((-589 |#4|) (-589 |#4|) |#4|)) (-15 -3864 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3864 ((-589 |#4|) (-589 |#4|) (-589 |#4|) (-1 (-589 |#4|) (-589 |#4|)))) (-15 -2220 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3133 ((-108) (-589 |#4|) (-589 (-589 |#4|)))) (-15 -1530 ((-108) (-589 |#4|))) (-15 -1977 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-1 (-108) |#4|) (-589 |#4|))) (-15 -3802 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|))) (-15 -2458 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|))) (-15 -3364 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -3416 ((-108) |#4|)) (-15 -2222 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2715 ((-108) |#4|)) (-15 -3803 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -1380 ((-108) |#4|)) (-15 -3081 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2886 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -2886 ((-589 |#4|) (-589 |#4|) (-589 |#4|) (-108))) (-15 -3836 (|#4| |#4| (-589 |#4|))) (-15 -2004 ((-589 |#4|) (-589 |#4|))) (-15 -2047 ((-3 (-2 (|:| |bas| (-451 |#1| |#2| |#3| |#4|)) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|))) (-15 -3307 ((-589 |#4|) (-589 |#4|))) (-15 -1626 ((-589 |#4|) (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1756 ((-589 |#4|) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-427)) (PROGN (-15 -1337 ((-589 |#4|) |#4|)) (-15 -1667 ((-589 |#4|) (-589 |#4|))) (-15 -1667 ((-589 |#4|) (-589 |#4|) (-108))) (-15 -1522 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3049 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3621 ((-589 |#4|) (-589 |#4|) (-589 |#4|)))) |%noBranch|) (IF (|has| |#1| (-284)) (IF (|has| |#1| (-136)) (PROGN (-15 -1631 ((-589 |#4|) (-589 |#4|))) (-15 -2359 ((-589 |#4|) (-589 |#4|))) (-15 -1450 ((-589 |#4|) (-589 |#4|) (-589 |#4|)))) |%noBranch|) |%noBranch|)) (-515) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -906)) -((-1450 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-2359 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1631 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3621 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3049 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1522 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1667 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-108)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *7)))) (-1667 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1337 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-1756 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-906 *5 *6 *7 *8)))) (-1626 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-589 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) (-4 *8 (-786)) (-5 *1 (-906 *6 *7 *8 *9)))) (-3307 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-2047 (*1 *2 *3) (|partial| -12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-451 *4 *5 *6 *7)) (|:| -3125 (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2004 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3836 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *2)))) (-2886 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-108)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *7)))) (-2886 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-1380 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-3803 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-2222 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-3416 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-3364 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1 (-108) *8))) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1 (-108) *8))) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8)))) (-1977 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *7)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-589 *8))) (-5 *3 (-589 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *5 *6 *7 *8)))) (-2220 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *7)))) (-3864 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-589 *7) (-589 *7))) (-5 *2 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *7)))) (-3864 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3864 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *3)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *3)))) (-1482 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3864 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6))))) -(-10 -7 (-15 -3864 ((-589 |#4|) (-589 |#4|))) (-15 -3864 ((-589 |#4|) |#4| |#4|)) (-15 -2229 ((-589 |#4|) (-589 |#4|))) (-15 -1482 ((-589 |#4|) |#4| |#4|)) (-15 -3864 ((-589 |#4|) (-589 |#4|) |#4|)) (-15 -3864 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3864 ((-589 |#4|) (-589 |#4|) (-589 |#4|) (-1 (-589 |#4|) (-589 |#4|)))) (-15 -2220 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3133 ((-108) (-589 |#4|) (-589 (-589 |#4|)))) (-15 -1530 ((-108) (-589 |#4|))) (-15 -1977 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-1 (-108) |#4|) (-589 |#4|))) (-15 -3802 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|))) (-15 -2458 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|))) (-15 -3364 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -3416 ((-108) |#4|)) (-15 -2222 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2715 ((-108) |#4|)) (-15 -3803 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -1380 ((-108) |#4|)) (-15 -3081 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2886 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -2886 ((-589 |#4|) (-589 |#4|) (-589 |#4|) (-108))) (-15 -3836 (|#4| |#4| (-589 |#4|))) (-15 -2004 ((-589 |#4|) (-589 |#4|))) (-15 -2047 ((-3 (-2 (|:| |bas| (-451 |#1| |#2| |#3| |#4|)) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|))) (-15 -3307 ((-589 |#4|) (-589 |#4|))) (-15 -1626 ((-589 |#4|) (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1756 ((-589 |#4|) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-427)) (PROGN (-15 -1337 ((-589 |#4|) |#4|)) (-15 -1667 ((-589 |#4|) (-589 |#4|))) (-15 -1667 ((-589 |#4|) (-589 |#4|) (-108))) (-15 -1522 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3049 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3621 ((-589 |#4|) (-589 |#4|) (-589 |#4|)))) |%noBranch|) (IF (|has| |#1| (-284)) (IF (|has| |#1| (-136)) (PROGN (-15 -1631 ((-589 |#4|) (-589 |#4|))) (-15 -2359 ((-589 |#4|) (-589 |#4|))) (-15 -1450 ((-589 |#4|) (-589 |#4|) (-589 |#4|)))) |%noBranch|) |%noBranch|)) -((-4078 (((-2 (|:| R (-629 |#1|)) (|:| A (-629 |#1|)) (|:| |Ainv| (-629 |#1|))) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-3432 (((-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1168 |#1|)))) (-629 |#1|) (-1168 |#1|)) 36)) (-3492 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16))) -(((-907 |#1|) (-10 -7 (-15 -4078 ((-2 (|:| R (-629 |#1|)) (|:| A (-629 |#1|)) (|:| |Ainv| (-629 |#1|))) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3492 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3432 ((-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1168 |#1|)))) (-629 |#1|) (-1168 |#1|)))) (-339)) (T -907)) -((-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-5 *2 (-589 (-2 (|:| C (-629 *5)) (|:| |g| (-1168 *5))))) (-5 *1 (-907 *5)) (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)))) (-3492 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-629 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) (-5 *1 (-907 *5)))) (-4078 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-339)) (-5 *2 (-2 (|:| R (-629 *6)) (|:| A (-629 *6)) (|:| |Ainv| (-629 *6)))) (-5 *1 (-907 *6)) (-5 *3 (-629 *6))))) -(-10 -7 (-15 -4078 ((-2 (|:| R (-629 |#1|)) (|:| A (-629 |#1|)) (|:| |Ainv| (-629 |#1|))) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3492 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3432 ((-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1168 |#1|)))) (-629 |#1|) (-1168 |#1|)))) -((-3614 (((-394 |#4|) |#4|) 47))) -(((-908 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3614 ((-394 |#4|) |#4|))) (-786) (-732) (-427) (-880 |#3| |#2| |#1|)) (T -908)) -((-3614 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-427)) (-5 *2 (-394 *3)) (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4))))) -(-10 -7 (-15 -3614 ((-394 |#4|) |#4|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-2821 (($ (-710)) 112 (|has| |#1| (-23)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4245))) (($ $) 88 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-2867 (($ $) 90 (|has| $ (-6 -4245)))) (-3631 (($ $) 100)) (-1773 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 51)) (-1479 (((-523) (-1 (-108) |#1|) $) 97) (((-523) |#1| $) 96 (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) 95 (|has| |#1| (-1016)))) (-2388 (($ (-589 |#1|)) 118)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-1777 (((-629 |#1|) $ $) 105 (|has| |#1| (-973)))) (-3052 (($ (-710) |#1|) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 87 (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 86 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3798 ((|#1| $) 102 (-12 (|has| |#1| (-973)) (|has| |#1| (-930))))) (-2866 (((-108) $ (-710)) 10)) (-2996 ((|#1| $) 103 (-12 (|has| |#1| (-973)) (|has| |#1| (-930))))) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 42 (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4203 (($ $ |#1|) 41 (|has| $ (-6 -4245)))) (-4097 (($ $ (-589 |#1|)) 115)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1135 (-523))) 63)) (-3269 ((|#1| $ $) 106 (|has| |#1| (-973)))) (-3203 (((-852) $) 117)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2240 (($ $ $) 104)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 91 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| |#1| (-564 (-499)))) (($ (-589 |#1|)) 116)) (-1472 (($ (-589 |#1|)) 70)) (-2326 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 84 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 83 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4030 (((-108) $ $) 85 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 82 (|has| |#1| (-786)))) (-4087 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4075 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-523) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-666))) (($ $ |#1|) 107 (|has| |#1| (-666)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *1 (-905 *3 *4 *5 *6)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *1 (-905 *3 *4 *5 *6)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-987 *3 *4 *2)) (-4 *2 (-786)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5)))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5)))) (-2528 (*1 *2 *3 *1) (-12 (-4 *1 (-905 *4 *5 *3 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-108)))) (-2742 (*1 *1 *1 *2) (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2)))) (-1591 (*1 *1 *1 *2) (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2)))) (-2712 (*1 *1 *1 *2) (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2)))) (-1581 (*1 *2 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2733 *1) (|:| |upper| *1))) (-4 *1 (-905 *4 *5 *3 *6)))) (-2356 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2611 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108)))) (-3577 (*1 *2 *1 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108)))) (-3527 (*1 *2 *1 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108)))) (-3473 (*1 *2 *3 *1) (-12 (-4 *1 (-905 *4 *5 *6 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3969 (*1 *2 *3 *1) (-12 (-4 *1 (-905 *4 *5 *6 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1804 (*1 *2 *2 *1) (-12 (-5 *2 (-589 *6)) (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)))) (-1291 (*1 *2 *2 *1) (-12 (-5 *2 (-589 *6)) (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)))) (-2192 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108))))) +(-13 (-1016) (-140 |t#4|) (-563 (-589 |t#4|)) (-10 -8 (-6 -4248) (-15 -1220 ((-3 $ "failed") (-589 |t#4|))) (-15 -3508 ($ (-589 |t#4|))) (-15 -3556 (|t#3| $)) (-15 -1292 ((-589 |t#3|) $)) (-15 -2709 ((-589 |t#3|) $)) (-15 -2528 ((-108) |t#3| $)) (-15 -2742 ($ $ |t#3|)) (-15 -1591 ($ $ |t#3|)) (-15 -2712 ($ $ |t#3|)) (-15 -1581 ((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |t#3|)) (-15 -2356 ((-108) $)) (IF (|has| |t#1| (-515)) (PROGN (-15 -2611 ((-108) $)) (-15 -3577 ((-108) $ $)) (-15 -3527 ((-108) $ $)) (-15 -4002 ((-108) $)) (-15 -3473 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3969 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1804 ((-589 |t#4|) (-589 |t#4|) $)) (-15 -1291 ((-589 |t#4|) (-589 |t#4|) $)) (-15 -2192 ((-108) $))) |%noBranch|))) +(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-1016) . T) ((-1123) . T)) +((-1403 (((-589 |#4|) |#4| |#4|) 115)) (-2523 (((-589 |#4|) (-589 |#4|) (-108)) 104 (|has| |#1| (-427))) (((-589 |#4|) (-589 |#4|)) 105 (|has| |#1| (-427)))) (-1263 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|)) 35)) (-2802 (((-108) |#4|) 34)) (-3479 (((-589 |#4|) |#4|) 101 (|has| |#1| (-427)))) (-3467 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-1 (-108) |#4|) (-589 |#4|)) 20)) (-2198 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|)) 22)) (-1790 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|)) 23)) (-2978 (((-3 (-2 (|:| |bas| (-451 |#1| |#2| |#3| |#4|)) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|)) 73)) (-3328 (((-589 |#4|) (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2073 (((-589 |#4|) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-1351 (((-589 |#4|) (-589 |#4|)) 107)) (-3319 (((-589 |#4|) (-589 |#4|) (-589 |#4|) (-108)) 48) (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 50)) (-2500 ((|#4| |#4| (-589 |#4|)) 49)) (-1774 (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 111 (|has| |#1| (-427)))) (-1284 (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 114 (|has| |#1| (-427)))) (-2507 (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 113 (|has| |#1| (-427)))) (-1595 (((-589 |#4|) (-589 |#4|) (-589 |#4|) (-1 (-589 |#4|) (-589 |#4|))) 87) (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 89) (((-589 |#4|) (-589 |#4|) |#4|) 118) (((-589 |#4|) |#4| |#4|) 116) (((-589 |#4|) (-589 |#4|)) 88)) (-2256 (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 98 (-12 (|has| |#1| (-136)) (|has| |#1| (-284))))) (-3487 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|)) 41)) (-1848 (((-108) (-589 |#4|)) 62)) (-3882 (((-108) (-589 |#4|) (-589 (-589 |#4|))) 53)) (-2209 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|)) 29)) (-2415 (((-108) |#4|) 28)) (-2037 (((-589 |#4|) (-589 |#4|)) 97 (-12 (|has| |#1| (-136)) (|has| |#1| (-284))))) (-3363 (((-589 |#4|) (-589 |#4|)) 96 (-12 (|has| |#1| (-136)) (|has| |#1| (-284))))) (-2598 (((-589 |#4|) (-589 |#4|)) 66)) (-4218 (((-589 |#4|) (-589 |#4|)) 79)) (-1238 (((-108) (-589 |#4|) (-589 |#4|)) 51)) (-1640 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|)) 39)) (-2730 (((-108) |#4|) 36))) +(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1595 ((-589 |#4|) (-589 |#4|))) (-15 -1595 ((-589 |#4|) |#4| |#4|)) (-15 -1351 ((-589 |#4|) (-589 |#4|))) (-15 -1403 ((-589 |#4|) |#4| |#4|)) (-15 -1595 ((-589 |#4|) (-589 |#4|) |#4|)) (-15 -1595 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -1595 ((-589 |#4|) (-589 |#4|) (-589 |#4|) (-1 (-589 |#4|) (-589 |#4|)))) (-15 -1238 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3882 ((-108) (-589 |#4|) (-589 (-589 |#4|)))) (-15 -1848 ((-108) (-589 |#4|))) (-15 -3467 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-1 (-108) |#4|) (-589 |#4|))) (-15 -2198 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|))) (-15 -1790 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|))) (-15 -3487 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2802 ((-108) |#4|)) (-15 -1263 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2415 ((-108) |#4|)) (-15 -2209 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2730 ((-108) |#4|)) (-15 -1640 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -3319 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3319 ((-589 |#4|) (-589 |#4|) (-589 |#4|) (-108))) (-15 -2500 (|#4| |#4| (-589 |#4|))) (-15 -2598 ((-589 |#4|) (-589 |#4|))) (-15 -2978 ((-3 (-2 (|:| |bas| (-451 |#1| |#2| |#3| |#4|)) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|))) (-15 -4218 ((-589 |#4|) (-589 |#4|))) (-15 -3328 ((-589 |#4|) (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2073 ((-589 |#4|) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-427)) (PROGN (-15 -3479 ((-589 |#4|) |#4|)) (-15 -2523 ((-589 |#4|) (-589 |#4|))) (-15 -2523 ((-589 |#4|) (-589 |#4|) (-108))) (-15 -1774 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -2507 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -1284 ((-589 |#4|) (-589 |#4|) (-589 |#4|)))) |%noBranch|) (IF (|has| |#1| (-284)) (IF (|has| |#1| (-136)) (PROGN (-15 -3363 ((-589 |#4|) (-589 |#4|))) (-15 -2037 ((-589 |#4|) (-589 |#4|))) (-15 -2256 ((-589 |#4|) (-589 |#4|) (-589 |#4|)))) |%noBranch|) |%noBranch|)) (-515) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -906)) +((-2256 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-2037 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3363 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1284 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-2507 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1774 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-2523 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-108)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *7)))) (-2523 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-2073 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-906 *5 *6 *7 *8)))) (-3328 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-589 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) (-4 *8 (-786)) (-5 *1 (-906 *6 *7 *8 *9)))) (-4218 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-2978 (*1 *2 *3) (|partial| -12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-451 *4 *5 *6 *7)) (|:| -3781 (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2598 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-2500 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *2)))) (-3319 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-108)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *7)))) (-3319 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1640 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2730 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-2209 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2415 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-1263 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2802 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-3487 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-1790 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1 (-108) *8))) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8)))) (-2198 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1 (-108) *8))) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *7)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-589 *8))) (-5 *3 (-589 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *5 *6 *7 *8)))) (-1238 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *7)))) (-1595 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-589 *7) (-589 *7))) (-5 *2 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *7)))) (-1595 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1595 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *3)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *3)))) (-1403 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-1351 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1595 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-1595 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6))))) +(-10 -7 (-15 -1595 ((-589 |#4|) (-589 |#4|))) (-15 -1595 ((-589 |#4|) |#4| |#4|)) (-15 -1351 ((-589 |#4|) (-589 |#4|))) (-15 -1403 ((-589 |#4|) |#4| |#4|)) (-15 -1595 ((-589 |#4|) (-589 |#4|) |#4|)) (-15 -1595 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -1595 ((-589 |#4|) (-589 |#4|) (-589 |#4|) (-1 (-589 |#4|) (-589 |#4|)))) (-15 -1238 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3882 ((-108) (-589 |#4|) (-589 (-589 |#4|)))) (-15 -1848 ((-108) (-589 |#4|))) (-15 -3467 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-1 (-108) |#4|) (-589 |#4|))) (-15 -2198 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|))) (-15 -1790 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|))) (-15 -3487 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2802 ((-108) |#4|)) (-15 -1263 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2415 ((-108) |#4|)) (-15 -2209 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2730 ((-108) |#4|)) (-15 -1640 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -3319 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3319 ((-589 |#4|) (-589 |#4|) (-589 |#4|) (-108))) (-15 -2500 (|#4| |#4| (-589 |#4|))) (-15 -2598 ((-589 |#4|) (-589 |#4|))) (-15 -2978 ((-3 (-2 (|:| |bas| (-451 |#1| |#2| |#3| |#4|)) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|))) (-15 -4218 ((-589 |#4|) (-589 |#4|))) (-15 -3328 ((-589 |#4|) (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2073 ((-589 |#4|) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-427)) (PROGN (-15 -3479 ((-589 |#4|) |#4|)) (-15 -2523 ((-589 |#4|) (-589 |#4|))) (-15 -2523 ((-589 |#4|) (-589 |#4|) (-108))) (-15 -1774 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -2507 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -1284 ((-589 |#4|) (-589 |#4|) (-589 |#4|)))) |%noBranch|) (IF (|has| |#1| (-284)) (IF (|has| |#1| (-136)) (PROGN (-15 -3363 ((-589 |#4|) (-589 |#4|))) (-15 -2037 ((-589 |#4|) (-589 |#4|))) (-15 -2256 ((-589 |#4|) (-589 |#4|) (-589 |#4|)))) |%noBranch|) |%noBranch|)) +((-2917 (((-2 (|:| R (-629 |#1|)) (|:| A (-629 |#1|)) (|:| |Ainv| (-629 |#1|))) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-2954 (((-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1169 |#1|)))) (-629 |#1|) (-1169 |#1|)) 36)) (-2383 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16))) +(((-907 |#1|) (-10 -7 (-15 -2917 ((-2 (|:| R (-629 |#1|)) (|:| A (-629 |#1|)) (|:| |Ainv| (-629 |#1|))) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2383 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2954 ((-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1169 |#1|)))) (-629 |#1|) (-1169 |#1|)))) (-339)) (T -907)) +((-2954 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-5 *2 (-589 (-2 (|:| C (-629 *5)) (|:| |g| (-1169 *5))))) (-5 *1 (-907 *5)) (-5 *3 (-629 *5)) (-5 *4 (-1169 *5)))) (-2383 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-629 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) (-5 *1 (-907 *5)))) (-2917 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-339)) (-5 *2 (-2 (|:| R (-629 *6)) (|:| A (-629 *6)) (|:| |Ainv| (-629 *6)))) (-5 *1 (-907 *6)) (-5 *3 (-629 *6))))) +(-10 -7 (-15 -2917 ((-2 (|:| R (-629 |#1|)) (|:| A (-629 |#1|)) (|:| |Ainv| (-629 |#1|))) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2383 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2954 ((-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1169 |#1|)))) (-629 |#1|) (-1169 |#1|)))) +((-4226 (((-394 |#4|) |#4|) 47))) +(((-908 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4226 ((-394 |#4|) |#4|))) (-786) (-732) (-427) (-880 |#3| |#2| |#1|)) (T -908)) +((-4226 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-427)) (-5 *2 (-394 *3)) (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4))))) +(-10 -7 (-15 -4226 ((-394 |#4|) |#4|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1709 (($ (-710)) 112 (|has| |#1| (-23)))) (-4191 (((-1174) $ (-523) (-523)) 40 (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-786)))) (-1632 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4249))) (($ $) 88 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4249))))) (-1581 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-786)))) (-1620 (((-108) $ (-710)) 8)) (-1849 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) 58 (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-1426 (($ $) 90 (|has| $ (-6 -4249)))) (-3700 (($ $) 100)) (-2462 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) 51)) (-3449 (((-523) (-1 (-108) |#1|) $) 97) (((-523) |#1| $) 96 (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) 95 (|has| |#1| (-1016)))) (-3171 (($ (-589 |#1|)) 118)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-2359 (((-629 |#1|) $ $) 105 (|has| |#1| (-973)))) (-3733 (($ (-710) |#1|) 69)) (-3051 (((-108) $ (-710)) 9)) (-2965 (((-523) $) 43 (|has| (-523) (-786)))) (-3239 (($ $ $) 87 (|has| |#1| (-786)))) (-3780 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 44 (|has| (-523) (-786)))) (-3158 (($ $ $) 86 (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2169 ((|#1| $) 102 (-12 (|has| |#1| (-973)) (|has| |#1| (-930))))) (-1418 (((-108) $ (-710)) 10)) (-2616 ((|#1| $) 103 (-12 (|has| |#1| (-973)) (|has| |#1| (-930))))) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2912 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2536 (((-589 (-523)) $) 46)) (-2254 (((-108) (-523) $) 47)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2428 ((|#1| $) 42 (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4141 (($ $ |#1|) 41 (|has| $ (-6 -4249)))) (-3053 (($ $ (-589 |#1|)) 115)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) 48)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1136 (-523))) 63)) (-3839 ((|#1| $ $) 106 (|has| |#1| (-973)))) (-3314 (((-852) $) 117)) (-1499 (($ $ (-523)) 62) (($ $ (-1136 (-523))) 61)) (-3203 (($ $ $) 104)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-4166 (($ $ $ (-523)) 91 (|has| $ (-6 -4249)))) (-1874 (($ $) 13)) (-1400 (((-499) $) 79 (|has| |#1| (-564 (-499)))) (($ (-589 |#1|)) 116)) (-1704 (($ (-589 |#1|)) 70)) (-2394 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) 84 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 83 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-3993 (((-108) $ $) 85 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 82 (|has| |#1| (-786)))) (-4060 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4045 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-523) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-666))) (($ $ |#1|) 107 (|has| |#1| (-666)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-909 |#1|) (-129) (-973)) (T -909)) -((-2388 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-909 *3)))) (-3203 (*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-973)) (-5 *2 (-852)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-909 *3)))) (-2240 (*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-973)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *1 (-909 *3)) (-4 *3 (-973))))) -(-13 (-1166 |t#1|) (-10 -8 (-15 -2388 ($ (-589 |t#1|))) (-15 -3203 ((-852) $)) (-15 -3663 ($ (-589 |t#1|))) (-15 -2240 ($ $ $)) (-15 -4097 ($ $ (-589 |t#1|))))) -(((-33) . T) ((-97) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-349 |#1|) . T) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-786) |has| |#1| (-786)) ((-1016) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1122) . T) ((-1166 |#1|) . T)) -((-3612 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 17))) -(((-910 |#1| |#2|) (-10 -7 (-15 -3612 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-973) (-973)) (T -910)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-874 *6)) (-5 *1 (-910 *5 *6))))) -(-10 -7 (-15 -3612 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) -((-1224 ((|#1| (-874 |#1|)) 13)) (-3638 ((|#1| (-874 |#1|)) 12)) (-2649 ((|#1| (-874 |#1|)) 11)) (-2342 ((|#1| (-874 |#1|)) 15)) (-2398 ((|#1| (-874 |#1|)) 21)) (-3902 ((|#1| (-874 |#1|)) 14)) (-2448 ((|#1| (-874 |#1|)) 16)) (-1804 ((|#1| (-874 |#1|)) 20)) (-2413 ((|#1| (-874 |#1|)) 19))) -(((-911 |#1|) (-10 -7 (-15 -2649 (|#1| (-874 |#1|))) (-15 -3638 (|#1| (-874 |#1|))) (-15 -1224 (|#1| (-874 |#1|))) (-15 -3902 (|#1| (-874 |#1|))) (-15 -2342 (|#1| (-874 |#1|))) (-15 -2448 (|#1| (-874 |#1|))) (-15 -2413 (|#1| (-874 |#1|))) (-15 -1804 (|#1| (-874 |#1|))) (-15 -2398 (|#1| (-874 |#1|)))) (-973)) (T -911)) -((-2398 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-2413 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-1224 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-3638 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) -(-10 -7 (-15 -2649 (|#1| (-874 |#1|))) (-15 -3638 (|#1| (-874 |#1|))) (-15 -1224 (|#1| (-874 |#1|))) (-15 -3902 (|#1| (-874 |#1|))) (-15 -2342 (|#1| (-874 |#1|))) (-15 -2448 (|#1| (-874 |#1|))) (-15 -2413 (|#1| (-874 |#1|))) (-15 -1804 (|#1| (-874 |#1|))) (-15 -2398 (|#1| (-874 |#1|)))) -((-2977 (((-3 |#1| "failed") |#1|) 18)) (-1434 (((-3 |#1| "failed") |#1|) 6)) (-1742 (((-3 |#1| "failed") |#1|) 16)) (-2409 (((-3 |#1| "failed") |#1|) 4)) (-1542 (((-3 |#1| "failed") |#1|) 20)) (-3443 (((-3 |#1| "failed") |#1|) 8)) (-2054 (((-3 |#1| "failed") |#1| (-710)) 1)) (-4214 (((-3 |#1| "failed") |#1|) 3)) (-3214 (((-3 |#1| "failed") |#1|) 2)) (-2601 (((-3 |#1| "failed") |#1|) 21)) (-1378 (((-3 |#1| "failed") |#1|) 9)) (-3143 (((-3 |#1| "failed") |#1|) 19)) (-2838 (((-3 |#1| "failed") |#1|) 7)) (-2313 (((-3 |#1| "failed") |#1|) 17)) (-1591 (((-3 |#1| "failed") |#1|) 5)) (-1837 (((-3 |#1| "failed") |#1|) 24)) (-1947 (((-3 |#1| "failed") |#1|) 12)) (-1648 (((-3 |#1| "failed") |#1|) 22)) (-1908 (((-3 |#1| "failed") |#1|) 10)) (-2355 (((-3 |#1| "failed") |#1|) 26)) (-2609 (((-3 |#1| "failed") |#1|) 14)) (-3170 (((-3 |#1| "failed") |#1|) 27)) (-2107 (((-3 |#1| "failed") |#1|) 15)) (-1716 (((-3 |#1| "failed") |#1|) 25)) (-2718 (((-3 |#1| "failed") |#1|) 13)) (-1588 (((-3 |#1| "failed") |#1|) 23)) (-1955 (((-3 |#1| "failed") |#1|) 11))) -(((-912 |#1|) (-129) (-1108)) (T -912)) -((-3170 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2355 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1716 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1837 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1588 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1648 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2601 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1542 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-3143 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2313 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1742 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2107 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2609 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2718 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1947 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1955 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1908 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1378 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-3443 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2838 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1434 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1591 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2409 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-4214 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-3214 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2054 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-710)) (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(-13 (-10 -7 (-15 -2054 ((-3 |t#1| "failed") |t#1| (-710))) (-15 -3214 ((-3 |t#1| "failed") |t#1|)) (-15 -4214 ((-3 |t#1| "failed") |t#1|)) (-15 -2409 ((-3 |t#1| "failed") |t#1|)) (-15 -1591 ((-3 |t#1| "failed") |t#1|)) (-15 -1434 ((-3 |t#1| "failed") |t#1|)) (-15 -2838 ((-3 |t#1| "failed") |t#1|)) (-15 -3443 ((-3 |t#1| "failed") |t#1|)) (-15 -1378 ((-3 |t#1| "failed") |t#1|)) (-15 -1908 ((-3 |t#1| "failed") |t#1|)) (-15 -1955 ((-3 |t#1| "failed") |t#1|)) (-15 -1947 ((-3 |t#1| "failed") |t#1|)) (-15 -2718 ((-3 |t#1| "failed") |t#1|)) (-15 -2609 ((-3 |t#1| "failed") |t#1|)) (-15 -2107 ((-3 |t#1| "failed") |t#1|)) (-15 -1742 ((-3 |t#1| "failed") |t#1|)) (-15 -2313 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -3143 ((-3 |t#1| "failed") |t#1|)) (-15 -1542 ((-3 |t#1| "failed") |t#1|)) (-15 -2601 ((-3 |t#1| "failed") |t#1|)) (-15 -1648 ((-3 |t#1| "failed") |t#1|)) (-15 -1588 ((-3 |t#1| "failed") |t#1|)) (-15 -1837 ((-3 |t#1| "failed") |t#1|)) (-15 -1716 ((-3 |t#1| "failed") |t#1|)) (-15 -2355 ((-3 |t#1| "failed") |t#1|)) (-15 -3170 ((-3 |t#1| "failed") |t#1|)))) -((-1939 ((|#4| |#4| (-589 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1791 ((|#4| |#4| (-589 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3612 ((|#4| (-1 |#4| (-883 |#1|)) |#4|) 30))) -(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1791 (|#4| |#4| |#3|)) (-15 -1791 (|#4| |#4| (-589 |#3|))) (-15 -1939 (|#4| |#4| |#3|)) (-15 -1939 (|#4| |#4| (-589 |#3|))) (-15 -3612 (|#4| (-1 |#4| (-883 |#1|)) |#4|))) (-973) (-732) (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087))))) (-880 (-883 |#1|) |#2| |#3|)) (T -913)) -((-3612 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-883 *4))) (-4 *4 (-973)) (-4 *2 (-880 (-883 *4) *5 *6)) (-4 *5 (-732)) (-4 *6 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-5 *1 (-913 *4 *5 *6 *2)))) (-1939 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-4 *4 (-973)) (-4 *5 (-732)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *2 (-880 (-883 *4) *5 *6)))) (-1939 (*1 *2 *2 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-5 *1 (-913 *4 *5 *3 *2)) (-4 *2 (-880 (-883 *4) *5 *3)))) (-1791 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-4 *4 (-973)) (-4 *5 (-732)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *2 (-880 (-883 *4) *5 *6)))) (-1791 (*1 *2 *2 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-5 *1 (-913 *4 *5 *3 *2)) (-4 *2 (-880 (-883 *4) *5 *3))))) -(-10 -7 (-15 -1791 (|#4| |#4| |#3|)) (-15 -1791 (|#4| |#4| (-589 |#3|))) (-15 -1939 (|#4| |#4| |#3|)) (-15 -1939 (|#4| |#4| (-589 |#3|))) (-15 -3612 (|#4| (-1 |#4| (-883 |#1|)) |#4|))) -((-1524 ((|#2| |#3|) 34)) (-4029 (((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|) 71)) (-4158 (((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) 86))) -(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4158 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -4029 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|)) (-15 -1524 (|#2| |#3|))) (-325) (-1144 |#1|) (-1144 |#2|) (-664 |#2| |#3|)) (T -914)) -((-1524 (*1 *2 *3) (-12 (-4 *3 (-1144 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-914 *4 *2 *3 *5)) (-4 *4 (-325)) (-4 *5 (-664 *2 *3)))) (-4029 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 *3)) (-5 *2 (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-914 *4 *3 *5 *6)) (-4 *6 (-664 *3 *5)))) (-4158 (*1 *2) (-12 (-4 *3 (-325)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -4041 (-629 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-629 *4)))) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-664 *4 *5))))) -(-10 -7 (-15 -4158 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -4029 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|)) (-15 -1524 (|#2| |#3|))) -((-2073 (((-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523)))) (-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523))))) 65))) -(((-915 |#1| |#2|) (-10 -7 (-15 -2073 ((-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523)))) (-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523))))))) (-589 (-1087)) (-710)) (T -915)) -((-2073 (*1 *2 *2) (-12 (-5 *2 (-916 (-383 (-523)) (-796 *3) (-218 *4 (-710)) (-225 *3 (-383 (-523))))) (-14 *3 (-589 (-1087))) (-14 *4 (-710)) (-5 *1 (-915 *3 *4))))) -(-10 -7 (-15 -2073 ((-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523)))) (-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523))))))) -((-3924 (((-108) $ $) NIL)) (-2688 (((-3 (-108) "failed") $) 67)) (-2267 (($ $) 35 (-12 (|has| |#1| (-136)) (|has| |#1| (-284))))) (-1404 (($ $ (-3 (-108) "failed")) 68)) (-2195 (($ (-589 |#4|) |#4|) 24)) (-3779 (((-1070) $) NIL)) (-3518 (($ $) 65)) (-2783 (((-1034) $) NIL)) (-3883 (((-108) $) 66)) (-3988 (($) 29)) (-3574 ((|#4| $) 70)) (-2450 (((-589 |#4|) $) 69)) (-1458 (((-794) $) 64)) (-3983 (((-108) $ $) NIL))) -(((-916 |#1| |#2| |#3| |#4|) (-13 (-1016) (-563 (-794)) (-10 -8 (-15 -3988 ($)) (-15 -2195 ($ (-589 |#4|) |#4|)) (-15 -2688 ((-3 (-108) "failed") $)) (-15 -1404 ($ $ (-3 (-108) "failed"))) (-15 -3883 ((-108) $)) (-15 -2450 ((-589 |#4|) $)) (-15 -3574 (|#4| $)) (-15 -3518 ($ $)) (IF (|has| |#1| (-284)) (IF (|has| |#1| (-136)) (-15 -2267 ($ $)) |%noBranch|) |%noBranch|))) (-427) (-786) (-732) (-880 |#1| |#3| |#2|)) (T -916)) -((-3988 (*1 *1) (-12 (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3)))) (-2195 (*1 *1 *2 *3) (-12 (-5 *2 (-589 *3)) (-4 *3 (-880 *4 *6 *5)) (-4 *4 (-427)) (-4 *5 (-786)) (-4 *6 (-732)) (-5 *1 (-916 *4 *5 *6 *3)))) (-2688 (*1 *2 *1) (|partial| -12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-108)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) (-1404 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) (-3883 (*1 *2 *1) (-12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-108)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) (-2450 (*1 *2 *1) (-12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-589 *6)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) (-3574 (*1 *2 *1) (-12 (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)))) (-3518 (*1 *1 *1) (-12 (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3)))) (-2267 (*1 *1 *1) (-12 (-4 *2 (-136)) (-4 *2 (-284)) (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3))))) -(-13 (-1016) (-563 (-794)) (-10 -8 (-15 -3988 ($)) (-15 -2195 ($ (-589 |#4|) |#4|)) (-15 -2688 ((-3 (-108) "failed") $)) (-15 -1404 ($ $ (-3 (-108) "failed"))) (-15 -3883 ((-108) $)) (-15 -2450 ((-589 |#4|) $)) (-15 -3574 (|#4| $)) (-15 -3518 ($ $)) (IF (|has| |#1| (-284)) (IF (|has| |#1| (-136)) (-15 -2267 ($ $)) |%noBranch|) |%noBranch|))) -((-1718 (((-108) |#5| |#5|) 38)) (-1589 (((-108) |#5| |#5|) 52)) (-2683 (((-108) |#5| (-589 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-2323 (((-108) (-589 |#4|) (-589 |#4|)) 58)) (-2998 (((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) 63)) (-1255 (((-1173)) 33)) (-1304 (((-1173) (-1070) (-1070) (-1070)) 29)) (-2983 (((-589 |#5|) (-589 |#5|)) 81)) (-4008 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) 79)) (-2280 (((-589 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108)) 101)) (-2709 (((-108) |#5| |#5|) 47)) (-1475 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3124 (((-108) (-589 |#4|) (-589 |#4|)) 57)) (-2724 (((-108) (-589 |#4|) (-589 |#4|)) 59)) (-2391 (((-108) (-589 |#4|) (-589 |#4|)) 60)) (-2353 (((-3 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-1642 (((-589 |#5|) (-589 |#5|)) 43))) -(((-917 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1304 ((-1173) (-1070) (-1070) (-1070))) (-15 -1255 ((-1173))) (-15 -1718 ((-108) |#5| |#5|)) (-15 -1642 ((-589 |#5|) (-589 |#5|))) (-15 -2709 ((-108) |#5| |#5|)) (-15 -1589 ((-108) |#5| |#5|)) (-15 -2323 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3124 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2724 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2391 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -1475 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2683 ((-108) |#5| |#5|)) (-15 -2683 ((-108) |#5| (-589 |#5|))) (-15 -2983 ((-589 |#5|) (-589 |#5|))) (-15 -2998 ((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -4008 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-15 -2280 ((-589 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2353 ((-3 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -917)) -((-2353 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| -1710 (-589 *9)) (|:| -3072 *4) (|:| |ineq| (-589 *9)))) (-5 *1 (-917 *6 *7 *8 *9 *4)) (-5 *3 (-589 *9)) (-4 *4 (-992 *6 *7 *8 *9)))) (-2280 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-589 *10)) (-5 *5 (-108)) (-4 *10 (-992 *6 *7 *8 *9)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 (-589 (-2 (|:| -1710 (-589 *9)) (|:| -3072 *10) (|:| |ineq| (-589 *9))))) (-5 *1 (-917 *6 *7 *8 *9 *10)) (-5 *3 (-589 *9)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-589 (-2 (|:| |val| (-589 *6)) (|:| -3072 *7)))) (-4 *6 (-987 *3 *4 *5)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-917 *3 *4 *5 *6 *7)))) (-2998 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-2983 (*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-917 *3 *4 *5 *6 *7)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-917 *5 *6 *7 *8 *3)))) (-2683 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1475 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-2391 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2724 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-3124 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2323 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-1589 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-2709 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-917 *3 *4 *5 *6 *7)))) (-1718 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1255 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) (-5 *1 (-917 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-1304 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) -(-10 -7 (-15 -1304 ((-1173) (-1070) (-1070) (-1070))) (-15 -1255 ((-1173))) (-15 -1718 ((-108) |#5| |#5|)) (-15 -1642 ((-589 |#5|) (-589 |#5|))) (-15 -2709 ((-108) |#5| |#5|)) (-15 -1589 ((-108) |#5| |#5|)) (-15 -2323 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3124 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2724 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2391 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -1475 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2683 ((-108) |#5| |#5|)) (-15 -2683 ((-108) |#5| (-589 |#5|))) (-15 -2983 ((-589 |#5|) (-589 |#5|))) (-15 -2998 ((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -4008 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-15 -2280 ((-589 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2353 ((-3 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)))) -((-2700 (((-1087) $) 15)) (-1733 (((-1070) $) 16)) (-1915 (($ (-1087) (-1070)) 14)) (-1458 (((-794) $) 13))) -(((-918) (-13 (-563 (-794)) (-10 -8 (-15 -1915 ($ (-1087) (-1070))) (-15 -2700 ((-1087) $)) (-15 -1733 ((-1070) $))))) (T -918)) -((-1915 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1070)) (-5 *1 (-918)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-918)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-918))))) -(-13 (-563 (-794)) (-10 -8 (-15 -1915 ($ (-1087) (-1070))) (-15 -2700 ((-1087) $)) (-15 -1733 ((-1070) $)))) -((-3612 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| (-1 |#2| |#1|) |#3|))) (-515) (-515) (-921 |#1|) (-921 |#2|)) (T -919)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-515)) (-4 *6 (-515)) (-4 *2 (-921 *6)) (-5 *1 (-919 *5 *6 *4 *2)) (-4 *4 (-921 *5))))) -(-10 -7 (-15 -3612 (|#4| (-1 |#2| |#1|) |#3|))) -((-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-1087) "failed") $) 65) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) 95)) (-3474 ((|#2| $) NIL) (((-1087) $) 60) (((-383 (-523)) $) NIL) (((-523) $) 92)) (-2381 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) 112) (((-629 |#2|) (-629 $)) 28)) (-4032 (($) 98)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 74) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 83)) (-2531 (($ $) 10)) (-4058 (((-3 $ "failed") $) 20)) (-3612 (($ (-1 |#2| |#2|) $) 22)) (-2262 (($) 16)) (-2206 (($ $) 54)) (-3523 (($ $) NIL) (($ $ (-710)) NIL) (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3414 (($ $) 12)) (-3663 (((-823 (-523)) $) 69) (((-823 (-355)) $) 78) (((-499) $) 40) (((-355) $) 44) (((-203) $) 47)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 90) (($ |#2|) NIL) (($ (-1087)) 57)) (-1621 (((-710)) 31)) (-4007 (((-108) $ $) 50))) -(((-920 |#1| |#2|) (-10 -8 (-15 -4007 ((-108) |#1| |#1|)) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3663 ((-203) |#1|)) (-15 -3663 ((-355) |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3474 ((-1087) |#1|)) (-15 -3517 ((-3 (-1087) "failed") |#1|)) (-15 -1458 (|#1| (-1087))) (-15 -4032 (|#1|)) (-15 -2206 (|#1| |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -2531 (|#1| |#1|)) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -2381 ((-629 |#2|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 -1458 ((-794) |#1|))) (-921 |#2|) (-515)) (T -920)) -((-1621 (*1 *2) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-920 *3 *4)) (-4 *3 (-921 *4))))) -(-10 -8 (-15 -4007 ((-108) |#1| |#1|)) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3663 ((-203) |#1|)) (-15 -3663 ((-355) |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3474 ((-1087) |#1|)) (-15 -3517 ((-3 (-1087) "failed") |#1|)) (-15 -1458 (|#1| (-1087))) (-15 -4032 (|#1|)) (-15 -2206 (|#1| |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -2531 (|#1| |#1|)) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -2381 ((-629 |#2|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3458 ((|#1| $) 139 (|has| |#1| (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-3156 (((-394 (-1083 $)) (-1083 $)) 130 (|has| |#1| (-840)))) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 133 (|has| |#1| (-840)))) (-1387 (((-108) $ $) 59)) (-3671 (((-523) $) 120 (|has| |#1| (-759)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 178) (((-3 (-1087) "failed") $) 128 (|has| |#1| (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) 112 (|has| |#1| (-964 (-523)))) (((-3 (-523) "failed") $) 110 (|has| |#1| (-964 (-523))))) (-3474 ((|#1| $) 177) (((-1087) $) 127 (|has| |#1| (-964 (-1087)))) (((-383 (-523)) $) 111 (|has| |#1| (-964 (-523)))) (((-523) $) 109 (|has| |#1| (-964 (-523))))) (-3796 (($ $ $) 55)) (-2381 (((-629 (-523)) (-629 $)) 152 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 151 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 150) (((-629 |#1|) (-629 $)) 149)) (-2121 (((-3 $ "failed") $) 34)) (-4032 (($) 137 (|has| |#1| (-508)))) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2657 (((-108) $) 71)) (-2604 (((-108) $) 122 (|has| |#1| (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 146 (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 145 (|has| |#1| (-817 (-355))))) (-2023 (((-108) $) 31)) (-2531 (($ $) 141)) (-2785 ((|#1| $) 143)) (-4058 (((-3 $ "failed") $) 108 (|has| |#1| (-1063)))) (-4114 (((-108) $) 121 (|has| |#1| (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-2454 (($ $ $) 118 (|has| |#1| (-786)))) (-2062 (($ $ $) 117 (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) 169)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2262 (($) 107 (|has| |#1| (-1063)) CONST)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-2206 (($ $) 138 (|has| |#1| (-284)))) (-3722 ((|#1| $) 135 (|has| |#1| (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 132 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 131 (|has| |#1| (-840)))) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) 175 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 173 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 172 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 171 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) 170 (|has| |#1| (-484 (-1087) |#1|)))) (-1972 (((-710) $) 58)) (-3223 (($ $ |#1|) 176 (|has| |#1| (-263 |#1| |#1|)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-3523 (($ $) 168 (|has| |#1| (-211))) (($ $ (-710)) 166 (|has| |#1| (-211))) (($ $ (-1087)) 164 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 163 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 162 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 161 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-3414 (($ $) 140)) (-2797 ((|#1| $) 142)) (-3663 (((-823 (-523)) $) 148 (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) 147 (|has| |#1| (-564 (-823 (-355))))) (((-499) $) 125 (|has| |#1| (-564 (-499)))) (((-355) $) 124 (|has| |#1| (-949))) (((-203) $) 123 (|has| |#1| (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 134 (-4099 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ |#1|) 181) (($ (-1087)) 129 (|has| |#1| (-964 (-1087))))) (-3901 (((-3 $ "failed") $) 126 (-3262 (|has| |#1| (-134)) (-4099 (|has| $ (-134)) (|has| |#1| (-840)))))) (-1621 (((-710)) 29)) (-1886 ((|#1| $) 136 (|has| |#1| (-508)))) (-1704 (((-108) $ $) 39)) (-2619 (($ $) 119 (|has| |#1| (-759)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $) 167 (|has| |#1| (-211))) (($ $ (-710)) 165 (|has| |#1| (-211))) (($ $ (-1087)) 160 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 159 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 158 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 157 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-4043 (((-108) $ $) 115 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 114 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 116 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 113 (|has| |#1| (-786)))) (-4098 (($ $ $) 64) (($ |#1| |#1|) 144)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179))) +((-3171 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-909 *3)))) (-3314 (*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-973)) (-5 *2 (-852)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-909 *3)))) (-3203 (*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-973)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *1 (-909 *3)) (-4 *3 (-973))))) +(-13 (-1167 |t#1|) (-10 -8 (-15 -3171 ($ (-589 |t#1|))) (-15 -3314 ((-852) $)) (-15 -1400 ($ (-589 |t#1|))) (-15 -3203 ($ $ $)) (-15 -3053 ($ $ (-589 |t#1|))))) +(((-33) . T) ((-97) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-349 |#1|) . T) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-786) |has| |#1| (-786)) ((-1016) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1123) . T) ((-1167 |#1|) . T)) +((-1345 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 17))) +(((-910 |#1| |#2|) (-10 -7 (-15 -1345 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-973) (-973)) (T -910)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-874 *6)) (-5 *1 (-910 *5 *6))))) +(-10 -7 (-15 -1345 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) +((-1760 ((|#1| (-874 |#1|)) 13)) (-3190 ((|#1| (-874 |#1|)) 12)) (-2970 ((|#1| (-874 |#1|)) 11)) (-3013 ((|#1| (-874 |#1|)) 15)) (-2384 ((|#1| (-874 |#1|)) 21)) (-1951 ((|#1| (-874 |#1|)) 14)) (-1712 ((|#1| (-874 |#1|)) 16)) (-2473 ((|#1| (-874 |#1|)) 20)) (-2548 ((|#1| (-874 |#1|)) 19))) +(((-911 |#1|) (-10 -7 (-15 -2970 (|#1| (-874 |#1|))) (-15 -3190 (|#1| (-874 |#1|))) (-15 -1760 (|#1| (-874 |#1|))) (-15 -1951 (|#1| (-874 |#1|))) (-15 -3013 (|#1| (-874 |#1|))) (-15 -1712 (|#1| (-874 |#1|))) (-15 -2548 (|#1| (-874 |#1|))) (-15 -2473 (|#1| (-874 |#1|))) (-15 -2384 (|#1| (-874 |#1|)))) (-973)) (T -911)) +((-2384 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-2970 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(-10 -7 (-15 -2970 (|#1| (-874 |#1|))) (-15 -3190 (|#1| (-874 |#1|))) (-15 -1760 (|#1| (-874 |#1|))) (-15 -1951 (|#1| (-874 |#1|))) (-15 -3013 (|#1| (-874 |#1|))) (-15 -1712 (|#1| (-874 |#1|))) (-15 -2548 (|#1| (-874 |#1|))) (-15 -2473 (|#1| (-874 |#1|))) (-15 -2384 (|#1| (-874 |#1|)))) +((-3016 (((-3 |#1| "failed") |#1|) 18)) (-2087 (((-3 |#1| "failed") |#1|) 6)) (-1977 (((-3 |#1| "failed") |#1|) 16)) (-2504 (((-3 |#1| "failed") |#1|) 4)) (-3737 (((-3 |#1| "failed") |#1|) 20)) (-3050 (((-3 |#1| "failed") |#1|) 8)) (-3047 (((-3 |#1| "failed") |#1| (-710)) 1)) (-1248 (((-3 |#1| "failed") |#1|) 3)) (-3426 (((-3 |#1| "failed") |#1|) 2)) (-3678 (((-3 |#1| "failed") |#1|) 21)) (-2710 (((-3 |#1| "failed") |#1|) 9)) (-3979 (((-3 |#1| "failed") |#1|) 19)) (-4196 (((-3 |#1| "failed") |#1|) 7)) (-2765 (((-3 |#1| "failed") |#1|) 17)) (-1200 (((-3 |#1| "failed") |#1|) 5)) (-1608 (((-3 |#1| "failed") |#1|) 24)) (-3169 (((-3 |#1| "failed") |#1|) 12)) (-3506 (((-3 |#1| "failed") |#1|) 22)) (-4040 (((-3 |#1| "failed") |#1|) 10)) (-2003 (((-3 |#1| "failed") |#1|) 26)) (-3755 (((-3 |#1| "failed") |#1|) 14)) (-1261 (((-3 |#1| "failed") |#1|) 27)) (-2436 (((-3 |#1| "failed") |#1|) 15)) (-2913 (((-3 |#1| "failed") |#1|) 25)) (-2450 (((-3 |#1| "failed") |#1|) 13)) (-4192 (((-3 |#1| "failed") |#1|) 23)) (-3247 (((-3 |#1| "failed") |#1|) 11))) +(((-912 |#1|) (-129) (-1109)) (T -912)) +((-1261 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-2003 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-2913 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-1608 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-4192 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-3506 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-3678 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-3737 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-3979 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-3016 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-2765 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-1977 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-2436 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-3755 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-2450 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-3169 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-3247 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-4040 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-2710 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-3050 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-4196 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-2087 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-1200 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-2504 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-1248 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-3426 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109)))) (-3047 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-710)) (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(-13 (-10 -7 (-15 -3047 ((-3 |t#1| "failed") |t#1| (-710))) (-15 -3426 ((-3 |t#1| "failed") |t#1|)) (-15 -1248 ((-3 |t#1| "failed") |t#1|)) (-15 -2504 ((-3 |t#1| "failed") |t#1|)) (-15 -1200 ((-3 |t#1| "failed") |t#1|)) (-15 -2087 ((-3 |t#1| "failed") |t#1|)) (-15 -4196 ((-3 |t#1| "failed") |t#1|)) (-15 -3050 ((-3 |t#1| "failed") |t#1|)) (-15 -2710 ((-3 |t#1| "failed") |t#1|)) (-15 -4040 ((-3 |t#1| "failed") |t#1|)) (-15 -3247 ((-3 |t#1| "failed") |t#1|)) (-15 -3169 ((-3 |t#1| "failed") |t#1|)) (-15 -2450 ((-3 |t#1| "failed") |t#1|)) (-15 -3755 ((-3 |t#1| "failed") |t#1|)) (-15 -2436 ((-3 |t#1| "failed") |t#1|)) (-15 -1977 ((-3 |t#1| "failed") |t#1|)) (-15 -2765 ((-3 |t#1| "failed") |t#1|)) (-15 -3016 ((-3 |t#1| "failed") |t#1|)) (-15 -3979 ((-3 |t#1| "failed") |t#1|)) (-15 -3737 ((-3 |t#1| "failed") |t#1|)) (-15 -3678 ((-3 |t#1| "failed") |t#1|)) (-15 -3506 ((-3 |t#1| "failed") |t#1|)) (-15 -4192 ((-3 |t#1| "failed") |t#1|)) (-15 -1608 ((-3 |t#1| "failed") |t#1|)) (-15 -2913 ((-3 |t#1| "failed") |t#1|)) (-15 -2003 ((-3 |t#1| "failed") |t#1|)) (-15 -1261 ((-3 |t#1| "failed") |t#1|)))) +((-3103 ((|#4| |#4| (-589 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2348 ((|#4| |#4| (-589 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1345 ((|#4| (-1 |#4| (-883 |#1|)) |#4|) 30))) +(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2348 (|#4| |#4| |#3|)) (-15 -2348 (|#4| |#4| (-589 |#3|))) (-15 -3103 (|#4| |#4| |#3|)) (-15 -3103 (|#4| |#4| (-589 |#3|))) (-15 -1345 (|#4| (-1 |#4| (-883 |#1|)) |#4|))) (-973) (-732) (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)) (-15 -2724 ((-3 $ "failed") (-1087))))) (-880 (-883 |#1|) |#2| |#3|)) (T -913)) +((-1345 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-883 *4))) (-4 *4 (-973)) (-4 *2 (-880 (-883 *4) *5 *6)) (-4 *5 (-732)) (-4 *6 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)) (-15 -2724 ((-3 $ "failed") (-1087)))))) (-5 *1 (-913 *4 *5 *6 *2)))) (-3103 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)) (-15 -2724 ((-3 $ "failed") (-1087)))))) (-4 *4 (-973)) (-4 *5 (-732)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *2 (-880 (-883 *4) *5 *6)))) (-3103 (*1 *2 *2 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)) (-15 -2724 ((-3 $ "failed") (-1087)))))) (-5 *1 (-913 *4 *5 *3 *2)) (-4 *2 (-880 (-883 *4) *5 *3)))) (-2348 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)) (-15 -2724 ((-3 $ "failed") (-1087)))))) (-4 *4 (-973)) (-4 *5 (-732)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *2 (-880 (-883 *4) *5 *6)))) (-2348 (*1 *2 *2 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)) (-15 -2724 ((-3 $ "failed") (-1087)))))) (-5 *1 (-913 *4 *5 *3 *2)) (-4 *2 (-880 (-883 *4) *5 *3))))) +(-10 -7 (-15 -2348 (|#4| |#4| |#3|)) (-15 -2348 (|#4| |#4| (-589 |#3|))) (-15 -3103 (|#4| |#4| |#3|)) (-15 -3103 (|#4| |#4| (-589 |#3|))) (-15 -1345 (|#4| (-1 |#4| (-883 |#1|)) |#4|))) +((-1792 ((|#2| |#3|) 34)) (-3674 (((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|) 71)) (-2496 (((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) 86))) +(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 ((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -3674 ((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|)) (-15 -1792 (|#2| |#3|))) (-325) (-1145 |#1|) (-1145 |#2|) (-664 |#2| |#3|)) (T -914)) +((-1792 (*1 *2 *3) (-12 (-4 *3 (-1145 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-914 *4 *2 *3 *5)) (-4 *4 (-325)) (-4 *5 (-664 *2 *3)))) (-3674 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 *3)) (-5 *2 (-2 (|:| -3760 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-914 *4 *3 *5 *6)) (-4 *6 (-664 *3 *5)))) (-2496 (*1 *2) (-12 (-4 *3 (-325)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| -3760 (-629 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-629 *4)))) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-664 *4 *5))))) +(-10 -7 (-15 -2496 ((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -3674 ((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|)) (-15 -1792 (|#2| |#3|))) +((-2070 (((-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523)))) (-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523))))) 65))) +(((-915 |#1| |#2|) (-10 -7 (-15 -2070 ((-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523)))) (-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523))))))) (-589 (-1087)) (-710)) (T -915)) +((-2070 (*1 *2 *2) (-12 (-5 *2 (-916 (-383 (-523)) (-796 *3) (-218 *4 (-710)) (-225 *3 (-383 (-523))))) (-14 *3 (-589 (-1087))) (-14 *4 (-710)) (-5 *1 (-915 *3 *4))))) +(-10 -7 (-15 -2070 ((-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523)))) (-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523))))))) +((-1680 (((-108) $ $) NIL)) (-3186 (((-3 (-108) "failed") $) 68)) (-3463 (($ $) 35 (-12 (|has| |#1| (-136)) (|has| |#1| (-284))))) (-2957 (($ $ (-3 (-108) "failed")) 69)) (-3970 (($ (-589 |#4|) |#4|) 24)) (-2032 (((-1070) $) NIL)) (-1489 (($ $) 66)) (-3951 (((-1034) $) NIL)) (-1777 (((-108) $) 67)) (-3320 (($) 29)) (-1962 ((|#4| $) 71)) (-1734 (((-589 |#4|) $) 70)) (-1691 (((-794) $) 65)) (-3941 (((-108) $ $) NIL))) +(((-916 |#1| |#2| |#3| |#4|) (-13 (-1016) (-563 (-794)) (-10 -8 (-15 -3320 ($)) (-15 -3970 ($ (-589 |#4|) |#4|)) (-15 -3186 ((-3 (-108) "failed") $)) (-15 -2957 ($ $ (-3 (-108) "failed"))) (-15 -1777 ((-108) $)) (-15 -1734 ((-589 |#4|) $)) (-15 -1962 (|#4| $)) (-15 -1489 ($ $)) (IF (|has| |#1| (-284)) (IF (|has| |#1| (-136)) (-15 -3463 ($ $)) |%noBranch|) |%noBranch|))) (-427) (-786) (-732) (-880 |#1| |#3| |#2|)) (T -916)) +((-3320 (*1 *1) (-12 (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3)))) (-3970 (*1 *1 *2 *3) (-12 (-5 *2 (-589 *3)) (-4 *3 (-880 *4 *6 *5)) (-4 *4 (-427)) (-4 *5 (-786)) (-4 *6 (-732)) (-5 *1 (-916 *4 *5 *6 *3)))) (-3186 (*1 *2 *1) (|partial| -12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-108)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) (-2957 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) (-1777 (*1 *2 *1) (-12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-108)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) (-1734 (*1 *2 *1) (-12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-589 *6)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) (-1962 (*1 *2 *1) (-12 (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)))) (-1489 (*1 *1 *1) (-12 (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3)))) (-3463 (*1 *1 *1) (-12 (-4 *2 (-136)) (-4 *2 (-284)) (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3))))) +(-13 (-1016) (-563 (-794)) (-10 -8 (-15 -3320 ($)) (-15 -3970 ($ (-589 |#4|) |#4|)) (-15 -3186 ((-3 (-108) "failed") $)) (-15 -2957 ($ $ (-3 (-108) "failed"))) (-15 -1777 ((-108) $)) (-15 -1734 ((-589 |#4|) $)) (-15 -1962 (|#4| $)) (-15 -1489 ($ $)) (IF (|has| |#1| (-284)) (IF (|has| |#1| (-136)) (-15 -3463 ($ $)) |%noBranch|) |%noBranch|))) +((-2933 (((-108) |#5| |#5|) 38)) (-4204 (((-108) |#5| |#5|) 52)) (-2123 (((-108) |#5| (-589 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-2854 (((-108) (-589 |#4|) (-589 |#4|)) 58)) (-2048 (((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) 63)) (-3866 (((-1174)) 33)) (-3148 (((-1174) (-1070) (-1070) (-1070)) 29)) (-3062 (((-589 |#5|) (-589 |#5|)) 81)) (-3488 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)))) 79)) (-3597 (((-589 (-2 (|:| -2849 (-589 |#4|)) (|:| -3643 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108)) 101)) (-2358 (((-108) |#5| |#5|) 47)) (-1336 (((-3 (-108) "failed") |#5| |#5|) 71)) (-2004 (((-108) (-589 |#4|) (-589 |#4|)) 57)) (-2511 (((-108) (-589 |#4|) (-589 |#4|)) 59)) (-2303 (((-108) (-589 |#4|) (-589 |#4|)) 60)) (-1985 (((-3 (-2 (|:| -2849 (-589 |#4|)) (|:| -3643 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-3450 (((-589 |#5|) (-589 |#5|)) 43))) +(((-917 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3148 ((-1174) (-1070) (-1070) (-1070))) (-15 -3866 ((-1174))) (-15 -2933 ((-108) |#5| |#5|)) (-15 -3450 ((-589 |#5|) (-589 |#5|))) (-15 -2358 ((-108) |#5| |#5|)) (-15 -4204 ((-108) |#5| |#5|)) (-15 -2854 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2004 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2511 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2303 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -1336 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2123 ((-108) |#5| |#5|)) (-15 -2123 ((-108) |#5| (-589 |#5|))) (-15 -3062 ((-589 |#5|) (-589 |#5|))) (-15 -2048 ((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)))) (-15 -3488 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) (-15 -3597 ((-589 (-2 (|:| -2849 (-589 |#4|)) (|:| -3643 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -1985 ((-3 (-2 (|:| -2849 (-589 |#4|)) (|:| -3643 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -917)) +((-1985 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| -2849 (-589 *9)) (|:| -3643 *4) (|:| |ineq| (-589 *9)))) (-5 *1 (-917 *6 *7 *8 *9 *4)) (-5 *3 (-589 *9)) (-4 *4 (-992 *6 *7 *8 *9)))) (-3597 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-589 *10)) (-5 *5 (-108)) (-4 *10 (-992 *6 *7 *8 *9)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 (-589 (-2 (|:| -2849 (-589 *9)) (|:| -3643 *10) (|:| |ineq| (-589 *9))))) (-5 *1 (-917 *6 *7 *8 *9 *10)) (-5 *3 (-589 *9)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-589 (-2 (|:| |val| (-589 *6)) (|:| -3643 *7)))) (-4 *6 (-987 *3 *4 *5)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-917 *3 *4 *5 *6 *7)))) (-2048 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3643 *8))) (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-917 *3 *4 *5 *6 *7)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-917 *5 *6 *7 *8 *3)))) (-2123 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1336 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-2303 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2511 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2004 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2854 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-4204 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-2358 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-917 *3 *4 *5 *6 *7)))) (-2933 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-3866 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1174)) (-5 *1 (-917 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-3148 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(-10 -7 (-15 -3148 ((-1174) (-1070) (-1070) (-1070))) (-15 -3866 ((-1174))) (-15 -2933 ((-108) |#5| |#5|)) (-15 -3450 ((-589 |#5|) (-589 |#5|))) (-15 -2358 ((-108) |#5| |#5|)) (-15 -4204 ((-108) |#5| |#5|)) (-15 -2854 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2004 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2511 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2303 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -1336 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2123 ((-108) |#5| |#5|)) (-15 -2123 ((-108) |#5| (-589 |#5|))) (-15 -3062 ((-589 |#5|) (-589 |#5|))) (-15 -2048 ((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)))) (-15 -3488 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) (-15 -3597 ((-589 (-2 (|:| -2849 (-589 |#4|)) (|:| -3643 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -1985 ((-3 (-2 (|:| -2849 (-589 |#4|)) (|:| -3643 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)))) +((-2724 (((-1087) $) 15)) (-3370 (((-1070) $) 16)) (-1948 (($ (-1087) (-1070)) 14)) (-1691 (((-794) $) 13))) +(((-918) (-13 (-563 (-794)) (-10 -8 (-15 -1948 ($ (-1087) (-1070))) (-15 -2724 ((-1087) $)) (-15 -3370 ((-1070) $))))) (T -918)) +((-1948 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1070)) (-5 *1 (-918)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-918)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-918))))) +(-13 (-563 (-794)) (-10 -8 (-15 -1948 ($ (-1087) (-1070))) (-15 -2724 ((-1087) $)) (-15 -3370 ((-1070) $)))) +((-1345 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1345 (|#4| (-1 |#2| |#1|) |#3|))) (-515) (-515) (-921 |#1|) (-921 |#2|)) (T -919)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-515)) (-4 *6 (-515)) (-4 *2 (-921 *6)) (-5 *1 (-919 *5 *6 *4 *2)) (-4 *4 (-921 *5))))) +(-10 -7 (-15 -1345 (|#4| (-1 |#2| |#1|) |#3|))) +((-1220 (((-3 |#2| "failed") $) NIL) (((-3 (-1087) "failed") $) 65) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) 95)) (-3508 ((|#2| $) NIL) (((-1087) $) 60) (((-383 (-523)) $) NIL) (((-523) $) 92)) (-2243 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) 112) (((-629 |#2|) (-629 $)) 28)) (-1631 (($) 98)) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 74) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 83)) (-1296 (($ $) 10)) (-2738 (((-3 $ "failed") $) 20)) (-1345 (($ (-1 |#2| |#2|) $) 22)) (-2773 (($) 16)) (-4110 (($ $) 54)) (-3984 (($ $) NIL) (($ $ (-710)) NIL) (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2793 (($ $) 12)) (-1400 (((-823 (-523)) $) 69) (((-823 (-355)) $) 78) (((-499) $) 40) (((-355) $) 44) (((-203) $) 47)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 90) (($ |#2|) NIL) (($ (-1087)) 57)) (-3272 (((-710)) 31)) (-3966 (((-108) $ $) 50))) +(((-920 |#1| |#2|) (-10 -8 (-15 -3966 ((-108) |#1| |#1|)) (-15 -2773 (|#1|)) (-15 -2738 ((-3 |#1| "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1400 ((-203) |#1|)) (-15 -1400 ((-355) |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -3508 ((-1087) |#1|)) (-15 -1220 ((-3 (-1087) "failed") |#1|)) (-15 -1691 (|#1| (-1087))) (-15 -1631 (|#1|)) (-15 -4110 (|#1| |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -1296 (|#1| |#1|)) (-15 -1524 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -1524 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -1400 ((-823 (-355)) |#1|)) (-15 -1400 ((-823 (-523)) |#1|)) (-15 -2243 ((-629 |#2|) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-629 (-523)) (-629 |#1|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 (|#1| |#1|)) (-15 -1691 (|#1| (-523))) (-15 -3272 ((-710))) (-15 -1691 ((-794) |#1|))) (-921 |#2|) (-515)) (T -920)) +((-3272 (*1 *2) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-920 *3 *4)) (-4 *3 (-921 *4))))) +(-10 -8 (-15 -3966 ((-108) |#1| |#1|)) (-15 -2773 (|#1|)) (-15 -2738 ((-3 |#1| "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1400 ((-203) |#1|)) (-15 -1400 ((-355) |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -3508 ((-1087) |#1|)) (-15 -1220 ((-3 (-1087) "failed") |#1|)) (-15 -1691 (|#1| (-1087))) (-15 -1631 (|#1|)) (-15 -4110 (|#1| |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -1296 (|#1| |#1|)) (-15 -1524 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -1524 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -1400 ((-823 (-355)) |#1|)) (-15 -1400 ((-823 (-523)) |#1|)) (-15 -2243 ((-629 |#2|) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-629 (-523)) (-629 |#1|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 (|#1| |#1|)) (-15 -1691 (|#1| (-523))) (-15 -3272 ((-710))) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2046 ((|#1| $) 139 (|has| |#1| (-284)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-4130 (((-394 (-1083 $)) (-1083 $)) 130 (|has| |#1| (-840)))) (-3718 (($ $) 73)) (-4226 (((-394 $) $) 72)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 133 (|has| |#1| (-840)))) (-2787 (((-108) $ $) 59)) (-3482 (((-523) $) 120 (|has| |#1| (-759)))) (-4189 (($) 17 T CONST)) (-1220 (((-3 |#1| "failed") $) 178) (((-3 (-1087) "failed") $) 128 (|has| |#1| (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) 112 (|has| |#1| (-964 (-523)))) (((-3 (-523) "failed") $) 110 (|has| |#1| (-964 (-523))))) (-3508 ((|#1| $) 177) (((-1087) $) 127 (|has| |#1| (-964 (-1087)))) (((-383 (-523)) $) 111 (|has| |#1| (-964 (-523)))) (((-523) $) 109 (|has| |#1| (-964 (-523))))) (-4059 (($ $ $) 55)) (-2243 (((-629 (-523)) (-629 $)) 152 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 151 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 150) (((-629 |#1|) (-629 $)) 149)) (-1444 (((-3 $ "failed") $) 34)) (-1631 (($) 137 (|has| |#1| (-508)))) (-4032 (($ $ $) 56)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-3049 (((-108) $) 71)) (-3712 (((-108) $) 122 (|has| |#1| (-759)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 146 (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 145 (|has| |#1| (-817 (-355))))) (-2769 (((-108) $) 31)) (-1296 (($ $) 141)) (-3316 ((|#1| $) 143)) (-2738 (((-3 $ "failed") $) 108 (|has| |#1| (-1063)))) (-2057 (((-108) $) 121 (|has| |#1| (-759)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3239 (($ $ $) 118 (|has| |#1| (-786)))) (-3158 (($ $ $) 117 (|has| |#1| (-786)))) (-1345 (($ (-1 |#1| |#1|) $) 169)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 70)) (-2773 (($) 107 (|has| |#1| (-1063)) CONST)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-4110 (($ $) 138 (|has| |#1| (-284)))) (-2733 ((|#1| $) 135 (|has| |#1| (-508)))) (-1708 (((-394 (-1083 $)) (-1083 $)) 132 (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) 131 (|has| |#1| (-840)))) (-2424 (((-394 $) $) 74)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-2812 (($ $ (-589 |#1|) (-589 |#1|)) 175 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 173 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 172 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 171 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) 170 (|has| |#1| (-484 (-1087) |#1|)))) (-3413 (((-710) $) 58)) (-1937 (($ $ |#1|) 176 (|has| |#1| (-263 |#1| |#1|)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57)) (-3984 (($ $) 168 (|has| |#1| (-211))) (($ $ (-710)) 166 (|has| |#1| (-211))) (($ $ (-1087)) 164 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 163 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 162 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 161 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2793 (($ $) 140)) (-3329 ((|#1| $) 142)) (-1400 (((-823 (-523)) $) 148 (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) 147 (|has| |#1| (-564 (-823 (-355))))) (((-499) $) 125 (|has| |#1| (-564 (-499)))) (((-355) $) 124 (|has| |#1| (-949))) (((-203) $) 123 (|has| |#1| (-949)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 134 (-3147 (|has| $ (-134)) (|has| |#1| (-840))))) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ |#1|) 181) (($ (-1087)) 129 (|has| |#1| (-964 (-1087))))) (-1942 (((-3 $ "failed") $) 126 (-3172 (|has| |#1| (-134)) (-3147 (|has| $ (-134)) (|has| |#1| (-840)))))) (-3272 (((-710)) 29)) (-3809 ((|#1| $) 136 (|has| |#1| (-508)))) (-2801 (((-108) $ $) 39)) (-2695 (($ $) 119 (|has| |#1| (-759)))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $) 167 (|has| |#1| (-211))) (($ $ (-710)) 165 (|has| |#1| (-211))) (($ $ (-1087)) 160 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 159 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 158 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 157 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-4006 (((-108) $ $) 115 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 114 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 116 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 113 (|has| |#1| (-786)))) (-4074 (($ $ $) 64) (($ |#1| |#1|) 144)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179))) (((-921 |#1|) (-129) (-515)) (T -921)) -((-4098 (*1 *1 *2 *2) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-2785 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-2531 (*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-3414 (*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-284)))) (-2206 (*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-284)))) (-4032 (*1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-508)) (-4 *2 (-515)))) (-1886 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-508)))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-508))))) -(-13 (-339) (-37 |t#1|) (-964 |t#1|) (-314 |t#1|) (-209 |t#1|) (-353 |t#1|) (-815 |t#1|) (-376 |t#1|) (-10 -8 (-15 -4098 ($ |t#1| |t#1|)) (-15 -2785 (|t#1| $)) (-15 -2797 (|t#1| $)) (-15 -2531 ($ $)) (-15 -3414 ($ $)) (IF (|has| |t#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |t#1| (-964 (-523))) (PROGN (-6 (-964 (-523))) (-6 (-964 (-383 (-523))))) |%noBranch|) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-759)) (-6 (-759)) |%noBranch|) (IF (|has| |t#1| (-949)) (-6 (-949)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-964 (-1087))) (-6 (-964 (-1087))) |%noBranch|) (IF (|has| |t#1| (-284)) (PROGN (-15 -3458 (|t#1| $)) (-15 -2206 ($ $))) |%noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -4032 ($)) (-15 -1886 (|t#1| $)) (-15 -3722 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-840)) (-6 (-840)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 (-203)) |has| |#1| (-949)) ((-564 (-355)) |has| |#1| (-949)) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523)))) ((-209 |#1|) . T) ((-211) |has| |#1| (-211)) ((-221) . T) ((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-267) . T) ((-284) . T) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-339) . T) ((-314 |#1|) . T) ((-353 |#1|) . T) ((-376 |#1|) . T) ((-427) . T) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|)) ((-515) . T) ((-591 #0#) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-666) . T) ((-730) |has| |#1| (-759)) ((-731) |has| |#1| (-759)) ((-733) |has| |#1| (-759)) ((-734) |has| |#1| (-759)) ((-759) |has| |#1| (-759)) ((-784) |has| |#1| (-759)) ((-786) -3262 (|has| |#1| (-786)) (|has| |#1| (-759))) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-815 |#1|) . T) ((-840) |has| |#1| (-840)) ((-851) . T) ((-949) |has| |#1| (-949)) ((-964 (-383 (-523))) |has| |#1| (-964 (-523))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 (-1087)) |has| |#1| (-964 (-1087))) ((-964 |#1|) . T) ((-979 #0#) . T) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-1063)) ((-1122) . T) ((-1126) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2009 (($ (-1054 |#1| |#2|)) 11)) (-3068 (((-1054 |#1| |#2|) $) 12)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3223 ((|#2| $ (-218 |#1| |#2|)) 16)) (-1458 (((-794) $) NIL)) (-2756 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL))) -(((-922 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2009 ($ (-1054 |#1| |#2|))) (-15 -3068 ((-1054 |#1| |#2|) $)) (-15 -3223 (|#2| $ (-218 |#1| |#2|))))) (-852) (-339)) (T -922)) -((-2009 (*1 *1 *2) (-12 (-5 *2 (-1054 *3 *4)) (-14 *3 (-852)) (-4 *4 (-339)) (-5 *1 (-922 *3 *4)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-5 *1 (-922 *3 *4)) (-14 *3 (-852)) (-4 *4 (-339)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-218 *4 *2)) (-14 *4 (-852)) (-4 *2 (-339)) (-5 *1 (-922 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -2009 ($ (-1054 |#1| |#2|))) (-15 -3068 ((-1054 |#1| |#2|) $)) (-15 -3223 (|#2| $ (-218 |#1| |#2|))))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-3152 (($ $) 46)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-2996 (((-710) $) 45)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1592 ((|#1| $) 44)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1651 ((|#1| |#1| $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-1234 ((|#1| $) 47)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-1348 ((|#1| $) 43)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-923 |#1|) (-129) (-1122)) (T -923)) -((-1651 (*1 *2 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122)))) (-1234 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122)))) (-3152 (*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-710)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4244) (-15 -1651 (|t#1| |t#1| $)) (-15 -1234 (|t#1| $)) (-15 -3152 ($ $)) (-15 -2996 ((-710) $)) (-15 -1592 (|t#1| $)) (-15 -1348 (|t#1| $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-2295 (((-108) $) 42)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3474 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#2| $) 43)) (-3346 (((-3 (-383 (-523)) "failed") $) 78)) (-1292 (((-108) $) 72)) (-2146 (((-383 (-523)) $) 76)) (-2023 (((-108) $) 41)) (-3892 ((|#2| $) 22)) (-3612 (($ (-1 |#2| |#2|) $) 19)) (-3738 (($ $) 61)) (-3523 (($ $) NIL) (($ $ (-710)) NIL) (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3663 (((-499) $) 67)) (-3208 (($ $) 17)) (-1458 (((-794) $) 56) (($ (-523)) 38) (($ |#2|) 36) (($ (-383 (-523))) NIL)) (-1621 (((-710)) 10)) (-2619 ((|#2| $) 71)) (-3983 (((-108) $ $) 25)) (-4007 (((-108) $ $) 69)) (-4087 (($ $) 29) (($ $ $) 28)) (-4075 (($ $ $) 26)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) -(((-924 |#1| |#2|) (-10 -8 (-15 -1458 (|#1| (-383 (-523)))) (-15 -4007 ((-108) |#1| |#1|)) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 * (|#1| |#1| (-383 (-523)))) (-15 -3738 (|#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -2619 (|#2| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -1458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 -2023 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 -2295 ((-108) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-925 |#2|) (-158)) (T -924)) -((-1621 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-924 *3 *4)) (-4 *3 (-925 *4))))) -(-10 -8 (-15 -1458 (|#1| (-383 (-523)))) (-15 -4007 ((-108) |#1| |#1|)) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 * (|#1| |#1| (-383 (-523)))) (-15 -3738 (|#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -2619 (|#2| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -1458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 -2023 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 -2295 ((-108) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 119 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 117 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 116)) (-3474 (((-523) $) 120 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 118 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 115)) (-2381 (((-629 (-523)) (-629 $)) 90 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 89 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 88) (((-629 |#1|) (-629 $)) 87)) (-2121 (((-3 $ "failed") $) 34)) (-1842 ((|#1| $) 80)) (-3346 (((-3 (-383 (-523)) "failed") $) 76 (|has| |#1| (-508)))) (-1292 (((-108) $) 78 (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) 77 (|has| |#1| (-508)))) (-1311 (($ |#1| |#1| |#1| |#1|) 81)) (-2023 (((-108) $) 31)) (-3892 ((|#1| $) 82)) (-2454 (($ $ $) 68 (|has| |#1| (-786)))) (-2062 (($ $ $) 67 (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) 91)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 73 (|has| |#1| (-339)))) (-1401 ((|#1| $) 83)) (-3972 ((|#1| $) 84)) (-1605 ((|#1| $) 85)) (-2783 (((-1034) $) 10)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) 97 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 95 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 94 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 93 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) 92 (|has| |#1| (-484 (-1087) |#1|)))) (-3223 (($ $ |#1|) 98 (|has| |#1| (-263 |#1| |#1|)))) (-3523 (($ $) 114 (|has| |#1| (-211))) (($ $ (-710)) 112 (|has| |#1| (-211))) (($ $ (-1087)) 110 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 109 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 108 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 107 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3663 (((-499) $) 74 (|has| |#1| (-564 (-499))))) (-3208 (($ $) 86)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37) (($ (-383 (-523))) 62 (-3262 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523))))))) (-3901 (((-3 $ "failed") $) 75 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-2619 ((|#1| $) 79 (|has| |#1| (-982)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 72 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $) 113 (|has| |#1| (-211))) (($ $ (-710)) 111 (|has| |#1| (-211))) (($ $ (-1087)) 106 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 105 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 104 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 103 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-4043 (((-108) $ $) 65 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 64 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 66 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 63 (|has| |#1| (-786)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 71 (|has| |#1| (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-383 (-523))) 70 (|has| |#1| (-339))) (($ (-383 (-523)) $) 69 (|has| |#1| (-339))))) +((-4074 (*1 *1 *2 *2) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-1296 (*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-2793 (*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-2046 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-284)))) (-4110 (*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-284)))) (-1631 (*1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-508)) (-4 *2 (-515)))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-508)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-508))))) +(-13 (-339) (-37 |t#1|) (-964 |t#1|) (-314 |t#1|) (-209 |t#1|) (-353 |t#1|) (-815 |t#1|) (-376 |t#1|) (-10 -8 (-15 -4074 ($ |t#1| |t#1|)) (-15 -3316 (|t#1| $)) (-15 -3329 (|t#1| $)) (-15 -1296 ($ $)) (-15 -2793 ($ $)) (IF (|has| |t#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |t#1| (-964 (-523))) (PROGN (-6 (-964 (-523))) (-6 (-964 (-383 (-523))))) |%noBranch|) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-759)) (-6 (-759)) |%noBranch|) (IF (|has| |t#1| (-949)) (-6 (-949)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-964 (-1087))) (-6 (-964 (-1087))) |%noBranch|) (IF (|has| |t#1| (-284)) (PROGN (-15 -2046 (|t#1| $)) (-15 -4110 ($ $))) |%noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -1631 ($)) (-15 -3809 (|t#1| $)) (-15 -2733 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-840)) (-6 (-840)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 (-203)) |has| |#1| (-949)) ((-564 (-355)) |has| |#1| (-949)) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523)))) ((-209 |#1|) . T) ((-211) |has| |#1| (-211)) ((-221) . T) ((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-267) . T) ((-284) . T) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-339) . T) ((-314 |#1|) . T) ((-353 |#1|) . T) ((-376 |#1|) . T) ((-427) . T) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|)) ((-515) . T) ((-591 #0#) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-666) . T) ((-730) |has| |#1| (-759)) ((-731) |has| |#1| (-759)) ((-733) |has| |#1| (-759)) ((-734) |has| |#1| (-759)) ((-759) |has| |#1| (-759)) ((-784) |has| |#1| (-759)) ((-786) -3172 (|has| |#1| (-786)) (|has| |#1| (-759))) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-815 |#1|) . T) ((-840) |has| |#1| (-840)) ((-851) . T) ((-949) |has| |#1| (-949)) ((-964 (-383 (-523))) |has| |#1| (-964 (-523))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 (-1087)) |has| |#1| (-964 (-1087))) ((-964 |#1|) . T) ((-979 #0#) . T) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-1063)) ((-1123) . T) ((-1127) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-2644 (($ (-1054 |#1| |#2|)) 11)) (-3648 (((-1054 |#1| |#2|) $) 12)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1937 ((|#2| $ (-218 |#1| |#2|)) 16)) (-1691 (((-794) $) NIL)) (-1879 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL))) +(((-922 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2644 ($ (-1054 |#1| |#2|))) (-15 -3648 ((-1054 |#1| |#2|) $)) (-15 -1937 (|#2| $ (-218 |#1| |#2|))))) (-852) (-339)) (T -922)) +((-2644 (*1 *1 *2) (-12 (-5 *2 (-1054 *3 *4)) (-14 *3 (-852)) (-4 *4 (-339)) (-5 *1 (-922 *3 *4)))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-5 *1 (-922 *3 *4)) (-14 *3 (-852)) (-4 *4 (-339)))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 (-218 *4 *2)) (-14 *4 (-852)) (-4 *2 (-339)) (-5 *1 (-922 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -2644 ($ (-1054 |#1| |#2|))) (-15 -3648 ((-1054 |#1| |#2|) $)) (-15 -1937 (|#2| $ (-218 |#1| |#2|))))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) 8)) (-4189 (($) 7 T CONST)) (-4084 (($ $) 46)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2616 (((-710) $) 45)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1293 ((|#1| $) 39)) (-3108 (($ |#1| $) 40)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1212 ((|#1| $) 44)) (-3048 ((|#1| $) 41)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-3542 ((|#1| |#1| $) 48)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-3629 ((|#1| $) 47)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2417 (($ (-589 |#1|)) 42)) (-3579 ((|#1| $) 43)) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-923 |#1|) (-129) (-1123)) (T -923)) +((-3542 (*1 *2 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1123)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1123)))) (-4084 (*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1123)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1123)) (-5 *2 (-710)))) (-1212 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1123)))) (-3579 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1123))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4248) (-15 -3542 (|t#1| |t#1| $)) (-15 -3629 (|t#1| $)) (-15 -4084 ($ $)) (-15 -2616 ((-710) $)) (-15 -1212 (|t#1| $)) (-15 -3579 (|t#1| $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-2603 (((-108) $) 42)) (-1220 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3508 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#2| $) 43)) (-3317 (((-3 (-383 (-523)) "failed") $) 78)) (-3045 (((-108) $) 72)) (-1682 (((-383 (-523)) $) 76)) (-2769 (((-108) $) 41)) (-1863 ((|#2| $) 22)) (-1345 (($ (-1 |#2| |#2|) $) 19)) (-1396 (($ $) 61)) (-3984 (($ $) NIL) (($ $ (-710)) NIL) (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-1400 (((-499) $) 67)) (-3361 (($ $) 17)) (-1691 (((-794) $) 56) (($ (-523)) 38) (($ |#2|) 36) (($ (-383 (-523))) NIL)) (-3272 (((-710)) 10)) (-2695 ((|#2| $) 71)) (-3941 (((-108) $ $) 25)) (-3966 (((-108) $ $) 69)) (-4060 (($ $) 29) (($ $ $) 28)) (-4045 (($ $ $) 26)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-924 |#1| |#2|) (-10 -8 (-15 -1691 (|#1| (-383 (-523)))) (-15 -3966 ((-108) |#1| |#1|)) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 * (|#1| |#1| (-383 (-523)))) (-15 -1396 (|#1| |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -3317 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1682 ((-383 (-523)) |#1|)) (-15 -3045 ((-108) |#1|)) (-15 -2695 (|#2| |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3361 (|#1| |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1691 (|#1| (-523))) (-15 -3272 ((-710))) (-15 -2769 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 -2603 ((-108) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|))) (-925 |#2|) (-158)) (T -924)) +((-3272 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-924 *3 *4)) (-4 *3 (-925 *4))))) +(-10 -8 (-15 -1691 (|#1| (-383 (-523)))) (-15 -3966 ((-108) |#1| |#1|)) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 * (|#1| |#1| (-383 (-523)))) (-15 -1396 (|#1| |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -3317 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1682 ((-383 (-523)) |#1|)) (-15 -3045 ((-108) |#1|)) (-15 -2695 (|#2| |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3361 (|#1| |#1|)) (-15 -1345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1691 (|#1| (-523))) (-15 -3272 ((-710))) (-15 -2769 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 -2603 ((-108) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1220 (((-3 (-523) "failed") $) 119 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 117 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 116)) (-3508 (((-523) $) 120 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 118 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 115)) (-2243 (((-629 (-523)) (-629 $)) 90 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 89 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 88) (((-629 |#1|) (-629 $)) 87)) (-1444 (((-3 $ "failed") $) 34)) (-2448 ((|#1| $) 80)) (-3317 (((-3 (-383 (-523)) "failed") $) 76 (|has| |#1| (-508)))) (-3045 (((-108) $) 78 (|has| |#1| (-508)))) (-1682 (((-383 (-523)) $) 77 (|has| |#1| (-508)))) (-3215 (($ |#1| |#1| |#1| |#1|) 81)) (-2769 (((-108) $) 31)) (-1863 ((|#1| $) 82)) (-3239 (($ $ $) 68 (|has| |#1| (-786)))) (-3158 (($ $ $) 67 (|has| |#1| (-786)))) (-1345 (($ (-1 |#1| |#1|) $) 91)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 73 (|has| |#1| (-339)))) (-2929 ((|#1| $) 83)) (-3195 ((|#1| $) 84)) (-3115 ((|#1| $) 85)) (-3951 (((-1034) $) 10)) (-2812 (($ $ (-589 |#1|) (-589 |#1|)) 97 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 95 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 94 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 93 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) 92 (|has| |#1| (-484 (-1087) |#1|)))) (-1937 (($ $ |#1|) 98 (|has| |#1| (-263 |#1| |#1|)))) (-3984 (($ $) 114 (|has| |#1| (-211))) (($ $ (-710)) 112 (|has| |#1| (-211))) (($ $ (-1087)) 110 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 109 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 108 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 107 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1400 (((-499) $) 74 (|has| |#1| (-564 (-499))))) (-3361 (($ $) 86)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37) (($ (-383 (-523))) 62 (-3172 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523))))))) (-1942 (((-3 $ "failed") $) 75 (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-2695 ((|#1| $) 79 (|has| |#1| (-982)))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 72 (|has| |#1| (-339)))) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $) 113 (|has| |#1| (-211))) (($ $ (-710)) 111 (|has| |#1| (-211))) (($ $ (-1087)) 106 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 105 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 104 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 103 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-4006 (((-108) $ $) 65 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 64 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 66 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 63 (|has| |#1| (-786)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 71 (|has| |#1| (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-383 (-523))) 70 (|has| |#1| (-339))) (($ (-383 (-523)) $) 69 (|has| |#1| (-339))))) (((-925 |#1|) (-129) (-158)) (T -925)) -((-3208 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-1311 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523))))) (-3346 (*1 *2 *1) (|partial| -12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523)))))) -(-13 (-37 |t#1|) (-387 |t#1|) (-209 |t#1|) (-314 |t#1|) (-353 |t#1|) (-10 -8 (-15 -3208 ($ $)) (-15 -1605 (|t#1| $)) (-15 -3972 (|t#1| $)) (-15 -1401 (|t#1| $)) (-15 -3892 (|t#1| $)) (-15 -1311 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1842 (|t#1| $)) (IF (|has| |t#1| (-267)) (-6 (-267)) |%noBranch|) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-339)) (-6 (-221)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-982)) (-15 -2619 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-339)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-339)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-339)) (|has| |#1| (-267))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-209 |#1|) . T) ((-211) |has| |#1| (-211)) ((-221) |has| |#1| (-339)) ((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-267) -3262 (|has| |#1| (-339)) (|has| |#1| (-267))) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-314 |#1|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|)) ((-591 #0#) |has| |#1| (-339)) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) |has| |#1| (-339)) ((-657 |#1|) . T) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 #0#) |has| |#1| (-339)) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-339)) (|has| |#1| (-267))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3612 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#3| (-1 |#4| |#2|) |#1|))) (-925 |#2|) (-158) (-925 |#4|) (-158)) (T -926)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) (-4 *2 (-925 *6)) (-5 *1 (-926 *4 *5 *2 *6)) (-4 *4 (-925 *5))))) -(-10 -7 (-15 -3612 (|#3| (-1 |#4| |#2|) |#1|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1842 ((|#1| $) 12)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-508)))) (-1292 (((-108) $) NIL (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) NIL (|has| |#1| (-508)))) (-1311 (($ |#1| |#1| |#1| |#1|) 16)) (-2023 (((-108) $) NIL)) (-3892 ((|#1| $) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-1401 ((|#1| $) 15)) (-3972 ((|#1| $) 14)) (-1605 ((|#1| $) 13)) (-2783 (((-1034) $) NIL)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|)))) (-3223 (($ $ |#1|) NIL (|has| |#1| (-263 |#1| |#1|)))) (-3523 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-3208 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523))))))) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-2619 ((|#1| $) NIL (|has| |#1| (-982)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 8 T CONST)) (-2767 (($) 10 T CONST)) (-2862 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-339))) (($ (-383 (-523)) $) NIL (|has| |#1| (-339))))) +((-3361 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-3195 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-3215 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) (-1682 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523))))) (-3317 (*1 *2 *1) (|partial| -12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523)))))) +(-13 (-37 |t#1|) (-387 |t#1|) (-209 |t#1|) (-314 |t#1|) (-353 |t#1|) (-10 -8 (-15 -3361 ($ $)) (-15 -3115 (|t#1| $)) (-15 -3195 (|t#1| $)) (-15 -2929 (|t#1| $)) (-15 -1863 (|t#1| $)) (-15 -3215 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2448 (|t#1| $)) (IF (|has| |t#1| (-267)) (-6 (-267)) |%noBranch|) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-339)) (-6 (-221)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-982)) (-15 -2695 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -3045 ((-108) $)) (-15 -1682 ((-383 (-523)) $)) (-15 -3317 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-339)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-339)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-339)) (|has| |#1| (-267))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-209 |#1|) . T) ((-211) |has| |#1| (-211)) ((-221) |has| |#1| (-339)) ((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-267) -3172 (|has| |#1| (-339)) (|has| |#1| (-267))) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-314 |#1|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|)) ((-591 #0#) |has| |#1| (-339)) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) |has| |#1| (-339)) ((-657 |#1|) . T) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 #0#) |has| |#1| (-339)) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-339)) (|has| |#1| (-267))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-1345 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1345 (|#3| (-1 |#4| |#2|) |#1|))) (-925 |#2|) (-158) (-925 |#4|) (-158)) (T -926)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) (-4 *2 (-925 *6)) (-5 *1 (-926 *4 *5 *2 *6)) (-4 *4 (-925 *5))))) +(-10 -7 (-15 -1345 (|#3| (-1 |#4| |#2|) |#1|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-2448 ((|#1| $) 12)) (-3317 (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-508)))) (-3045 (((-108) $) NIL (|has| |#1| (-508)))) (-1682 (((-383 (-523)) $) NIL (|has| |#1| (-508)))) (-3215 (($ |#1| |#1| |#1| |#1|) 16)) (-2769 (((-108) $) NIL)) (-1863 ((|#1| $) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-339)))) (-2929 ((|#1| $) 15)) (-3195 ((|#1| $) 14)) (-3115 ((|#1| $) 13)) (-3951 (((-1034) $) NIL)) (-2812 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|)))) (-1937 (($ $ |#1|) NIL (|has| |#1| (-263 |#1| |#1|)))) (-3984 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1400 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-3361 (($ $) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523))))))) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-2695 ((|#1| $) NIL (|has| |#1| (-982)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-1879 (($) 8 T CONST)) (-1891 (($) 10 T CONST)) (-2909 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-339))) (($ (-383 (-523)) $) NIL (|has| |#1| (-339))))) (((-927 |#1|) (-925 |#1|) (-158)) (T -927)) NIL (-925 |#1|) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) NIL)) (-2518 (($) NIL T CONST)) (-3152 (($ $) 20)) (-3468 (($ (-589 |#1|)) 29)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2996 (((-710) $) 22)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1934 ((|#1| $) 24)) (-3450 (($ |#1| $) 15)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1592 ((|#1| $) 23)) (-3761 ((|#1| $) 19)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1651 ((|#1| |#1| $) 14)) (-3883 (((-108) $) 17)) (-3988 (($) NIL)) (-1234 ((|#1| $) 18)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) NIL)) (-1348 ((|#1| $) 26)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-928 |#1|) (-13 (-923 |#1|) (-10 -8 (-15 -3468 ($ (-589 |#1|))))) (-1016)) (T -928)) -((-3468 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-928 *3))))) -(-13 (-923 |#1|) (-10 -8 (-15 -3468 ($ (-589 |#1|))))) -((-1832 (($ $) 12)) (-1420 (($ $ (-523)) 13))) -(((-929 |#1|) (-10 -8 (-15 -1832 (|#1| |#1|)) (-15 -1420 (|#1| |#1| (-523)))) (-930)) (T -929)) -NIL -(-10 -8 (-15 -1832 (|#1| |#1|)) (-15 -1420 (|#1| |#1| (-523)))) -((-1832 (($ $) 6)) (-1420 (($ $ (-523)) 7)) (** (($ $ (-383 (-523))) 8))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1620 (((-108) $ (-710)) NIL)) (-4189 (($) NIL T CONST)) (-4084 (($ $) 20)) (-2137 (($ (-589 |#1|)) 29)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2616 (((-710) $) 22)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1293 ((|#1| $) 24)) (-3108 (($ |#1| $) 15)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1212 ((|#1| $) 23)) (-3048 ((|#1| $) 19)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-3542 ((|#1| |#1| $) 14)) (-1777 (((-108) $) 17)) (-3320 (($) NIL)) (-3629 ((|#1| $) 18)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2417 (($ (-589 |#1|)) NIL)) (-3579 ((|#1| $) 26)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-928 |#1|) (-13 (-923 |#1|) (-10 -8 (-15 -2137 ($ (-589 |#1|))))) (-1016)) (T -928)) +((-2137 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-928 *3))))) +(-13 (-923 |#1|) (-10 -8 (-15 -2137 ($ (-589 |#1|))))) +((-2437 (($ $) 12)) (-1973 (($ $ (-523)) 13))) +(((-929 |#1|) (-10 -8 (-15 -2437 (|#1| |#1|)) (-15 -1973 (|#1| |#1| (-523)))) (-930)) (T -929)) +NIL +(-10 -8 (-15 -2437 (|#1| |#1|)) (-15 -1973 (|#1| |#1| (-523)))) +((-2437 (($ $) 6)) (-1973 (($ $ (-523)) 7)) (** (($ $ (-383 (-523))) 8))) (((-930) (-129)) (T -930)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-383 (-523))))) (-1420 (*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-523)))) (-1832 (*1 *1 *1) (-4 *1 (-930)))) -(-13 (-10 -8 (-15 -1832 ($ $)) (-15 -1420 ($ $ (-523))) (-15 ** ($ $ (-383 (-523)))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1207 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| (-383 |#2|) (-339)))) (-3345 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3331 (((-108) $) NIL (|has| (-383 |#2|) (-339)))) (-3750 (((-629 (-383 |#2|)) (-1168 $)) NIL) (((-629 (-383 |#2|))) NIL)) (-4187 (((-383 |#2|) $) NIL)) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-383 |#2|) (-325)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3614 (((-394 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1387 (((-108) $ $) NIL (|has| (-383 |#2|) (-339)))) (-1703 (((-710)) NIL (|has| (-383 |#2|) (-344)))) (-2957 (((-108)) NIL)) (-2898 (((-108) |#1|) 147) (((-108) |#2|) 152)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| (-383 |#2|) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-3 (-383 |#2|) "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| (-383 |#2|) (-964 (-523)))) (((-383 (-523)) $) NIL (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-383 |#2|) $) NIL)) (-3409 (($ (-1168 (-383 |#2|)) (-1168 $)) NIL) (($ (-1168 (-383 |#2|))) 70) (($ (-1168 |#2|) |#2|) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-383 |#2|) (-325)))) (-3796 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-4079 (((-629 (-383 |#2|)) $ (-1168 $)) NIL) (((-629 (-383 |#2|)) $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-383 |#2|))) (|:| |vec| (-1168 (-383 |#2|)))) (-629 $) (-1168 $)) NIL) (((-629 (-383 |#2|)) (-629 $)) NIL)) (-2851 (((-1168 $) (-1168 $)) NIL)) (-2437 (($ |#3|) 65) (((-3 $ "failed") (-383 |#3|)) NIL (|has| (-383 |#2|) (-339)))) (-2121 (((-3 $ "failed") $) NIL)) (-4072 (((-589 (-589 |#1|))) NIL (|has| |#1| (-344)))) (-1374 (((-108) |#1| |#1|) NIL)) (-1319 (((-852)) NIL)) (-4032 (($) NIL (|has| (-383 |#2|) (-344)))) (-4189 (((-108)) NIL)) (-2539 (((-108) |#1|) 56) (((-108) |#2|) 149)) (-3769 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| (-383 |#2|) (-339)))) (-2528 (($ $) NIL)) (-1996 (($) NIL (|has| (-383 |#2|) (-325)))) (-2155 (((-108) $) NIL (|has| (-383 |#2|) (-325)))) (-1991 (($ $ (-710)) NIL (|has| (-383 |#2|) (-325))) (($ $) NIL (|has| (-383 |#2|) (-325)))) (-2657 (((-108) $) NIL (|has| (-383 |#2|) (-339)))) (-1640 (((-852) $) NIL (|has| (-383 |#2|) (-325))) (((-772 (-852)) $) NIL (|has| (-383 |#2|) (-325)))) (-2023 (((-108) $) NIL)) (-3552 (((-710)) NIL)) (-1215 (((-1168 $) (-1168 $)) NIL)) (-3892 (((-383 |#2|) $) NIL)) (-3844 (((-589 (-883 |#1|)) (-1087)) NIL (|has| |#1| (-339)))) (-4058 (((-3 $ "failed") $) NIL (|has| (-383 |#2|) (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1397 ((|#3| $) NIL (|has| (-383 |#2|) (-339)))) (-2072 (((-852) $) NIL (|has| (-383 |#2|) (-344)))) (-2428 ((|#3| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| (-383 |#2|) (-339))) (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-3779 (((-1070) $) NIL)) (-1467 (((-629 (-383 |#2|))) 52)) (-2860 (((-629 (-383 |#2|))) 51)) (-3738 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-2764 (($ (-1168 |#2|) |#2|) 71)) (-1535 (((-629 (-383 |#2|))) 50)) (-3603 (((-629 (-383 |#2|))) 49)) (-3807 (((-2 (|:| |num| (-629 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-4077 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) 77)) (-3496 (((-1168 $)) 46)) (-4158 (((-1168 $)) 45)) (-3613 (((-108) $) NIL)) (-4181 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2262 (($) NIL (|has| (-383 |#2|) (-325)) CONST)) (-3878 (($ (-852)) NIL (|has| (-383 |#2|) (-344)))) (-2779 (((-3 |#2| "failed")) 63)) (-2783 (((-1034) $) NIL)) (-3204 (((-710)) NIL)) (-3441 (($) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-383 |#2|) (-339)))) (-3278 (($ (-589 $)) NIL (|has| (-383 |#2|) (-339))) (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-383 |#2|) (-325)))) (-1820 (((-394 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-383 |#2|) (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| (-383 |#2|) (-339)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| (-383 |#2|) (-339)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1972 (((-710) $) NIL (|has| (-383 |#2|) (-339)))) (-3223 ((|#1| $ |#1| |#1|) NIL)) (-3308 (((-3 |#2| "failed")) 62)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| (-383 |#2|) (-339)))) (-3549 (((-383 |#2|) (-1168 $)) NIL) (((-383 |#2|)) 42)) (-2974 (((-710) $) NIL (|has| (-383 |#2|) (-325))) (((-3 (-710) "failed") $ $) NIL (|has| (-383 |#2|) (-325)))) (-3523 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-710)) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-1976 (((-629 (-383 |#2|)) (-1168 $) (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339)))) (-3727 ((|#3|) 53)) (-3425 (($) NIL (|has| (-383 |#2|) (-325)))) (-2966 (((-1168 (-383 |#2|)) $ (-1168 $)) NIL) (((-629 (-383 |#2|)) (-1168 $) (-1168 $)) NIL) (((-1168 (-383 |#2|)) $) 72) (((-629 (-383 |#2|)) (-1168 $)) NIL)) (-3663 (((-1168 (-383 |#2|)) $) NIL) (($ (-1168 (-383 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| (-383 |#2|) (-325)))) (-4110 (((-1168 $) (-1168 $)) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 |#2|)) NIL) (($ (-383 (-523))) NIL (-3262 (|has| (-383 |#2|) (-964 (-383 (-523)))) (|has| (-383 |#2|) (-339)))) (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3901 (($ $) NIL (|has| (-383 |#2|) (-325))) (((-3 $ "failed") $) NIL (|has| (-383 |#2|) (-134)))) (-1807 ((|#3| $) NIL)) (-1621 (((-710)) NIL)) (-2423 (((-108)) 60)) (-2691 (((-108) |#1|) 153) (((-108) |#2|) 154)) (-4041 (((-1168 $)) 124)) (-1704 (((-108) $ $) NIL (|has| (-383 |#2|) (-339)))) (-1451 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1323 (((-108)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-383 |#2|) (-339)))) (-2756 (($) 94 T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-710)) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-383 |#2|) (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 |#2|)) NIL) (($ (-383 |#2|) $) NIL) (($ (-383 (-523)) $) NIL (|has| (-383 |#2|) (-339))) (($ $ (-383 (-523))) NIL (|has| (-383 |#2|) (-339))))) -(((-931 |#1| |#2| |#3| |#4| |#5|) (-318 |#1| |#2| |#3|) (-1126) (-1144 |#1|) (-1144 (-383 |#2|)) (-383 |#2|) (-710)) (T -931)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-383 (-523))))) (-1973 (*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-523)))) (-2437 (*1 *1 *1) (-4 *1 (-930)))) +(-13 (-10 -8 (-15 -2437 ($ $)) (-15 -1973 ($ $ (-523))) (-15 ** ($ $ (-383 (-523)))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1587 (((-2 (|:| |num| (-1169 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| (-383 |#2|) (-339)))) (-3306 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3174 (((-108) $) NIL (|has| (-383 |#2|) (-339)))) (-2959 (((-629 (-383 |#2|)) (-1169 $)) NIL) (((-629 (-383 |#2|))) NIL)) (-1477 (((-383 |#2|) $) NIL)) (-1557 (((-1097 (-852) (-710)) (-523)) NIL (|has| (-383 |#2|) (-325)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-4226 (((-394 $) $) NIL (|has| (-383 |#2|) (-339)))) (-2787 (((-108) $ $) NIL (|has| (-383 |#2|) (-339)))) (-2395 (((-710)) NIL (|has| (-383 |#2|) (-344)))) (-2816 (((-108)) NIL)) (-3454 (((-108) |#1|) 148) (((-108) |#2|) 153)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (|has| (-383 |#2|) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-3 (-383 |#2|) "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| (-383 |#2|) (-964 (-523)))) (((-383 (-523)) $) NIL (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-383 |#2|) $) NIL)) (-2754 (($ (-1169 (-383 |#2|)) (-1169 $)) NIL) (($ (-1169 (-383 |#2|))) 70) (($ (-1169 |#2|) |#2|) NIL)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-383 |#2|) (-325)))) (-4059 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-2927 (((-629 (-383 |#2|)) $ (-1169 $)) NIL) (((-629 (-383 |#2|)) $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-383 |#2|))) (|:| |vec| (-1169 (-383 |#2|)))) (-629 $) (-1169 $)) NIL) (((-629 (-383 |#2|)) (-629 $)) NIL)) (-1290 (((-1169 $) (-1169 $)) NIL)) (-2116 (($ |#3|) 65) (((-3 $ "failed") (-383 |#3|)) NIL (|has| (-383 |#2|) (-339)))) (-1444 (((-3 $ "failed") $) NIL)) (-2865 (((-589 (-589 |#1|))) NIL (|has| |#1| (-344)))) (-2672 (((-108) |#1| |#1|) NIL)) (-3569 (((-852)) NIL)) (-1631 (($) NIL (|has| (-383 |#2|) (-344)))) (-3991 (((-108)) NIL)) (-1382 (((-108) |#1|) 56) (((-108) |#2|) 150)) (-4032 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| (-383 |#2|) (-339)))) (-1272 (($ $) NIL)) (-3665 (($) NIL (|has| (-383 |#2|) (-325)))) (-1766 (((-108) $) NIL (|has| (-383 |#2|) (-325)))) (-3610 (($ $ (-710)) NIL (|has| (-383 |#2|) (-325))) (($ $) NIL (|has| (-383 |#2|) (-325)))) (-3049 (((-108) $) NIL (|has| (-383 |#2|) (-339)))) (-3437 (((-852) $) NIL (|has| (-383 |#2|) (-325))) (((-772 (-852)) $) NIL (|has| (-383 |#2|) (-325)))) (-2769 (((-108) $) NIL)) (-1772 (((-710)) NIL)) (-1666 (((-1169 $) (-1169 $)) NIL)) (-1863 (((-383 |#2|) $) NIL)) (-2570 (((-589 (-883 |#1|)) (-1087)) NIL (|has| |#1| (-339)))) (-2738 (((-3 $ "failed") $) NIL (|has| (-383 |#2|) (-325)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-383 |#2|) (-339)))) (-2887 ((|#3| $) NIL (|has| (-383 |#2|) (-339)))) (-2060 (((-852) $) NIL (|has| (-383 |#2|) (-344)))) (-2104 ((|#3| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| (-383 |#2|) (-339))) (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-2032 (((-1070) $) NIL)) (-2411 (((-629 (-383 |#2|))) 52)) (-1378 (((-629 (-383 |#2|))) 51)) (-1396 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-1748 (($ (-1169 |#2|) |#2|) 71)) (-3658 (((-629 (-383 |#2|))) 50)) (-4103 (((-629 (-383 |#2|))) 49)) (-2239 (((-2 (|:| |num| (-629 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2905 (((-2 (|:| |num| (-1169 |#2|)) (|:| |den| |#2|)) $) 77)) (-2429 (((-1169 $)) 46)) (-2496 (((-1169 $)) 45)) (-4212 (((-108) $) NIL)) (-3905 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2773 (($) NIL (|has| (-383 |#2|) (-325)) CONST)) (-4013 (($ (-852)) NIL (|has| (-383 |#2|) (-344)))) (-1885 (((-3 |#2| "failed")) 63)) (-3951 (((-1034) $) NIL)) (-3327 (((-710)) NIL)) (-1621 (($) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-383 |#2|) (-339)))) (-3310 (($ (-589 $)) NIL (|has| (-383 |#2|) (-339))) (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL (|has| (-383 |#2|) (-325)))) (-2424 (((-394 $) $) NIL (|has| (-383 |#2|) (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-383 |#2|) (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| (-383 |#2|) (-339)))) (-4007 (((-3 $ "failed") $ $) NIL (|has| (-383 |#2|) (-339)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-383 |#2|) (-339)))) (-3413 (((-710) $) NIL (|has| (-383 |#2|) (-339)))) (-1937 ((|#1| $ |#1| |#1|) NIL)) (-1201 (((-3 |#2| "failed")) 62)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| (-383 |#2|) (-339)))) (-1744 (((-383 |#2|) (-1169 $)) NIL) (((-383 |#2|)) 42)) (-2984 (((-710) $) NIL (|has| (-383 |#2|) (-325))) (((-3 (-710) "failed") $ $) NIL (|has| (-383 |#2|) (-325)))) (-3984 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-710)) NIL (-3172 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) NIL (-3172 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-3456 (((-629 (-383 |#2|)) (-1169 $) (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339)))) (-2762 ((|#3|) 53)) (-2893 (($) NIL (|has| (-383 |#2|) (-325)))) (-2906 (((-1169 (-383 |#2|)) $ (-1169 $)) NIL) (((-629 (-383 |#2|)) (-1169 $) (-1169 $)) NIL) (((-1169 (-383 |#2|)) $) 72) (((-629 (-383 |#2|)) (-1169 $)) NIL)) (-1400 (((-1169 (-383 |#2|)) $) NIL) (($ (-1169 (-383 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| (-383 |#2|) (-325)))) (-3153 (((-1169 $) (-1169 $)) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 |#2|)) NIL) (($ (-383 (-523))) NIL (-3172 (|has| (-383 |#2|) (-964 (-383 (-523)))) (|has| (-383 |#2|) (-339)))) (($ $) NIL (|has| (-383 |#2|) (-339)))) (-1942 (($ $) NIL (|has| (-383 |#2|) (-325))) (((-3 $ "failed") $) NIL (|has| (-383 |#2|) (-134)))) (-1356 ((|#3| $) NIL)) (-3272 (((-710)) NIL)) (-1496 (((-108)) 60)) (-2188 (((-108) |#1|) 154) (((-108) |#2|) 155)) (-3760 (((-1169 $)) 125)) (-2801 (((-108) $ $) NIL (|has| (-383 |#2|) (-339)))) (-2265 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3336 (((-108)) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-383 |#2|) (-339)))) (-1879 (($) 94 T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-710)) NIL (-3172 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) NIL (-3172 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-383 |#2|) (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 |#2|)) NIL) (($ (-383 |#2|) $) NIL) (($ (-383 (-523)) $) NIL (|has| (-383 |#2|) (-339))) (($ $ (-383 (-523))) NIL (|has| (-383 |#2|) (-339))))) +(((-931 |#1| |#2| |#3| |#4| |#5|) (-318 |#1| |#2| |#3|) (-1127) (-1145 |#1|) (-1145 (-383 |#2|)) (-383 |#2|) (-710)) (T -931)) NIL (-318 |#1| |#2| |#3|) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3533 (((-589 (-523)) $) 54)) (-1862 (($ (-589 (-523))) 62)) (-3458 (((-523) $) 40 (|has| (-523) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-523) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) 49) (((-3 (-1087) "failed") $) NIL (|has| (-523) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) 47 (|has| (-523) (-964 (-523)))) (((-3 (-523) "failed") $) 49 (|has| (-523) (-964 (-523))))) (-3474 (((-523) $) NIL) (((-1087) $) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-523) (-964 (-523)))) (((-523) $) NIL (|has| (-523) (-964 (-523))))) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-523) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-1364 (((-589 (-523)) $) 60)) (-2604 (((-108) $) NIL (|has| (-523) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-523) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-523) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-523) $) 37)) (-4058 (((-3 $ "failed") $) NIL (|has| (-523) (-1063)))) (-4114 (((-108) $) NIL (|has| (-523) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-523) (-786)))) (-3612 (($ (-1 (-523) (-523)) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-523) (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-523) (-284))) (((-383 (-523)) $) 42)) (-2372 (((-1068 (-523)) $) 59)) (-2056 (($ (-589 (-523)) (-589 (-523))) 63)) (-3722 (((-523) $) 53 (|has| (-523) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-523)) (-589 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-523) (-523)) NIL (|has| (-523) (-286 (-523)))) (($ $ (-271 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-271 (-523)))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-1087)) (-589 (-523))) NIL (|has| (-523) (-484 (-1087) (-523)))) (($ $ (-1087) (-523)) NIL (|has| (-523) (-484 (-1087) (-523))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-523)) NIL (|has| (-523) (-263 (-523) (-523))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) 11 (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-523) $) 39)) (-3766 (((-589 (-523)) $) 61)) (-3663 (((-823 (-523)) $) NIL (|has| (-523) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-523) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-523) (-564 (-499)))) (((-355) $) NIL (|has| (-523) (-949))) (((-203) $) NIL (|has| (-523) (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-523) (-840))))) (-1458 (((-794) $) 77) (($ (-523)) 43) (($ $) NIL) (($ (-383 (-523))) 19) (($ (-523)) 43) (($ (-1087)) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) 17)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-523) (-840))) (|has| (-523) (-134))))) (-1621 (((-710)) 9)) (-1886 (((-523) $) 51 (|has| (-523) (-508)))) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL (|has| (-523) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 10 T CONST)) (-2767 (($) 12 T CONST)) (-2862 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3983 (((-108) $ $) 14)) (-4030 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4007 (((-108) $ $) 33 (|has| (-523) (-786)))) (-4098 (($ $ $) 29) (($ (-523) (-523)) 31)) (-4087 (($ $) 15) (($ $ $) 22)) (-4075 (($ $ $) 20)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 25) (($ $ $) 27) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-523) $) 25) (($ $ (-523)) NIL))) -(((-932 |#1|) (-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -3533 ((-589 (-523)) $)) (-15 -2372 ((-1068 (-523)) $)) (-15 -1364 ((-589 (-523)) $)) (-15 -3766 ((-589 (-523)) $)) (-15 -1862 ($ (-589 (-523)))) (-15 -2056 ($ (-589 (-523)) (-589 (-523)))))) (-523)) (T -932)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-2372 (*1 *2 *1) (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-1862 (*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-2056 (*1 *1 *2 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) -(-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -3533 ((-589 (-523)) $)) (-15 -2372 ((-1068 (-523)) $)) (-15 -1364 ((-589 (-523)) $)) (-15 -3766 ((-589 (-523)) $)) (-15 -1862 ($ (-589 (-523)))) (-15 -2056 ($ (-589 (-523)) (-589 (-523)))))) -((-3483 (((-51) (-383 (-523)) (-523)) 9))) -(((-933) (-10 -7 (-15 -3483 ((-51) (-383 (-523)) (-523))))) (T -933)) -((-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-523))) (-5 *4 (-523)) (-5 *2 (-51)) (-5 *1 (-933))))) -(-10 -7 (-15 -3483 ((-51) (-383 (-523)) (-523)))) -((-1703 (((-523)) 13)) (-3135 (((-523)) 16)) (-4053 (((-1173) (-523)) 15)) (-2568 (((-523) (-523)) 17) (((-523)) 12))) -(((-934) (-10 -7 (-15 -2568 ((-523))) (-15 -1703 ((-523))) (-15 -2568 ((-523) (-523))) (-15 -4053 ((-1173) (-523))) (-15 -3135 ((-523))))) (T -934)) -((-3135 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-934)))) (-2568 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) (-1703 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) (-2568 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934))))) -(-10 -7 (-15 -2568 ((-523))) (-15 -1703 ((-523))) (-15 -2568 ((-523) (-523))) (-15 -4053 ((-1173) (-523))) (-15 -3135 ((-523)))) -((-3906 (((-394 |#1|) |#1|) 40)) (-1820 (((-394 |#1|) |#1|) 39))) -(((-935 |#1|) (-10 -7 (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3906 ((-394 |#1|) |#1|))) (-1144 (-383 (-523)))) (T -935)) -((-3906 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1144 (-383 (-523)))))) (-1820 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1144 (-383 (-523))))))) -(-10 -7 (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3906 ((-394 |#1|) |#1|))) -((-3346 (((-3 (-383 (-523)) "failed") |#1|) 14)) (-1292 (((-108) |#1|) 13)) (-2146 (((-383 (-523)) |#1|) 9))) -(((-936 |#1|) (-10 -7 (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|))) (-964 (-383 (-523)))) (T -936)) -((-3346 (*1 *2 *3) (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-936 *3)) (-4 *3 (-964 *2)))) (-1292 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-936 *3)) (-4 *3 (-964 (-383 (-523)))))) (-2146 (*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-936 *3)) (-4 *3 (-964 *2))))) -(-10 -7 (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|))) -((-1641 ((|#2| $ "value" |#2|) 12)) (-3223 ((|#2| $ "value") 10)) (-3653 (((-108) $ $) 18))) -(((-937 |#1| |#2|) (-10 -8 (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -3653 ((-108) |#1| |#1|)) (-15 -3223 (|#2| |#1| "value"))) (-938 |#2|) (-1122)) (T -937)) -NIL -(-10 -8 (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -3653 ((-108) |#1| |#1|)) (-15 -3223 (|#2| |#1| "value"))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-2518 (($) 7 T CONST)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47)) (-1549 (((-523) $ $) 44)) (-2524 (((-108) $) 46)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-938 |#1|) (-129) (-1122)) (T -938)) -((-2296 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-5 *2 (-589 *1)) (-4 *1 (-938 *3)))) (-2645 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-5 *2 (-589 *1)) (-4 *1 (-938 *3)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-1122)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-938 *2)) (-4 *2 (-1122)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-589 *3)))) (-1549 (*1 *2 *1 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-523)))) (-3653 (*1 *2 *1 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-1238 (*1 *2 *1 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-3100 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *1)) (|has| *1 (-6 -4245)) (-4 *1 (-938 *3)) (-4 *3 (-1122)))) (-1641 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4245)) (-4 *1 (-938 *2)) (-4 *2 (-1122)))) (-1823 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-938 *2)) (-4 *2 (-1122))))) -(-13 (-462 |t#1|) (-10 -8 (-15 -2296 ((-589 $) $)) (-15 -2645 ((-589 $) $)) (-15 -3555 ((-108) $)) (-15 -1733 (|t#1| $)) (-15 -3223 (|t#1| $ "value")) (-15 -2524 ((-108) $)) (-15 -2726 ((-589 |t#1|) $)) (-15 -1549 ((-523) $ $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -3653 ((-108) $ $)) (-15 -1238 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4245)) (PROGN (-15 -3100 ($ $ (-589 $))) (-15 -1641 (|t#1| $ "value" |t#1|)) (-15 -1823 (|t#1| $ |t#1|))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-1832 (($ $) 9) (($ $ (-710)) 43) (($ (-383 (-523))) 12) (($ (-523)) 15)) (-3313 (((-3 $ "failed") (-1083 $) (-852) (-794)) 23) (((-3 $ "failed") (-1083 $) (-852)) 28)) (-1420 (($ $ (-523)) 49)) (-1621 (((-710)) 16)) (-1409 (((-589 $) (-1083 $)) NIL) (((-589 $) (-1083 (-383 (-523)))) 54) (((-589 $) (-1083 (-523))) 59) (((-589 $) (-883 $)) 63) (((-589 $) (-883 (-383 (-523)))) 67) (((-589 $) (-883 (-523))) 71)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL) (($ $ (-383 (-523))) 47))) -(((-939 |#1|) (-10 -8 (-15 -1832 (|#1| (-523))) (-15 -1832 (|#1| (-383 (-523)))) (-15 -1832 (|#1| |#1| (-710))) (-15 -1409 ((-589 |#1|) (-883 (-523)))) (-15 -1409 ((-589 |#1|) (-883 (-383 (-523))))) (-15 -1409 ((-589 |#1|) (-883 |#1|))) (-15 -1409 ((-589 |#1|) (-1083 (-523)))) (-15 -1409 ((-589 |#1|) (-1083 (-383 (-523))))) (-15 -1409 ((-589 |#1|) (-1083 |#1|))) (-15 -3313 ((-3 |#1| "failed") (-1083 |#1|) (-852))) (-15 -3313 ((-3 |#1| "failed") (-1083 |#1|) (-852) (-794))) (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -1420 (|#1| |#1| (-523))) (-15 -1832 (|#1| |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 -1621 ((-710))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852)))) (-940)) (T -939)) -((-1621 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-939 *3)) (-4 *3 (-940))))) -(-10 -8 (-15 -1832 (|#1| (-523))) (-15 -1832 (|#1| (-383 (-523)))) (-15 -1832 (|#1| |#1| (-710))) (-15 -1409 ((-589 |#1|) (-883 (-523)))) (-15 -1409 ((-589 |#1|) (-883 (-383 (-523))))) (-15 -1409 ((-589 |#1|) (-883 |#1|))) (-15 -1409 ((-589 |#1|) (-1083 (-523)))) (-15 -1409 ((-589 |#1|) (-1083 (-383 (-523))))) (-15 -1409 ((-589 |#1|) (-1083 |#1|))) (-15 -3313 ((-3 |#1| "failed") (-1083 |#1|) (-852))) (-15 -3313 ((-3 |#1| "failed") (-1083 |#1|) (-852) (-794))) (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -1420 (|#1| |#1| (-523))) (-15 -1832 (|#1| |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 -1621 ((-710))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 89)) (-3345 (($ $) 90)) (-3331 (((-108) $) 92)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 109)) (-3614 (((-394 $) $) 110)) (-1832 (($ $) 73) (($ $ (-710)) 59) (($ (-383 (-523))) 58) (($ (-523)) 57)) (-1387 (((-108) $ $) 100)) (-3671 (((-523) $) 127)) (-2518 (($) 17 T CONST)) (-3313 (((-3 $ "failed") (-1083 $) (-852) (-794)) 67) (((-3 $ "failed") (-1083 $) (-852)) 66)) (-3517 (((-3 (-523) "failed") $) 85 (|has| (-383 (-523)) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 83 (|has| (-383 (-523)) (-964 (-383 (-523))))) (((-3 (-383 (-523)) "failed") $) 81)) (-3474 (((-523) $) 86 (|has| (-383 (-523)) (-964 (-523)))) (((-383 (-523)) $) 84 (|has| (-383 (-523)) (-964 (-383 (-523))))) (((-383 (-523)) $) 80)) (-1928 (($ $ (-794)) 56)) (-4206 (($ $ (-794)) 55)) (-3796 (($ $ $) 104)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 103)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 98)) (-2657 (((-108) $) 111)) (-2604 (((-108) $) 125)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 72)) (-4114 (((-108) $) 126)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 107)) (-2454 (($ $ $) 124)) (-2062 (($ $ $) 123)) (-2480 (((-3 (-1083 $) "failed") $) 68)) (-3191 (((-3 (-794) "failed") $) 70)) (-3109 (((-3 (-1083 $) "failed") $) 69)) (-3244 (($ (-589 $)) 96) (($ $ $) 95)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 112)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 97)) (-3278 (($ (-589 $)) 94) (($ $ $) 93)) (-1820 (((-394 $) $) 108)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 105)) (-3746 (((-3 $ "failed") $ $) 88)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 99)) (-1972 (((-710) $) 101)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 102)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 117) (($ $) 87) (($ (-383 (-523))) 82) (($ (-523)) 79) (($ (-383 (-523))) 76)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 91)) (-2562 (((-383 (-523)) $ $) 54)) (-1409 (((-589 $) (-1083 $)) 65) (((-589 $) (-1083 (-383 (-523)))) 64) (((-589 $) (-1083 (-523))) 63) (((-589 $) (-883 $)) 62) (((-589 $) (-883 (-383 (-523)))) 61) (((-589 $) (-883 (-523))) 60)) (-2619 (($ $) 128)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 113)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 121)) (-4019 (((-108) $ $) 120)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 122)) (-4007 (((-108) $ $) 119)) (-4098 (($ $ $) 118)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 114) (($ $ (-383 (-523))) 71)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ (-383 (-523)) $) 116) (($ $ (-383 (-523))) 115) (($ (-523) $) 78) (($ $ (-523)) 77) (($ (-383 (-523)) $) 75) (($ $ (-383 (-523))) 74))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1610 (((-589 (-523)) $) 54)) (-1806 (($ (-589 (-523))) 62)) (-2046 (((-523) $) 40 (|has| (-523) (-284)))) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL (|has| (-523) (-759)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) 49) (((-3 (-1087) "failed") $) NIL (|has| (-523) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) 47 (|has| (-523) (-964 (-523)))) (((-3 (-523) "failed") $) 49 (|has| (-523) (-964 (-523))))) (-3508 (((-523) $) NIL) (((-1087) $) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-523) (-964 (-523)))) (((-523) $) NIL (|has| (-523) (-964 (-523))))) (-4059 (($ $ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1631 (($) NIL (|has| (-523) (-508)))) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-2588 (((-589 (-523)) $) 60)) (-3712 (((-108) $) NIL (|has| (-523) (-759)))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-523) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-523) (-817 (-355))))) (-2769 (((-108) $) NIL)) (-1296 (($ $) NIL)) (-3316 (((-523) $) 37)) (-2738 (((-3 $ "failed") $) NIL (|has| (-523) (-1063)))) (-2057 (((-108) $) NIL (|has| (-523) (-759)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3239 (($ $ $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| (-523) (-786)))) (-1345 (($ (-1 (-523) (-523)) $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL)) (-2773 (($) NIL (|has| (-523) (-1063)) CONST)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4110 (($ $) NIL (|has| (-523) (-284))) (((-383 (-523)) $) 42)) (-2149 (((-1068 (-523)) $) 59)) (-3066 (($ (-589 (-523)) (-589 (-523))) 63)) (-2733 (((-523) $) 53 (|has| (-523) (-508)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2424 (((-394 $) $) NIL)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2812 (($ $ (-589 (-523)) (-589 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-523) (-523)) NIL (|has| (-523) (-286 (-523)))) (($ $ (-271 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-271 (-523)))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-1087)) (-589 (-523))) NIL (|has| (-523) (-484 (-1087) (-523)))) (($ $ (-1087) (-523)) NIL (|has| (-523) (-484 (-1087) (-523))))) (-3413 (((-710) $) NIL)) (-1937 (($ $ (-523)) NIL (|has| (-523) (-263 (-523) (-523))))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3984 (($ $) 11 (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-2793 (($ $) NIL)) (-3329 (((-523) $) 39)) (-3086 (((-589 (-523)) $) 61)) (-1400 (((-823 (-523)) $) NIL (|has| (-523) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-523) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-523) (-564 (-499)))) (((-355) $) NIL (|has| (-523) (-949))) (((-203) $) NIL (|has| (-523) (-949)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-523) (-840))))) (-1691 (((-794) $) 77) (($ (-523)) 43) (($ $) NIL) (($ (-383 (-523))) 19) (($ (-523)) 43) (($ (-1087)) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) 17)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| (-523) (-840))) (|has| (-523) (-134))))) (-3272 (((-710)) 9)) (-3809 (((-523) $) 51 (|has| (-523) (-508)))) (-2801 (((-108) $ $) NIL)) (-2695 (($ $) NIL (|has| (-523) (-759)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 10 T CONST)) (-1891 (($) 12 T CONST)) (-2909 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-4006 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3980 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3941 (((-108) $ $) 14)) (-3993 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3966 (((-108) $ $) 33 (|has| (-523) (-786)))) (-4074 (($ $ $) 29) (($ (-523) (-523)) 31)) (-4060 (($ $) 15) (($ $ $) 22)) (-4045 (($ $ $) 20)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 25) (($ $ $) 27) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-523) $) 25) (($ $ (-523)) NIL))) +(((-932 |#1|) (-13 (-921 (-523)) (-10 -8 (-15 -1691 ((-383 (-523)) $)) (-15 -4110 ((-383 (-523)) $)) (-15 -1610 ((-589 (-523)) $)) (-15 -2149 ((-1068 (-523)) $)) (-15 -2588 ((-589 (-523)) $)) (-15 -3086 ((-589 (-523)) $)) (-15 -1806 ($ (-589 (-523)))) (-15 -3066 ($ (-589 (-523)) (-589 (-523)))))) (-523)) (T -932)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-1806 (*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-3066 (*1 *1 *2 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(-13 (-921 (-523)) (-10 -8 (-15 -1691 ((-383 (-523)) $)) (-15 -4110 ((-383 (-523)) $)) (-15 -1610 ((-589 (-523)) $)) (-15 -2149 ((-1068 (-523)) $)) (-15 -2588 ((-589 (-523)) $)) (-15 -3086 ((-589 (-523)) $)) (-15 -1806 ($ (-589 (-523)))) (-15 -3066 ($ (-589 (-523)) (-589 (-523)))))) +((-2281 (((-51) (-383 (-523)) (-523)) 9))) +(((-933) (-10 -7 (-15 -2281 ((-51) (-383 (-523)) (-523))))) (T -933)) +((-2281 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-523))) (-5 *4 (-523)) (-5 *2 (-51)) (-5 *1 (-933))))) +(-10 -7 (-15 -2281 ((-51) (-383 (-523)) (-523)))) +((-2395 (((-523)) 13)) (-3906 (((-523)) 16)) (-2691 (((-1174) (-523)) 15)) (-3392 (((-523) (-523)) 17) (((-523)) 12))) +(((-934) (-10 -7 (-15 -3392 ((-523))) (-15 -2395 ((-523))) (-15 -3392 ((-523) (-523))) (-15 -2691 ((-1174) (-523))) (-15 -3906 ((-523))))) (T -934)) +((-3906 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) (-2691 (*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-934)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) (-2395 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) (-3392 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934))))) +(-10 -7 (-15 -3392 ((-523))) (-15 -2395 ((-523))) (-15 -3392 ((-523) (-523))) (-15 -2691 ((-1174) (-523))) (-15 -3906 ((-523)))) +((-1982 (((-394 |#1|) |#1|) 40)) (-2424 (((-394 |#1|) |#1|) 39))) +(((-935 |#1|) (-10 -7 (-15 -2424 ((-394 |#1|) |#1|)) (-15 -1982 ((-394 |#1|) |#1|))) (-1145 (-383 (-523)))) (T -935)) +((-1982 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1145 (-383 (-523)))))) (-2424 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1145 (-383 (-523))))))) +(-10 -7 (-15 -2424 ((-394 |#1|) |#1|)) (-15 -1982 ((-394 |#1|) |#1|))) +((-3317 (((-3 (-383 (-523)) "failed") |#1|) 14)) (-3045 (((-108) |#1|) 13)) (-1682 (((-383 (-523)) |#1|) 9))) +(((-936 |#1|) (-10 -7 (-15 -1682 ((-383 (-523)) |#1|)) (-15 -3045 ((-108) |#1|)) (-15 -3317 ((-3 (-383 (-523)) "failed") |#1|))) (-964 (-383 (-523)))) (T -936)) +((-3317 (*1 *2 *3) (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-936 *3)) (-4 *3 (-964 *2)))) (-3045 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-936 *3)) (-4 *3 (-964 (-383 (-523)))))) (-1682 (*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-936 *3)) (-4 *3 (-964 *2))))) +(-10 -7 (-15 -1682 ((-383 (-523)) |#1|)) (-15 -3045 ((-108) |#1|)) (-15 -3317 ((-3 (-383 (-523)) "failed") |#1|))) +((-1849 ((|#2| $ "value" |#2|) 12)) (-1937 ((|#2| $ "value") 10)) (-3313 (((-108) $ $) 18))) +(((-937 |#1| |#2|) (-10 -8 (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -3313 ((-108) |#1| |#1|)) (-15 -1937 (|#2| |#1| "value"))) (-938 |#2|) (-1123)) (T -937)) +NIL +(-10 -8 (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -3313 ((-108) |#1| |#1|)) (-15 -1937 (|#2| |#1| "value"))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3370 ((|#1| $) 48)) (-1620 (((-108) $ (-710)) 8)) (-1487 ((|#1| $ |#1|) 39 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) 41 (|has| $ (-6 -4249)))) (-4189 (($) 7 T CONST)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) 50)) (-3675 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-1701 (((-589 |#1|) $) 45)) (-1799 (((-108) $) 49)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ "value") 47)) (-3766 (((-523) $ $) 44)) (-1221 (((-108) $) 46)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) 51)) (-3313 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-938 |#1|) (-129) (-1123)) (T -938)) +((-2612 (*1 *2 *1) (-12 (-4 *3 (-1123)) (-5 *2 (-589 *1)) (-4 *1 (-938 *3)))) (-2932 (*1 *2 *1) (-12 (-4 *3 (-1123)) (-5 *2 (-589 *1)) (-4 *1 (-938 *3)))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1123)) (-5 *2 (-108)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-1123)))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-938 *2)) (-4 *2 (-1123)))) (-1221 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1123)) (-5 *2 (-108)))) (-1701 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1123)) (-5 *2 (-589 *3)))) (-3766 (*1 *2 *1 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1123)) (-5 *2 (-523)))) (-3313 (*1 *2 *1 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1123)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-3675 (*1 *2 *1 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1123)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-1809 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *1)) (|has| *1 (-6 -4249)) (-4 *1 (-938 *3)) (-4 *3 (-1123)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4249)) (-4 *1 (-938 *2)) (-4 *2 (-1123)))) (-1487 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-938 *2)) (-4 *2 (-1123))))) +(-13 (-462 |t#1|) (-10 -8 (-15 -2612 ((-589 $) $)) (-15 -2932 ((-589 $) $)) (-15 -1799 ((-108) $)) (-15 -3370 (|t#1| $)) (-15 -1937 (|t#1| $ "value")) (-15 -1221 ((-108) $)) (-15 -1701 ((-589 |t#1|) $)) (-15 -3766 ((-523) $ $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -3313 ((-108) $ $)) (-15 -3675 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4249)) (PROGN (-15 -1809 ($ $ (-589 $))) (-15 -1849 (|t#1| $ "value" |t#1|)) (-15 -1487 (|t#1| $ |t#1|))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-2437 (($ $) 9) (($ $ (-710)) 43) (($ (-383 (-523))) 12) (($ (-523)) 15)) (-1264 (((-3 $ "failed") (-1083 $) (-852) (-794)) 23) (((-3 $ "failed") (-1083 $) (-852)) 28)) (-1973 (($ $ (-523)) 49)) (-3272 (((-710)) 16)) (-3008 (((-589 $) (-1083 $)) NIL) (((-589 $) (-1083 (-383 (-523)))) 54) (((-589 $) (-1083 (-523))) 59) (((-589 $) (-883 $)) 63) (((-589 $) (-883 (-383 (-523)))) 67) (((-589 $) (-883 (-523))) 71)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL) (($ $ (-383 (-523))) 47))) +(((-939 |#1|) (-10 -8 (-15 -2437 (|#1| (-523))) (-15 -2437 (|#1| (-383 (-523)))) (-15 -2437 (|#1| |#1| (-710))) (-15 -3008 ((-589 |#1|) (-883 (-523)))) (-15 -3008 ((-589 |#1|) (-883 (-383 (-523))))) (-15 -3008 ((-589 |#1|) (-883 |#1|))) (-15 -3008 ((-589 |#1|) (-1083 (-523)))) (-15 -3008 ((-589 |#1|) (-1083 (-383 (-523))))) (-15 -3008 ((-589 |#1|) (-1083 |#1|))) (-15 -1264 ((-3 |#1| "failed") (-1083 |#1|) (-852))) (-15 -1264 ((-3 |#1| "failed") (-1083 |#1|) (-852) (-794))) (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -1973 (|#1| |#1| (-523))) (-15 -2437 (|#1| |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 -3272 ((-710))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852)))) (-940)) (T -939)) +((-3272 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-939 *3)) (-4 *3 (-940))))) +(-10 -8 (-15 -2437 (|#1| (-523))) (-15 -2437 (|#1| (-383 (-523)))) (-15 -2437 (|#1| |#1| (-710))) (-15 -3008 ((-589 |#1|) (-883 (-523)))) (-15 -3008 ((-589 |#1|) (-883 (-383 (-523))))) (-15 -3008 ((-589 |#1|) (-883 |#1|))) (-15 -3008 ((-589 |#1|) (-1083 (-523)))) (-15 -3008 ((-589 |#1|) (-1083 (-383 (-523))))) (-15 -3008 ((-589 |#1|) (-1083 |#1|))) (-15 -1264 ((-3 |#1| "failed") (-1083 |#1|) (-852))) (-15 -1264 ((-3 |#1| "failed") (-1083 |#1|) (-852) (-794))) (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -1973 (|#1| |#1| (-523))) (-15 -2437 (|#1| |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 -3272 ((-710))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 89)) (-3306 (($ $) 90)) (-3174 (((-108) $) 92)) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 109)) (-4226 (((-394 $) $) 110)) (-2437 (($ $) 73) (($ $ (-710)) 59) (($ (-383 (-523))) 58) (($ (-523)) 57)) (-2787 (((-108) $ $) 100)) (-3482 (((-523) $) 127)) (-4189 (($) 17 T CONST)) (-1264 (((-3 $ "failed") (-1083 $) (-852) (-794)) 67) (((-3 $ "failed") (-1083 $) (-852)) 66)) (-1220 (((-3 (-523) "failed") $) 85 (|has| (-383 (-523)) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 83 (|has| (-383 (-523)) (-964 (-383 (-523))))) (((-3 (-383 (-523)) "failed") $) 81)) (-3508 (((-523) $) 86 (|has| (-383 (-523)) (-964 (-523)))) (((-383 (-523)) $) 84 (|has| (-383 (-523)) (-964 (-383 (-523))))) (((-383 (-523)) $) 80)) (-1231 (($ $ (-794)) 56)) (-4178 (($ $ (-794)) 55)) (-4059 (($ $ $) 104)) (-1444 (((-3 $ "failed") $) 34)) (-4032 (($ $ $) 103)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 98)) (-3049 (((-108) $) 111)) (-3712 (((-108) $) 125)) (-2769 (((-108) $) 31)) (-1973 (($ $ (-523)) 72)) (-2057 (((-108) $) 126)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 107)) (-3239 (($ $ $) 124)) (-3158 (($ $ $) 123)) (-3788 (((-3 (-1083 $) "failed") $) 68)) (-1482 (((-3 (-794) "failed") $) 70)) (-1882 (((-3 (-1083 $) "failed") $) 69)) (-3278 (($ (-589 $)) 96) (($ $ $) 95)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 112)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 97)) (-3310 (($ (-589 $)) 94) (($ $ $) 93)) (-2424 (((-394 $) $) 108)) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 105)) (-4007 (((-3 $ "failed") $ $) 88)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 99)) (-3413 (((-710) $) 101)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 102)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 117) (($ $) 87) (($ (-383 (-523))) 82) (($ (-523)) 79) (($ (-383 (-523))) 76)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 91)) (-4108 (((-383 (-523)) $ $) 54)) (-3008 (((-589 $) (-1083 $)) 65) (((-589 $) (-1083 (-383 (-523)))) 64) (((-589 $) (-1083 (-523))) 63) (((-589 $) (-883 $)) 62) (((-589 $) (-883 (-383 (-523)))) 61) (((-589 $) (-883 (-523))) 60)) (-2695 (($ $) 128)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 113)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-4006 (((-108) $ $) 121)) (-3980 (((-108) $ $) 120)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 122)) (-3966 (((-108) $ $) 119)) (-4074 (($ $ $) 118)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 114) (($ $ (-383 (-523))) 71)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ (-383 (-523)) $) 116) (($ $ (-383 (-523))) 115) (($ (-523) $) 78) (($ $ (-523)) 77) (($ (-383 (-523)) $) 75) (($ $ (-383 (-523))) 74))) (((-940) (-129)) (T -940)) -((-1832 (*1 *1 *1) (-4 *1 (-940))) (-3191 (*1 *2 *1) (|partial| -12 (-4 *1 (-940)) (-5 *2 (-794)))) (-3109 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-940)))) (-2480 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-940)))) (-3313 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-852)) (-5 *4 (-794)) (-4 *1 (-940)))) (-3313 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-852)) (-4 *1 (-940)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-940)) (-5 *2 (-589 *1)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-1083 (-383 (-523)))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-1083 (-523))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-940)) (-5 *2 (-589 *1)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-883 (-523))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) (-1832 (*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-710)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-4 *1 (-940)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-940)))) (-1928 (*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-794)))) (-4206 (*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-794)))) (-2562 (*1 *2 *1 *1) (-12 (-4 *1 (-940)) (-5 *2 (-383 (-523)))))) -(-13 (-136) (-784) (-158) (-339) (-387 (-383 (-523))) (-37 (-523)) (-37 (-383 (-523))) (-930) (-10 -8 (-15 -3191 ((-3 (-794) "failed") $)) (-15 -3109 ((-3 (-1083 $) "failed") $)) (-15 -2480 ((-3 (-1083 $) "failed") $)) (-15 -3313 ((-3 $ "failed") (-1083 $) (-852) (-794))) (-15 -3313 ((-3 $ "failed") (-1083 $) (-852))) (-15 -1409 ((-589 $) (-1083 $))) (-15 -1409 ((-589 $) (-1083 (-383 (-523))))) (-15 -1409 ((-589 $) (-1083 (-523)))) (-15 -1409 ((-589 $) (-883 $))) (-15 -1409 ((-589 $) (-883 (-383 (-523))))) (-15 -1409 ((-589 $) (-883 (-523)))) (-15 -1832 ($ $ (-710))) (-15 -1832 ($ $)) (-15 -1832 ($ (-383 (-523)))) (-15 -1832 ($ (-523))) (-15 -1928 ($ $ (-794))) (-15 -4206 ($ $ (-794))) (-15 -2562 ((-383 (-523)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 #1=(-523)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-387 (-383 (-523))) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 #1#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 #1#) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-784) . T) ((-786) . T) ((-851) . T) ((-930) . T) ((-964 (-383 (-523))) . T) ((-964 (-523)) |has| (-383 (-523)) (-964 (-523))) ((-979 #0#) . T) ((-979 #1#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) -((-2978 (((-2 (|:| |ans| |#2|) (|:| -3159 |#2|) (|:| |sol?| (-108))) (-523) |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62))) -(((-941 |#1| |#2|) (-10 -7 (-15 -2978 ((-2 (|:| |ans| |#2|) (|:| -3159 |#2|) (|:| |sol?| (-108))) (-523) |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-27) (-406 |#1|))) (T -941)) -((-2978 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1087)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-589 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2462 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1108) (-27) (-406 *8))) (-4 *8 (-13 (-427) (-786) (-136) (-964 *3) (-585 *3))) (-5 *3 (-523)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3159 *4) (|:| |sol?| (-108)))) (-5 *1 (-941 *8 *4))))) -(-10 -7 (-15 -2978 ((-2 (|:| |ans| |#2|) (|:| -3159 |#2|) (|:| |sol?| (-108))) (-523) |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1717 (((-3 (-589 |#2|) "failed") (-523) |#2| |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47))) -(((-942 |#1| |#2|) (-10 -7 (-15 -1717 ((-3 (-589 |#2|) "failed") (-523) |#2| |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-27) (-406 |#1|))) (T -942)) -((-1717 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1087)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-589 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2462 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1108) (-27) (-406 *8))) (-4 *8 (-13 (-427) (-786) (-136) (-964 *3) (-585 *3))) (-5 *3 (-523)) (-5 *2 (-589 *4)) (-5 *1 (-942 *8 *4))))) -(-10 -7 (-15 -1717 ((-3 (-589 |#2|) "failed") (-523) |#2| |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2367 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -1710 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-523)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-523) (-1 |#2| |#2|)) 30)) (-3561 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |c| (-383 |#2|)) (|:| -4081 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|)) 57)) (-1829 (((-2 (|:| |ans| (-383 |#2|)) (|:| |nosol| (-108))) (-383 |#2|) (-383 |#2|)) 62))) -(((-943 |#1| |#2|) (-10 -7 (-15 -3561 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |c| (-383 |#2|)) (|:| -4081 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|))) (-15 -1829 ((-2 (|:| |ans| (-383 |#2|)) (|:| |nosol| (-108))) (-383 |#2|) (-383 |#2|))) (-15 -2367 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -1710 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-523)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-523) (-1 |#2| |#2|)))) (-13 (-339) (-136) (-964 (-523))) (-1144 |#1|)) (T -943)) -((-2367 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1144 *6)) (-4 *6 (-13 (-339) (-136) (-964 *4))) (-5 *4 (-523)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -1710 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-943 *6 *3)))) (-1829 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| |ans| (-383 *5)) (|:| |nosol| (-108)))) (-5 *1 (-943 *4 *5)) (-5 *3 (-383 *5)))) (-3561 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-383 *6)) (|:| |c| (-383 *6)) (|:| -4081 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-383 *6))))) -(-10 -7 (-15 -3561 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |c| (-383 |#2|)) (|:| -4081 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|))) (-15 -1829 ((-2 (|:| |ans| (-383 |#2|)) (|:| |nosol| (-108))) (-383 |#2|) (-383 |#2|))) (-15 -2367 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -1710 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-523)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-523) (-1 |#2| |#2|)))) -((-2577 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |h| |#2|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| -4081 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|)) 22)) (-1952 (((-3 (-589 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|)) 32))) -(((-944 |#1| |#2|) (-10 -7 (-15 -2577 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |h| |#2|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| -4081 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|))) (-15 -1952 ((-3 (-589 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|)))) (-13 (-339) (-136) (-964 (-523))) (-1144 |#1|)) (T -944)) -((-1952 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1144 *4)) (-5 *2 (-589 (-383 *5))) (-5 *1 (-944 *4 *5)) (-5 *3 (-383 *5)))) (-2577 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-383 *6)) (|:| |h| *6) (|:| |c1| (-383 *6)) (|:| |c2| (-383 *6)) (|:| -4081 *6))) (-5 *1 (-944 *5 *6)) (-5 *3 (-383 *6))))) -(-10 -7 (-15 -2577 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |h| |#2|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| -4081 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|))) (-15 -1952 ((-3 (-589 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|)))) -((-2106 (((-1 |#1|) (-589 (-2 (|:| -1733 |#1|) (|:| -2656 (-523))))) 37)) (-1688 (((-1 |#1|) (-1018 |#1|)) 45)) (-1914 (((-1 |#1|) (-1168 |#1|) (-1168 (-523)) (-523)) 34))) -(((-945 |#1|) (-10 -7 (-15 -1688 ((-1 |#1|) (-1018 |#1|))) (-15 -2106 ((-1 |#1|) (-589 (-2 (|:| -1733 |#1|) (|:| -2656 (-523)))))) (-15 -1914 ((-1 |#1|) (-1168 |#1|) (-1168 (-523)) (-523)))) (-1016)) (T -945)) -((-1914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1168 *6)) (-5 *4 (-1168 (-523))) (-5 *5 (-523)) (-4 *6 (-1016)) (-5 *2 (-1 *6)) (-5 *1 (-945 *6)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -1733 *4) (|:| -2656 (-523))))) (-4 *4 (-1016)) (-5 *2 (-1 *4)) (-5 *1 (-945 *4)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-1018 *4)) (-4 *4 (-1016)) (-5 *2 (-1 *4)) (-5 *1 (-945 *4))))) -(-10 -7 (-15 -1688 ((-1 |#1|) (-1018 |#1|))) (-15 -2106 ((-1 |#1|) (-589 (-2 (|:| -1733 |#1|) (|:| -2656 (-523)))))) (-15 -1914 ((-1 |#1|) (-1168 |#1|) (-1168 (-523)) (-523)))) -((-1640 (((-710) (-312 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1640 ((-710) (-312 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|) (-13 (-344) (-339))) (T -946)) -((-1640 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-312 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-339)) (-4 *7 (-1144 *6)) (-4 *4 (-1144 (-383 *7))) (-4 *8 (-318 *6 *7 *4)) (-4 *9 (-13 (-344) (-339))) (-5 *2 (-710)) (-5 *1 (-946 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -1640 ((-710) (-312 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-3747 (((-3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) "failed") |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) 31) (((-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523))) 28)) (-4113 (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523))) 33) (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-383 (-523))) 29) (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) 32) (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1|) 27)) (-1240 (((-589 (-383 (-523))) (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) 19)) (-4210 (((-383 (-523)) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) 16))) -(((-947 |#1|) (-10 -7 (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1|)) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-383 (-523)))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) "failed") |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -4210 ((-383 (-523)) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -1240 ((-589 (-383 (-523))) (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))))) (-1144 (-523))) (T -947)) -((-1240 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *2 (-589 (-383 (-523)))) (-5 *1 (-947 *4)) (-4 *4 (-1144 (-523))))) (-4210 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) (-5 *2 (-383 (-523))) (-5 *1 (-947 *4)) (-4 *4 (-1144 (-523))))) (-3747 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))))) (-3747 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) (-5 *4 (-383 (-523))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))))) (-4113 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-383 (-523))) (-5 *2 (-589 (-2 (|:| -3149 *5) (|:| -3159 *5)))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))) (-5 *4 (-2 (|:| -3149 *5) (|:| -3159 *5))))) (-4113 (*1 *2 *3 *4) (-12 (-5 *2 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))) (-5 *4 (-383 (-523))))) (-4113 (*1 *2 *3 *4) (-12 (-5 *2 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))) (-5 *4 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) (-4113 (*1 *2 *3) (-12 (-5 *2 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523)))))) -(-10 -7 (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1|)) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-383 (-523)))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) "failed") |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -4210 ((-383 (-523)) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -1240 ((-589 (-383 (-523))) (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))))) -((-3747 (((-3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) "failed") |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) 35) (((-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523))) 32)) (-4113 (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523))) 30) (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-383 (-523))) 26) (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) 28) (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1|) 24))) -(((-948 |#1|) (-10 -7 (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1|)) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-383 (-523)))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) "failed") |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) (-1144 (-383 (-523)))) (T -948)) -((-3747 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) (-5 *1 (-948 *3)) (-4 *3 (-1144 (-383 (-523)))))) (-3747 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) (-5 *4 (-383 (-523))) (-5 *1 (-948 *3)) (-4 *3 (-1144 *4)))) (-4113 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-383 (-523))) (-5 *2 (-589 (-2 (|:| -3149 *5) (|:| -3159 *5)))) (-5 *1 (-948 *3)) (-4 *3 (-1144 *5)) (-5 *4 (-2 (|:| -3149 *5) (|:| -3159 *5))))) (-4113 (*1 *2 *3 *4) (-12 (-5 *4 (-383 (-523))) (-5 *2 (-589 (-2 (|:| -3149 *4) (|:| -3159 *4)))) (-5 *1 (-948 *3)) (-4 *3 (-1144 *4)))) (-4113 (*1 *2 *3 *4) (-12 (-5 *2 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *1 (-948 *3)) (-4 *3 (-1144 (-383 (-523)))) (-5 *4 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) (-4113 (*1 *2 *3) (-12 (-5 *2 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *1 (-948 *3)) (-4 *3 (-1144 (-383 (-523))))))) -(-10 -7 (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1|)) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-383 (-523)))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) "failed") |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) -((-3663 (((-203) $) 6) (((-355) $) 9))) +((-2437 (*1 *1 *1) (-4 *1 (-940))) (-1482 (*1 *2 *1) (|partial| -12 (-4 *1 (-940)) (-5 *2 (-794)))) (-1882 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-940)))) (-3788 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-940)))) (-1264 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-852)) (-5 *4 (-794)) (-4 *1 (-940)))) (-1264 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-852)) (-4 *1 (-940)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-940)) (-5 *2 (-589 *1)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-1083 (-383 (-523)))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-1083 (-523))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-940)) (-5 *2 (-589 *1)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-883 (-523))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) (-2437 (*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-710)))) (-2437 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-4 *1 (-940)))) (-2437 (*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-940)))) (-1231 (*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-794)))) (-4178 (*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-794)))) (-4108 (*1 *2 *1 *1) (-12 (-4 *1 (-940)) (-5 *2 (-383 (-523)))))) +(-13 (-136) (-784) (-158) (-339) (-387 (-383 (-523))) (-37 (-523)) (-37 (-383 (-523))) (-930) (-10 -8 (-15 -1482 ((-3 (-794) "failed") $)) (-15 -1882 ((-3 (-1083 $) "failed") $)) (-15 -3788 ((-3 (-1083 $) "failed") $)) (-15 -1264 ((-3 $ "failed") (-1083 $) (-852) (-794))) (-15 -1264 ((-3 $ "failed") (-1083 $) (-852))) (-15 -3008 ((-589 $) (-1083 $))) (-15 -3008 ((-589 $) (-1083 (-383 (-523))))) (-15 -3008 ((-589 $) (-1083 (-523)))) (-15 -3008 ((-589 $) (-883 $))) (-15 -3008 ((-589 $) (-883 (-383 (-523))))) (-15 -3008 ((-589 $) (-883 (-523)))) (-15 -2437 ($ $ (-710))) (-15 -2437 ($ $)) (-15 -2437 ($ (-383 (-523)))) (-15 -2437 ($ (-523))) (-15 -1231 ($ $ (-794))) (-15 -4178 ($ $ (-794))) (-15 -4108 ((-383 (-523)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 #1=(-523)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-387 (-383 (-523))) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 #1#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 #1#) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-784) . T) ((-786) . T) ((-851) . T) ((-930) . T) ((-964 (-383 (-523))) . T) ((-964 (-523)) |has| (-383 (-523)) (-964 (-523))) ((-979 #0#) . T) ((-979 #1#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1127) . T)) +((-3025 (((-2 (|:| |ans| |#2|) (|:| -3855 |#2|) (|:| |sol?| (-108))) (-523) |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62))) +(((-941 |#1| |#2|) (-10 -7 (-15 -3025 ((-2 (|:| |ans| |#2|) (|:| -3855 |#2|) (|:| |sol?| (-108))) (-523) |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1109) (-27) (-406 |#1|))) (T -941)) +((-3025 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1087)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-589 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1825 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1109) (-27) (-406 *8))) (-4 *8 (-13 (-427) (-786) (-136) (-964 *3) (-585 *3))) (-5 *3 (-523)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3855 *4) (|:| |sol?| (-108)))) (-5 *1 (-941 *8 *4))))) +(-10 -7 (-15 -3025 ((-2 (|:| |ans| |#2|) (|:| -3855 |#2|) (|:| |sol?| (-108))) (-523) |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2924 (((-3 (-589 |#2|) "failed") (-523) |#2| |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47))) +(((-942 |#1| |#2|) (-10 -7 (-15 -2924 ((-3 (-589 |#2|) "failed") (-523) |#2| |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1109) (-27) (-406 |#1|))) (T -942)) +((-2924 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1087)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-589 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1825 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1109) (-27) (-406 *8))) (-4 *8 (-13 (-427) (-786) (-136) (-964 *3) (-585 *3))) (-5 *3 (-523)) (-5 *2 (-589 *4)) (-5 *1 (-942 *8 *4))))) +(-10 -7 (-15 -2924 ((-3 (-589 |#2|) "failed") (-523) |#2| |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -1825 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2103 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -2849 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-523)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-523) (-1 |#2| |#2|)) 30)) (-1857 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |c| (-383 |#2|)) (|:| -1219 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|)) 58)) (-1547 (((-2 (|:| |ans| (-383 |#2|)) (|:| |nosol| (-108))) (-383 |#2|) (-383 |#2|)) 63))) +(((-943 |#1| |#2|) (-10 -7 (-15 -1857 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |c| (-383 |#2|)) (|:| -1219 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|))) (-15 -1547 ((-2 (|:| |ans| (-383 |#2|)) (|:| |nosol| (-108))) (-383 |#2|) (-383 |#2|))) (-15 -2103 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -2849 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-523)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-523) (-1 |#2| |#2|)))) (-13 (-339) (-136) (-964 (-523))) (-1145 |#1|)) (T -943)) +((-2103 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1145 *6)) (-4 *6 (-13 (-339) (-136) (-964 *4))) (-5 *4 (-523)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -2849 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-943 *6 *3)))) (-1547 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| |ans| (-383 *5)) (|:| |nosol| (-108)))) (-5 *1 (-943 *4 *5)) (-5 *3 (-383 *5)))) (-1857 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-383 *6)) (|:| |c| (-383 *6)) (|:| -1219 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-383 *6))))) +(-10 -7 (-15 -1857 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |c| (-383 |#2|)) (|:| -1219 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|))) (-15 -1547 ((-2 (|:| |ans| (-383 |#2|)) (|:| |nosol| (-108))) (-383 |#2|) (-383 |#2|))) (-15 -2103 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -2849 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-523)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-523) (-1 |#2| |#2|)))) +((-3469 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |h| |#2|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| -1219 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|)) 22)) (-3216 (((-3 (-589 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|)) 32))) +(((-944 |#1| |#2|) (-10 -7 (-15 -3469 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |h| |#2|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| -1219 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|))) (-15 -3216 ((-3 (-589 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|)))) (-13 (-339) (-136) (-964 (-523))) (-1145 |#1|)) (T -944)) +((-3216 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1145 *4)) (-5 *2 (-589 (-383 *5))) (-5 *1 (-944 *4 *5)) (-5 *3 (-383 *5)))) (-3469 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-383 *6)) (|:| |h| *6) (|:| |c1| (-383 *6)) (|:| |c2| (-383 *6)) (|:| -1219 *6))) (-5 *1 (-944 *5 *6)) (-5 *3 (-383 *6))))) +(-10 -7 (-15 -3469 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |h| |#2|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| -1219 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|))) (-15 -3216 ((-3 (-589 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|)))) +((-2422 (((-1 |#1|) (-589 (-2 (|:| -3370 |#1|) (|:| -3038 (-523))))) 37)) (-2696 (((-1 |#1|) (-1018 |#1|)) 45)) (-4116 (((-1 |#1|) (-1169 |#1|) (-1169 (-523)) (-523)) 34))) +(((-945 |#1|) (-10 -7 (-15 -2696 ((-1 |#1|) (-1018 |#1|))) (-15 -2422 ((-1 |#1|) (-589 (-2 (|:| -3370 |#1|) (|:| -3038 (-523)))))) (-15 -4116 ((-1 |#1|) (-1169 |#1|) (-1169 (-523)) (-523)))) (-1016)) (T -945)) +((-4116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1169 *6)) (-5 *4 (-1169 (-523))) (-5 *5 (-523)) (-4 *6 (-1016)) (-5 *2 (-1 *6)) (-5 *1 (-945 *6)))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -3370 *4) (|:| -3038 (-523))))) (-4 *4 (-1016)) (-5 *2 (-1 *4)) (-5 *1 (-945 *4)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-1018 *4)) (-4 *4 (-1016)) (-5 *2 (-1 *4)) (-5 *1 (-945 *4))))) +(-10 -7 (-15 -2696 ((-1 |#1|) (-1018 |#1|))) (-15 -2422 ((-1 |#1|) (-589 (-2 (|:| -3370 |#1|) (|:| -3038 (-523)))))) (-15 -4116 ((-1 |#1|) (-1169 |#1|) (-1169 (-523)) (-523)))) +((-3437 (((-710) (-312 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3437 ((-710) (-312 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-339) (-1145 |#1|) (-1145 (-383 |#2|)) (-318 |#1| |#2| |#3|) (-13 (-344) (-339))) (T -946)) +((-3437 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-312 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-339)) (-4 *7 (-1145 *6)) (-4 *4 (-1145 (-383 *7))) (-4 *8 (-318 *6 *7 *4)) (-4 *9 (-13 (-344) (-339))) (-5 *2 (-710)) (-5 *1 (-946 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -3437 ((-710) (-312 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2941 (((-3 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) "failed") |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) 31) (((-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-383 (-523))) 28)) (-2047 (((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-383 (-523))) 33) (((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-383 (-523))) 29) (((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) 32) (((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1|) 27)) (-3695 (((-589 (-383 (-523))) (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) 19)) (-4228 (((-383 (-523)) (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) 16))) +(((-947 |#1|) (-10 -7 (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1|)) (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-383 (-523)))) (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-383 (-523)))) (-15 -2941 ((-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-383 (-523)))) (-15 -2941 ((-3 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) "failed") |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-15 -4228 ((-383 (-523)) (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-15 -3695 ((-589 (-383 (-523))) (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))))) (-1145 (-523))) (T -947)) +((-3695 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-5 *2 (-589 (-383 (-523)))) (-5 *1 (-947 *4)) (-4 *4 (-1145 (-523))))) (-4228 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) (-5 *2 (-383 (-523))) (-5 *1 (-947 *4)) (-4 *4 (-1145 (-523))))) (-2941 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) (-5 *1 (-947 *3)) (-4 *3 (-1145 (-523))))) (-2941 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) (-5 *4 (-383 (-523))) (-5 *1 (-947 *3)) (-4 *3 (-1145 (-523))))) (-2047 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-383 (-523))) (-5 *2 (-589 (-2 (|:| -3844 *5) (|:| -3855 *5)))) (-5 *1 (-947 *3)) (-4 *3 (-1145 (-523))) (-5 *4 (-2 (|:| -3844 *5) (|:| -3855 *5))))) (-2047 (*1 *2 *3 *4) (-12 (-5 *2 (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-5 *1 (-947 *3)) (-4 *3 (-1145 (-523))) (-5 *4 (-383 (-523))))) (-2047 (*1 *2 *3 *4) (-12 (-5 *2 (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-5 *1 (-947 *3)) (-4 *3 (-1145 (-523))) (-5 *4 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))))) (-2047 (*1 *2 *3) (-12 (-5 *2 (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-5 *1 (-947 *3)) (-4 *3 (-1145 (-523)))))) +(-10 -7 (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1|)) (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-383 (-523)))) (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-383 (-523)))) (-15 -2941 ((-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-383 (-523)))) (-15 -2941 ((-3 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) "failed") |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-15 -4228 ((-383 (-523)) (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-15 -3695 ((-589 (-383 (-523))) (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))))) +((-2941 (((-3 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) "failed") |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) 35) (((-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-383 (-523))) 32)) (-2047 (((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-383 (-523))) 30) (((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-383 (-523))) 26) (((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) 28) (((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1|) 24))) +(((-948 |#1|) (-10 -7 (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1|)) (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-383 (-523)))) (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-383 (-523)))) (-15 -2941 ((-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-383 (-523)))) (-15 -2941 ((-3 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) "failed") |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))))) (-1145 (-383 (-523)))) (T -948)) +((-2941 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) (-5 *1 (-948 *3)) (-4 *3 (-1145 (-383 (-523)))))) (-2941 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) (-5 *4 (-383 (-523))) (-5 *1 (-948 *3)) (-4 *3 (-1145 *4)))) (-2047 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-383 (-523))) (-5 *2 (-589 (-2 (|:| -3844 *5) (|:| -3855 *5)))) (-5 *1 (-948 *3)) (-4 *3 (-1145 *5)) (-5 *4 (-2 (|:| -3844 *5) (|:| -3855 *5))))) (-2047 (*1 *2 *3 *4) (-12 (-5 *4 (-383 (-523))) (-5 *2 (-589 (-2 (|:| -3844 *4) (|:| -3855 *4)))) (-5 *1 (-948 *3)) (-4 *3 (-1145 *4)))) (-2047 (*1 *2 *3 *4) (-12 (-5 *2 (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-5 *1 (-948 *3)) (-4 *3 (-1145 (-383 (-523)))) (-5 *4 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))))) (-2047 (*1 *2 *3) (-12 (-5 *2 (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-5 *1 (-948 *3)) (-4 *3 (-1145 (-383 (-523))))))) +(-10 -7 (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1|)) (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-383 (-523)))) (-15 -2047 ((-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-383 (-523)))) (-15 -2941 ((-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-383 (-523)))) (-15 -2941 ((-3 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) "failed") |#1| (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))) (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))))) +((-1400 (((-203) $) 6) (((-355) $) 9))) (((-949) (-129)) (T -949)) NIL (-13 (-564 (-203)) (-564 (-355))) (((-564 (-203)) . T) ((-564 (-355)) . T)) -((-1940 (((-589 (-355)) (-883 (-523)) (-355)) 27) (((-589 (-355)) (-883 (-383 (-523))) (-355)) 26)) (-2897 (((-589 (-589 (-355))) (-589 (-883 (-523))) (-589 (-1087)) (-355)) 36))) -(((-950) (-10 -7 (-15 -1940 ((-589 (-355)) (-883 (-383 (-523))) (-355))) (-15 -1940 ((-589 (-355)) (-883 (-523)) (-355))) (-15 -2897 ((-589 (-589 (-355))) (-589 (-883 (-523))) (-589 (-1087)) (-355))))) (T -950)) -((-2897 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 (-355)))) (-5 *1 (-950)) (-5 *5 (-355)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-523))) (-5 *2 (-589 (-355))) (-5 *1 (-950)) (-5 *4 (-355)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *2 (-589 (-355))) (-5 *1 (-950)) (-5 *4 (-355))))) -(-10 -7 (-15 -1940 ((-589 (-355)) (-883 (-383 (-523))) (-355))) (-15 -1940 ((-589 (-355)) (-883 (-523)) (-355))) (-15 -2897 ((-589 (-589 (-355))) (-589 (-883 (-523))) (-589 (-1087)) (-355)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 70)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1832 (($ $) NIL) (($ $ (-710)) NIL) (($ (-383 (-523))) NIL) (($ (-523)) NIL)) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) 65)) (-2518 (($) NIL T CONST)) (-3313 (((-3 $ "failed") (-1083 $) (-852) (-794)) NIL) (((-3 $ "failed") (-1083 $) (-852)) 49)) (-3517 (((-3 (-383 (-523)) "failed") $) NIL (|has| (-383 (-523)) (-964 (-383 (-523))))) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-523) "failed") $) NIL (-3262 (|has| (-383 (-523)) (-964 (-523))) (|has| |#1| (-964 (-523)))))) (-3474 (((-383 (-523)) $) 14 (|has| (-383 (-523)) (-964 (-383 (-523))))) (((-383 (-523)) $) 14) ((|#1| $) 109) (((-523) $) NIL (-3262 (|has| (-383 (-523)) (-964 (-523))) (|has| |#1| (-964 (-523)))))) (-1928 (($ $ (-794)) 40)) (-4206 (($ $ (-794)) 41)) (-3796 (($ $ $) NIL)) (-3877 (((-383 (-523)) $ $) 18)) (-2121 (((-3 $ "failed") $) 83)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) 60)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL)) (-4114 (((-108) $) 63)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2480 (((-3 (-1083 $) "failed") $) 78)) (-3191 (((-3 (-794) "failed") $) 77)) (-3109 (((-3 (-1083 $) "failed") $) 75)) (-3054 (((-3 (-983 $ (-1083 $)) "failed") $) 73)) (-3244 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 84)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1458 (((-794) $) 82) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ $) 57) (($ (-383 (-523))) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 111)) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL)) (-2562 (((-383 (-523)) $ $) 24)) (-1409 (((-589 $) (-1083 $)) 55) (((-589 $) (-1083 (-383 (-523)))) NIL) (((-589 $) (-1083 (-523))) NIL) (((-589 $) (-883 $)) NIL) (((-589 $) (-883 (-383 (-523)))) NIL) (((-589 $) (-883 (-523))) NIL)) (-2168 (($ (-983 $ (-1083 $)) (-794)) 39)) (-2619 (($ $) 19)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 28 T CONST)) (-2767 (($) 34 T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 71)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 21)) (-4098 (($ $ $) 32)) (-4087 (($ $) 33) (($ $ $) 69)) (-4075 (($ $ $) 104)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL) (($ $ (-383 (-523))) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 92) (($ $ $) 97) (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ (-523) $) 92) (($ $ (-523)) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL))) -(((-951 |#1|) (-13 (-940) (-387 |#1|) (-37 |#1|) (-10 -8 (-15 -2168 ($ (-983 $ (-1083 $)) (-794))) (-15 -3054 ((-3 (-983 $ (-1083 $)) "failed") $)) (-15 -3877 ((-383 (-523)) $ $)))) (-13 (-784) (-339) (-949))) (T -951)) -((-2168 (*1 *1 *2 *3) (-12 (-5 *2 (-983 (-951 *4) (-1083 (-951 *4)))) (-5 *3 (-794)) (-5 *1 (-951 *4)) (-4 *4 (-13 (-784) (-339) (-949))))) (-3054 (*1 *2 *1) (|partial| -12 (-5 *2 (-983 (-951 *3) (-1083 (-951 *3)))) (-5 *1 (-951 *3)) (-4 *3 (-13 (-784) (-339) (-949))))) (-3877 (*1 *2 *1 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-951 *3)) (-4 *3 (-13 (-784) (-339) (-949)))))) -(-13 (-940) (-387 |#1|) (-37 |#1|) (-10 -8 (-15 -2168 ($ (-983 $ (-1083 $)) (-794))) (-15 -3054 ((-3 (-983 $ (-1083 $)) "failed") $)) (-15 -3877 ((-383 (-523)) $ $)))) -((-2598 (((-2 (|:| -1710 |#2|) (|:| -3013 (-589 |#1|))) |#2| (-589 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-952 |#1| |#2|) (-10 -7 (-15 -2598 (|#2| |#2| |#1|)) (-15 -2598 ((-2 (|:| -1710 |#2|) (|:| -3013 (-589 |#1|))) |#2| (-589 |#1|)))) (-339) (-599 |#1|)) (T -952)) -((-2598 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-5 *2 (-2 (|:| -1710 *3) (|:| -3013 (-589 *5)))) (-5 *1 (-952 *5 *3)) (-5 *4 (-589 *5)) (-4 *3 (-599 *5)))) (-2598 (*1 *2 *2 *3) (-12 (-4 *3 (-339)) (-5 *1 (-952 *3 *2)) (-4 *2 (-599 *3))))) -(-10 -7 (-15 -2598 (|#2| |#2| |#1|)) (-15 -2598 ((-2 (|:| -1710 |#2|) (|:| -3013 (-589 |#1|))) |#2| (-589 |#1|)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2602 ((|#1| $ |#1|) 14)) (-1641 ((|#1| $ |#1|) 12)) (-4147 (($ |#1|) 10)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3223 ((|#1| $) 11)) (-3962 ((|#1| $) 13)) (-1458 (((-794) $) 21 (|has| |#1| (-1016)))) (-3983 (((-108) $ $) 9))) -(((-953 |#1|) (-13 (-1122) (-10 -8 (-15 -4147 ($ |#1|)) (-15 -3223 (|#1| $)) (-15 -1641 (|#1| $ |#1|)) (-15 -3962 (|#1| $)) (-15 -2602 (|#1| $ |#1|)) (-15 -3983 ((-108) $ $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) (-1122)) (T -953)) -((-4147 (*1 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) (-3223 (*1 *2 *1) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) (-1641 (*1 *2 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) (-3962 (*1 *2 *1) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) (-2602 (*1 *2 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) (-3983 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-953 *3)) (-4 *3 (-1122))))) -(-13 (-1122) (-10 -8 (-15 -4147 ($ |#1|)) (-15 -3223 (|#1| $)) (-15 -1641 (|#1| $ |#1|)) (-15 -3962 (|#1| $)) (-15 -2602 (|#1| $ |#1|)) (-15 -3983 ((-108) $ $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) -((-3924 (((-108) $ $) NIL)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) NIL)) (-3846 (((-589 $) (-589 |#4|)) 105) (((-589 $) (-589 |#4|) (-108)) 106) (((-589 $) (-589 |#4|) (-108) (-108)) 104) (((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108)) 107)) (-1957 (((-589 |#3|) $) NIL)) (-2100 (((-108) $) NIL)) (-2376 (((-108) $) NIL (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2308 ((|#4| |#4| $) NIL)) (-2291 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| $) 99)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-3724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 54)) (-2518 (($) NIL T CONST)) (-3595 (((-108) $) 26 (|has| |#1| (-515)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3225 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3393 (((-108) $) NIL (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3956 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) NIL)) (-3474 (($ (-589 |#4|)) NIL)) (-1751 (((-3 $ "failed") $) 39)) (-4014 ((|#4| |#4| $) 57)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2557 (($ |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2636 ((|#4| |#4| $) NIL)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) NIL)) (-2005 (((-108) |#4| $) NIL)) (-3785 (((-108) |#4| $) NIL)) (-1944 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3591 (((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108)) 119)) (-1666 (((-589 |#4|) $) 16 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2907 ((|#3| $) 33)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#4|) $) 17 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2852 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 21)) (-4055 (((-589 |#3|) $) NIL)) (-1357 (((-108) |#3| $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-3246 (((-3 |#4| (-589 $)) |#4| |#4| $) NIL)) (-1611 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| |#4| $) 97)) (-2579 (((-3 |#4| "failed") $) 37)) (-2668 (((-589 $) |#4| $) 80)) (-3320 (((-3 (-108) (-589 $)) |#4| $) NIL)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-1309 (((-589 $) |#4| $) 102) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) 103) (((-589 $) |#4| (-589 $)) NIL)) (-3085 (((-589 $) (-589 |#4|) (-108) (-108) (-108)) 114)) (-1770 (($ |#4| $) 70) (($ (-589 |#4|) $) 71) (((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-2404 (((-589 |#4|) $) NIL)) (-2112 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2648 ((|#4| |#4| $) NIL)) (-2391 (((-108) $ $) NIL)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1398 ((|#4| |#4| $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-3 |#4| "failed") $) 35)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2890 (((-3 $ "failed") $ |#4|) 48)) (-4097 (($ $ |#4|) NIL) (((-589 $) |#4| $) 82) (((-589 $) |#4| (-589 $)) NIL) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) 77)) (-1327 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 15)) (-3988 (($) 13)) (-2299 (((-710) $) NIL)) (-2792 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) 12)) (-3663 (((-499) $) NIL (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 20)) (-2621 (($ $ |#3|) 42)) (-2624 (($ $ |#3|) 44)) (-1824 (($ $) NIL)) (-3076 (($ $ |#3|) NIL)) (-1458 (((-794) $) 31) (((-589 |#4|) $) 40)) (-1395 (((-710) $) NIL (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) NIL)) (-3910 (((-589 $) |#4| $) 79) (((-589 $) |#4| (-589 $)) NIL) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) NIL)) (-2096 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) NIL)) (-4062 (((-108) |#4| $) NIL)) (-2153 (((-108) |#3| $) 53)) (-3983 (((-108) $ $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-954 |#1| |#2| |#3| |#4|) (-13 (-992 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1770 ((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108))) (-15 -3085 ((-589 $) (-589 |#4|) (-108) (-108) (-108))) (-15 -3591 ((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108))))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -954)) -((-1770 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-954 *5 *6 *7 *3))) (-5 *1 (-954 *5 *6 *7 *3)) (-4 *3 (-987 *5 *6 *7)))) (-3846 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) (-3846 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) (-3085 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) (-3591 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-589 *8)) (|:| |towers| (-589 (-954 *5 *6 *7 *8))))) (-5 *1 (-954 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) -(-13 (-992 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1770 ((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108))) (-15 -3085 ((-589 $) (-589 |#4|) (-108) (-108) (-108))) (-15 -3591 ((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108))))) -((-3557 (((-589 (-629 |#1|)) (-589 (-629 |#1|))) 57) (((-629 |#1|) (-629 |#1|)) 56) (((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-589 (-629 |#1|))) 55) (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 52)) (-1701 (((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852)) 51) (((-629 |#1|) (-629 |#1|) (-852)) 50)) (-3304 (((-589 (-629 (-523))) (-589 (-589 (-523)))) 67) (((-589 (-629 (-523))) (-589 (-836 (-523))) (-523)) 66) (((-629 (-523)) (-589 (-523))) 63) (((-629 (-523)) (-836 (-523)) (-523)) 62)) (-1307 (((-629 (-883 |#1|)) (-710)) 80)) (-1949 (((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852)) 36 (|has| |#1| (-6 (-4246 "*")))) (((-629 |#1|) (-629 |#1|) (-852)) 34 (|has| |#1| (-6 (-4246 "*")))))) -(((-955 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4246 "*"))) (-15 -1949 ((-629 |#1|) (-629 |#1|) (-852))) |%noBranch|) (IF (|has| |#1| (-6 (-4246 "*"))) (-15 -1949 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852))) |%noBranch|) (-15 -1307 ((-629 (-883 |#1|)) (-710))) (-15 -1701 ((-629 |#1|) (-629 |#1|) (-852))) (-15 -1701 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852))) (-15 -3557 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3557 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -3557 ((-629 |#1|) (-629 |#1|))) (-15 -3557 ((-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -3304 ((-629 (-523)) (-836 (-523)) (-523))) (-15 -3304 ((-629 (-523)) (-589 (-523)))) (-15 -3304 ((-589 (-629 (-523))) (-589 (-836 (-523))) (-523))) (-15 -3304 ((-589 (-629 (-523))) (-589 (-589 (-523)))))) (-973)) (T -955)) -((-3304 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-523)))) (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-955 *4)) (-4 *4 (-973)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-836 (-523)))) (-5 *4 (-523)) (-5 *2 (-589 (-629 *4))) (-5 *1 (-955 *5)) (-4 *5 (-973)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-955 *4)) (-4 *4 (-973)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-836 (-523))) (-5 *4 (-523)) (-5 *2 (-629 *4)) (-5 *1 (-955 *5)) (-4 *5 (-973)))) (-3557 (*1 *2 *2) (-12 (-5 *2 (-589 (-629 *3))) (-4 *3 (-973)) (-5 *1 (-955 *3)))) (-3557 (*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-955 *3)))) (-3557 (*1 *2 *2 *2) (-12 (-5 *2 (-589 (-629 *3))) (-4 *3 (-973)) (-5 *1 (-955 *3)))) (-3557 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-955 *3)))) (-1701 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-629 *4))) (-5 *3 (-852)) (-4 *4 (-973)) (-5 *1 (-955 *4)))) (-1701 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-852)) (-4 *4 (-973)) (-5 *1 (-955 *4)))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-629 (-883 *4))) (-5 *1 (-955 *4)) (-4 *4 (-973)))) (-1949 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-629 *4))) (-5 *3 (-852)) (|has| *4 (-6 (-4246 "*"))) (-4 *4 (-973)) (-5 *1 (-955 *4)))) (-1949 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-852)) (|has| *4 (-6 (-4246 "*"))) (-4 *4 (-973)) (-5 *1 (-955 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4246 "*"))) (-15 -1949 ((-629 |#1|) (-629 |#1|) (-852))) |%noBranch|) (IF (|has| |#1| (-6 (-4246 "*"))) (-15 -1949 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852))) |%noBranch|) (-15 -1307 ((-629 (-883 |#1|)) (-710))) (-15 -1701 ((-629 |#1|) (-629 |#1|) (-852))) (-15 -1701 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852))) (-15 -3557 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3557 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -3557 ((-629 |#1|) (-629 |#1|))) (-15 -3557 ((-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -3304 ((-629 (-523)) (-836 (-523)) (-523))) (-15 -3304 ((-629 (-523)) (-589 (-523)))) (-15 -3304 ((-589 (-629 (-523))) (-589 (-836 (-523))) (-523))) (-15 -3304 ((-589 (-629 (-523))) (-589 (-589 (-523)))))) -((-1851 (((-629 |#1|) (-589 (-629 |#1|)) (-1168 |#1|)) 50 (|has| |#1| (-284)))) (-2063 (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1168 (-1168 |#1|))) 73 (|has| |#1| (-339))) (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1168 |#1|)) 71 (|has| |#1| (-339)))) (-3080 (((-1168 |#1|) (-589 (-1168 |#1|)) (-523)) 75 (-12 (|has| |#1| (-339)) (|has| |#1| (-344))))) (-1675 (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-852)) 80 (-12 (|has| |#1| (-339)) (|has| |#1| (-344)))) (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108)) 78 (-12 (|has| |#1| (-339)) (|has| |#1| (-344)))) (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|))) 77 (-12 (|has| |#1| (-339)) (|has| |#1| (-344)))) (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108) (-523) (-523)) 76 (-12 (|has| |#1| (-339)) (|has| |#1| (-344))))) (-2169 (((-108) (-589 (-629 |#1|))) 69 (|has| |#1| (-339))) (((-108) (-589 (-629 |#1|)) (-523)) 68 (|has| |#1| (-339)))) (-3618 (((-1168 (-1168 |#1|)) (-589 (-629 |#1|)) (-1168 |#1|)) 48 (|has| |#1| (-284)))) (-1529 (((-629 |#1|) (-589 (-629 |#1|)) (-629 |#1|)) 33)) (-3601 (((-629 |#1|) (-1168 (-1168 |#1|))) 30)) (-2717 (((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-523)) 64 (|has| |#1| (-339))) (((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|))) 63 (|has| |#1| (-339))) (((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-108) (-523)) 62 (|has| |#1| (-339))))) -(((-956 |#1|) (-10 -7 (-15 -3601 ((-629 |#1|) (-1168 (-1168 |#1|)))) (-15 -1529 ((-629 |#1|) (-589 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-284)) (PROGN (-15 -3618 ((-1168 (-1168 |#1|)) (-589 (-629 |#1|)) (-1168 |#1|))) (-15 -1851 ((-629 |#1|) (-589 (-629 |#1|)) (-1168 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -2717 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-108) (-523))) (-15 -2717 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -2717 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-523))) (-15 -2169 ((-108) (-589 (-629 |#1|)) (-523))) (-15 -2169 ((-108) (-589 (-629 |#1|)))) (-15 -2063 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1168 |#1|))) (-15 -2063 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1168 (-1168 |#1|))))) |%noBranch|) (IF (|has| |#1| (-344)) (IF (|has| |#1| (-339)) (PROGN (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108) (-523) (-523))) (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)))) (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108))) (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-852))) (-15 -3080 ((-1168 |#1|) (-589 (-1168 |#1|)) (-523)))) |%noBranch|) |%noBranch|)) (-973)) (T -956)) -((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1168 *5))) (-5 *4 (-523)) (-5 *2 (-1168 *5)) (-5 *1 (-956 *5)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)))) (-1675 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)) (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) (-5 *3 (-589 (-629 *5))))) (-1675 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)) (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) (-5 *3 (-589 (-629 *5))))) (-1675 (*1 *2 *3) (-12 (-4 *4 (-339)) (-4 *4 (-344)) (-4 *4 (-973)) (-5 *2 (-589 (-589 (-629 *4)))) (-5 *1 (-956 *4)) (-5 *3 (-589 (-629 *4))))) (-1675 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-523)) (-4 *6 (-339)) (-4 *6 (-344)) (-4 *6 (-973)) (-5 *2 (-589 (-589 (-629 *6)))) (-5 *1 (-956 *6)) (-5 *3 (-589 (-629 *6))))) (-2063 (*1 *2 *3 *4) (-12 (-5 *4 (-1168 (-1168 *5))) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) (-5 *3 (-589 (-629 *5))))) (-2063 (*1 *2 *3 *4) (-12 (-5 *4 (-1168 *5)) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) (-5 *3 (-589 (-629 *5))))) (-2169 (*1 *2 *3) (-12 (-5 *3 (-589 (-629 *4))) (-4 *4 (-339)) (-4 *4 (-973)) (-5 *2 (-108)) (-5 *1 (-956 *4)))) (-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-523)) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-108)) (-5 *1 (-956 *5)))) (-2717 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-523)) (-5 *2 (-629 *5)) (-5 *1 (-956 *5)) (-4 *5 (-339)) (-4 *5 (-973)))) (-2717 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-629 *4))) (-5 *2 (-629 *4)) (-5 *1 (-956 *4)) (-4 *4 (-339)) (-4 *4 (-973)))) (-2717 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-589 (-629 *6))) (-5 *4 (-108)) (-5 *5 (-523)) (-5 *2 (-629 *6)) (-5 *1 (-956 *6)) (-4 *6 (-339)) (-4 *6 (-973)))) (-1851 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-1168 *5)) (-4 *5 (-284)) (-4 *5 (-973)) (-5 *2 (-629 *5)) (-5 *1 (-956 *5)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-629 *5))) (-4 *5 (-284)) (-4 *5 (-973)) (-5 *2 (-1168 (-1168 *5))) (-5 *1 (-956 *5)) (-5 *4 (-1168 *5)))) (-1529 (*1 *2 *3 *2) (-12 (-5 *3 (-589 (-629 *4))) (-5 *2 (-629 *4)) (-4 *4 (-973)) (-5 *1 (-956 *4)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-1168 (-1168 *4))) (-4 *4 (-973)) (-5 *2 (-629 *4)) (-5 *1 (-956 *4))))) -(-10 -7 (-15 -3601 ((-629 |#1|) (-1168 (-1168 |#1|)))) (-15 -1529 ((-629 |#1|) (-589 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-284)) (PROGN (-15 -3618 ((-1168 (-1168 |#1|)) (-589 (-629 |#1|)) (-1168 |#1|))) (-15 -1851 ((-629 |#1|) (-589 (-629 |#1|)) (-1168 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -2717 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-108) (-523))) (-15 -2717 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -2717 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-523))) (-15 -2169 ((-108) (-589 (-629 |#1|)) (-523))) (-15 -2169 ((-108) (-589 (-629 |#1|)))) (-15 -2063 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1168 |#1|))) (-15 -2063 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1168 (-1168 |#1|))))) |%noBranch|) (IF (|has| |#1| (-344)) (IF (|has| |#1| (-339)) (PROGN (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108) (-523) (-523))) (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)))) (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108))) (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-852))) (-15 -3080 ((-1168 |#1|) (-589 (-1168 |#1|)) (-523)))) |%noBranch|) |%noBranch|)) -((-2443 ((|#1| (-852) |#1|) 9))) -(((-957 |#1|) (-10 -7 (-15 -2443 (|#1| (-852) |#1|))) (-13 (-1016) (-10 -8 (-15 -4075 ($ $ $))))) (T -957)) -((-2443 (*1 *2 *3 *2) (-12 (-5 *3 (-852)) (-5 *1 (-957 *2)) (-4 *2 (-13 (-1016) (-10 -8 (-15 -4075 ($ $ $)))))))) -(-10 -7 (-15 -2443 (|#1| (-852) |#1|))) -((-3294 (((-589 (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) (|:| |radvect| (-589 (-629 (-292 (-523))))))) (-629 (-383 (-883 (-523))))) 58)) (-1262 (((-589 (-629 (-292 (-523)))) (-292 (-523)) (-629 (-383 (-883 (-523))))) 48)) (-3536 (((-589 (-292 (-523))) (-629 (-383 (-883 (-523))))) 41)) (-1919 (((-589 (-629 (-292 (-523)))) (-629 (-383 (-883 (-523))))) 68)) (-2076 (((-629 (-292 (-523))) (-629 (-292 (-523)))) 33)) (-2830 (((-589 (-629 (-292 (-523)))) (-589 (-629 (-292 (-523))))) 61)) (-1452 (((-3 (-629 (-292 (-523))) "failed") (-629 (-383 (-883 (-523))))) 65))) -(((-958) (-10 -7 (-15 -3294 ((-589 (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) (|:| |radvect| (-589 (-629 (-292 (-523))))))) (-629 (-383 (-883 (-523)))))) (-15 -1262 ((-589 (-629 (-292 (-523)))) (-292 (-523)) (-629 (-383 (-883 (-523)))))) (-15 -3536 ((-589 (-292 (-523))) (-629 (-383 (-883 (-523)))))) (-15 -1452 ((-3 (-629 (-292 (-523))) "failed") (-629 (-383 (-883 (-523)))))) (-15 -2076 ((-629 (-292 (-523))) (-629 (-292 (-523))))) (-15 -2830 ((-589 (-629 (-292 (-523)))) (-589 (-629 (-292 (-523)))))) (-15 -1919 ((-589 (-629 (-292 (-523)))) (-629 (-383 (-883 (-523)))))))) (T -958)) -((-1919 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958)))) (-2830 (*1 *2 *2) (-12 (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-629 (-292 (-523)))) (-5 *1 (-958)))) (-1452 (*1 *2 *3) (|partial| -12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-629 (-292 (-523)))) (-5 *1 (-958)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-292 (-523)))) (-5 *1 (-958)))) (-1262 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958)) (-5 *3 (-292 (-523))))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) (|:| |radvect| (-589 (-629 (-292 (-523)))))))) (-5 *1 (-958))))) -(-10 -7 (-15 -3294 ((-589 (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) (|:| |radvect| (-589 (-629 (-292 (-523))))))) (-629 (-383 (-883 (-523)))))) (-15 -1262 ((-589 (-629 (-292 (-523)))) (-292 (-523)) (-629 (-383 (-883 (-523)))))) (-15 -3536 ((-589 (-292 (-523))) (-629 (-383 (-883 (-523)))))) (-15 -1452 ((-3 (-629 (-292 (-523))) "failed") (-629 (-383 (-883 (-523)))))) (-15 -2076 ((-629 (-292 (-523))) (-629 (-292 (-523))))) (-15 -2830 ((-589 (-629 (-292 (-523)))) (-589 (-629 (-292 (-523)))))) (-15 -1919 ((-589 (-629 (-292 (-523)))) (-629 (-383 (-883 (-523))))))) -((-1725 ((|#1| |#1| (-852)) 9))) -(((-959 |#1|) (-10 -7 (-15 -1725 (|#1| |#1| (-852)))) (-13 (-1016) (-10 -8 (-15 * ($ $ $))))) (T -959)) -((-1725 (*1 *2 *2 *3) (-12 (-5 *3 (-852)) (-5 *1 (-959 *2)) (-4 *2 (-13 (-1016) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -1725 (|#1| |#1| (-852)))) -((-1458 ((|#1| (-288)) 11) (((-1173) |#1|) 9))) -(((-960 |#1|) (-10 -7 (-15 -1458 ((-1173) |#1|)) (-15 -1458 (|#1| (-288)))) (-1122)) (T -960)) -((-1458 (*1 *2 *3) (-12 (-5 *3 (-288)) (-5 *1 (-960 *2)) (-4 *2 (-1122)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *1 (-960 *3)) (-4 *3 (-1122))))) -(-10 -7 (-15 -1458 ((-1173) |#1|)) (-15 -1458 (|#1| (-288)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2437 (($ |#4|) 25)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-2428 ((|#4| $) 27)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 46) (($ (-523)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1621 (((-710)) 43)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 21 T CONST)) (-2767 (($) 23 T CONST)) (-3983 (((-108) $ $) 40)) (-4087 (($ $) 31) (($ $ $) NIL)) (-4075 (($ $ $) 29)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-961 |#1| |#2| |#3| |#4| |#5|) (-13 (-158) (-37 |#1|) (-10 -8 (-15 -2437 ($ |#4|)) (-15 -1458 ($ |#4|)) (-15 -2428 (|#4| $)))) (-339) (-732) (-786) (-880 |#1| |#2| |#3|) (-589 |#4|)) (T -961)) -((-2437 (*1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *2 (-880 *3 *4 *5)) (-14 *6 (-589 *2)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *2 (-880 *3 *4 *5)) (-14 *6 (-589 *2)))) (-2428 (*1 *2 *1) (-12 (-4 *2 (-880 *3 *4 *5)) (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-14 *6 (-589 *2))))) -(-13 (-158) (-37 |#1|) (-10 -8 (-15 -2437 ($ |#4|)) (-15 -1458 ($ |#4|)) (-15 -2428 (|#4| $)))) -((-3924 (((-108) $ $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-4207 (((-1173) $ (-1087) (-1087)) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-2893 (((-108) (-108)) 39)) (-1699 (((-108) (-108)) 38)) (-1641 (((-51) $ (-1087) (-51)) NIL)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 (-51) "failed") (-1087) $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-2249 (($ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-3 (-51) "failed") (-1087) $) NIL)) (-2557 (($ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2863 (((-51) $ (-1087) (-51)) NIL (|has| $ (-6 -4245)))) (-2795 (((-51) $ (-1087)) NIL)) (-1666 (((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-589 (-51)) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-1087) $) NIL (|has| (-1087) (-786)))) (-2136 (((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-589 (-51)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016))))) (-3056 (((-1087) $) NIL (|has| (-1087) (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4245))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-1330 (((-589 (-1087)) $) 34)) (-2777 (((-108) (-1087) $) NIL)) (-1934 (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL)) (-3450 (($ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL)) (-2412 (((-589 (-1087)) $) NIL)) (-4135 (((-108) (-1087) $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-1738 (((-51) $) NIL (|has| (-1087) (-786)))) (-2114 (((-3 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) "failed") (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL)) (-4203 (($ $ (-51)) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-271 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-589 (-51)) (-589 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-271 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-589 (-271 (-51)))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016))))) (-1264 (((-589 (-51)) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 (((-51) $ (-1087)) 35) (((-51) $ (-1087) (-51)) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (((-710) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016)))) (((-710) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-1458 (((-794) $) 37 (-3262 (|has| (-51) (-563 (-794))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-962) (-13 (-1099 (-1087) (-51)) (-10 -7 (-15 -2893 ((-108) (-108))) (-15 -1699 ((-108) (-108))) (-6 -4244)))) (T -962)) -((-2893 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-962)))) (-1699 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-962))))) -(-13 (-1099 (-1087) (-51)) (-10 -7 (-15 -2893 ((-108) (-108))) (-15 -1699 ((-108) (-108))) (-6 -4244))) -((-3474 ((|#2| $) 10))) -(((-963 |#1| |#2|) (-10 -8 (-15 -3474 (|#2| |#1|))) (-964 |#2|) (-1122)) (T -963)) -NIL -(-10 -8 (-15 -3474 (|#2| |#1|))) -((-3517 (((-3 |#1| "failed") $) 7)) (-3474 ((|#1| $) 8)) (-1458 (($ |#1|) 6))) -(((-964 |#1|) (-129) (-1122)) (T -964)) -((-3474 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1122)))) (-3517 (*1 *2 *1) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1122)))) (-1458 (*1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1122))))) -(-13 (-10 -8 (-15 -1458 ($ |t#1|)) (-15 -3517 ((-3 |t#1| "failed") $)) (-15 -3474 (|t#1| $)))) -((-1440 (((-589 (-589 (-271 (-383 (-883 |#2|))))) (-589 (-883 |#2|)) (-589 (-1087))) 35))) -(((-965 |#1| |#2|) (-10 -7 (-15 -1440 ((-589 (-589 (-271 (-383 (-883 |#2|))))) (-589 (-883 |#2|)) (-589 (-1087))))) (-515) (-13 (-515) (-964 |#1|))) (T -965)) -((-1440 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-4 *6 (-13 (-515) (-964 *5))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *6)))))) (-5 *1 (-965 *5 *6))))) -(-10 -7 (-15 -1440 ((-589 (-589 (-271 (-383 (-883 |#2|))))) (-589 (-883 |#2|)) (-589 (-1087))))) -((-3589 (((-355)) 15)) (-1688 (((-1 (-355)) (-355) (-355)) 20)) (-4081 (((-1 (-355)) (-710)) 43)) (-4015 (((-355)) 34)) (-3127 (((-1 (-355)) (-355) (-355)) 35)) (-3447 (((-355)) 26)) (-1708 (((-1 (-355)) (-355)) 27)) (-4138 (((-355) (-710)) 38)) (-1959 (((-1 (-355)) (-710)) 39)) (-2315 (((-1 (-355)) (-710) (-710)) 42)) (-3599 (((-1 (-355)) (-710) (-710)) 40))) -(((-966) (-10 -7 (-15 -3589 ((-355))) (-15 -4015 ((-355))) (-15 -3447 ((-355))) (-15 -4138 ((-355) (-710))) (-15 -1688 ((-1 (-355)) (-355) (-355))) (-15 -3127 ((-1 (-355)) (-355) (-355))) (-15 -1708 ((-1 (-355)) (-355))) (-15 -1959 ((-1 (-355)) (-710))) (-15 -3599 ((-1 (-355)) (-710) (-710))) (-15 -2315 ((-1 (-355)) (-710) (-710))) (-15 -4081 ((-1 (-355)) (-710))))) (T -966)) -((-4081 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) (-2315 (*1 *2 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) (-3599 (*1 *2 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) (-1708 (*1 *2 *3) (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355)))) (-3127 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355)))) (-1688 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-355)) (-5 *1 (-966)))) (-3447 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966)))) (-4015 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966)))) (-3589 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966))))) -(-10 -7 (-15 -3589 ((-355))) (-15 -4015 ((-355))) (-15 -3447 ((-355))) (-15 -4138 ((-355) (-710))) (-15 -1688 ((-1 (-355)) (-355) (-355))) (-15 -3127 ((-1 (-355)) (-355) (-355))) (-15 -1708 ((-1 (-355)) (-355))) (-15 -1959 ((-1 (-355)) (-710))) (-15 -3599 ((-1 (-355)) (-710) (-710))) (-15 -2315 ((-1 (-355)) (-710) (-710))) (-15 -4081 ((-1 (-355)) (-710)))) -((-1820 (((-394 |#1|) |#1|) 31))) -(((-967 |#1|) (-10 -7 (-15 -1820 ((-394 |#1|) |#1|))) (-1144 (-383 (-883 (-523))))) (T -967)) -((-1820 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-967 *3)) (-4 *3 (-1144 (-383 (-883 (-523)))))))) -(-10 -7 (-15 -1820 ((-394 |#1|) |#1|))) -((-1937 (((-383 (-394 (-883 |#1|))) (-383 (-883 |#1|))) 14))) -(((-968 |#1|) (-10 -7 (-15 -1937 ((-383 (-394 (-883 |#1|))) (-383 (-883 |#1|))))) (-284)) (T -968)) -((-1937 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-284)) (-5 *2 (-383 (-394 (-883 *4)))) (-5 *1 (-968 *4))))) -(-10 -7 (-15 -1937 ((-383 (-394 (-883 |#1|))) (-383 (-883 |#1|))))) -((-1957 (((-589 (-1087)) (-383 (-883 |#1|))) 15)) (-1786 (((-383 (-1083 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087)) 22)) (-1945 (((-383 (-883 |#1|)) (-383 (-1083 (-383 (-883 |#1|)))) (-1087)) 24)) (-2520 (((-3 (-1087) "failed") (-383 (-883 |#1|))) 18)) (-2679 (((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-271 (-383 (-883 |#1|))))) 29) (((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|)))) 31) (((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-1087)) (-589 (-383 (-883 |#1|)))) 26) (((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|))) 27)) (-1458 (((-383 (-883 |#1|)) |#1|) 11))) -(((-969 |#1|) (-10 -7 (-15 -1957 ((-589 (-1087)) (-383 (-883 |#1|)))) (-15 -2520 ((-3 (-1087) "failed") (-383 (-883 |#1|)))) (-15 -1786 ((-383 (-1083 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087))) (-15 -1945 ((-383 (-883 |#1|)) (-383 (-1083 (-383 (-883 |#1|)))) (-1087))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-1087)) (-589 (-383 (-883 |#1|))))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -1458 ((-383 (-883 |#1|)) |#1|))) (-515)) (T -969)) -((-1458 (*1 *2 *3) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-969 *3)) (-4 *3 (-515)))) (-2679 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-271 (-383 (-883 *4))))) (-5 *2 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *1 (-969 *4)))) (-2679 (*1 *2 *2 *3) (-12 (-5 *3 (-271 (-383 (-883 *4)))) (-5 *2 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *1 (-969 *4)))) (-2679 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-589 (-1087))) (-5 *4 (-589 (-383 (-883 *5)))) (-5 *2 (-383 (-883 *5))) (-4 *5 (-515)) (-5 *1 (-969 *5)))) (-2679 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-383 (-883 *4))) (-5 *3 (-1087)) (-4 *4 (-515)) (-5 *1 (-969 *4)))) (-1945 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-1083 (-383 (-883 *5))))) (-5 *4 (-1087)) (-5 *2 (-383 (-883 *5))) (-5 *1 (-969 *5)) (-4 *5 (-515)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-515)) (-5 *2 (-383 (-1083 (-383 (-883 *5))))) (-5 *1 (-969 *5)) (-5 *3 (-383 (-883 *5))))) (-2520 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-1087)) (-5 *1 (-969 *4)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-589 (-1087))) (-5 *1 (-969 *4))))) -(-10 -7 (-15 -1957 ((-589 (-1087)) (-383 (-883 |#1|)))) (-15 -2520 ((-3 (-1087) "failed") (-383 (-883 |#1|)))) (-15 -1786 ((-383 (-1083 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087))) (-15 -1945 ((-383 (-883 |#1|)) (-383 (-1083 (-383 (-883 |#1|)))) (-1087))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-1087)) (-589 (-383 (-883 |#1|))))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -1458 ((-383 (-883 |#1|)) |#1|))) -((-3924 (((-108) $ $) NIL)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 (-719 |#1| (-796 |#2|)))))) (-589 (-719 |#1| (-796 |#2|)))) NIL)) (-3846 (((-589 $) (-589 (-719 |#1| (-796 |#2|)))) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-108)) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-108) (-108)) NIL)) (-1957 (((-589 (-796 |#2|)) $) NIL)) (-2100 (((-108) $) NIL)) (-2376 (((-108) $) NIL (|has| |#1| (-515)))) (-2694 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-2308 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2291 (((-589 (-2 (|:| |val| (-719 |#1| (-796 |#2|))) (|:| -3072 $))) (-719 |#1| (-796 |#2|)) $) NIL)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ (-796 |#2|)) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-3724 (($ (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 (-719 |#1| (-796 |#2|)) "failed") $ (-796 |#2|)) NIL)) (-2518 (($) NIL T CONST)) (-3595 (((-108) $) NIL (|has| |#1| (-515)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3225 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3393 (((-108) $) NIL (|has| |#1| (-515)))) (-3375 (((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))) $ (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL)) (-3956 (((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))) $) NIL (|has| |#1| (-515)))) (-2771 (((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))) $) NIL (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 (-719 |#1| (-796 |#2|)))) NIL)) (-3474 (($ (-589 (-719 |#1| (-796 |#2|)))) NIL)) (-1751 (((-3 $ "failed") $) NIL)) (-4014 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-719 |#1| (-796 |#2|)) (-1016))))) (-2557 (($ (-719 |#1| (-796 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (($ (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-719 |#1| (-796 |#2|))) (|:| |den| |#1|)) (-719 |#1| (-796 |#2|)) $) NIL (|has| |#1| (-515)))) (-2663 (((-108) (-719 |#1| (-796 |#2|)) $ (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL)) (-2636 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2437 (((-719 |#1| (-796 |#2|)) (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $ (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (((-719 |#1| (-796 |#2|)) (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $ (-719 |#1| (-796 |#2|))) NIL (|has| $ (-6 -4244))) (((-719 |#1| (-796 |#2|)) (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $ (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL)) (-3737 (((-2 (|:| -3952 (-589 (-719 |#1| (-796 |#2|)))) (|:| -2625 (-589 (-719 |#1| (-796 |#2|))))) $) NIL)) (-2005 (((-108) (-719 |#1| (-796 |#2|)) $) NIL)) (-3785 (((-108) (-719 |#1| (-796 |#2|)) $) NIL)) (-1944 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-1666 (((-589 (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-4172 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-2907 (((-796 |#2|) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-719 |#1| (-796 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-719 |#1| (-796 |#2|)) (-1016))))) (-2852 (($ (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $) NIL)) (-4055 (((-589 (-796 |#2|)) $) NIL)) (-1357 (((-108) (-796 |#2|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-3246 (((-3 (-719 |#1| (-796 |#2|)) (-589 $)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-1611 (((-589 (-2 (|:| |val| (-719 |#1| (-796 |#2|))) (|:| -3072 $))) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2579 (((-3 (-719 |#1| (-796 |#2|)) "failed") $) NIL)) (-2668 (((-589 $) (-719 |#1| (-796 |#2|)) $) NIL)) (-3320 (((-3 (-108) (-589 $)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) (-719 |#1| (-796 |#2|)) $) NIL)) (-1309 (((-589 $) (-719 |#1| (-796 |#2|)) $) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) $) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-589 $)) NIL) (((-589 $) (-719 |#1| (-796 |#2|)) (-589 $)) NIL)) (-1770 (($ (-719 |#1| (-796 |#2|)) $) NIL) (($ (-589 (-719 |#1| (-796 |#2|))) $) NIL)) (-2404 (((-589 (-719 |#1| (-796 |#2|))) $) NIL)) (-2112 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-2648 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2391 (((-108) $ $) NIL)) (-1644 (((-2 (|:| |num| (-719 |#1| (-796 |#2|))) (|:| |den| |#1|)) (-719 |#1| (-796 |#2|)) $) NIL (|has| |#1| (-515)))) (-2001 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-1398 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-3 (-719 |#1| (-796 |#2|)) "failed") $) NIL)) (-2114 (((-3 (-719 |#1| (-796 |#2|)) "failed") (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL)) (-2890 (((-3 $ "failed") $ (-719 |#1| (-796 |#2|))) NIL)) (-4097 (($ $ (-719 |#1| (-796 |#2|))) NIL) (((-589 $) (-719 |#1| (-796 |#2|)) $) NIL) (((-589 $) (-719 |#1| (-796 |#2|)) (-589 $)) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) $) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-589 $)) NIL)) (-1327 (((-108) (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|)))) NIL (-12 (|has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|)))) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (($ $ (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) NIL (-12 (|has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|)))) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (($ $ (-271 (-719 |#1| (-796 |#2|)))) NIL (-12 (|has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|)))) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (($ $ (-589 (-271 (-719 |#1| (-796 |#2|))))) NIL (-12 (|has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|)))) (|has| (-719 |#1| (-796 |#2|)) (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-2299 (((-710) $) NIL)) (-2792 (((-710) (-719 |#1| (-796 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (((-710) (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-719 |#1| (-796 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-719 |#1| (-796 |#2|)))) NIL)) (-2621 (($ $ (-796 |#2|)) NIL)) (-2624 (($ $ (-796 |#2|)) NIL)) (-1824 (($ $) NIL)) (-3076 (($ $ (-796 |#2|)) NIL)) (-1458 (((-794) $) NIL) (((-589 (-719 |#1| (-796 |#2|))) $) NIL)) (-1395 (((-710) $) NIL (|has| (-796 |#2|) (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 (-719 |#1| (-796 |#2|))))) "failed") (-589 (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 (-719 |#1| (-796 |#2|))))) "failed") (-589 (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL)) (-4031 (((-108) $ (-1 (-108) (-719 |#1| (-796 |#2|)) (-589 (-719 |#1| (-796 |#2|))))) NIL)) (-3910 (((-589 $) (-719 |#1| (-796 |#2|)) $) NIL) (((-589 $) (-719 |#1| (-796 |#2|)) (-589 $)) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) $) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-589 $)) NIL)) (-2096 (((-108) (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3862 (((-589 (-796 |#2|)) $) NIL)) (-4062 (((-108) (-719 |#1| (-796 |#2|)) $) NIL)) (-2153 (((-108) (-796 |#2|) $) NIL)) (-3983 (((-108) $ $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-970 |#1| |#2|) (-13 (-992 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|))) (-10 -8 (-15 -3846 ((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-108) (-108))))) (-427) (-589 (-1087))) (T -970)) -((-3846 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-970 *5 *6))))) -(-13 (-992 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|))) (-10 -8 (-15 -3846 ((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-108) (-108))))) -((-1688 (((-1 (-523)) (-1011 (-523))) 33)) (-2512 (((-523) (-523) (-523) (-523) (-523)) 30)) (-1263 (((-1 (-523)) |RationalNumber|) NIL)) (-4137 (((-1 (-523)) |RationalNumber|) NIL)) (-2574 (((-1 (-523)) (-523) |RationalNumber|) NIL))) -(((-971) (-10 -7 (-15 -1688 ((-1 (-523)) (-1011 (-523)))) (-15 -2574 ((-1 (-523)) (-523) |RationalNumber|)) (-15 -1263 ((-1 (-523)) |RationalNumber|)) (-15 -4137 ((-1 (-523)) |RationalNumber|)) (-15 -2512 ((-523) (-523) (-523) (-523) (-523))))) (T -971)) -((-2512 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-971)))) (-4137 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971)))) (-1263 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971)) (-5 *3 (-523)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-1011 (-523))) (-5 *2 (-1 (-523))) (-5 *1 (-971))))) -(-10 -7 (-15 -1688 ((-1 (-523)) (-1011 (-523)))) (-15 -2574 ((-1 (-523)) (-523) |RationalNumber|)) (-15 -1263 ((-1 (-523)) |RationalNumber|)) (-15 -4137 ((-1 (-523)) |RationalNumber|)) (-15 -2512 ((-523) (-523) (-523) (-523) (-523)))) -((-1458 (((-794) $) NIL) (($ (-523)) 10))) -(((-972 |#1|) (-10 -8 (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-973)) (T -972)) -NIL -(-10 -8 (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-3112 (((-589 (-355)) (-883 (-523)) (-355)) 27) (((-589 (-355)) (-883 (-383 (-523))) (-355)) 26)) (-3441 (((-589 (-589 (-355))) (-589 (-883 (-523))) (-589 (-1087)) (-355)) 36))) +(((-950) (-10 -7 (-15 -3112 ((-589 (-355)) (-883 (-383 (-523))) (-355))) (-15 -3112 ((-589 (-355)) (-883 (-523)) (-355))) (-15 -3441 ((-589 (-589 (-355))) (-589 (-883 (-523))) (-589 (-1087)) (-355))))) (T -950)) +((-3441 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 (-355)))) (-5 *1 (-950)) (-5 *5 (-355)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-523))) (-5 *2 (-589 (-355))) (-5 *1 (-950)) (-5 *4 (-355)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *2 (-589 (-355))) (-5 *1 (-950)) (-5 *4 (-355))))) +(-10 -7 (-15 -3112 ((-589 (-355)) (-883 (-383 (-523))) (-355))) (-15 -3112 ((-589 (-355)) (-883 (-523)) (-355))) (-15 -3441 ((-589 (-589 (-355))) (-589 (-883 (-523))) (-589 (-1087)) (-355)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 70)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2437 (($ $) NIL) (($ $ (-710)) NIL) (($ (-383 (-523))) NIL) (($ (-523)) NIL)) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) 65)) (-4189 (($) NIL T CONST)) (-1264 (((-3 $ "failed") (-1083 $) (-852) (-794)) NIL) (((-3 $ "failed") (-1083 $) (-852)) 49)) (-1220 (((-3 (-383 (-523)) "failed") $) NIL (|has| (-383 (-523)) (-964 (-383 (-523))))) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-523) "failed") $) NIL (-3172 (|has| (-383 (-523)) (-964 (-523))) (|has| |#1| (-964 (-523)))))) (-3508 (((-383 (-523)) $) 14 (|has| (-383 (-523)) (-964 (-383 (-523))))) (((-383 (-523)) $) 14) ((|#1| $) 109) (((-523) $) NIL (-3172 (|has| (-383 (-523)) (-964 (-523))) (|has| |#1| (-964 (-523)))))) (-1231 (($ $ (-794)) 40)) (-4178 (($ $ (-794)) 41)) (-4059 (($ $ $) NIL)) (-1729 (((-383 (-523)) $ $) 18)) (-1444 (((-3 $ "failed") $) 83)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-3712 (((-108) $) 60)) (-2769 (((-108) $) NIL)) (-1973 (($ $ (-523)) NIL)) (-2057 (((-108) $) 63)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-3788 (((-3 (-1083 $) "failed") $) 78)) (-1482 (((-3 (-794) "failed") $) 77)) (-1882 (((-3 (-1083 $) "failed") $) 75)) (-2550 (((-3 (-983 $ (-1083 $)) "failed") $) 73)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 84)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ (-589 $)) NIL) (($ $ $) NIL)) (-2424 (((-394 $) $) NIL)) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-1691 (((-794) $) 82) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ $) 57) (($ (-383 (-523))) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 111)) (-3272 (((-710)) NIL)) (-2801 (((-108) $ $) NIL)) (-4108 (((-383 (-523)) $ $) 24)) (-3008 (((-589 $) (-1083 $)) 55) (((-589 $) (-1083 (-383 (-523)))) NIL) (((-589 $) (-1083 (-523))) NIL) (((-589 $) (-883 $)) NIL) (((-589 $) (-883 (-383 (-523)))) NIL) (((-589 $) (-883 (-523))) NIL)) (-1896 (($ (-983 $ (-1083 $)) (-794)) 39)) (-2695 (($ $) 19)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-1879 (($) 28 T CONST)) (-1891 (($) 34 T CONST)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 71)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 21)) (-4074 (($ $ $) 32)) (-4060 (($ $) 33) (($ $ $) 69)) (-4045 (($ $ $) 104)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL) (($ $ (-383 (-523))) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 92) (($ $ $) 97) (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ (-523) $) 92) (($ $ (-523)) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL))) +(((-951 |#1|) (-13 (-940) (-387 |#1|) (-37 |#1|) (-10 -8 (-15 -1896 ($ (-983 $ (-1083 $)) (-794))) (-15 -2550 ((-3 (-983 $ (-1083 $)) "failed") $)) (-15 -1729 ((-383 (-523)) $ $)))) (-13 (-784) (-339) (-949))) (T -951)) +((-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-983 (-951 *4) (-1083 (-951 *4)))) (-5 *3 (-794)) (-5 *1 (-951 *4)) (-4 *4 (-13 (-784) (-339) (-949))))) (-2550 (*1 *2 *1) (|partial| -12 (-5 *2 (-983 (-951 *3) (-1083 (-951 *3)))) (-5 *1 (-951 *3)) (-4 *3 (-13 (-784) (-339) (-949))))) (-1729 (*1 *2 *1 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-951 *3)) (-4 *3 (-13 (-784) (-339) (-949)))))) +(-13 (-940) (-387 |#1|) (-37 |#1|) (-10 -8 (-15 -1896 ($ (-983 $ (-1083 $)) (-794))) (-15 -2550 ((-3 (-983 $ (-1083 $)) "failed") $)) (-15 -1729 ((-383 (-523)) $ $)))) +((-3656 (((-2 (|:| -2849 |#2|) (|:| -2888 (-589 |#1|))) |#2| (-589 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-952 |#1| |#2|) (-10 -7 (-15 -3656 (|#2| |#2| |#1|)) (-15 -3656 ((-2 (|:| -2849 |#2|) (|:| -2888 (-589 |#1|))) |#2| (-589 |#1|)))) (-339) (-599 |#1|)) (T -952)) +((-3656 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-5 *2 (-2 (|:| -2849 *3) (|:| -2888 (-589 *5)))) (-5 *1 (-952 *5 *3)) (-5 *4 (-589 *5)) (-4 *3 (-599 *5)))) (-3656 (*1 *2 *2 *3) (-12 (-4 *3 (-339)) (-5 *1 (-952 *3 *2)) (-4 *2 (-599 *3))))) +(-10 -7 (-15 -3656 (|#2| |#2| |#1|)) (-15 -3656 ((-2 (|:| -2849 |#2|) (|:| -2888 (-589 |#1|))) |#2| (-589 |#1|)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3687 ((|#1| $ |#1|) 14)) (-1849 ((|#1| $ |#1|) 12)) (-2375 (($ |#1|) 10)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1937 ((|#1| $) 11)) (-1367 ((|#1| $) 13)) (-1691 (((-794) $) 21 (|has| |#1| (-1016)))) (-3941 (((-108) $ $) 9))) +(((-953 |#1|) (-13 (-1123) (-10 -8 (-15 -2375 ($ |#1|)) (-15 -1937 (|#1| $)) (-15 -1849 (|#1| $ |#1|)) (-15 -1367 (|#1| $)) (-15 -3687 (|#1| $ |#1|)) (-15 -3941 ((-108) $ $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) (-1123)) (T -953)) +((-2375 (*1 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1123)))) (-1937 (*1 *2 *1) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1123)))) (-1849 (*1 *2 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1123)))) (-1367 (*1 *2 *1) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1123)))) (-3687 (*1 *2 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1123)))) (-3941 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-953 *3)) (-4 *3 (-1123))))) +(-13 (-1123) (-10 -8 (-15 -2375 ($ |#1|)) (-15 -1937 (|#1| $)) (-15 -1849 (|#1| $ |#1|)) (-15 -1367 (|#1| $)) (-15 -3687 (|#1| $ |#1|)) (-15 -3941 ((-108) $ $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) +((-1680 (((-108) $ $) NIL)) (-3385 (((-589 (-2 (|:| -1214 $) (|:| -2647 (-589 |#4|)))) (-589 |#4|)) NIL)) (-2591 (((-589 $) (-589 |#4|)) 105) (((-589 $) (-589 |#4|) (-108)) 106) (((-589 $) (-589 |#4|) (-108) (-108)) 104) (((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108)) 107)) (-1292 (((-589 |#3|) $) NIL)) (-2356 (((-108) $) NIL)) (-2192 (((-108) $) NIL (|has| |#1| (-515)))) (-2219 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2717 ((|#4| |#4| $) NIL)) (-3718 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 $))) |#4| $) 99)) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |#3|) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1903 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248))) (((-3 |#4| "failed") $ |#3|) 54)) (-4189 (($) NIL T CONST)) (-4002 (((-108) $) 26 (|has| |#1| (-515)))) (-3577 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3527 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2611 (((-108) $) NIL (|has| |#1| (-515)))) (-3586 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1291 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-1804 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-1220 (((-3 $ "failed") (-589 |#4|)) NIL)) (-3508 (($ (-589 |#4|)) NIL)) (-2441 (((-3 $ "failed") $) 39)) (-3546 ((|#4| |#4| $) 57)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-2514 (($ |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-3969 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-515)))) (-3087 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2848 ((|#4| |#4| $) NIL)) (-2116 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4248))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4248))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2860 (((-2 (|:| -1214 (-589 |#4|)) (|:| -2647 (-589 |#4|))) $) NIL)) (-2607 (((-108) |#4| $) NIL)) (-2072 (((-108) |#4| $) NIL)) (-3149 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3950 (((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108)) 119)) (-1871 (((-589 |#4|) $) 16 (|has| $ (-6 -4248)))) (-2605 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3556 ((|#3| $) 33)) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#4|) $) 17 (|has| $ (-6 -4248)))) (-3423 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-2043 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#4| |#4|) $) 21)) (-2709 (((-589 |#3|) $) NIL)) (-2528 (((-108) |#3| $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-3715 (((-3 |#4| (-589 $)) |#4| |#4| $) NIL)) (-3173 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 $))) |#4| |#4| $) 97)) (-2535 (((-3 |#4| "failed") $) 37)) (-3130 (((-589 $) |#4| $) 80)) (-1338 (((-3 (-108) (-589 $)) |#4| $) NIL)) (-1446 (((-589 (-2 (|:| |val| (-108)) (|:| -3643 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-3196 (((-589 $) |#4| $) 102) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) 103) (((-589 $) |#4| (-589 $)) NIL)) (-1670 (((-589 $) (-589 |#4|) (-108) (-108) (-108)) 114)) (-2190 (($ |#4| $) 70) (($ (-589 |#4|) $) 71) (((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-2455 (((-589 |#4|) $) NIL)) (-2490 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2960 ((|#4| |#4| $) NIL)) (-2303 (((-108) $ $) NIL)) (-3473 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2569 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2897 ((|#4| |#4| $) NIL)) (-3951 (((-1034) $) NIL)) (-2428 (((-3 |#4| "failed") $) 35)) (-2509 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3367 (((-3 $ "failed") $ |#4|) 48)) (-3053 (($ $ |#4|) NIL) (((-589 $) |#4| $) 82) (((-589 $) |#4| (-589 $)) NIL) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) 77)) (-3379 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 15)) (-3320 (($) 13)) (-2640 (((-710) $) NIL)) (-3977 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) 12)) (-1400 (((-499) $) NIL (|has| |#4| (-564 (-499))))) (-1704 (($ (-589 |#4|)) 20)) (-2712 (($ $ |#3|) 42)) (-2742 (($ $ |#3|) 44)) (-1494 (($ $) NIL)) (-1591 (($ $ |#3|) NIL)) (-1691 (((-794) $) 31) (((-589 |#4|) $) 40)) (-2868 (((-710) $) NIL (|has| |#3| (-344)))) (-1645 (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3684 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) NIL)) (-3817 (((-589 $) |#4| $) 79) (((-589 $) |#4| (-589 $)) NIL) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) NIL)) (-2308 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-1574 (((-589 |#3|) $) NIL)) (-2776 (((-108) |#4| $) NIL)) (-1747 (((-108) |#3| $) 53)) (-3941 (((-108) $ $) NIL)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-954 |#1| |#2| |#3| |#4|) (-13 (-992 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2190 ((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2591 ((-589 $) (-589 |#4|) (-108) (-108))) (-15 -2591 ((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108))) (-15 -1670 ((-589 $) (-589 |#4|) (-108) (-108) (-108))) (-15 -3950 ((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108))))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -954)) +((-2190 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-954 *5 *6 *7 *3))) (-5 *1 (-954 *5 *6 *7 *3)) (-4 *3 (-987 *5 *6 *7)))) (-2591 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) (-2591 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) (-1670 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) (-3950 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-589 *8)) (|:| |towers| (-589 (-954 *5 *6 *7 *8))))) (-5 *1 (-954 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) +(-13 (-992 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2190 ((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2591 ((-589 $) (-589 |#4|) (-108) (-108))) (-15 -2591 ((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108))) (-15 -1670 ((-589 $) (-589 |#4|) (-108) (-108) (-108))) (-15 -3950 ((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108))))) +((-1817 (((-589 (-629 |#1|)) (-589 (-629 |#1|))) 57) (((-629 |#1|) (-629 |#1|)) 56) (((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-589 (-629 |#1|))) 55) (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 52)) (-2791 (((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852)) 51) (((-629 |#1|) (-629 |#1|) (-852)) 50)) (-4181 (((-589 (-629 (-523))) (-589 (-589 (-523)))) 67) (((-589 (-629 (-523))) (-589 (-836 (-523))) (-523)) 66) (((-629 (-523)) (-589 (-523))) 63) (((-629 (-523)) (-836 (-523)) (-523)) 62)) (-3178 (((-629 (-883 |#1|)) (-710)) 80)) (-3188 (((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852)) 36 (|has| |#1| (-6 (-4250 "*")))) (((-629 |#1|) (-629 |#1|) (-852)) 34 (|has| |#1| (-6 (-4250 "*")))))) +(((-955 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4250 "*"))) (-15 -3188 ((-629 |#1|) (-629 |#1|) (-852))) |%noBranch|) (IF (|has| |#1| (-6 (-4250 "*"))) (-15 -3188 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852))) |%noBranch|) (-15 -3178 ((-629 (-883 |#1|)) (-710))) (-15 -2791 ((-629 |#1|) (-629 |#1|) (-852))) (-15 -2791 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852))) (-15 -1817 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1817 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -1817 ((-629 |#1|) (-629 |#1|))) (-15 -1817 ((-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -4181 ((-629 (-523)) (-836 (-523)) (-523))) (-15 -4181 ((-629 (-523)) (-589 (-523)))) (-15 -4181 ((-589 (-629 (-523))) (-589 (-836 (-523))) (-523))) (-15 -4181 ((-589 (-629 (-523))) (-589 (-589 (-523)))))) (-973)) (T -955)) +((-4181 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-523)))) (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-955 *4)) (-4 *4 (-973)))) (-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-836 (-523)))) (-5 *4 (-523)) (-5 *2 (-589 (-629 *4))) (-5 *1 (-955 *5)) (-4 *5 (-973)))) (-4181 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-955 *4)) (-4 *4 (-973)))) (-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-836 (-523))) (-5 *4 (-523)) (-5 *2 (-629 *4)) (-5 *1 (-955 *5)) (-4 *5 (-973)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-589 (-629 *3))) (-4 *3 (-973)) (-5 *1 (-955 *3)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-955 *3)))) (-1817 (*1 *2 *2 *2) (-12 (-5 *2 (-589 (-629 *3))) (-4 *3 (-973)) (-5 *1 (-955 *3)))) (-1817 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-955 *3)))) (-2791 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-629 *4))) (-5 *3 (-852)) (-4 *4 (-973)) (-5 *1 (-955 *4)))) (-2791 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-852)) (-4 *4 (-973)) (-5 *1 (-955 *4)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-629 (-883 *4))) (-5 *1 (-955 *4)) (-4 *4 (-973)))) (-3188 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-629 *4))) (-5 *3 (-852)) (|has| *4 (-6 (-4250 "*"))) (-4 *4 (-973)) (-5 *1 (-955 *4)))) (-3188 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-852)) (|has| *4 (-6 (-4250 "*"))) (-4 *4 (-973)) (-5 *1 (-955 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4250 "*"))) (-15 -3188 ((-629 |#1|) (-629 |#1|) (-852))) |%noBranch|) (IF (|has| |#1| (-6 (-4250 "*"))) (-15 -3188 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852))) |%noBranch|) (-15 -3178 ((-629 (-883 |#1|)) (-710))) (-15 -2791 ((-629 |#1|) (-629 |#1|) (-852))) (-15 -2791 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852))) (-15 -1817 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1817 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -1817 ((-629 |#1|) (-629 |#1|))) (-15 -1817 ((-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -4181 ((-629 (-523)) (-836 (-523)) (-523))) (-15 -4181 ((-629 (-523)) (-589 (-523)))) (-15 -4181 ((-589 (-629 (-523))) (-589 (-836 (-523))) (-523))) (-15 -4181 ((-589 (-629 (-523))) (-589 (-589 (-523)))))) +((-1732 (((-629 |#1|) (-589 (-629 |#1|)) (-1169 |#1|)) 51 (|has| |#1| (-284)))) (-1980 (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1169 (-1169 |#1|))) 75 (|has| |#1| (-339))) (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1169 |#1|)) 73 (|has| |#1| (-339)))) (-1630 (((-1169 |#1|) (-589 (-1169 |#1|)) (-523)) 77 (-12 (|has| |#1| (-339)) (|has| |#1| (-344))))) (-2592 (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-852)) 82 (-12 (|has| |#1| (-339)) (|has| |#1| (-344)))) (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108)) 80 (-12 (|has| |#1| (-339)) (|has| |#1| (-344)))) (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|))) 79 (-12 (|has| |#1| (-339)) (|has| |#1| (-344)))) (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108) (-523) (-523)) 78 (-12 (|has| |#1| (-339)) (|has| |#1| (-344))))) (-1906 (((-108) (-589 (-629 |#1|))) 71 (|has| |#1| (-339))) (((-108) (-589 (-629 |#1|)) (-523)) 70 (|has| |#1| (-339)))) (-1245 (((-1169 (-1169 |#1|)) (-589 (-629 |#1|)) (-1169 |#1|)) 49 (|has| |#1| (-284)))) (-1840 (((-629 |#1|) (-589 (-629 |#1|)) (-629 |#1|)) 33)) (-4083 (((-629 |#1|) (-1169 (-1169 |#1|))) 30)) (-2439 (((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-523)) 66 (|has| |#1| (-339))) (((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|))) 65 (|has| |#1| (-339))) (((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-108) (-523)) 64 (|has| |#1| (-339))))) +(((-956 |#1|) (-10 -7 (-15 -4083 ((-629 |#1|) (-1169 (-1169 |#1|)))) (-15 -1840 ((-629 |#1|) (-589 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-284)) (PROGN (-15 -1245 ((-1169 (-1169 |#1|)) (-589 (-629 |#1|)) (-1169 |#1|))) (-15 -1732 ((-629 |#1|) (-589 (-629 |#1|)) (-1169 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -2439 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-108) (-523))) (-15 -2439 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -2439 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-523))) (-15 -1906 ((-108) (-589 (-629 |#1|)) (-523))) (-15 -1906 ((-108) (-589 (-629 |#1|)))) (-15 -1980 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1169 |#1|))) (-15 -1980 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1169 (-1169 |#1|))))) |%noBranch|) (IF (|has| |#1| (-344)) (IF (|has| |#1| (-339)) (PROGN (-15 -2592 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108) (-523) (-523))) (-15 -2592 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)))) (-15 -2592 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108))) (-15 -2592 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-852))) (-15 -1630 ((-1169 |#1|) (-589 (-1169 |#1|)) (-523)))) |%noBranch|) |%noBranch|)) (-973)) (T -956)) +((-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1169 *5))) (-5 *4 (-523)) (-5 *2 (-1169 *5)) (-5 *1 (-956 *5)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)))) (-2592 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)) (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) (-5 *3 (-589 (-629 *5))))) (-2592 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)) (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) (-5 *3 (-589 (-629 *5))))) (-2592 (*1 *2 *3) (-12 (-4 *4 (-339)) (-4 *4 (-344)) (-4 *4 (-973)) (-5 *2 (-589 (-589 (-629 *4)))) (-5 *1 (-956 *4)) (-5 *3 (-589 (-629 *4))))) (-2592 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-523)) (-4 *6 (-339)) (-4 *6 (-344)) (-4 *6 (-973)) (-5 *2 (-589 (-589 (-629 *6)))) (-5 *1 (-956 *6)) (-5 *3 (-589 (-629 *6))))) (-1980 (*1 *2 *3 *4) (-12 (-5 *4 (-1169 (-1169 *5))) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) (-5 *3 (-589 (-629 *5))))) (-1980 (*1 *2 *3 *4) (-12 (-5 *4 (-1169 *5)) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) (-5 *3 (-589 (-629 *5))))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-589 (-629 *4))) (-4 *4 (-339)) (-4 *4 (-973)) (-5 *2 (-108)) (-5 *1 (-956 *4)))) (-1906 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-523)) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-108)) (-5 *1 (-956 *5)))) (-2439 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-523)) (-5 *2 (-629 *5)) (-5 *1 (-956 *5)) (-4 *5 (-339)) (-4 *5 (-973)))) (-2439 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-629 *4))) (-5 *2 (-629 *4)) (-5 *1 (-956 *4)) (-4 *4 (-339)) (-4 *4 (-973)))) (-2439 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-589 (-629 *6))) (-5 *4 (-108)) (-5 *5 (-523)) (-5 *2 (-629 *6)) (-5 *1 (-956 *6)) (-4 *6 (-339)) (-4 *6 (-973)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-1169 *5)) (-4 *5 (-284)) (-4 *5 (-973)) (-5 *2 (-629 *5)) (-5 *1 (-956 *5)))) (-1245 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-629 *5))) (-4 *5 (-284)) (-4 *5 (-973)) (-5 *2 (-1169 (-1169 *5))) (-5 *1 (-956 *5)) (-5 *4 (-1169 *5)))) (-1840 (*1 *2 *3 *2) (-12 (-5 *3 (-589 (-629 *4))) (-5 *2 (-629 *4)) (-4 *4 (-973)) (-5 *1 (-956 *4)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-1169 (-1169 *4))) (-4 *4 (-973)) (-5 *2 (-629 *4)) (-5 *1 (-956 *4))))) +(-10 -7 (-15 -4083 ((-629 |#1|) (-1169 (-1169 |#1|)))) (-15 -1840 ((-629 |#1|) (-589 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-284)) (PROGN (-15 -1245 ((-1169 (-1169 |#1|)) (-589 (-629 |#1|)) (-1169 |#1|))) (-15 -1732 ((-629 |#1|) (-589 (-629 |#1|)) (-1169 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -2439 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-108) (-523))) (-15 -2439 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -2439 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-523))) (-15 -1906 ((-108) (-589 (-629 |#1|)) (-523))) (-15 -1906 ((-108) (-589 (-629 |#1|)))) (-15 -1980 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1169 |#1|))) (-15 -1980 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1169 (-1169 |#1|))))) |%noBranch|) (IF (|has| |#1| (-344)) (IF (|has| |#1| (-339)) (PROGN (-15 -2592 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108) (-523) (-523))) (-15 -2592 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)))) (-15 -2592 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108))) (-15 -2592 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-852))) (-15 -1630 ((-1169 |#1|) (-589 (-1169 |#1|)) (-523)))) |%noBranch|) |%noBranch|)) +((-2951 ((|#1| (-852) |#1|) 9))) +(((-957 |#1|) (-10 -7 (-15 -2951 (|#1| (-852) |#1|))) (-13 (-1016) (-10 -8 (-15 -4045 ($ $ $))))) (T -957)) +((-2951 (*1 *2 *3 *2) (-12 (-5 *3 (-852)) (-5 *1 (-957 *2)) (-4 *2 (-13 (-1016) (-10 -8 (-15 -4045 ($ $ $)))))))) +(-10 -7 (-15 -2951 (|#1| (-852) |#1|))) +((-4088 (((-589 (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) (|:| |radvect| (-589 (-629 (-292 (-523))))))) (-629 (-383 (-883 (-523))))) 58)) (-3947 (((-589 (-629 (-292 (-523)))) (-292 (-523)) (-629 (-383 (-883 (-523))))) 48)) (-1639 (((-589 (-292 (-523))) (-629 (-383 (-883 (-523))))) 41)) (-4162 (((-589 (-629 (-292 (-523)))) (-629 (-383 (-883 (-523))))) 68)) (-2097 (((-629 (-292 (-523))) (-629 (-292 (-523)))) 33)) (-4125 (((-589 (-629 (-292 (-523)))) (-589 (-629 (-292 (-523))))) 61)) (-2275 (((-3 (-629 (-292 (-523))) "failed") (-629 (-383 (-883 (-523))))) 65))) +(((-958) (-10 -7 (-15 -4088 ((-589 (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) (|:| |radvect| (-589 (-629 (-292 (-523))))))) (-629 (-383 (-883 (-523)))))) (-15 -3947 ((-589 (-629 (-292 (-523)))) (-292 (-523)) (-629 (-383 (-883 (-523)))))) (-15 -1639 ((-589 (-292 (-523))) (-629 (-383 (-883 (-523)))))) (-15 -2275 ((-3 (-629 (-292 (-523))) "failed") (-629 (-383 (-883 (-523)))))) (-15 -2097 ((-629 (-292 (-523))) (-629 (-292 (-523))))) (-15 -4125 ((-589 (-629 (-292 (-523)))) (-589 (-629 (-292 (-523)))))) (-15 -4162 ((-589 (-629 (-292 (-523)))) (-629 (-383 (-883 (-523)))))))) (T -958)) +((-4162 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958)))) (-4125 (*1 *2 *2) (-12 (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958)))) (-2097 (*1 *2 *2) (-12 (-5 *2 (-629 (-292 (-523)))) (-5 *1 (-958)))) (-2275 (*1 *2 *3) (|partial| -12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-629 (-292 (-523)))) (-5 *1 (-958)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-292 (-523)))) (-5 *1 (-958)))) (-3947 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958)) (-5 *3 (-292 (-523))))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) (|:| |radvect| (-589 (-629 (-292 (-523)))))))) (-5 *1 (-958))))) +(-10 -7 (-15 -4088 ((-589 (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) (|:| |radvect| (-589 (-629 (-292 (-523))))))) (-629 (-383 (-883 (-523)))))) (-15 -3947 ((-589 (-629 (-292 (-523)))) (-292 (-523)) (-629 (-383 (-883 (-523)))))) (-15 -1639 ((-589 (-292 (-523))) (-629 (-383 (-883 (-523)))))) (-15 -2275 ((-3 (-629 (-292 (-523))) "failed") (-629 (-383 (-883 (-523)))))) (-15 -2097 ((-629 (-292 (-523))) (-629 (-292 (-523))))) (-15 -4125 ((-589 (-629 (-292 (-523)))) (-589 (-629 (-292 (-523)))))) (-15 -4162 ((-589 (-629 (-292 (-523)))) (-629 (-383 (-883 (-523))))))) +((-2981 ((|#1| |#1| (-852)) 9))) +(((-959 |#1|) (-10 -7 (-15 -2981 (|#1| |#1| (-852)))) (-13 (-1016) (-10 -8 (-15 * ($ $ $))))) (T -959)) +((-2981 (*1 *2 *2 *3) (-12 (-5 *3 (-852)) (-5 *1 (-959 *2)) (-4 *2 (-13 (-1016) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -2981 (|#1| |#1| (-852)))) +((-1691 ((|#1| (-288)) 11) (((-1174) |#1|) 9))) +(((-960 |#1|) (-10 -7 (-15 -1691 ((-1174) |#1|)) (-15 -1691 (|#1| (-288)))) (-1123)) (T -960)) +((-1691 (*1 *2 *3) (-12 (-5 *3 (-288)) (-5 *1 (-960 *2)) (-4 *2 (-1123)))) (-1691 (*1 *2 *3) (-12 (-5 *2 (-1174)) (-5 *1 (-960 *3)) (-4 *3 (-1123))))) +(-10 -7 (-15 -1691 ((-1174) |#1|)) (-15 -1691 (|#1| (-288)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-2116 (($ |#4|) 25)) (-1444 (((-3 $ "failed") $) NIL)) (-2769 (((-108) $) NIL)) (-2104 ((|#4| $) 27)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 46) (($ (-523)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3272 (((-710)) 43)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 21 T CONST)) (-1891 (($) 23 T CONST)) (-3941 (((-108) $ $) 40)) (-4060 (($ $) 31) (($ $ $) NIL)) (-4045 (($ $ $) 29)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-961 |#1| |#2| |#3| |#4| |#5|) (-13 (-158) (-37 |#1|) (-10 -8 (-15 -2116 ($ |#4|)) (-15 -1691 ($ |#4|)) (-15 -2104 (|#4| $)))) (-339) (-732) (-786) (-880 |#1| |#2| |#3|) (-589 |#4|)) (T -961)) +((-2116 (*1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *2 (-880 *3 *4 *5)) (-14 *6 (-589 *2)))) (-1691 (*1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *2 (-880 *3 *4 *5)) (-14 *6 (-589 *2)))) (-2104 (*1 *2 *1) (-12 (-4 *2 (-880 *3 *4 *5)) (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-14 *6 (-589 *2))))) +(-13 (-158) (-37 |#1|) (-10 -8 (-15 -2116 ($ |#4|)) (-15 -1691 ($ |#4|)) (-15 -2104 (|#4| $)))) +((-1680 (((-108) $ $) NIL (-3172 (|has| (-51) (-1016)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016))))) (-3723 (($) NIL) (($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) NIL)) (-4191 (((-1174) $ (-1087) (-1087)) NIL (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) NIL)) (-3400 (((-108) (-108)) 39)) (-2772 (((-108) (-108)) 38)) (-1849 (((-51) $ (-1087) (-51)) NIL)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248)))) (-4216 (((-3 (-51) "failed") (-1087) $) NIL)) (-4189 (($) NIL T CONST)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016))))) (-3286 (($ (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) NIL (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-3 (-51) "failed") (-1087) $) NIL)) (-2514 (($ (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (($ (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $ (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (((-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $ (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248)))) (-2053 (((-51) $ (-1087) (-51)) NIL (|has| $ (-6 -4249)))) (-2000 (((-51) $ (-1087)) NIL)) (-1871 (((-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-589 (-51)) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-1087) $) NIL (|has| (-1087) (-786)))) (-1584 (((-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-589 (-51)) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-51) (-1016))))) (-2567 (((-1087) $) NIL (|has| (-1087) (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4249))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (-3172 (|has| (-51) (-1016)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016))))) (-1255 (((-589 (-1087)) $) 34)) (-1862 (((-108) (-1087) $) NIL)) (-1293 (((-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) NIL)) (-3108 (($ (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) NIL)) (-2536 (((-589 (-1087)) $) NIL)) (-2254 (((-108) (-1087) $) NIL)) (-3951 (((-1034) $) NIL (-3172 (|has| (-51) (-1016)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016))))) (-2428 (((-51) $) NIL (|has| (-1087) (-786)))) (-2509 (((-3 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) "failed") (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL)) (-4141 (($ $ (-51)) NIL (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) NIL)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))))) NIL (-12 (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (($ $ (-271 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) NIL (-12 (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (($ $ (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) NIL (-12 (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (($ $ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) NIL (-12 (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (($ $ (-589 (-51)) (-589 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-271 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-589 (-271 (-51)))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-51) (-1016))))) (-3973 (((-589 (-51)) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 (((-51) $ (-1087)) 35) (((-51) $ (-1087) (-51)) NIL)) (-2963 (($) NIL) (($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) NIL)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (((-710) (-51) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-51) (-1016)))) (((-710) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) NIL)) (-1691 (((-794) $) 37 (-3172 (|has| (-51) (-563 (-794))) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-563 (-794)))))) (-2417 (($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) NIL)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (-3172 (|has| (-51) (-1016)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016))))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-962) (-13 (-1100 (-1087) (-51)) (-10 -7 (-15 -3400 ((-108) (-108))) (-15 -2772 ((-108) (-108))) (-6 -4248)))) (T -962)) +((-3400 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-962)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-962))))) +(-13 (-1100 (-1087) (-51)) (-10 -7 (-15 -3400 ((-108) (-108))) (-15 -2772 ((-108) (-108))) (-6 -4248))) +((-3508 ((|#2| $) 10))) +(((-963 |#1| |#2|) (-10 -8 (-15 -3508 (|#2| |#1|))) (-964 |#2|) (-1123)) (T -963)) +NIL +(-10 -8 (-15 -3508 (|#2| |#1|))) +((-1220 (((-3 |#1| "failed") $) 7)) (-3508 ((|#1| $) 8)) (-1691 (($ |#1|) 6))) +(((-964 |#1|) (-129) (-1123)) (T -964)) +((-3508 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1123)))) (-1220 (*1 *2 *1) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1123)))) (-1691 (*1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1123))))) +(-13 (-10 -8 (-15 -1691 ($ |t#1|)) (-15 -1220 ((-3 |t#1| "failed") $)) (-15 -3508 (|t#1| $)))) +((-2152 (((-589 (-589 (-271 (-383 (-883 |#2|))))) (-589 (-883 |#2|)) (-589 (-1087))) 35))) +(((-965 |#1| |#2|) (-10 -7 (-15 -2152 ((-589 (-589 (-271 (-383 (-883 |#2|))))) (-589 (-883 |#2|)) (-589 (-1087))))) (-515) (-13 (-515) (-964 |#1|))) (T -965)) +((-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-4 *6 (-13 (-515) (-964 *5))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *6)))))) (-5 *1 (-965 *5 *6))))) +(-10 -7 (-15 -2152 ((-589 (-589 (-271 (-383 (-883 |#2|))))) (-589 (-883 |#2|)) (-589 (-1087))))) +((-3926 (((-355)) 15)) (-2696 (((-1 (-355)) (-355) (-355)) 20)) (-1219 (((-1 (-355)) (-710)) 43)) (-3555 (((-355)) 34)) (-3671 (((-1 (-355)) (-355) (-355)) 35)) (-3090 (((-355)) 26)) (-2840 (((-1 (-355)) (-355)) 27)) (-2284 (((-355) (-710)) 38)) (-3280 (((-1 (-355)) (-710)) 39)) (-3539 (((-1 (-355)) (-710) (-710)) 42)) (-4056 (((-1 (-355)) (-710) (-710)) 40))) +(((-966) (-10 -7 (-15 -3926 ((-355))) (-15 -3555 ((-355))) (-15 -3090 ((-355))) (-15 -2284 ((-355) (-710))) (-15 -2696 ((-1 (-355)) (-355) (-355))) (-15 -3671 ((-1 (-355)) (-355) (-355))) (-15 -2840 ((-1 (-355)) (-355))) (-15 -3280 ((-1 (-355)) (-710))) (-15 -4056 ((-1 (-355)) (-710) (-710))) (-15 -3539 ((-1 (-355)) (-710) (-710))) (-15 -1219 ((-1 (-355)) (-710))))) (T -966)) +((-1219 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) (-3539 (*1 *2 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) (-4056 (*1 *2 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) (-2840 (*1 *2 *3) (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355)))) (-3671 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355)))) (-2696 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-355)) (-5 *1 (-966)))) (-3090 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966)))) (-3555 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966)))) (-3926 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966))))) +(-10 -7 (-15 -3926 ((-355))) (-15 -3555 ((-355))) (-15 -3090 ((-355))) (-15 -2284 ((-355) (-710))) (-15 -2696 ((-1 (-355)) (-355) (-355))) (-15 -3671 ((-1 (-355)) (-355) (-355))) (-15 -2840 ((-1 (-355)) (-355))) (-15 -3280 ((-1 (-355)) (-710))) (-15 -4056 ((-1 (-355)) (-710) (-710))) (-15 -3539 ((-1 (-355)) (-710) (-710))) (-15 -1219 ((-1 (-355)) (-710)))) +((-2424 (((-394 |#1|) |#1|) 31))) +(((-967 |#1|) (-10 -7 (-15 -2424 ((-394 |#1|) |#1|))) (-1145 (-383 (-883 (-523))))) (T -967)) +((-2424 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-967 *3)) (-4 *3 (-1145 (-383 (-883 (-523)))))))) +(-10 -7 (-15 -2424 ((-394 |#1|) |#1|))) +((-1331 (((-383 (-394 (-883 |#1|))) (-383 (-883 |#1|))) 14))) +(((-968 |#1|) (-10 -7 (-15 -1331 ((-383 (-394 (-883 |#1|))) (-383 (-883 |#1|))))) (-284)) (T -968)) +((-1331 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-284)) (-5 *2 (-383 (-394 (-883 *4)))) (-5 *1 (-968 *4))))) +(-10 -7 (-15 -1331 ((-383 (-394 (-883 |#1|))) (-383 (-883 |#1|))))) +((-1292 (((-589 (-1087)) (-383 (-883 |#1|))) 15)) (-2389 (((-383 (-1083 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087)) 22)) (-1280 (((-383 (-883 |#1|)) (-383 (-1083 (-383 (-883 |#1|)))) (-1087)) 24)) (-4213 (((-3 (-1087) "failed") (-383 (-883 |#1|))) 18)) (-2812 (((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-271 (-383 (-883 |#1|))))) 29) (((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|)))) 31) (((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-1087)) (-589 (-383 (-883 |#1|)))) 26) (((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|))) 27)) (-1691 (((-383 (-883 |#1|)) |#1|) 11))) +(((-969 |#1|) (-10 -7 (-15 -1292 ((-589 (-1087)) (-383 (-883 |#1|)))) (-15 -4213 ((-3 (-1087) "failed") (-383 (-883 |#1|)))) (-15 -2389 ((-383 (-1083 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087))) (-15 -1280 ((-383 (-883 |#1|)) (-383 (-1083 (-383 (-883 |#1|)))) (-1087))) (-15 -2812 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)))) (-15 -2812 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-1087)) (-589 (-383 (-883 |#1|))))) (-15 -2812 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -2812 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -1691 ((-383 (-883 |#1|)) |#1|))) (-515)) (T -969)) +((-1691 (*1 *2 *3) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-969 *3)) (-4 *3 (-515)))) (-2812 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-271 (-383 (-883 *4))))) (-5 *2 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *1 (-969 *4)))) (-2812 (*1 *2 *2 *3) (-12 (-5 *3 (-271 (-383 (-883 *4)))) (-5 *2 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *1 (-969 *4)))) (-2812 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-589 (-1087))) (-5 *4 (-589 (-383 (-883 *5)))) (-5 *2 (-383 (-883 *5))) (-4 *5 (-515)) (-5 *1 (-969 *5)))) (-2812 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-383 (-883 *4))) (-5 *3 (-1087)) (-4 *4 (-515)) (-5 *1 (-969 *4)))) (-1280 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-1083 (-383 (-883 *5))))) (-5 *4 (-1087)) (-5 *2 (-383 (-883 *5))) (-5 *1 (-969 *5)) (-4 *5 (-515)))) (-2389 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-515)) (-5 *2 (-383 (-1083 (-383 (-883 *5))))) (-5 *1 (-969 *5)) (-5 *3 (-383 (-883 *5))))) (-4213 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-1087)) (-5 *1 (-969 *4)))) (-1292 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-589 (-1087))) (-5 *1 (-969 *4))))) +(-10 -7 (-15 -1292 ((-589 (-1087)) (-383 (-883 |#1|)))) (-15 -4213 ((-3 (-1087) "failed") (-383 (-883 |#1|)))) (-15 -2389 ((-383 (-1083 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087))) (-15 -1280 ((-383 (-883 |#1|)) (-383 (-1083 (-383 (-883 |#1|)))) (-1087))) (-15 -2812 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)))) (-15 -2812 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-1087)) (-589 (-383 (-883 |#1|))))) (-15 -2812 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -2812 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -1691 ((-383 (-883 |#1|)) |#1|))) +((-1680 (((-108) $ $) NIL)) (-3385 (((-589 (-2 (|:| -1214 $) (|:| -2647 (-589 (-719 |#1| (-796 |#2|)))))) (-589 (-719 |#1| (-796 |#2|)))) NIL)) (-2591 (((-589 $) (-589 (-719 |#1| (-796 |#2|)))) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-108)) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-108) (-108)) NIL)) (-1292 (((-589 (-796 |#2|)) $) NIL)) (-2356 (((-108) $) NIL)) (-2192 (((-108) $) NIL (|has| |#1| (-515)))) (-2219 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-2717 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-3718 (((-589 (-2 (|:| |val| (-719 |#1| (-796 |#2|))) (|:| -3643 $))) (-719 |#1| (-796 |#2|)) $) NIL)) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ (-796 |#2|)) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1903 (($ (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-3 (-719 |#1| (-796 |#2|)) "failed") $ (-796 |#2|)) NIL)) (-4189 (($) NIL T CONST)) (-4002 (((-108) $) NIL (|has| |#1| (-515)))) (-3577 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3527 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2611 (((-108) $) NIL (|has| |#1| (-515)))) (-3586 (((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))) $ (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL)) (-1291 (((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))) $) NIL (|has| |#1| (-515)))) (-1804 (((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))) $) NIL (|has| |#1| (-515)))) (-1220 (((-3 $ "failed") (-589 (-719 |#1| (-796 |#2|)))) NIL)) (-3508 (($ (-589 (-719 |#1| (-796 |#2|)))) NIL)) (-2441 (((-3 $ "failed") $) NIL)) (-3546 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-719 |#1| (-796 |#2|)) (-1016))))) (-2514 (($ (-719 |#1| (-796 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (($ (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-3969 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-719 |#1| (-796 |#2|))) (|:| |den| |#1|)) (-719 |#1| (-796 |#2|)) $) NIL (|has| |#1| (-515)))) (-3087 (((-108) (-719 |#1| (-796 |#2|)) $ (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL)) (-2848 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2116 (((-719 |#1| (-796 |#2|)) (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $ (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (((-719 |#1| (-796 |#2|)) (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $ (-719 |#1| (-796 |#2|))) NIL (|has| $ (-6 -4248))) (((-719 |#1| (-796 |#2|)) (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $ (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL)) (-2860 (((-2 (|:| -1214 (-589 (-719 |#1| (-796 |#2|)))) (|:| -2647 (-589 (-719 |#1| (-796 |#2|))))) $) NIL)) (-2607 (((-108) (-719 |#1| (-796 |#2|)) $) NIL)) (-2072 (((-108) (-719 |#1| (-796 |#2|)) $) NIL)) (-3149 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-1871 (((-589 (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2605 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-3556 (((-796 |#2|) $) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-719 |#1| (-796 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-719 |#1| (-796 |#2|)) (-1016))))) (-2043 (($ (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $) NIL)) (-2709 (((-589 (-796 |#2|)) $) NIL)) (-2528 (((-108) (-796 |#2|) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-3715 (((-3 (-719 |#1| (-796 |#2|)) (-589 $)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-3173 (((-589 (-2 (|:| |val| (-719 |#1| (-796 |#2|))) (|:| -3643 $))) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2535 (((-3 (-719 |#1| (-796 |#2|)) "failed") $) NIL)) (-3130 (((-589 $) (-719 |#1| (-796 |#2|)) $) NIL)) (-1338 (((-3 (-108) (-589 $)) (-719 |#1| (-796 |#2|)) $) NIL)) (-1446 (((-589 (-2 (|:| |val| (-108)) (|:| -3643 $))) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) (-719 |#1| (-796 |#2|)) $) NIL)) (-3196 (((-589 $) (-719 |#1| (-796 |#2|)) $) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) $) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-589 $)) NIL) (((-589 $) (-719 |#1| (-796 |#2|)) (-589 $)) NIL)) (-2190 (($ (-719 |#1| (-796 |#2|)) $) NIL) (($ (-589 (-719 |#1| (-796 |#2|))) $) NIL)) (-2455 (((-589 (-719 |#1| (-796 |#2|))) $) NIL)) (-2490 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-2960 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2303 (((-108) $ $) NIL)) (-3473 (((-2 (|:| |num| (-719 |#1| (-796 |#2|))) (|:| |den| |#1|)) (-719 |#1| (-796 |#2|)) $) NIL (|has| |#1| (-515)))) (-2569 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-2897 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-3951 (((-1034) $) NIL)) (-2428 (((-3 (-719 |#1| (-796 |#2|)) "failed") $) NIL)) (-2509 (((-3 (-719 |#1| (-796 |#2|)) "failed") (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL)) (-3367 (((-3 $ "failed") $ (-719 |#1| (-796 |#2|))) NIL)) (-3053 (($ $ (-719 |#1| (-796 |#2|))) NIL) (((-589 $) (-719 |#1| (-796 |#2|)) $) NIL) (((-589 $) (-719 |#1| (-796 |#2|)) (-589 $)) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) $) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-589 $)) NIL)) (-3379 (((-108) (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|)))) NIL (-12 (|has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|)))) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (($ $ (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) NIL (-12 (|has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|)))) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (($ $ (-271 (-719 |#1| (-796 |#2|)))) NIL (-12 (|has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|)))) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (($ $ (-589 (-271 (-719 |#1| (-796 |#2|))))) NIL (-12 (|has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|)))) (|has| (-719 |#1| (-796 |#2|)) (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-2640 (((-710) $) NIL)) (-3977 (((-710) (-719 |#1| (-796 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (((-710) (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-719 |#1| (-796 |#2|)) (-564 (-499))))) (-1704 (($ (-589 (-719 |#1| (-796 |#2|)))) NIL)) (-2712 (($ $ (-796 |#2|)) NIL)) (-2742 (($ $ (-796 |#2|)) NIL)) (-1494 (($ $) NIL)) (-1591 (($ $ (-796 |#2|)) NIL)) (-1691 (((-794) $) NIL) (((-589 (-719 |#1| (-796 |#2|))) $) NIL)) (-2868 (((-710) $) NIL (|has| (-796 |#2|) (-344)))) (-1645 (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 (-719 |#1| (-796 |#2|))))) "failed") (-589 (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 (-719 |#1| (-796 |#2|))))) "failed") (-589 (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL)) (-3684 (((-108) $ (-1 (-108) (-719 |#1| (-796 |#2|)) (-589 (-719 |#1| (-796 |#2|))))) NIL)) (-3817 (((-589 $) (-719 |#1| (-796 |#2|)) $) NIL) (((-589 $) (-719 |#1| (-796 |#2|)) (-589 $)) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) $) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-589 $)) NIL)) (-2308 (((-108) (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-1574 (((-589 (-796 |#2|)) $) NIL)) (-2776 (((-108) (-719 |#1| (-796 |#2|)) $) NIL)) (-1747 (((-108) (-796 |#2|) $) NIL)) (-3941 (((-108) $ $) NIL)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-970 |#1| |#2|) (-13 (-992 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|))) (-10 -8 (-15 -2591 ((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-108) (-108))))) (-427) (-589 (-1087))) (T -970)) +((-2591 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-970 *5 *6))))) +(-13 (-992 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|))) (-10 -8 (-15 -2591 ((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-108) (-108))))) +((-2696 (((-1 (-523)) (-1011 (-523))) 33)) (-4129 (((-523) (-523) (-523) (-523) (-523)) 30)) (-3960 (((-1 (-523)) |RationalNumber|) NIL)) (-2274 (((-1 (-523)) |RationalNumber|) NIL)) (-3435 (((-1 (-523)) (-523) |RationalNumber|) NIL))) +(((-971) (-10 -7 (-15 -2696 ((-1 (-523)) (-1011 (-523)))) (-15 -3435 ((-1 (-523)) (-523) |RationalNumber|)) (-15 -3960 ((-1 (-523)) |RationalNumber|)) (-15 -2274 ((-1 (-523)) |RationalNumber|)) (-15 -4129 ((-523) (-523) (-523) (-523) (-523))))) (T -971)) +((-4129 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-971)))) (-2274 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971)))) (-3960 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971)))) (-3435 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971)) (-5 *3 (-523)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-1011 (-523))) (-5 *2 (-1 (-523))) (-5 *1 (-971))))) +(-10 -7 (-15 -2696 ((-1 (-523)) (-1011 (-523)))) (-15 -3435 ((-1 (-523)) (-523) |RationalNumber|)) (-15 -3960 ((-1 (-523)) |RationalNumber|)) (-15 -2274 ((-1 (-523)) |RationalNumber|)) (-15 -4129 ((-523) (-523) (-523) (-523) (-523)))) +((-1691 (((-794) $) NIL) (($ (-523)) 10))) +(((-972 |#1|) (-10 -8 (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) (-973)) (T -972)) +NIL +(-10 -8 (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ (-523)) 28)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-973) (-129)) (T -973)) -((-1621 (*1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-710)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-973))))) -(-13 (-980) (-666) (-591 $) (-10 -8 (-15 -1621 ((-710))) (-15 -1458 ($ (-523))) (-6 -4241))) +((-3272 (*1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-710)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-973))))) +(-13 (-980) (-666) (-591 $) (-10 -8 (-15 -3272 ((-710))) (-15 -1691 ($ (-523))) (-6 -4245))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-1201 (((-383 (-883 |#2|)) (-589 |#2|) (-589 |#2|) (-710) (-710)) 45))) -(((-974 |#1| |#2|) (-10 -7 (-15 -1201 ((-383 (-883 |#2|)) (-589 |#2|) (-589 |#2|) (-710) (-710)))) (-1087) (-339)) (T -974)) -((-1201 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-710)) (-4 *6 (-339)) (-5 *2 (-383 (-883 *6))) (-5 *1 (-974 *5 *6)) (-14 *5 (-1087))))) -(-10 -7 (-15 -1201 ((-383 (-883 |#2|)) (-589 |#2|) (-589 |#2|) (-710) (-710)))) -((-2606 (((-108) $) 28)) (-2651 (((-108) $) 16)) (-2803 (((-710) $) 13)) (-2813 (((-710) $) 14)) (-3117 (((-108) $) 26)) (-2175 (((-108) $) 30))) -(((-975 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2813 ((-710) |#1|)) (-15 -2803 ((-710) |#1|)) (-15 -2175 ((-108) |#1|)) (-15 -2606 ((-108) |#1|)) (-15 -3117 ((-108) |#1|)) (-15 -2651 ((-108) |#1|))) (-976 |#2| |#3| |#4| |#5| |#6|) (-710) (-710) (-973) (-216 |#3| |#4|) (-216 |#2| |#4|)) (T -975)) -NIL -(-10 -8 (-15 -2813 ((-710) |#1|)) (-15 -2803 ((-710) |#1|)) (-15 -2175 ((-108) |#1|)) (-15 -2606 ((-108) |#1|)) (-15 -3117 ((-108) |#1|)) (-15 -2651 ((-108) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2606 (((-108) $) 51)) (-3212 (((-3 $ "failed") $ $) 19)) (-2651 (((-108) $) 53)) (-3079 (((-108) $ (-710)) 61)) (-2518 (($) 17 T CONST)) (-2445 (($ $) 34 (|has| |#3| (-284)))) (-2031 ((|#4| $ (-523)) 39)) (-1319 (((-710) $) 33 (|has| |#3| (-515)))) (-2795 ((|#3| $ (-523) (-523)) 41)) (-1666 (((-589 |#3|) $) 68 (|has| $ (-6 -4244)))) (-1867 (((-710) $) 32 (|has| |#3| (-515)))) (-3498 (((-589 |#5|) $) 31 (|has| |#3| (-515)))) (-2803 (((-710) $) 45)) (-2813 (((-710) $) 44)) (-2346 (((-108) $ (-710)) 60)) (-3871 (((-523) $) 49)) (-1758 (((-523) $) 47)) (-2136 (((-589 |#3|) $) 69 (|has| $ (-6 -4244)))) (-1973 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1016)) (|has| $ (-6 -4244))))) (-3338 (((-523) $) 48)) (-2347 (((-523) $) 46)) (-3068 (($ (-589 (-589 |#3|))) 54)) (-2852 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2289 (((-589 (-589 |#3|)) $) 43)) (-2866 (((-108) $ (-710)) 59)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-515)))) (-1327 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#3|) (-589 |#3|)) 75 (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-271 |#3|)) 73 (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-589 (-271 |#3|))) 72 (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))))) (-3811 (((-108) $ $) 55)) (-3883 (((-108) $) 58)) (-3988 (($) 57)) (-3223 ((|#3| $ (-523) (-523)) 42) ((|#3| $ (-523) (-523) |#3|) 40)) (-3117 (((-108) $) 52)) (-2792 (((-710) |#3| $) 70 (-12 (|has| |#3| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4244)))) (-1664 (($ $) 56)) (-1595 ((|#5| $ (-523)) 38)) (-1458 (((-794) $) 11)) (-2096 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4244)))) (-2175 (((-108) $) 50)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#3|) 35 (|has| |#3| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2676 (((-710) $) 62 (|has| $ (-6 -4244))))) +((-1528 (((-383 (-883 |#2|)) (-589 |#2|) (-589 |#2|) (-710) (-710)) 45))) +(((-974 |#1| |#2|) (-10 -7 (-15 -1528 ((-383 (-883 |#2|)) (-589 |#2|) (-589 |#2|) (-710) (-710)))) (-1087) (-339)) (T -974)) +((-1528 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-710)) (-4 *6 (-339)) (-5 *2 (-383 (-883 *6))) (-5 *1 (-974 *5 *6)) (-14 *5 (-1087))))) +(-10 -7 (-15 -1528 ((-383 (-883 |#2|)) (-589 |#2|) (-589 |#2|) (-710) (-710)))) +((-3735 (((-108) $) 29)) (-2989 (((-108) $) 16)) (-1357 (((-710) $) 13)) (-1370 (((-710) $) 14)) (-1956 (((-108) $) 26)) (-3749 (((-108) $) 31))) +(((-975 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1370 ((-710) |#1|)) (-15 -1357 ((-710) |#1|)) (-15 -3749 ((-108) |#1|)) (-15 -3735 ((-108) |#1|)) (-15 -1956 ((-108) |#1|)) (-15 -2989 ((-108) |#1|))) (-976 |#2| |#3| |#4| |#5| |#6|) (-710) (-710) (-973) (-216 |#3| |#4|) (-216 |#2| |#4|)) (T -975)) +NIL +(-10 -8 (-15 -1370 ((-710) |#1|)) (-15 -1357 ((-710) |#1|)) (-15 -3749 ((-108) |#1|)) (-15 -3735 ((-108) |#1|)) (-15 -1956 ((-108) |#1|)) (-15 -2989 ((-108) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3735 (((-108) $) 51)) (-3405 (((-3 $ "failed") $ $) 19)) (-2989 (((-108) $) 53)) (-1620 (((-108) $ (-710)) 61)) (-4189 (($) 17 T CONST)) (-1678 (($ $) 34 (|has| |#3| (-284)))) (-2827 ((|#4| $ (-523)) 39)) (-3569 (((-710) $) 33 (|has| |#3| (-515)))) (-2000 ((|#3| $ (-523) (-523)) 41)) (-1871 (((-589 |#3|) $) 68 (|has| $ (-6 -4248)))) (-1835 (((-710) $) 32 (|has| |#3| (-515)))) (-2454 (((-589 |#5|) $) 31 (|has| |#3| (-515)))) (-1357 (((-710) $) 45)) (-1370 (((-710) $) 44)) (-3051 (((-108) $ (-710)) 60)) (-1665 (((-523) $) 49)) (-2082 (((-523) $) 47)) (-1584 (((-589 |#3|) $) 69 (|has| $ (-6 -4248)))) (-3423 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1016)) (|has| $ (-6 -4248))))) (-3231 (((-523) $) 48)) (-3060 (((-523) $) 46)) (-3648 (($ (-589 (-589 |#3|))) 54)) (-2043 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3692 (((-589 (-589 |#3|)) $) 43)) (-1418 (((-108) $ (-710)) 59)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-4007 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-515)))) (-3379 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#3|) (-589 |#3|)) 75 (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-271 |#3|)) 73 (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-589 (-271 |#3|))) 72 (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))))) (-2267 (((-108) $ $) 55)) (-1777 (((-108) $) 58)) (-3320 (($) 57)) (-1937 ((|#3| $ (-523) (-523)) 42) ((|#3| $ (-523) (-523) |#3|) 40)) (-1956 (((-108) $) 52)) (-3977 (((-710) |#3| $) 70 (-12 (|has| |#3| (-1016)) (|has| $ (-6 -4248)))) (((-710) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4248)))) (-1874 (($ $) 56)) (-1249 ((|#5| $ (-523)) 38)) (-1691 (((-794) $) 11)) (-2308 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4248)))) (-3749 (((-108) $) 50)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#3|) 35 (|has| |#3| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2810 (((-710) $) 62 (|has| $ (-6 -4248))))) (((-976 |#1| |#2| |#3| |#4| |#5|) (-129) (-710) (-710) (-973) (-216 |t#2| |t#3|) (-216 |t#1| |t#3|)) (T -976)) -((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *5))) (-4 *5 (-973)) (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-710)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-710)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-589 (-589 *5))))) (-3223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)) (-4 *2 (-973)))) (-2795 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)) (-4 *2 (-973)))) (-3223 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) (-4 *2 (-973)) (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)))) (-2031 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *6 *2 *7)) (-4 *6 (-973)) (-4 *7 (-216 *4 *6)) (-4 *2 (-216 *5 *6)))) (-1595 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *6 *7 *2)) (-4 *6 (-973)) (-4 *7 (-216 *5 *6)) (-4 *2 (-216 *4 *6)))) (-3612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) (-3746 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-976 *3 *4 *2 *5 *6)) (-4 *2 (-973)) (-4 *5 (-216 *4 *2)) (-4 *6 (-216 *3 *2)) (-4 *2 (-515)))) (-4098 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5 *6)) (-4 *2 (-973)) (-4 *5 (-216 *4 *2)) (-4 *6 (-216 *3 *2)) (-4 *2 (-339)))) (-2445 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *2 *4)) (-4 *4 (-284)))) (-1319 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) (-5 *2 (-710)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) (-5 *2 (-710)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) (-5 *2 (-589 *7))))) -(-13 (-107 |t#3| |t#3|) (-462 |t#3|) (-10 -8 (-6 -4244) (IF (|has| |t#3| (-158)) (-6 (-657 |t#3|)) |%noBranch|) (-15 -3068 ($ (-589 (-589 |t#3|)))) (-15 -2651 ((-108) $)) (-15 -3117 ((-108) $)) (-15 -2606 ((-108) $)) (-15 -2175 ((-108) $)) (-15 -3871 ((-523) $)) (-15 -3338 ((-523) $)) (-15 -1758 ((-523) $)) (-15 -2347 ((-523) $)) (-15 -2803 ((-710) $)) (-15 -2813 ((-710) $)) (-15 -2289 ((-589 (-589 |t#3|)) $)) (-15 -3223 (|t#3| $ (-523) (-523))) (-15 -2795 (|t#3| $ (-523) (-523))) (-15 -3223 (|t#3| $ (-523) (-523) |t#3|)) (-15 -2031 (|t#4| $ (-523))) (-15 -1595 (|t#5| $ (-523))) (-15 -3612 ($ (-1 |t#3| |t#3|) $)) (-15 -3612 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-515)) (-15 -3746 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-339)) (-15 -4098 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-284)) (-15 -2445 ($ $)) |%noBranch|) (IF (|has| |t#3| (-515)) (PROGN (-15 -1319 ((-710) $)) (-15 -1867 ((-710) $)) (-15 -3498 ((-589 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-124) . T) ((-563 (-794)) . T) ((-286 |#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))) ((-462 |#3|) . T) ((-484 |#3| |#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))) ((-591 |#3|) . T) ((-657 |#3|) |has| |#3| (-158)) ((-979 |#3|) . T) ((-1016) . T) ((-1122) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2606 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2651 (((-108) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-2518 (($) NIL T CONST)) (-2445 (($ $) 40 (|has| |#3| (-284)))) (-2031 (((-218 |#2| |#3|) $ (-523)) 29)) (-3578 (($ (-629 |#3|)) 38)) (-1319 (((-710) $) 42 (|has| |#3| (-515)))) (-2795 ((|#3| $ (-523) (-523)) NIL)) (-1666 (((-589 |#3|) $) NIL (|has| $ (-6 -4244)))) (-1867 (((-710) $) 44 (|has| |#3| (-515)))) (-3498 (((-589 (-218 |#1| |#3|)) $) 48 (|has| |#3| (-515)))) (-2803 (((-710) $) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-3871 (((-523) $) NIL)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#3|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-3338 (((-523) $) NIL)) (-2347 (((-523) $) NIL)) (-3068 (($ (-589 (-589 |#3|))) 24)) (-2852 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2289 (((-589 (-589 |#3|)) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-515)))) (-1327 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#3|) (-589 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-271 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-589 (-271 |#3|))) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#3| $ (-523) (-523)) NIL) ((|#3| $ (-523) (-523) |#3|) NIL)) (-3203 (((-126)) 51 (|has| |#3| (-339)))) (-3117 (((-108) $) NIL)) (-2792 (((-710) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016)))) (((-710) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) 60 (|has| |#3| (-564 (-499))))) (-1595 (((-218 |#1| |#3|) $ (-523)) 33)) (-1458 (((-794) $) 16) (((-629 |#3|) $) 35)) (-2096 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-2175 (((-108) $) NIL)) (-2756 (($) 13 T CONST)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#3|) NIL (|has| |#3| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-977 |#1| |#2| |#3|) (-13 (-976 |#1| |#2| |#3| (-218 |#2| |#3|) (-218 |#1| |#3|)) (-563 (-629 |#3|)) (-10 -8 (IF (|has| |#3| (-339)) (-6 (-1175 |#3|)) |%noBranch|) (IF (|has| |#3| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (-15 -3578 ($ (-629 |#3|))) (-15 -1458 ((-629 |#3|) $)))) (-710) (-710) (-973)) (T -977)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-629 *5)) (-5 *1 (-977 *3 *4 *5)) (-14 *3 (-710)) (-14 *4 (-710)) (-4 *5 (-973)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-629 *5)) (-4 *5 (-973)) (-5 *1 (-977 *3 *4 *5)) (-14 *3 (-710)) (-14 *4 (-710))))) -(-13 (-976 |#1| |#2| |#3| (-218 |#2| |#3|) (-218 |#1| |#3|)) (-563 (-629 |#3|)) (-10 -8 (IF (|has| |#3| (-339)) (-6 (-1175 |#3|)) |%noBranch|) (IF (|has| |#3| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (-15 -3578 ($ (-629 |#3|))) (-15 -1458 ((-629 |#3|) $)))) -((-2437 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3612 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-978 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3612 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2437 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-710) (-710) (-973) (-216 |#2| |#3|) (-216 |#1| |#3|) (-976 |#1| |#2| |#3| |#4| |#5|) (-973) (-216 |#2| |#7|) (-216 |#1| |#7|) (-976 |#1| |#2| |#7| |#8| |#9|)) (T -978)) -((-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-973)) (-4 *2 (-973)) (-14 *5 (-710)) (-14 *6 (-710)) (-4 *8 (-216 *6 *7)) (-4 *9 (-216 *5 *7)) (-4 *10 (-216 *6 *2)) (-4 *11 (-216 *5 *2)) (-5 *1 (-978 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-976 *5 *6 *7 *8 *9)) (-4 *12 (-976 *5 *6 *2 *10 *11)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-973)) (-4 *10 (-973)) (-14 *5 (-710)) (-14 *6 (-710)) (-4 *8 (-216 *6 *7)) (-4 *9 (-216 *5 *7)) (-4 *2 (-976 *5 *6 *10 *11 *12)) (-5 *1 (-978 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-976 *5 *6 *7 *8 *9)) (-4 *11 (-216 *6 *10)) (-4 *12 (-216 *5 *10))))) -(-10 -7 (-15 -3612 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2437 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ |#1|) 23))) +((-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) (-3648 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *5))) (-4 *5 (-973)) (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108)))) (-1956 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523)))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-710)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-710)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-589 (-589 *5))))) (-1937 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)) (-4 *2 (-973)))) (-2000 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)) (-4 *2 (-973)))) (-1937 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) (-4 *2 (-973)) (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *6 *2 *7)) (-4 *6 (-973)) (-4 *7 (-216 *4 *6)) (-4 *2 (-216 *5 *6)))) (-1249 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *6 *7 *2)) (-4 *6 (-973)) (-4 *7 (-216 *5 *6)) (-4 *2 (-216 *4 *6)))) (-1345 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) (-4007 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-976 *3 *4 *2 *5 *6)) (-4 *2 (-973)) (-4 *5 (-216 *4 *2)) (-4 *6 (-216 *3 *2)) (-4 *2 (-515)))) (-4074 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5 *6)) (-4 *2 (-973)) (-4 *5 (-216 *4 *2)) (-4 *6 (-216 *3 *2)) (-4 *2 (-339)))) (-1678 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *2 *4)) (-4 *4 (-284)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) (-5 *2 (-710)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) (-5 *2 (-710)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) (-5 *2 (-589 *7))))) +(-13 (-107 |t#3| |t#3|) (-462 |t#3|) (-10 -8 (-6 -4248) (IF (|has| |t#3| (-158)) (-6 (-657 |t#3|)) |%noBranch|) (-15 -3648 ($ (-589 (-589 |t#3|)))) (-15 -2989 ((-108) $)) (-15 -1956 ((-108) $)) (-15 -3735 ((-108) $)) (-15 -3749 ((-108) $)) (-15 -1665 ((-523) $)) (-15 -3231 ((-523) $)) (-15 -2082 ((-523) $)) (-15 -3060 ((-523) $)) (-15 -1357 ((-710) $)) (-15 -1370 ((-710) $)) (-15 -3692 ((-589 (-589 |t#3|)) $)) (-15 -1937 (|t#3| $ (-523) (-523))) (-15 -2000 (|t#3| $ (-523) (-523))) (-15 -1937 (|t#3| $ (-523) (-523) |t#3|)) (-15 -2827 (|t#4| $ (-523))) (-15 -1249 (|t#5| $ (-523))) (-15 -1345 ($ (-1 |t#3| |t#3|) $)) (-15 -1345 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-515)) (-15 -4007 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-339)) (-15 -4074 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-284)) (-15 -1678 ($ $)) |%noBranch|) (IF (|has| |t#3| (-515)) (PROGN (-15 -3569 ((-710) $)) (-15 -1835 ((-710) $)) (-15 -2454 ((-589 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-124) . T) ((-563 (-794)) . T) ((-286 |#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))) ((-462 |#3|) . T) ((-484 |#3| |#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))) ((-591 |#3|) . T) ((-657 |#3|) |has| |#3| (-158)) ((-979 |#3|) . T) ((-1016) . T) ((-1123) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3735 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2989 (((-108) $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-4189 (($) NIL T CONST)) (-1678 (($ $) 42 (|has| |#3| (-284)))) (-2827 (((-218 |#2| |#3|) $ (-523)) 31)) (-3799 (($ (-629 |#3|)) 40)) (-3569 (((-710) $) 44 (|has| |#3| (-515)))) (-2000 ((|#3| $ (-523) (-523)) NIL)) (-1871 (((-589 |#3|) $) NIL (|has| $ (-6 -4248)))) (-1835 (((-710) $) 46 (|has| |#3| (-515)))) (-2454 (((-589 (-218 |#1| |#3|)) $) 50 (|has| |#3| (-515)))) (-1357 (((-710) $) NIL)) (-1370 (((-710) $) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-1665 (((-523) $) NIL)) (-2082 (((-523) $) NIL)) (-1584 (((-589 |#3|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#3| (-1016))))) (-3231 (((-523) $) NIL)) (-3060 (((-523) $) NIL)) (-3648 (($ (-589 (-589 |#3|))) 26)) (-2043 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3692 (((-589 (-589 |#3|)) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-4007 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-515)))) (-3379 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#3|) (-589 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-271 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-589 (-271 |#3|))) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#3| $ (-523) (-523)) NIL) ((|#3| $ (-523) (-523) |#3|) NIL)) (-3314 (((-126)) 53 (|has| |#3| (-339)))) (-1956 (((-108) $) NIL)) (-3977 (((-710) |#3| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#3| (-1016)))) (((-710) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) 62 (|has| |#3| (-564 (-499))))) (-1249 (((-218 |#1| |#3|) $ (-523)) 35)) (-1691 (((-794) $) 16) (((-629 |#3|) $) 37)) (-2308 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4248)))) (-3749 (((-108) $) NIL)) (-1879 (($) 13 T CONST)) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ |#3|) NIL (|has| |#3| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-977 |#1| |#2| |#3|) (-13 (-976 |#1| |#2| |#3| (-218 |#2| |#3|) (-218 |#1| |#3|)) (-563 (-629 |#3|)) (-10 -8 (IF (|has| |#3| (-339)) (-6 (-1176 |#3|)) |%noBranch|) (IF (|has| |#3| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (-15 -3799 ($ (-629 |#3|))) (-15 -1691 ((-629 |#3|) $)))) (-710) (-710) (-973)) (T -977)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-629 *5)) (-5 *1 (-977 *3 *4 *5)) (-14 *3 (-710)) (-14 *4 (-710)) (-4 *5 (-973)))) (-3799 (*1 *1 *2) (-12 (-5 *2 (-629 *5)) (-4 *5 (-973)) (-5 *1 (-977 *3 *4 *5)) (-14 *3 (-710)) (-14 *4 (-710))))) +(-13 (-976 |#1| |#2| |#3| (-218 |#2| |#3|) (-218 |#1| |#3|)) (-563 (-629 |#3|)) (-10 -8 (IF (|has| |#3| (-339)) (-6 (-1176 |#3|)) |%noBranch|) (IF (|has| |#3| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (-15 -3799 ($ (-629 |#3|))) (-15 -1691 ((-629 |#3|) $)))) +((-2116 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1345 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-978 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1345 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2116 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-710) (-710) (-973) (-216 |#2| |#3|) (-216 |#1| |#3|) (-976 |#1| |#2| |#3| |#4| |#5|) (-973) (-216 |#2| |#7|) (-216 |#1| |#7|) (-976 |#1| |#2| |#7| |#8| |#9|)) (T -978)) +((-2116 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-973)) (-4 *2 (-973)) (-14 *5 (-710)) (-14 *6 (-710)) (-4 *8 (-216 *6 *7)) (-4 *9 (-216 *5 *7)) (-4 *10 (-216 *6 *2)) (-4 *11 (-216 *5 *2)) (-5 *1 (-978 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-976 *5 *6 *7 *8 *9)) (-4 *12 (-976 *5 *6 *2 *10 *11)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-973)) (-4 *10 (-973)) (-14 *5 (-710)) (-14 *6 (-710)) (-4 *8 (-216 *6 *7)) (-4 *9 (-216 *5 *7)) (-4 *2 (-976 *5 *6 *10 *11 *12)) (-5 *1 (-978 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-976 *5 *6 *7 *8 *9)) (-4 *11 (-216 *6 *10)) (-4 *12 (-216 *5 *10))))) +(-10 -7 (-15 -1345 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2116 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ |#1|) 23))) (((-979 |#1|) (-129) (-980)) (T -979)) ((* (*1 *1 *1 *2) (-12 (-4 *1 (-979 *2)) (-4 *2 (-980))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2364 (($ $ (-852)) 26)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-2423 (($ $ (-852)) 26)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) (((-980) (-129)) (T -980)) NIL (-13 (-21) (-1028)) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-1028) . T) ((-1016) . T)) -((-3984 (($ $) 16)) (-1258 (($ $) 22)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 49)) (-3892 (($ $) 24)) (-2206 (($ $) 11)) (-3722 (($ $) 38)) (-3663 (((-355) $) NIL) (((-203) $) NIL) (((-823 (-355)) $) 33)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 28) (($ (-523)) NIL) (($ (-383 (-523))) 28)) (-1621 (((-710)) 8)) (-1886 (($ $) 39))) -(((-981 |#1|) (-10 -8 (-15 -1258 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -2206 (|#1| |#1|)) (-15 -3722 (|#1| |#1|)) (-15 -1886 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| (-523))) (-15 -3663 ((-203) |#1|)) (-15 -3663 ((-355) |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 -1458 ((-794) |#1|))) (-982)) (T -981)) -((-1621 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-981 *3)) (-4 *3 (-982))))) -(-10 -8 (-15 -1258 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -2206 (|#1| |#1|)) (-15 -3722 (|#1| |#1|)) (-15 -1886 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| (-523))) (-15 -3663 ((-203) |#1|)) (-15 -3663 ((-355) |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3458 (((-523) $) 89)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3984 (($ $) 87)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1832 (($ $) 97)) (-1387 (((-108) $ $) 59)) (-3671 (((-523) $) 114)) (-2518 (($) 17 T CONST)) (-1258 (($ $) 86)) (-3517 (((-3 (-523) "failed") $) 102) (((-3 (-383 (-523)) "failed") $) 99)) (-3474 (((-523) $) 101) (((-383 (-523)) $) 98)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2657 (((-108) $) 71)) (-2604 (((-108) $) 112)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 93)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 96)) (-3892 (($ $) 92)) (-4114 (((-108) $) 113)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-2454 (($ $ $) 111)) (-2062 (($ $ $) 110)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-2206 (($ $) 88)) (-3722 (($ $) 90)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-3663 (((-355) $) 105) (((-203) $) 104) (((-823 (-355)) $) 94)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ (-523)) 103) (($ (-383 (-523))) 100)) (-1621 (((-710)) 29)) (-1886 (($ $) 91)) (-1704 (((-108) $ $) 39)) (-2619 (($ $) 115)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 108)) (-4019 (((-108) $ $) 107)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 109)) (-4007 (((-108) $ $) 106)) (-4098 (($ $ $) 64)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68) (($ $ (-383 (-523))) 95)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) +((-3276 (($ $) 16)) (-3900 (($ $) 22)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 49)) (-1863 (($ $) 24)) (-4110 (($ $) 11)) (-2733 (($ $) 38)) (-1400 (((-355) $) NIL) (((-203) $) NIL) (((-823 (-355)) $) 33)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 28) (($ (-523)) NIL) (($ (-383 (-523))) 28)) (-3272 (((-710)) 8)) (-3809 (($ $) 39))) +(((-981 |#1|) (-10 -8 (-15 -3900 (|#1| |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -2733 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -1863 (|#1| |#1|)) (-15 -1524 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -1400 ((-823 (-355)) |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 (|#1| (-523))) (-15 -1400 ((-203) |#1|)) (-15 -1400 ((-355) |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 (|#1| |#1|)) (-15 -1691 (|#1| (-523))) (-15 -3272 ((-710))) (-15 -1691 ((-794) |#1|))) (-982)) (T -981)) +((-3272 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-981 *3)) (-4 *3 (-982))))) +(-10 -8 (-15 -3900 (|#1| |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -2733 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -1863 (|#1| |#1|)) (-15 -1524 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -1400 ((-823 (-355)) |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 (|#1| (-523))) (-15 -1400 ((-203) |#1|)) (-15 -1400 ((-355) |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 (|#1| |#1|)) (-15 -1691 (|#1| (-523))) (-15 -3272 ((-710))) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2046 (((-523) $) 89)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3276 (($ $) 87)) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 73)) (-4226 (((-394 $) $) 72)) (-2437 (($ $) 97)) (-2787 (((-108) $ $) 59)) (-3482 (((-523) $) 114)) (-4189 (($) 17 T CONST)) (-3900 (($ $) 86)) (-1220 (((-3 (-523) "failed") $) 102) (((-3 (-383 (-523)) "failed") $) 99)) (-3508 (((-523) $) 101) (((-383 (-523)) $) 98)) (-4059 (($ $ $) 55)) (-1444 (((-3 $ "failed") $) 34)) (-4032 (($ $ $) 56)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-3049 (((-108) $) 71)) (-3712 (((-108) $) 112)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 93)) (-2769 (((-108) $) 31)) (-1973 (($ $ (-523)) 96)) (-1863 (($ $) 92)) (-2057 (((-108) $) 113)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3239 (($ $ $) 111)) (-3158 (($ $ $) 110)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 70)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-4110 (($ $) 88)) (-2733 (($ $) 90)) (-2424 (((-394 $) $) 74)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-3413 (((-710) $) 58)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57)) (-1400 (((-355) $) 105) (((-203) $) 104) (((-823 (-355)) $) 94)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ (-523)) 103) (($ (-383 (-523))) 100)) (-3272 (((-710)) 29)) (-3809 (($ $) 91)) (-2801 (((-108) $ $) 39)) (-2695 (($ $) 115)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-4006 (((-108) $ $) 108)) (-3980 (((-108) $ $) 107)) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 109)) (-3966 (((-108) $ $) 106)) (-4074 (($ $ $) 64)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68) (($ $ (-383 (-523))) 95)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) (((-982) (-129)) (T -982)) -((-2619 (*1 *1 *1) (-4 *1 (-982))) (-3892 (*1 *1 *1) (-4 *1 (-982))) (-1886 (*1 *1 *1) (-4 *1 (-982))) (-3722 (*1 *1 *1) (-4 *1 (-982))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-523)))) (-2206 (*1 *1 *1) (-4 *1 (-982))) (-3984 (*1 *1 *1) (-4 *1 (-982))) (-1258 (*1 *1 *1) (-4 *1 (-982)))) -(-13 (-339) (-784) (-949) (-964 (-523)) (-964 (-383 (-523))) (-930) (-564 (-823 (-355))) (-817 (-355)) (-136) (-10 -8 (-15 -3892 ($ $)) (-15 -1886 ($ $)) (-15 -3722 ($ $)) (-15 -3458 ((-523) $)) (-15 -2206 ($ $)) (-15 -3984 ($ $)) (-15 -1258 ($ $)) (-15 -2619 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-158) . T) ((-564 (-203)) . T) ((-564 (-355)) . T) ((-564 (-823 (-355))) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-784) . T) ((-786) . T) ((-817 (-355)) . T) ((-851) . T) ((-930) . T) ((-949) . T) ((-964 (-383 (-523))) . T) ((-964 (-523)) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) |#2| $) 23)) (-1703 ((|#1| $) 10)) (-3671 (((-523) |#2| $) 89)) (-3313 (((-3 $ "failed") |#2| (-852)) 58)) (-3159 ((|#1| $) 28)) (-3877 ((|#1| |#2| $ |#1|) 37)) (-3747 (($ $) 25)) (-2121 (((-3 |#2| "failed") |#2| $) 88)) (-2604 (((-108) |#2| $) NIL)) (-4114 (((-108) |#2| $) NIL)) (-1571 (((-108) |#2| $) 24)) (-1362 ((|#1| $) 90)) (-3149 ((|#1| $) 27)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3727 ((|#2| $) 80)) (-1458 (((-794) $) 71)) (-2562 ((|#1| |#2| $ |#1|) 38)) (-1409 (((-589 $) |#2|) 60)) (-3983 (((-108) $ $) 75))) -(((-983 |#1| |#2|) (-13 (-989 |#1| |#2|) (-10 -8 (-15 -3149 (|#1| $)) (-15 -3159 (|#1| $)) (-15 -1703 (|#1| $)) (-15 -1362 (|#1| $)) (-15 -3747 ($ $)) (-15 -1571 ((-108) |#2| $)) (-15 -3877 (|#1| |#2| $ |#1|)))) (-13 (-784) (-339)) (-1144 |#1|)) (T -983)) -((-3877 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1144 *2)))) (-3149 (*1 *2 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1144 *2)))) (-3159 (*1 *2 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1144 *2)))) (-1703 (*1 *2 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1144 *2)))) (-1362 (*1 *2 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1144 *2)))) (-3747 (*1 *1 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1144 *2)))) (-1571 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-784) (-339))) (-5 *2 (-108)) (-5 *1 (-983 *4 *3)) (-4 *3 (-1144 *4))))) -(-13 (-989 |#1| |#2|) (-10 -8 (-15 -3149 (|#1| $)) (-15 -3159 (|#1| $)) (-15 -1703 (|#1| $)) (-15 -1362 (|#1| $)) (-15 -3747 ($ $)) (-15 -1571 ((-108) |#2| $)) (-15 -3877 (|#1| |#2| $ |#1|)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2312 (($ $ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1808 (($ $ $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL)) (-2041 (($ $ $) NIL)) (-2518 (($) NIL T CONST)) (-1576 (($ (-1087)) 10) (($ (-523)) 7)) (-3517 (((-3 (-523) "failed") $) NIL)) (-3474 (((-523) $) NIL)) (-3796 (($ $ $) NIL)) (-2381 (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL)) (-1292 (((-108) $) NIL)) (-2146 (((-383 (-523)) $) NIL)) (-4032 (($) NIL) (($ $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2819 (($ $ $ $) NIL)) (-1980 (($ $ $) NIL)) (-2604 (((-108) $) NIL)) (-3654 (($ $ $) NIL)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL)) (-2023 (((-108) $) NIL)) (-1557 (((-108) $) NIL)) (-4058 (((-3 $ "failed") $) NIL)) (-4114 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4183 (($ $ $ $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-1647 (($ $) NIL)) (-2996 (($ $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3305 (($ $ $) NIL)) (-2262 (($) NIL T CONST)) (-3201 (($ $) NIL)) (-2783 (((-1034) $) NIL) (($ $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3217 (($ $) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4104 (((-108) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $ (-710)) NIL) (($ $) NIL)) (-2029 (($ $) NIL)) (-1664 (($ $) NIL)) (-3663 (((-523) $) 16) (((-499) $) NIL) (((-823 (-523)) $) NIL) (((-355) $) NIL) (((-203) $) NIL) (($ (-1087)) 9)) (-1458 (((-794) $) 20) (($ (-523)) 6) (($ $) NIL) (($ (-523)) 6)) (-1621 (((-710)) NIL)) (-1981 (((-108) $ $) NIL)) (-2574 (($ $ $) NIL)) (-3007 (($) NIL)) (-1704 (((-108) $ $) NIL)) (-2108 (($ $ $ $) NIL)) (-2619 (($ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4087 (($ $) 19) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL))) -(((-984) (-13 (-508) (-10 -8 (-6 -4231) (-6 -4236) (-6 -4232) (-15 -3663 ($ (-1087))) (-15 -1576 ($ (-1087))) (-15 -1576 ($ (-523)))))) (T -984)) -((-3663 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-984)))) (-1576 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-984)))) (-1576 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-984))))) -(-13 (-508) (-10 -8 (-6 -4231) (-6 -4236) (-6 -4232) (-15 -3663 ($ (-1087))) (-15 -1576 ($ (-1087))) (-15 -1576 ($ (-523))))) -((-3924 (((-108) $ $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-4207 (((-1173) $ (-1087) (-1087)) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-3824 (($) 9)) (-1641 (((-51) $ (-1087) (-51)) NIL)) (-3648 (($ $) 23)) (-1561 (($ $) 21)) (-2734 (($ $) 20)) (-2075 (($ $) 22)) (-1502 (($ $) 25)) (-3791 (($ $) 26)) (-2232 (($ $) 19)) (-3579 (($ $) 24)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) 18 (|has| $ (-6 -4244)))) (-2243 (((-3 (-51) "failed") (-1087) $) 34)) (-2518 (($) NIL T CONST)) (-3812 (($) 7)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-2249 (($ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) 46 (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-3 (-51) "failed") (-1087) $) NIL)) (-2557 (($ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2580 (((-3 (-1070) "failed") $ (-1070) (-523)) 59)) (-2863 (((-51) $ (-1087) (-51)) NIL (|has| $ (-6 -4245)))) (-2795 (((-51) $ (-1087)) NIL)) (-1666 (((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-589 (-51)) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-1087) $) NIL (|has| (-1087) (-786)))) (-2136 (((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) 28 (|has| $ (-6 -4244))) (((-589 (-51)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016))))) (-3056 (((-1087) $) NIL (|has| (-1087) (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4245))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-1330 (((-589 (-1087)) $) NIL)) (-2777 (((-108) (-1087) $) NIL)) (-1934 (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL)) (-3450 (($ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) 37)) (-2412 (((-589 (-1087)) $) NIL)) (-4135 (((-108) (-1087) $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-2782 (((-355) $ (-1087)) 45)) (-2268 (((-589 (-1070)) $ (-1070)) 60)) (-1738 (((-51) $) NIL (|has| (-1087) (-786)))) (-2114 (((-3 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) "failed") (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL)) (-4203 (($ $ (-51)) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-271 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-589 (-51)) (-589 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-271 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-589 (-271 (-51)))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016))))) (-1264 (((-589 (-51)) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 (((-51) $ (-1087)) NIL) (((-51) $ (-1087) (-51)) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-1905 (($ $ (-1087)) 47)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (((-710) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016)))) (((-710) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) 30)) (-2326 (($ $ $) 31)) (-1458 (((-794) $) NIL (-3262 (|has| (-51) (-563 (-794))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-563 (-794)))))) (-2629 (($ $ (-1087) (-355)) 43)) (-1235 (($ $ (-1087) (-355)) 44)) (-2401 (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-985) (-13 (-1099 (-1087) (-51)) (-10 -8 (-15 -2326 ($ $ $)) (-15 -3812 ($)) (-15 -2232 ($ $)) (-15 -2734 ($ $)) (-15 -1561 ($ $)) (-15 -2075 ($ $)) (-15 -3579 ($ $)) (-15 -3648 ($ $)) (-15 -1502 ($ $)) (-15 -3791 ($ $)) (-15 -2629 ($ $ (-1087) (-355))) (-15 -1235 ($ $ (-1087) (-355))) (-15 -2782 ((-355) $ (-1087))) (-15 -2268 ((-589 (-1070)) $ (-1070))) (-15 -1905 ($ $ (-1087))) (-15 -3824 ($)) (-15 -2580 ((-3 (-1070) "failed") $ (-1070) (-523))) (-6 -4244)))) (T -985)) -((-2326 (*1 *1 *1 *1) (-5 *1 (-985))) (-3812 (*1 *1) (-5 *1 (-985))) (-2232 (*1 *1 *1) (-5 *1 (-985))) (-2734 (*1 *1 *1) (-5 *1 (-985))) (-1561 (*1 *1 *1) (-5 *1 (-985))) (-2075 (*1 *1 *1) (-5 *1 (-985))) (-3579 (*1 *1 *1) (-5 *1 (-985))) (-3648 (*1 *1 *1) (-5 *1 (-985))) (-1502 (*1 *1 *1) (-5 *1 (-985))) (-3791 (*1 *1 *1) (-5 *1 (-985))) (-2629 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-355)) (-5 *1 (-985)))) (-1235 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-355)) (-5 *1 (-985)))) (-2782 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-355)) (-5 *1 (-985)))) (-2268 (*1 *2 *1 *3) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-985)) (-5 *3 (-1070)))) (-1905 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-985)))) (-3824 (*1 *1) (-5 *1 (-985))) (-2580 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-985))))) -(-13 (-1099 (-1087) (-51)) (-10 -8 (-15 -2326 ($ $ $)) (-15 -3812 ($)) (-15 -2232 ($ $)) (-15 -2734 ($ $)) (-15 -1561 ($ $)) (-15 -2075 ($ $)) (-15 -3579 ($ $)) (-15 -3648 ($ $)) (-15 -1502 ($ $)) (-15 -3791 ($ $)) (-15 -2629 ($ $ (-1087) (-355))) (-15 -1235 ($ $ (-1087) (-355))) (-15 -2782 ((-355) $ (-1087))) (-15 -2268 ((-589 (-1070)) $ (-1070))) (-15 -1905 ($ $ (-1087))) (-15 -3824 ($)) (-15 -2580 ((-3 (-1070) "failed") $ (-1070) (-523))) (-6 -4244))) -((-4039 (($ $) 45)) (-2090 (((-108) $ $) 74)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-883 (-383 (-523)))) 227) (((-3 $ "failed") (-883 (-523))) 226) (((-3 $ "failed") (-883 |#2|)) 229)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) NIL) (((-523) $) NIL) ((|#4| $) NIL) (($ (-883 (-383 (-523)))) 215) (($ (-883 (-523))) 211) (($ (-883 |#2|)) 231)) (-3810 (($ $) NIL) (($ $ |#4|) 43)) (-2663 (((-108) $ $) 112) (((-108) $ (-589 $)) 113)) (-1906 (((-108) $) 56)) (-2815 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 107)) (-1978 (($ $) 138)) (-2611 (($ $) 134)) (-3058 (($ $) 133)) (-1351 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1239 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4172 (((-108) $ $) 121) (((-108) $ (-589 $)) 122)) (-2907 ((|#4| $) 33)) (-2055 (($ $ $) 110)) (-2132 (((-108) $) 55)) (-2457 (((-710) $) 35)) (-1246 (($ $) 152)) (-3661 (($ $) 149)) (-1871 (((-589 $) $) 68)) (-1298 (($ $) 57)) (-2236 (($ $) 145)) (-2748 (((-589 $) $) 65)) (-4220 (($ $) 59)) (-3786 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2929 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3829 (-710))) $ $) 111)) (-3369 (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $) 108) (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $ |#4|) 109)) (-1236 (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $) 104) (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $ |#4|) 105)) (-3055 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2077 (($ $ $) 90) (($ $ $ |#4|) 96)) (-2800 (((-589 $) $) 51)) (-2112 (((-108) $ $) 118) (((-108) $ (-589 $)) 119)) (-2648 (($ $ $) 103)) (-2262 (($ $) 37)) (-2391 (((-108) $ $) 72)) (-2001 (((-108) $ $) 114) (((-108) $ (-589 $)) 116)) (-1398 (($ $ $) 101)) (-3729 (($ $) 40)) (-3278 ((|#2| |#2| $) 142) (($ (-589 $)) NIL) (($ $ $) NIL)) (-2477 (($ $ |#2|) NIL) (($ $ $) 131)) (-4119 (($ $ |#2|) 126) (($ $ $) 129)) (-3190 (($ $) 48)) (-2752 (($ $) 52)) (-3663 (((-823 (-355)) $) NIL) (((-823 (-523)) $) NIL) (((-499) $) NIL) (($ (-883 (-383 (-523)))) 217) (($ (-883 (-523))) 213) (($ (-883 |#2|)) 228) (((-1070) $) 250) (((-883 |#2|) $) 162)) (-1458 (((-794) $) 30) (($ (-523)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-883 |#2|) $) 163) (($ (-383 (-523))) NIL) (($ $) NIL)) (-3754 (((-3 (-108) "failed") $ $) 71))) -(((-986 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1458 (|#1| |#1|)) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3278 (|#1| (-589 |#1|))) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 ((-883 |#2|) |#1|)) (-15 -3663 ((-883 |#2|) |#1|)) (-15 -3663 ((-1070) |#1|)) (-15 -1246 (|#1| |#1|)) (-15 -3661 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -3278 (|#2| |#2| |#1|)) (-15 -2477 (|#1| |#1| |#1|)) (-15 -4119 (|#1| |#1| |#1|)) (-15 -2477 (|#1| |#1| |#2|)) (-15 -4119 (|#1| |#1| |#2|)) (-15 -2611 (|#1| |#1|)) (-15 -3058 (|#1| |#1|)) (-15 -3663 (|#1| (-883 |#2|))) (-15 -3474 (|#1| (-883 |#2|))) (-15 -3517 ((-3 |#1| "failed") (-883 |#2|))) (-15 -3663 (|#1| (-883 (-523)))) (-15 -3474 (|#1| (-883 (-523)))) (-15 -3517 ((-3 |#1| "failed") (-883 (-523)))) (-15 -3663 (|#1| (-883 (-383 (-523))))) (-15 -3474 (|#1| (-883 (-383 (-523))))) (-15 -3517 ((-3 |#1| "failed") (-883 (-383 (-523))))) (-15 -2648 (|#1| |#1| |#1|)) (-15 -1398 (|#1| |#1| |#1|)) (-15 -2929 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3829 (-710))) |#1| |#1|)) (-15 -2055 (|#1| |#1| |#1|)) (-15 -2815 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3369 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1| |#4|)) (-15 -3369 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -1236 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3282 |#1|)) |#1| |#1| |#4|)) (-15 -1236 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -2077 (|#1| |#1| |#1| |#4|)) (-15 -3055 (|#1| |#1| |#1| |#4|)) (-15 -2077 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -1239 (|#1| |#1| |#1| |#4|)) (-15 -1351 (|#1| |#1| |#1| |#4|)) (-15 -1239 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1| |#1|)) (-15 -4172 ((-108) |#1| (-589 |#1|))) (-15 -4172 ((-108) |#1| |#1|)) (-15 -2112 ((-108) |#1| (-589 |#1|))) (-15 -2112 ((-108) |#1| |#1|)) (-15 -2001 ((-108) |#1| (-589 |#1|))) (-15 -2001 ((-108) |#1| |#1|)) (-15 -2663 ((-108) |#1| (-589 |#1|))) (-15 -2663 ((-108) |#1| |#1|)) (-15 -2090 ((-108) |#1| |#1|)) (-15 -2391 ((-108) |#1| |#1|)) (-15 -3754 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1871 ((-589 |#1|) |#1|)) (-15 -2748 ((-589 |#1|) |#1|)) (-15 -4220 (|#1| |#1|)) (-15 -1298 (|#1| |#1|)) (-15 -1906 ((-108) |#1|)) (-15 -2132 ((-108) |#1|)) (-15 -3810 (|#1| |#1| |#4|)) (-15 -3786 (|#1| |#1| |#4|)) (-15 -2752 (|#1| |#1|)) (-15 -2800 ((-589 |#1|) |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -3729 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -2457 ((-710) |#1|)) (-15 -2907 (|#4| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3474 (|#4| |#1|)) (-15 -3517 ((-3 |#4| "failed") |#1|)) (-15 -1458 (|#1| |#4|)) (-15 -3786 (|#2| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-987 |#2| |#3| |#4|) (-973) (-732) (-786)) (T -986)) -NIL -(-10 -8 (-15 -1458 (|#1| |#1|)) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3278 (|#1| (-589 |#1|))) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 ((-883 |#2|) |#1|)) (-15 -3663 ((-883 |#2|) |#1|)) (-15 -3663 ((-1070) |#1|)) (-15 -1246 (|#1| |#1|)) (-15 -3661 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -3278 (|#2| |#2| |#1|)) (-15 -2477 (|#1| |#1| |#1|)) (-15 -4119 (|#1| |#1| |#1|)) (-15 -2477 (|#1| |#1| |#2|)) (-15 -4119 (|#1| |#1| |#2|)) (-15 -2611 (|#1| |#1|)) (-15 -3058 (|#1| |#1|)) (-15 -3663 (|#1| (-883 |#2|))) (-15 -3474 (|#1| (-883 |#2|))) (-15 -3517 ((-3 |#1| "failed") (-883 |#2|))) (-15 -3663 (|#1| (-883 (-523)))) (-15 -3474 (|#1| (-883 (-523)))) (-15 -3517 ((-3 |#1| "failed") (-883 (-523)))) (-15 -3663 (|#1| (-883 (-383 (-523))))) (-15 -3474 (|#1| (-883 (-383 (-523))))) (-15 -3517 ((-3 |#1| "failed") (-883 (-383 (-523))))) (-15 -2648 (|#1| |#1| |#1|)) (-15 -1398 (|#1| |#1| |#1|)) (-15 -2929 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3829 (-710))) |#1| |#1|)) (-15 -2055 (|#1| |#1| |#1|)) (-15 -2815 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3369 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1| |#4|)) (-15 -3369 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -1236 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3282 |#1|)) |#1| |#1| |#4|)) (-15 -1236 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -2077 (|#1| |#1| |#1| |#4|)) (-15 -3055 (|#1| |#1| |#1| |#4|)) (-15 -2077 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -1239 (|#1| |#1| |#1| |#4|)) (-15 -1351 (|#1| |#1| |#1| |#4|)) (-15 -1239 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1| |#1|)) (-15 -4172 ((-108) |#1| (-589 |#1|))) (-15 -4172 ((-108) |#1| |#1|)) (-15 -2112 ((-108) |#1| (-589 |#1|))) (-15 -2112 ((-108) |#1| |#1|)) (-15 -2001 ((-108) |#1| (-589 |#1|))) (-15 -2001 ((-108) |#1| |#1|)) (-15 -2663 ((-108) |#1| (-589 |#1|))) (-15 -2663 ((-108) |#1| |#1|)) (-15 -2090 ((-108) |#1| |#1|)) (-15 -2391 ((-108) |#1| |#1|)) (-15 -3754 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1871 ((-589 |#1|) |#1|)) (-15 -2748 ((-589 |#1|) |#1|)) (-15 -4220 (|#1| |#1|)) (-15 -1298 (|#1| |#1|)) (-15 -1906 ((-108) |#1|)) (-15 -2132 ((-108) |#1|)) (-15 -3810 (|#1| |#1| |#4|)) (-15 -3786 (|#1| |#1| |#4|)) (-15 -2752 (|#1| |#1|)) (-15 -2800 ((-589 |#1|) |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -3729 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -2457 ((-710) |#1|)) (-15 -2907 (|#4| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3474 (|#4| |#1|)) (-15 -3517 ((-3 |#4| "failed") |#1|)) (-15 -1458 (|#1| |#4|)) (-15 -3786 (|#2| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 |#3|) $) 110)) (-1786 (((-1083 $) $ |#3|) 125) (((-1083 |#1|) $) 124)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 87 (|has| |#1| (-515)))) (-3345 (($ $) 88 (|has| |#1| (-515)))) (-3331 (((-108) $) 90 (|has| |#1| (-515)))) (-3893 (((-710) $) 112) (((-710) $ (-589 |#3|)) 111)) (-4039 (($ $) 271)) (-2090 (((-108) $ $) 257)) (-3212 (((-3 $ "failed") $ $) 19)) (-2407 (($ $ $) 216 (|has| |#1| (-515)))) (-3301 (((-589 $) $ $) 211 (|has| |#1| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) 100 (|has| |#1| (-840)))) (-2291 (($ $) 98 (|has| |#1| (-427)))) (-3614 (((-394 $) $) 97 (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-840)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 164) (((-3 (-383 (-523)) "failed") $) 162 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 160 (|has| |#1| (-964 (-523)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-883 (-383 (-523)))) 231 (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))) (((-3 $ "failed") (-883 (-523))) 228 (-3262 (-12 (-3900 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087)))))) (((-3 $ "failed") (-883 |#1|)) 225 (-3262 (-12 (-3900 (|has| |#1| (-37 (-383 (-523))))) (-3900 (|has| |#1| (-37 (-523)))) (|has| |#3| (-564 (-1087)))) (-12 (-3900 (|has| |#1| (-508))) (-3900 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (-3900 (|has| |#1| (-921 (-523)))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))))) (-3474 ((|#1| $) 165) (((-383 (-523)) $) 161 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 159 (|has| |#1| (-964 (-523)))) ((|#3| $) 135) (($ (-883 (-383 (-523)))) 230 (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))) (($ (-883 (-523))) 227 (-3262 (-12 (-3900 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087)))))) (($ (-883 |#1|)) 224 (-3262 (-12 (-3900 (|has| |#1| (-37 (-383 (-523))))) (-3900 (|has| |#1| (-37 (-523)))) (|has| |#3| (-564 (-1087)))) (-12 (-3900 (|has| |#1| (-508))) (-3900 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (-3900 (|has| |#1| (-921 (-523)))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))))) (-3078 (($ $ $ |#3|) 108 (|has| |#1| (-158))) (($ $ $) 212 (|has| |#1| (-515)))) (-3810 (($ $) 154) (($ $ |#3|) 266)) (-2381 (((-629 (-523)) (-629 $)) 134 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 133 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 132) (((-629 |#1|) (-629 $)) 131)) (-2663 (((-108) $ $) 256) (((-108) $ (-589 $)) 255)) (-2121 (((-3 $ "failed") $) 34)) (-1906 (((-108) $) 264)) (-2815 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 236)) (-1978 (($ $) 205 (|has| |#1| (-427)))) (-2528 (($ $) 176 (|has| |#1| (-427))) (($ $ |#3|) 105 (|has| |#1| (-427)))) (-3799 (((-589 $) $) 109)) (-2657 (((-108) $) 96 (|has| |#1| (-840)))) (-2611 (($ $) 221 (|has| |#1| (-515)))) (-3058 (($ $) 222 (|has| |#1| (-515)))) (-1351 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1239 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1284 (($ $ |#1| |#2| $) 172)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 84 (-12 (|has| |#3| (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 83 (-12 (|has| |#3| (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-2023 (((-108) $) 31)) (-3554 (((-710) $) 169)) (-4172 (((-108) $ $) 250) (((-108) $ (-589 $)) 249)) (-3870 (($ $ $ $ $) 207 (|has| |#1| (-515)))) (-2907 ((|#3| $) 275)) (-1945 (($ (-1083 |#1|) |#3|) 117) (($ (-1083 $) |#3|) 116)) (-3679 (((-589 $) $) 126)) (-2620 (((-108) $) 152)) (-1933 (($ |#1| |#2|) 153) (($ $ |#3| (-710)) 119) (($ $ (-589 |#3|) (-589 (-710))) 118)) (-2055 (($ $ $) 235)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#3|) 120)) (-2132 (((-108) $) 265)) (-1575 ((|#2| $) 170) (((-710) $ |#3|) 122) (((-589 (-710)) $ (-589 |#3|)) 121)) (-2454 (($ $ $) 79 (|has| |#1| (-786)))) (-2457 (((-710) $) 274)) (-2062 (($ $ $) 78 (|has| |#1| (-786)))) (-3782 (($ (-1 |#2| |#2|) $) 171)) (-3612 (($ (-1 |#1| |#1|) $) 151)) (-2520 (((-3 |#3| "failed") $) 123)) (-1246 (($ $) 202 (|has| |#1| (-427)))) (-3661 (($ $) 203 (|has| |#1| (-427)))) (-1871 (((-589 $) $) 260)) (-1298 (($ $) 263)) (-2236 (($ $) 204 (|has| |#1| (-427)))) (-2748 (((-589 $) $) 261)) (-4220 (($ $) 262)) (-3774 (($ $) 149)) (-3786 ((|#1| $) 148) (($ $ |#3|) 267)) (-3244 (($ (-589 $)) 94 (|has| |#1| (-427))) (($ $ $) 93 (|has| |#1| (-427)))) (-2929 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3829 (-710))) $ $) 234)) (-3369 (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $) 238) (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $ |#3|) 237)) (-1236 (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $) 240) (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $ |#3|) 239)) (-3055 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2077 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3779 (((-1070) $) 9)) (-1611 (($ $ $) 210 (|has| |#1| (-515)))) (-2800 (((-589 $) $) 269)) (-3226 (((-3 (-589 $) "failed") $) 114)) (-4006 (((-3 (-589 $) "failed") $) 115)) (-2630 (((-3 (-2 (|:| |var| |#3|) (|:| -2735 (-710))) "failed") $) 113)) (-2112 (((-108) $ $) 252) (((-108) $ (-589 $)) 251)) (-2648 (($ $ $) 232)) (-2262 (($ $) 273)) (-2391 (((-108) $ $) 258)) (-2001 (((-108) $ $) 254) (((-108) $ (-589 $)) 253)) (-1398 (($ $ $) 233)) (-3729 (($ $) 272)) (-2783 (((-1034) $) 10)) (-3630 (((-2 (|:| -3278 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-515)))) (-1740 (((-2 (|:| -3278 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-515)))) (-3749 (((-108) $) 166)) (-3760 ((|#1| $) 167)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 95 (|has| |#1| (-427)))) (-3278 ((|#1| |#1| $) 206 (|has| |#1| (-427))) (($ (-589 $)) 92 (|has| |#1| (-427))) (($ $ $) 91 (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 101 (|has| |#1| (-840)))) (-1820 (((-394 $) $) 99 (|has| |#1| (-840)))) (-2490 (((-2 (|:| -3278 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-515)))) (-3746 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-515)))) (-2477 (($ $ |#1|) 219 (|has| |#1| (-515))) (($ $ $) 217 (|has| |#1| (-515)))) (-4119 (($ $ |#1|) 220 (|has| |#1| (-515))) (($ $ $) 218 (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) 145) (($ $ (-271 $)) 144) (($ $ $ $) 143) (($ $ (-589 $) (-589 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-589 |#3|) (-589 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-589 |#3|) (-589 $)) 138)) (-3549 (($ $ |#3|) 107 (|has| |#1| (-158)))) (-3523 (($ $ |#3|) 42) (($ $ (-589 |#3|)) 41) (($ $ |#3| (-710)) 40) (($ $ (-589 |#3|) (-589 (-710))) 39)) (-2299 ((|#2| $) 150) (((-710) $ |#3|) 130) (((-589 (-710)) $ (-589 |#3|)) 129)) (-3190 (($ $) 270)) (-2752 (($ $) 268)) (-3663 (((-823 (-355)) $) 82 (-12 (|has| |#3| (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) 81 (-12 (|has| |#3| (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) 80 (-12 (|has| |#3| (-564 (-499))) (|has| |#1| (-564 (-499))))) (($ (-883 (-383 (-523)))) 229 (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))) (($ (-883 (-523))) 226 (-3262 (-12 (-3900 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087)))))) (($ (-883 |#1|)) 223 (|has| |#3| (-564 (-1087)))) (((-1070) $) 201 (-12 (|has| |#1| (-964 (-523))) (|has| |#3| (-564 (-1087))))) (((-883 |#1|) $) 200 (|has| |#3| (-564 (-1087))))) (-2438 ((|#1| $) 175 (|has| |#1| (-427))) (($ $ |#3|) 106 (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 104 (-4099 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-883 |#1|) $) 199 (|has| |#3| (-564 (-1087)))) (($ (-383 (-523))) 72 (-3262 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))))) (($ $) 85 (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) 168)) (-2365 ((|#1| $ |#2|) 155) (($ $ |#3| (-710)) 128) (($ $ (-589 |#3|) (-589 (-710))) 127)) (-3901 (((-3 $ "failed") $) 73 (-3262 (-4099 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) 29)) (-2276 (($ $ $ (-710)) 173 (|has| |#1| (-158)))) (-1704 (((-108) $ $) 89 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-3754 (((-3 (-108) "failed") $ $) 259)) (-2767 (($) 30 T CONST)) (-3090 (($ $ $ $ (-710)) 208 (|has| |#1| (-515)))) (-3720 (($ $ $ (-710)) 209 (|has| |#1| (-515)))) (-2862 (($ $ |#3|) 38) (($ $ (-589 |#3|)) 37) (($ $ |#3| (-710)) 36) (($ $ (-589 |#3|) (-589 (-710))) 35)) (-4043 (((-108) $ $) 76 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 75 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 77 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 74 (|has| |#1| (-786)))) (-4098 (($ $ |#1|) 156 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 157 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +((-2695 (*1 *1 *1) (-4 *1 (-982))) (-1863 (*1 *1 *1) (-4 *1 (-982))) (-3809 (*1 *1 *1) (-4 *1 (-982))) (-2733 (*1 *1 *1) (-4 *1 (-982))) (-2046 (*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-523)))) (-4110 (*1 *1 *1) (-4 *1 (-982))) (-3276 (*1 *1 *1) (-4 *1 (-982))) (-3900 (*1 *1 *1) (-4 *1 (-982)))) +(-13 (-339) (-784) (-949) (-964 (-523)) (-964 (-383 (-523))) (-930) (-564 (-823 (-355))) (-817 (-355)) (-136) (-10 -8 (-15 -1863 ($ $)) (-15 -3809 ($ $)) (-15 -2733 ($ $)) (-15 -2046 ((-523) $)) (-15 -4110 ($ $)) (-15 -3276 ($ $)) (-15 -3900 ($ $)) (-15 -2695 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-158) . T) ((-564 (-203)) . T) ((-564 (-355)) . T) ((-564 (-823 (-355))) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-784) . T) ((-786) . T) ((-817 (-355)) . T) ((-851) . T) ((-930) . T) ((-949) . T) ((-964 (-383 (-523))) . T) ((-964 (-523)) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1127) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) |#2| $) 23)) (-2395 ((|#1| $) 10)) (-3482 (((-523) |#2| $) 89)) (-1264 (((-3 $ "failed") |#2| (-852)) 58)) (-3855 ((|#1| $) 28)) (-1729 ((|#1| |#2| $ |#1|) 37)) (-2941 (($ $) 25)) (-1444 (((-3 |#2| "failed") |#2| $) 88)) (-3712 (((-108) |#2| $) NIL)) (-2057 (((-108) |#2| $) NIL)) (-4008 (((-108) |#2| $) 24)) (-2568 ((|#1| $) 90)) (-3844 ((|#1| $) 27)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2762 ((|#2| $) 80)) (-1691 (((-794) $) 71)) (-4108 ((|#1| |#2| $ |#1|) 38)) (-3008 (((-589 $) |#2|) 60)) (-3941 (((-108) $ $) 75))) +(((-983 |#1| |#2|) (-13 (-989 |#1| |#2|) (-10 -8 (-15 -3844 (|#1| $)) (-15 -3855 (|#1| $)) (-15 -2395 (|#1| $)) (-15 -2568 (|#1| $)) (-15 -2941 ($ $)) (-15 -4008 ((-108) |#2| $)) (-15 -1729 (|#1| |#2| $ |#1|)))) (-13 (-784) (-339)) (-1145 |#1|)) (T -983)) +((-1729 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1145 *2)))) (-3844 (*1 *2 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1145 *2)))) (-3855 (*1 *2 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1145 *2)))) (-2395 (*1 *2 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1145 *2)))) (-2568 (*1 *2 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1145 *2)))) (-2941 (*1 *1 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1145 *2)))) (-4008 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-784) (-339))) (-5 *2 (-108)) (-5 *1 (-983 *4 *3)) (-4 *3 (-1145 *4))))) +(-13 (-989 |#1| |#2|) (-10 -8 (-15 -3844 (|#1| $)) (-15 -3855 (|#1| $)) (-15 -2395 (|#1| $)) (-15 -2568 (|#1| $)) (-15 -2941 ($ $)) (-15 -4008 ((-108) |#2| $)) (-15 -1729 (|#1| |#2| $ |#1|)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2755 (($ $ $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $ $ $) NIL)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL)) (-2156 (($ $ $) NIL)) (-4189 (($) NIL T CONST)) (-4061 (($ (-1087)) 10) (($ (-523)) 7)) (-1220 (((-3 (-523) "failed") $) NIL)) (-3508 (((-523) $) NIL)) (-4059 (($ $ $) NIL)) (-2243 (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-3317 (((-3 (-383 (-523)) "failed") $) NIL)) (-3045 (((-108) $) NIL)) (-1682 (((-383 (-523)) $) NIL)) (-1631 (($) NIL) (($ $) NIL)) (-4032 (($ $ $) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-4024 (($ $ $ $) NIL)) (-3501 (($ $ $) NIL)) (-3712 (((-108) $) NIL)) (-3325 (($ $ $) NIL)) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL)) (-2769 (((-108) $) NIL)) (-3860 (((-108) $) NIL)) (-2738 (((-3 $ "failed") $) NIL)) (-2057 (((-108) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3928 (($ $ $ $) NIL)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2236 (($ $) NIL)) (-2616 (($ $) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-4193 (($ $ $) NIL)) (-2773 (($) NIL T CONST)) (-3762 (($ $) NIL)) (-3951 (((-1034) $) NIL) (($ $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3459 (($ $) NIL)) (-2424 (((-394 $) $) NIL)) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3101 (((-108) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-3984 (($ $ (-710)) NIL) (($ $) NIL)) (-1890 (($ $) NIL)) (-1874 (($ $) NIL)) (-1400 (((-523) $) 16) (((-499) $) NIL) (((-823 (-523)) $) NIL) (((-355) $) NIL) (((-203) $) NIL) (($ (-1087)) 9)) (-1691 (((-794) $) 20) (($ (-523)) 6) (($ $) NIL) (($ (-523)) 6)) (-3272 (((-710)) NIL)) (-3512 (((-108) $ $) NIL)) (-3435 (($ $ $) NIL)) (-1416 (($) NIL)) (-2801 (((-108) $ $) NIL)) (-2447 (($ $ $ $) NIL)) (-2695 (($ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-710)) NIL) (($ $) NIL)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) NIL)) (-4060 (($ $) 19) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL))) +(((-984) (-13 (-508) (-10 -8 (-6 -4235) (-6 -4240) (-6 -4236) (-15 -1400 ($ (-1087))) (-15 -4061 ($ (-1087))) (-15 -4061 ($ (-523)))))) (T -984)) +((-1400 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-984)))) (-4061 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-984)))) (-4061 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-984))))) +(-13 (-508) (-10 -8 (-6 -4235) (-6 -4240) (-6 -4236) (-15 -1400 ($ (-1087))) (-15 -4061 ($ (-1087))) (-15 -4061 ($ (-523))))) +((-1680 (((-108) $ $) NIL (-3172 (|has| (-51) (-1016)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016))))) (-3723 (($) NIL) (($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) NIL)) (-4191 (((-1174) $ (-1087) (-1087)) NIL (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) NIL)) (-2391 (($) 9)) (-1849 (((-51) $ (-1087) (-51)) NIL)) (-3282 (($ $) 23)) (-3907 (($ $) 21)) (-1466 (($ $) 20)) (-2088 (($ $) 22)) (-1592 (($ $) 25)) (-2122 (($ $) 26)) (-3124 (($ $) 19)) (-3810 (($ $) 24)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) 18 (|has| $ (-6 -4248)))) (-4216 (((-3 (-51) "failed") (-1087) $) 34)) (-4189 (($) NIL T CONST)) (-2277 (($) 7)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016))))) (-3286 (($ (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) 46 (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-3 (-51) "failed") (-1087) $) NIL)) (-2514 (($ (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (($ (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $ (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (((-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $ (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248)))) (-3492 (((-3 (-1070) "failed") $ (-1070) (-523)) 59)) (-2053 (((-51) $ (-1087) (-51)) NIL (|has| $ (-6 -4249)))) (-2000 (((-51) $ (-1087)) NIL)) (-1871 (((-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-589 (-51)) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-1087) $) NIL (|has| (-1087) (-786)))) (-1584 (((-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) 28 (|has| $ (-6 -4248))) (((-589 (-51)) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-51) (-1016))))) (-2567 (((-1087) $) NIL (|has| (-1087) (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4249))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (-3172 (|has| (-51) (-1016)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016))))) (-1255 (((-589 (-1087)) $) NIL)) (-1862 (((-108) (-1087) $) NIL)) (-1293 (((-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) NIL)) (-3108 (($ (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) 37)) (-2536 (((-589 (-1087)) $) NIL)) (-2254 (((-108) (-1087) $) NIL)) (-3951 (((-1034) $) NIL (-3172 (|has| (-51) (-1016)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016))))) (-1917 (((-355) $ (-1087)) 45)) (-3476 (((-589 (-1070)) $ (-1070)) 60)) (-2428 (((-51) $) NIL (|has| (-1087) (-786)))) (-2509 (((-3 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) "failed") (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL)) (-4141 (($ $ (-51)) NIL (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) NIL)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))))) NIL (-12 (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (($ $ (-271 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) NIL (-12 (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (($ $ (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) NIL (-12 (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (($ $ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) NIL (-12 (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-286 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (($ $ (-589 (-51)) (-589 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-271 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-589 (-271 (-51)))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-51) (-1016))))) (-3973 (((-589 (-51)) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 (((-51) $ (-1087)) NIL) (((-51) $ (-1087) (-51)) NIL)) (-2963 (($) NIL) (($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) NIL)) (-4001 (($ $ (-1087)) 47)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016)))) (((-710) (-51) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-51) (-1016)))) (((-710) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) 30)) (-2394 (($ $ $) 31)) (-1691 (((-794) $) NIL (-3172 (|has| (-51) (-563 (-794))) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-563 (-794)))))) (-2780 (($ $ (-1087) (-355)) 43)) (-3642 (($ $ (-1087) (-355)) 44)) (-2417 (($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))))) NIL)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 (-1087)) (|:| -2482 (-51)))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (-3172 (|has| (-51) (-1016)) (|has| (-2 (|:| -3772 (-1087)) (|:| -2482 (-51))) (-1016))))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-985) (-13 (-1100 (-1087) (-51)) (-10 -8 (-15 -2394 ($ $ $)) (-15 -2277 ($)) (-15 -3124 ($ $)) (-15 -1466 ($ $)) (-15 -3907 ($ $)) (-15 -2088 ($ $)) (-15 -3810 ($ $)) (-15 -3282 ($ $)) (-15 -1592 ($ $)) (-15 -2122 ($ $)) (-15 -2780 ($ $ (-1087) (-355))) (-15 -3642 ($ $ (-1087) (-355))) (-15 -1917 ((-355) $ (-1087))) (-15 -3476 ((-589 (-1070)) $ (-1070))) (-15 -4001 ($ $ (-1087))) (-15 -2391 ($)) (-15 -3492 ((-3 (-1070) "failed") $ (-1070) (-523))) (-6 -4248)))) (T -985)) +((-2394 (*1 *1 *1 *1) (-5 *1 (-985))) (-2277 (*1 *1) (-5 *1 (-985))) (-3124 (*1 *1 *1) (-5 *1 (-985))) (-1466 (*1 *1 *1) (-5 *1 (-985))) (-3907 (*1 *1 *1) (-5 *1 (-985))) (-2088 (*1 *1 *1) (-5 *1 (-985))) (-3810 (*1 *1 *1) (-5 *1 (-985))) (-3282 (*1 *1 *1) (-5 *1 (-985))) (-1592 (*1 *1 *1) (-5 *1 (-985))) (-2122 (*1 *1 *1) (-5 *1 (-985))) (-2780 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-355)) (-5 *1 (-985)))) (-3642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-355)) (-5 *1 (-985)))) (-1917 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-355)) (-5 *1 (-985)))) (-3476 (*1 *2 *1 *3) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-985)) (-5 *3 (-1070)))) (-4001 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-985)))) (-2391 (*1 *1) (-5 *1 (-985))) (-3492 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-985))))) +(-13 (-1100 (-1087) (-51)) (-10 -8 (-15 -2394 ($ $ $)) (-15 -2277 ($)) (-15 -3124 ($ $)) (-15 -1466 ($ $)) (-15 -3907 ($ $)) (-15 -2088 ($ $)) (-15 -3810 ($ $)) (-15 -3282 ($ $)) (-15 -1592 ($ $)) (-15 -2122 ($ $)) (-15 -2780 ($ $ (-1087) (-355))) (-15 -3642 ($ $ (-1087) (-355))) (-15 -1917 ((-355) $ (-1087))) (-15 -3476 ((-589 (-1070)) $ (-1070))) (-15 -4001 ($ $ (-1087))) (-15 -2391 ($)) (-15 -3492 ((-3 (-1070) "failed") $ (-1070) (-523))) (-6 -4248))) +((-2227 (($ $) 45)) (-2248 (((-108) $ $) 74)) (-1220 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-883 (-383 (-523)))) 227) (((-3 $ "failed") (-883 (-523))) 226) (((-3 $ "failed") (-883 |#2|)) 229)) (-3508 ((|#2| $) NIL) (((-383 (-523)) $) NIL) (((-523) $) NIL) ((|#4| $) NIL) (($ (-883 (-383 (-523)))) 215) (($ (-883 (-523))) 211) (($ (-883 |#2|)) 231)) (-1457 (($ $) NIL) (($ $ |#4|) 43)) (-3087 (((-108) $ $) 112) (((-108) $ (-589 $)) 113)) (-4015 (((-108) $) 56)) (-3999 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 107)) (-3480 (($ $) 138)) (-2618 (($ $) 134)) (-2587 (($ $) 133)) (-2468 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3685 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2605 (((-108) $ $) 121) (((-108) $ (-589 $)) 122)) (-3556 ((|#4| $) 33)) (-3056 (($ $ $) 110)) (-1543 (((-108) $) 55)) (-1780 (((-710) $) 35)) (-3763 (($ $) 152)) (-3382 (($ $) 149)) (-1866 (((-589 $) $) 68)) (-3093 (($ $) 57)) (-3164 (($ $) 145)) (-1606 (((-589 $) $) 65)) (-1310 (($ $) 59)) (-1437 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3761 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2426 (-710))) $ $) 111)) (-3529 (((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3070 $) (|:| -3969 $)) $ $) 108) (((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3070 $) (|:| -3969 $)) $ $ |#4|) 109)) (-3653 (((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3969 $)) $ $) 104) (((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3969 $)) $ $ |#4|) 105)) (-2558 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2109 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3841 (((-589 $) $) 51)) (-2490 (((-108) $ $) 118) (((-108) $ (-589 $)) 119)) (-2960 (($ $ $) 103)) (-2773 (($ $) 37)) (-2303 (((-108) $ $) 72)) (-2569 (((-108) $ $) 114) (((-108) $ (-589 $)) 116)) (-2897 (($ $ $) 101)) (-2781 (($ $) 40)) (-3310 ((|#2| |#2| $) 142) (($ (-589 $)) NIL) (($ $ $) NIL)) (-1963 (($ $ |#2|) NIL) (($ $ $) 131)) (-2105 (($ $ |#2|) 126) (($ $ $) 129)) (-1472 (($ $) 48)) (-1644 (($ $) 52)) (-1400 (((-823 (-355)) $) NIL) (((-823 (-523)) $) NIL) (((-499) $) NIL) (($ (-883 (-383 (-523)))) 217) (($ (-883 (-523))) 213) (($ (-883 |#2|)) 228) (((-1070) $) 250) (((-883 |#2|) $) 162)) (-1691 (((-794) $) 30) (($ (-523)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-883 |#2|) $) 163) (($ (-383 (-523))) NIL) (($ $) NIL)) (-3000 (((-3 (-108) "failed") $ $) 71))) +(((-986 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1691 (|#1| |#1|)) (-15 -3310 (|#1| |#1| |#1|)) (-15 -3310 (|#1| (-589 |#1|))) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 ((-883 |#2|) |#1|)) (-15 -1400 ((-883 |#2|) |#1|)) (-15 -1400 ((-1070) |#1|)) (-15 -3763 (|#1| |#1|)) (-15 -3382 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3310 (|#2| |#2| |#1|)) (-15 -1963 (|#1| |#1| |#1|)) (-15 -2105 (|#1| |#1| |#1|)) (-15 -1963 (|#1| |#1| |#2|)) (-15 -2105 (|#1| |#1| |#2|)) (-15 -2618 (|#1| |#1|)) (-15 -2587 (|#1| |#1|)) (-15 -1400 (|#1| (-883 |#2|))) (-15 -3508 (|#1| (-883 |#2|))) (-15 -1220 ((-3 |#1| "failed") (-883 |#2|))) (-15 -1400 (|#1| (-883 (-523)))) (-15 -3508 (|#1| (-883 (-523)))) (-15 -1220 ((-3 |#1| "failed") (-883 (-523)))) (-15 -1400 (|#1| (-883 (-383 (-523))))) (-15 -3508 (|#1| (-883 (-383 (-523))))) (-15 -1220 ((-3 |#1| "failed") (-883 (-383 (-523))))) (-15 -2960 (|#1| |#1| |#1|)) (-15 -2897 (|#1| |#1| |#1|)) (-15 -3761 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2426 (-710))) |#1| |#1|)) (-15 -3056 (|#1| |#1| |#1|)) (-15 -3999 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -3529 ((-2 (|:| -3474 |#1|) (|:| |gap| (-710)) (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1| |#4|)) (-15 -3529 ((-2 (|:| -3474 |#1|) (|:| |gap| (-710)) (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -3653 ((-2 (|:| -3474 |#1|) (|:| |gap| (-710)) (|:| -3969 |#1|)) |#1| |#1| |#4|)) (-15 -3653 ((-2 (|:| -3474 |#1|) (|:| |gap| (-710)) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -2109 (|#1| |#1| |#1| |#4|)) (-15 -2558 (|#1| |#1| |#1| |#4|)) (-15 -2109 (|#1| |#1| |#1|)) (-15 -2558 (|#1| |#1| |#1|)) (-15 -3685 (|#1| |#1| |#1| |#4|)) (-15 -2468 (|#1| |#1| |#1| |#4|)) (-15 -3685 (|#1| |#1| |#1|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -2605 ((-108) |#1| (-589 |#1|))) (-15 -2605 ((-108) |#1| |#1|)) (-15 -2490 ((-108) |#1| (-589 |#1|))) (-15 -2490 ((-108) |#1| |#1|)) (-15 -2569 ((-108) |#1| (-589 |#1|))) (-15 -2569 ((-108) |#1| |#1|)) (-15 -3087 ((-108) |#1| (-589 |#1|))) (-15 -3087 ((-108) |#1| |#1|)) (-15 -2248 ((-108) |#1| |#1|)) (-15 -2303 ((-108) |#1| |#1|)) (-15 -3000 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1866 ((-589 |#1|) |#1|)) (-15 -1606 ((-589 |#1|) |#1|)) (-15 -1310 (|#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -4015 ((-108) |#1|)) (-15 -1543 ((-108) |#1|)) (-15 -1457 (|#1| |#1| |#4|)) (-15 -1437 (|#1| |#1| |#4|)) (-15 -1644 (|#1| |#1|)) (-15 -3841 ((-589 |#1|) |#1|)) (-15 -1472 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2781 (|#1| |#1|)) (-15 -2773 (|#1| |#1|)) (-15 -1780 ((-710) |#1|)) (-15 -3556 (|#4| |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -1400 ((-823 (-523)) |#1|)) (-15 -1400 ((-823 (-355)) |#1|)) (-15 -3508 (|#4| |#1|)) (-15 -1220 ((-3 |#4| "failed") |#1|)) (-15 -1691 (|#1| |#4|)) (-15 -1437 (|#2| |#1|)) (-15 -1457 (|#1| |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) (-987 |#2| |#3| |#4|) (-973) (-732) (-786)) (T -986)) +NIL +(-10 -8 (-15 -1691 (|#1| |#1|)) (-15 -3310 (|#1| |#1| |#1|)) (-15 -3310 (|#1| (-589 |#1|))) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 ((-883 |#2|) |#1|)) (-15 -1400 ((-883 |#2|) |#1|)) (-15 -1400 ((-1070) |#1|)) (-15 -3763 (|#1| |#1|)) (-15 -3382 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3310 (|#2| |#2| |#1|)) (-15 -1963 (|#1| |#1| |#1|)) (-15 -2105 (|#1| |#1| |#1|)) (-15 -1963 (|#1| |#1| |#2|)) (-15 -2105 (|#1| |#1| |#2|)) (-15 -2618 (|#1| |#1|)) (-15 -2587 (|#1| |#1|)) (-15 -1400 (|#1| (-883 |#2|))) (-15 -3508 (|#1| (-883 |#2|))) (-15 -1220 ((-3 |#1| "failed") (-883 |#2|))) (-15 -1400 (|#1| (-883 (-523)))) (-15 -3508 (|#1| (-883 (-523)))) (-15 -1220 ((-3 |#1| "failed") (-883 (-523)))) (-15 -1400 (|#1| (-883 (-383 (-523))))) (-15 -3508 (|#1| (-883 (-383 (-523))))) (-15 -1220 ((-3 |#1| "failed") (-883 (-383 (-523))))) (-15 -2960 (|#1| |#1| |#1|)) (-15 -2897 (|#1| |#1| |#1|)) (-15 -3761 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2426 (-710))) |#1| |#1|)) (-15 -3056 (|#1| |#1| |#1|)) (-15 -3999 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -3529 ((-2 (|:| -3474 |#1|) (|:| |gap| (-710)) (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1| |#4|)) (-15 -3529 ((-2 (|:| -3474 |#1|) (|:| |gap| (-710)) (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -3653 ((-2 (|:| -3474 |#1|) (|:| |gap| (-710)) (|:| -3969 |#1|)) |#1| |#1| |#4|)) (-15 -3653 ((-2 (|:| -3474 |#1|) (|:| |gap| (-710)) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -2109 (|#1| |#1| |#1| |#4|)) (-15 -2558 (|#1| |#1| |#1| |#4|)) (-15 -2109 (|#1| |#1| |#1|)) (-15 -2558 (|#1| |#1| |#1|)) (-15 -3685 (|#1| |#1| |#1| |#4|)) (-15 -2468 (|#1| |#1| |#1| |#4|)) (-15 -3685 (|#1| |#1| |#1|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -2605 ((-108) |#1| (-589 |#1|))) (-15 -2605 ((-108) |#1| |#1|)) (-15 -2490 ((-108) |#1| (-589 |#1|))) (-15 -2490 ((-108) |#1| |#1|)) (-15 -2569 ((-108) |#1| (-589 |#1|))) (-15 -2569 ((-108) |#1| |#1|)) (-15 -3087 ((-108) |#1| (-589 |#1|))) (-15 -3087 ((-108) |#1| |#1|)) (-15 -2248 ((-108) |#1| |#1|)) (-15 -2303 ((-108) |#1| |#1|)) (-15 -3000 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1866 ((-589 |#1|) |#1|)) (-15 -1606 ((-589 |#1|) |#1|)) (-15 -1310 (|#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -4015 ((-108) |#1|)) (-15 -1543 ((-108) |#1|)) (-15 -1457 (|#1| |#1| |#4|)) (-15 -1437 (|#1| |#1| |#4|)) (-15 -1644 (|#1| |#1|)) (-15 -3841 ((-589 |#1|) |#1|)) (-15 -1472 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2781 (|#1| |#1|)) (-15 -2773 (|#1| |#1|)) (-15 -1780 ((-710) |#1|)) (-15 -3556 (|#4| |#1|)) (-15 -1400 ((-499) |#1|)) (-15 -1400 ((-823 (-523)) |#1|)) (-15 -1400 ((-823 (-355)) |#1|)) (-15 -3508 (|#4| |#1|)) (-15 -1220 ((-3 |#4| "failed") |#1|)) (-15 -1691 (|#1| |#4|)) (-15 -1437 (|#2| |#1|)) (-15 -1457 (|#1| |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1292 (((-589 |#3|) $) 110)) (-2389 (((-1083 $) $ |#3|) 125) (((-1083 |#1|) $) 124)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 87 (|has| |#1| (-515)))) (-3306 (($ $) 88 (|has| |#1| (-515)))) (-3174 (((-108) $) 90 (|has| |#1| (-515)))) (-1877 (((-710) $) 112) (((-710) $ (-589 |#3|)) 111)) (-2227 (($ $) 271)) (-2248 (((-108) $ $) 257)) (-3405 (((-3 $ "failed") $ $) 19)) (-2485 (($ $ $) 216 (|has| |#1| (-515)))) (-4158 (((-589 $) $ $) 211 (|has| |#1| (-515)))) (-4130 (((-394 (-1083 $)) (-1083 $)) 100 (|has| |#1| (-840)))) (-3718 (($ $) 98 (|has| |#1| (-427)))) (-4226 (((-394 $) $) 97 (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-840)))) (-4189 (($) 17 T CONST)) (-1220 (((-3 |#1| "failed") $) 164) (((-3 (-383 (-523)) "failed") $) 162 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 160 (|has| |#1| (-964 (-523)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-883 (-383 (-523)))) 231 (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))) (((-3 $ "failed") (-883 (-523))) 228 (-3172 (-12 (-4179 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087)))))) (((-3 $ "failed") (-883 |#1|)) 225 (-3172 (-12 (-4179 (|has| |#1| (-37 (-383 (-523))))) (-4179 (|has| |#1| (-37 (-523)))) (|has| |#3| (-564 (-1087)))) (-12 (-4179 (|has| |#1| (-508))) (-4179 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (-4179 (|has| |#1| (-921 (-523)))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))))) (-3508 ((|#1| $) 165) (((-383 (-523)) $) 161 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 159 (|has| |#1| (-964 (-523)))) ((|#3| $) 135) (($ (-883 (-383 (-523)))) 230 (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))) (($ (-883 (-523))) 227 (-3172 (-12 (-4179 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087)))))) (($ (-883 |#1|)) 224 (-3172 (-12 (-4179 (|has| |#1| (-37 (-383 (-523))))) (-4179 (|has| |#1| (-37 (-523)))) (|has| |#3| (-564 (-1087)))) (-12 (-4179 (|has| |#1| (-508))) (-4179 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (-4179 (|has| |#1| (-921 (-523)))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))))) (-1611 (($ $ $ |#3|) 108 (|has| |#1| (-158))) (($ $ $) 212 (|has| |#1| (-515)))) (-1457 (($ $) 154) (($ $ |#3|) 266)) (-2243 (((-629 (-523)) (-629 $)) 134 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 133 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 132) (((-629 |#1|) (-629 $)) 131)) (-3087 (((-108) $ $) 256) (((-108) $ (-589 $)) 255)) (-1444 (((-3 $ "failed") $) 34)) (-4015 (((-108) $) 264)) (-3999 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 236)) (-3480 (($ $) 205 (|has| |#1| (-427)))) (-1272 (($ $) 176 (|has| |#1| (-427))) (($ $ |#3|) 105 (|has| |#1| (-427)))) (-1447 (((-589 $) $) 109)) (-3049 (((-108) $) 96 (|has| |#1| (-840)))) (-2618 (($ $) 221 (|has| |#1| (-515)))) (-2587 (($ $) 222 (|has| |#1| (-515)))) (-2468 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3685 (($ $ $) 247) (($ $ $ |#3|) 245)) (-4222 (($ $ |#1| |#2| $) 172)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 84 (-12 (|has| |#3| (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 83 (-12 (|has| |#3| (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-2769 (((-108) $) 31)) (-1789 (((-710) $) 169)) (-2605 (((-108) $ $) 250) (((-108) $ (-589 $)) 249)) (-1656 (($ $ $ $ $) 207 (|has| |#1| (-515)))) (-3556 ((|#3| $) 275)) (-1280 (($ (-1083 |#1|) |#3|) 117) (($ (-1083 $) |#3|) 116)) (-3560 (((-589 $) $) 126)) (-2704 (((-108) $) 152)) (-1267 (($ |#1| |#2|) 153) (($ $ |#3| (-710)) 119) (($ $ (-589 |#3|) (-589 (-710))) 118)) (-3056 (($ $ $) 235)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ |#3|) 120)) (-1543 (((-108) $) 265)) (-4047 ((|#2| $) 170) (((-710) $ |#3|) 122) (((-589 (-710)) $ (-589 |#3|)) 121)) (-3239 (($ $ $) 79 (|has| |#1| (-786)))) (-1780 (((-710) $) 274)) (-3158 (($ $ $) 78 (|has| |#1| (-786)))) (-2041 (($ (-1 |#2| |#2|) $) 171)) (-1345 (($ (-1 |#1| |#1|) $) 151)) (-4213 (((-3 |#3| "failed") $) 123)) (-3763 (($ $) 202 (|has| |#1| (-427)))) (-3382 (($ $) 203 (|has| |#1| (-427)))) (-1866 (((-589 $) $) 260)) (-3093 (($ $) 263)) (-3164 (($ $) 204 (|has| |#1| (-427)))) (-1606 (((-589 $) $) 261)) (-1310 (($ $) 262)) (-1427 (($ $) 149)) (-1437 ((|#1| $) 148) (($ $ |#3|) 267)) (-3278 (($ (-589 $)) 94 (|has| |#1| (-427))) (($ $ $) 93 (|has| |#1| (-427)))) (-3761 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2426 (-710))) $ $) 234)) (-3529 (((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3070 $) (|:| -3969 $)) $ $) 238) (((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3070 $) (|:| -3969 $)) $ $ |#3|) 237)) (-3653 (((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3969 $)) $ $) 240) (((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3969 $)) $ $ |#3|) 239)) (-2558 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2109 (($ $ $) 243) (($ $ $ |#3|) 241)) (-2032 (((-1070) $) 9)) (-3173 (($ $ $) 210 (|has| |#1| (-515)))) (-3841 (((-589 $) $) 269)) (-3538 (((-3 (-589 $) "failed") $) 114)) (-3478 (((-3 (-589 $) "failed") $) 115)) (-2790 (((-3 (-2 (|:| |var| |#3|) (|:| -1475 (-710))) "failed") $) 113)) (-2490 (((-108) $ $) 252) (((-108) $ (-589 $)) 251)) (-2960 (($ $ $) 232)) (-2773 (($ $) 273)) (-2303 (((-108) $ $) 258)) (-2569 (((-108) $ $) 254) (((-108) $ (-589 $)) 253)) (-2897 (($ $ $) 233)) (-2781 (($ $) 272)) (-3951 (((-1034) $) 10)) (-1383 (((-2 (|:| -3310 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-515)))) (-1961 (((-2 (|:| -3310 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-515)))) (-1408 (((-108) $) 166)) (-1419 ((|#1| $) 167)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 95 (|has| |#1| (-427)))) (-3310 ((|#1| |#1| $) 206 (|has| |#1| (-427))) (($ (-589 $)) 92 (|has| |#1| (-427))) (($ $ $) 91 (|has| |#1| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) 101 (|has| |#1| (-840)))) (-2424 (((-394 $) $) 99 (|has| |#1| (-840)))) (-3904 (((-2 (|:| -3310 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-515)))) (-4007 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-515)))) (-1963 (($ $ |#1|) 219 (|has| |#1| (-515))) (($ $ $) 217 (|has| |#1| (-515)))) (-2105 (($ $ |#1|) 220 (|has| |#1| (-515))) (($ $ $) 218 (|has| |#1| (-515)))) (-2812 (($ $ (-589 (-271 $))) 145) (($ $ (-271 $)) 144) (($ $ $ $) 143) (($ $ (-589 $) (-589 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-589 |#3|) (-589 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-589 |#3|) (-589 $)) 138)) (-1744 (($ $ |#3|) 107 (|has| |#1| (-158)))) (-3984 (($ $ |#3|) 42) (($ $ (-589 |#3|)) 41) (($ $ |#3| (-710)) 40) (($ $ (-589 |#3|) (-589 (-710))) 39)) (-2640 ((|#2| $) 150) (((-710) $ |#3|) 130) (((-589 (-710)) $ (-589 |#3|)) 129)) (-1472 (($ $) 270)) (-1644 (($ $) 268)) (-1400 (((-823 (-355)) $) 82 (-12 (|has| |#3| (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) 81 (-12 (|has| |#3| (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) 80 (-12 (|has| |#3| (-564 (-499))) (|has| |#1| (-564 (-499))))) (($ (-883 (-383 (-523)))) 229 (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))) (($ (-883 (-523))) 226 (-3172 (-12 (-4179 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087)))))) (($ (-883 |#1|)) 223 (|has| |#3| (-564 (-1087)))) (((-1070) $) 201 (-12 (|has| |#1| (-964 (-523))) (|has| |#3| (-564 (-1087))))) (((-883 |#1|) $) 200 (|has| |#3| (-564 (-1087))))) (-1618 ((|#1| $) 175 (|has| |#1| (-427))) (($ $ |#3|) 106 (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 104 (-3147 (|has| $ (-134)) (|has| |#1| (-840))))) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-883 |#1|) $) 199 (|has| |#3| (-564 (-1087)))) (($ (-383 (-523))) 72 (-3172 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))))) (($ $) 85 (|has| |#1| (-515)))) (-3819 (((-589 |#1|) $) 168)) (-2084 ((|#1| $ |#2|) 155) (($ $ |#3| (-710)) 128) (($ $ (-589 |#3|) (-589 (-710))) 127)) (-1942 (((-3 $ "failed") $) 73 (-3172 (-3147 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) 29)) (-3553 (($ $ $ (-710)) 173 (|has| |#1| (-158)))) (-2801 (((-108) $ $) 89 (|has| |#1| (-515)))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-3000 (((-3 (-108) "failed") $ $) 259)) (-1891 (($) 30 T CONST)) (-1724 (($ $ $ $ (-710)) 208 (|has| |#1| (-515)))) (-2713 (($ $ $ (-710)) 209 (|has| |#1| (-515)))) (-2909 (($ $ |#3|) 38) (($ $ (-589 |#3|)) 37) (($ $ |#3| (-710)) 36) (($ $ (-589 |#3|) (-589 (-710))) 35)) (-4006 (((-108) $ $) 76 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 75 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 77 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 74 (|has| |#1| (-786)))) (-4074 (($ $ |#1|) 156 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 157 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 147) (($ $ |#1|) 146))) (((-987 |#1| |#2| |#3|) (-129) (-973) (-732) (-786)) (T -987)) -((-2907 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-2457 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-710)))) (-2262 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3729 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-4039 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3190 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2800 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5)))) (-2752 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3786 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-3810 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-1298 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-4220 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2748 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5)))) (-1871 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5)))) (-3754 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2391 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2090 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2663 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2663 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) (-2001 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2001 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) (-2112 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2112 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) (-4172 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-4172 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) (-1351 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-1239 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-1351 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-1239 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-3055 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2077 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3055 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-2077 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-1236 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3282 *1))) (-4 *1 (-987 *3 *4 *5)))) (-1236 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3282 *1))) (-4 *1 (-987 *4 *5 *3)))) (-3369 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-987 *3 *4 *5)))) (-3369 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-987 *4 *5 *3)))) (-2815 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-987 *3 *4 *5)))) (-2055 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2929 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3829 (-710)))) (-4 *1 (-987 *3 *4 *5)))) (-1398 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2648 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)))) (-3517 (*1 *1 *2) (|partial| -3262 (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) (-3474 (*1 *1 *2) (-3262 (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) (-3663 (*1 *1 *2) (-3262 (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) (-3517 (*1 *1 *2) (|partial| -3262 (-12 (-5 *2 (-883 *3)) (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-3900 (-4 *3 (-37 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) (-12 (-3900 (-4 *3 (-508))) (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) (-12 (-3900 (-4 *3 (-921 (-523)))) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))))) (-3474 (*1 *1 *2) (-3262 (-12 (-5 *2 (-883 *3)) (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-3900 (-4 *3 (-37 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) (-12 (-3900 (-4 *3 (-508))) (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) (-12 (-3900 (-4 *3 (-921 (-523)))) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *5 (-564 (-1087))) (-4 *4 (-732)) (-4 *5 (-786)))) (-3058 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2611 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-4119 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2477 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-4119 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2477 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2407 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2490 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3278 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-987 *3 *4 *5)))) (-1740 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3278 *1) (|:| |coef1| *1))) (-4 *1 (-987 *3 *4 *5)))) (-3630 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3278 *1) (|:| |coef2| *1))) (-4 *1 (-987 *3 *4 *5)))) (-3078 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-3301 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5)))) (-1611 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-3720 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *3 (-515)))) (-3090 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *3 (-515)))) (-3870 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-3278 (*1 *2 *2 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-2236 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-3661 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-1246 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427))))) -(-13 (-880 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2907 (|t#3| $)) (-15 -2457 ((-710) $)) (-15 -2262 ($ $)) (-15 -3729 ($ $)) (-15 -4039 ($ $)) (-15 -3190 ($ $)) (-15 -2800 ((-589 $) $)) (-15 -2752 ($ $)) (-15 -3786 ($ $ |t#3|)) (-15 -3810 ($ $ |t#3|)) (-15 -2132 ((-108) $)) (-15 -1906 ((-108) $)) (-15 -1298 ($ $)) (-15 -4220 ($ $)) (-15 -2748 ((-589 $) $)) (-15 -1871 ((-589 $) $)) (-15 -3754 ((-3 (-108) "failed") $ $)) (-15 -2391 ((-108) $ $)) (-15 -2090 ((-108) $ $)) (-15 -2663 ((-108) $ $)) (-15 -2663 ((-108) $ (-589 $))) (-15 -2001 ((-108) $ $)) (-15 -2001 ((-108) $ (-589 $))) (-15 -2112 ((-108) $ $)) (-15 -2112 ((-108) $ (-589 $))) (-15 -4172 ((-108) $ $)) (-15 -4172 ((-108) $ (-589 $))) (-15 -1351 ($ $ $)) (-15 -1239 ($ $ $)) (-15 -1351 ($ $ $ |t#3|)) (-15 -1239 ($ $ $ |t#3|)) (-15 -3055 ($ $ $)) (-15 -2077 ($ $ $)) (-15 -3055 ($ $ $ |t#3|)) (-15 -2077 ($ $ $ |t#3|)) (-15 -1236 ((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $)) (-15 -1236 ((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $ |t#3|)) (-15 -3369 ((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -3369 ((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $ |t#3|)) (-15 -2815 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -2055 ($ $ $)) (-15 -2929 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3829 (-710))) $ $)) (-15 -1398 ($ $ $)) (-15 -2648 ($ $ $)) (IF (|has| |t#3| (-564 (-1087))) (PROGN (-6 (-563 (-883 |t#1|))) (-6 (-564 (-883 |t#1|))) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -3517 ((-3 $ "failed") (-883 (-383 (-523))))) (-15 -3474 ($ (-883 (-383 (-523))))) (-15 -3663 ($ (-883 (-383 (-523))))) (-15 -3517 ((-3 $ "failed") (-883 (-523)))) (-15 -3474 ($ (-883 (-523)))) (-15 -3663 ($ (-883 (-523)))) (IF (|has| |t#1| (-921 (-523))) |%noBranch| (PROGN (-15 -3517 ((-3 $ "failed") (-883 |t#1|))) (-15 -3474 ($ (-883 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-523))) (IF (|has| |t#1| (-37 (-383 (-523)))) |%noBranch| (PROGN (-15 -3517 ((-3 $ "failed") (-883 (-523)))) (-15 -3474 ($ (-883 (-523)))) (-15 -3663 ($ (-883 (-523)))) (IF (|has| |t#1| (-508)) |%noBranch| (PROGN (-15 -3517 ((-3 $ "failed") (-883 |t#1|))) (-15 -3474 ($ (-883 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-523))) |%noBranch| (IF (|has| |t#1| (-37 (-383 (-523)))) |%noBranch| (PROGN (-15 -3517 ((-3 $ "failed") (-883 |t#1|))) (-15 -3474 ($ (-883 |t#1|)))))) (-15 -3663 ($ (-883 |t#1|))) (IF (|has| |t#1| (-964 (-523))) (-6 (-564 (-1070))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3058 ($ $)) (-15 -2611 ($ $)) (-15 -4119 ($ $ |t#1|)) (-15 -2477 ($ $ |t#1|)) (-15 -4119 ($ $ $)) (-15 -2477 ($ $ $)) (-15 -2407 ($ $ $)) (-15 -2490 ((-2 (|:| -3278 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1740 ((-2 (|:| -3278 $) (|:| |coef1| $)) $ $)) (-15 -3630 ((-2 (|:| -3278 $) (|:| |coef2| $)) $ $)) (-15 -3078 ($ $ $)) (-15 -3301 ((-589 $) $ $)) (-15 -1611 ($ $ $)) (-15 -3720 ($ $ $ (-710))) (-15 -3090 ($ $ $ $ (-710))) (-15 -3870 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-427)) (PROGN (-15 -3278 (|t#1| |t#1| $)) (-15 -1978 ($ $)) (-15 -2236 ($ $)) (-15 -3661 ($ $)) (-15 -1246 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-563 (-883 |#1|)) |has| |#3| (-564 (-1087))) ((-158) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-564 (-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523))))) ((-564 (-883 |#1|)) |has| |#3| (-564 (-1087))) ((-564 (-1070)) -12 (|has| |#1| (-964 (-523))) (|has| |#3| (-564 (-1087)))) ((-267) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-286 $) . T) ((-302 |#1| |#2|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3262 (|has| |#1| (-840)) (|has| |#1| (-427))) ((-484 |#3| |#1|) . T) ((-484 |#3| $) . T) ((-484 $ $) . T) ((-515) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 |#3|) . T) ((-817 (-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355)))) ((-817 (-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))) ((-880 |#1| |#2| |#3|) . T) ((-840) |has| |#1| (-840)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-964 |#3|) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) |has| |#1| (-840))) -((-2295 (((-108) |#3| $) 13)) (-3313 (((-3 $ "failed") |#3| (-852)) 23)) (-2121 (((-3 |#3| "failed") |#3| $) 37)) (-2604 (((-108) |#3| $) 16)) (-4114 (((-108) |#3| $) 14))) -(((-988 |#1| |#2| |#3|) (-10 -8 (-15 -3313 ((-3 |#1| "failed") |#3| (-852))) (-15 -2121 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2604 ((-108) |#3| |#1|)) (-15 -4114 ((-108) |#3| |#1|)) (-15 -2295 ((-108) |#3| |#1|))) (-989 |#2| |#3|) (-13 (-784) (-339)) (-1144 |#2|)) (T -988)) -NIL -(-10 -8 (-15 -3313 ((-3 |#1| "failed") |#3| (-852))) (-15 -2121 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2604 ((-108) |#3| |#1|)) (-15 -4114 ((-108) |#3| |#1|)) (-15 -2295 ((-108) |#3| |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) |#2| $) 21)) (-3671 (((-523) |#2| $) 22)) (-3313 (((-3 $ "failed") |#2| (-852)) 15)) (-3877 ((|#1| |#2| $ |#1|) 13)) (-2121 (((-3 |#2| "failed") |#2| $) 18)) (-2604 (((-108) |#2| $) 19)) (-4114 (((-108) |#2| $) 20)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3727 ((|#2| $) 17)) (-1458 (((-794) $) 11)) (-2562 ((|#1| |#2| $ |#1|) 14)) (-1409 (((-589 $) |#2|) 16)) (-3983 (((-108) $ $) 6))) -(((-989 |#1| |#2|) (-129) (-13 (-784) (-339)) (-1144 |t#1|)) (T -989)) -((-3671 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1144 *4)) (-5 *2 (-523)))) (-2295 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1144 *4)) (-5 *2 (-108)))) (-4114 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1144 *4)) (-5 *2 (-108)))) (-2604 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1144 *4)) (-5 *2 (-108)))) (-2121 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-989 *3 *2)) (-4 *3 (-13 (-784) (-339))) (-4 *2 (-1144 *3)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *2)) (-4 *3 (-13 (-784) (-339))) (-4 *2 (-1144 *3)))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1144 *4)) (-5 *2 (-589 *1)) (-4 *1 (-989 *4 *3)))) (-3313 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-852)) (-4 *4 (-13 (-784) (-339))) (-4 *1 (-989 *4 *2)) (-4 *2 (-1144 *4)))) (-2562 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-989 *2 *3)) (-4 *2 (-13 (-784) (-339))) (-4 *3 (-1144 *2)))) (-3877 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-989 *2 *3)) (-4 *2 (-13 (-784) (-339))) (-4 *3 (-1144 *2))))) -(-13 (-1016) (-10 -8 (-15 -3671 ((-523) |t#2| $)) (-15 -2295 ((-108) |t#2| $)) (-15 -4114 ((-108) |t#2| $)) (-15 -2604 ((-108) |t#2| $)) (-15 -2121 ((-3 |t#2| "failed") |t#2| $)) (-15 -3727 (|t#2| $)) (-15 -1409 ((-589 $) |t#2|)) (-15 -3313 ((-3 $ "failed") |t#2| (-852))) (-15 -2562 (|t#1| |t#2| $ |t#1|)) (-15 -3877 (|t#1| |t#2| $ |t#1|)))) +((-3556 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-710)))) (-2773 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2781 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2227 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-1472 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3841 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5)))) (-1644 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-1437 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-1457 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-4015 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-1310 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-1606 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5)))) (-1866 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5)))) (-3000 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2303 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2248 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-3087 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-3087 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) (-2569 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2569 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) (-2490 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2490 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) (-2605 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2605 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) (-2468 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3685 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2468 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-3685 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-2558 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2109 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2558 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-2109 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-3653 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3474 *1) (|:| |gap| (-710)) (|:| -3969 *1))) (-4 *1 (-987 *3 *4 *5)))) (-3653 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-2 (|:| -3474 *1) (|:| |gap| (-710)) (|:| -3969 *1))) (-4 *1 (-987 *4 *5 *3)))) (-3529 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3474 *1) (|:| |gap| (-710)) (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-987 *3 *4 *5)))) (-3529 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-2 (|:| -3474 *1) (|:| |gap| (-710)) (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-987 *4 *5 *3)))) (-3999 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-987 *3 *4 *5)))) (-3056 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3761 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2426 (-710)))) (-4 *1 (-987 *3 *4 *5)))) (-2897 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2960 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-1220 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)))) (-1220 (*1 *1 *2) (|partial| -3172 (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-4179 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) (-3508 (*1 *1 *2) (-3172 (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-4179 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) (-1400 (*1 *1 *2) (-3172 (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-4179 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) (-1220 (*1 *1 *2) (|partial| -3172 (-12 (-5 *2 (-883 *3)) (-12 (-4179 (-4 *3 (-37 (-383 (-523))))) (-4179 (-4 *3 (-37 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) (-12 (-4179 (-4 *3 (-508))) (-4179 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) (-12 (-4179 (-4 *3 (-921 (-523)))) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))))) (-3508 (*1 *1 *2) (-3172 (-12 (-5 *2 (-883 *3)) (-12 (-4179 (-4 *3 (-37 (-383 (-523))))) (-4179 (-4 *3 (-37 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) (-12 (-4179 (-4 *3 (-508))) (-4179 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) (-12 (-4179 (-4 *3 (-921 (-523)))) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *5 (-564 (-1087))) (-4 *4 (-732)) (-4 *5 (-786)))) (-2587 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2618 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2105 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-1963 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2105 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-1963 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2485 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-3904 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3310 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-987 *3 *4 *5)))) (-1961 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3310 *1) (|:| |coef1| *1))) (-4 *1 (-987 *3 *4 *5)))) (-1383 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3310 *1) (|:| |coef2| *1))) (-4 *1 (-987 *3 *4 *5)))) (-1611 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-4158 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5)))) (-3173 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2713 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *3 (-515)))) (-1724 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *3 (-515)))) (-1656 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-3310 (*1 *2 *2 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-3480 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-3164 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-3382 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-3763 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427))))) +(-13 (-880 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3556 (|t#3| $)) (-15 -1780 ((-710) $)) (-15 -2773 ($ $)) (-15 -2781 ($ $)) (-15 -2227 ($ $)) (-15 -1472 ($ $)) (-15 -3841 ((-589 $) $)) (-15 -1644 ($ $)) (-15 -1437 ($ $ |t#3|)) (-15 -1457 ($ $ |t#3|)) (-15 -1543 ((-108) $)) (-15 -4015 ((-108) $)) (-15 -3093 ($ $)) (-15 -1310 ($ $)) (-15 -1606 ((-589 $) $)) (-15 -1866 ((-589 $) $)) (-15 -3000 ((-3 (-108) "failed") $ $)) (-15 -2303 ((-108) $ $)) (-15 -2248 ((-108) $ $)) (-15 -3087 ((-108) $ $)) (-15 -3087 ((-108) $ (-589 $))) (-15 -2569 ((-108) $ $)) (-15 -2569 ((-108) $ (-589 $))) (-15 -2490 ((-108) $ $)) (-15 -2490 ((-108) $ (-589 $))) (-15 -2605 ((-108) $ $)) (-15 -2605 ((-108) $ (-589 $))) (-15 -2468 ($ $ $)) (-15 -3685 ($ $ $)) (-15 -2468 ($ $ $ |t#3|)) (-15 -3685 ($ $ $ |t#3|)) (-15 -2558 ($ $ $)) (-15 -2109 ($ $ $)) (-15 -2558 ($ $ $ |t#3|)) (-15 -2109 ($ $ $ |t#3|)) (-15 -3653 ((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3969 $)) $ $)) (-15 -3653 ((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3969 $)) $ $ |t#3|)) (-15 -3529 ((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3070 $) (|:| -3969 $)) $ $)) (-15 -3529 ((-2 (|:| -3474 $) (|:| |gap| (-710)) (|:| -3070 $) (|:| -3969 $)) $ $ |t#3|)) (-15 -3999 ((-2 (|:| -3070 $) (|:| -3969 $)) $ $)) (-15 -3056 ($ $ $)) (-15 -3761 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2426 (-710))) $ $)) (-15 -2897 ($ $ $)) (-15 -2960 ($ $ $)) (IF (|has| |t#3| (-564 (-1087))) (PROGN (-6 (-563 (-883 |t#1|))) (-6 (-564 (-883 |t#1|))) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -1220 ((-3 $ "failed") (-883 (-383 (-523))))) (-15 -3508 ($ (-883 (-383 (-523))))) (-15 -1400 ($ (-883 (-383 (-523))))) (-15 -1220 ((-3 $ "failed") (-883 (-523)))) (-15 -3508 ($ (-883 (-523)))) (-15 -1400 ($ (-883 (-523)))) (IF (|has| |t#1| (-921 (-523))) |%noBranch| (PROGN (-15 -1220 ((-3 $ "failed") (-883 |t#1|))) (-15 -3508 ($ (-883 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-523))) (IF (|has| |t#1| (-37 (-383 (-523)))) |%noBranch| (PROGN (-15 -1220 ((-3 $ "failed") (-883 (-523)))) (-15 -3508 ($ (-883 (-523)))) (-15 -1400 ($ (-883 (-523)))) (IF (|has| |t#1| (-508)) |%noBranch| (PROGN (-15 -1220 ((-3 $ "failed") (-883 |t#1|))) (-15 -3508 ($ (-883 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-523))) |%noBranch| (IF (|has| |t#1| (-37 (-383 (-523)))) |%noBranch| (PROGN (-15 -1220 ((-3 $ "failed") (-883 |t#1|))) (-15 -3508 ($ (-883 |t#1|)))))) (-15 -1400 ($ (-883 |t#1|))) (IF (|has| |t#1| (-964 (-523))) (-6 (-564 (-1070))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -2587 ($ $)) (-15 -2618 ($ $)) (-15 -2105 ($ $ |t#1|)) (-15 -1963 ($ $ |t#1|)) (-15 -2105 ($ $ $)) (-15 -1963 ($ $ $)) (-15 -2485 ($ $ $)) (-15 -3904 ((-2 (|:| -3310 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1961 ((-2 (|:| -3310 $) (|:| |coef1| $)) $ $)) (-15 -1383 ((-2 (|:| -3310 $) (|:| |coef2| $)) $ $)) (-15 -1611 ($ $ $)) (-15 -4158 ((-589 $) $ $)) (-15 -3173 ($ $ $)) (-15 -2713 ($ $ $ (-710))) (-15 -1724 ($ $ $ $ (-710))) (-15 -1656 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-427)) (PROGN (-15 -3310 (|t#1| |t#1| $)) (-15 -3480 ($ $)) (-15 -3164 ($ $)) (-15 -3382 ($ $)) (-15 -3763 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-563 (-883 |#1|)) |has| |#3| (-564 (-1087))) ((-158) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-564 (-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523))))) ((-564 (-883 |#1|)) |has| |#3| (-564 (-1087))) ((-564 (-1070)) -12 (|has| |#1| (-964 (-523))) (|has| |#3| (-564 (-1087)))) ((-267) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-286 $) . T) ((-302 |#1| |#2|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3172 (|has| |#1| (-840)) (|has| |#1| (-427))) ((-484 |#3| |#1|) . T) ((-484 |#3| $) . T) ((-484 $ $) . T) ((-515) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 |#3|) . T) ((-817 (-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355)))) ((-817 (-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))) ((-880 |#1| |#2| |#3|) . T) ((-840) |has| |#1| (-840)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-964 |#3|) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1127) |has| |#1| (-840))) +((-2603 (((-108) |#3| $) 13)) (-1264 (((-3 $ "failed") |#3| (-852)) 23)) (-1444 (((-3 |#3| "failed") |#3| $) 38)) (-3712 (((-108) |#3| $) 16)) (-2057 (((-108) |#3| $) 14))) +(((-988 |#1| |#2| |#3|) (-10 -8 (-15 -1264 ((-3 |#1| "failed") |#3| (-852))) (-15 -1444 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3712 ((-108) |#3| |#1|)) (-15 -2057 ((-108) |#3| |#1|)) (-15 -2603 ((-108) |#3| |#1|))) (-989 |#2| |#3|) (-13 (-784) (-339)) (-1145 |#2|)) (T -988)) +NIL +(-10 -8 (-15 -1264 ((-3 |#1| "failed") |#3| (-852))) (-15 -1444 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3712 ((-108) |#3| |#1|)) (-15 -2057 ((-108) |#3| |#1|)) (-15 -2603 ((-108) |#3| |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) |#2| $) 21)) (-3482 (((-523) |#2| $) 22)) (-1264 (((-3 $ "failed") |#2| (-852)) 15)) (-1729 ((|#1| |#2| $ |#1|) 13)) (-1444 (((-3 |#2| "failed") |#2| $) 18)) (-3712 (((-108) |#2| $) 19)) (-2057 (((-108) |#2| $) 20)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-2762 ((|#2| $) 17)) (-1691 (((-794) $) 11)) (-4108 ((|#1| |#2| $ |#1|) 14)) (-3008 (((-589 $) |#2|) 16)) (-3941 (((-108) $ $) 6))) +(((-989 |#1| |#2|) (-129) (-13 (-784) (-339)) (-1145 |t#1|)) (T -989)) +((-3482 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1145 *4)) (-5 *2 (-523)))) (-2603 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1145 *4)) (-5 *2 (-108)))) (-2057 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1145 *4)) (-5 *2 (-108)))) (-3712 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1145 *4)) (-5 *2 (-108)))) (-1444 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-989 *3 *2)) (-4 *3 (-13 (-784) (-339))) (-4 *2 (-1145 *3)))) (-2762 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *2)) (-4 *3 (-13 (-784) (-339))) (-4 *2 (-1145 *3)))) (-3008 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1145 *4)) (-5 *2 (-589 *1)) (-4 *1 (-989 *4 *3)))) (-1264 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-852)) (-4 *4 (-13 (-784) (-339))) (-4 *1 (-989 *4 *2)) (-4 *2 (-1145 *4)))) (-4108 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-989 *2 *3)) (-4 *2 (-13 (-784) (-339))) (-4 *3 (-1145 *2)))) (-1729 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-989 *2 *3)) (-4 *2 (-13 (-784) (-339))) (-4 *3 (-1145 *2))))) +(-13 (-1016) (-10 -8 (-15 -3482 ((-523) |t#2| $)) (-15 -2603 ((-108) |t#2| $)) (-15 -2057 ((-108) |t#2| $)) (-15 -3712 ((-108) |t#2| $)) (-15 -1444 ((-3 |t#2| "failed") |t#2| $)) (-15 -2762 (|t#2| $)) (-15 -3008 ((-589 $) |t#2|)) (-15 -1264 ((-3 $ "failed") |t#2| (-852))) (-15 -4108 (|t#1| |t#2| $ |t#1|)) (-15 -1729 (|t#1| |t#2| $ |t#1|)))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3980 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-710)) 96)) (-2944 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710)) 55)) (-3431 (((-1173) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-710)) 87)) (-2770 (((-710) (-589 |#4|) (-589 |#5|)) 27)) (-1312 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710)) 57) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710) (-108)) 59)) (-2274 (((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108)) 79)) (-3663 (((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) 82)) (-1827 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-108)) 54)) (-1417 (((-710) (-589 |#4|) (-589 |#5|)) 19))) -(((-990 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1417 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -2770 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1827 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-108))) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710) (-108))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3980 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-710))) (-15 -3663 ((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -3431 ((-1173) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-710)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -990)) -((-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) (-5 *4 (-710)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-1173)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1070)) (-5 *1 (-990 *4 *5 *6 *7 *8)))) (-3980 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-589 *11)) (|:| |todo| (-589 (-2 (|:| |val| *3) (|:| -3072 *11)))))) (-5 *6 (-710)) (-5 *2 (-589 (-2 (|:| |val| (-589 *10)) (|:| -3072 *11)))) (-5 *3 (-589 *10)) (-5 *4 (-589 *11)) (-4 *10 (-987 *7 *8 *9)) (-4 *11 (-992 *7 *8 *9 *10)) (-4 *7 (-427)) (-4 *8 (-732)) (-4 *9 (-786)) (-5 *1 (-990 *7 *8 *9 *10 *11)))) (-2274 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) (-2274 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) (-1312 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1312 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-1312 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-710)) (-5 *6 (-108)) (-4 *7 (-427)) (-4 *8 (-732)) (-4 *9 (-786)) (-4 *3 (-987 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-990 *7 *8 *9 *3 *4)) (-4 *4 (-992 *7 *8 *9 *3)))) (-2944 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2944 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-1827 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) (-1417 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-990 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1417 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -2770 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1827 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-108))) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710) (-108))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3980 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-710))) (-15 -3663 ((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -3431 ((-1173) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-710)))) -((-2005 (((-108) |#5| $) 21)) (-3785 (((-108) |#5| $) 24)) (-1944 (((-108) |#5| $) 16) (((-108) $) 45)) (-1309 (((-589 $) |#5| $) NIL) (((-589 $) (-589 |#5|) $) 77) (((-589 $) (-589 |#5|) (-589 $)) 75) (((-589 $) |#5| (-589 $)) 78)) (-4097 (($ $ |#5|) NIL) (((-589 $) |#5| $) NIL) (((-589 $) |#5| (-589 $)) 60) (((-589 $) (-589 |#5|) $) 62) (((-589 $) (-589 |#5|) (-589 $)) 64)) (-3910 (((-589 $) |#5| $) NIL) (((-589 $) |#5| (-589 $)) 54) (((-589 $) (-589 |#5|) $) 56) (((-589 $) (-589 |#5|) (-589 $)) 58)) (-4062 (((-108) |#5| $) 27))) -(((-991 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4097 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -4097 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -4097 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -4097 ((-589 |#1|) |#5| |#1|)) (-15 -3910 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -3910 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -3910 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -3910 ((-589 |#1|) |#5| |#1|)) (-15 -1309 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -1309 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -1309 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -1309 ((-589 |#1|) |#5| |#1|)) (-15 -3785 ((-108) |#5| |#1|)) (-15 -1944 ((-108) |#1|)) (-15 -4062 ((-108) |#5| |#1|)) (-15 -2005 ((-108) |#5| |#1|)) (-15 -1944 ((-108) |#5| |#1|)) (-15 -4097 (|#1| |#1| |#5|))) (-992 |#2| |#3| |#4| |#5|) (-427) (-732) (-786) (-987 |#2| |#3| |#4|)) (T -991)) -NIL -(-10 -8 (-15 -4097 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -4097 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -4097 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -4097 ((-589 |#1|) |#5| |#1|)) (-15 -3910 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -3910 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -3910 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -3910 ((-589 |#1|) |#5| |#1|)) (-15 -1309 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -1309 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -1309 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -1309 ((-589 |#1|) |#5| |#1|)) (-15 -3785 ((-108) |#5| |#1|)) (-15 -1944 ((-108) |#1|)) (-15 -4062 ((-108) |#5| |#1|)) (-15 -2005 ((-108) |#5| |#1|)) (-15 -1944 ((-108) |#5| |#1|)) (-15 -4097 (|#1| |#1| |#5|))) -((-3924 (((-108) $ $) 7)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) 85)) (-3846 (((-589 $) (-589 |#4|)) 86) (((-589 $) (-589 |#4|) (-108)) 111)) (-1957 (((-589 |#3|) $) 33)) (-2100 (((-108) $) 26)) (-2376 (((-108) $) 17 (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) 101) (((-108) $) 97)) (-2308 ((|#4| |#4| $) 92)) (-2291 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| $) 126)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) 27)) (-3079 (((-108) $ (-710)) 44)) (-3724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 79)) (-2518 (($) 45 T CONST)) (-3595 (((-108) $) 22 (|has| |#1| (-515)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3225 (((-108) $ $) 23 (|has| |#1| (-515)))) (-3393 (((-108) $) 25 (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3956 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 36)) (-3474 (($ (-589 |#4|)) 35)) (-1751 (((-3 $ "failed") $) 82)) (-4014 ((|#4| |#4| $) 89)) (-1773 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2636 ((|#4| |#4| $) 87)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) 105)) (-2005 (((-108) |#4| $) 136)) (-3785 (((-108) |#4| $) 133)) (-1944 (((-108) |#4| $) 137) (((-108) $) 134)) (-1666 (((-589 |#4|) $) 52 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) 104) (((-108) $) 103)) (-2907 ((|#3| $) 34)) (-2346 (((-108) $ (-710)) 43)) (-2136 (((-589 |#4|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 47)) (-4055 (((-589 |#3|) $) 32)) (-1357 (((-108) |#3| $) 31)) (-2866 (((-108) $ (-710)) 42)) (-3779 (((-1070) $) 9)) (-3246 (((-3 |#4| (-589 $)) |#4| |#4| $) 128)) (-1611 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| |#4| $) 127)) (-2579 (((-3 |#4| "failed") $) 83)) (-2668 (((-589 $) |#4| $) 129)) (-3320 (((-3 (-108) (-589 $)) |#4| $) 132)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1309 (((-589 $) |#4| $) 125) (((-589 $) (-589 |#4|) $) 124) (((-589 $) (-589 |#4|) (-589 $)) 123) (((-589 $) |#4| (-589 $)) 122)) (-1770 (($ |#4| $) 117) (($ (-589 |#4|) $) 116)) (-2404 (((-589 |#4|) $) 107)) (-2112 (((-108) |#4| $) 99) (((-108) $) 95)) (-2648 ((|#4| |#4| $) 90)) (-2391 (((-108) $ $) 110)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) 100) (((-108) $) 96)) (-1398 ((|#4| |#4| $) 91)) (-2783 (((-1034) $) 10)) (-1738 (((-3 |#4| "failed") $) 84)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2890 (((-3 $ "failed") $ |#4|) 78)) (-4097 (($ $ |#4|) 77) (((-589 $) |#4| $) 115) (((-589 $) |#4| (-589 $)) 114) (((-589 $) (-589 |#4|) $) 113) (((-589 $) (-589 |#4|) (-589 $)) 112)) (-1327 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) 38)) (-3883 (((-108) $) 41)) (-3988 (($) 40)) (-2299 (((-710) $) 106)) (-2792 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4244)))) (-1664 (($ $) 39)) (-3663 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 60)) (-2621 (($ $ |#3|) 28)) (-2624 (($ $ |#3|) 30)) (-1824 (($ $) 88)) (-3076 (($ $ |#3|) 29)) (-1458 (((-794) $) 11) (((-589 |#4|) $) 37)) (-1395 (((-710) $) 76 (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-3910 (((-589 $) |#4| $) 121) (((-589 $) |#4| (-589 $)) 120) (((-589 $) (-589 |#4|) $) 119) (((-589 $) (-589 |#4|) (-589 $)) 118)) (-2096 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) 81)) (-4062 (((-108) |#4| $) 135)) (-2153 (((-108) |#3| $) 80)) (-3983 (((-108) $ $) 6)) (-2676 (((-710) $) 46 (|has| $ (-6 -4244))))) +((-3244 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) (-710)) 96)) (-2719 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710)) 55)) (-2396 (((-1174) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-710)) 87)) (-1795 (((-710) (-589 |#4|) (-589 |#5|)) 27)) (-3224 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710)) 57) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710) (-108)) 59)) (-3530 (((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108)) 79)) (-1400 (((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) 82)) (-1529 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-108)) 54)) (-1949 (((-710) (-589 |#4|) (-589 |#5|)) 19))) +(((-990 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1949 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1795 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1529 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-108))) (-15 -2719 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710))) (-15 -2719 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|)) (-15 -3224 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710) (-108))) (-15 -3224 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710))) (-15 -3224 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|)) (-15 -3530 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -3530 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3244 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) (-710))) (-15 -1400 ((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)))) (-15 -2396 ((-1174) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-710)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -990)) +((-2396 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3643 *9)))) (-5 *4 (-710)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-1174)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3643 *8))) (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1070)) (-5 *1 (-990 *4 *5 *6 *7 *8)))) (-3244 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-589 *11)) (|:| |todo| (-589 (-2 (|:| |val| *3) (|:| -3643 *11)))))) (-5 *6 (-710)) (-5 *2 (-589 (-2 (|:| |val| (-589 *10)) (|:| -3643 *11)))) (-5 *3 (-589 *10)) (-5 *4 (-589 *11)) (-4 *10 (-987 *7 *8 *9)) (-4 *11 (-992 *7 *8 *9 *10)) (-4 *7 (-427)) (-4 *8 (-732)) (-4 *9 (-786)) (-5 *1 (-990 *7 *8 *9 *10 *11)))) (-3530 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) (-3530 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) (-3224 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3224 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-3224 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-710)) (-5 *6 (-108)) (-4 *7 (-427)) (-4 *8 (-732)) (-4 *9 (-786)) (-4 *3 (-987 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-990 *7 *8 *9 *3 *4)) (-4 *4 (-992 *7 *8 *9 *3)))) (-2719 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2719 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-1529 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-990 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1949 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1795 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1529 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-108))) (-15 -2719 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710))) (-15 -2719 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|)) (-15 -3224 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710) (-108))) (-15 -3224 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710))) (-15 -3224 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|)) (-15 -3530 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -3530 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3244 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) (-710))) (-15 -1400 ((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)))) (-15 -2396 ((-1174) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-710)))) +((-2607 (((-108) |#5| $) 21)) (-2072 (((-108) |#5| $) 24)) (-3149 (((-108) |#5| $) 16) (((-108) $) 45)) (-3196 (((-589 $) |#5| $) NIL) (((-589 $) (-589 |#5|) $) 77) (((-589 $) (-589 |#5|) (-589 $)) 75) (((-589 $) |#5| (-589 $)) 78)) (-3053 (($ $ |#5|) NIL) (((-589 $) |#5| $) NIL) (((-589 $) |#5| (-589 $)) 60) (((-589 $) (-589 |#5|) $) 62) (((-589 $) (-589 |#5|) (-589 $)) 64)) (-3817 (((-589 $) |#5| $) NIL) (((-589 $) |#5| (-589 $)) 54) (((-589 $) (-589 |#5|) $) 56) (((-589 $) (-589 |#5|) (-589 $)) 58)) (-2776 (((-108) |#5| $) 27))) +(((-991 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3053 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -3053 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -3053 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -3053 ((-589 |#1|) |#5| |#1|)) (-15 -3817 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -3817 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -3817 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -3817 ((-589 |#1|) |#5| |#1|)) (-15 -3196 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -3196 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -3196 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -3196 ((-589 |#1|) |#5| |#1|)) (-15 -2072 ((-108) |#5| |#1|)) (-15 -3149 ((-108) |#1|)) (-15 -2776 ((-108) |#5| |#1|)) (-15 -2607 ((-108) |#5| |#1|)) (-15 -3149 ((-108) |#5| |#1|)) (-15 -3053 (|#1| |#1| |#5|))) (-992 |#2| |#3| |#4| |#5|) (-427) (-732) (-786) (-987 |#2| |#3| |#4|)) (T -991)) +NIL +(-10 -8 (-15 -3053 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -3053 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -3053 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -3053 ((-589 |#1|) |#5| |#1|)) (-15 -3817 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -3817 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -3817 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -3817 ((-589 |#1|) |#5| |#1|)) (-15 -3196 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -3196 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -3196 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -3196 ((-589 |#1|) |#5| |#1|)) (-15 -2072 ((-108) |#5| |#1|)) (-15 -3149 ((-108) |#1|)) (-15 -2776 ((-108) |#5| |#1|)) (-15 -2607 ((-108) |#5| |#1|)) (-15 -3149 ((-108) |#5| |#1|)) (-15 -3053 (|#1| |#1| |#5|))) +((-1680 (((-108) $ $) 7)) (-3385 (((-589 (-2 (|:| -1214 $) (|:| -2647 (-589 |#4|)))) (-589 |#4|)) 85)) (-2591 (((-589 $) (-589 |#4|)) 86) (((-589 $) (-589 |#4|) (-108)) 111)) (-1292 (((-589 |#3|) $) 33)) (-2356 (((-108) $) 26)) (-2192 (((-108) $) 17 (|has| |#1| (-515)))) (-2219 (((-108) |#4| $) 101) (((-108) $) 97)) (-2717 ((|#4| |#4| $) 92)) (-3718 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 $))) |#4| $) 126)) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |#3|) 27)) (-1620 (((-108) $ (-710)) 44)) (-1903 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4248))) (((-3 |#4| "failed") $ |#3|) 79)) (-4189 (($) 45 T CONST)) (-4002 (((-108) $) 22 (|has| |#1| (-515)))) (-3577 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3527 (((-108) $ $) 23 (|has| |#1| (-515)))) (-2611 (((-108) $) 25 (|has| |#1| (-515)))) (-3586 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1291 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-1804 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-1220 (((-3 $ "failed") (-589 |#4|)) 36)) (-3508 (($ (-589 |#4|)) 35)) (-2441 (((-3 $ "failed") $) 82)) (-3546 ((|#4| |#4| $) 89)) (-2462 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4248)))) (-3969 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-3087 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2848 ((|#4| |#4| $) 87)) (-2116 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4248))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4248))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2860 (((-2 (|:| -1214 (-589 |#4|)) (|:| -2647 (-589 |#4|))) $) 105)) (-2607 (((-108) |#4| $) 136)) (-2072 (((-108) |#4| $) 133)) (-3149 (((-108) |#4| $) 137) (((-108) $) 134)) (-1871 (((-589 |#4|) $) 52 (|has| $ (-6 -4248)))) (-2605 (((-108) |#4| $) 104) (((-108) $) 103)) (-3556 ((|#3| $) 34)) (-3051 (((-108) $ (-710)) 43)) (-1584 (((-589 |#4|) $) 53 (|has| $ (-6 -4248)))) (-3423 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#4| |#4|) $) 47)) (-2709 (((-589 |#3|) $) 32)) (-2528 (((-108) |#3| $) 31)) (-1418 (((-108) $ (-710)) 42)) (-2032 (((-1070) $) 9)) (-3715 (((-3 |#4| (-589 $)) |#4| |#4| $) 128)) (-3173 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 $))) |#4| |#4| $) 127)) (-2535 (((-3 |#4| "failed") $) 83)) (-3130 (((-589 $) |#4| $) 129)) (-1338 (((-3 (-108) (-589 $)) |#4| $) 132)) (-1446 (((-589 (-2 (|:| |val| (-108)) (|:| -3643 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3196 (((-589 $) |#4| $) 125) (((-589 $) (-589 |#4|) $) 124) (((-589 $) (-589 |#4|) (-589 $)) 123) (((-589 $) |#4| (-589 $)) 122)) (-2190 (($ |#4| $) 117) (($ (-589 |#4|) $) 116)) (-2455 (((-589 |#4|) $) 107)) (-2490 (((-108) |#4| $) 99) (((-108) $) 95)) (-2960 ((|#4| |#4| $) 90)) (-2303 (((-108) $ $) 110)) (-3473 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2569 (((-108) |#4| $) 100) (((-108) $) 96)) (-2897 ((|#4| |#4| $) 91)) (-3951 (((-1034) $) 10)) (-2428 (((-3 |#4| "failed") $) 84)) (-2509 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3367 (((-3 $ "failed") $ |#4|) 78)) (-3053 (($ $ |#4|) 77) (((-589 $) |#4| $) 115) (((-589 $) |#4| (-589 $)) 114) (((-589 $) (-589 |#4|) $) 113) (((-589 $) (-589 |#4|) (-589 $)) 112)) (-3379 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-2267 (((-108) $ $) 38)) (-1777 (((-108) $) 41)) (-3320 (($) 40)) (-2640 (((-710) $) 106)) (-3977 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4248)))) (-1874 (($ $) 39)) (-1400 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1704 (($ (-589 |#4|)) 60)) (-2712 (($ $ |#3|) 28)) (-2742 (($ $ |#3|) 30)) (-1494 (($ $) 88)) (-1591 (($ $ |#3|) 29)) (-1691 (((-794) $) 11) (((-589 |#4|) $) 37)) (-2868 (((-710) $) 76 (|has| |#3| (-344)))) (-1645 (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3684 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-3817 (((-589 $) |#4| $) 121) (((-589 $) |#4| (-589 $)) 120) (((-589 $) (-589 |#4|) $) 119) (((-589 $) (-589 |#4|) (-589 $)) 118)) (-2308 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4248)))) (-1574 (((-589 |#3|) $) 81)) (-2776 (((-108) |#4| $) 135)) (-1747 (((-108) |#3| $) 80)) (-3941 (((-108) $ $) 6)) (-2810 (((-710) $) 46 (|has| $ (-6 -4248))))) (((-992 |#1| |#2| |#3| |#4|) (-129) (-427) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -992)) -((-1944 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2005 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-4062 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-3785 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-3320 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-3 (-108) (-589 *1))) (-4 *1 (-992 *4 *5 *6 *3)))) (-2870 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *1)))) (-4 *1 (-992 *4 *5 *6 *3)))) (-2870 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2668 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)))) (-3246 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-3 *3 (-589 *1))) (-4 *1 (-992 *4 *5 *6 *3)))) (-1611 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *1)))) (-4 *1 (-992 *4 *5 *6 *3)))) (-2291 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *1)))) (-4 *1 (-992 *4 *5 *6 *3)))) (-1309 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)))) (-1309 (*1 *2 *3 *1) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *7)))) (-1309 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)))) (-1309 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) (-3910 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)))) (-3910 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) (-3910 (*1 *2 *3 *1) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *7)))) (-3910 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)))) (-1770 (*1 *1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *2)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-1770 (*1 *1 *2 *1) (-12 (-5 *2 (-589 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)))) (-4097 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)))) (-4097 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) (-4097 (*1 *2 *3 *1) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *7)))) (-4097 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-992 *5 *6 *7 *8))))) -(-13 (-1116 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1944 ((-108) |t#4| $)) (-15 -2005 ((-108) |t#4| $)) (-15 -4062 ((-108) |t#4| $)) (-15 -1944 ((-108) $)) (-15 -3785 ((-108) |t#4| $)) (-15 -3320 ((-3 (-108) (-589 $)) |t#4| $)) (-15 -2870 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |t#4| $)) (-15 -2870 ((-108) |t#4| $)) (-15 -2668 ((-589 $) |t#4| $)) (-15 -3246 ((-3 |t#4| (-589 $)) |t#4| |t#4| $)) (-15 -1611 ((-589 (-2 (|:| |val| |t#4|) (|:| -3072 $))) |t#4| |t#4| $)) (-15 -2291 ((-589 (-2 (|:| |val| |t#4|) (|:| -3072 $))) |t#4| $)) (-15 -1309 ((-589 $) |t#4| $)) (-15 -1309 ((-589 $) (-589 |t#4|) $)) (-15 -1309 ((-589 $) (-589 |t#4|) (-589 $))) (-15 -1309 ((-589 $) |t#4| (-589 $))) (-15 -3910 ((-589 $) |t#4| $)) (-15 -3910 ((-589 $) |t#4| (-589 $))) (-15 -3910 ((-589 $) (-589 |t#4|) $)) (-15 -3910 ((-589 $) (-589 |t#4|) (-589 $))) (-15 -1770 ($ |t#4| $)) (-15 -1770 ($ (-589 |t#4|) $)) (-15 -4097 ((-589 $) |t#4| $)) (-15 -4097 ((-589 $) |t#4| (-589 $))) (-15 -4097 ((-589 $) (-589 |t#4|) $)) (-15 -4097 ((-589 $) (-589 |t#4|) (-589 $))) (-15 -3846 ((-589 $) (-589 |t#4|) (-108))))) -(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-905 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1116 |#1| |#2| |#3| |#4|) . T) ((-1122) . T)) -((-1609 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|) 81)) (-1501 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|) 113)) (-2615 (((-589 |#5|) |#4| |#5|) 70)) (-2590 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-2804 (((-1173)) 35)) (-4175 (((-1173)) 25)) (-1515 (((-1173) (-1070) (-1070) (-1070)) 31)) (-2744 (((-1173) (-1070) (-1070) (-1070)) 20)) (-3508 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#4| |#4| |#5|) 96)) (-3020 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#3| (-108)) 107) (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-2758 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|) 102))) -(((-993 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2744 ((-1173) (-1070) (-1070) (-1070))) (-15 -4175 ((-1173))) (-15 -1515 ((-1173) (-1070) (-1070) (-1070))) (-15 -2804 ((-1173))) (-15 -3508 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -3020 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3020 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#3| (-108))) (-15 -2758 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -1501 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -2590 ((-108) |#4| |#5|)) (-15 -2590 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -2615 ((-589 |#5|) |#4| |#5|)) (-15 -1609 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -993)) -((-1609 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2615 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2590 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2590 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1501 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2758 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3020 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) (-5 *5 (-108)) (-4 *8 (-987 *6 *7 *4)) (-4 *9 (-992 *6 *7 *4 *8)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *4 (-786)) (-5 *2 (-589 (-2 (|:| |val| *8) (|:| -3072 *9)))) (-5 *1 (-993 *6 *7 *4 *8 *9)))) (-3020 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-3508 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2804 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) (-5 *1 (-993 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-1515 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) (-5 *1 (-993 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-4175 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) (-5 *1 (-993 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-2744 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) (-5 *1 (-993 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) -(-10 -7 (-15 -2744 ((-1173) (-1070) (-1070) (-1070))) (-15 -4175 ((-1173))) (-15 -1515 ((-1173) (-1070) (-1070) (-1070))) (-15 -2804 ((-1173))) (-15 -3508 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -3020 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3020 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#3| (-108))) (-15 -2758 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -1501 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -2590 ((-108) |#4| |#5|)) (-15 -2590 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -2615 ((-589 |#5|) |#4| |#5|)) (-15 -1609 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|))) -((-3924 (((-108) $ $) NIL)) (-4038 (((-1087) $) 8)) (-3779 (((-1070) $) 16)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 13))) -(((-994 |#1|) (-13 (-1016) (-10 -8 (-15 -4038 ((-1087) $)))) (-1087)) (T -994)) -((-4038 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-994 *3)) (-14 *3 *2)))) -(-13 (-1016) (-10 -8 (-15 -4038 ((-1087) $)))) -((-3924 (((-108) $ $) NIL)) (-3547 (($ $ (-589 (-1087)) (-1 (-108) (-589 |#3|))) 29)) (-3861 (($ |#3| |#3|) 21) (($ |#3| |#3| (-589 (-1087))) 19)) (-1797 ((|#3| $) 13)) (-3517 (((-3 (-271 |#3|) "failed") $) 56)) (-3474 (((-271 |#3|) $) NIL)) (-3675 (((-589 (-1087)) $) 15)) (-3781 (((-823 |#1|) $) 11)) (-1787 ((|#3| $) 12)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3223 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-852)) 36)) (-1458 (((-794) $) 85) (($ (-271 |#3|)) 20)) (-3983 (((-108) $ $) 33))) -(((-995 |#1| |#2| |#3|) (-13 (-1016) (-263 |#3| |#3|) (-964 (-271 |#3|)) (-10 -8 (-15 -3861 ($ |#3| |#3|)) (-15 -3861 ($ |#3| |#3| (-589 (-1087)))) (-15 -3547 ($ $ (-589 (-1087)) (-1 (-108) (-589 |#3|)))) (-15 -3781 ((-823 |#1|) $)) (-15 -1787 (|#3| $)) (-15 -1797 (|#3| $)) (-15 -3223 (|#3| $ |#3| (-852))) (-15 -3675 ((-589 (-1087)) $)))) (-1016) (-13 (-973) (-817 |#1|) (-786) (-564 (-823 |#1|))) (-13 (-406 |#2|) (-817 |#1|) (-564 (-823 |#1|)))) (T -995)) -((-3861 (*1 *1 *2 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) (-5 *1 (-995 *3 *4 *2)) (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))))) (-3861 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-995 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) (-3547 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-1 (-108) (-589 *6))) (-4 *6 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-995 *4 *5 *6)))) (-3781 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 *2))) (-5 *2 (-823 *3)) (-5 *1 (-995 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-817 *3) (-564 *2))))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) (-5 *1 (-995 *3 *4 *2)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))))) (-1797 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) (-5 *1 (-995 *3 *4 *2)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))))) (-3223 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-852)) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-995 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) (-3675 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) (-5 *2 (-589 (-1087))) (-5 *1 (-995 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3))))))) -(-13 (-1016) (-263 |#3| |#3|) (-964 (-271 |#3|)) (-10 -8 (-15 -3861 ($ |#3| |#3|)) (-15 -3861 ($ |#3| |#3| (-589 (-1087)))) (-15 -3547 ($ $ (-589 (-1087)) (-1 (-108) (-589 |#3|)))) (-15 -3781 ((-823 |#1|) $)) (-15 -1787 (|#3| $)) (-15 -1797 (|#3| $)) (-15 -3223 (|#3| $ |#3| (-852))) (-15 -3675 ((-589 (-1087)) $)))) -((-3924 (((-108) $ $) NIL)) (-3514 (($ (-589 (-995 |#1| |#2| |#3|))) 12)) (-1697 (((-589 (-995 |#1| |#2| |#3|)) $) 19)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3223 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-852)) 25)) (-1458 (((-794) $) 15)) (-3983 (((-108) $ $) 18))) -(((-996 |#1| |#2| |#3|) (-13 (-1016) (-263 |#3| |#3|) (-10 -8 (-15 -3514 ($ (-589 (-995 |#1| |#2| |#3|)))) (-15 -1697 ((-589 (-995 |#1| |#2| |#3|)) $)) (-15 -3223 (|#3| $ |#3| (-852))))) (-1016) (-13 (-973) (-817 |#1|) (-786) (-564 (-823 |#1|))) (-13 (-406 |#2|) (-817 |#1|) (-564 (-823 |#1|)))) (T -996)) -((-3514 (*1 *1 *2) (-12 (-5 *2 (-589 (-995 *3 *4 *5))) (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) (-5 *1 (-996 *3 *4 *5)))) (-1697 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) (-5 *2 (-589 (-995 *3 *4 *5))) (-5 *1 (-996 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))))) (-3223 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-852)) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-996 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4))))))) -(-13 (-1016) (-263 |#3| |#3|) (-10 -8 (-15 -3514 ($ (-589 (-995 |#1| |#2| |#3|)))) (-15 -1697 ((-589 (-995 |#1| |#2| |#3|)) $)) (-15 -3223 (|#3| $ |#3| (-852))))) -((-2419 (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108)) 74) (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|))) 76) (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108)) 75))) -(((-997 |#1| |#2|) (-10 -7 (-15 -2419 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108))) (-15 -2419 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -2419 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108)))) (-13 (-284) (-136)) (-589 (-1087))) (T -997)) -((-2419 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) (-5 *1 (-997 *5 *6)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087))))) (-2419 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *4)) (|:| -2966 (-589 (-883 *4)))))) (-5 *1 (-997 *4 *5)) (-5 *3 (-589 (-883 *4))) (-14 *5 (-589 (-1087))))) (-2419 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) (-5 *1 (-997 *5 *6)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087)))))) -(-10 -7 (-15 -2419 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108))) (-15 -2419 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -2419 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108)))) -((-1820 (((-394 |#3|) |#3|) 16))) -(((-998 |#1| |#2| |#3|) (-10 -7 (-15 -1820 ((-394 |#3|) |#3|))) (-1144 (-383 (-523))) (-13 (-339) (-136) (-664 (-383 (-523)) |#1|)) (-1144 |#2|)) (T -998)) -((-1820 (*1 *2 *3) (-12 (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-13 (-339) (-136) (-664 (-383 (-523)) *4))) (-5 *2 (-394 *3)) (-5 *1 (-998 *4 *5 *3)) (-4 *3 (-1144 *5))))) -(-10 -7 (-15 -1820 ((-394 |#3|) |#3|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 125)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-339)))) (-3345 (($ $) NIL (|has| |#1| (-339)))) (-3331 (((-108) $) NIL (|has| |#1| (-339)))) (-3750 (((-629 |#1|) (-1168 $)) NIL) (((-629 |#1|)) 115)) (-4187 ((|#1| $) 119)) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| |#1| (-325)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1703 (((-710)) 40 (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3409 (($ (-1168 |#1|) (-1168 $)) NIL) (($ (-1168 |#1|)) 43)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-325)))) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-4079 (((-629 |#1|) $ (-1168 $)) NIL) (((-629 |#1|) $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 106) (((-629 |#1|) (-629 $)) 100)) (-2437 (($ |#2|) 61) (((-3 $ "failed") (-383 |#2|)) NIL (|has| |#1| (-339)))) (-2121 (((-3 $ "failed") $) NIL)) (-1319 (((-852)) 77)) (-4032 (($) 44 (|has| |#1| (-344)))) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-1996 (($) NIL (|has| |#1| (-325)))) (-2155 (((-108) $) NIL (|has| |#1| (-325)))) (-1991 (($ $ (-710)) NIL (|has| |#1| (-325))) (($ $) NIL (|has| |#1| (-325)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-1640 (((-852) $) NIL (|has| |#1| (-325))) (((-772 (-852)) $) NIL (|has| |#1| (-325)))) (-2023 (((-108) $) NIL)) (-3892 ((|#1| $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1397 ((|#2| $) 84 (|has| |#1| (-339)))) (-2072 (((-852) $) 130 (|has| |#1| (-344)))) (-2428 ((|#2| $) 58)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-2262 (($) NIL (|has| |#1| (-325)) CONST)) (-3878 (($ (-852)) 124 (|has| |#1| (-344)))) (-2783 (((-1034) $) NIL)) (-3441 (($) 121)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| |#1| (-325)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3549 ((|#1| (-1168 $)) NIL) ((|#1|) 109)) (-2974 (((-710) $) NIL (|has| |#1| (-325))) (((-3 (-710) "failed") $ $) NIL (|has| |#1| (-325)))) (-3523 (($ $) NIL (-3262 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-710)) NIL (-3262 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-1 |#1| |#1|) (-710)) NIL (|has| |#1| (-339))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-339)))) (-1976 (((-629 |#1|) (-1168 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-339)))) (-3727 ((|#2|) 73)) (-3425 (($) NIL (|has| |#1| (-325)))) (-2966 (((-1168 |#1|) $ (-1168 $)) 89) (((-629 |#1|) (-1168 $) (-1168 $)) NIL) (((-1168 |#1|) $) 71) (((-629 |#1|) (-1168 $)) 85)) (-3663 (((-1168 |#1|) $) NIL) (($ (-1168 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-325)))) (-1458 (((-794) $) 57) (($ (-523)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-339))) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523))))))) (-3901 (($ $) NIL (|has| |#1| (-325))) (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1807 ((|#2| $) 82)) (-1621 (((-710)) 75)) (-4041 (((-1168 $)) 81)) (-1704 (((-108) $ $) NIL (|has| |#1| (-339)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 30 T CONST)) (-2767 (($) 19 T CONST)) (-2862 (($ $) NIL (-3262 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-710)) NIL (-3262 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-1 |#1| |#1|) (-710)) NIL (|has| |#1| (-339))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-339)))) (-3983 (((-108) $ $) 63)) (-4098 (($ $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) 67) (($ $ $) NIL)) (-4075 (($ $ $) 65)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-383 (-523)) $) NIL (|has| |#1| (-339))) (($ $ (-383 (-523))) NIL (|has| |#1| (-339))))) -(((-999 |#1| |#2| |#3|) (-664 |#1| |#2|) (-158) (-1144 |#1|) |#2|) (T -999)) +((-3149 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2607 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2776 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2072 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-1338 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-3 (-108) (-589 *1))) (-4 *1 (-992 *4 *5 *6 *3)))) (-1446 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3643 *1)))) (-4 *1 (-992 *4 *5 *6 *3)))) (-1446 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-3130 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)))) (-3715 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-3 *3 (-589 *1))) (-4 *1 (-992 *4 *5 *6 *3)))) (-3173 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *1)))) (-4 *1 (-992 *4 *5 *6 *3)))) (-3718 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *1)))) (-4 *1 (-992 *4 *5 *6 *3)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)))) (-3196 (*1 *2 *3 *1) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *7)))) (-3196 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)))) (-3196 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) (-3817 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)))) (-3817 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) (-3817 (*1 *2 *3 *1) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *7)))) (-3817 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)))) (-2190 (*1 *1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *2)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-2190 (*1 *1 *2 *1) (-12 (-5 *2 (-589 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)))) (-3053 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)))) (-3053 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) (-3053 (*1 *2 *3 *1) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *7)))) (-3053 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)))) (-2591 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-992 *5 *6 *7 *8))))) +(-13 (-1117 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3149 ((-108) |t#4| $)) (-15 -2607 ((-108) |t#4| $)) (-15 -2776 ((-108) |t#4| $)) (-15 -3149 ((-108) $)) (-15 -2072 ((-108) |t#4| $)) (-15 -1338 ((-3 (-108) (-589 $)) |t#4| $)) (-15 -1446 ((-589 (-2 (|:| |val| (-108)) (|:| -3643 $))) |t#4| $)) (-15 -1446 ((-108) |t#4| $)) (-15 -3130 ((-589 $) |t#4| $)) (-15 -3715 ((-3 |t#4| (-589 $)) |t#4| |t#4| $)) (-15 -3173 ((-589 (-2 (|:| |val| |t#4|) (|:| -3643 $))) |t#4| |t#4| $)) (-15 -3718 ((-589 (-2 (|:| |val| |t#4|) (|:| -3643 $))) |t#4| $)) (-15 -3196 ((-589 $) |t#4| $)) (-15 -3196 ((-589 $) (-589 |t#4|) $)) (-15 -3196 ((-589 $) (-589 |t#4|) (-589 $))) (-15 -3196 ((-589 $) |t#4| (-589 $))) (-15 -3817 ((-589 $) |t#4| $)) (-15 -3817 ((-589 $) |t#4| (-589 $))) (-15 -3817 ((-589 $) (-589 |t#4|) $)) (-15 -3817 ((-589 $) (-589 |t#4|) (-589 $))) (-15 -2190 ($ |t#4| $)) (-15 -2190 ($ (-589 |t#4|) $)) (-15 -3053 ((-589 $) |t#4| $)) (-15 -3053 ((-589 $) |t#4| (-589 $))) (-15 -3053 ((-589 $) (-589 |t#4|) $)) (-15 -3053 ((-589 $) (-589 |t#4|) (-589 $))) (-15 -2591 ((-589 $) (-589 |t#4|) (-108))))) +(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-905 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1117 |#1| |#2| |#3| |#4|) . T) ((-1123) . T)) +((-3150 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#5|) 81)) (-1582 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5|) 113)) (-2656 (((-589 |#5|) |#4| |#5|) 70)) (-3581 (((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-3876 (((-1174)) 35)) (-3858 (((-1174)) 25)) (-1715 (((-1174) (-1070) (-1070) (-1070)) 31)) (-1563 (((-1174) (-1070) (-1070) (-1070)) 20)) (-2556 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) |#4| |#4| |#5|) 96)) (-2245 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) |#3| (-108)) 107) (((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-1695 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5|) 102))) +(((-993 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1563 ((-1174) (-1070) (-1070) (-1070))) (-15 -3858 ((-1174))) (-15 -1715 ((-1174) (-1070) (-1070) (-1070))) (-15 -3876 ((-1174))) (-15 -2556 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) |#4| |#4| |#5|)) (-15 -2245 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2245 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) |#3| (-108))) (-15 -1695 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5|)) (-15 -1582 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5|)) (-15 -3581 ((-108) |#4| |#5|)) (-15 -3581 ((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|)) (-15 -2656 ((-589 |#5|) |#4| |#5|)) (-15 -3150 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#5|))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -993)) +((-3150 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2656 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3581 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3643 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3581 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1582 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1695 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2245 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3643 *9)))) (-5 *5 (-108)) (-4 *8 (-987 *6 *7 *4)) (-4 *9 (-992 *6 *7 *4 *8)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *4 (-786)) (-5 *2 (-589 (-2 (|:| |val| *8) (|:| -3643 *9)))) (-5 *1 (-993 *6 *7 *4 *8 *9)))) (-2245 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-2556 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3876 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1174)) (-5 *1 (-993 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-1715 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-993 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-3858 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1174)) (-5 *1 (-993 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-1563 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-993 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(-10 -7 (-15 -1563 ((-1174) (-1070) (-1070) (-1070))) (-15 -3858 ((-1174))) (-15 -1715 ((-1174) (-1070) (-1070) (-1070))) (-15 -3876 ((-1174))) (-15 -2556 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) |#4| |#4| |#5|)) (-15 -2245 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2245 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) |#3| (-108))) (-15 -1695 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5|)) (-15 -1582 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5|)) (-15 -3581 ((-108) |#4| |#5|)) (-15 -3581 ((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|)) (-15 -2656 ((-589 |#5|) |#4| |#5|)) (-15 -3150 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#5|))) +((-1680 (((-108) $ $) NIL)) (-4198 (((-1087) $) 8)) (-2032 (((-1070) $) 16)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 11)) (-3941 (((-108) $ $) 13))) +(((-994 |#1|) (-13 (-1016) (-10 -8 (-15 -4198 ((-1087) $)))) (-1087)) (T -994)) +((-4198 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-994 *3)) (-14 *3 *2)))) +(-13 (-1016) (-10 -8 (-15 -4198 ((-1087) $)))) +((-1680 (((-108) $ $) NIL)) (-3035 (($ $ (-589 (-1087)) (-1 (-108) (-589 |#3|))) 29)) (-1513 (($ |#3| |#3|) 21) (($ |#3| |#3| (-589 (-1087))) 19)) (-1909 ((|#3| $) 13)) (-1220 (((-3 (-271 |#3|) "failed") $) 56)) (-3508 (((-271 |#3|) $) NIL)) (-3514 (((-589 (-1087)) $) 15)) (-3902 (((-823 |#1|) $) 11)) (-1899 ((|#3| $) 12)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1937 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-852)) 36)) (-1691 (((-794) $) 84) (($ (-271 |#3|)) 20)) (-3941 (((-108) $ $) 33))) +(((-995 |#1| |#2| |#3|) (-13 (-1016) (-263 |#3| |#3|) (-964 (-271 |#3|)) (-10 -8 (-15 -1513 ($ |#3| |#3|)) (-15 -1513 ($ |#3| |#3| (-589 (-1087)))) (-15 -3035 ($ $ (-589 (-1087)) (-1 (-108) (-589 |#3|)))) (-15 -3902 ((-823 |#1|) $)) (-15 -1899 (|#3| $)) (-15 -1909 (|#3| $)) (-15 -1937 (|#3| $ |#3| (-852))) (-15 -3514 ((-589 (-1087)) $)))) (-1016) (-13 (-973) (-817 |#1|) (-786) (-564 (-823 |#1|))) (-13 (-406 |#2|) (-817 |#1|) (-564 (-823 |#1|)))) (T -995)) +((-1513 (*1 *1 *2 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) (-5 *1 (-995 *3 *4 *2)) (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))))) (-1513 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-995 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) (-3035 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-1 (-108) (-589 *6))) (-4 *6 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-995 *4 *5 *6)))) (-3902 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 *2))) (-5 *2 (-823 *3)) (-5 *1 (-995 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-817 *3) (-564 *2))))) (-1899 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) (-5 *1 (-995 *3 *4 *2)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))))) (-1909 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) (-5 *1 (-995 *3 *4 *2)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))))) (-1937 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-852)) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-995 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) (-3514 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) (-5 *2 (-589 (-1087))) (-5 *1 (-995 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3))))))) +(-13 (-1016) (-263 |#3| |#3|) (-964 (-271 |#3|)) (-10 -8 (-15 -1513 ($ |#3| |#3|)) (-15 -1513 ($ |#3| |#3| (-589 (-1087)))) (-15 -3035 ($ $ (-589 (-1087)) (-1 (-108) (-589 |#3|)))) (-15 -3902 ((-823 |#1|) $)) (-15 -1899 (|#3| $)) (-15 -1909 (|#3| $)) (-15 -1937 (|#3| $ |#3| (-852))) (-15 -3514 ((-589 (-1087)) $)))) +((-1680 (((-108) $ $) NIL)) (-3006 (($ (-589 (-995 |#1| |#2| |#3|))) 12)) (-2319 (((-589 (-995 |#1| |#2| |#3|)) $) 19)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1937 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-852)) 25)) (-1691 (((-794) $) 15)) (-3941 (((-108) $ $) 18))) +(((-996 |#1| |#2| |#3|) (-13 (-1016) (-263 |#3| |#3|) (-10 -8 (-15 -3006 ($ (-589 (-995 |#1| |#2| |#3|)))) (-15 -2319 ((-589 (-995 |#1| |#2| |#3|)) $)) (-15 -1937 (|#3| $ |#3| (-852))))) (-1016) (-13 (-973) (-817 |#1|) (-786) (-564 (-823 |#1|))) (-13 (-406 |#2|) (-817 |#1|) (-564 (-823 |#1|)))) (T -996)) +((-3006 (*1 *1 *2) (-12 (-5 *2 (-589 (-995 *3 *4 *5))) (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) (-5 *1 (-996 *3 *4 *5)))) (-2319 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) (-5 *2 (-589 (-995 *3 *4 *5))) (-5 *1 (-996 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))))) (-1937 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-852)) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-996 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4))))))) +(-13 (-1016) (-263 |#3| |#3|) (-10 -8 (-15 -3006 ($ (-589 (-995 |#1| |#2| |#3|)))) (-15 -2319 ((-589 (-995 |#1| |#2| |#3|)) $)) (-15 -1937 (|#3| $ |#3| (-852))))) +((-1459 (((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108)) 74) (((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|))) 76) (((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108)) 75))) +(((-997 |#1| |#2|) (-10 -7 (-15 -1459 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108))) (-15 -1459 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -1459 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108)))) (-13 (-284) (-136)) (-589 (-1087))) (T -997)) +((-1459 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-5 *2 (-589 (-2 (|:| -3558 (-1083 *5)) (|:| -2906 (-589 (-883 *5)))))) (-5 *1 (-997 *5 *6)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087))))) (-1459 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-5 *2 (-589 (-2 (|:| -3558 (-1083 *4)) (|:| -2906 (-589 (-883 *4)))))) (-5 *1 (-997 *4 *5)) (-5 *3 (-589 (-883 *4))) (-14 *5 (-589 (-1087))))) (-1459 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-5 *2 (-589 (-2 (|:| -3558 (-1083 *5)) (|:| -2906 (-589 (-883 *5)))))) (-5 *1 (-997 *5 *6)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087)))))) +(-10 -7 (-15 -1459 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108))) (-15 -1459 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -1459 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108)))) +((-2424 (((-394 |#3|) |#3|) 16))) +(((-998 |#1| |#2| |#3|) (-10 -7 (-15 -2424 ((-394 |#3|) |#3|))) (-1145 (-383 (-523))) (-13 (-339) (-136) (-664 (-383 (-523)) |#1|)) (-1145 |#2|)) (T -998)) +((-2424 (*1 *2 *3) (-12 (-4 *4 (-1145 (-383 (-523)))) (-4 *5 (-13 (-339) (-136) (-664 (-383 (-523)) *4))) (-5 *2 (-394 *3)) (-5 *1 (-998 *4 *5 *3)) (-4 *3 (-1145 *5))))) +(-10 -7 (-15 -2424 ((-394 |#3|) |#3|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 126)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-339)))) (-3306 (($ $) NIL (|has| |#1| (-339)))) (-3174 (((-108) $) NIL (|has| |#1| (-339)))) (-2959 (((-629 |#1|) (-1169 $)) NIL) (((-629 |#1|)) 115)) (-1477 ((|#1| $) 119)) (-1557 (((-1097 (-852) (-710)) (-523)) NIL (|has| |#1| (-325)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL (|has| |#1| (-339)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-2395 (((-710)) 40 (|has| |#1| (-344)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-2754 (($ (-1169 |#1|) (-1169 $)) NIL) (($ (-1169 |#1|)) 43)) (-4021 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-325)))) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-2927 (((-629 |#1|) $ (-1169 $)) NIL) (((-629 |#1|) $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 106) (((-629 |#1|) (-629 $)) 100)) (-2116 (($ |#2|) 61) (((-3 $ "failed") (-383 |#2|)) NIL (|has| |#1| (-339)))) (-1444 (((-3 $ "failed") $) NIL)) (-3569 (((-852)) 77)) (-1631 (($) 44 (|has| |#1| (-344)))) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-3665 (($) NIL (|has| |#1| (-325)))) (-1766 (((-108) $) NIL (|has| |#1| (-325)))) (-3610 (($ $ (-710)) NIL (|has| |#1| (-325))) (($ $) NIL (|has| |#1| (-325)))) (-3049 (((-108) $) NIL (|has| |#1| (-339)))) (-3437 (((-852) $) NIL (|has| |#1| (-325))) (((-772 (-852)) $) NIL (|has| |#1| (-325)))) (-2769 (((-108) $) NIL)) (-1863 ((|#1| $) NIL)) (-2738 (((-3 $ "failed") $) NIL (|has| |#1| (-325)))) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2887 ((|#2| $) 84 (|has| |#1| (-339)))) (-2060 (((-852) $) 131 (|has| |#1| (-344)))) (-2104 ((|#2| $) 58)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-339)))) (-2773 (($) NIL (|has| |#1| (-325)) CONST)) (-4013 (($ (-852)) 125 (|has| |#1| (-344)))) (-3951 (((-1034) $) NIL)) (-1621 (($) 121)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2457 (((-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523))))) NIL (|has| |#1| (-325)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-3413 (((-710) $) NIL (|has| |#1| (-339)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-1744 ((|#1| (-1169 $)) NIL) ((|#1|) 109)) (-2984 (((-710) $) NIL (|has| |#1| (-325))) (((-3 (-710) "failed") $ $) NIL (|has| |#1| (-325)))) (-3984 (($ $) NIL (-3172 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-710)) NIL (-3172 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-1 |#1| |#1|) (-710)) NIL (|has| |#1| (-339))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-339)))) (-3456 (((-629 |#1|) (-1169 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-339)))) (-2762 ((|#2|) 73)) (-2893 (($) NIL (|has| |#1| (-325)))) (-2906 (((-1169 |#1|) $ (-1169 $)) 89) (((-629 |#1|) (-1169 $) (-1169 $)) NIL) (((-1169 |#1|) $) 71) (((-629 |#1|) (-1169 $)) 85)) (-1400 (((-1169 |#1|) $) NIL) (($ (-1169 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (|has| |#1| (-325)))) (-1691 (((-794) $) 57) (($ (-523)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-339))) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523))))))) (-1942 (($ $) NIL (|has| |#1| (-325))) (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1356 ((|#2| $) 82)) (-3272 (((-710)) 75)) (-3760 (((-1169 $)) 81)) (-2801 (((-108) $ $) NIL (|has| |#1| (-339)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-1879 (($) 30 T CONST)) (-1891 (($) 19 T CONST)) (-2909 (($ $) NIL (-3172 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-710)) NIL (-3172 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-1 |#1| |#1|) (-710)) NIL (|has| |#1| (-339))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-339)))) (-3941 (((-108) $ $) 63)) (-4074 (($ $ $) NIL (|has| |#1| (-339)))) (-4060 (($ $) 67) (($ $ $) NIL)) (-4045 (($ $ $) 65)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-383 (-523)) $) NIL (|has| |#1| (-339))) (($ $ (-383 (-523))) NIL (|has| |#1| (-339))))) +(((-999 |#1| |#2| |#3|) (-664 |#1| |#2|) (-158) (-1145 |#1|) |#2|) (T -999)) NIL (-664 |#1| |#2|) -((-1820 (((-394 |#3|) |#3|) 16))) -(((-1000 |#1| |#2| |#3|) (-10 -7 (-15 -1820 ((-394 |#3|) |#3|))) (-1144 (-383 (-883 (-523)))) (-13 (-339) (-136) (-664 (-383 (-883 (-523))) |#1|)) (-1144 |#2|)) (T -1000)) -((-1820 (*1 *2 *3) (-12 (-4 *4 (-1144 (-383 (-883 (-523))))) (-4 *5 (-13 (-339) (-136) (-664 (-383 (-883 (-523))) *4))) (-5 *2 (-394 *3)) (-5 *1 (-1000 *4 *5 *3)) (-4 *3 (-1144 *5))))) -(-10 -7 (-15 -1820 ((-394 |#3|) |#3|))) -((-3924 (((-108) $ $) NIL)) (-2454 (($ $ $) 14)) (-2062 (($ $ $) 15)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1883 (($) 6)) (-3663 (((-1087) $) 18)) (-1458 (((-794) $) 12)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 13)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 8))) -(((-1001) (-13 (-786) (-10 -8 (-15 -1883 ($)) (-15 -3663 ((-1087) $))))) (T -1001)) -((-1883 (*1 *1) (-5 *1 (-1001))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1001))))) -(-13 (-786) (-10 -8 (-15 -1883 ($)) (-15 -3663 ((-1087) $)))) -((-2610 ((|#1| |#1| (-1 (-523) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-3355 (((-1173)) 15)) (-4020 (((-589 |#1|)) 9))) -(((-1002 |#1|) (-10 -7 (-15 -3355 ((-1173))) (-15 -4020 ((-589 |#1|))) (-15 -2610 (|#1| |#1| (-1 (-108) |#1|))) (-15 -2610 (|#1| |#1| (-1 (-523) |#1| |#1|)))) (-125)) (T -1002)) -((-2610 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-523) *2 *2)) (-4 *2 (-125)) (-5 *1 (-1002 *2)))) (-2610 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-1002 *2)))) (-4020 (*1 *2) (-12 (-5 *2 (-589 *3)) (-5 *1 (-1002 *3)) (-4 *3 (-125)))) (-3355 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1002 *3)) (-4 *3 (-125))))) -(-10 -7 (-15 -3355 ((-1173))) (-15 -4020 ((-589 |#1|))) (-15 -2610 (|#1| |#1| (-1 (-108) |#1|))) (-15 -2610 (|#1| |#1| (-1 (-523) |#1| |#1|)))) -((-3426 (($ (-104) $) 15)) (-1422 (((-3 (-104) "failed") (-1087) $) 13)) (-3988 (($) 6)) (-3231 (($) 16)) (-2387 (($) 17)) (-1612 (((-589 (-160)) $) 8)) (-1458 (((-794) $) 20))) -(((-1003) (-13 (-563 (-794)) (-10 -8 (-15 -3988 ($)) (-15 -1612 ((-589 (-160)) $)) (-15 -1422 ((-3 (-104) "failed") (-1087) $)) (-15 -3426 ($ (-104) $)) (-15 -3231 ($)) (-15 -2387 ($))))) (T -1003)) -((-3988 (*1 *1) (-5 *1 (-1003))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-589 (-160))) (-5 *1 (-1003)))) (-1422 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-104)) (-5 *1 (-1003)))) (-3426 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1003)))) (-3231 (*1 *1) (-5 *1 (-1003))) (-2387 (*1 *1) (-5 *1 (-1003)))) -(-13 (-563 (-794)) (-10 -8 (-15 -3988 ($)) (-15 -1612 ((-589 (-160)) $)) (-15 -1422 ((-3 (-104) "failed") (-1087) $)) (-15 -3426 ($ (-104) $)) (-15 -3231 ($)) (-15 -2387 ($)))) -((-3115 (((-1168 (-629 |#1|)) (-589 (-629 |#1|))) 41) (((-1168 (-629 (-883 |#1|))) (-589 (-1087)) (-629 (-883 |#1|))) 61) (((-1168 (-629 (-383 (-883 |#1|)))) (-589 (-1087)) (-629 (-383 (-883 |#1|)))) 77)) (-2966 (((-1168 |#1|) (-629 |#1|) (-589 (-629 |#1|))) 35))) -(((-1004 |#1|) (-10 -7 (-15 -3115 ((-1168 (-629 (-383 (-883 |#1|)))) (-589 (-1087)) (-629 (-383 (-883 |#1|))))) (-15 -3115 ((-1168 (-629 (-883 |#1|))) (-589 (-1087)) (-629 (-883 |#1|)))) (-15 -3115 ((-1168 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -2966 ((-1168 |#1|) (-629 |#1|) (-589 (-629 |#1|))))) (-339)) (T -1004)) -((-2966 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-629 *5))) (-5 *3 (-629 *5)) (-4 *5 (-339)) (-5 *2 (-1168 *5)) (-5 *1 (-1004 *5)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-589 (-629 *4))) (-4 *4 (-339)) (-5 *2 (-1168 (-629 *4))) (-5 *1 (-1004 *4)))) (-3115 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1087))) (-4 *5 (-339)) (-5 *2 (-1168 (-629 (-883 *5)))) (-5 *1 (-1004 *5)) (-5 *4 (-629 (-883 *5))))) (-3115 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1087))) (-4 *5 (-339)) (-5 *2 (-1168 (-629 (-383 (-883 *5))))) (-5 *1 (-1004 *5)) (-5 *4 (-629 (-383 (-883 *5))))))) -(-10 -7 (-15 -3115 ((-1168 (-629 (-383 (-883 |#1|)))) (-589 (-1087)) (-629 (-383 (-883 |#1|))))) (-15 -3115 ((-1168 (-629 (-883 |#1|))) (-589 (-1087)) (-629 (-883 |#1|)))) (-15 -3115 ((-1168 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -2966 ((-1168 |#1|) (-629 |#1|) (-589 (-629 |#1|))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1854 (((-589 (-710)) $) NIL) (((-589 (-710)) $ (-1087)) NIL)) (-2656 (((-710) $) NIL) (((-710) $ (-1087)) NIL)) (-1957 (((-589 (-1006 (-1087))) $) NIL)) (-1786 (((-1083 $) $ (-1006 (-1087))) NIL) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1006 (-1087)))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1413 (($ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1006 (-1087)) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL) (((-3 (-1039 |#1| (-1087)) "failed") $) NIL)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1006 (-1087)) $) NIL) (((-1087) $) NIL) (((-1039 |#1| (-1087)) $) NIL)) (-3078 (($ $ $ (-1006 (-1087))) NIL (|has| |#1| (-158)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ (-1006 (-1087))) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-495 (-1006 (-1087))) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1006 (-1087)) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1006 (-1087)) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1640 (((-710) $ (-1087)) NIL) (((-710) $) NIL)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#1|) (-1006 (-1087))) NIL) (($ (-1083 $) (-1006 (-1087))) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-495 (-1006 (-1087)))) NIL) (($ $ (-1006 (-1087)) (-710)) NIL) (($ $ (-589 (-1006 (-1087))) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1006 (-1087))) NIL)) (-1575 (((-495 (-1006 (-1087))) $) NIL) (((-710) $ (-1006 (-1087))) NIL) (((-589 (-710)) $ (-589 (-1006 (-1087)))) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-495 (-1006 (-1087))) (-495 (-1006 (-1087)))) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3178 (((-1 $ (-710)) (-1087)) NIL) (((-1 $ (-710)) $) NIL (|has| |#1| (-211)))) (-2520 (((-3 (-1006 (-1087)) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3415 (((-1006 (-1087)) $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-1453 (((-108) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-1006 (-1087))) (|:| -2735 (-710))) "failed") $) NIL)) (-3197 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1006 (-1087)) |#1|) NIL) (($ $ (-589 (-1006 (-1087))) (-589 |#1|)) NIL) (($ $ (-1006 (-1087)) $) NIL) (($ $ (-589 (-1006 (-1087))) (-589 $)) NIL) (($ $ (-1087) $) NIL (|has| |#1| (-211))) (($ $ (-589 (-1087)) (-589 $)) NIL (|has| |#1| (-211))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-211))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-211)))) (-3549 (($ $ (-1006 (-1087))) NIL (|has| |#1| (-158)))) (-3523 (($ $ (-1006 (-1087))) NIL) (($ $ (-589 (-1006 (-1087)))) NIL) (($ $ (-1006 (-1087)) (-710)) NIL) (($ $ (-589 (-1006 (-1087))) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1748 (((-589 (-1087)) $) NIL)) (-2299 (((-495 (-1006 (-1087))) $) NIL) (((-710) $ (-1006 (-1087))) NIL) (((-589 (-710)) $ (-589 (-1006 (-1087)))) NIL) (((-710) $ (-1087)) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-1006 (-1087)) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1006 (-1087)) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1006 (-1087)) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-1006 (-1087))) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-1006 (-1087))) NIL) (($ (-1087)) NIL) (($ (-1039 |#1| (-1087))) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-495 (-1006 (-1087)))) NIL) (($ $ (-1006 (-1087)) (-710)) NIL) (($ $ (-589 (-1006 (-1087))) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-1006 (-1087))) NIL) (($ $ (-589 (-1006 (-1087)))) NIL) (($ $ (-1006 (-1087)) (-710)) NIL) (($ $ (-589 (-1006 (-1087))) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +((-2424 (((-394 |#3|) |#3|) 16))) +(((-1000 |#1| |#2| |#3|) (-10 -7 (-15 -2424 ((-394 |#3|) |#3|))) (-1145 (-383 (-883 (-523)))) (-13 (-339) (-136) (-664 (-383 (-883 (-523))) |#1|)) (-1145 |#2|)) (T -1000)) +((-2424 (*1 *2 *3) (-12 (-4 *4 (-1145 (-383 (-883 (-523))))) (-4 *5 (-13 (-339) (-136) (-664 (-383 (-883 (-523))) *4))) (-5 *2 (-394 *3)) (-5 *1 (-1000 *4 *5 *3)) (-4 *3 (-1145 *5))))) +(-10 -7 (-15 -2424 ((-394 |#3|) |#3|))) +((-1680 (((-108) $ $) NIL)) (-3239 (($ $ $) 14)) (-3158 (($ $ $) 15)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3773 (($) 6)) (-1400 (((-1087) $) 18)) (-1691 (((-794) $) 12)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 13)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 8))) +(((-1001) (-13 (-786) (-10 -8 (-15 -3773 ($)) (-15 -1400 ((-1087) $))))) (T -1001)) +((-3773 (*1 *1) (-5 *1 (-1001))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1001))))) +(-13 (-786) (-10 -8 (-15 -3773 ($)) (-15 -1400 ((-1087) $)))) +((-2609 ((|#1| |#1| (-1 (-523) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-4051 (((-1174)) 15)) (-4163 (((-589 |#1|)) 9))) +(((-1002 |#1|) (-10 -7 (-15 -4051 ((-1174))) (-15 -4163 ((-589 |#1|))) (-15 -2609 (|#1| |#1| (-1 (-108) |#1|))) (-15 -2609 (|#1| |#1| (-1 (-523) |#1| |#1|)))) (-125)) (T -1002)) +((-2609 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-523) *2 *2)) (-4 *2 (-125)) (-5 *1 (-1002 *2)))) (-2609 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-1002 *2)))) (-4163 (*1 *2) (-12 (-5 *2 (-589 *3)) (-5 *1 (-1002 *3)) (-4 *3 (-125)))) (-4051 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1002 *3)) (-4 *3 (-125))))) +(-10 -7 (-15 -4051 ((-1174))) (-15 -4163 ((-589 |#1|))) (-15 -2609 (|#1| |#1| (-1 (-108) |#1|))) (-15 -2609 (|#1| |#1| (-1 (-523) |#1| |#1|)))) +((-2904 (($ (-104) $) 15)) (-1987 (((-3 (-104) "failed") (-1087) $) 13)) (-3320 (($) 6)) (-3594 (($) 16)) (-2282 (($) 17)) (-3183 (((-589 (-160)) $) 8)) (-1691 (((-794) $) 20))) +(((-1003) (-13 (-563 (-794)) (-10 -8 (-15 -3320 ($)) (-15 -3183 ((-589 (-160)) $)) (-15 -1987 ((-3 (-104) "failed") (-1087) $)) (-15 -2904 ($ (-104) $)) (-15 -3594 ($)) (-15 -2282 ($))))) (T -1003)) +((-3320 (*1 *1) (-5 *1 (-1003))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-589 (-160))) (-5 *1 (-1003)))) (-1987 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-104)) (-5 *1 (-1003)))) (-2904 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1003)))) (-3594 (*1 *1) (-5 *1 (-1003))) (-2282 (*1 *1) (-5 *1 (-1003)))) +(-13 (-563 (-794)) (-10 -8 (-15 -3320 ($)) (-15 -3183 ((-589 (-160)) $)) (-15 -1987 ((-3 (-104) "failed") (-1087) $)) (-15 -2904 ($ (-104) $)) (-15 -3594 ($)) (-15 -2282 ($)))) +((-1939 (((-1169 (-629 |#1|)) (-589 (-629 |#1|))) 41) (((-1169 (-629 (-883 |#1|))) (-589 (-1087)) (-629 (-883 |#1|))) 62) (((-1169 (-629 (-383 (-883 |#1|)))) (-589 (-1087)) (-629 (-383 (-883 |#1|)))) 78)) (-2906 (((-1169 |#1|) (-629 |#1|) (-589 (-629 |#1|))) 35))) +(((-1004 |#1|) (-10 -7 (-15 -1939 ((-1169 (-629 (-383 (-883 |#1|)))) (-589 (-1087)) (-629 (-383 (-883 |#1|))))) (-15 -1939 ((-1169 (-629 (-883 |#1|))) (-589 (-1087)) (-629 (-883 |#1|)))) (-15 -1939 ((-1169 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -2906 ((-1169 |#1|) (-629 |#1|) (-589 (-629 |#1|))))) (-339)) (T -1004)) +((-2906 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-629 *5))) (-5 *3 (-629 *5)) (-4 *5 (-339)) (-5 *2 (-1169 *5)) (-5 *1 (-1004 *5)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-589 (-629 *4))) (-4 *4 (-339)) (-5 *2 (-1169 (-629 *4))) (-5 *1 (-1004 *4)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1087))) (-4 *5 (-339)) (-5 *2 (-1169 (-629 (-883 *5)))) (-5 *1 (-1004 *5)) (-5 *4 (-629 (-883 *5))))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1087))) (-4 *5 (-339)) (-5 *2 (-1169 (-629 (-383 (-883 *5))))) (-5 *1 (-1004 *5)) (-5 *4 (-629 (-383 (-883 *5))))))) +(-10 -7 (-15 -1939 ((-1169 (-629 (-383 (-883 |#1|)))) (-589 (-1087)) (-629 (-383 (-883 |#1|))))) (-15 -1939 ((-1169 (-629 (-883 |#1|))) (-589 (-1087)) (-629 (-883 |#1|)))) (-15 -1939 ((-1169 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -2906 ((-1169 |#1|) (-629 |#1|) (-589 (-629 |#1|))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1741 (((-589 (-710)) $) NIL) (((-589 (-710)) $ (-1087)) NIL)) (-3038 (((-710) $) NIL) (((-710) $ (-1087)) NIL)) (-1292 (((-589 (-1006 (-1087))) $) NIL)) (-2389 (((-1083 $) $ (-1006 (-1087))) NIL) (((-1083 |#1|) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 (-1006 (-1087)))) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3718 (($ $) NIL (|has| |#1| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1914 (($ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1006 (-1087)) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL) (((-3 (-1039 |#1| (-1087)) "failed") $) NIL)) (-3508 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1006 (-1087)) $) NIL) (((-1087) $) NIL) (((-1039 |#1| (-1087)) $) NIL)) (-1611 (($ $ $ (-1006 (-1087))) NIL (|has| |#1| (-158)))) (-1457 (($ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#1| (-427))) (($ $ (-1006 (-1087))) NIL (|has| |#1| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#1| (-840)))) (-4222 (($ $ |#1| (-495 (-1006 (-1087))) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1006 (-1087)) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1006 (-1087)) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-3437 (((-710) $ (-1087)) NIL) (((-710) $) NIL)) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-1280 (($ (-1083 |#1|) (-1006 (-1087))) NIL) (($ (-1083 $) (-1006 (-1087))) NIL)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-495 (-1006 (-1087)))) NIL) (($ $ (-1006 (-1087)) (-710)) NIL) (($ $ (-589 (-1006 (-1087))) (-589 (-710))) NIL)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ (-1006 (-1087))) NIL)) (-4047 (((-495 (-1006 (-1087))) $) NIL) (((-710) $ (-1006 (-1087))) NIL) (((-589 (-710)) $ (-589 (-1006 (-1087)))) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2041 (($ (-1 (-495 (-1006 (-1087))) (-495 (-1006 (-1087)))) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1360 (((-1 $ (-710)) (-1087)) NIL) (((-1 $ (-710)) $) NIL (|has| |#1| (-211)))) (-4213 (((-3 (-1006 (-1087)) "failed") $) NIL)) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3994 (((-1006 (-1087)) $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2032 (((-1070) $) NIL)) (-2286 (((-108) $) NIL)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| (-1006 (-1087))) (|:| -1475 (-710))) "failed") $) NIL)) (-3865 (($ $) NIL)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) NIL)) (-1419 ((|#1| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-840)))) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1006 (-1087)) |#1|) NIL) (($ $ (-589 (-1006 (-1087))) (-589 |#1|)) NIL) (($ $ (-1006 (-1087)) $) NIL) (($ $ (-589 (-1006 (-1087))) (-589 $)) NIL) (($ $ (-1087) $) NIL (|has| |#1| (-211))) (($ $ (-589 (-1087)) (-589 $)) NIL (|has| |#1| (-211))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-211))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-211)))) (-1744 (($ $ (-1006 (-1087))) NIL (|has| |#1| (-158)))) (-3984 (($ $ (-1006 (-1087))) NIL) (($ $ (-589 (-1006 (-1087)))) NIL) (($ $ (-1006 (-1087)) (-710)) NIL) (($ $ (-589 (-1006 (-1087))) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2007 (((-589 (-1087)) $) NIL)) (-2640 (((-495 (-1006 (-1087))) $) NIL) (((-710) $ (-1006 (-1087))) NIL) (((-589 (-710)) $ (-589 (-1006 (-1087)))) NIL) (((-710) $ (-1087)) NIL)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| (-1006 (-1087)) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1006 (-1087)) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1006 (-1087)) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-1618 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-1006 (-1087))) NIL (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-1006 (-1087))) NIL) (($ (-1087)) NIL) (($ (-1039 |#1| (-1087))) NIL) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-495 (-1006 (-1087)))) NIL) (($ $ (-1006 (-1087)) (-710)) NIL) (($ $ (-589 (-1006 (-1087))) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-1006 (-1087))) NIL) (($ $ (-589 (-1006 (-1087)))) NIL) (($ $ (-1006 (-1087)) (-710)) NIL) (($ $ (-589 (-1006 (-1087))) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) (((-1005 |#1|) (-13 (-230 |#1| (-1087) (-1006 (-1087)) (-495 (-1006 (-1087)))) (-964 (-1039 |#1| (-1087)))) (-973)) (T -1005)) NIL (-13 (-230 |#1| (-1087) (-1006 (-1087)) (-495 (-1006 (-1087)))) (-964 (-1039 |#1| (-1087)))) -((-3924 (((-108) $ $) NIL)) (-2656 (((-710) $) NIL)) (-2700 ((|#1| $) 10)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-1640 (((-710) $) 11)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3178 (($ |#1| (-710)) 9)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3523 (($ $) NIL) (($ $ (-710)) NIL)) (-1458 (((-794) $) NIL) (($ |#1|) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 15))) +((-1680 (((-108) $ $) NIL)) (-3038 (((-710) $) NIL)) (-2724 ((|#1| $) 10)) (-1220 (((-3 |#1| "failed") $) NIL)) (-3508 ((|#1| $) NIL)) (-3437 (((-710) $) 11)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-1360 (($ |#1| (-710)) 9)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3984 (($ $) NIL) (($ $ (-710)) NIL)) (-1691 (((-794) $) NIL) (($ |#1|) NIL)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 15))) (((-1006 |#1|) (-243 |#1|) (-786)) (T -1006)) NIL (-243 |#1|) -((-3612 (((-589 |#2|) (-1 |#2| |#1|) (-1011 |#1|)) 24 (|has| |#1| (-784))) (((-1011 |#2|) (-1 |#2| |#1|) (-1011 |#1|)) 14))) -(((-1007 |#1| |#2|) (-10 -7 (-15 -3612 ((-1011 |#2|) (-1 |#2| |#1|) (-1011 |#1|))) (IF (|has| |#1| (-784)) (-15 -3612 ((-589 |#2|) (-1 |#2| |#1|) (-1011 |#1|))) |%noBranch|)) (-1122) (-1122)) (T -1007)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-784)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-589 *6)) (-5 *1 (-1007 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1011 *6)) (-5 *1 (-1007 *5 *6))))) -(-10 -7 (-15 -3612 ((-1011 |#2|) (-1 |#2| |#1|) (-1011 |#1|))) (IF (|has| |#1| (-784)) (-15 -3612 ((-589 |#2|) (-1 |#2| |#1|) (-1011 |#1|))) |%noBranch|)) -((-3612 (((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|)) 19))) -(((-1008 |#1| |#2|) (-10 -7 (-15 -3612 ((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|)))) (-1122) (-1122)) (T -1008)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1009 *6)) (-5 *1 (-1008 *5 *6))))) -(-10 -7 (-15 -3612 ((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2700 (((-1087) $) 11)) (-2644 (((-1011 |#1|) $) 12)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1915 (($ (-1087) (-1011 |#1|)) 10)) (-1458 (((-794) $) 20 (|has| |#1| (-1016)))) (-3983 (((-108) $ $) 15 (|has| |#1| (-1016))))) -(((-1009 |#1|) (-13 (-1122) (-10 -8 (-15 -1915 ($ (-1087) (-1011 |#1|))) (-15 -2700 ((-1087) $)) (-15 -2644 ((-1011 |#1|) $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) (-1122)) (T -1009)) -((-1915 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1011 *4)) (-4 *4 (-1122)) (-5 *1 (-1009 *4)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1009 *3)) (-4 *3 (-1122)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1122))))) -(-13 (-1122) (-10 -8 (-15 -1915 ($ (-1087) (-1011 |#1|))) (-15 -2700 ((-1087) $)) (-15 -2644 ((-1011 |#1|) $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) -((-2644 (($ |#1| |#1|) 7)) (-2279 ((|#1| $) 10)) (-3519 ((|#1| $) 12)) (-3530 (((-523) $) 8)) (-2566 ((|#1| $) 9)) (-3539 ((|#1| $) 11)) (-3663 (($ |#1|) 6)) (-3410 (($ |#1| |#1|) 14)) (-3763 (($ $ (-523)) 13))) -(((-1010 |#1|) (-129) (-1122)) (T -1010)) -((-3410 (*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1010 *3)) (-4 *3 (-1122)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) (-2566 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1122)) (-5 *2 (-523)))) (-2644 (*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) (-3663 (*1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122))))) -(-13 (-1122) (-10 -8 (-15 -3410 ($ |t#1| |t#1|)) (-15 -3763 ($ $ (-523))) (-15 -3519 (|t#1| $)) (-15 -3539 (|t#1| $)) (-15 -2279 (|t#1| $)) (-15 -2566 (|t#1| $)) (-15 -3530 ((-523) $)) (-15 -2644 ($ |t#1| |t#1|)) (-15 -3663 ($ |t#1|)))) -(((-1122) . T)) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2644 (($ |#1| |#1|) 15)) (-3612 (((-589 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-784)))) (-2279 ((|#1| $) 10)) (-3519 ((|#1| $) 9)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3530 (((-523) $) 14)) (-2566 ((|#1| $) 12)) (-3539 ((|#1| $) 11)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3686 (((-589 |#1|) $) 36 (|has| |#1| (-784))) (((-589 |#1|) (-589 $)) 35 (|has| |#1| (-784)))) (-3663 (($ |#1|) 26)) (-1458 (((-794) $) 25 (|has| |#1| (-1016)))) (-3410 (($ |#1| |#1|) 8)) (-3763 (($ $ (-523)) 16)) (-3983 (((-108) $ $) 19 (|has| |#1| (-1016))))) -(((-1011 |#1|) (-13 (-1010 |#1|) (-10 -7 (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-1012 |#1| (-589 |#1|))) |%noBranch|))) (-1122)) (T -1011)) +((-1345 (((-589 |#2|) (-1 |#2| |#1|) (-1011 |#1|)) 24 (|has| |#1| (-784))) (((-1011 |#2|) (-1 |#2| |#1|) (-1011 |#1|)) 14))) +(((-1007 |#1| |#2|) (-10 -7 (-15 -1345 ((-1011 |#2|) (-1 |#2| |#1|) (-1011 |#1|))) (IF (|has| |#1| (-784)) (-15 -1345 ((-589 |#2|) (-1 |#2| |#1|) (-1011 |#1|))) |%noBranch|)) (-1123) (-1123)) (T -1007)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-784)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-589 *6)) (-5 *1 (-1007 *5 *6)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-1011 *6)) (-5 *1 (-1007 *5 *6))))) +(-10 -7 (-15 -1345 ((-1011 |#2|) (-1 |#2| |#1|) (-1011 |#1|))) (IF (|has| |#1| (-784)) (-15 -1345 ((-589 |#2|) (-1 |#2| |#1|) (-1011 |#1|))) |%noBranch|)) +((-1345 (((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|)) 19))) +(((-1008 |#1| |#2|) (-10 -7 (-15 -1345 ((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|)))) (-1123) (-1123)) (T -1008)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-1009 *6)) (-5 *1 (-1008 *5 *6))))) +(-10 -7 (-15 -1345 ((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2724 (((-1087) $) 11)) (-3141 (((-1011 |#1|) $) 12)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1948 (($ (-1087) (-1011 |#1|)) 10)) (-1691 (((-794) $) 20 (|has| |#1| (-1016)))) (-3941 (((-108) $ $) 15 (|has| |#1| (-1016))))) +(((-1009 |#1|) (-13 (-1123) (-10 -8 (-15 -1948 ($ (-1087) (-1011 |#1|))) (-15 -2724 ((-1087) $)) (-15 -3141 ((-1011 |#1|) $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) (-1123)) (T -1009)) +((-1948 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1011 *4)) (-4 *4 (-1123)) (-5 *1 (-1009 *4)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1009 *3)) (-4 *3 (-1123)))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1123))))) +(-13 (-1123) (-10 -8 (-15 -1948 ($ (-1087) (-1011 |#1|))) (-15 -2724 ((-1087) $)) (-15 -3141 ((-1011 |#1|) $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) +((-3141 (($ |#1| |#1|) 7)) (-3585 ((|#1| $) 10)) (-1702 ((|#1| $) 12)) (-1714 (((-523) $) 8)) (-3372 ((|#1| $) 9)) (-1725 ((|#1| $) 11)) (-1400 (($ |#1|) 6)) (-3447 (($ |#1| |#1|) 14)) (-3704 (($ $ (-523)) 13))) +(((-1010 |#1|) (-129) (-1123)) (T -1010)) +((-3447 (*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123)))) (-3704 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1010 *3)) (-4 *3 (-1123)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123)))) (-3585 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123)))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1123)) (-5 *2 (-523)))) (-3141 (*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123)))) (-1400 (*1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123))))) +(-13 (-1123) (-10 -8 (-15 -3447 ($ |t#1| |t#1|)) (-15 -3704 ($ $ (-523))) (-15 -1702 (|t#1| $)) (-15 -1725 (|t#1| $)) (-15 -3585 (|t#1| $)) (-15 -3372 (|t#1| $)) (-15 -1714 ((-523) $)) (-15 -3141 ($ |t#1| |t#1|)) (-15 -1400 ($ |t#1|)))) +(((-1123) . T)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3141 (($ |#1| |#1|) 15)) (-1345 (((-589 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-784)))) (-3585 ((|#1| $) 10)) (-1702 ((|#1| $) 9)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1714 (((-523) $) 14)) (-3372 ((|#1| $) 12)) (-1725 ((|#1| $) 11)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1870 (((-589 |#1|) $) 36 (|has| |#1| (-784))) (((-589 |#1|) (-589 $)) 35 (|has| |#1| (-784)))) (-1400 (($ |#1|) 26)) (-1691 (((-794) $) 25 (|has| |#1| (-1016)))) (-3447 (($ |#1| |#1|) 8)) (-3704 (($ $ (-523)) 16)) (-3941 (((-108) $ $) 19 (|has| |#1| (-1016))))) +(((-1011 |#1|) (-13 (-1010 |#1|) (-10 -7 (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-1012 |#1| (-589 |#1|))) |%noBranch|))) (-1123)) (T -1011)) NIL (-13 (-1010 |#1|) (-10 -7 (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-1012 |#1| (-589 |#1|))) |%noBranch|))) -((-2644 (($ |#1| |#1|) 7)) (-3612 ((|#2| (-1 |#1| |#1|) $) 16)) (-2279 ((|#1| $) 10)) (-3519 ((|#1| $) 12)) (-3530 (((-523) $) 8)) (-2566 ((|#1| $) 9)) (-3539 ((|#1| $) 11)) (-3686 ((|#2| (-589 $)) 18) ((|#2| $) 17)) (-3663 (($ |#1|) 6)) (-3410 (($ |#1| |#1|) 14)) (-3763 (($ $ (-523)) 13))) +((-3141 (($ |#1| |#1|) 7)) (-1345 ((|#2| (-1 |#1| |#1|) $) 16)) (-3585 ((|#1| $) 10)) (-1702 ((|#1| $) 12)) (-1714 (((-523) $) 8)) (-3372 ((|#1| $) 9)) (-1725 ((|#1| $) 11)) (-1870 ((|#2| (-589 $)) 18) ((|#2| $) 17)) (-1400 (($ |#1|) 6)) (-3447 (($ |#1| |#1|) 14)) (-3704 (($ $ (-523)) 13))) (((-1012 |#1| |#2|) (-129) (-784) (-1061 |t#1|)) (T -1012)) -((-3686 (*1 *2 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-1012 *4 *2)) (-4 *4 (-784)) (-4 *2 (-1061 *4)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-1012 *3 *2)) (-4 *3 (-784)) (-4 *2 (-1061 *3)))) (-3612 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1012 *4 *2)) (-4 *4 (-784)) (-4 *2 (-1061 *4))))) -(-13 (-1010 |t#1|) (-10 -8 (-15 -3686 (|t#2| (-589 $))) (-15 -3686 (|t#2| $)) (-15 -3612 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1010 |#1|) . T) ((-1122) . T)) -((-3288 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1922 (($ $ $) 10)) (-3682 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1013 |#1| |#2|) (-10 -8 (-15 -3288 (|#1| |#2| |#1|)) (-15 -3288 (|#1| |#1| |#2|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#2|)) (-15 -3682 (|#1| |#1| |#1|))) (-1014 |#2|) (-1016)) (T -1013)) -NIL -(-10 -8 (-15 -3288 (|#1| |#2| |#1|)) (-15 -3288 (|#1| |#1| |#2|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#2|)) (-15 -3682 (|#1| |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-3288 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1922 (($ $ $) 20)) (-3471 (((-108) $ $) 19)) (-3079 (((-108) $ (-710)) 35)) (-4086 (($) 25) (($ (-589 |#1|)) 24)) (-3724 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4244)))) (-2518 (($) 36 T CONST)) (-1773 (($ $) 59 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 43 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 34)) (-2136 (((-589 |#1|) $) 44 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 38)) (-2866 (((-108) $ (-710)) 33)) (-3779 (((-1070) $) 9)) (-1309 (($ $ $) 23)) (-2783 (((-1034) $) 10)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-1327 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) 50 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 48 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 (-271 |#1|))) 47 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 29)) (-3883 (((-108) $) 32)) (-3988 (($) 31)) (-3682 (($ $ $) 22) (($ $ |#1|) 21)) (-2792 (((-710) |#1| $) 45 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4244)))) (-1664 (($ $) 30)) (-3663 (((-499) $) 60 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 51)) (-1458 (((-794) $) 11)) (-1684 (($) 27) (($ (-589 |#1|)) 26)) (-2096 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 6)) (-4007 (((-108) $ $) 28)) (-2676 (((-710) $) 37 (|has| $ (-6 -4244))))) +((-1870 (*1 *2 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-1012 *4 *2)) (-4 *4 (-784)) (-4 *2 (-1061 *4)))) (-1870 (*1 *2 *1) (-12 (-4 *1 (-1012 *3 *2)) (-4 *3 (-784)) (-4 *2 (-1061 *3)))) (-1345 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1012 *4 *2)) (-4 *4 (-784)) (-4 *2 (-1061 *4))))) +(-13 (-1010 |t#1|) (-10 -8 (-15 -1870 (|t#2| (-589 $))) (-15 -1870 (|t#2| $)) (-15 -1345 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1010 |#1|) . T) ((-1123) . T)) +((-3321 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4199 (($ $ $) 10)) (-3582 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1013 |#1| |#2|) (-10 -8 (-15 -3321 (|#1| |#2| |#1|)) (-15 -3321 (|#1| |#1| |#2|)) (-15 -3321 (|#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -3582 (|#1| |#1| |#2|)) (-15 -3582 (|#1| |#1| |#1|))) (-1014 |#2|) (-1016)) (T -1013)) +NIL +(-10 -8 (-15 -3321 (|#1| |#2| |#1|)) (-15 -3321 (|#1| |#1| |#2|)) (-15 -3321 (|#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -3582 (|#1| |#1| |#2|)) (-15 -3582 (|#1| |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-3321 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-4199 (($ $ $) 20)) (-2172 (((-108) $ $) 19)) (-1620 (((-108) $ (-710)) 35)) (-1365 (($) 25) (($ (-589 |#1|)) 24)) (-1903 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4248)))) (-4189 (($) 36 T CONST)) (-2462 (($ $) 59 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#1| $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4248)))) (-1871 (((-589 |#1|) $) 43 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 34)) (-1584 (((-589 |#1|) $) 44 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 38)) (-1418 (((-108) $ (-710)) 33)) (-2032 (((-1070) $) 9)) (-3196 (($ $ $) 23)) (-3951 (((-1034) $) 10)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-3379 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#1|) (-589 |#1|)) 50 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 48 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 (-271 |#1|))) 47 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 29)) (-1777 (((-108) $) 32)) (-3320 (($) 31)) (-3582 (($ $ $) 22) (($ $ |#1|) 21)) (-3977 (((-710) |#1| $) 45 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (((-710) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4248)))) (-1874 (($ $) 30)) (-1400 (((-499) $) 60 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 51)) (-1691 (((-794) $) 11)) (-3324 (($) 27) (($ (-589 |#1|)) 26)) (-2308 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 6)) (-3966 (((-108) $ $) 28)) (-2810 (((-710) $) 37 (|has| $ (-6 -4248))))) (((-1014 |#1|) (-129) (-1016)) (T -1014)) -((-4007 (*1 *2 *1 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-1684 (*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-1684 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-1014 *3)))) (-4086 (*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-1014 *3)))) (-1309 (*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3682 (*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3682 (*1 *1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-1922 (*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3471 (*1 *2 *1 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-3288 (*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3288 (*1 *1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3288 (*1 *1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) -(-13 (-1016) (-140 |t#1|) (-10 -8 (-6 -4234) (-15 -4007 ((-108) $ $)) (-15 -1684 ($)) (-15 -1684 ($ (-589 |t#1|))) (-15 -4086 ($)) (-15 -4086 ($ (-589 |t#1|))) (-15 -1309 ($ $ $)) (-15 -3682 ($ $ $)) (-15 -3682 ($ $ |t#1|)) (-15 -1922 ($ $ $)) (-15 -3471 ((-108) $ $)) (-15 -3288 ($ $ $)) (-15 -3288 ($ $ |t#1|)) (-15 -3288 ($ |t#1| $)))) -(((-33) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) . T) ((-1122) . T)) -((-3779 (((-1070) $) 10)) (-2783 (((-1034) $) 8))) -(((-1015 |#1|) (-10 -8 (-15 -3779 ((-1070) |#1|)) (-15 -2783 ((-1034) |#1|))) (-1016)) (T -1015)) -NIL -(-10 -8 (-15 -3779 ((-1070) |#1|)) (-15 -2783 ((-1034) |#1|))) -((-3924 (((-108) $ $) 7)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +((-3966 (*1 *2 *1 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-3324 (*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3324 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-1014 *3)))) (-1365 (*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-1014 *3)))) (-3196 (*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3582 (*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3582 (*1 *1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-4199 (*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-2172 (*1 *2 *1 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-3321 (*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3321 (*1 *1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3321 (*1 *1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(-13 (-1016) (-140 |t#1|) (-10 -8 (-6 -4238) (-15 -3966 ((-108) $ $)) (-15 -3324 ($)) (-15 -3324 ($ (-589 |t#1|))) (-15 -1365 ($)) (-15 -1365 ($ (-589 |t#1|))) (-15 -3196 ($ $ $)) (-15 -3582 ($ $ $)) (-15 -3582 ($ $ |t#1|)) (-15 -4199 ($ $ $)) (-15 -2172 ((-108) $ $)) (-15 -3321 ($ $ $)) (-15 -3321 ($ $ |t#1|)) (-15 -3321 ($ |t#1| $)))) +(((-33) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) . T) ((-1123) . T)) +((-2032 (((-1070) $) 10)) (-3951 (((-1034) $) 8))) +(((-1015 |#1|) (-10 -8 (-15 -2032 ((-1070) |#1|)) (-15 -3951 ((-1034) |#1|))) (-1016)) (T -1015)) +NIL +(-10 -8 (-15 -2032 ((-1070) |#1|)) (-15 -3951 ((-1034) |#1|))) +((-1680 (((-108) $ $) 7)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-3941 (((-108) $ $) 6))) (((-1016) (-129)) (T -1016)) -((-2783 (*1 *2 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-1034)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-1070))))) -(-13 (-97) (-563 (-794)) (-10 -8 (-15 -2783 ((-1034) $)) (-15 -3779 ((-1070) $)))) +((-3951 (*1 *2 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-1034)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-1070))))) +(-13 (-97) (-563 (-794)) (-10 -8 (-15 -3951 ((-1034) $)) (-15 -2032 ((-1070) $)))) (((-97) . T) ((-563 (-794)) . T)) -((-3924 (((-108) $ $) NIL)) (-1703 (((-710)) 30)) (-3840 (($ (-589 (-852))) 52)) (-3927 (((-3 $ "failed") $ (-852) (-852)) 57)) (-4032 (($) 32)) (-1973 (((-108) (-852) $) 35)) (-2072 (((-852) $) 50)) (-3779 (((-1070) $) NIL)) (-3878 (($ (-852)) 31)) (-1755 (((-3 $ "failed") $ (-852)) 55)) (-2783 (((-1034) $) NIL)) (-3522 (((-1168 $)) 40)) (-4202 (((-589 (-852)) $) 23)) (-2594 (((-710) $ (-852) (-852)) 56)) (-1458 (((-794) $) 29)) (-3983 (((-108) $ $) 21))) -(((-1017 |#1| |#2|) (-13 (-344) (-10 -8 (-15 -1755 ((-3 $ "failed") $ (-852))) (-15 -3927 ((-3 $ "failed") $ (-852) (-852))) (-15 -4202 ((-589 (-852)) $)) (-15 -3840 ($ (-589 (-852)))) (-15 -3522 ((-1168 $))) (-15 -1973 ((-108) (-852) $)) (-15 -2594 ((-710) $ (-852) (-852))))) (-852) (-852)) (T -1017)) -((-1755 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-852)) (-5 *1 (-1017 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3927 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-852)) (-5 *1 (-1017 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-3522 (*1 *2) (-12 (-5 *2 (-1168 (-1017 *3 *4))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-1973 (*1 *2 *3 *1) (-12 (-5 *3 (-852)) (-5 *2 (-108)) (-5 *1 (-1017 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2594 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-710)) (-5 *1 (-1017 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-344) (-10 -8 (-15 -1755 ((-3 $ "failed") $ (-852))) (-15 -3927 ((-3 $ "failed") $ (-852) (-852))) (-15 -4202 ((-589 (-852)) $)) (-15 -3840 ($ (-589 (-852)))) (-15 -3522 ((-1168 $))) (-15 -1973 ((-108) (-852) $)) (-15 -2594 ((-710) $ (-852) (-852))))) -((-3924 (((-108) $ $) NIL)) (-2919 (($) NIL (|has| |#1| (-344)))) (-3288 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-1922 (($ $ $) 72)) (-3471 (((-108) $ $) 73)) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-4086 (($ (-589 |#1|)) NIL) (($) 13)) (-3387 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) 67 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4244)))) (-4032 (($) NIL (|has| |#1| (-344)))) (-1666 (((-589 |#1|) $) 19 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2454 ((|#1| $) 57 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2062 ((|#1| $) 55 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 34)) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-1309 (($ $ $) 70)) (-1934 ((|#1| $) 25)) (-3450 (($ |#1| $) 65)) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-2783 (((-1034) $) NIL)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-3761 ((|#1| $) 27)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 21)) (-3988 (($) 11)) (-3682 (($ $ |#1|) NIL) (($ $ $) 71)) (-3433 (($) NIL) (($ (-589 |#1|)) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 16)) (-3663 (((-499) $) 52 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 61)) (-2059 (($ $) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) NIL)) (-3398 (((-710) $) NIL)) (-1684 (($ (-589 |#1|)) NIL) (($) 12)) (-2401 (($ (-589 |#1|)) NIL)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 54)) (-4007 (((-108) $ $) NIL)) (-2676 (((-710) $) 10 (|has| $ (-6 -4244))))) +((-1680 (((-108) $ $) NIL)) (-2395 (((-710)) 30)) (-2532 (($ (-589 (-852))) 52)) (-3986 (((-3 $ "failed") $ (-852) (-852)) 58)) (-1631 (($) 32)) (-3423 (((-108) (-852) $) 35)) (-2060 (((-852) $) 50)) (-2032 (((-1070) $) NIL)) (-4013 (($ (-852)) 31)) (-2064 (((-3 $ "failed") $ (-852)) 55)) (-3951 (((-1034) $) NIL)) (-1520 (((-1169 $)) 40)) (-4131 (((-589 (-852)) $) 23)) (-1566 (((-710) $ (-852) (-852)) 56)) (-1691 (((-794) $) 29)) (-3941 (((-108) $ $) 21))) +(((-1017 |#1| |#2|) (-13 (-344) (-10 -8 (-15 -2064 ((-3 $ "failed") $ (-852))) (-15 -3986 ((-3 $ "failed") $ (-852) (-852))) (-15 -4131 ((-589 (-852)) $)) (-15 -2532 ($ (-589 (-852)))) (-15 -1520 ((-1169 $))) (-15 -3423 ((-108) (-852) $)) (-15 -1566 ((-710) $ (-852) (-852))))) (-852) (-852)) (T -1017)) +((-2064 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-852)) (-5 *1 (-1017 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3986 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-852)) (-5 *1 (-1017 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-1520 (*1 *2) (-12 (-5 *2 (-1169 (-1017 *3 *4))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-3423 (*1 *2 *3 *1) (-12 (-5 *3 (-852)) (-5 *2 (-108)) (-5 *1 (-1017 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1566 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-710)) (-5 *1 (-1017 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-344) (-10 -8 (-15 -2064 ((-3 $ "failed") $ (-852))) (-15 -3986 ((-3 $ "failed") $ (-852) (-852))) (-15 -4131 ((-589 (-852)) $)) (-15 -2532 ($ (-589 (-852)))) (-15 -1520 ((-1169 $))) (-15 -3423 ((-108) (-852) $)) (-15 -1566 ((-710) $ (-852) (-852))))) +((-1680 (((-108) $ $) NIL)) (-3662 (($) NIL (|has| |#1| (-344)))) (-3321 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-4199 (($ $ $) 72)) (-2172 (((-108) $ $) 73)) (-1620 (((-108) $ (-710)) NIL)) (-2395 (((-710)) NIL (|has| |#1| (-344)))) (-1365 (($ (-589 |#1|)) NIL) (($) 13)) (-3703 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3286 (($ |#1| $) 67 (|has| $ (-6 -4248))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4248)))) (-1631 (($) NIL (|has| |#1| (-344)))) (-1871 (((-589 |#1|) $) 19 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-3239 ((|#1| $) 57 (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3158 ((|#1| $) 55 (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 34)) (-2060 (((-852) $) NIL (|has| |#1| (-344)))) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-3196 (($ $ $) 70)) (-1293 ((|#1| $) 25)) (-3108 (($ |#1| $) 65)) (-4013 (($ (-852)) NIL (|has| |#1| (-344)))) (-3951 (((-1034) $) NIL)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-3048 ((|#1| $) 27)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 21)) (-3320 (($) 11)) (-3582 (($ $ |#1|) NIL) (($ $ $) 71)) (-2963 (($) NIL) (($ (-589 |#1|)) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) 16)) (-1400 (((-499) $) 52 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 61)) (-1966 (($ $) NIL (|has| |#1| (-344)))) (-1691 (((-794) $) NIL)) (-2649 (((-710) $) NIL)) (-3324 (($ (-589 |#1|)) NIL) (($) 12)) (-2417 (($ (-589 |#1|)) NIL)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 54)) (-3966 (((-108) $ $) NIL)) (-2810 (((-710) $) 10 (|has| $ (-6 -4248))))) (((-1018 |#1|) (-401 |#1|) (-1016)) (T -1018)) NIL (-401 |#1|) -((-3924 (((-108) $ $) 7)) (-3129 (((-108) $) 32)) (-3335 ((|#2| $) 27)) (-3708 (((-108) $) 33)) (-3207 ((|#1| $) 28)) (-3021 (((-108) $) 35)) (-1888 (((-108) $) 37)) (-1749 (((-108) $) 34)) (-3779 (((-1070) $) 9)) (-1538 (((-108) $) 31)) (-3356 ((|#3| $) 26)) (-2783 (((-1034) $) 10)) (-3264 (((-108) $) 30)) (-4092 ((|#4| $) 25)) (-2659 ((|#5| $) 24)) (-1710 (((-108) $ $) 38)) (-3223 (($ $ (-523)) 14) (($ $ (-589 (-523))) 13)) (-1887 (((-589 $) $) 29)) (-3663 (($ (-589 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-1458 (((-794) $) 11)) (-1627 (($ $) 16)) (-4003 (($ $) 17)) (-1308 (((-108) $) 36)) (-3983 (((-108) $ $) 6)) (-2676 (((-523) $) 15))) +((-1680 (((-108) $ $) 7)) (-2028 (((-108) $) 32)) (-2414 ((|#2| $) 27)) (-2629 (((-108) $) 33)) (-3279 ((|#1| $) 28)) (-2255 (((-108) $) 35)) (-3820 (((-108) $) 37)) (-2016 (((-108) $) 34)) (-2032 (((-1070) $) 9)) (-3690 (((-108) $) 31)) (-2434 ((|#3| $) 26)) (-3951 (((-1034) $) 10)) (-3779 (((-108) $) 30)) (-4210 ((|#4| $) 25)) (-2685 ((|#5| $) 24)) (-2849 (((-108) $ $) 38)) (-1937 (($ $ (-523)) 14) (($ $ (-589 (-523))) 13)) (-2489 (((-589 $) $) 29)) (-1400 (($ (-589 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-1691 (((-794) $) 11)) (-2325 (($ $) 16)) (-2312 (($ $) 17)) (-3187 (((-108) $) 36)) (-3941 (((-108) $ $) 6)) (-2810 (((-523) $) 15))) (((-1019 |#1| |#2| |#3| |#4| |#5|) (-129) (-1016) (-1016) (-1016) (-1016) (-1016)) (T -1019)) -((-1710 (*1 *2 *1 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-1888 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-1308 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-3708 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-1887 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-589 *1)) (-4 *1 (-1019 *3 *4 *5 *6 *7)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *2 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-4092 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *2)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)))) (-3663 (*1 *1 *2) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-3663 (*1 *1 *2) (-12 (-4 *1 (-1019 *3 *2 *4 *5 *6)) (-4 *3 (-1016)) (-4 *2 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-3663 (*1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *2 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-3663 (*1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *2 (-1016)) (-4 *6 (-1016)))) (-3663 (*1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *2)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-4003 (*1 *1 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-1627 (*1 *1 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-523)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016))))) -(-13 (-1016) (-10 -8 (-15 -1710 ((-108) $ $)) (-15 -1888 ((-108) $)) (-15 -1308 ((-108) $)) (-15 -3021 ((-108) $)) (-15 -1749 ((-108) $)) (-15 -3708 ((-108) $)) (-15 -3129 ((-108) $)) (-15 -1538 ((-108) $)) (-15 -3264 ((-108) $)) (-15 -1887 ((-589 $) $)) (-15 -3207 (|t#1| $)) (-15 -3335 (|t#2| $)) (-15 -3356 (|t#3| $)) (-15 -4092 (|t#4| $)) (-15 -2659 (|t#5| $)) (-15 -3663 ($ (-589 $))) (-15 -3663 ($ |t#1|)) (-15 -3663 ($ |t#2|)) (-15 -3663 ($ |t#3|)) (-15 -3663 ($ |t#4|)) (-15 -3663 ($ |t#5|)) (-15 -4003 ($ $)) (-15 -1627 ($ $)) (-15 -2676 ((-523) $)) (-15 -3223 ($ $ (-523))) (-15 -3223 ($ $ (-589 (-523)))))) +((-2849 (*1 *2 *1 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-2489 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-589 *1)) (-4 *1 (-1019 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *2 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-2685 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *2)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)))) (-1400 (*1 *1 *2) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-1400 (*1 *1 *2) (-12 (-4 *1 (-1019 *3 *2 *4 *5 *6)) (-4 *3 (-1016)) (-4 *2 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-1400 (*1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *2 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-1400 (*1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *2 (-1016)) (-4 *6 (-1016)))) (-1400 (*1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *2)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-2312 (*1 *1 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-523)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -2849 ((-108) $ $)) (-15 -3820 ((-108) $)) (-15 -3187 ((-108) $)) (-15 -2255 ((-108) $)) (-15 -2016 ((-108) $)) (-15 -2629 ((-108) $)) (-15 -2028 ((-108) $)) (-15 -3690 ((-108) $)) (-15 -3779 ((-108) $)) (-15 -2489 ((-589 $) $)) (-15 -3279 (|t#1| $)) (-15 -2414 (|t#2| $)) (-15 -2434 (|t#3| $)) (-15 -4210 (|t#4| $)) (-15 -2685 (|t#5| $)) (-15 -1400 ($ (-589 $))) (-15 -1400 ($ |t#1|)) (-15 -1400 ($ |t#2|)) (-15 -1400 ($ |t#3|)) (-15 -1400 ($ |t#4|)) (-15 -1400 ($ |t#5|)) (-15 -2312 ($ $)) (-15 -2325 ($ $)) (-15 -2810 ((-523) $)) (-15 -1937 ($ $ (-523))) (-15 -1937 ($ $ (-589 (-523)))))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-3129 (((-108) $) NIL)) (-3335 (((-1087) $) NIL)) (-3708 (((-108) $) NIL)) (-3207 (((-1070) $) NIL)) (-3021 (((-108) $) NIL)) (-1888 (((-108) $) NIL)) (-1749 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-1538 (((-108) $) NIL)) (-3356 (((-523) $) NIL)) (-2783 (((-1034) $) NIL)) (-3264 (((-108) $) NIL)) (-4092 (((-203) $) NIL)) (-2659 (((-794) $) NIL)) (-1710 (((-108) $ $) NIL)) (-3223 (($ $ (-523)) NIL) (($ $ (-589 (-523))) NIL)) (-1887 (((-589 $) $) NIL)) (-3663 (($ (-589 $)) NIL) (($ (-1070)) NIL) (($ (-1087)) NIL) (($ (-523)) NIL) (($ (-203)) NIL) (($ (-794)) NIL)) (-1458 (((-794) $) NIL)) (-1627 (($ $) NIL)) (-4003 (($ $) NIL)) (-1308 (((-108) $) NIL)) (-3983 (((-108) $ $) NIL)) (-2676 (((-523) $) NIL))) +((-1680 (((-108) $ $) NIL)) (-2028 (((-108) $) NIL)) (-2414 (((-1087) $) NIL)) (-2629 (((-108) $) NIL)) (-3279 (((-1070) $) NIL)) (-2255 (((-108) $) NIL)) (-3820 (((-108) $) NIL)) (-2016 (((-108) $) NIL)) (-2032 (((-1070) $) NIL)) (-3690 (((-108) $) NIL)) (-2434 (((-523) $) NIL)) (-3951 (((-1034) $) NIL)) (-3779 (((-108) $) NIL)) (-4210 (((-203) $) NIL)) (-2685 (((-794) $) NIL)) (-2849 (((-108) $ $) NIL)) (-1937 (($ $ (-523)) NIL) (($ $ (-589 (-523))) NIL)) (-2489 (((-589 $) $) NIL)) (-1400 (($ (-589 $)) NIL) (($ (-1070)) NIL) (($ (-1087)) NIL) (($ (-523)) NIL) (($ (-203)) NIL) (($ (-794)) NIL)) (-1691 (((-794) $) NIL)) (-2325 (($ $) NIL)) (-2312 (($ $) NIL)) (-3187 (((-108) $) NIL)) (-3941 (((-108) $ $) NIL)) (-2810 (((-523) $) NIL))) (((-1020) (-1019 (-1070) (-1087) (-523) (-203) (-794))) (T -1020)) NIL (-1019 (-1070) (-1087) (-523) (-203) (-794)) -((-3924 (((-108) $ $) NIL)) (-3129 (((-108) $) 38)) (-3335 ((|#2| $) 42)) (-3708 (((-108) $) 37)) (-3207 ((|#1| $) 41)) (-3021 (((-108) $) 35)) (-1888 (((-108) $) 14)) (-1749 (((-108) $) 36)) (-3779 (((-1070) $) NIL)) (-1538 (((-108) $) 39)) (-3356 ((|#3| $) 44)) (-2783 (((-1034) $) NIL)) (-3264 (((-108) $) 40)) (-4092 ((|#4| $) 43)) (-2659 ((|#5| $) 45)) (-1710 (((-108) $ $) 34)) (-3223 (($ $ (-523)) 56) (($ $ (-589 (-523))) 58)) (-1887 (((-589 $) $) 22)) (-3663 (($ (-589 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-1458 (((-794) $) 23)) (-1627 (($ $) 21)) (-4003 (($ $) 52)) (-1308 (((-108) $) 18)) (-3983 (((-108) $ $) 33)) (-2676 (((-523) $) 54))) +((-1680 (((-108) $ $) NIL)) (-2028 (((-108) $) 38)) (-2414 ((|#2| $) 42)) (-2629 (((-108) $) 37)) (-3279 ((|#1| $) 41)) (-2255 (((-108) $) 35)) (-3820 (((-108) $) 14)) (-2016 (((-108) $) 36)) (-2032 (((-1070) $) NIL)) (-3690 (((-108) $) 39)) (-2434 ((|#3| $) 44)) (-3951 (((-1034) $) NIL)) (-3779 (((-108) $) 40)) (-4210 ((|#4| $) 43)) (-2685 ((|#5| $) 45)) (-2849 (((-108) $ $) 34)) (-1937 (($ $ (-523)) 56) (($ $ (-589 (-523))) 58)) (-2489 (((-589 $) $) 22)) (-1400 (($ (-589 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-1691 (((-794) $) 23)) (-2325 (($ $) 21)) (-2312 (($ $) 52)) (-3187 (((-108) $) 18)) (-3941 (((-108) $ $) 33)) (-2810 (((-523) $) 54))) (((-1021 |#1| |#2| |#3| |#4| |#5|) (-1019 |#1| |#2| |#3| |#4| |#5|) (-1016) (-1016) (-1016) (-1016) (-1016)) (T -1021)) NIL (-1019 |#1| |#2| |#3| |#4| |#5|) -((-3394 (((-1173) $) 23)) (-2925 (($ (-1087) (-410) |#2|) 11)) (-1458 (((-794) $) 16))) -(((-1022 |#1| |#2|) (-13 (-371) (-10 -8 (-15 -2925 ($ (-1087) (-410) |#2|)))) (-786) (-406 |#1|)) (T -1022)) -((-2925 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-410)) (-4 *5 (-786)) (-5 *1 (-1022 *5 *4)) (-4 *4 (-406 *5))))) -(-13 (-371) (-10 -8 (-15 -2925 ($ (-1087) (-410) |#2|)))) -((-1718 (((-108) |#5| |#5|) 38)) (-1589 (((-108) |#5| |#5|) 52)) (-2683 (((-108) |#5| (-589 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-2323 (((-108) (-589 |#4|) (-589 |#4|)) 58)) (-2998 (((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) 63)) (-1255 (((-1173)) 33)) (-1304 (((-1173) (-1070) (-1070) (-1070)) 29)) (-2983 (((-589 |#5|) (-589 |#5|)) 82)) (-4008 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) 80)) (-2280 (((-589 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108)) 102)) (-2709 (((-108) |#5| |#5|) 47)) (-1475 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3124 (((-108) (-589 |#4|) (-589 |#4|)) 57)) (-2724 (((-108) (-589 |#4|) (-589 |#4|)) 59)) (-2391 (((-108) (-589 |#4|) (-589 |#4|)) 60)) (-2353 (((-3 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-1642 (((-589 |#5|) (-589 |#5|)) 43))) -(((-1023 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1304 ((-1173) (-1070) (-1070) (-1070))) (-15 -1255 ((-1173))) (-15 -1718 ((-108) |#5| |#5|)) (-15 -1642 ((-589 |#5|) (-589 |#5|))) (-15 -2709 ((-108) |#5| |#5|)) (-15 -1589 ((-108) |#5| |#5|)) (-15 -2323 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3124 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2724 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2391 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -1475 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2683 ((-108) |#5| |#5|)) (-15 -2683 ((-108) |#5| (-589 |#5|))) (-15 -2983 ((-589 |#5|) (-589 |#5|))) (-15 -2998 ((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -4008 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-15 -2280 ((-589 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2353 ((-3 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -1023)) -((-2353 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| -1710 (-589 *9)) (|:| -3072 *4) (|:| |ineq| (-589 *9)))) (-5 *1 (-1023 *6 *7 *8 *9 *4)) (-5 *3 (-589 *9)) (-4 *4 (-992 *6 *7 *8 *9)))) (-2280 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-589 *10)) (-5 *5 (-108)) (-4 *10 (-992 *6 *7 *8 *9)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 (-589 (-2 (|:| -1710 (-589 *9)) (|:| -3072 *10) (|:| |ineq| (-589 *9))))) (-5 *1 (-1023 *6 *7 *8 *9 *10)) (-5 *3 (-589 *9)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-589 (-2 (|:| |val| (-589 *6)) (|:| -3072 *7)))) (-4 *6 (-987 *3 *4 *5)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-1023 *3 *4 *5 *6 *7)))) (-2998 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)))) (-2983 (*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-1023 *3 *4 *5 *6 *7)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1023 *5 *6 *7 *8 *3)))) (-2683 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1475 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-2391 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2724 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-3124 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2323 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-1589 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-2709 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-1023 *3 *4 *5 *6 *7)))) (-1718 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1255 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) (-5 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-1304 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) -(-10 -7 (-15 -1304 ((-1173) (-1070) (-1070) (-1070))) (-15 -1255 ((-1173))) (-15 -1718 ((-108) |#5| |#5|)) (-15 -1642 ((-589 |#5|) (-589 |#5|))) (-15 -2709 ((-108) |#5| |#5|)) (-15 -1589 ((-108) |#5| |#5|)) (-15 -2323 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3124 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2724 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2391 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -1475 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2683 ((-108) |#5| |#5|)) (-15 -2683 ((-108) |#5| (-589 |#5|))) (-15 -2983 ((-589 |#5|) (-589 |#5|))) (-15 -2998 ((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -4008 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-15 -2280 ((-589 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2353 ((-3 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)))) -((-3113 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|) 95)) (-3881 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#4| |#4| |#5|) 71)) (-2010 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|) 89)) (-1825 (((-589 |#5|) |#4| |#5|) 110)) (-2516 (((-589 |#5|) |#4| |#5|) 117)) (-1523 (((-589 |#5|) |#4| |#5|) 118)) (-2901 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|) 96)) (-3540 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|) 116)) (-1676 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-3564 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#3| (-108)) 83) (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-3150 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|) 78)) (-2804 (((-1173)) 35)) (-4175 (((-1173)) 25)) (-1515 (((-1173) (-1070) (-1070) (-1070)) 31)) (-2744 (((-1173) (-1070) (-1070) (-1070)) 20))) -(((-1024 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2744 ((-1173) (-1070) (-1070) (-1070))) (-15 -4175 ((-1173))) (-15 -1515 ((-1173) (-1070) (-1070) (-1070))) (-15 -2804 ((-1173))) (-15 -3881 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -3564 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3564 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#3| (-108))) (-15 -3150 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -2010 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -1676 ((-108) |#4| |#5|)) (-15 -2901 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -1825 ((-589 |#5|) |#4| |#5|)) (-15 -3540 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -2516 ((-589 |#5|) |#4| |#5|)) (-15 -1676 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -1523 ((-589 |#5|) |#4| |#5|)) (-15 -3113 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -1024)) -((-3113 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1523 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1676 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2516 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3540 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1825 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2901 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1676 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2010 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3150 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3564 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) (-5 *5 (-108)) (-4 *8 (-987 *6 *7 *4)) (-4 *9 (-992 *6 *7 *4 *8)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *4 (-786)) (-5 *2 (-589 (-2 (|:| |val| *8) (|:| -3072 *9)))) (-5 *1 (-1024 *6 *7 *4 *8 *9)))) (-3564 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-1024 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-3881 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2804 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) (-5 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-1515 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) (-5 *1 (-1024 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-4175 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) (-5 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-2744 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) (-5 *1 (-1024 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) -(-10 -7 (-15 -2744 ((-1173) (-1070) (-1070) (-1070))) (-15 -4175 ((-1173))) (-15 -1515 ((-1173) (-1070) (-1070) (-1070))) (-15 -2804 ((-1173))) (-15 -3881 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -3564 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3564 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#3| (-108))) (-15 -3150 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -2010 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -1676 ((-108) |#4| |#5|)) (-15 -2901 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -1825 ((-589 |#5|) |#4| |#5|)) (-15 -3540 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -2516 ((-589 |#5|) |#4| |#5|)) (-15 -1676 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -1523 ((-589 |#5|) |#4| |#5|)) (-15 -3113 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|))) -((-3924 (((-108) $ $) 7)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) 85)) (-3846 (((-589 $) (-589 |#4|)) 86) (((-589 $) (-589 |#4|) (-108)) 111)) (-1957 (((-589 |#3|) $) 33)) (-2100 (((-108) $) 26)) (-2376 (((-108) $) 17 (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) 101) (((-108) $) 97)) (-2308 ((|#4| |#4| $) 92)) (-2291 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| $) 126)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) 27)) (-3079 (((-108) $ (-710)) 44)) (-3724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 79)) (-2518 (($) 45 T CONST)) (-3595 (((-108) $) 22 (|has| |#1| (-515)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3225 (((-108) $ $) 23 (|has| |#1| (-515)))) (-3393 (((-108) $) 25 (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3956 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 36)) (-3474 (($ (-589 |#4|)) 35)) (-1751 (((-3 $ "failed") $) 82)) (-4014 ((|#4| |#4| $) 89)) (-1773 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2636 ((|#4| |#4| $) 87)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) 105)) (-2005 (((-108) |#4| $) 136)) (-3785 (((-108) |#4| $) 133)) (-1944 (((-108) |#4| $) 137) (((-108) $) 134)) (-1666 (((-589 |#4|) $) 52 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) 104) (((-108) $) 103)) (-2907 ((|#3| $) 34)) (-2346 (((-108) $ (-710)) 43)) (-2136 (((-589 |#4|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 47)) (-4055 (((-589 |#3|) $) 32)) (-1357 (((-108) |#3| $) 31)) (-2866 (((-108) $ (-710)) 42)) (-3779 (((-1070) $) 9)) (-3246 (((-3 |#4| (-589 $)) |#4| |#4| $) 128)) (-1611 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| |#4| $) 127)) (-2579 (((-3 |#4| "failed") $) 83)) (-2668 (((-589 $) |#4| $) 129)) (-3320 (((-3 (-108) (-589 $)) |#4| $) 132)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1309 (((-589 $) |#4| $) 125) (((-589 $) (-589 |#4|) $) 124) (((-589 $) (-589 |#4|) (-589 $)) 123) (((-589 $) |#4| (-589 $)) 122)) (-1770 (($ |#4| $) 117) (($ (-589 |#4|) $) 116)) (-2404 (((-589 |#4|) $) 107)) (-2112 (((-108) |#4| $) 99) (((-108) $) 95)) (-2648 ((|#4| |#4| $) 90)) (-2391 (((-108) $ $) 110)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) 100) (((-108) $) 96)) (-1398 ((|#4| |#4| $) 91)) (-2783 (((-1034) $) 10)) (-1738 (((-3 |#4| "failed") $) 84)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2890 (((-3 $ "failed") $ |#4|) 78)) (-4097 (($ $ |#4|) 77) (((-589 $) |#4| $) 115) (((-589 $) |#4| (-589 $)) 114) (((-589 $) (-589 |#4|) $) 113) (((-589 $) (-589 |#4|) (-589 $)) 112)) (-1327 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) 38)) (-3883 (((-108) $) 41)) (-3988 (($) 40)) (-2299 (((-710) $) 106)) (-2792 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4244)))) (-1664 (($ $) 39)) (-3663 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 60)) (-2621 (($ $ |#3|) 28)) (-2624 (($ $ |#3|) 30)) (-1824 (($ $) 88)) (-3076 (($ $ |#3|) 29)) (-1458 (((-794) $) 11) (((-589 |#4|) $) 37)) (-1395 (((-710) $) 76 (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-3910 (((-589 $) |#4| $) 121) (((-589 $) |#4| (-589 $)) 120) (((-589 $) (-589 |#4|) $) 119) (((-589 $) (-589 |#4|) (-589 $)) 118)) (-2096 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) 81)) (-4062 (((-108) |#4| $) 135)) (-2153 (((-108) |#3| $) 80)) (-3983 (((-108) $ $) 6)) (-2676 (((-710) $) 46 (|has| $ (-6 -4244))))) +((-3826 (((-1174) $) 23)) (-2038 (($ (-1087) (-410) |#2|) 11)) (-1691 (((-794) $) 16))) +(((-1022 |#1| |#2|) (-13 (-371) (-10 -8 (-15 -2038 ($ (-1087) (-410) |#2|)))) (-786) (-406 |#1|)) (T -1022)) +((-2038 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-410)) (-4 *5 (-786)) (-5 *1 (-1022 *5 *4)) (-4 *4 (-406 *5))))) +(-13 (-371) (-10 -8 (-15 -2038 ($ (-1087) (-410) |#2|)))) +((-2933 (((-108) |#5| |#5|) 38)) (-4204 (((-108) |#5| |#5|) 52)) (-2123 (((-108) |#5| (-589 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-2854 (((-108) (-589 |#4|) (-589 |#4|)) 58)) (-2048 (((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) 63)) (-3866 (((-1174)) 33)) (-3148 (((-1174) (-1070) (-1070) (-1070)) 29)) (-3062 (((-589 |#5|) (-589 |#5|)) 82)) (-3488 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)))) 80)) (-3597 (((-589 (-2 (|:| -2849 (-589 |#4|)) (|:| -3643 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108)) 102)) (-2358 (((-108) |#5| |#5|) 47)) (-1336 (((-3 (-108) "failed") |#5| |#5|) 71)) (-2004 (((-108) (-589 |#4|) (-589 |#4|)) 57)) (-2511 (((-108) (-589 |#4|) (-589 |#4|)) 59)) (-2303 (((-108) (-589 |#4|) (-589 |#4|)) 60)) (-1985 (((-3 (-2 (|:| -2849 (-589 |#4|)) (|:| -3643 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-3450 (((-589 |#5|) (-589 |#5|)) 43))) +(((-1023 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3148 ((-1174) (-1070) (-1070) (-1070))) (-15 -3866 ((-1174))) (-15 -2933 ((-108) |#5| |#5|)) (-15 -3450 ((-589 |#5|) (-589 |#5|))) (-15 -2358 ((-108) |#5| |#5|)) (-15 -4204 ((-108) |#5| |#5|)) (-15 -2854 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2004 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2511 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2303 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -1336 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2123 ((-108) |#5| |#5|)) (-15 -2123 ((-108) |#5| (-589 |#5|))) (-15 -3062 ((-589 |#5|) (-589 |#5|))) (-15 -2048 ((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)))) (-15 -3488 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) (-15 -3597 ((-589 (-2 (|:| -2849 (-589 |#4|)) (|:| -3643 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -1985 ((-3 (-2 (|:| -2849 (-589 |#4|)) (|:| -3643 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -1023)) +((-1985 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| -2849 (-589 *9)) (|:| -3643 *4) (|:| |ineq| (-589 *9)))) (-5 *1 (-1023 *6 *7 *8 *9 *4)) (-5 *3 (-589 *9)) (-4 *4 (-992 *6 *7 *8 *9)))) (-3597 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-589 *10)) (-5 *5 (-108)) (-4 *10 (-992 *6 *7 *8 *9)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 (-589 (-2 (|:| -2849 (-589 *9)) (|:| -3643 *10) (|:| |ineq| (-589 *9))))) (-5 *1 (-1023 *6 *7 *8 *9 *10)) (-5 *3 (-589 *9)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-589 (-2 (|:| |val| (-589 *6)) (|:| -3643 *7)))) (-4 *6 (-987 *3 *4 *5)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-1023 *3 *4 *5 *6 *7)))) (-2048 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3643 *8))) (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-1023 *3 *4 *5 *6 *7)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1023 *5 *6 *7 *8 *3)))) (-2123 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1336 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-2303 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2511 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2004 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2854 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-4204 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-2358 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-1023 *3 *4 *5 *6 *7)))) (-2933 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-3866 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1174)) (-5 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-3148 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(-10 -7 (-15 -3148 ((-1174) (-1070) (-1070) (-1070))) (-15 -3866 ((-1174))) (-15 -2933 ((-108) |#5| |#5|)) (-15 -3450 ((-589 |#5|) (-589 |#5|))) (-15 -2358 ((-108) |#5| |#5|)) (-15 -4204 ((-108) |#5| |#5|)) (-15 -2854 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2004 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2511 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2303 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -1336 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2123 ((-108) |#5| |#5|)) (-15 -2123 ((-108) |#5| (-589 |#5|))) (-15 -3062 ((-589 |#5|) (-589 |#5|))) (-15 -2048 ((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)))) (-15 -3488 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) (-15 -3597 ((-589 (-2 (|:| -2849 (-589 |#4|)) (|:| -3643 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -1985 ((-3 (-2 (|:| -2849 (-589 |#4|)) (|:| -3643 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)))) +((-1920 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#5|) 95)) (-1759 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) |#4| |#4| |#5|) 71)) (-2654 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5|) 89)) (-1506 (((-589 |#5|) |#4| |#5|) 110)) (-4165 (((-589 |#5|) |#4| |#5|) 117)) (-1783 (((-589 |#5|) |#4| |#5|) 118)) (-3489 (((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|) 96)) (-1669 (((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|) 116)) (-2601 (((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-1892 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) |#3| (-108)) 83) (((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-4058 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5|) 78)) (-3876 (((-1174)) 35)) (-3858 (((-1174)) 25)) (-1715 (((-1174) (-1070) (-1070) (-1070)) 31)) (-1563 (((-1174) (-1070) (-1070) (-1070)) 20))) +(((-1024 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1563 ((-1174) (-1070) (-1070) (-1070))) (-15 -3858 ((-1174))) (-15 -1715 ((-1174) (-1070) (-1070) (-1070))) (-15 -3876 ((-1174))) (-15 -1759 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) |#4| |#4| |#5|)) (-15 -1892 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -1892 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) |#3| (-108))) (-15 -4058 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5|)) (-15 -2654 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5|)) (-15 -2601 ((-108) |#4| |#5|)) (-15 -3489 ((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|)) (-15 -1506 ((-589 |#5|) |#4| |#5|)) (-15 -1669 ((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|)) (-15 -4165 ((-589 |#5|) |#4| |#5|)) (-15 -2601 ((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|)) (-15 -1783 ((-589 |#5|) |#4| |#5|)) (-15 -1920 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#5|))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -1024)) +((-1920 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1783 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2601 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3643 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-4165 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1669 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3643 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1506 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3489 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3643 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2601 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2654 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-4058 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1892 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3643 *9)))) (-5 *5 (-108)) (-4 *8 (-987 *6 *7 *4)) (-4 *9 (-992 *6 *7 *4 *8)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *4 (-786)) (-5 *2 (-589 (-2 (|:| |val| *8) (|:| -3643 *9)))) (-5 *1 (-1024 *6 *7 *4 *8 *9)))) (-1892 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) (-5 *1 (-1024 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-1759 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3876 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1174)) (-5 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-1715 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-1024 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-3858 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1174)) (-5 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-1563 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-1024 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(-10 -7 (-15 -1563 ((-1174) (-1070) (-1070) (-1070))) (-15 -3858 ((-1174))) (-15 -1715 ((-1174) (-1070) (-1070) (-1070))) (-15 -3876 ((-1174))) (-15 -1759 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) |#4| |#4| |#5|)) (-15 -1892 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -1892 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) |#3| (-108))) (-15 -4058 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5|)) (-15 -2654 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#4| |#5|)) (-15 -2601 ((-108) |#4| |#5|)) (-15 -3489 ((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|)) (-15 -1506 ((-589 |#5|) |#4| |#5|)) (-15 -1669 ((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|)) (-15 -4165 ((-589 |#5|) |#4| |#5|)) (-15 -2601 ((-589 (-2 (|:| |val| (-108)) (|:| -3643 |#5|))) |#4| |#5|)) (-15 -1783 ((-589 |#5|) |#4| |#5|)) (-15 -1920 ((-589 (-2 (|:| |val| |#4|) (|:| -3643 |#5|))) |#4| |#5|))) +((-1680 (((-108) $ $) 7)) (-3385 (((-589 (-2 (|:| -1214 $) (|:| -2647 (-589 |#4|)))) (-589 |#4|)) 85)) (-2591 (((-589 $) (-589 |#4|)) 86) (((-589 $) (-589 |#4|) (-108)) 111)) (-1292 (((-589 |#3|) $) 33)) (-2356 (((-108) $) 26)) (-2192 (((-108) $) 17 (|has| |#1| (-515)))) (-2219 (((-108) |#4| $) 101) (((-108) $) 97)) (-2717 ((|#4| |#4| $) 92)) (-3718 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 $))) |#4| $) 126)) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |#3|) 27)) (-1620 (((-108) $ (-710)) 44)) (-1903 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4248))) (((-3 |#4| "failed") $ |#3|) 79)) (-4189 (($) 45 T CONST)) (-4002 (((-108) $) 22 (|has| |#1| (-515)))) (-3577 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3527 (((-108) $ $) 23 (|has| |#1| (-515)))) (-2611 (((-108) $) 25 (|has| |#1| (-515)))) (-3586 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1291 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-1804 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-1220 (((-3 $ "failed") (-589 |#4|)) 36)) (-3508 (($ (-589 |#4|)) 35)) (-2441 (((-3 $ "failed") $) 82)) (-3546 ((|#4| |#4| $) 89)) (-2462 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4248)))) (-3969 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-3087 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2848 ((|#4| |#4| $) 87)) (-2116 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4248))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4248))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2860 (((-2 (|:| -1214 (-589 |#4|)) (|:| -2647 (-589 |#4|))) $) 105)) (-2607 (((-108) |#4| $) 136)) (-2072 (((-108) |#4| $) 133)) (-3149 (((-108) |#4| $) 137) (((-108) $) 134)) (-1871 (((-589 |#4|) $) 52 (|has| $ (-6 -4248)))) (-2605 (((-108) |#4| $) 104) (((-108) $) 103)) (-3556 ((|#3| $) 34)) (-3051 (((-108) $ (-710)) 43)) (-1584 (((-589 |#4|) $) 53 (|has| $ (-6 -4248)))) (-3423 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#4| |#4|) $) 47)) (-2709 (((-589 |#3|) $) 32)) (-2528 (((-108) |#3| $) 31)) (-1418 (((-108) $ (-710)) 42)) (-2032 (((-1070) $) 9)) (-3715 (((-3 |#4| (-589 $)) |#4| |#4| $) 128)) (-3173 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 $))) |#4| |#4| $) 127)) (-2535 (((-3 |#4| "failed") $) 83)) (-3130 (((-589 $) |#4| $) 129)) (-1338 (((-3 (-108) (-589 $)) |#4| $) 132)) (-1446 (((-589 (-2 (|:| |val| (-108)) (|:| -3643 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3196 (((-589 $) |#4| $) 125) (((-589 $) (-589 |#4|) $) 124) (((-589 $) (-589 |#4|) (-589 $)) 123) (((-589 $) |#4| (-589 $)) 122)) (-2190 (($ |#4| $) 117) (($ (-589 |#4|) $) 116)) (-2455 (((-589 |#4|) $) 107)) (-2490 (((-108) |#4| $) 99) (((-108) $) 95)) (-2960 ((|#4| |#4| $) 90)) (-2303 (((-108) $ $) 110)) (-3473 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2569 (((-108) |#4| $) 100) (((-108) $) 96)) (-2897 ((|#4| |#4| $) 91)) (-3951 (((-1034) $) 10)) (-2428 (((-3 |#4| "failed") $) 84)) (-2509 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3367 (((-3 $ "failed") $ |#4|) 78)) (-3053 (($ $ |#4|) 77) (((-589 $) |#4| $) 115) (((-589 $) |#4| (-589 $)) 114) (((-589 $) (-589 |#4|) $) 113) (((-589 $) (-589 |#4|) (-589 $)) 112)) (-3379 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-2267 (((-108) $ $) 38)) (-1777 (((-108) $) 41)) (-3320 (($) 40)) (-2640 (((-710) $) 106)) (-3977 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4248)))) (-1874 (($ $) 39)) (-1400 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1704 (($ (-589 |#4|)) 60)) (-2712 (($ $ |#3|) 28)) (-2742 (($ $ |#3|) 30)) (-1494 (($ $) 88)) (-1591 (($ $ |#3|) 29)) (-1691 (((-794) $) 11) (((-589 |#4|) $) 37)) (-2868 (((-710) $) 76 (|has| |#3| (-344)))) (-1645 (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3684 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-3817 (((-589 $) |#4| $) 121) (((-589 $) |#4| (-589 $)) 120) (((-589 $) (-589 |#4|) $) 119) (((-589 $) (-589 |#4|) (-589 $)) 118)) (-2308 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4248)))) (-1574 (((-589 |#3|) $) 81)) (-2776 (((-108) |#4| $) 135)) (-1747 (((-108) |#3| $) 80)) (-3941 (((-108) $ $) 6)) (-2810 (((-710) $) 46 (|has| $ (-6 -4248))))) (((-1025 |#1| |#2| |#3| |#4|) (-129) (-427) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -1025)) NIL (-13 (-992 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-905 |#1| |#2| |#3| |#4|) . T) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1116 |#1| |#2| |#3| |#4|) . T) ((-1122) . T)) -((-2499 (((-589 (-523)) (-523) (-523) (-523)) 22)) (-4161 (((-589 (-523)) (-523) (-523) (-523)) 12)) (-2999 (((-589 (-523)) (-523) (-523) (-523)) 18)) (-3888 (((-523) (-523) (-523)) 9)) (-3743 (((-1168 (-523)) (-589 (-523)) (-1168 (-523)) (-523)) 45) (((-1168 (-523)) (-1168 (-523)) (-1168 (-523)) (-523)) 40)) (-4142 (((-589 (-523)) (-589 (-523)) (-589 (-523)) (-108)) 27)) (-3402 (((-629 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523))) 44)) (-3748 (((-629 (-523)) (-589 (-523)) (-589 (-523))) 32)) (-3965 (((-589 (-629 (-523))) (-589 (-523))) 34)) (-1821 (((-589 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523))) 47)) (-3399 (((-629 (-523)) (-589 (-523)) (-589 (-523)) (-589 (-523))) 55))) -(((-1026) (-10 -7 (-15 -3399 ((-629 (-523)) (-589 (-523)) (-589 (-523)) (-589 (-523)))) (-15 -1821 ((-589 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523)))) (-15 -3965 ((-589 (-629 (-523))) (-589 (-523)))) (-15 -3748 ((-629 (-523)) (-589 (-523)) (-589 (-523)))) (-15 -3402 ((-629 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523)))) (-15 -4142 ((-589 (-523)) (-589 (-523)) (-589 (-523)) (-108))) (-15 -3743 ((-1168 (-523)) (-1168 (-523)) (-1168 (-523)) (-523))) (-15 -3743 ((-1168 (-523)) (-589 (-523)) (-1168 (-523)) (-523))) (-15 -3888 ((-523) (-523) (-523))) (-15 -2999 ((-589 (-523)) (-523) (-523) (-523))) (-15 -4161 ((-589 (-523)) (-523) (-523) (-523))) (-15 -2499 ((-589 (-523)) (-523) (-523) (-523))))) (T -1026)) -((-2499 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523)))) (-4161 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523)))) (-2999 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523)))) (-3888 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1026)))) (-3743 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1168 (-523))) (-5 *3 (-589 (-523))) (-5 *4 (-523)) (-5 *1 (-1026)))) (-3743 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1168 (-523))) (-5 *3 (-523)) (-5 *1 (-1026)))) (-4142 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *3 (-108)) (-5 *1 (-1026)))) (-3402 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-629 (-523))) (-5 *3 (-589 (-523))) (-5 *1 (-1026)))) (-3748 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-1026)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-1026)))) (-1821 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *3 (-629 (-523))) (-5 *1 (-1026)))) (-3399 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-1026))))) -(-10 -7 (-15 -3399 ((-629 (-523)) (-589 (-523)) (-589 (-523)) (-589 (-523)))) (-15 -1821 ((-589 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523)))) (-15 -3965 ((-589 (-629 (-523))) (-589 (-523)))) (-15 -3748 ((-629 (-523)) (-589 (-523)) (-589 (-523)))) (-15 -3402 ((-629 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523)))) (-15 -4142 ((-589 (-523)) (-589 (-523)) (-589 (-523)) (-108))) (-15 -3743 ((-1168 (-523)) (-1168 (-523)) (-1168 (-523)) (-523))) (-15 -3743 ((-1168 (-523)) (-589 (-523)) (-1168 (-523)) (-523))) (-15 -3888 ((-523) (-523) (-523))) (-15 -2999 ((-589 (-523)) (-523) (-523) (-523))) (-15 -4161 ((-589 (-523)) (-523) (-523) (-523))) (-15 -2499 ((-589 (-523)) (-523) (-523) (-523)))) -((-2364 (($ $ (-852)) 12)) (** (($ $ (-852)) 10))) -(((-1027 |#1|) (-10 -8 (-15 -2364 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) (-1028)) (T -1027)) -NIL -(-10 -8 (-15 -2364 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) -((-3924 (((-108) $ $) 7)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2364 (($ $ (-852)) 13)) (-3983 (((-108) $ $) 6)) (** (($ $ (-852)) 14)) (* (($ $ $) 15))) +(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-905 |#1| |#2| |#3| |#4|) . T) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1117 |#1| |#2| |#3| |#4|) . T) ((-1123) . T)) +((-4003 (((-589 (-523)) (-523) (-523) (-523)) 22)) (-2527 (((-589 (-523)) (-523) (-523) (-523)) 12)) (-2058 (((-589 (-523)) (-523) (-523) (-523)) 18)) (-1822 (((-523) (-523) (-523)) 9)) (-2911 (((-1169 (-523)) (-589 (-523)) (-1169 (-523)) (-523)) 46) (((-1169 (-523)) (-1169 (-523)) (-1169 (-523)) (-523)) 41)) (-2329 (((-589 (-523)) (-589 (-523)) (-589 (-523)) (-108)) 28)) (-2689 (((-629 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523))) 45)) (-2950 (((-629 (-523)) (-589 (-523)) (-589 (-523))) 33)) (-1395 (((-589 (-629 (-523))) (-589 (-523))) 35)) (-1468 (((-589 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523))) 49)) (-2660 (((-629 (-523)) (-589 (-523)) (-589 (-523)) (-589 (-523))) 57))) +(((-1026) (-10 -7 (-15 -2660 ((-629 (-523)) (-589 (-523)) (-589 (-523)) (-589 (-523)))) (-15 -1468 ((-589 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523)))) (-15 -1395 ((-589 (-629 (-523))) (-589 (-523)))) (-15 -2950 ((-629 (-523)) (-589 (-523)) (-589 (-523)))) (-15 -2689 ((-629 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523)))) (-15 -2329 ((-589 (-523)) (-589 (-523)) (-589 (-523)) (-108))) (-15 -2911 ((-1169 (-523)) (-1169 (-523)) (-1169 (-523)) (-523))) (-15 -2911 ((-1169 (-523)) (-589 (-523)) (-1169 (-523)) (-523))) (-15 -1822 ((-523) (-523) (-523))) (-15 -2058 ((-589 (-523)) (-523) (-523) (-523))) (-15 -2527 ((-589 (-523)) (-523) (-523) (-523))) (-15 -4003 ((-589 (-523)) (-523) (-523) (-523))))) (T -1026)) +((-4003 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523)))) (-2527 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523)))) (-2058 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523)))) (-1822 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1026)))) (-2911 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1169 (-523))) (-5 *3 (-589 (-523))) (-5 *4 (-523)) (-5 *1 (-1026)))) (-2911 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1169 (-523))) (-5 *3 (-523)) (-5 *1 (-1026)))) (-2329 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *3 (-108)) (-5 *1 (-1026)))) (-2689 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-629 (-523))) (-5 *3 (-589 (-523))) (-5 *1 (-1026)))) (-2950 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-1026)))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-1026)))) (-1468 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *3 (-629 (-523))) (-5 *1 (-1026)))) (-2660 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-1026))))) +(-10 -7 (-15 -2660 ((-629 (-523)) (-589 (-523)) (-589 (-523)) (-589 (-523)))) (-15 -1468 ((-589 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523)))) (-15 -1395 ((-589 (-629 (-523))) (-589 (-523)))) (-15 -2950 ((-629 (-523)) (-589 (-523)) (-589 (-523)))) (-15 -2689 ((-629 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523)))) (-15 -2329 ((-589 (-523)) (-589 (-523)) (-589 (-523)) (-108))) (-15 -2911 ((-1169 (-523)) (-1169 (-523)) (-1169 (-523)) (-523))) (-15 -2911 ((-1169 (-523)) (-589 (-523)) (-1169 (-523)) (-523))) (-15 -1822 ((-523) (-523) (-523))) (-15 -2058 ((-589 (-523)) (-523) (-523) (-523))) (-15 -2527 ((-589 (-523)) (-523) (-523) (-523))) (-15 -4003 ((-589 (-523)) (-523) (-523) (-523)))) +((-2423 (($ $ (-852)) 12)) (** (($ $ (-852)) 10))) +(((-1027 |#1|) (-10 -8 (-15 -2423 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) (-1028)) (T -1027)) +NIL +(-10 -8 (-15 -2423 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) +((-1680 (((-108) $ $) 7)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-2423 (($ $ (-852)) 13)) (-3941 (((-108) $ $) 6)) (** (($ $ (-852)) 14)) (* (($ $ $) 15))) (((-1028) (-129)) (T -1028)) -((* (*1 *1 *1 *1) (-4 *1 (-1028))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-852)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-852))))) -(-13 (-1016) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-852))) (-15 -2364 ($ $ (-852))))) +((* (*1 *1 *1 *1) (-4 *1 (-1028))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-852)))) (-2423 (*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-852))))) +(-13 (-1016) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-852))) (-15 -2423 ($ $ (-852))))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL (|has| |#3| (-1016)))) (-2295 (((-108) $) NIL (|has| |#3| (-124)))) (-1890 (($ (-852)) NIL (|has| |#3| (-973)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-3596 (($ $ $) NIL (|has| |#3| (-732)))) (-3212 (((-3 $ "failed") $ $) NIL (|has| |#3| (-124)))) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| |#3| (-344)))) (-3671 (((-523) $) NIL (|has| |#3| (-784)))) (-1641 ((|#3| $ (-523) |#3|) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1016)))) (-3474 (((-523) $) NIL (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016)))) ((|#3| $) NIL (|has| |#3| (-1016)))) (-2381 (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973)))) (((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 $) (-1168 $)) NIL (|has| |#3| (-973))) (((-629 |#3|) (-629 $)) NIL (|has| |#3| (-973)))) (-2121 (((-3 $ "failed") $) NIL (|has| |#3| (-973)))) (-4032 (($) NIL (|has| |#3| (-344)))) (-2863 ((|#3| $ (-523) |#3|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#3| $ (-523)) 12)) (-2604 (((-108) $) NIL (|has| |#3| (-784)))) (-1666 (((-589 |#3|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL (|has| |#3| (-973)))) (-4114 (((-108) $) NIL (|has| |#3| (-784)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-2136 (((-589 |#3|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-2852 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#3| |#3|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#3| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#3| (-1016)))) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-3878 (($ (-852)) NIL (|has| |#3| (-344)))) (-2783 (((-1034) $) NIL (|has| |#3| (-1016)))) (-1738 ((|#3| $) NIL (|has| (-523) (-786)))) (-4203 (($ $ |#3|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#3|))) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-271 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-589 |#3|) (-589 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-1264 (((-589 |#3|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#3| $ (-523) |#3|) NIL) ((|#3| $ (-523)) NIL)) (-3269 ((|#3| $ $) NIL (|has| |#3| (-973)))) (-1868 (($ (-1168 |#3|)) NIL)) (-3203 (((-126)) NIL (|has| |#3| (-339)))) (-3523 (($ $) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1 |#3| |#3|) (-710)) NIL (|has| |#3| (-973))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-973)))) (-2792 (((-710) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244))) (((-710) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1168 |#3|) $) NIL) (($ (-523)) NIL (-3262 (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016))) (|has| |#3| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016)))) (($ |#3|) NIL (|has| |#3| (-1016))) (((-794) $) NIL (|has| |#3| (-563 (-794))))) (-1621 (((-710)) NIL (|has| |#3| (-973)))) (-2096 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-2619 (($ $) NIL (|has| |#3| (-784)))) (-2364 (($ $ (-710)) NIL (|has| |#3| (-973))) (($ $ (-852)) NIL (|has| |#3| (-973)))) (-2756 (($) NIL (|has| |#3| (-124)) CONST)) (-2767 (($) NIL (|has| |#3| (-973)) CONST)) (-2862 (($ $) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1 |#3| |#3|) (-710)) NIL (|has| |#3| (-973))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-973)))) (-4043 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-3983 (((-108) $ $) NIL (|has| |#3| (-1016)))) (-4030 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4007 (((-108) $ $) 17 (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4098 (($ $ |#3|) NIL (|has| |#3| (-339)))) (-4087 (($ $ $) NIL (|has| |#3| (-973))) (($ $) NIL (|has| |#3| (-973)))) (-4075 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-710)) NIL (|has| |#3| (-973))) (($ $ (-852)) NIL (|has| |#3| (-973)))) (* (($ $ $) NIL (|has| |#3| (-973))) (($ (-523) $) NIL (|has| |#3| (-973))) (($ $ |#3|) NIL (|has| |#3| (-666))) (($ |#3| $) NIL (|has| |#3| (-666))) (($ (-710) $) NIL (|has| |#3| (-124))) (($ (-852) $) NIL (|has| |#3| (-25)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +((-1680 (((-108) $ $) NIL (|has| |#3| (-1016)))) (-2603 (((-108) $) NIL (|has| |#3| (-124)))) (-3845 (($ (-852)) NIL (|has| |#3| (-973)))) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-4016 (($ $ $) NIL (|has| |#3| (-732)))) (-3405 (((-3 $ "failed") $ $) NIL (|has| |#3| (-124)))) (-1620 (((-108) $ (-710)) NIL)) (-2395 (((-710)) NIL (|has| |#3| (-344)))) (-3482 (((-523) $) NIL (|has| |#3| (-784)))) (-1849 ((|#3| $ (-523) |#3|) NIL (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1016)))) (-3508 (((-523) $) NIL (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016)))) ((|#3| $) NIL (|has| |#3| (-1016)))) (-2243 (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (-12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973)))) (((-2 (|:| -2600 (-629 |#3|)) (|:| |vec| (-1169 |#3|))) (-629 $) (-1169 $)) NIL (|has| |#3| (-973))) (((-629 |#3|) (-629 $)) NIL (|has| |#3| (-973)))) (-1444 (((-3 $ "failed") $) NIL (|has| |#3| (-973)))) (-1631 (($) NIL (|has| |#3| (-344)))) (-2053 ((|#3| $ (-523) |#3|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#3| $ (-523)) 12)) (-3712 (((-108) $) NIL (|has| |#3| (-784)))) (-1871 (((-589 |#3|) $) NIL (|has| $ (-6 -4248)))) (-2769 (((-108) $) NIL (|has| |#3| (-973)))) (-2057 (((-108) $) NIL (|has| |#3| (-784)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (-3172 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-1584 (((-589 |#3|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#3| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (-3172 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-2043 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#3| |#3|) $) NIL)) (-2060 (((-852) $) NIL (|has| |#3| (-344)))) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#3| (-1016)))) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-4013 (($ (-852)) NIL (|has| |#3| (-344)))) (-3951 (((-1034) $) NIL (|has| |#3| (-1016)))) (-2428 ((|#3| $) NIL (|has| (-523) (-786)))) (-4141 (($ $ |#3|) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#3|))) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-271 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-589 |#3|) (-589 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#3| (-1016))))) (-3973 (((-589 |#3|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#3| $ (-523) |#3|) NIL) ((|#3| $ (-523)) NIL)) (-3839 ((|#3| $ $) NIL (|has| |#3| (-973)))) (-2469 (($ (-1169 |#3|)) NIL)) (-3314 (((-126)) NIL (|has| |#3| (-339)))) (-3984 (($ $) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1 |#3| |#3|) (-710)) NIL (|has| |#3| (-973))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-973)))) (-3977 (((-710) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4248))) (((-710) |#3| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#3| (-1016))))) (-1874 (($ $) NIL)) (-1691 (((-1169 |#3|) $) NIL) (($ (-523)) NIL (-3172 (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016))) (|has| |#3| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016)))) (($ |#3|) NIL (|has| |#3| (-1016))) (((-794) $) NIL (|has| |#3| (-563 (-794))))) (-3272 (((-710)) NIL (|has| |#3| (-973)))) (-2308 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4248)))) (-2695 (($ $) NIL (|has| |#3| (-784)))) (-2423 (($ $ (-710)) NIL (|has| |#3| (-973))) (($ $ (-852)) NIL (|has| |#3| (-973)))) (-1879 (($) NIL (|has| |#3| (-124)) CONST)) (-1891 (($) NIL (|has| |#3| (-973)) CONST)) (-2909 (($ $) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1 |#3| |#3|) (-710)) NIL (|has| |#3| (-973))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-973)))) (-4006 (((-108) $ $) NIL (-3172 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-3980 (((-108) $ $) NIL (-3172 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-3941 (((-108) $ $) NIL (|has| |#3| (-1016)))) (-3993 (((-108) $ $) NIL (-3172 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-3966 (((-108) $ $) 17 (-3172 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4074 (($ $ |#3|) NIL (|has| |#3| (-339)))) (-4060 (($ $ $) NIL (|has| |#3| (-973))) (($ $) NIL (|has| |#3| (-973)))) (-4045 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-710)) NIL (|has| |#3| (-973))) (($ $ (-852)) NIL (|has| |#3| (-973)))) (* (($ $ $) NIL (|has| |#3| (-973))) (($ (-523) $) NIL (|has| |#3| (-973))) (($ $ |#3|) NIL (|has| |#3| (-666))) (($ |#3| $) NIL (|has| |#3| (-666))) (($ (-710) $) NIL (|has| |#3| (-124))) (($ (-852) $) NIL (|has| |#3| (-25)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) (((-1029 |#1| |#2| |#3|) (-216 |#1| |#3|) (-710) (-710) (-732)) (T -1029)) NIL (-216 |#1| |#3|) -((-1606 (((-589 (-1141 |#2| |#1|)) (-1141 |#2| |#1|) (-1141 |#2| |#1|)) 37)) (-2786 (((-523) (-1141 |#2| |#1|)) 68 (|has| |#1| (-427)))) (-2891 (((-523) (-1141 |#2| |#1|)) 54)) (-1320 (((-589 (-1141 |#2| |#1|)) (-1141 |#2| |#1|) (-1141 |#2| |#1|)) 45)) (-3534 (((-523) (-1141 |#2| |#1|) (-1141 |#2| |#1|)) 56 (|has| |#1| (-427)))) (-1982 (((-589 |#1|) (-1141 |#2| |#1|) (-1141 |#2| |#1|)) 48)) (-3408 (((-523) (-1141 |#2| |#1|) (-1141 |#2| |#1|)) 53))) -(((-1030 |#1| |#2|) (-10 -7 (-15 -1606 ((-589 (-1141 |#2| |#1|)) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -1320 ((-589 (-1141 |#2| |#1|)) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -1982 ((-589 |#1|) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -3408 ((-523) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -2891 ((-523) (-1141 |#2| |#1|))) (IF (|has| |#1| (-427)) (PROGN (-15 -3534 ((-523) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -2786 ((-523) (-1141 |#2| |#1|)))) |%noBranch|)) (-759) (-1087)) (T -1030)) -((-2786 (*1 *2 *3) (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-427)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5)))) (-3534 (*1 *2 *3 *3) (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-427)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5)))) (-3408 (*1 *2 *3 *3) (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5)))) (-1982 (*1 *2 *3 *3) (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 *4)) (-5 *1 (-1030 *4 *5)))) (-1320 (*1 *2 *3 *3) (-12 (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 (-1141 *5 *4))) (-5 *1 (-1030 *4 *5)) (-5 *3 (-1141 *5 *4)))) (-1606 (*1 *2 *3 *3) (-12 (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 (-1141 *5 *4))) (-5 *1 (-1030 *4 *5)) (-5 *3 (-1141 *5 *4))))) -(-10 -7 (-15 -1606 ((-589 (-1141 |#2| |#1|)) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -1320 ((-589 (-1141 |#2| |#1|)) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -1982 ((-589 |#1|) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -3408 ((-523) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -2891 ((-523) (-1141 |#2| |#1|))) (IF (|has| |#1| (-427)) (PROGN (-15 -3534 ((-523) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -2786 ((-523) (-1141 |#2| |#1|)))) |%noBranch|)) -((-3671 (((-3 (-523) "failed") |#2| (-1087) |#2| (-1070)) 16) (((-3 (-523) "failed") |#2| (-1087) (-779 |#2|)) 14) (((-3 (-523) "failed") |#2|) 51))) -(((-1031 |#1| |#2|) (-10 -7 (-15 -3671 ((-3 (-523) "failed") |#2|)) (-15 -3671 ((-3 (-523) "failed") |#2| (-1087) (-779 |#2|))) (-15 -3671 ((-3 (-523) "failed") |#2| (-1087) |#2| (-1070)))) (-13 (-515) (-786) (-964 (-523)) (-585 (-523)) (-427)) (-13 (-27) (-1108) (-406 |#1|))) (T -1031)) -((-3671 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-1070)) (-4 *6 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) (-5 *2 (-523)) (-5 *1 (-1031 *6 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))))) (-3671 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-779 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) (-5 *2 (-523)) (-5 *1 (-1031 *6 *3)))) (-3671 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) (-5 *2 (-523)) (-5 *1 (-1031 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4)))))) -(-10 -7 (-15 -3671 ((-3 (-523) "failed") |#2|)) (-15 -3671 ((-3 (-523) "failed") |#2| (-1087) (-779 |#2|))) (-15 -3671 ((-3 (-523) "failed") |#2| (-1087) |#2| (-1070)))) -((-3671 (((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)) (-1070)) 34) (((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-779 (-383 (-883 |#1|)))) 29) (((-3 (-523) "failed") (-383 (-883 |#1|))) 12))) -(((-1032 |#1|) (-10 -7 (-15 -3671 ((-3 (-523) "failed") (-383 (-883 |#1|)))) (-15 -3671 ((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-779 (-383 (-883 |#1|))))) (-15 -3671 ((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)) (-1070)))) (-427)) (T -1032)) -((-3671 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-383 (-883 *6))) (-5 *4 (-1087)) (-5 *5 (-1070)) (-4 *6 (-427)) (-5 *2 (-523)) (-5 *1 (-1032 *6)))) (-3671 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-779 (-383 (-883 *6)))) (-5 *3 (-383 (-883 *6))) (-4 *6 (-427)) (-5 *2 (-523)) (-5 *1 (-1032 *6)))) (-3671 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-427)) (-5 *2 (-523)) (-5 *1 (-1032 *4))))) -(-10 -7 (-15 -3671 ((-3 (-523) "failed") (-383 (-883 |#1|)))) (-15 -3671 ((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-779 (-383 (-883 |#1|))))) (-15 -3671 ((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)) (-1070)))) -((-2267 (((-292 (-523)) (-47)) 11))) -(((-1033) (-10 -7 (-15 -2267 ((-292 (-523)) (-47))))) (T -1033)) -((-2267 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-292 (-523))) (-5 *1 (-1033))))) -(-10 -7 (-15 -2267 ((-292 (-523)) (-47)))) -((-3924 (((-108) $ $) NIL)) (-2573 (($ $) 41)) (-2295 (((-108) $) 65)) (-1983 (($ $ $) 48)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 84)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2312 (($ $ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1808 (($ $ $ $) 74)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL)) (-2041 (($ $ $) 71)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL)) (-3474 (((-523) $) NIL)) (-3796 (($ $ $) 59)) (-2381 (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 78) (((-629 (-523)) (-629 $)) 28)) (-2121 (((-3 $ "failed") $) NIL)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL)) (-1292 (((-108) $) NIL)) (-2146 (((-383 (-523)) $) NIL)) (-4032 (($) 81) (($ $) 82)) (-3769 (($ $ $) 58)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2819 (($ $ $ $) NIL)) (-1980 (($ $ $) 79)) (-2604 (((-108) $) NIL)) (-3654 (($ $ $) NIL)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL)) (-2023 (((-108) $) 66)) (-1557 (((-108) $) 64)) (-3900 (($ $) 42)) (-4058 (((-3 $ "failed") $) NIL)) (-4114 (((-108) $) 75)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4183 (($ $ $ $) 72)) (-2454 (($ $ $) 68) (($) 39)) (-2062 (($ $ $) 67) (($) 38)) (-1647 (($ $) NIL)) (-2996 (($ $) 70)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3305 (($ $ $) NIL)) (-2262 (($) NIL T CONST)) (-3201 (($ $) 50)) (-2783 (((-1034) $) NIL) (($ $) 69)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) 62) (($ (-589 $)) NIL)) (-3217 (($ $) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4104 (((-108) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 61)) (-3523 (($ $ (-710)) NIL) (($ $) NIL)) (-2029 (($ $) 51)) (-1664 (($ $) NIL)) (-3663 (((-523) $) 32) (((-499) $) NIL) (((-823 (-523)) $) NIL) (((-355) $) NIL) (((-203) $) NIL)) (-1458 (((-794) $) 31) (($ (-523)) 80) (($ $) NIL) (($ (-523)) 80)) (-1621 (((-710)) NIL)) (-1981 (((-108) $ $) NIL)) (-2574 (($ $ $) NIL)) (-3007 (($) 37)) (-1704 (((-108) $ $) NIL)) (-2108 (($ $ $ $) 73)) (-2619 (($ $) 63)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-3651 (($ $ $) 44)) (-2756 (($) 35 T CONST)) (-2856 (($ $ $) 47)) (-2767 (($) 36 T CONST)) (-3790 (((-1070) $) 21) (((-1070) $ (-108)) 23) (((-1173) (-761) $) 24) (((-1173) (-761) $ (-108)) 25)) (-1628 (($ $) 45)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-2844 (($ $ $) 46)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 40)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 49)) (-3640 (($ $ $) 43)) (-4087 (($ $) 52) (($ $ $) 54)) (-4075 (($ $ $) 53)) (** (($ $ (-852)) NIL) (($ $ (-710)) 57)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 34) (($ $ $) 55))) -(((-1034) (-13 (-508) (-604) (-767) (-10 -8 (-6 -4231) (-6 -4236) (-6 -4232) (-15 -2062 ($)) (-15 -2454 ($)) (-15 -3900 ($ $)) (-15 -2573 ($ $)) (-15 -3640 ($ $ $)) (-15 -3651 ($ $ $)) (-15 -1983 ($ $ $)) (-15 -1628 ($ $)) (-15 -2844 ($ $ $)) (-15 -2856 ($ $ $))))) (T -1034)) -((-3651 (*1 *1 *1 *1) (-5 *1 (-1034))) (-3640 (*1 *1 *1 *1) (-5 *1 (-1034))) (-2573 (*1 *1 *1) (-5 *1 (-1034))) (-2062 (*1 *1) (-5 *1 (-1034))) (-2454 (*1 *1) (-5 *1 (-1034))) (-3900 (*1 *1 *1) (-5 *1 (-1034))) (-1983 (*1 *1 *1 *1) (-5 *1 (-1034))) (-1628 (*1 *1 *1) (-5 *1 (-1034))) (-2844 (*1 *1 *1 *1) (-5 *1 (-1034))) (-2856 (*1 *1 *1 *1) (-5 *1 (-1034)))) -(-13 (-508) (-604) (-767) (-10 -8 (-6 -4231) (-6 -4236) (-6 -4232) (-15 -2062 ($)) (-15 -2454 ($)) (-15 -3900 ($ $)) (-15 -2573 ($ $)) (-15 -3640 ($ $ $)) (-15 -3651 ($ $ $)) (-15 -1983 ($ $ $)) (-15 -1628 ($ $)) (-15 -2844 ($ $ $)) (-15 -2856 ($ $ $)))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3125 ((|#1| $) 44)) (-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-3845 ((|#1| |#1| $) 46)) (-2085 ((|#1| $) 45)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-1583 (((-710) $) 43)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-1035 |#1|) (-129) (-1122)) (T -1035)) -((-3845 (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1122)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1122)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1122)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1122)) (-5 *2 (-710))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4244) (-15 -3845 (|t#1| |t#1| $)) (-15 -2085 (|t#1| $)) (-15 -3125 (|t#1| $)) (-15 -1583 ((-710) $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-4187 ((|#3| $) 76)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3474 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#3| $) 37)) (-2381 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 $) (-1168 $)) 73) (((-629 |#3|) (-629 $)) 65)) (-3523 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-3804 ((|#3| $) 78)) (-2561 ((|#4| $) 32)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ |#3|) 16)) (** (($ $ (-852)) NIL) (($ $ (-710)) 15) (($ $ (-523)) 82))) -(((-1036 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-523))) (-15 -3804 (|#3| |#1|)) (-15 -4187 (|#3| |#1|)) (-15 -2561 (|#4| |#1|)) (-15 -2381 ((-629 |#3|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3474 (|#3| |#1|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -1458 (|#1| |#3|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|) (-710))) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1458 (|#1| (-523))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852))) (-15 -1458 ((-794) |#1|))) (-1037 |#2| |#3| |#4| |#5|) (-710) (-973) (-216 |#2| |#3|) (-216 |#2| |#3|)) (T -1036)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-523))) (-15 -3804 (|#3| |#1|)) (-15 -4187 (|#3| |#1|)) (-15 -2561 (|#4| |#1|)) (-15 -2381 ((-629 |#3|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3474 (|#3| |#1|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -1458 (|#1| |#3|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|) (-710))) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1458 (|#1| (-523))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852))) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-4187 ((|#2| $) 72)) (-2606 (((-108) $) 112)) (-3212 (((-3 $ "failed") $ $) 19)) (-2651 (((-108) $) 110)) (-3079 (((-108) $ (-710)) 102)) (-1421 (($ |#2|) 75)) (-2518 (($) 17 T CONST)) (-2445 (($ $) 129 (|has| |#2| (-284)))) (-2031 ((|#3| $ (-523)) 124)) (-3517 (((-3 (-523) "failed") $) 86 (|has| |#2| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 84 (|has| |#2| (-964 (-383 (-523))))) (((-3 |#2| "failed") $) 81)) (-3474 (((-523) $) 87 (|has| |#2| (-964 (-523)))) (((-383 (-523)) $) 85 (|has| |#2| (-964 (-383 (-523))))) ((|#2| $) 80)) (-2381 (((-629 (-523)) (-629 $)) 79 (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 78 (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) 77) (((-629 |#2|) (-629 $)) 76)) (-2121 (((-3 $ "failed") $) 34)) (-1319 (((-710) $) 130 (|has| |#2| (-515)))) (-2795 ((|#2| $ (-523) (-523)) 122)) (-1666 (((-589 |#2|) $) 95 (|has| $ (-6 -4244)))) (-2023 (((-108) $) 31)) (-1867 (((-710) $) 131 (|has| |#2| (-515)))) (-3498 (((-589 |#4|) $) 132 (|has| |#2| (-515)))) (-2803 (((-710) $) 118)) (-2813 (((-710) $) 119)) (-2346 (((-108) $ (-710)) 103)) (-1925 ((|#2| $) 67 (|has| |#2| (-6 (-4246 "*"))))) (-3871 (((-523) $) 114)) (-1758 (((-523) $) 116)) (-2136 (((-589 |#2|) $) 94 (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-3338 (((-523) $) 115)) (-2347 (((-523) $) 117)) (-3068 (($ (-589 (-589 |#2|))) 109)) (-2852 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-2289 (((-589 (-589 |#2|)) $) 120)) (-2866 (((-108) $ (-710)) 104)) (-3779 (((-1070) $) 9)) (-3698 (((-3 $ "failed") $) 66 (|has| |#2| (-339)))) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-515)))) (-1327 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) 91 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 90 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 88 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) 108)) (-3883 (((-108) $) 105)) (-3988 (($) 106)) (-3223 ((|#2| $ (-523) (-523) |#2|) 123) ((|#2| $ (-523) (-523)) 121)) (-3523 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-710)) 51) (($ $ (-589 (-1087)) (-589 (-710))) 44 (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) 43 (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) 42 (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) 41 (|has| |#2| (-831 (-1087)))) (($ $ (-710)) 39 (|has| |#2| (-211))) (($ $) 37 (|has| |#2| (-211)))) (-3804 ((|#2| $) 71)) (-3739 (($ (-589 |#2|)) 74)) (-3117 (((-108) $) 111)) (-2561 ((|#3| $) 73)) (-2310 ((|#2| $) 68 (|has| |#2| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4244))) (((-710) |#2| $) 93 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 107)) (-1595 ((|#4| $ (-523)) 125)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 83 (|has| |#2| (-964 (-383 (-523))))) (($ |#2|) 82)) (-1621 (((-710)) 29)) (-2096 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4244)))) (-2175 (((-108) $) 113)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-710)) 49) (($ $ (-589 (-1087)) (-589 (-710))) 48 (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) 47 (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) 46 (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) 45 (|has| |#2| (-831 (-1087)))) (($ $ (-710)) 40 (|has| |#2| (-211))) (($ $) 38 (|has| |#2| (-211)))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#2|) 128 (|has| |#2| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 65 (|has| |#2| (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2676 (((-710) $) 101 (|has| $ (-6 -4244))))) +((-3122 (((-589 (-1142 |#2| |#1|)) (-1142 |#2| |#1|) (-1142 |#2| |#1|)) 37)) (-1932 (((-523) (-1142 |#2| |#1|)) 68 (|has| |#1| (-427)))) (-3378 (((-523) (-1142 |#2| |#1|)) 54)) (-3299 (((-589 (-1142 |#2| |#1|)) (-1142 |#2| |#1|) (-1142 |#2| |#1|)) 45)) (-1619 (((-523) (-1142 |#2| |#1|) (-1142 |#2| |#1|)) 56 (|has| |#1| (-427)))) (-3523 (((-589 |#1|) (-1142 |#2| |#1|) (-1142 |#2| |#1|)) 48)) (-2745 (((-523) (-1142 |#2| |#1|) (-1142 |#2| |#1|)) 53))) +(((-1030 |#1| |#2|) (-10 -7 (-15 -3122 ((-589 (-1142 |#2| |#1|)) (-1142 |#2| |#1|) (-1142 |#2| |#1|))) (-15 -3299 ((-589 (-1142 |#2| |#1|)) (-1142 |#2| |#1|) (-1142 |#2| |#1|))) (-15 -3523 ((-589 |#1|) (-1142 |#2| |#1|) (-1142 |#2| |#1|))) (-15 -2745 ((-523) (-1142 |#2| |#1|) (-1142 |#2| |#1|))) (-15 -3378 ((-523) (-1142 |#2| |#1|))) (IF (|has| |#1| (-427)) (PROGN (-15 -1619 ((-523) (-1142 |#2| |#1|) (-1142 |#2| |#1|))) (-15 -1932 ((-523) (-1142 |#2| |#1|)))) |%noBranch|)) (-759) (-1087)) (T -1030)) +((-1932 (*1 *2 *3) (-12 (-5 *3 (-1142 *5 *4)) (-4 *4 (-427)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5)))) (-1619 (*1 *2 *3 *3) (-12 (-5 *3 (-1142 *5 *4)) (-4 *4 (-427)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-1142 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5)))) (-2745 (*1 *2 *3 *3) (-12 (-5 *3 (-1142 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5)))) (-3523 (*1 *2 *3 *3) (-12 (-5 *3 (-1142 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 *4)) (-5 *1 (-1030 *4 *5)))) (-3299 (*1 *2 *3 *3) (-12 (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 (-1142 *5 *4))) (-5 *1 (-1030 *4 *5)) (-5 *3 (-1142 *5 *4)))) (-3122 (*1 *2 *3 *3) (-12 (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 (-1142 *5 *4))) (-5 *1 (-1030 *4 *5)) (-5 *3 (-1142 *5 *4))))) +(-10 -7 (-15 -3122 ((-589 (-1142 |#2| |#1|)) (-1142 |#2| |#1|) (-1142 |#2| |#1|))) (-15 -3299 ((-589 (-1142 |#2| |#1|)) (-1142 |#2| |#1|) (-1142 |#2| |#1|))) (-15 -3523 ((-589 |#1|) (-1142 |#2| |#1|) (-1142 |#2| |#1|))) (-15 -2745 ((-523) (-1142 |#2| |#1|) (-1142 |#2| |#1|))) (-15 -3378 ((-523) (-1142 |#2| |#1|))) (IF (|has| |#1| (-427)) (PROGN (-15 -1619 ((-523) (-1142 |#2| |#1|) (-1142 |#2| |#1|))) (-15 -1932 ((-523) (-1142 |#2| |#1|)))) |%noBranch|)) +((-3482 (((-3 (-523) "failed") |#2| (-1087) |#2| (-1070)) 16) (((-3 (-523) "failed") |#2| (-1087) (-779 |#2|)) 14) (((-3 (-523) "failed") |#2|) 51))) +(((-1031 |#1| |#2|) (-10 -7 (-15 -3482 ((-3 (-523) "failed") |#2|)) (-15 -3482 ((-3 (-523) "failed") |#2| (-1087) (-779 |#2|))) (-15 -3482 ((-3 (-523) "failed") |#2| (-1087) |#2| (-1070)))) (-13 (-515) (-786) (-964 (-523)) (-585 (-523)) (-427)) (-13 (-27) (-1109) (-406 |#1|))) (T -1031)) +((-3482 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-1070)) (-4 *6 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) (-5 *2 (-523)) (-5 *1 (-1031 *6 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *6))))) (-3482 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-779 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) (-5 *2 (-523)) (-5 *1 (-1031 *6 *3)))) (-3482 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) (-5 *2 (-523)) (-5 *1 (-1031 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *4)))))) +(-10 -7 (-15 -3482 ((-3 (-523) "failed") |#2|)) (-15 -3482 ((-3 (-523) "failed") |#2| (-1087) (-779 |#2|))) (-15 -3482 ((-3 (-523) "failed") |#2| (-1087) |#2| (-1070)))) +((-3482 (((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)) (-1070)) 34) (((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-779 (-383 (-883 |#1|)))) 29) (((-3 (-523) "failed") (-383 (-883 |#1|))) 12))) +(((-1032 |#1|) (-10 -7 (-15 -3482 ((-3 (-523) "failed") (-383 (-883 |#1|)))) (-15 -3482 ((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-779 (-383 (-883 |#1|))))) (-15 -3482 ((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)) (-1070)))) (-427)) (T -1032)) +((-3482 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-383 (-883 *6))) (-5 *4 (-1087)) (-5 *5 (-1070)) (-4 *6 (-427)) (-5 *2 (-523)) (-5 *1 (-1032 *6)))) (-3482 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-779 (-383 (-883 *6)))) (-5 *3 (-383 (-883 *6))) (-4 *6 (-427)) (-5 *2 (-523)) (-5 *1 (-1032 *6)))) (-3482 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-427)) (-5 *2 (-523)) (-5 *1 (-1032 *4))))) +(-10 -7 (-15 -3482 ((-3 (-523) "failed") (-383 (-883 |#1|)))) (-15 -3482 ((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-779 (-383 (-883 |#1|))))) (-15 -3482 ((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)) (-1070)))) +((-3463 (((-292 (-523)) (-47)) 11))) +(((-1033) (-10 -7 (-15 -3463 ((-292 (-523)) (-47))))) (T -1033)) +((-3463 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-292 (-523))) (-5 *1 (-1033))))) +(-10 -7 (-15 -3463 ((-292 (-523)) (-47)))) +((-1680 (((-108) $ $) NIL)) (-2602 (($ $) 41)) (-2603 (((-108) $) 65)) (-2544 (($ $ $) 48)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 84)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-2755 (($ $ $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $ $ $) 74)) (-3718 (($ $) NIL)) (-4226 (((-394 $) $) NIL)) (-2787 (((-108) $ $) NIL)) (-3482 (((-523) $) NIL)) (-2156 (($ $ $) 71)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL)) (-3508 (((-523) $) NIL)) (-4059 (($ $ $) 59)) (-2243 (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 78) (((-629 (-523)) (-629 $)) 28)) (-1444 (((-3 $ "failed") $) NIL)) (-3317 (((-3 (-383 (-523)) "failed") $) NIL)) (-3045 (((-108) $) NIL)) (-1682 (((-383 (-523)) $) NIL)) (-1631 (($) 81) (($ $) 82)) (-4032 (($ $ $) 58)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL)) (-3049 (((-108) $) NIL)) (-4024 (($ $ $ $) NIL)) (-3501 (($ $ $) 79)) (-3712 (((-108) $) NIL)) (-3325 (($ $ $) NIL)) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL)) (-2769 (((-108) $) 66)) (-3860 (((-108) $) 64)) (-4179 (($ $) 42)) (-2738 (((-3 $ "failed") $) NIL)) (-2057 (((-108) $) 75)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3928 (($ $ $ $) 72)) (-3239 (($ $ $) 68) (($) 39)) (-3158 (($ $ $) 67) (($) 38)) (-2236 (($ $) NIL)) (-2616 (($ $) 70)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2032 (((-1070) $) NIL)) (-4193 (($ $ $) NIL)) (-2773 (($) NIL T CONST)) (-3762 (($ $) 50)) (-3951 (((-1034) $) NIL) (($ $) 69)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3310 (($ $ $) 62) (($ (-589 $)) NIL)) (-3459 (($ $) NIL)) (-2424 (((-394 $) $) NIL)) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL)) (-4007 (((-3 $ "failed") $ $) NIL)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3101 (((-108) $) NIL)) (-3413 (((-710) $) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 61)) (-3984 (($ $ (-710)) NIL) (($ $) NIL)) (-1890 (($ $) 51)) (-1874 (($ $) NIL)) (-1400 (((-523) $) 32) (((-499) $) NIL) (((-823 (-523)) $) NIL) (((-355) $) NIL) (((-203) $) NIL)) (-1691 (((-794) $) 31) (($ (-523)) 80) (($ $) NIL) (($ (-523)) 80)) (-3272 (((-710)) NIL)) (-3512 (((-108) $ $) NIL)) (-3435 (($ $ $) NIL)) (-1416 (($) 37)) (-2801 (((-108) $ $) NIL)) (-2447 (($ $ $ $) 73)) (-2695 (($ $) 63)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1269 (($ $ $) 44)) (-1879 (($) 35 T CONST)) (-1742 (($ $ $) 47)) (-1891 (($) 36 T CONST)) (-2111 (((-1070) $) 21) (((-1070) $ (-108)) 23) (((-1174) (-761) $) 24) (((-1174) (-761) $ (-108)) 25)) (-1752 (($ $) 45)) (-2909 (($ $ (-710)) NIL) (($ $) NIL)) (-1731 (($ $ $) 46)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 40)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 49)) (-1257 (($ $ $) 43)) (-4060 (($ $) 52) (($ $ $) 54)) (-4045 (($ $ $) 53)) (** (($ $ (-852)) NIL) (($ $ (-710)) 57)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 34) (($ $ $) 55))) +(((-1034) (-13 (-508) (-604) (-767) (-10 -8 (-6 -4235) (-6 -4240) (-6 -4236) (-15 -3158 ($)) (-15 -3239 ($)) (-15 -4179 ($ $)) (-15 -2602 ($ $)) (-15 -1257 ($ $ $)) (-15 -1269 ($ $ $)) (-15 -2544 ($ $ $)) (-15 -1752 ($ $)) (-15 -1731 ($ $ $)) (-15 -1742 ($ $ $))))) (T -1034)) +((-1269 (*1 *1 *1 *1) (-5 *1 (-1034))) (-1257 (*1 *1 *1 *1) (-5 *1 (-1034))) (-2602 (*1 *1 *1) (-5 *1 (-1034))) (-3158 (*1 *1) (-5 *1 (-1034))) (-3239 (*1 *1) (-5 *1 (-1034))) (-4179 (*1 *1 *1) (-5 *1 (-1034))) (-2544 (*1 *1 *1 *1) (-5 *1 (-1034))) (-1752 (*1 *1 *1) (-5 *1 (-1034))) (-1731 (*1 *1 *1 *1) (-5 *1 (-1034))) (-1742 (*1 *1 *1 *1) (-5 *1 (-1034)))) +(-13 (-508) (-604) (-767) (-10 -8 (-6 -4235) (-6 -4240) (-6 -4236) (-15 -3158 ($)) (-15 -3239 ($)) (-15 -4179 ($ $)) (-15 -2602 ($ $)) (-15 -1257 ($ $ $)) (-15 -1269 ($ $ $)) (-15 -2544 ($ $ $)) (-15 -1752 ($ $)) (-15 -1731 ($ $ $)) (-15 -1742 ($ $ $)))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3781 ((|#1| $) 44)) (-1620 (((-108) $ (-710)) 8)) (-4189 (($) 7 T CONST)) (-2581 ((|#1| |#1| $) 46)) (-2197 ((|#1| $) 45)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1293 ((|#1| $) 39)) (-3108 (($ |#1| $) 40)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3048 ((|#1| $) 41)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1576 (((-710) $) 43)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2417 (($ (-589 |#1|)) 42)) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-1035 |#1|) (-129) (-1123)) (T -1035)) +((-2581 (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1123)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1123)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1123)))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1123)) (-5 *2 (-710))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4248) (-15 -2581 (|t#1| |t#1| $)) (-15 -2197 (|t#1| $)) (-15 -3781 (|t#1| $)) (-15 -1576 ((-710) $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-1477 ((|#3| $) 76)) (-1220 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3508 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#3| $) 37)) (-2243 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL) (((-2 (|:| -2600 (-629 |#3|)) (|:| |vec| (-1169 |#3|))) (-629 $) (-1169 $)) 73) (((-629 |#3|) (-629 $)) 65)) (-3984 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-2218 ((|#3| $) 78)) (-3326 ((|#4| $) 32)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ |#3|) 16)) (** (($ $ (-852)) NIL) (($ $ (-710)) 15) (($ $ (-523)) 82))) +(((-1036 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-523))) (-15 -2218 (|#3| |#1|)) (-15 -1477 (|#3| |#1|)) (-15 -3326 (|#4| |#1|)) (-15 -2243 ((-629 |#3|) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 |#3|)) (|:| |vec| (-1169 |#3|))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-629 (-523)) (-629 |#1|))) (-15 -3508 (|#3| |#1|)) (-15 -1220 ((-3 |#3| "failed") |#1|)) (-15 -1691 (|#1| |#3|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3984 (|#1| |#1| (-1 |#3| |#3|) (-710))) (-15 -3984 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1691 (|#1| (-523))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852))) (-15 -1691 ((-794) |#1|))) (-1037 |#2| |#3| |#4| |#5|) (-710) (-973) (-216 |#2| |#3|) (-216 |#2| |#3|)) (T -1036)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-523))) (-15 -2218 (|#3| |#1|)) (-15 -1477 (|#3| |#1|)) (-15 -3326 (|#4| |#1|)) (-15 -2243 ((-629 |#3|) (-629 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 |#3|)) (|:| |vec| (-1169 |#3|))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 |#1|) (-1169 |#1|))) (-15 -2243 ((-629 (-523)) (-629 |#1|))) (-15 -3508 (|#3| |#1|)) (-15 -1220 ((-3 |#3| "failed") |#1|)) (-15 -1691 (|#1| |#3|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-523) |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3984 (|#1| |#1| (-1 |#3| |#3|) (-710))) (-15 -3984 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1691 (|#1| (-523))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852))) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1477 ((|#2| $) 72)) (-3735 (((-108) $) 112)) (-3405 (((-3 $ "failed") $ $) 19)) (-2989 (((-108) $) 110)) (-1620 (((-108) $ (-710)) 102)) (-1979 (($ |#2|) 75)) (-4189 (($) 17 T CONST)) (-1678 (($ $) 129 (|has| |#2| (-284)))) (-2827 ((|#3| $ (-523)) 124)) (-1220 (((-3 (-523) "failed") $) 86 (|has| |#2| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 84 (|has| |#2| (-964 (-383 (-523))))) (((-3 |#2| "failed") $) 81)) (-3508 (((-523) $) 87 (|has| |#2| (-964 (-523)))) (((-383 (-523)) $) 85 (|has| |#2| (-964 (-383 (-523))))) ((|#2| $) 80)) (-2243 (((-629 (-523)) (-629 $)) 79 (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 78 (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) 77) (((-629 |#2|) (-629 $)) 76)) (-1444 (((-3 $ "failed") $) 34)) (-3569 (((-710) $) 130 (|has| |#2| (-515)))) (-2000 ((|#2| $ (-523) (-523)) 122)) (-1871 (((-589 |#2|) $) 95 (|has| $ (-6 -4248)))) (-2769 (((-108) $) 31)) (-1835 (((-710) $) 131 (|has| |#2| (-515)))) (-2454 (((-589 |#4|) $) 132 (|has| |#2| (-515)))) (-1357 (((-710) $) 118)) (-1370 (((-710) $) 119)) (-3051 (((-108) $ (-710)) 103)) (-4224 ((|#2| $) 67 (|has| |#2| (-6 (-4250 "*"))))) (-1665 (((-523) $) 114)) (-2082 (((-523) $) 116)) (-1584 (((-589 |#2|) $) 94 (|has| $ (-6 -4248)))) (-3423 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4248))))) (-3231 (((-523) $) 115)) (-3060 (((-523) $) 117)) (-3648 (($ (-589 (-589 |#2|))) 109)) (-2043 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3692 (((-589 (-589 |#2|)) $) 120)) (-1418 (((-108) $ (-710)) 104)) (-2032 (((-1070) $) 9)) (-3713 (((-3 $ "failed") $) 66 (|has| |#2| (-339)))) (-3951 (((-1034) $) 10)) (-4007 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-515)))) (-3379 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#2|))) 91 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 90 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 88 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) 108)) (-1777 (((-108) $) 105)) (-3320 (($) 106)) (-1937 ((|#2| $ (-523) (-523) |#2|) 123) ((|#2| $ (-523) (-523)) 121)) (-3984 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-710)) 51) (($ $ (-589 (-1087)) (-589 (-710))) 44 (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) 43 (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) 42 (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) 41 (|has| |#2| (-831 (-1087)))) (($ $ (-710)) 39 (|has| |#2| (-211))) (($ $) 37 (|has| |#2| (-211)))) (-2218 ((|#2| $) 71)) (-2870 (($ (-589 |#2|)) 74)) (-1956 (((-108) $) 111)) (-3326 ((|#3| $) 73)) (-2736 ((|#2| $) 68 (|has| |#2| (-6 (-4250 "*"))))) (-3977 (((-710) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4248))) (((-710) |#2| $) 93 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 107)) (-1249 ((|#4| $ (-523)) 125)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 83 (|has| |#2| (-964 (-383 (-523))))) (($ |#2|) 82)) (-3272 (((-710)) 29)) (-2308 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4248)))) (-3749 (((-108) $) 113)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-710)) 49) (($ $ (-589 (-1087)) (-589 (-710))) 48 (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) 47 (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) 46 (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) 45 (|has| |#2| (-831 (-1087)))) (($ $ (-710)) 40 (|has| |#2| (-211))) (($ $) 38 (|has| |#2| (-211)))) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#2|) 128 (|has| |#2| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 65 (|has| |#2| (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2810 (((-710) $) 101 (|has| $ (-6 -4248))))) (((-1037 |#1| |#2| |#3| |#4|) (-129) (-710) (-973) (-216 |t#1| |t#2|) (-216 |t#1| |t#2|)) (T -1037)) -((-1421 (*1 *1 *2) (-12 (-4 *2 (-973)) (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-589 *4)) (-4 *4 (-973)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *3 *4)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) (-4 *2 (-216 *3 *4)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)) (-4 *2 (-973)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)) (-4 *2 (-973)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) (-4 *2 (-216 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-973)) (-4 *2 (-216 *3 *4)) (-4 *5 (-216 *3 *4)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)) (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)) (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973)))) (-3698 (*1 *1 *1) (|partial| -12 (-4 *1 (-1037 *2 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-216 *2 *3)) (-4 *5 (-216 *2 *3)) (-4 *3 (-339)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *3 *4)) (-4 *4 (-339))))) -(-13 (-209 |t#2|) (-107 |t#2| |t#2|) (-976 |t#1| |t#1| |t#2| |t#3| |t#4|) (-387 |t#2|) (-353 |t#2|) (-10 -8 (IF (|has| |t#2| (-158)) (-6 (-657 |t#2|)) |%noBranch|) (-15 -1421 ($ |t#2|)) (-15 -3739 ($ (-589 |t#2|))) (-15 -2561 (|t#3| $)) (-15 -4187 (|t#2| $)) (-15 -3804 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4246 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -2310 (|t#2| $)) (-15 -1925 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-339)) (PROGN (-15 -3698 ((-3 $ "failed") $)) (-15 ** ($ $ (-523)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4246 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-563 (-794)) . T) ((-209 |#2|) . T) ((-211) |has| |#2| (-211)) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-353 |#2|) . T) ((-387 |#2|) . T) ((-462 |#2|) . T) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-591 |#2|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#2| (-585 (-523))) ((-585 |#2|) . T) ((-657 |#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-6 (-4246 "*")))) ((-666) . T) ((-831 (-1087)) |has| |#2| (-831 (-1087))) ((-976 |#1| |#1| |#2| |#3| |#4|) . T) ((-964 (-383 (-523))) |has| |#2| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#2| (-964 (-523))) ((-964 |#2|) . T) ((-979 |#2|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1122) . T)) -((-3707 ((|#4| |#4|) 68)) (-1632 ((|#4| |#4|) 63)) (-4179 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|))) |#4| |#3|) 76)) (-3565 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 67)) (-3069 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 65))) -(((-1038 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1632 (|#4| |#4|)) (-15 -3069 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3707 (|#4| |#4|)) (-15 -3565 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4179 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|))) |#4| |#3|))) (-284) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|)) (T -1038)) -((-4179 (*1 *2 *3 *4) (-12 (-4 *5 (-284)) (-4 *6 (-349 *5)) (-4 *4 (-349 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-1038 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3565 (*1 *2 *3) (-12 (-4 *4 (-284)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-284)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3069 (*1 *2 *3) (-12 (-4 *4 (-284)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-284)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -(-10 -7 (-15 -1632 (|#4| |#4|)) (-15 -3069 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3707 (|#4| |#4|)) (-15 -3565 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4179 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|))) |#4| |#3|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 17)) (-1957 (((-589 |#2|) $) 160)) (-1786 (((-1083 $) $ |#2|) 53) (((-1083 |#1|) $) 42)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 109 (|has| |#1| (-515)))) (-3345 (($ $) 111 (|has| |#1| (-515)))) (-3331 (((-108) $) 113 (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 |#2|)) 194)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 157) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 |#2| "failed") $) NIL)) (-3474 ((|#1| $) 155) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) ((|#2| $) NIL)) (-3078 (($ $ $ |#2|) NIL (|has| |#1| (-158)))) (-3810 (($ $) 198)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) 81)) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ |#2|) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-495 |#2|) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| |#1| (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| |#1| (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2023 (((-108) $) 19)) (-3554 (((-710) $) 26)) (-1945 (($ (-1083 |#1|) |#2|) 47) (($ (-1083 $) |#2|) 63)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) 31)) (-1933 (($ |#1| (-495 |#2|)) 70) (($ $ |#2| (-710)) 51) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#2|) NIL)) (-1575 (((-495 |#2|) $) 187) (((-710) $ |#2|) 188) (((-589 (-710)) $ (-589 |#2|)) 189)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-495 |#2|) (-495 |#2|)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) 121)) (-2520 (((-3 |#2| "failed") $) 162)) (-3774 (($ $) 197)) (-3786 ((|#1| $) 36)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| |#2|) (|:| -2735 (-710))) "failed") $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) 32)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 139 (|has| |#1| (-427)))) (-3278 (($ (-589 $)) 144 (|has| |#1| (-427))) (($ $ $) 131 (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) 119 (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (-589 |#2|) (-589 |#1|)) 178) (($ $ |#2| $) 164) (($ $ (-589 |#2|) (-589 $)) 177)) (-3549 (($ $ |#2|) NIL (|has| |#1| (-158)))) (-3523 (($ $ |#2|) 196) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2299 (((-495 |#2|) $) 183) (((-710) $ |#2|) 179) (((-589 (-710)) $ (-589 |#2|)) 181)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| |#1| (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-2438 ((|#1| $) 127 (|has| |#1| (-427))) (($ $ |#2|) 130 (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) 150) (($ (-523)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-515))) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-1251 (((-589 |#1|) $) 153)) (-2365 ((|#1| $ (-495 |#2|)) 72) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) 78)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) 116 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 101) (($ $ (-710)) 103)) (-2756 (($) 12 T CONST)) (-2767 (($) 14 T CONST)) (-2862 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 96)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) 125 (|has| |#1| (-339)))) (-4087 (($ $) 84) (($ $ $) 94)) (-4075 (($ $ $) 48)) (** (($ $ (-852)) 102) (($ $ (-710)) 99)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 87) (($ $ $) 64) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 89) (($ $ |#1|) NIL))) +((-1979 (*1 *1 *2) (-12 (-4 *2 (-973)) (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)))) (-2870 (*1 *1 *2) (-12 (-5 *2 (-589 *4)) (-4 *4 (-973)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *3 *4)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) (-4 *2 (-216 *3 *4)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)) (-4 *2 (-973)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)) (-4 *2 (-973)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) (-4 *2 (-216 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-973)) (-4 *2 (-216 *3 *4)) (-4 *5 (-216 *3 *4)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)) (|has| *2 (-6 (-4250 "*"))) (-4 *2 (-973)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)) (|has| *2 (-6 (-4250 "*"))) (-4 *2 (-973)))) (-3713 (*1 *1 *1) (|partial| -12 (-4 *1 (-1037 *2 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-216 *2 *3)) (-4 *5 (-216 *2 *3)) (-4 *3 (-339)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *3 *4)) (-4 *4 (-339))))) +(-13 (-209 |t#2|) (-107 |t#2| |t#2|) (-976 |t#1| |t#1| |t#2| |t#3| |t#4|) (-387 |t#2|) (-353 |t#2|) (-10 -8 (IF (|has| |t#2| (-158)) (-6 (-657 |t#2|)) |%noBranch|) (-15 -1979 ($ |t#2|)) (-15 -2870 ($ (-589 |t#2|))) (-15 -3326 (|t#3| $)) (-15 -1477 (|t#2| $)) (-15 -2218 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4250 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -2736 (|t#2| $)) (-15 -4224 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-339)) (PROGN (-15 -3713 ((-3 $ "failed") $)) (-15 ** ($ $ (-523)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4250 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-563 (-794)) . T) ((-209 |#2|) . T) ((-211) |has| |#2| (-211)) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-353 |#2|) . T) ((-387 |#2|) . T) ((-462 |#2|) . T) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-591 |#2|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#2| (-585 (-523))) ((-585 |#2|) . T) ((-657 |#2|) -3172 (|has| |#2| (-158)) (|has| |#2| (-6 (-4250 "*")))) ((-666) . T) ((-831 (-1087)) |has| |#2| (-831 (-1087))) ((-976 |#1| |#1| |#2| |#3| |#4|) . T) ((-964 (-383 (-523))) |has| |#2| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#2| (-964 (-523))) ((-964 |#2|) . T) ((-979 |#2|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1123) . T)) +((-2619 ((|#4| |#4|) 69)) (-3374 ((|#4| |#4|) 64)) (-3893 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3760 (-589 |#3|))) |#4| |#3|) 77)) (-1902 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 68)) (-1532 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 66))) +(((-1038 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3374 (|#4| |#4|)) (-15 -1532 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2619 (|#4| |#4|)) (-15 -1902 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3893 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3760 (-589 |#3|))) |#4| |#3|))) (-284) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|)) (T -1038)) +((-3893 (*1 *2 *3 *4) (-12 (-4 *5 (-284)) (-4 *6 (-349 *5)) (-4 *4 (-349 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) (-5 *1 (-1038 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-1902 (*1 *2 *3) (-12 (-4 *4 (-284)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2619 (*1 *2 *2) (-12 (-4 *3 (-284)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-1532 (*1 *2 *3) (-12 (-4 *4 (-284)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3374 (*1 *2 *2) (-12 (-4 *3 (-284)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(-10 -7 (-15 -3374 (|#4| |#4|)) (-15 -1532 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2619 (|#4| |#4|)) (-15 -1902 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3893 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3760 (-589 |#3|))) |#4| |#3|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 17)) (-1292 (((-589 |#2|) $) 161)) (-2389 (((-1083 $) $ |#2|) 54) (((-1083 |#1|) $) 43)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 110 (|has| |#1| (-515)))) (-3306 (($ $) 112 (|has| |#1| (-515)))) (-3174 (((-108) $) 114 (|has| |#1| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 |#2|)) 194)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3718 (($ $) NIL (|has| |#1| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) 158) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 |#2| "failed") $) NIL)) (-3508 ((|#1| $) 156) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) ((|#2| $) NIL)) (-1611 (($ $ $ |#2|) NIL (|has| |#1| (-158)))) (-1457 (($ $) 198)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) 82)) (-1272 (($ $) NIL (|has| |#1| (-427))) (($ $ |#2|) NIL (|has| |#1| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#1| (-840)))) (-4222 (($ $ |#1| (-495 |#2|) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| |#1| (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| |#1| (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2769 (((-108) $) 19)) (-1789 (((-710) $) 26)) (-1280 (($ (-1083 |#1|) |#2|) 48) (($ (-1083 $) |#2|) 64)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) 32)) (-1267 (($ |#1| (-495 |#2|)) 71) (($ $ |#2| (-710)) 52) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ |#2|) NIL)) (-4047 (((-495 |#2|) $) 188) (((-710) $ |#2|) 189) (((-589 (-710)) $ (-589 |#2|)) 190)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2041 (($ (-1 (-495 |#2|) (-495 |#2|)) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) 122)) (-4213 (((-3 |#2| "failed") $) 163)) (-1427 (($ $) 197)) (-1437 ((|#1| $) 37)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2032 (((-1070) $) NIL)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| |#2|) (|:| -1475 (-710))) "failed") $) NIL)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) 33)) (-1419 ((|#1| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 140 (|has| |#1| (-427)))) (-3310 (($ (-589 $)) 145 (|has| |#1| (-427))) (($ $ $) 132 (|has| |#1| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-840)))) (-4007 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-515)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#2| |#1|) 166) (($ $ (-589 |#2|) (-589 |#1|)) 179) (($ $ |#2| $) 165) (($ $ (-589 |#2|) (-589 $)) 178)) (-1744 (($ $ |#2|) NIL (|has| |#1| (-158)))) (-3984 (($ $ |#2|) 196) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2640 (((-495 |#2|) $) 184) (((-710) $ |#2|) 180) (((-589 (-710)) $ (-589 |#2|)) 182)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| |#1| (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-1618 ((|#1| $) 128 (|has| |#1| (-427))) (($ $ |#2|) 131 (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1691 (((-794) $) 151) (($ (-523)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-515))) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3819 (((-589 |#1|) $) 154)) (-2084 ((|#1| $ (-495 |#2|)) 73) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) 79)) (-3553 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-2801 (((-108) $ $) 117 (|has| |#1| (-515)))) (-2423 (($ $ (-852)) 102) (($ $ (-710)) 104)) (-1879 (($) 12 T CONST)) (-1891 (($) 14 T CONST)) (-2909 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) 97)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4074 (($ $ |#1|) 126 (|has| |#1| (-339)))) (-4060 (($ $) 85) (($ $ $) 95)) (-4045 (($ $ $) 49)) (** (($ $ (-852)) 103) (($ $ (-710)) 100)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 88) (($ $ $) 65) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) (((-1039 |#1| |#2|) (-880 |#1| (-495 |#2|) |#2|) (-973) (-786)) (T -1039)) NIL (-880 |#1| (-495 |#2|) |#2|) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 |#2|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-1769 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1744 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 114 (|has| |#1| (-37 (-383 (-523)))))) (-1793 (($ $) 146 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3566 (((-883 |#1|) $ (-710)) NIL) (((-883 |#1|) $ (-710) (-710)) NIL)) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-710) $ |#2|) NIL) (((-710) $ |#2| (-710)) NIL)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2620 (((-108) $) NIL)) (-1933 (($ $ (-589 |#2|) (-589 (-495 |#2|))) NIL) (($ $ |#2| (-495 |#2|)) NIL) (($ |#1| (-495 |#2|)) NIL) (($ $ |#2| (-710)) 58) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2384 (($ $) 112 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-3417 (($ $ |#2|) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ |#2| |#1|) 165 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-2340 (($ (-1 $) |#2| |#1|) 164 (|has| |#1| (-37 (-383 (-523)))))) (-4097 (($ $ (-710)) 15)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1811 (($ $) 110 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (($ $ |#2| $) 96) (($ $ (-589 |#2|) (-589 $)) 89) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL)) (-3523 (($ $ |#2|) 99) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2299 (((-495 |#2|) $) NIL)) (-1289 (((-1 (-1068 |#3|) |#3|) (-589 |#2|) (-589 (-1068 |#3|))) 79)) (-1805 (($ $) 148 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 144 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 116 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 17)) (-1458 (((-794) $) 180) (($ (-523)) NIL) (($ |#1|) 44 (|has| |#1| (-158))) (($ $) NIL (|has| |#1| (-515))) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#2|) 65) (($ |#3|) 63)) (-2365 ((|#1| $ (-495 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL) ((|#3| $ (-710)) 42)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1839 (($ $) 154 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) 150 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 158 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-2914 (($ $) 160 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 156 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 152 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 18 T CONST)) (-2767 (($) 10 T CONST)) (-2862 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) 182 (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 61)) (** (($ $ (-852)) NIL) (($ $ (-710)) 70) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 102 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 60) (($ $ (-383 (-523))) 107 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 105 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) -(((-1040 |#1| |#2| |#3|) (-13 (-680 |#1| |#2|) (-10 -8 (-15 -2365 (|#3| $ (-710))) (-15 -1458 ($ |#2|)) (-15 -1458 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1289 ((-1 (-1068 |#3|) |#3|) (-589 |#2|) (-589 (-1068 |#3|)))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $ |#2| |#1|)) (-15 -2340 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-973) (-786) (-880 |#1| (-495 |#2|) |#2|)) (T -1040)) -((-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *2 (-880 *4 (-495 *5) *5)) (-5 *1 (-1040 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-786)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *2 (-786)) (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-880 *3 (-495 *2) *2)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-5 *1 (-1040 *3 *4 *2)) (-4 *2 (-880 *3 (-495 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-5 *1 (-1040 *3 *4 *2)) (-4 *2 (-880 *3 (-495 *4) *4)))) (-1289 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-1068 *7))) (-4 *6 (-786)) (-4 *7 (-880 *5 (-495 *6) *6)) (-4 *5 (-973)) (-5 *2 (-1 (-1068 *7) *7)) (-5 *1 (-1040 *5 *6 *7)))) (-3417 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-4 *2 (-786)) (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-880 *3 (-495 *2) *2)))) (-2340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1040 *4 *3 *5))) (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973)) (-4 *3 (-786)) (-5 *1 (-1040 *4 *3 *5)) (-4 *5 (-880 *4 (-495 *3) *3))))) -(-13 (-680 |#1| |#2|) (-10 -8 (-15 -2365 (|#3| $ (-710))) (-15 -1458 ($ |#2|)) (-15 -1458 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1289 ((-1 (-1068 |#3|) |#3|) (-589 |#2|) (-589 (-1068 |#3|)))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $ |#2| |#1|)) (-15 -2340 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-3924 (((-108) $ $) 7)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) 85)) (-3846 (((-589 $) (-589 |#4|)) 86) (((-589 $) (-589 |#4|) (-108)) 111)) (-1957 (((-589 |#3|) $) 33)) (-2100 (((-108) $) 26)) (-2376 (((-108) $) 17 (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) 101) (((-108) $) 97)) (-2308 ((|#4| |#4| $) 92)) (-2291 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| $) 126)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) 27)) (-3079 (((-108) $ (-710)) 44)) (-3724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 79)) (-2518 (($) 45 T CONST)) (-3595 (((-108) $) 22 (|has| |#1| (-515)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3225 (((-108) $ $) 23 (|has| |#1| (-515)))) (-3393 (((-108) $) 25 (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3956 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 36)) (-3474 (($ (-589 |#4|)) 35)) (-1751 (((-3 $ "failed") $) 82)) (-4014 ((|#4| |#4| $) 89)) (-1773 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2636 ((|#4| |#4| $) 87)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) 105)) (-2005 (((-108) |#4| $) 136)) (-3785 (((-108) |#4| $) 133)) (-1944 (((-108) |#4| $) 137) (((-108) $) 134)) (-1666 (((-589 |#4|) $) 52 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) 104) (((-108) $) 103)) (-2907 ((|#3| $) 34)) (-2346 (((-108) $ (-710)) 43)) (-2136 (((-589 |#4|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 47)) (-4055 (((-589 |#3|) $) 32)) (-1357 (((-108) |#3| $) 31)) (-2866 (((-108) $ (-710)) 42)) (-3779 (((-1070) $) 9)) (-3246 (((-3 |#4| (-589 $)) |#4| |#4| $) 128)) (-1611 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| |#4| $) 127)) (-2579 (((-3 |#4| "failed") $) 83)) (-2668 (((-589 $) |#4| $) 129)) (-3320 (((-3 (-108) (-589 $)) |#4| $) 132)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1309 (((-589 $) |#4| $) 125) (((-589 $) (-589 |#4|) $) 124) (((-589 $) (-589 |#4|) (-589 $)) 123) (((-589 $) |#4| (-589 $)) 122)) (-1770 (($ |#4| $) 117) (($ (-589 |#4|) $) 116)) (-2404 (((-589 |#4|) $) 107)) (-2112 (((-108) |#4| $) 99) (((-108) $) 95)) (-2648 ((|#4| |#4| $) 90)) (-2391 (((-108) $ $) 110)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) 100) (((-108) $) 96)) (-1398 ((|#4| |#4| $) 91)) (-2783 (((-1034) $) 10)) (-1738 (((-3 |#4| "failed") $) 84)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2890 (((-3 $ "failed") $ |#4|) 78)) (-4097 (($ $ |#4|) 77) (((-589 $) |#4| $) 115) (((-589 $) |#4| (-589 $)) 114) (((-589 $) (-589 |#4|) $) 113) (((-589 $) (-589 |#4|) (-589 $)) 112)) (-1327 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) 38)) (-3883 (((-108) $) 41)) (-3988 (($) 40)) (-2299 (((-710) $) 106)) (-2792 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4244)))) (-1664 (($ $) 39)) (-3663 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 60)) (-2621 (($ $ |#3|) 28)) (-2624 (($ $ |#3|) 30)) (-1824 (($ $) 88)) (-3076 (($ $ |#3|) 29)) (-1458 (((-794) $) 11) (((-589 |#4|) $) 37)) (-1395 (((-710) $) 76 (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-3910 (((-589 $) |#4| $) 121) (((-589 $) |#4| (-589 $)) 120) (((-589 $) (-589 |#4|) $) 119) (((-589 $) (-589 |#4|) (-589 $)) 118)) (-2096 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) 81)) (-4062 (((-108) |#4| $) 135)) (-2153 (((-108) |#3| $) 80)) (-3983 (((-108) $ $) 6)) (-2676 (((-710) $) 46 (|has| $ (-6 -4244))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1292 (((-589 |#2|) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-1462 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-2437 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1441 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) 115 (|has| |#1| (-37 (-383 (-523)))))) (-1481 (($ $) 147 (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) NIL T CONST)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-3714 (((-883 |#1|) $ (-710)) NIL) (((-883 |#1|) $ (-710) (-710)) NIL)) (-2589 (((-108) $) NIL)) (-3352 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-710) $ |#2|) NIL) (((-710) $ |#2| (-710)) NIL)) (-2769 (((-108) $) NIL)) (-1973 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2704 (((-108) $) NIL)) (-1267 (($ $ (-589 |#2|) (-589 (-495 |#2|))) NIL) (($ $ |#2| (-495 |#2|)) NIL) (($ |#1| (-495 |#2|)) NIL) (($ $ |#2| (-710)) 58) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-2313 (($ $) 113 (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-2814 (($ $ |#2|) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-383 (-523)))))) (-3951 (((-1034) $) NIL)) (-2994 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-383 (-523)))))) (-3053 (($ $ (-710)) 15)) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2922 (($ $) 111 (|has| |#1| (-37 (-383 (-523)))))) (-2812 (($ $ |#2| $) 97) (($ $ (-589 |#2|) (-589 $)) 90) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL)) (-3984 (($ $ |#2|) 100) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2640 (((-495 |#2|) $) NIL)) (-1242 (((-1 (-1068 |#3|) |#3|) (-589 |#2|) (-589 (-1068 |#3|))) 79)) (-2306 (($ $) 149 (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) 145 (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) 17)) (-1691 (((-794) $) 182) (($ (-523)) NIL) (($ |#1|) 44 (|has| |#1| (-158))) (($ $) NIL (|has| |#1| (-515))) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#2|) 65) (($ |#3|) 63)) (-2084 ((|#1| $ (-495 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL) ((|#3| $ (-710)) 42)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-2341 (($ $) 155 (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2318 (($ $) 151 (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) 159 (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-2102 (($ $) 161 (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) 157 (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) 153 (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 18 T CONST)) (-1891 (($) 10 T CONST)) (-2909 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ |#1|) 184 (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 61)) (** (($ $ (-852)) NIL) (($ $ (-710)) 70) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 103 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 60) (($ $ (-383 (-523))) 108 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 106 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) +(((-1040 |#1| |#2| |#3|) (-13 (-680 |#1| |#2|) (-10 -8 (-15 -2084 (|#3| $ (-710))) (-15 -1691 ($ |#2|)) (-15 -1691 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1242 ((-1 (-1068 |#3|) |#3|) (-589 |#2|) (-589 (-1068 |#3|)))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -2814 ($ $ |#2| |#1|)) (-15 -2994 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-973) (-786) (-880 |#1| (-495 |#2|) |#2|)) (T -1040)) +((-2084 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *2 (-880 *4 (-495 *5) *5)) (-5 *1 (-1040 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-786)))) (-1691 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *2 (-786)) (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-880 *3 (-495 *2) *2)))) (-1691 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-5 *1 (-1040 *3 *4 *2)) (-4 *2 (-880 *3 (-495 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-5 *1 (-1040 *3 *4 *2)) (-4 *2 (-880 *3 (-495 *4) *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-1068 *7))) (-4 *6 (-786)) (-4 *7 (-880 *5 (-495 *6) *6)) (-4 *5 (-973)) (-5 *2 (-1 (-1068 *7) *7)) (-5 *1 (-1040 *5 *6 *7)))) (-2814 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-4 *2 (-786)) (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-880 *3 (-495 *2) *2)))) (-2994 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1040 *4 *3 *5))) (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973)) (-4 *3 (-786)) (-5 *1 (-1040 *4 *3 *5)) (-4 *5 (-880 *4 (-495 *3) *3))))) +(-13 (-680 |#1| |#2|) (-10 -8 (-15 -2084 (|#3| $ (-710))) (-15 -1691 ($ |#2|)) (-15 -1691 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1242 ((-1 (-1068 |#3|) |#3|) (-589 |#2|) (-589 (-1068 |#3|)))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -2814 ($ $ |#2| |#1|)) (-15 -2994 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-1680 (((-108) $ $) 7)) (-3385 (((-589 (-2 (|:| -1214 $) (|:| -2647 (-589 |#4|)))) (-589 |#4|)) 85)) (-2591 (((-589 $) (-589 |#4|)) 86) (((-589 $) (-589 |#4|) (-108)) 111)) (-1292 (((-589 |#3|) $) 33)) (-2356 (((-108) $) 26)) (-2192 (((-108) $) 17 (|has| |#1| (-515)))) (-2219 (((-108) |#4| $) 101) (((-108) $) 97)) (-2717 ((|#4| |#4| $) 92)) (-3718 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 $))) |#4| $) 126)) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |#3|) 27)) (-1620 (((-108) $ (-710)) 44)) (-1903 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4248))) (((-3 |#4| "failed") $ |#3|) 79)) (-4189 (($) 45 T CONST)) (-4002 (((-108) $) 22 (|has| |#1| (-515)))) (-3577 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3527 (((-108) $ $) 23 (|has| |#1| (-515)))) (-2611 (((-108) $) 25 (|has| |#1| (-515)))) (-3586 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1291 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-1804 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-1220 (((-3 $ "failed") (-589 |#4|)) 36)) (-3508 (($ (-589 |#4|)) 35)) (-2441 (((-3 $ "failed") $) 82)) (-3546 ((|#4| |#4| $) 89)) (-2462 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4248)))) (-3969 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-3087 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2848 ((|#4| |#4| $) 87)) (-2116 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4248))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4248))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2860 (((-2 (|:| -1214 (-589 |#4|)) (|:| -2647 (-589 |#4|))) $) 105)) (-2607 (((-108) |#4| $) 136)) (-2072 (((-108) |#4| $) 133)) (-3149 (((-108) |#4| $) 137) (((-108) $) 134)) (-1871 (((-589 |#4|) $) 52 (|has| $ (-6 -4248)))) (-2605 (((-108) |#4| $) 104) (((-108) $) 103)) (-3556 ((|#3| $) 34)) (-3051 (((-108) $ (-710)) 43)) (-1584 (((-589 |#4|) $) 53 (|has| $ (-6 -4248)))) (-3423 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#4| |#4|) $) 47)) (-2709 (((-589 |#3|) $) 32)) (-2528 (((-108) |#3| $) 31)) (-1418 (((-108) $ (-710)) 42)) (-2032 (((-1070) $) 9)) (-3715 (((-3 |#4| (-589 $)) |#4| |#4| $) 128)) (-3173 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 $))) |#4| |#4| $) 127)) (-2535 (((-3 |#4| "failed") $) 83)) (-3130 (((-589 $) |#4| $) 129)) (-1338 (((-3 (-108) (-589 $)) |#4| $) 132)) (-1446 (((-589 (-2 (|:| |val| (-108)) (|:| -3643 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3196 (((-589 $) |#4| $) 125) (((-589 $) (-589 |#4|) $) 124) (((-589 $) (-589 |#4|) (-589 $)) 123) (((-589 $) |#4| (-589 $)) 122)) (-2190 (($ |#4| $) 117) (($ (-589 |#4|) $) 116)) (-2455 (((-589 |#4|) $) 107)) (-2490 (((-108) |#4| $) 99) (((-108) $) 95)) (-2960 ((|#4| |#4| $) 90)) (-2303 (((-108) $ $) 110)) (-3473 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2569 (((-108) |#4| $) 100) (((-108) $) 96)) (-2897 ((|#4| |#4| $) 91)) (-3951 (((-1034) $) 10)) (-2428 (((-3 |#4| "failed") $) 84)) (-2509 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3367 (((-3 $ "failed") $ |#4|) 78)) (-3053 (($ $ |#4|) 77) (((-589 $) |#4| $) 115) (((-589 $) |#4| (-589 $)) 114) (((-589 $) (-589 |#4|) $) 113) (((-589 $) (-589 |#4|) (-589 $)) 112)) (-3379 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-2267 (((-108) $ $) 38)) (-1777 (((-108) $) 41)) (-3320 (($) 40)) (-2640 (((-710) $) 106)) (-3977 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4248)))) (-1874 (($ $) 39)) (-1400 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1704 (($ (-589 |#4|)) 60)) (-2712 (($ $ |#3|) 28)) (-2742 (($ $ |#3|) 30)) (-1494 (($ $) 88)) (-1591 (($ $ |#3|) 29)) (-1691 (((-794) $) 11) (((-589 |#4|) $) 37)) (-2868 (((-710) $) 76 (|has| |#3| (-344)))) (-1645 (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3684 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-3817 (((-589 $) |#4| $) 121) (((-589 $) |#4| (-589 $)) 120) (((-589 $) (-589 |#4|) $) 119) (((-589 $) (-589 |#4|) (-589 $)) 118)) (-2308 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4248)))) (-1574 (((-589 |#3|) $) 81)) (-2776 (((-108) |#4| $) 135)) (-1747 (((-108) |#3| $) 80)) (-3941 (((-108) $ $) 6)) (-2810 (((-710) $) 46 (|has| $ (-6 -4248))))) (((-1041 |#1| |#2| |#3| |#4|) (-129) (-427) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -1041)) NIL (-13 (-1025 |t#1| |t#2| |t#3| |t#4|) (-723 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-723 |#1| |#2| |#3| |#4|) . T) ((-905 |#1| |#2| |#3| |#4|) . T) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1025 |#1| |#2| |#3| |#4|) . T) ((-1116 |#1| |#2| |#3| |#4|) . T) ((-1122) . T)) -((-1940 (((-589 |#2|) |#1|) 12)) (-3066 (((-589 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-589 |#2|) |#1|) 47)) (-2781 (((-589 |#2|) |#2| |#2| |#2|) 35) (((-589 |#2|) |#1|) 45)) (-1848 ((|#2| |#1|) 42)) (-1759 (((-2 (|:| |solns| (-589 |#2|)) (|:| |maps| (-589 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-3548 (((-589 |#2|) |#2| |#2|) 34) (((-589 |#2|) |#1|) 44)) (-3923 (((-589 |#2|) |#2| |#2| |#2| |#2|) 36) (((-589 |#2|) |#1|) 46)) (-4013 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-3543 ((|#2| |#2| |#2| |#2|) 39)) (-1285 ((|#2| |#2| |#2|) 38)) (-2119 ((|#2| |#2| |#2| |#2| |#2|) 40))) -(((-1042 |#1| |#2|) (-10 -7 (-15 -1940 ((-589 |#2|) |#1|)) (-15 -1848 (|#2| |#1|)) (-15 -1759 ((-2 (|:| |solns| (-589 |#2|)) (|:| |maps| (-589 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3548 ((-589 |#2|) |#1|)) (-15 -2781 ((-589 |#2|) |#1|)) (-15 -3923 ((-589 |#2|) |#1|)) (-15 -3066 ((-589 |#2|) |#1|)) (-15 -3548 ((-589 |#2|) |#2| |#2|)) (-15 -2781 ((-589 |#2|) |#2| |#2| |#2|)) (-15 -3923 ((-589 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3066 ((-589 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1285 (|#2| |#2| |#2|)) (-15 -3543 (|#2| |#2| |#2| |#2|)) (-15 -2119 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4013 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1144 |#2|) (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (T -1042)) -((-4013 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2)))) (-2119 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2)))) (-3543 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2)))) (-1285 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2)))) (-3066 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3)))) (-3923 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3)))) (-2781 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3)))) (-3548 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3)))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) (-3923 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) (-2781 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) (-3548 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) (-1759 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-2 (|:| |solns| (-589 *5)) (|:| |maps| (-589 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1042 *3 *5)) (-4 *3 (-1144 *5)))) (-1848 (*1 *2 *3) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2)))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4))))) -(-10 -7 (-15 -1940 ((-589 |#2|) |#1|)) (-15 -1848 (|#2| |#1|)) (-15 -1759 ((-2 (|:| |solns| (-589 |#2|)) (|:| |maps| (-589 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3548 ((-589 |#2|) |#1|)) (-15 -2781 ((-589 |#2|) |#1|)) (-15 -3923 ((-589 |#2|) |#1|)) (-15 -3066 ((-589 |#2|) |#1|)) (-15 -3548 ((-589 |#2|) |#2| |#2|)) (-15 -2781 ((-589 |#2|) |#2| |#2| |#2|)) (-15 -3923 ((-589 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3066 ((-589 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1285 (|#2| |#2| |#2|)) (-15 -3543 (|#2| |#2| |#2| |#2|)) (-15 -2119 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4013 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-1500 (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|))))) 95) (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087))) 94) (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|)))) 92) (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))) (-589 (-1087))) 90) (((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|)))) 76) (((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))) (-1087)) 77) (((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|))) 71) (((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)) (-1087)) 60)) (-2012 (((-589 (-589 (-292 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087))) 88) (((-589 (-292 |#1|)) (-383 (-883 |#1|)) (-1087)) 43)) (-3771 (((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-383 (-883 |#1|)) (-1087)) 98) (((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087)) 97))) -(((-1043 |#1|) (-10 -7 (-15 -1500 ((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -1500 ((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)))) (-15 -1500 ((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -1500 ((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087)))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -2012 ((-589 (-292 |#1|)) (-383 (-883 |#1|)) (-1087))) (-15 -2012 ((-589 (-589 (-292 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -3771 ((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -3771 ((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-383 (-883 |#1|)) (-1087)))) (-13 (-284) (-786) (-136))) (T -1043)) -((-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-1077 (-589 (-292 *5)) (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) (-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-271 (-383 (-883 *5)))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-1077 (-589 (-292 *5)) (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-292 *5)))) (-5 *1 (-1043 *5)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-292 *5))) (-5 *1 (-1043 *5)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-589 (-271 (-383 (-883 *4))))) (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *4))))) (-5 *1 (-1043 *4)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-271 (-383 (-883 *5))))) (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-589 (-383 (-883 *4)))) (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *4))))) (-5 *1 (-1043 *4)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-271 (-383 (-883 *4)))) (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1043 *4)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-271 (-383 (-883 *5)))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1043 *5)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1043 *4)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1043 *5))))) -(-10 -7 (-15 -1500 ((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -1500 ((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)))) (-15 -1500 ((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -1500 ((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087)))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -2012 ((-589 (-292 |#1|)) (-383 (-883 |#1|)) (-1087))) (-15 -2012 ((-589 (-589 (-292 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -3771 ((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -3771 ((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-383 (-883 |#1|)) (-1087)))) -((-1898 (((-383 (-1083 (-292 |#1|))) (-1168 (-292 |#1|)) (-383 (-1083 (-292 |#1|))) (-523)) 27)) (-4193 (((-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|)))) 39))) -(((-1044 |#1|) (-10 -7 (-15 -4193 ((-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))))) (-15 -1898 ((-383 (-1083 (-292 |#1|))) (-1168 (-292 |#1|)) (-383 (-1083 (-292 |#1|))) (-523)))) (-13 (-515) (-786))) (T -1044)) -((-1898 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-383 (-1083 (-292 *5)))) (-5 *3 (-1168 (-292 *5))) (-5 *4 (-523)) (-4 *5 (-13 (-515) (-786))) (-5 *1 (-1044 *5)))) (-4193 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-383 (-1083 (-292 *3)))) (-4 *3 (-13 (-515) (-786))) (-5 *1 (-1044 *3))))) -(-10 -7 (-15 -4193 ((-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))))) (-15 -1898 ((-383 (-1083 (-292 |#1|))) (-1168 (-292 |#1|)) (-383 (-1083 (-292 |#1|))) (-523)))) -((-1940 (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-292 |#1|))) (-589 (-1087))) 217) (((-589 (-271 (-292 |#1|))) (-292 |#1|) (-1087)) 20) (((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)) (-1087)) 26) (((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|))) 25) (((-589 (-271 (-292 |#1|))) (-292 |#1|)) 21))) -(((-1045 |#1|) (-10 -7 (-15 -1940 ((-589 (-271 (-292 |#1|))) (-292 |#1|))) (-15 -1940 ((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)))) (-15 -1940 ((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)) (-1087))) (-15 -1940 ((-589 (-271 (-292 |#1|))) (-292 |#1|) (-1087))) (-15 -1940 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-292 |#1|))) (-589 (-1087))))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (T -1045)) -((-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1045 *5)) (-5 *3 (-589 (-271 (-292 *5)))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-292 *5)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-271 (-292 *5))))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-271 (-292 *4))))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-292 *4))))) -(-10 -7 (-15 -1940 ((-589 (-271 (-292 |#1|))) (-292 |#1|))) (-15 -1940 ((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)))) (-15 -1940 ((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)) (-1087))) (-15 -1940 ((-589 (-271 (-292 |#1|))) (-292 |#1|) (-1087))) (-15 -1940 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-292 |#1|))) (-589 (-1087))))) -((-2826 ((|#2| |#2|) 20 (|has| |#1| (-786))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)) (-3317 ((|#2| |#2|) 19 (|has| |#1| (-786))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 15))) -(((-1046 |#1| |#2|) (-10 -7 (-15 -3317 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2826 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-786)) (PROGN (-15 -3317 (|#2| |#2|)) (-15 -2826 (|#2| |#2|))) |%noBranch|)) (-1122) (-13 (-556 (-523) |#1|) (-10 -7 (-6 -4244) (-6 -4245)))) (T -1046)) -((-2826 (*1 *2 *2) (-12 (-4 *3 (-786)) (-4 *3 (-1122)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-13 (-556 (-523) *3) (-10 -7 (-6 -4244) (-6 -4245)))))) (-3317 (*1 *2 *2) (-12 (-4 *3 (-786)) (-4 *3 (-1122)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-13 (-556 (-523) *3) (-10 -7 (-6 -4244) (-6 -4245)))))) (-2826 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-1046 *4 *2)) (-4 *2 (-13 (-556 (-523) *4) (-10 -7 (-6 -4244) (-6 -4245)))))) (-3317 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-1046 *4 *2)) (-4 *2 (-13 (-556 (-523) *4) (-10 -7 (-6 -4244) (-6 -4245))))))) -(-10 -7 (-15 -3317 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2826 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-786)) (PROGN (-15 -3317 (|#2| |#2|)) (-15 -2826 (|#2| |#2|))) |%noBranch|)) -((-3924 (((-108) $ $) NIL)) (-3097 (((-1076 3 |#1|) $) 106)) (-2084 (((-108) $) 72)) (-2474 (($ $ (-589 (-874 |#1|))) 20) (($ $ (-589 (-589 |#1|))) 75) (($ (-589 (-874 |#1|))) 74) (((-589 (-874 |#1|)) $) 73)) (-1531 (((-108) $) 41)) (-2388 (($ $ (-874 |#1|)) 46) (($ $ (-589 |#1|)) 51) (($ $ (-710)) 53) (($ (-874 |#1|)) 47) (((-874 |#1|) $) 45)) (-2997 (((-2 (|:| -3582 (-710)) (|:| |curves| (-710)) (|:| |polygons| (-710)) (|:| |constructs| (-710))) $) 104)) (-3657 (((-710) $) 26)) (-3552 (((-710) $) 25)) (-3247 (($ $ (-710) (-874 |#1|)) 39)) (-4115 (((-108) $) 82)) (-1843 (($ $ (-589 (-589 (-874 |#1|))) (-589 (-157)) (-157)) 89) (($ $ (-589 (-589 (-589 |#1|))) (-589 (-157)) (-157)) 91) (($ $ (-589 (-589 (-874 |#1|))) (-108) (-108)) 85) (($ $ (-589 (-589 (-589 |#1|))) (-108) (-108)) 93) (($ (-589 (-589 (-874 |#1|)))) 86) (($ (-589 (-589 (-874 |#1|))) (-108) (-108)) 87) (((-589 (-589 (-874 |#1|))) $) 84)) (-2178 (($ (-589 $)) 28) (($ $ $) 29)) (-2216 (((-589 (-157)) $) 102)) (-3240 (((-589 (-874 |#1|)) $) 97)) (-2584 (((-589 (-589 (-157))) $) 101)) (-2811 (((-589 (-589 (-589 (-874 |#1|)))) $) NIL)) (-3568 (((-589 (-589 (-589 (-710)))) $) 99)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1410 (((-710) $ (-589 (-874 |#1|))) 37)) (-3610 (((-108) $) 54)) (-3349 (($ $ (-589 (-874 |#1|))) 56) (($ $ (-589 (-589 |#1|))) 62) (($ (-589 (-874 |#1|))) 57) (((-589 (-874 |#1|)) $) 55)) (-2311 (($) 23) (($ (-1076 3 |#1|)) 24)) (-1664 (($ $) 35)) (-2839 (((-589 $) $) 34)) (-1260 (($ (-589 $)) 31)) (-1503 (((-589 $) $) 33)) (-1458 (((-794) $) 110)) (-1895 (((-108) $) 64)) (-1518 (($ $ (-589 (-874 |#1|))) 66) (($ $ (-589 (-589 |#1|))) 69) (($ (-589 (-874 |#1|))) 67) (((-589 (-874 |#1|)) $) 65)) (-1322 (($ $) 105)) (-3983 (((-108) $ $) NIL))) +(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-723 |#1| |#2| |#3| |#4|) . T) ((-905 |#1| |#2| |#3| |#4|) . T) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1025 |#1| |#2| |#3| |#4|) . T) ((-1117 |#1| |#2| |#3| |#4|) . T) ((-1123) . T)) +((-3112 (((-589 |#2|) |#1|) 12)) (-1509 (((-589 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-589 |#2|) |#1|) 48)) (-1908 (((-589 |#2|) |#2| |#2| |#2|) 35) (((-589 |#2|) |#1|) 46)) (-1698 ((|#2| |#1|) 42)) (-2091 (((-2 (|:| |solns| (-589 |#2|)) (|:| |maps| (-589 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-3688 (((-589 |#2|) |#2| |#2|) 34) (((-589 |#2|) |#1|) 45)) (-3946 (((-589 |#2|) |#2| |#2| |#2| |#2|) 36) (((-589 |#2|) |#1|) 47)) (-3532 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-1700 ((|#2| |#2| |#2| |#2|) 39)) (-1205 ((|#2| |#2| |#2|) 38)) (-1424 ((|#2| |#2| |#2| |#2| |#2|) 40))) +(((-1042 |#1| |#2|) (-10 -7 (-15 -3112 ((-589 |#2|) |#1|)) (-15 -1698 (|#2| |#1|)) (-15 -2091 ((-2 (|:| |solns| (-589 |#2|)) (|:| |maps| (-589 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3688 ((-589 |#2|) |#1|)) (-15 -1908 ((-589 |#2|) |#1|)) (-15 -3946 ((-589 |#2|) |#1|)) (-15 -1509 ((-589 |#2|) |#1|)) (-15 -3688 ((-589 |#2|) |#2| |#2|)) (-15 -1908 ((-589 |#2|) |#2| |#2| |#2|)) (-15 -3946 ((-589 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1509 ((-589 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1205 (|#2| |#2| |#2|)) (-15 -1700 (|#2| |#2| |#2| |#2|)) (-15 -1424 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3532 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1145 |#2|) (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (T -1042)) +((-3532 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1145 *2)))) (-1424 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1145 *2)))) (-1700 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1145 *2)))) (-1205 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1145 *2)))) (-1509 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1145 *3)))) (-3946 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1145 *3)))) (-1908 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1145 *3)))) (-3688 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1145 *3)))) (-1509 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1145 *4)))) (-3946 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1145 *4)))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1145 *4)))) (-3688 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1145 *4)))) (-2091 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-2 (|:| |solns| (-589 *5)) (|:| |maps| (-589 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1042 *3 *5)) (-4 *3 (-1145 *5)))) (-1698 (*1 *2 *3) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1145 *2)))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1145 *4))))) +(-10 -7 (-15 -3112 ((-589 |#2|) |#1|)) (-15 -1698 (|#2| |#1|)) (-15 -2091 ((-2 (|:| |solns| (-589 |#2|)) (|:| |maps| (-589 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3688 ((-589 |#2|) |#1|)) (-15 -1908 ((-589 |#2|) |#1|)) (-15 -3946 ((-589 |#2|) |#1|)) (-15 -1509 ((-589 |#2|) |#1|)) (-15 -3688 ((-589 |#2|) |#2| |#2|)) (-15 -1908 ((-589 |#2|) |#2| |#2| |#2|)) (-15 -3946 ((-589 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1509 ((-589 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1205 (|#2| |#2| |#2|)) (-15 -1700 (|#2| |#2| |#2| |#2|)) (-15 -1424 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3532 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-1570 (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|))))) 95) (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087))) 94) (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|)))) 92) (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))) (-589 (-1087))) 90) (((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|)))) 75) (((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))) (-1087)) 76) (((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|))) 70) (((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)) (-1087)) 59)) (-2673 (((-589 (-589 (-292 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087))) 88) (((-589 (-292 |#1|)) (-383 (-883 |#1|)) (-1087)) 43)) (-3114 (((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-383 (-883 |#1|)) (-1087)) 98) (((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087)) 97))) +(((-1043 |#1|) (-10 -7 (-15 -1570 ((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -1570 ((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)))) (-15 -1570 ((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -1570 ((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))))) (-15 -1570 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -1570 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))))) (-15 -1570 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087)))) (-15 -1570 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -2673 ((-589 (-292 |#1|)) (-383 (-883 |#1|)) (-1087))) (-15 -2673 ((-589 (-589 (-292 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -3114 ((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -3114 ((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-383 (-883 |#1|)) (-1087)))) (-13 (-284) (-786) (-136))) (T -1043)) +((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-1077 (-589 (-292 *5)) (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-271 (-383 (-883 *5)))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-1077 (-589 (-292 *5)) (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-292 *5)))) (-5 *1 (-1043 *5)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-292 *5))) (-5 *1 (-1043 *5)))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-589 (-271 (-383 (-883 *4))))) (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *4))))) (-5 *1 (-1043 *4)))) (-1570 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-271 (-383 (-883 *5))))) (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-589 (-383 (-883 *4)))) (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *4))))) (-5 *1 (-1043 *4)))) (-1570 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-271 (-383 (-883 *4)))) (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1043 *4)))) (-1570 (*1 *2 *3 *4) (-12 (-5 *3 (-271 (-383 (-883 *5)))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1043 *5)))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1043 *4)))) (-1570 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1043 *5))))) +(-10 -7 (-15 -1570 ((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -1570 ((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)))) (-15 -1570 ((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -1570 ((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))))) (-15 -1570 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -1570 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))))) (-15 -1570 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087)))) (-15 -1570 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -2673 ((-589 (-292 |#1|)) (-383 (-883 |#1|)) (-1087))) (-15 -2673 ((-589 (-589 (-292 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -3114 ((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -3114 ((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-383 (-883 |#1|)) (-1087)))) +((-3924 (((-383 (-1083 (-292 |#1|))) (-1169 (-292 |#1|)) (-383 (-1083 (-292 |#1|))) (-523)) 27)) (-4031 (((-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|)))) 39))) +(((-1044 |#1|) (-10 -7 (-15 -4031 ((-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))))) (-15 -3924 ((-383 (-1083 (-292 |#1|))) (-1169 (-292 |#1|)) (-383 (-1083 (-292 |#1|))) (-523)))) (-13 (-515) (-786))) (T -1044)) +((-3924 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-383 (-1083 (-292 *5)))) (-5 *3 (-1169 (-292 *5))) (-5 *4 (-523)) (-4 *5 (-13 (-515) (-786))) (-5 *1 (-1044 *5)))) (-4031 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-383 (-1083 (-292 *3)))) (-4 *3 (-13 (-515) (-786))) (-5 *1 (-1044 *3))))) +(-10 -7 (-15 -4031 ((-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))))) (-15 -3924 ((-383 (-1083 (-292 |#1|))) (-1169 (-292 |#1|)) (-383 (-1083 (-292 |#1|))) (-523)))) +((-3112 (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-292 |#1|))) (-589 (-1087))) 217) (((-589 (-271 (-292 |#1|))) (-292 |#1|) (-1087)) 20) (((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)) (-1087)) 26) (((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|))) 25) (((-589 (-271 (-292 |#1|))) (-292 |#1|)) 21))) +(((-1045 |#1|) (-10 -7 (-15 -3112 ((-589 (-271 (-292 |#1|))) (-292 |#1|))) (-15 -3112 ((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)))) (-15 -3112 ((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)) (-1087))) (-15 -3112 ((-589 (-271 (-292 |#1|))) (-292 |#1|) (-1087))) (-15 -3112 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-292 |#1|))) (-589 (-1087))))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (T -1045)) +((-3112 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1045 *5)) (-5 *3 (-589 (-271 (-292 *5)))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-292 *5)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-271 (-292 *5))))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-271 (-292 *4))))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-292 *4))))) +(-10 -7 (-15 -3112 ((-589 (-271 (-292 |#1|))) (-292 |#1|))) (-15 -3112 ((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)))) (-15 -3112 ((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)) (-1087))) (-15 -3112 ((-589 (-271 (-292 |#1|))) (-292 |#1|) (-1087))) (-15 -3112 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-292 |#1|))) (-589 (-1087))))) +((-4079 ((|#2| |#2|) 20 (|has| |#1| (-786))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)) (-1302 ((|#2| |#2|) 19 (|has| |#1| (-786))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 15))) +(((-1046 |#1| |#2|) (-10 -7 (-15 -1302 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -4079 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-786)) (PROGN (-15 -1302 (|#2| |#2|)) (-15 -4079 (|#2| |#2|))) |%noBranch|)) (-1123) (-13 (-556 (-523) |#1|) (-10 -7 (-6 -4248) (-6 -4249)))) (T -1046)) +((-4079 (*1 *2 *2) (-12 (-4 *3 (-786)) (-4 *3 (-1123)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-13 (-556 (-523) *3) (-10 -7 (-6 -4248) (-6 -4249)))))) (-1302 (*1 *2 *2) (-12 (-4 *3 (-786)) (-4 *3 (-1123)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-13 (-556 (-523) *3) (-10 -7 (-6 -4248) (-6 -4249)))))) (-4079 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1123)) (-5 *1 (-1046 *4 *2)) (-4 *2 (-13 (-556 (-523) *4) (-10 -7 (-6 -4248) (-6 -4249)))))) (-1302 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1123)) (-5 *1 (-1046 *4 *2)) (-4 *2 (-13 (-556 (-523) *4) (-10 -7 (-6 -4248) (-6 -4249))))))) +(-10 -7 (-15 -1302 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -4079 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-786)) (PROGN (-15 -1302 (|#2| |#2|)) (-15 -4079 (|#2| |#2|))) |%noBranch|)) +((-1680 (((-108) $ $) NIL)) (-1782 (((-1076 3 |#1|) $) 107)) (-2187 (((-108) $) 72)) (-1938 (($ $ (-589 (-874 |#1|))) 20) (($ $ (-589 (-589 |#1|))) 75) (($ (-589 (-874 |#1|))) 74) (((-589 (-874 |#1|)) $) 73)) (-1860 (((-108) $) 41)) (-3171 (($ $ (-874 |#1|)) 46) (($ $ (-589 |#1|)) 51) (($ $ (-710)) 53) (($ (-874 |#1|)) 47) (((-874 |#1|) $) 45)) (-1405 (((-2 (|:| -3847 (-710)) (|:| |curves| (-710)) (|:| |polygons| (-710)) (|:| |constructs| (-710))) $) 105)) (-3338 (((-710) $) 26)) (-1772 (((-710) $) 25)) (-3726 (($ $ (-710) (-874 |#1|)) 39)) (-2067 (((-108) $) 82)) (-1648 (($ $ (-589 (-589 (-874 |#1|))) (-589 (-157)) (-157)) 89) (($ $ (-589 (-589 (-589 |#1|))) (-589 (-157)) (-157)) 91) (($ $ (-589 (-589 (-874 |#1|))) (-108) (-108)) 85) (($ $ (-589 (-589 (-589 |#1|))) (-108) (-108)) 93) (($ (-589 (-589 (-874 |#1|)))) 86) (($ (-589 (-589 (-874 |#1|))) (-108) (-108)) 87) (((-589 (-589 (-874 |#1|))) $) 84)) (-3780 (($ (-589 $)) 28) (($ $ $) 29)) (-4219 (((-589 (-157)) $) 102)) (-3794 (((-589 (-874 |#1|)) $) 97)) (-3525 (((-589 (-589 (-157))) $) 101)) (-3958 (((-589 (-589 (-589 (-874 |#1|)))) $) NIL)) (-1912 (((-589 (-589 (-589 (-710)))) $) 99)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1895 (((-710) $ (-589 (-874 |#1|))) 37)) (-4188 (((-108) $) 54)) (-3353 (($ $ (-589 (-874 |#1|))) 56) (($ $ (-589 (-589 |#1|))) 62) (($ (-589 (-874 |#1|))) 57) (((-589 (-874 |#1|)) $) 55)) (-2746 (($) 23) (($ (-1076 3 |#1|)) 24)) (-1874 (($ $) 35)) (-4208 (((-589 $) $) 34)) (-3923 (($ (-589 $)) 31)) (-1603 (((-589 $) $) 33)) (-1691 (((-794) $) 111)) (-3889 (((-108) $) 64)) (-1746 (($ $ (-589 (-874 |#1|))) 66) (($ $ (-589 (-589 |#1|))) 69) (($ (-589 (-874 |#1|))) 67) (((-589 (-874 |#1|)) $) 65)) (-3322 (($ $) 106)) (-3941 (((-108) $ $) NIL))) (((-1047 |#1|) (-1048 |#1|) (-973)) (T -1047)) NIL (-1048 |#1|) -((-3924 (((-108) $ $) 7)) (-3097 (((-1076 3 |#1|) $) 13)) (-2084 (((-108) $) 29)) (-2474 (($ $ (-589 (-874 |#1|))) 33) (($ $ (-589 (-589 |#1|))) 32) (($ (-589 (-874 |#1|))) 31) (((-589 (-874 |#1|)) $) 30)) (-1531 (((-108) $) 44)) (-2388 (($ $ (-874 |#1|)) 49) (($ $ (-589 |#1|)) 48) (($ $ (-710)) 47) (($ (-874 |#1|)) 46) (((-874 |#1|) $) 45)) (-2997 (((-2 (|:| -3582 (-710)) (|:| |curves| (-710)) (|:| |polygons| (-710)) (|:| |constructs| (-710))) $) 15)) (-3657 (((-710) $) 58)) (-3552 (((-710) $) 59)) (-3247 (($ $ (-710) (-874 |#1|)) 50)) (-4115 (((-108) $) 21)) (-1843 (($ $ (-589 (-589 (-874 |#1|))) (-589 (-157)) (-157)) 28) (($ $ (-589 (-589 (-589 |#1|))) (-589 (-157)) (-157)) 27) (($ $ (-589 (-589 (-874 |#1|))) (-108) (-108)) 26) (($ $ (-589 (-589 (-589 |#1|))) (-108) (-108)) 25) (($ (-589 (-589 (-874 |#1|)))) 24) (($ (-589 (-589 (-874 |#1|))) (-108) (-108)) 23) (((-589 (-589 (-874 |#1|))) $) 22)) (-2178 (($ (-589 $)) 57) (($ $ $) 56)) (-2216 (((-589 (-157)) $) 16)) (-3240 (((-589 (-874 |#1|)) $) 20)) (-2584 (((-589 (-589 (-157))) $) 17)) (-2811 (((-589 (-589 (-589 (-874 |#1|)))) $) 18)) (-3568 (((-589 (-589 (-589 (-710)))) $) 19)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1410 (((-710) $ (-589 (-874 |#1|))) 51)) (-3610 (((-108) $) 39)) (-3349 (($ $ (-589 (-874 |#1|))) 43) (($ $ (-589 (-589 |#1|))) 42) (($ (-589 (-874 |#1|))) 41) (((-589 (-874 |#1|)) $) 40)) (-2311 (($) 61) (($ (-1076 3 |#1|)) 60)) (-1664 (($ $) 52)) (-2839 (((-589 $) $) 53)) (-1260 (($ (-589 $)) 55)) (-1503 (((-589 $) $) 54)) (-1458 (((-794) $) 11)) (-1895 (((-108) $) 34)) (-1518 (($ $ (-589 (-874 |#1|))) 38) (($ $ (-589 (-589 |#1|))) 37) (($ (-589 (-874 |#1|))) 36) (((-589 (-874 |#1|)) $) 35)) (-1322 (($ $) 14)) (-3983 (((-108) $ $) 6))) +((-1680 (((-108) $ $) 7)) (-1782 (((-1076 3 |#1|) $) 13)) (-2187 (((-108) $) 29)) (-1938 (($ $ (-589 (-874 |#1|))) 33) (($ $ (-589 (-589 |#1|))) 32) (($ (-589 (-874 |#1|))) 31) (((-589 (-874 |#1|)) $) 30)) (-1860 (((-108) $) 44)) (-3171 (($ $ (-874 |#1|)) 49) (($ $ (-589 |#1|)) 48) (($ $ (-710)) 47) (($ (-874 |#1|)) 46) (((-874 |#1|) $) 45)) (-1405 (((-2 (|:| -3847 (-710)) (|:| |curves| (-710)) (|:| |polygons| (-710)) (|:| |constructs| (-710))) $) 15)) (-3338 (((-710) $) 58)) (-1772 (((-710) $) 59)) (-3726 (($ $ (-710) (-874 |#1|)) 50)) (-2067 (((-108) $) 21)) (-1648 (($ $ (-589 (-589 (-874 |#1|))) (-589 (-157)) (-157)) 28) (($ $ (-589 (-589 (-589 |#1|))) (-589 (-157)) (-157)) 27) (($ $ (-589 (-589 (-874 |#1|))) (-108) (-108)) 26) (($ $ (-589 (-589 (-589 |#1|))) (-108) (-108)) 25) (($ (-589 (-589 (-874 |#1|)))) 24) (($ (-589 (-589 (-874 |#1|))) (-108) (-108)) 23) (((-589 (-589 (-874 |#1|))) $) 22)) (-3780 (($ (-589 $)) 57) (($ $ $) 56)) (-4219 (((-589 (-157)) $) 16)) (-3794 (((-589 (-874 |#1|)) $) 20)) (-3525 (((-589 (-589 (-157))) $) 17)) (-3958 (((-589 (-589 (-589 (-874 |#1|)))) $) 18)) (-1912 (((-589 (-589 (-589 (-710)))) $) 19)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1895 (((-710) $ (-589 (-874 |#1|))) 51)) (-4188 (((-108) $) 39)) (-3353 (($ $ (-589 (-874 |#1|))) 43) (($ $ (-589 (-589 |#1|))) 42) (($ (-589 (-874 |#1|))) 41) (((-589 (-874 |#1|)) $) 40)) (-2746 (($) 61) (($ (-1076 3 |#1|)) 60)) (-1874 (($ $) 52)) (-4208 (((-589 $) $) 53)) (-3923 (($ (-589 $)) 55)) (-1603 (((-589 $) $) 54)) (-1691 (((-794) $) 11)) (-3889 (((-108) $) 34)) (-1746 (($ $ (-589 (-874 |#1|))) 38) (($ $ (-589 (-589 |#1|))) 37) (($ (-589 (-874 |#1|))) 36) (((-589 (-874 |#1|)) $) 35)) (-3322 (($ $) 14)) (-3941 (((-108) $ $) 6))) (((-1048 |#1|) (-129) (-973)) (T -1048)) -((-1458 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-794)))) (-2311 (*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) (-2311 (*1 *1 *2) (-12 (-5 *2 (-1076 3 *3)) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-2178 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-2178 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) (-1260 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-1503 (*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)))) (-2839 (*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)))) (-1664 (*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) (-1410 (*1 *2 *1 *3) (-12 (-5 *3 (-589 (-874 *4))) (-4 *1 (-1048 *4)) (-4 *4 (-973)) (-5 *2 (-710)))) (-3247 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-874 *4)) (-4 *1 (-1048 *4)) (-4 *4 (-973)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-874 *3)))) (-1531 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-3349 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-3349 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-2474 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-2474 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-2474 (*1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-2474 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-1843 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-589 (-874 *5)))) (-5 *3 (-589 (-157))) (-5 *4 (-157)) (-4 *1 (-1048 *5)) (-4 *5 (-973)))) (-1843 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-589 (-589 *5)))) (-5 *3 (-589 (-157))) (-5 *4 (-157)) (-4 *1 (-1048 *5)) (-4 *5 (-973)))) (-1843 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-589 (-589 (-874 *4)))) (-5 *3 (-108)) (-4 *1 (-1048 *4)) (-4 *4 (-973)))) (-1843 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-589 (-589 (-589 *4)))) (-5 *3 (-108)) (-4 *1 (-1048 *4)) (-4 *4 (-973)))) (-1843 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 *3)))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-1843 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-589 (-589 (-874 *4)))) (-5 *3 (-108)) (-4 *4 (-973)) (-4 *1 (-1048 *4)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-874 *3)))))) (-4115 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-589 (-710))))))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-589 (-874 *3))))))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-157)))))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-157))))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3582 (-710)) (|:| |curves| (-710)) (|:| |polygons| (-710)) (|:| |constructs| (-710)))))) (-1322 (*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-1076 3 *3))))) -(-13 (-1016) (-10 -8 (-15 -2311 ($)) (-15 -2311 ($ (-1076 3 |t#1|))) (-15 -3552 ((-710) $)) (-15 -3657 ((-710) $)) (-15 -2178 ($ (-589 $))) (-15 -2178 ($ $ $)) (-15 -1260 ($ (-589 $))) (-15 -1503 ((-589 $) $)) (-15 -2839 ((-589 $) $)) (-15 -1664 ($ $)) (-15 -1410 ((-710) $ (-589 (-874 |t#1|)))) (-15 -3247 ($ $ (-710) (-874 |t#1|))) (-15 -2388 ($ $ (-874 |t#1|))) (-15 -2388 ($ $ (-589 |t#1|))) (-15 -2388 ($ $ (-710))) (-15 -2388 ($ (-874 |t#1|))) (-15 -2388 ((-874 |t#1|) $)) (-15 -1531 ((-108) $)) (-15 -3349 ($ $ (-589 (-874 |t#1|)))) (-15 -3349 ($ $ (-589 (-589 |t#1|)))) (-15 -3349 ($ (-589 (-874 |t#1|)))) (-15 -3349 ((-589 (-874 |t#1|)) $)) (-15 -3610 ((-108) $)) (-15 -1518 ($ $ (-589 (-874 |t#1|)))) (-15 -1518 ($ $ (-589 (-589 |t#1|)))) (-15 -1518 ($ (-589 (-874 |t#1|)))) (-15 -1518 ((-589 (-874 |t#1|)) $)) (-15 -1895 ((-108) $)) (-15 -2474 ($ $ (-589 (-874 |t#1|)))) (-15 -2474 ($ $ (-589 (-589 |t#1|)))) (-15 -2474 ($ (-589 (-874 |t#1|)))) (-15 -2474 ((-589 (-874 |t#1|)) $)) (-15 -2084 ((-108) $)) (-15 -1843 ($ $ (-589 (-589 (-874 |t#1|))) (-589 (-157)) (-157))) (-15 -1843 ($ $ (-589 (-589 (-589 |t#1|))) (-589 (-157)) (-157))) (-15 -1843 ($ $ (-589 (-589 (-874 |t#1|))) (-108) (-108))) (-15 -1843 ($ $ (-589 (-589 (-589 |t#1|))) (-108) (-108))) (-15 -1843 ($ (-589 (-589 (-874 |t#1|))))) (-15 -1843 ($ (-589 (-589 (-874 |t#1|))) (-108) (-108))) (-15 -1843 ((-589 (-589 (-874 |t#1|))) $)) (-15 -4115 ((-108) $)) (-15 -3240 ((-589 (-874 |t#1|)) $)) (-15 -3568 ((-589 (-589 (-589 (-710)))) $)) (-15 -2811 ((-589 (-589 (-589 (-874 |t#1|)))) $)) (-15 -2584 ((-589 (-589 (-157))) $)) (-15 -2216 ((-589 (-157)) $)) (-15 -2997 ((-2 (|:| -3582 (-710)) (|:| |curves| (-710)) (|:| |polygons| (-710)) (|:| |constructs| (-710))) $)) (-15 -1322 ($ $)) (-15 -3097 ((-1076 3 |t#1|) $)) (-15 -1458 ((-794) $)))) +((-1691 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-794)))) (-2746 (*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) (-2746 (*1 *1 *2) (-12 (-5 *2 (-1076 3 *3)) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-3780 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-3780 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) (-3923 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-1603 (*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)))) (-4208 (*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)))) (-1874 (*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) (-1895 (*1 *2 *1 *3) (-12 (-5 *3 (-589 (-874 *4))) (-4 *1 (-1048 *4)) (-4 *4 (-973)) (-5 *2 (-710)))) (-3726 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-874 *4)) (-4 *1 (-1048 *4)) (-4 *4 (-973)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-3171 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-874 *3)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-3353 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-3353 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-3353 (*1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-1746 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-1746 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-1746 (*1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-1938 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-1938 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-1938 (*1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-1648 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-589 (-874 *5)))) (-5 *3 (-589 (-157))) (-5 *4 (-157)) (-4 *1 (-1048 *5)) (-4 *5 (-973)))) (-1648 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-589 (-589 *5)))) (-5 *3 (-589 (-157))) (-5 *4 (-157)) (-4 *1 (-1048 *5)) (-4 *5 (-973)))) (-1648 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-589 (-589 (-874 *4)))) (-5 *3 (-108)) (-4 *1 (-1048 *4)) (-4 *4 (-973)))) (-1648 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-589 (-589 (-589 *4)))) (-5 *3 (-108)) (-4 *1 (-1048 *4)) (-4 *4 (-973)))) (-1648 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 *3)))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-1648 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-589 (-589 (-874 *4)))) (-5 *3 (-108)) (-4 *4 (-973)) (-4 *1 (-1048 *4)))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-874 *3)))))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) (-1912 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-589 (-710))))))) (-3958 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-589 (-874 *3))))))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-157)))))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-157))))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3847 (-710)) (|:| |curves| (-710)) (|:| |polygons| (-710)) (|:| |constructs| (-710)))))) (-3322 (*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-1076 3 *3))))) +(-13 (-1016) (-10 -8 (-15 -2746 ($)) (-15 -2746 ($ (-1076 3 |t#1|))) (-15 -1772 ((-710) $)) (-15 -3338 ((-710) $)) (-15 -3780 ($ (-589 $))) (-15 -3780 ($ $ $)) (-15 -3923 ($ (-589 $))) (-15 -1603 ((-589 $) $)) (-15 -4208 ((-589 $) $)) (-15 -1874 ($ $)) (-15 -1895 ((-710) $ (-589 (-874 |t#1|)))) (-15 -3726 ($ $ (-710) (-874 |t#1|))) (-15 -3171 ($ $ (-874 |t#1|))) (-15 -3171 ($ $ (-589 |t#1|))) (-15 -3171 ($ $ (-710))) (-15 -3171 ($ (-874 |t#1|))) (-15 -3171 ((-874 |t#1|) $)) (-15 -1860 ((-108) $)) (-15 -3353 ($ $ (-589 (-874 |t#1|)))) (-15 -3353 ($ $ (-589 (-589 |t#1|)))) (-15 -3353 ($ (-589 (-874 |t#1|)))) (-15 -3353 ((-589 (-874 |t#1|)) $)) (-15 -4188 ((-108) $)) (-15 -1746 ($ $ (-589 (-874 |t#1|)))) (-15 -1746 ($ $ (-589 (-589 |t#1|)))) (-15 -1746 ($ (-589 (-874 |t#1|)))) (-15 -1746 ((-589 (-874 |t#1|)) $)) (-15 -3889 ((-108) $)) (-15 -1938 ($ $ (-589 (-874 |t#1|)))) (-15 -1938 ($ $ (-589 (-589 |t#1|)))) (-15 -1938 ($ (-589 (-874 |t#1|)))) (-15 -1938 ((-589 (-874 |t#1|)) $)) (-15 -2187 ((-108) $)) (-15 -1648 ($ $ (-589 (-589 (-874 |t#1|))) (-589 (-157)) (-157))) (-15 -1648 ($ $ (-589 (-589 (-589 |t#1|))) (-589 (-157)) (-157))) (-15 -1648 ($ $ (-589 (-589 (-874 |t#1|))) (-108) (-108))) (-15 -1648 ($ $ (-589 (-589 (-589 |t#1|))) (-108) (-108))) (-15 -1648 ($ (-589 (-589 (-874 |t#1|))))) (-15 -1648 ($ (-589 (-589 (-874 |t#1|))) (-108) (-108))) (-15 -1648 ((-589 (-589 (-874 |t#1|))) $)) (-15 -2067 ((-108) $)) (-15 -3794 ((-589 (-874 |t#1|)) $)) (-15 -1912 ((-589 (-589 (-589 (-710)))) $)) (-15 -3958 ((-589 (-589 (-589 (-874 |t#1|)))) $)) (-15 -3525 ((-589 (-589 (-157))) $)) (-15 -4219 ((-589 (-157)) $)) (-15 -1405 ((-2 (|:| -3847 (-710)) (|:| |curves| (-710)) (|:| |polygons| (-710)) (|:| |constructs| (-710))) $)) (-15 -3322 ($ $)) (-15 -1782 ((-1076 3 |t#1|) $)) (-15 -1691 ((-794) $)))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3723 (((-589 (-1092)) (-1070)) 8))) -(((-1049) (-10 -7 (-15 -3723 ((-589 (-1092)) (-1070))))) (T -1049)) -((-3723 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-589 (-1092))) (-5 *1 (-1049))))) -(-10 -7 (-15 -3723 ((-589 (-1092)) (-1070)))) -((-3895 (((-1173) (-589 (-794))) 23) (((-1173) (-794)) 22)) (-3826 (((-1173) (-589 (-794))) 21) (((-1173) (-794)) 20)) (-3394 (((-1173) (-589 (-794))) 19) (((-1173) (-794)) 11) (((-1173) (-1070) (-794)) 17))) -(((-1050) (-10 -7 (-15 -3394 ((-1173) (-1070) (-794))) (-15 -3394 ((-1173) (-794))) (-15 -3826 ((-1173) (-794))) (-15 -3895 ((-1173) (-794))) (-15 -3394 ((-1173) (-589 (-794)))) (-15 -3826 ((-1173) (-589 (-794)))) (-15 -3895 ((-1173) (-589 (-794)))))) (T -1050)) -((-3895 (*1 *2 *3) (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1173)) (-5 *1 (-1050)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1173)) (-5 *1 (-1050)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1173)) (-5 *1 (-1050)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) (-3394 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050))))) -(-10 -7 (-15 -3394 ((-1173) (-1070) (-794))) (-15 -3394 ((-1173) (-794))) (-15 -3826 ((-1173) (-794))) (-15 -3895 ((-1173) (-794))) (-15 -3394 ((-1173) (-589 (-794)))) (-15 -3826 ((-1173) (-589 (-794)))) (-15 -3895 ((-1173) (-589 (-794))))) -((-2789 (($ $ $) 10)) (-2710 (($ $) 9)) (-2322 (($ $ $) 13)) (-4102 (($ $ $) 15)) (-3254 (($ $ $) 12)) (-1325 (($ $ $) 14)) (-3728 (($ $) 17)) (-2320 (($ $) 16)) (-2619 (($ $) 6)) (-2033 (($ $ $) 11) (($ $) 7)) (-3599 (($ $ $) 8))) +((-3843 (((-589 (-1092)) (-1070)) 8))) +(((-1049) (-10 -7 (-15 -3843 ((-589 (-1092)) (-1070))))) (T -1049)) +((-3843 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-589 (-1092))) (-5 *1 (-1049))))) +(-10 -7 (-15 -3843 ((-589 (-1092)) (-1070)))) +((-1898 (((-1174) (-589 (-794))) 23) (((-1174) (-794)) 22)) (-2405 (((-1174) (-589 (-794))) 21) (((-1174) (-794)) 20)) (-3826 (((-1174) (-589 (-794))) 19) (((-1174) (-794)) 11) (((-1174) (-1070) (-794)) 17))) +(((-1050) (-10 -7 (-15 -3826 ((-1174) (-1070) (-794))) (-15 -3826 ((-1174) (-794))) (-15 -2405 ((-1174) (-794))) (-15 -1898 ((-1174) (-794))) (-15 -3826 ((-1174) (-589 (-794)))) (-15 -2405 ((-1174) (-589 (-794)))) (-15 -1898 ((-1174) (-589 (-794)))))) (T -1050)) +((-1898 (*1 *2 *3) (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1174)) (-5 *1 (-1050)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1174)) (-5 *1 (-1050)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1174)) (-5 *1 (-1050)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1174)) (-5 *1 (-1050)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1174)) (-5 *1 (-1050)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1174)) (-5 *1 (-1050)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-794)) (-5 *2 (-1174)) (-5 *1 (-1050))))) +(-10 -7 (-15 -3826 ((-1174) (-1070) (-794))) (-15 -3826 ((-1174) (-794))) (-15 -2405 ((-1174) (-794))) (-15 -1898 ((-1174) (-794))) (-15 -3826 ((-1174) (-589 (-794)))) (-15 -2405 ((-1174) (-589 (-794)))) (-15 -1898 ((-1174) (-589 (-794))))) +((-1960 (($ $ $) 10)) (-2370 (($ $) 9)) (-2842 (($ $ $) 13)) (-3083 (($ $ $) 15)) (-3789 (($ $ $) 12)) (-3357 (($ $ $) 14)) (-2771 (($ $) 17)) (-2823 (($ $) 16)) (-2695 (($ $) 6)) (-2846 (($ $ $) 11) (($ $) 7)) (-4056 (($ $ $) 8))) (((-1051) (-129)) (T -1051)) -((-3728 (*1 *1 *1) (-4 *1 (-1051))) (-2320 (*1 *1 *1) (-4 *1 (-1051))) (-4102 (*1 *1 *1 *1) (-4 *1 (-1051))) (-1325 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2322 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3254 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2033 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2789 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2710 (*1 *1 *1) (-4 *1 (-1051))) (-3599 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2033 (*1 *1 *1) (-4 *1 (-1051))) (-2619 (*1 *1 *1) (-4 *1 (-1051)))) -(-13 (-10 -8 (-15 -2619 ($ $)) (-15 -2033 ($ $)) (-15 -3599 ($ $ $)) (-15 -2710 ($ $)) (-15 -2789 ($ $ $)) (-15 -2033 ($ $ $)) (-15 -3254 ($ $ $)) (-15 -2322 ($ $ $)) (-15 -1325 ($ $ $)) (-15 -4102 ($ $ $)) (-15 -2320 ($ $)) (-15 -3728 ($ $)))) -((-3924 (((-108) $ $) 41)) (-1733 ((|#1| $) 15)) (-3220 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-2688 (((-108) $) 17)) (-3532 (($ $ |#1|) 28)) (-4222 (($ $ (-108)) 30)) (-3200 (($ $) 31)) (-3818 (($ $ |#2|) 29)) (-3779 (((-1070) $) NIL)) (-2522 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-2783 (((-1034) $) NIL)) (-3883 (((-108) $) 14)) (-3988 (($) 10)) (-1664 (($ $) 27)) (-1472 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3072 |#2|))) 21) (((-589 $) (-589 (-2 (|:| |val| |#1|) (|:| -3072 |#2|)))) 24) (((-589 $) |#1| (-589 |#2|)) 26)) (-3130 ((|#2| $) 16)) (-1458 (((-794) $) 50)) (-3983 (((-108) $ $) 39))) -(((-1052 |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -3988 ($)) (-15 -3883 ((-108) $)) (-15 -1733 (|#1| $)) (-15 -3130 (|#2| $)) (-15 -2688 ((-108) $)) (-15 -1472 ($ |#1| |#2| (-108))) (-15 -1472 ($ |#1| |#2|)) (-15 -1472 ($ (-2 (|:| |val| |#1|) (|:| -3072 |#2|)))) (-15 -1472 ((-589 $) (-589 (-2 (|:| |val| |#1|) (|:| -3072 |#2|))))) (-15 -1472 ((-589 $) |#1| (-589 |#2|))) (-15 -1664 ($ $)) (-15 -3532 ($ $ |#1|)) (-15 -3818 ($ $ |#2|)) (-15 -4222 ($ $ (-108))) (-15 -3200 ($ $)) (-15 -2522 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -3220 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1016) (-33)) (-13 (-1016) (-33))) (T -1052)) -((-3988 (*1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-1733 (*1 *2 *1) (-12 (-4 *2 (-13 (-1016) (-33))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-13 (-1016) (-33))))) (-3130 (*1 *2 *1) (-12 (-4 *2 (-13 (-1016) (-33))) (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1016) (-33))))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-1472 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1472 (*1 *1 *2 *3) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3072 *4))) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1052 *3 *4)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| |val| *4) (|:| -3072 *5)))) (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-589 (-1052 *4 *5))) (-5 *1 (-1052 *4 *5)))) (-1472 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *5)) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-589 (-1052 *3 *5))) (-5 *1 (-1052 *3 *5)) (-4 *3 (-13 (-1016) (-33))))) (-1664 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-3532 (*1 *1 *1 *2) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-3818 (*1 *1 *1 *2) (-12 (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1016) (-33))) (-4 *2 (-13 (-1016) (-33))))) (-4222 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-3200 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-2522 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1016) (-33))) (-4 *6 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1052 *5 *6)))) (-3220 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1052 *4 *5)) (-4 *4 (-13 (-1016) (-33)))))) -(-13 (-1016) (-10 -8 (-15 -3988 ($)) (-15 -3883 ((-108) $)) (-15 -1733 (|#1| $)) (-15 -3130 (|#2| $)) (-15 -2688 ((-108) $)) (-15 -1472 ($ |#1| |#2| (-108))) (-15 -1472 ($ |#1| |#2|)) (-15 -1472 ($ (-2 (|:| |val| |#1|) (|:| -3072 |#2|)))) (-15 -1472 ((-589 $) (-589 (-2 (|:| |val| |#1|) (|:| -3072 |#2|))))) (-15 -1472 ((-589 $) |#1| (-589 |#2|))) (-15 -1664 ($ $)) (-15 -3532 ($ $ |#1|)) (-15 -3818 ($ $ |#2|)) (-15 -4222 ($ $ (-108))) (-15 -3200 ($ $)) (-15 -2522 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -3220 ((-108) $ $ (-1 (-108) |#2| |#2|))))) -((-3924 (((-108) $ $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-1733 (((-1052 |#1| |#2|) $) 25)) (-2638 (($ $) 76)) (-2224 (((-108) (-1052 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-1682 (($ $ $ (-589 (-1052 |#1| |#2|))) 90) (($ $ $ (-589 (-1052 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-3079 (((-108) $ (-710)) NIL)) (-1823 (((-1052 |#1| |#2|) $ (-1052 |#1| |#2|)) 43 (|has| $ (-6 -4245)))) (-1641 (((-1052 |#1| |#2|) $ "value" (-1052 |#1| |#2|)) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-2147 (((-589 (-2 (|:| |val| |#1|) (|:| -3072 |#2|))) $) 80)) (-2249 (($ (-1052 |#1| |#2|) $) 39)) (-2557 (($ (-1052 |#1| |#2|) $) 31)) (-1666 (((-589 (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 51)) (-3710 (((-108) (-1052 |#1| |#2|) $) 82)) (-1238 (((-108) $ $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 (-1052 |#1| |#2|)) $) 55 (|has| $ (-6 -4244)))) (-1973 (((-108) (-1052 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-1052 |#1| |#2|) (-1016))))) (-2852 (($ (-1 (-1052 |#1| |#2|) (-1052 |#1| |#2|)) $) 47 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-1052 |#1| |#2|) (-1052 |#1| |#2|)) $) 46)) (-2866 (((-108) $ (-710)) NIL)) (-2726 (((-589 (-1052 |#1| |#2|)) $) 53)) (-3555 (((-108) $) 42)) (-3779 (((-1070) $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-2783 (((-1034) $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-3598 (((-3 $ "failed") $) 75)) (-1327 (((-108) (-1 (-108) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-1052 |#1| |#2|)))) NIL (-12 (|has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1016)))) (($ $ (-271 (-1052 |#1| |#2|))) NIL (-12 (|has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1016)))) (($ $ (-1052 |#1| |#2|) (-1052 |#1| |#2|)) NIL (-12 (|has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1016)))) (($ $ (-589 (-1052 |#1| |#2|)) (-589 (-1052 |#1| |#2|))) NIL (-12 (|has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1016))))) (-3811 (((-108) $ $) 50)) (-3883 (((-108) $) 22)) (-3988 (($) 24)) (-3223 (((-1052 |#1| |#2|) $ "value") NIL)) (-1549 (((-523) $ $) NIL)) (-2524 (((-108) $) 44)) (-2792 (((-710) (-1 (-108) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -4244))) (((-710) (-1052 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-1052 |#1| |#2|) (-1016))))) (-1664 (($ $) 49)) (-1472 (($ (-1052 |#1| |#2|)) 9) (($ |#1| |#2| (-589 $)) 12) (($ |#1| |#2| (-589 (-1052 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-589 |#2|)) 17)) (-1534 (((-589 |#2|) $) 81)) (-1458 (((-794) $) 73 (|has| (-1052 |#1| |#2|) (-563 (-794))))) (-2296 (((-589 $) $) 28)) (-3653 (((-108) $ $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-2096 (((-108) (-1 (-108) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 64 (|has| (-1052 |#1| |#2|) (-1016)))) (-2676 (((-710) $) 58 (|has| $ (-6 -4244))))) -(((-1053 |#1| |#2|) (-13 (-938 (-1052 |#1| |#2|)) (-10 -8 (-6 -4245) (-6 -4244) (-15 -3598 ((-3 $ "failed") $)) (-15 -2638 ($ $)) (-15 -1472 ($ (-1052 |#1| |#2|))) (-15 -1472 ($ |#1| |#2| (-589 $))) (-15 -1472 ($ |#1| |#2| (-589 (-1052 |#1| |#2|)))) (-15 -1472 ($ |#1| |#2| |#1| (-589 |#2|))) (-15 -1534 ((-589 |#2|) $)) (-15 -2147 ((-589 (-2 (|:| |val| |#1|) (|:| -3072 |#2|))) $)) (-15 -3710 ((-108) (-1052 |#1| |#2|) $)) (-15 -2224 ((-108) (-1052 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2557 ($ (-1052 |#1| |#2|) $)) (-15 -2249 ($ (-1052 |#1| |#2|) $)) (-15 -1682 ($ $ $ (-589 (-1052 |#1| |#2|)))) (-15 -1682 ($ $ $ (-589 (-1052 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1016) (-33)) (-13 (-1016) (-33))) (T -1053)) -((-3598 (*1 *1 *1) (|partial| -12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-2638 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) (-1472 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-589 (-1053 *2 *3))) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1472 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-589 (-1052 *2 *3))) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))) (-5 *1 (-1053 *2 *3)))) (-1472 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-13 (-1016) (-33))) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))))) (-1534 (*1 *2 *1) (-12 (-5 *2 (-589 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-3710 (*1 *2 *3 *1) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1053 *4 *5)))) (-2224 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1052 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1016) (-33))) (-4 *6 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1053 *5 *6)))) (-2557 (*1 *1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) (-2249 (*1 *1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) (-1682 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-589 (-1052 *3 *4))) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) (-1682 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1052 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) (-5 *1 (-1053 *4 *5))))) -(-13 (-938 (-1052 |#1| |#2|)) (-10 -8 (-6 -4245) (-6 -4244) (-15 -3598 ((-3 $ "failed") $)) (-15 -2638 ($ $)) (-15 -1472 ($ (-1052 |#1| |#2|))) (-15 -1472 ($ |#1| |#2| (-589 $))) (-15 -1472 ($ |#1| |#2| (-589 (-1052 |#1| |#2|)))) (-15 -1472 ($ |#1| |#2| |#1| (-589 |#2|))) (-15 -1534 ((-589 |#2|) $)) (-15 -2147 ((-589 (-2 (|:| |val| |#1|) (|:| -3072 |#2|))) $)) (-15 -3710 ((-108) (-1052 |#1| |#2|) $)) (-15 -2224 ((-108) (-1052 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2557 ($ (-1052 |#1| |#2|) $)) (-15 -2249 ($ (-1052 |#1| |#2|) $)) (-15 -1682 ($ $ $ (-589 (-1052 |#1| |#2|)))) (-15 -1682 ($ $ $ (-589 (-1052 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-4190 (($ $) NIL)) (-4187 ((|#2| $) NIL)) (-2606 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2079 (($ (-629 |#2|)) 45)) (-2651 (((-108) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1421 (($ |#2|) 9)) (-2518 (($) NIL T CONST)) (-2445 (($ $) 58 (|has| |#2| (-284)))) (-2031 (((-218 |#1| |#2|) $ (-523)) 31)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 |#2| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) ((|#2| $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) 72)) (-1319 (((-710) $) 60 (|has| |#2| (-515)))) (-2795 ((|#2| $ (-523) (-523)) NIL)) (-1666 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL)) (-1867 (((-710) $) 62 (|has| |#2| (-515)))) (-3498 (((-589 (-218 |#1| |#2|)) $) 66 (|has| |#2| (-515)))) (-2803 (((-710) $) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-1925 ((|#2| $) 56 (|has| |#2| (-6 (-4246 "*"))))) (-3871 (((-523) $) NIL)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3338 (((-523) $) NIL)) (-2347 (((-523) $) NIL)) (-3068 (($ (-589 (-589 |#2|))) 26)) (-2852 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2289 (((-589 (-589 |#2|)) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-3698 (((-3 $ "failed") $) 69 (|has| |#2| (-339)))) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515)))) (-1327 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ (-523) (-523) |#2|) NIL) ((|#2| $ (-523) (-523)) NIL)) (-3523 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3804 ((|#2| $) NIL)) (-3739 (($ (-589 |#2|)) 40)) (-3117 (((-108) $) NIL)) (-2561 (((-218 |#1| |#2|) $) NIL)) (-2310 ((|#2| $) 54 (|has| |#2| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1664 (($ $) NIL)) (-3663 (((-499) $) 81 (|has| |#2| (-564 (-499))))) (-1595 (((-218 |#1| |#2|) $ (-523)) 33)) (-1458 (((-794) $) 36) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#2| (-964 (-383 (-523))))) (($ |#2|) NIL) (((-629 |#2|) $) 42)) (-1621 (((-710)) 17)) (-2096 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2175 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 11 T CONST)) (-2767 (($) 14 T CONST)) (-2862 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) 52) (($ $ (-523)) 71 (|has| |#2| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-218 |#1| |#2|) $ (-218 |#1| |#2|)) 48) (((-218 |#1| |#2|) (-218 |#1| |#2|) $) 50)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-1054 |#1| |#2|) (-13 (-1037 |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) (-563 (-629 |#2|)) (-10 -8 (-15 -4190 ($ $)) (-15 -2079 ($ (-629 |#2|))) (-15 -1458 ((-629 |#2|) $)) (IF (|has| |#2| (-6 (-4246 "*"))) (-6 -4233) |%noBranch|) (IF (|has| |#2| (-6 (-4246 "*"))) (IF (|has| |#2| (-6 -4241)) (-6 -4241) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) (-710) (-973)) (T -1054)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-629 *4)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-710)) (-4 *4 (-973)))) (-4190 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-14 *2 (-710)) (-4 *3 (-973)))) (-2079 (*1 *1 *2) (-12 (-5 *2 (-629 *4)) (-4 *4 (-973)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-710))))) -(-13 (-1037 |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) (-563 (-629 |#2|)) (-10 -8 (-15 -4190 ($ $)) (-15 -2079 ($ (-629 |#2|))) (-15 -1458 ((-629 |#2|) $)) (IF (|has| |#2| (-6 (-4246 "*"))) (-6 -4233) |%noBranch|) (IF (|has| |#2| (-6 (-4246 "*"))) (IF (|has| |#2| (-6 -4241)) (-6 -4241) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) -((-1303 (($ $) 19)) (-2874 (($ $ (-133)) 10) (($ $ (-130)) 14)) (-1569 (((-108) $ $) 24)) (-2674 (($ $) 17)) (-3223 (((-133) $ (-523) (-133)) NIL) (((-133) $ (-523)) NIL) (($ $ (-1135 (-523))) NIL) (($ $ $) 29)) (-1458 (($ (-133)) 27) (((-794) $) NIL))) -(((-1055 |#1|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3223 (|#1| |#1| |#1|)) (-15 -2874 (|#1| |#1| (-130))) (-15 -2874 (|#1| |#1| (-133))) (-15 -1458 (|#1| (-133))) (-15 -1569 ((-108) |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -2674 (|#1| |#1|)) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -3223 ((-133) |#1| (-523))) (-15 -3223 ((-133) |#1| (-523) (-133)))) (-1056)) (T -1055)) -NIL -(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3223 (|#1| |#1| |#1|)) (-15 -2874 (|#1| |#1| (-130))) (-15 -2874 (|#1| |#1| (-133))) (-15 -1458 (|#1| (-133))) (-15 -1569 ((-108) |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -2674 (|#1| |#1|)) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -3223 ((-133) |#1| (-523))) (-15 -3223 ((-133) |#1| (-523) (-133)))) -((-3924 (((-108) $ $) 19 (|has| (-133) (-1016)))) (-2109 (($ $) 120)) (-1303 (($ $) 121)) (-2874 (($ $ (-133)) 108) (($ $ (-130)) 107)) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-1545 (((-108) $ $) 118)) (-1521 (((-108) $ $ (-523)) 117)) (-2063 (((-589 $) $ (-133)) 110) (((-589 $) $ (-130)) 109)) (-1964 (((-108) (-1 (-108) (-133) (-133)) $) 98) (((-108) $) 92 (|has| (-133) (-786)))) (-1506 (($ (-1 (-108) (-133) (-133)) $) 89 (|has| $ (-6 -4245))) (($ $) 88 (-12 (|has| (-133) (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) (-133) (-133)) $) 99) (($ $) 93 (|has| (-133) (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1641 (((-133) $ (-523) (-133)) 52 (|has| $ (-6 -4245))) (((-133) $ (-1135 (-523)) (-133)) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-133)) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-4123 (($ $ (-133)) 104) (($ $ (-130)) 103)) (-2867 (($ $) 90 (|has| $ (-6 -4245)))) (-3631 (($ $) 100)) (-2129 (($ $ (-1135 (-523)) $) 114)) (-1773 (($ $) 78 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ (-133) $) 77 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) (-133)) $) 74 (|has| $ (-6 -4244)))) (-2437 (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) 76 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244)))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) 73 (|has| $ (-6 -4244))) (((-133) (-1 (-133) (-133) (-133)) $) 72 (|has| $ (-6 -4244)))) (-2863 (((-133) $ (-523) (-133)) 53 (|has| $ (-6 -4245)))) (-2795 (((-133) $ (-523)) 51)) (-1569 (((-108) $ $) 119)) (-1479 (((-523) (-1 (-108) (-133)) $) 97) (((-523) (-133) $) 96 (|has| (-133) (-1016))) (((-523) (-133) $ (-523)) 95 (|has| (-133) (-1016))) (((-523) $ $ (-523)) 113) (((-523) (-130) $ (-523)) 112)) (-1666 (((-589 (-133)) $) 30 (|has| $ (-6 -4244)))) (-3052 (($ (-710) (-133)) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 87 (|has| (-133) (-786)))) (-2178 (($ (-1 (-108) (-133) (-133)) $ $) 101) (($ $ $) 94 (|has| (-133) (-786)))) (-2136 (((-589 (-133)) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) (-133) $) 27 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 86 (|has| (-133) (-786)))) (-2599 (((-108) $ $ (-133)) 115)) (-1547 (((-710) $ $ (-133)) 116)) (-2852 (($ (-1 (-133) (-133)) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-133) (-133)) $) 35) (($ (-1 (-133) (-133) (-133)) $ $) 64)) (-2858 (($ $) 122)) (-2674 (($ $) 123)) (-2866 (((-108) $ (-710)) 10)) (-4133 (($ $ (-133)) 106) (($ $ (-130)) 105)) (-3779 (((-1070) $) 22 (|has| (-133) (-1016)))) (-2847 (($ (-133) $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| (-133) (-1016)))) (-1738 (((-133) $) 42 (|has| (-523) (-786)))) (-2114 (((-3 (-133) "failed") (-1 (-108) (-133)) $) 71)) (-4203 (($ $ (-133)) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-133)) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-133)))) 26 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) 25 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) 24 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-133)) (-589 (-133))) 23 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) (-133) $) 45 (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-1264 (((-589 (-133)) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 (((-133) $ (-523) (-133)) 50) (((-133) $ (-523)) 49) (($ $ (-1135 (-523))) 63) (($ $ $) 102)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2792 (((-710) (-1 (-108) (-133)) $) 31 (|has| $ (-6 -4244))) (((-710) (-133) $) 28 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 91 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| (-133) (-564 (-499))))) (-1472 (($ (-589 (-133))) 70)) (-2326 (($ $ (-133)) 68) (($ (-133) $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (($ (-133)) 111) (((-794) $) 18 (|has| (-133) (-563 (-794))))) (-2096 (((-108) (-1 (-108) (-133)) $) 33 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 84 (|has| (-133) (-786)))) (-4019 (((-108) $ $) 83 (|has| (-133) (-786)))) (-3983 (((-108) $ $) 20 (|has| (-133) (-1016)))) (-4030 (((-108) $ $) 85 (|has| (-133) (-786)))) (-4007 (((-108) $ $) 82 (|has| (-133) (-786)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-2771 (*1 *1 *1) (-4 *1 (-1051))) (-2823 (*1 *1 *1) (-4 *1 (-1051))) (-3083 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3357 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2842 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3789 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2846 (*1 *1 *1 *1) (-4 *1 (-1051))) (-1960 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2370 (*1 *1 *1) (-4 *1 (-1051))) (-4056 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2846 (*1 *1 *1) (-4 *1 (-1051))) (-2695 (*1 *1 *1) (-4 *1 (-1051)))) +(-13 (-10 -8 (-15 -2695 ($ $)) (-15 -2846 ($ $)) (-15 -4056 ($ $ $)) (-15 -2370 ($ $)) (-15 -1960 ($ $ $)) (-15 -2846 ($ $ $)) (-15 -3789 ($ $ $)) (-15 -2842 ($ $ $)) (-15 -3357 ($ $ $)) (-15 -3083 ($ $ $)) (-15 -2823 ($ $)) (-15 -2771 ($ $)))) +((-1680 (((-108) $ $) 41)) (-3370 ((|#1| $) 15)) (-3494 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-3186 (((-108) $) 17)) (-1598 (($ $ |#1|) 28)) (-1335 (($ $ (-108)) 30)) (-3293 (($ $) 31)) (-2334 (($ $ |#2|) 29)) (-2032 (((-1070) $) NIL)) (-1208 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-3951 (((-1034) $) NIL)) (-1777 (((-108) $) 14)) (-3320 (($) 10)) (-1874 (($ $) 27)) (-1704 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3643 |#2|))) 21) (((-589 $) (-589 (-2 (|:| |val| |#1|) (|:| -3643 |#2|)))) 24) (((-589 $) |#1| (-589 |#2|)) 26)) (-2579 ((|#2| $) 16)) (-1691 (((-794) $) 50)) (-3941 (((-108) $ $) 39))) +(((-1052 |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -3320 ($)) (-15 -1777 ((-108) $)) (-15 -3370 (|#1| $)) (-15 -2579 (|#2| $)) (-15 -3186 ((-108) $)) (-15 -1704 ($ |#1| |#2| (-108))) (-15 -1704 ($ |#1| |#2|)) (-15 -1704 ($ (-2 (|:| |val| |#1|) (|:| -3643 |#2|)))) (-15 -1704 ((-589 $) (-589 (-2 (|:| |val| |#1|) (|:| -3643 |#2|))))) (-15 -1704 ((-589 $) |#1| (-589 |#2|))) (-15 -1874 ($ $)) (-15 -1598 ($ $ |#1|)) (-15 -2334 ($ $ |#2|)) (-15 -1335 ($ $ (-108))) (-15 -3293 ($ $)) (-15 -1208 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -3494 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1016) (-33)) (-13 (-1016) (-33))) (T -1052)) +((-3320 (*1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-3370 (*1 *2 *1) (-12 (-4 *2 (-13 (-1016) (-33))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-13 (-1016) (-33))))) (-2579 (*1 *2 *1) (-12 (-4 *2 (-13 (-1016) (-33))) (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1016) (-33))))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-1704 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1704 (*1 *1 *2 *3) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1704 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3643 *4))) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1052 *3 *4)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| |val| *4) (|:| -3643 *5)))) (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-589 (-1052 *4 *5))) (-5 *1 (-1052 *4 *5)))) (-1704 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *5)) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-589 (-1052 *3 *5))) (-5 *1 (-1052 *3 *5)) (-4 *3 (-13 (-1016) (-33))))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1598 (*1 *1 *1 *2) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-2334 (*1 *1 *1 *2) (-12 (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1016) (-33))) (-4 *2 (-13 (-1016) (-33))))) (-1335 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-3293 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1208 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1016) (-33))) (-4 *6 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1052 *5 *6)))) (-3494 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1052 *4 *5)) (-4 *4 (-13 (-1016) (-33)))))) +(-13 (-1016) (-10 -8 (-15 -3320 ($)) (-15 -1777 ((-108) $)) (-15 -3370 (|#1| $)) (-15 -2579 (|#2| $)) (-15 -3186 ((-108) $)) (-15 -1704 ($ |#1| |#2| (-108))) (-15 -1704 ($ |#1| |#2|)) (-15 -1704 ($ (-2 (|:| |val| |#1|) (|:| -3643 |#2|)))) (-15 -1704 ((-589 $) (-589 (-2 (|:| |val| |#1|) (|:| -3643 |#2|))))) (-15 -1704 ((-589 $) |#1| (-589 |#2|))) (-15 -1874 ($ $)) (-15 -1598 ($ $ |#1|)) (-15 -2334 ($ $ |#2|)) (-15 -1335 ($ $ (-108))) (-15 -3293 ($ $)) (-15 -1208 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -3494 ((-108) $ $ (-1 (-108) |#2| |#2|))))) +((-1680 (((-108) $ $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-3370 (((-1052 |#1| |#2|) $) 25)) (-2871 (($ $) 76)) (-1289 (((-108) (-1052 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-2648 (($ $ $ (-589 (-1052 |#1| |#2|))) 90) (($ $ $ (-589 (-1052 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-1620 (((-108) $ (-710)) NIL)) (-1487 (((-1052 |#1| |#2|) $ (-1052 |#1| |#2|)) 43 (|has| $ (-6 -4249)))) (-1849 (((-1052 |#1| |#2|) $ "value" (-1052 |#1| |#2|)) NIL (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) 41 (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-2658 (((-589 (-2 (|:| |val| |#1|) (|:| -3643 |#2|))) $) 80)) (-3286 (($ (-1052 |#1| |#2|) $) 39)) (-2514 (($ (-1052 |#1| |#2|) $) 31)) (-1871 (((-589 (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) 51)) (-2645 (((-108) (-1052 |#1| |#2|) $) 82)) (-3675 (((-108) $ $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 (-1052 |#1| |#2|)) $) 55 (|has| $ (-6 -4248)))) (-3423 (((-108) (-1052 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-1052 |#1| |#2|) (-1016))))) (-2043 (($ (-1 (-1052 |#1| |#2|) (-1052 |#1| |#2|)) $) 47 (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-1052 |#1| |#2|) (-1052 |#1| |#2|)) $) 46)) (-1418 (((-108) $ (-710)) NIL)) (-1701 (((-589 (-1052 |#1| |#2|)) $) 53)) (-1799 (((-108) $) 42)) (-2032 (((-1070) $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-3951 (((-1034) $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-4042 (((-3 $ "failed") $) 75)) (-3379 (((-108) (-1 (-108) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-1052 |#1| |#2|)))) NIL (-12 (|has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1016)))) (($ $ (-271 (-1052 |#1| |#2|))) NIL (-12 (|has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1016)))) (($ $ (-1052 |#1| |#2|) (-1052 |#1| |#2|)) NIL (-12 (|has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1016)))) (($ $ (-589 (-1052 |#1| |#2|)) (-589 (-1052 |#1| |#2|))) NIL (-12 (|has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1016))))) (-2267 (((-108) $ $) 50)) (-1777 (((-108) $) 22)) (-3320 (($) 24)) (-1937 (((-1052 |#1| |#2|) $ "value") NIL)) (-3766 (((-523) $ $) NIL)) (-1221 (((-108) $) 44)) (-3977 (((-710) (-1 (-108) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -4248))) (((-710) (-1052 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-1052 |#1| |#2|) (-1016))))) (-1874 (($ $) 49)) (-1704 (($ (-1052 |#1| |#2|)) 9) (($ |#1| |#2| (-589 $)) 12) (($ |#1| |#2| (-589 (-1052 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-589 |#2|)) 17)) (-2167 (((-589 |#2|) $) 81)) (-1691 (((-794) $) 73 (|has| (-1052 |#1| |#2|) (-563 (-794))))) (-2612 (((-589 $) $) 28)) (-3313 (((-108) $ $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-2308 (((-108) (-1 (-108) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 64 (|has| (-1052 |#1| |#2|) (-1016)))) (-2810 (((-710) $) 58 (|has| $ (-6 -4248))))) +(((-1053 |#1| |#2|) (-13 (-938 (-1052 |#1| |#2|)) (-10 -8 (-6 -4249) (-6 -4248) (-15 -4042 ((-3 $ "failed") $)) (-15 -2871 ($ $)) (-15 -1704 ($ (-1052 |#1| |#2|))) (-15 -1704 ($ |#1| |#2| (-589 $))) (-15 -1704 ($ |#1| |#2| (-589 (-1052 |#1| |#2|)))) (-15 -1704 ($ |#1| |#2| |#1| (-589 |#2|))) (-15 -2167 ((-589 |#2|) $)) (-15 -2658 ((-589 (-2 (|:| |val| |#1|) (|:| -3643 |#2|))) $)) (-15 -2645 ((-108) (-1052 |#1| |#2|) $)) (-15 -1289 ((-108) (-1052 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2514 ($ (-1052 |#1| |#2|) $)) (-15 -3286 ($ (-1052 |#1| |#2|) $)) (-15 -2648 ($ $ $ (-589 (-1052 |#1| |#2|)))) (-15 -2648 ($ $ $ (-589 (-1052 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1016) (-33)) (-13 (-1016) (-33))) (T -1053)) +((-4042 (*1 *1 *1) (|partial| -12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-2871 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1704 (*1 *1 *2) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) (-1704 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-589 (-1053 *2 *3))) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1704 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-589 (-1052 *2 *3))) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))) (-5 *1 (-1053 *2 *3)))) (-1704 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-13 (-1016) (-33))) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))))) (-2167 (*1 *2 *1) (-12 (-5 *2 (-589 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-2645 (*1 *2 *3 *1) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1053 *4 *5)))) (-1289 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1052 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1016) (-33))) (-4 *6 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1053 *5 *6)))) (-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) (-3286 (*1 *1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) (-2648 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-589 (-1052 *3 *4))) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) (-2648 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1052 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) (-5 *1 (-1053 *4 *5))))) +(-13 (-938 (-1052 |#1| |#2|)) (-10 -8 (-6 -4249) (-6 -4248) (-15 -4042 ((-3 $ "failed") $)) (-15 -2871 ($ $)) (-15 -1704 ($ (-1052 |#1| |#2|))) (-15 -1704 ($ |#1| |#2| (-589 $))) (-15 -1704 ($ |#1| |#2| (-589 (-1052 |#1| |#2|)))) (-15 -1704 ($ |#1| |#2| |#1| (-589 |#2|))) (-15 -2167 ((-589 |#2|) $)) (-15 -2658 ((-589 (-2 (|:| |val| |#1|) (|:| -3643 |#2|))) $)) (-15 -2645 ((-108) (-1052 |#1| |#2|) $)) (-15 -1289 ((-108) (-1052 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2514 ($ (-1052 |#1| |#2|) $)) (-15 -3286 ($ (-1052 |#1| |#2|) $)) (-15 -2648 ($ $ $ (-589 (-1052 |#1| |#2|)))) (-15 -2648 ($ $ $ (-589 (-1052 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-4005 (($ $) NIL)) (-1477 ((|#2| $) NIL)) (-3735 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2131 (($ (-629 |#2|)) 47)) (-2989 (((-108) $) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1979 (($ |#2|) 9)) (-4189 (($) NIL T CONST)) (-1678 (($ $) 60 (|has| |#2| (-284)))) (-2827 (((-218 |#1| |#2|) $ (-523)) 33)) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 |#2| "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) ((|#2| $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) 74)) (-3569 (((-710) $) 62 (|has| |#2| (-515)))) (-2000 ((|#2| $ (-523) (-523)) NIL)) (-1871 (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-2769 (((-108) $) NIL)) (-1835 (((-710) $) 64 (|has| |#2| (-515)))) (-2454 (((-589 (-218 |#1| |#2|)) $) 68 (|has| |#2| (-515)))) (-1357 (((-710) $) NIL)) (-1370 (((-710) $) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-4224 ((|#2| $) 58 (|has| |#2| (-6 (-4250 "*"))))) (-1665 (((-523) $) NIL)) (-2082 (((-523) $) NIL)) (-1584 (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3231 (((-523) $) NIL)) (-3060 (((-523) $) NIL)) (-3648 (($ (-589 (-589 |#2|))) 28)) (-2043 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3692 (((-589 (-589 |#2|)) $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-3713 (((-3 $ "failed") $) 71 (|has| |#2| (-339)))) (-3951 (((-1034) $) NIL)) (-4007 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515)))) (-3379 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#2| $ (-523) (-523) |#2|) NIL) ((|#2| $ (-523) (-523)) NIL)) (-3984 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-2218 ((|#2| $) NIL)) (-2870 (($ (-589 |#2|)) 42)) (-1956 (((-108) $) NIL)) (-3326 (((-218 |#1| |#2|) $) NIL)) (-2736 ((|#2| $) 56 (|has| |#2| (-6 (-4250 "*"))))) (-3977 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-1874 (($ $) NIL)) (-1400 (((-499) $) 83 (|has| |#2| (-564 (-499))))) (-1249 (((-218 |#1| |#2|) $ (-523)) 35)) (-1691 (((-794) $) 38) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#2| (-964 (-383 (-523))))) (($ |#2|) NIL) (((-629 |#2|) $) 44)) (-3272 (((-710)) 17)) (-2308 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-3749 (((-108) $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 11 T CONST)) (-1891 (($) 14 T CONST)) (-2909 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) 54) (($ $ (-523)) 73 (|has| |#2| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-218 |#1| |#2|) $ (-218 |#1| |#2|)) 50) (((-218 |#1| |#2|) (-218 |#1| |#2|) $) 52)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-1054 |#1| |#2|) (-13 (-1037 |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) (-563 (-629 |#2|)) (-10 -8 (-15 -4005 ($ $)) (-15 -2131 ($ (-629 |#2|))) (-15 -1691 ((-629 |#2|) $)) (IF (|has| |#2| (-6 (-4250 "*"))) (-6 -4237) |%noBranch|) (IF (|has| |#2| (-6 (-4250 "*"))) (IF (|has| |#2| (-6 -4245)) (-6 -4245) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) (-710) (-973)) (T -1054)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-629 *4)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-710)) (-4 *4 (-973)))) (-4005 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-14 *2 (-710)) (-4 *3 (-973)))) (-2131 (*1 *1 *2) (-12 (-5 *2 (-629 *4)) (-4 *4 (-973)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-710))))) +(-13 (-1037 |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) (-563 (-629 |#2|)) (-10 -8 (-15 -4005 ($ $)) (-15 -2131 ($ (-629 |#2|))) (-15 -1691 ((-629 |#2|) $)) (IF (|has| |#2| (-6 (-4250 "*"))) (-6 -4237) |%noBranch|) (IF (|has| |#2| (-6 (-4250 "*"))) (IF (|has| |#2| (-6 -4245)) (-6 -4245) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) +((-3137 (($ $) 19)) (-3214 (($ $ (-133)) 10) (($ $ (-130)) 14)) (-2164 (((-108) $ $) 24)) (-2052 (($ $) 17)) (-1937 (((-133) $ (-523) (-133)) NIL) (((-133) $ (-523)) NIL) (($ $ (-1136 (-523))) NIL) (($ $ $) 29)) (-1691 (($ (-133)) 27) (((-794) $) NIL))) +(((-1055 |#1|) (-10 -8 (-15 -1691 ((-794) |#1|)) (-15 -1937 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| (-130))) (-15 -3214 (|#1| |#1| (-133))) (-15 -1691 (|#1| (-133))) (-15 -2164 ((-108) |#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -2052 (|#1| |#1|)) (-15 -1937 (|#1| |#1| (-1136 (-523)))) (-15 -1937 ((-133) |#1| (-523))) (-15 -1937 ((-133) |#1| (-523) (-133)))) (-1056)) (T -1055)) +NIL +(-10 -8 (-15 -1691 ((-794) |#1|)) (-15 -1937 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| (-130))) (-15 -3214 (|#1| |#1| (-133))) (-15 -1691 (|#1| (-133))) (-15 -2164 ((-108) |#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -2052 (|#1| |#1|)) (-15 -1937 (|#1| |#1| (-1136 (-523)))) (-15 -1937 ((-133) |#1| (-523))) (-15 -1937 ((-133) |#1| (-523) (-133)))) +((-1680 (((-108) $ $) 19 (|has| (-133) (-1016)))) (-2458 (($ $) 120)) (-3137 (($ $) 121)) (-3214 (($ $ (-133)) 108) (($ $ (-130)) 107)) (-4191 (((-1174) $ (-523) (-523)) 40 (|has| $ (-6 -4249)))) (-2141 (((-108) $ $) 118)) (-2119 (((-108) $ $ (-523)) 117)) (-1980 (((-589 $) $ (-133)) 110) (((-589 $) $ (-130)) 109)) (-3337 (((-108) (-1 (-108) (-133) (-133)) $) 98) (((-108) $) 92 (|has| (-133) (-786)))) (-1632 (($ (-1 (-108) (-133) (-133)) $) 89 (|has| $ (-6 -4249))) (($ $) 88 (-12 (|has| (-133) (-786)) (|has| $ (-6 -4249))))) (-1581 (($ (-1 (-108) (-133) (-133)) $) 99) (($ $) 93 (|has| (-133) (-786)))) (-1620 (((-108) $ (-710)) 8)) (-1849 (((-133) $ (-523) (-133)) 52 (|has| $ (-6 -4249))) (((-133) $ (-1136 (-523)) (-133)) 58 (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) (-133)) $) 75 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-1300 (($ $ (-133)) 104) (($ $ (-130)) 103)) (-1426 (($ $) 90 (|has| $ (-6 -4249)))) (-3700 (($ $) 100)) (-1694 (($ $ (-1136 (-523)) $) 114)) (-2462 (($ $) 78 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ (-133) $) 77 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) (-133)) $) 74 (|has| $ (-6 -4248)))) (-2116 (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) 76 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4248)))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) 73 (|has| $ (-6 -4248))) (((-133) (-1 (-133) (-133) (-133)) $) 72 (|has| $ (-6 -4248)))) (-2053 (((-133) $ (-523) (-133)) 53 (|has| $ (-6 -4249)))) (-2000 (((-133) $ (-523)) 51)) (-2164 (((-108) $ $) 119)) (-3449 (((-523) (-1 (-108) (-133)) $) 97) (((-523) (-133) $) 96 (|has| (-133) (-1016))) (((-523) (-133) $ (-523)) 95 (|has| (-133) (-1016))) (((-523) $ $ (-523)) 113) (((-523) (-130) $ (-523)) 112)) (-1871 (((-589 (-133)) $) 30 (|has| $ (-6 -4248)))) (-3733 (($ (-710) (-133)) 69)) (-3051 (((-108) $ (-710)) 9)) (-2965 (((-523) $) 43 (|has| (-523) (-786)))) (-3239 (($ $ $) 87 (|has| (-133) (-786)))) (-3780 (($ (-1 (-108) (-133) (-133)) $ $) 101) (($ $ $) 94 (|has| (-133) (-786)))) (-1584 (((-589 (-133)) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) (-133) $) 27 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 44 (|has| (-523) (-786)))) (-3158 (($ $ $) 86 (|has| (-133) (-786)))) (-2676 (((-108) $ $ (-133)) 115)) (-2178 (((-710) $ $ (-133)) 116)) (-2043 (($ (-1 (-133) (-133)) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-133) (-133)) $) 35) (($ (-1 (-133) (-133) (-133)) $ $) 64)) (-1353 (($ $) 122)) (-2052 (($ $) 123)) (-1418 (((-108) $ (-710)) 10)) (-1313 (($ $ (-133)) 106) (($ $ (-130)) 105)) (-2032 (((-1070) $) 22 (|has| (-133) (-1016)))) (-2912 (($ (-133) $ (-523)) 60) (($ $ $ (-523)) 59)) (-2536 (((-589 (-523)) $) 46)) (-2254 (((-108) (-523) $) 47)) (-3951 (((-1034) $) 21 (|has| (-133) (-1016)))) (-2428 (((-133) $) 42 (|has| (-523) (-786)))) (-2509 (((-3 (-133) "failed") (-1 (-108) (-133)) $) 71)) (-4141 (($ $ (-133)) 41 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) (-133)) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-133)))) 26 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) 25 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) 24 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-133)) (-589 (-133))) 23 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) (-133) $) 45 (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-3973 (((-589 (-133)) $) 48)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 (((-133) $ (-523) (-133)) 50) (((-133) $ (-523)) 49) (($ $ (-1136 (-523))) 63) (($ $ $) 102)) (-1499 (($ $ (-523)) 62) (($ $ (-1136 (-523))) 61)) (-3977 (((-710) (-1 (-108) (-133)) $) 31 (|has| $ (-6 -4248))) (((-710) (-133) $) 28 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4248))))) (-4166 (($ $ $ (-523)) 91 (|has| $ (-6 -4249)))) (-1874 (($ $) 13)) (-1400 (((-499) $) 79 (|has| (-133) (-564 (-499))))) (-1704 (($ (-589 (-133))) 70)) (-2394 (($ $ (-133)) 68) (($ (-133) $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1691 (($ (-133)) 111) (((-794) $) 18 (|has| (-133) (-563 (-794))))) (-2308 (((-108) (-1 (-108) (-133)) $) 33 (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) 84 (|has| (-133) (-786)))) (-3980 (((-108) $ $) 83 (|has| (-133) (-786)))) (-3941 (((-108) $ $) 20 (|has| (-133) (-1016)))) (-3993 (((-108) $ $) 85 (|has| (-133) (-786)))) (-3966 (((-108) $ $) 82 (|has| (-133) (-786)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-1056) (-129)) (T -1056)) -((-2674 (*1 *1 *1) (-4 *1 (-1056))) (-2858 (*1 *1 *1) (-4 *1 (-1056))) (-1303 (*1 *1 *1) (-4 *1 (-1056))) (-2109 (*1 *1 *1) (-4 *1 (-1056))) (-1569 (*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-108)))) (-1545 (*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-108)))) (-1521 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-523)) (-5 *2 (-108)))) (-1547 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-133)) (-5 *2 (-710)))) (-2599 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-133)) (-5 *2 (-108)))) (-2129 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-1135 (-523))))) (-1479 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-523)))) (-1479 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-523)) (-5 *3 (-130)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-133)) (-4 *1 (-1056)))) (-2063 (*1 *2 *1 *3) (-12 (-5 *3 (-133)) (-5 *2 (-589 *1)) (-4 *1 (-1056)))) (-2063 (*1 *2 *1 *3) (-12 (-5 *3 (-130)) (-5 *2 (-589 *1)) (-4 *1 (-1056)))) (-2874 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133)))) (-2874 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) (-4133 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133)))) (-4133 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) (-4123 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133)))) (-4123 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) (-3223 (*1 *1 *1 *1) (-4 *1 (-1056)))) -(-13 (-19 (-133)) (-10 -8 (-15 -2674 ($ $)) (-15 -2858 ($ $)) (-15 -1303 ($ $)) (-15 -2109 ($ $)) (-15 -1569 ((-108) $ $)) (-15 -1545 ((-108) $ $)) (-15 -1521 ((-108) $ $ (-523))) (-15 -1547 ((-710) $ $ (-133))) (-15 -2599 ((-108) $ $ (-133))) (-15 -2129 ($ $ (-1135 (-523)) $)) (-15 -1479 ((-523) $ $ (-523))) (-15 -1479 ((-523) (-130) $ (-523))) (-15 -1458 ($ (-133))) (-15 -2063 ((-589 $) $ (-133))) (-15 -2063 ((-589 $) $ (-130))) (-15 -2874 ($ $ (-133))) (-15 -2874 ($ $ (-130))) (-15 -4133 ($ $ (-133))) (-15 -4133 ($ $ (-130))) (-15 -4123 ($ $ (-133))) (-15 -4123 ($ $ (-130))) (-15 -3223 ($ $ $)))) -(((-33) . T) ((-97) -3262 (|has| (-133) (-1016)) (|has| (-133) (-786))) ((-563 (-794)) -3262 (|has| (-133) (-1016)) (|has| (-133) (-786)) (|has| (-133) (-563 (-794)))) ((-140 #0=(-133)) . T) ((-564 (-499)) |has| (-133) (-564 (-499))) ((-263 #1=(-523) #0#) . T) ((-265 #1# #0#) . T) ((-286 #0#) -12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))) ((-349 #0#) . T) ((-462 #0#) . T) ((-556 #1# #0#) . T) ((-484 #0# #0#) -12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))) ((-594 #0#) . T) ((-19 #0#) . T) ((-786) |has| (-133) (-786)) ((-1016) -3262 (|has| (-133) (-1016)) (|has| (-133) (-786))) ((-1122) . T)) -((-3980 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-710)) 94)) (-2944 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710)) 53)) (-3431 (((-1173) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-710)) 85)) (-2770 (((-710) (-589 |#4|) (-589 |#5|)) 27)) (-1312 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710)) 55) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710) (-108)) 57)) (-2274 (((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108)) 77)) (-3663 (((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) 80)) (-1827 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|) 52)) (-1417 (((-710) (-589 |#4|) (-589 |#5|)) 19))) -(((-1057 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1417 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -2770 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1827 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710) (-108))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3980 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-710))) (-15 -3663 ((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -3431 ((-1173) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-710)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-1025 |#1| |#2| |#3| |#4|)) (T -1057)) -((-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) (-5 *4 (-710)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-1173)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-1025 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1070)) (-5 *1 (-1057 *4 *5 *6 *7 *8)))) (-3980 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-589 *11)) (|:| |todo| (-589 (-2 (|:| |val| *3) (|:| -3072 *11)))))) (-5 *6 (-710)) (-5 *2 (-589 (-2 (|:| |val| (-589 *10)) (|:| -3072 *11)))) (-5 *3 (-589 *10)) (-5 *4 (-589 *11)) (-4 *10 (-987 *7 *8 *9)) (-4 *11 (-1025 *7 *8 *9 *10)) (-4 *7 (-427)) (-4 *8 (-732)) (-4 *9 (-786)) (-5 *1 (-1057 *7 *8 *9 *10 *11)))) (-2274 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-2274 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-1312 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3)))) (-1312 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1025 *6 *7 *8 *3)))) (-1312 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-710)) (-5 *6 (-108)) (-4 *7 (-427)) (-4 *8 (-732)) (-4 *9 (-786)) (-4 *3 (-987 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1025 *7 *8 *9 *3)))) (-2944 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3)))) (-2944 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1025 *6 *7 *8 *3)))) (-1827 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-1417 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1417 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -2770 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1827 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710) (-108))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3980 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-710))) (-15 -3663 ((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -3431 ((-1173) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-710)))) -((-3924 (((-108) $ $) NIL)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) NIL)) (-3846 (((-589 $) (-589 |#4|)) 110) (((-589 $) (-589 |#4|) (-108)) 111) (((-589 $) (-589 |#4|) (-108) (-108)) 109) (((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108)) 112)) (-1957 (((-589 |#3|) $) NIL)) (-2100 (((-108) $) NIL)) (-2376 (((-108) $) NIL (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2308 ((|#4| |#4| $) NIL)) (-2291 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| $) 84)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-3724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 62)) (-2518 (($) NIL T CONST)) (-3595 (((-108) $) 26 (|has| |#1| (-515)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3225 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3393 (((-108) $) NIL (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3956 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) NIL)) (-3474 (($ (-589 |#4|)) NIL)) (-1751 (((-3 $ "failed") $) 39)) (-4014 ((|#4| |#4| $) 65)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2557 (($ |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2636 ((|#4| |#4| $) NIL)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) NIL)) (-2005 (((-108) |#4| $) NIL)) (-3785 (((-108) |#4| $) NIL)) (-1944 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3591 (((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108)) 124)) (-1666 (((-589 |#4|) $) 16 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2907 ((|#3| $) 33)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#4|) $) 17 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2852 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 21)) (-4055 (((-589 |#3|) $) NIL)) (-1357 (((-108) |#3| $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-3246 (((-3 |#4| (-589 $)) |#4| |#4| $) NIL)) (-1611 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| |#4| $) 103)) (-2579 (((-3 |#4| "failed") $) 37)) (-2668 (((-589 $) |#4| $) 88)) (-3320 (((-3 (-108) (-589 $)) |#4| $) NIL)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-1309 (((-589 $) |#4| $) 107) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) 108) (((-589 $) |#4| (-589 $)) NIL)) (-3085 (((-589 $) (-589 |#4|) (-108) (-108) (-108)) 119)) (-1770 (($ |#4| $) 75) (($ (-589 |#4|) $) 76) (((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-2404 (((-589 |#4|) $) NIL)) (-2112 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2648 ((|#4| |#4| $) NIL)) (-2391 (((-108) $ $) NIL)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1398 ((|#4| |#4| $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-3 |#4| "failed") $) 35)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2890 (((-3 $ "failed") $ |#4|) 48)) (-4097 (($ $ |#4|) NIL) (((-589 $) |#4| $) 90) (((-589 $) |#4| (-589 $)) NIL) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) 86)) (-1327 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 15)) (-3988 (($) 13)) (-2299 (((-710) $) NIL)) (-2792 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) 12)) (-3663 (((-499) $) NIL (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 20)) (-2621 (($ $ |#3|) 42)) (-2624 (($ $ |#3|) 44)) (-1824 (($ $) NIL)) (-3076 (($ $ |#3|) NIL)) (-1458 (((-794) $) 31) (((-589 |#4|) $) 40)) (-1395 (((-710) $) NIL (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) NIL)) (-3910 (((-589 $) |#4| $) 54) (((-589 $) |#4| (-589 $)) NIL) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) NIL)) (-2096 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) NIL)) (-4062 (((-108) |#4| $) NIL)) (-2153 (((-108) |#3| $) 61)) (-3983 (((-108) $ $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-1058 |#1| |#2| |#3| |#4|) (-13 (-1025 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1770 ((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108))) (-15 -3085 ((-589 $) (-589 |#4|) (-108) (-108) (-108))) (-15 -3591 ((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108))))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -1058)) -((-1770 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) (-4 *3 (-987 *5 *6 *7)))) (-3846 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3846 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3085 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3591 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-589 *8)) (|:| |towers| (-589 (-1058 *5 *6 *7 *8))))) (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) -(-13 (-1025 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1770 ((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108))) (-15 -3085 ((-589 $) (-589 |#4|) (-108) (-108) (-108))) (-15 -3591 ((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108))))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3125 ((|#1| $) 34)) (-3567 (($ (-589 |#1|)) 39)) (-3079 (((-108) $ (-710)) NIL)) (-2518 (($) NIL T CONST)) (-3845 ((|#1| |#1| $) 36)) (-2085 ((|#1| $) 32)) (-1666 (((-589 |#1|) $) 18 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 22)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1934 ((|#1| $) 35)) (-3450 (($ |#1| $) 37)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3761 ((|#1| $) 33)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 31)) (-3988 (($) 38)) (-1583 (((-710) $) 29)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 27)) (-1458 (((-794) $) 14 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) NIL)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 17 (|has| |#1| (-1016)))) (-2676 (((-710) $) 30 (|has| $ (-6 -4244))))) -(((-1059 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -3567 ($ (-589 |#1|))))) (-1122)) (T -1059)) -((-3567 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1059 *3))))) -(-13 (-1035 |#1|) (-10 -8 (-15 -3567 ($ (-589 |#1|))))) -((-1641 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1135 (-523)) |#2|) 44) ((|#2| $ (-523) |#2|) 41)) (-1232 (((-108) $) 12)) (-2852 (($ (-1 |#2| |#2|) $) 39)) (-1738 ((|#2| $) NIL) (($ $ (-710)) 17)) (-4203 (($ $ |#2|) 40)) (-2402 (((-108) $) 11)) (-3223 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1135 (-523))) 31) ((|#2| $ (-523)) 23) ((|#2| $ (-523) |#2|) NIL)) (-1746 (($ $ $) 47) (($ $ |#2|) NIL)) (-2326 (($ $ $) 33) (($ |#2| $) NIL) (($ (-589 $)) 36) (($ $ |#2|) NIL))) -(((-1060 |#1| |#2|) (-10 -8 (-15 -1232 ((-108) |#1|)) (-15 -2402 ((-108) |#1|)) (-15 -1641 (|#2| |#1| (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523))) (-15 -4203 (|#1| |#1| |#2|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -2326 (|#1| (-589 |#1|))) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -1641 (|#2| |#1| (-1135 (-523)) |#2|)) (-15 -1641 (|#2| |#1| "last" |#2|)) (-15 -1641 (|#1| |#1| "rest" |#1|)) (-15 -1641 (|#2| |#1| "first" |#2|)) (-15 -1746 (|#1| |#1| |#2|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -3223 (|#2| |#1| "last")) (-15 -3223 (|#1| |#1| "rest")) (-15 -1738 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "first")) (-15 -1738 (|#2| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#1|)) (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -3223 (|#2| |#1| "value")) (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|))) (-1061 |#2|) (-1122)) (T -1060)) -NIL -(-10 -8 (-15 -1232 ((-108) |#1|)) (-15 -2402 ((-108) |#1|)) (-15 -1641 (|#2| |#1| (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523))) (-15 -4203 (|#1| |#1| |#2|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -2326 (|#1| (-589 |#1|))) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -1641 (|#2| |#1| (-1135 (-523)) |#2|)) (-15 -1641 (|#2| |#1| "last" |#2|)) (-15 -1641 (|#1| |#1| "rest" |#1|)) (-15 -1641 (|#2| |#1| "first" |#2|)) (-15 -1746 (|#1| |#1| |#2|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -3223 (|#2| |#1| "last")) (-15 -3223 (|#1| |#1| "rest")) (-15 -1738 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "first")) (-15 -1738 (|#2| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#1|)) (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -3223 (|#2| |#1| "value")) (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-1546 ((|#1| $) 65)) (-4039 (($ $) 67)) (-4207 (((-1173) $ (-523) (-523)) 97 (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) 52 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-2110 (($ $ $) 56 (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) 54 (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) 58 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4245))) (($ $ "rest" $) 55 (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 117 (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) 86 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4244)))) (-1532 ((|#1| $) 66)) (-2518 (($) 7 T CONST)) (-1751 (($ $) 73) (($ $ (-710)) 71)) (-1773 (($ $) 99 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4244))) (($ |#1| $) 100 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2863 ((|#1| $ (-523) |#1|) 85 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 87)) (-1232 (((-108) $) 83)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-3052 (($ (-710) |#1|) 108)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 95 (|has| (-523) (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 94 (|has| (-523) (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2579 ((|#1| $) 70) (($ $ (-710)) 68)) (-2847 (($ $ $ (-523)) 116) (($ |#1| $ (-523)) 115)) (-2412 (((-589 (-523)) $) 92)) (-4135 (((-108) (-523) $) 91)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 76) (($ $ (-710)) 74)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-4203 (($ $ |#1|) 96 (|has| $ (-6 -4245)))) (-2402 (((-108) $) 84)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 90)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1135 (-523))) 112) ((|#1| $ (-523)) 89) ((|#1| $ (-523) |#1|) 88)) (-1549 (((-523) $ $) 44)) (-1469 (($ $ (-1135 (-523))) 114) (($ $ (-523)) 113)) (-2524 (((-108) $) 46)) (-2732 (($ $) 62)) (-2363 (($ $) 59 (|has| $ (-6 -4245)))) (-2316 (((-710) $) 63)) (-3562 (($ $) 64)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 98 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 107)) (-1746 (($ $ $) 61 (|has| $ (-6 -4245))) (($ $ |#1|) 60 (|has| $ (-6 -4245)))) (-2326 (($ $ $) 78) (($ |#1| $) 77) (($ (-589 $)) 110) (($ $ |#1|) 109)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-1061 |#1|) (-129) (-1122)) (T -1061)) -((-2402 (*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) (-1232 (*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1122)) (-5 *2 (-108))))) -(-13 (-1156 |t#1|) (-594 |t#1|) (-10 -8 (-15 -2402 ((-108) $)) (-15 -1232 ((-108) $)))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1122) . T) ((-1156 |#1|) . T)) -((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#2| $ |#1| |#2|) NIL)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) NIL)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1330 (((-589 |#1|) $) NIL)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2412 (((-589 |#1|) $) NIL)) (-4135 (((-108) |#1| $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-1062 |#1| |#2| |#3|) (-1099 |#1| |#2|) (-1016) (-1016) |#2|) (T -1062)) -NIL -(-1099 |#1| |#2|) -((-3924 (((-108) $ $) 7)) (-4058 (((-3 $ "failed") $) 13)) (-3779 (((-1070) $) 9)) (-2262 (($) 14 T CONST)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +((-2052 (*1 *1 *1) (-4 *1 (-1056))) (-1353 (*1 *1 *1) (-4 *1 (-1056))) (-3137 (*1 *1 *1) (-4 *1 (-1056))) (-2458 (*1 *1 *1) (-4 *1 (-1056))) (-2164 (*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-108)))) (-2141 (*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-108)))) (-2119 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-523)) (-5 *2 (-108)))) (-2178 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-133)) (-5 *2 (-710)))) (-2676 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-133)) (-5 *2 (-108)))) (-1694 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-1136 (-523))))) (-3449 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-523)))) (-3449 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-523)) (-5 *3 (-130)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-133)) (-4 *1 (-1056)))) (-1980 (*1 *2 *1 *3) (-12 (-5 *3 (-133)) (-5 *2 (-589 *1)) (-4 *1 (-1056)))) (-1980 (*1 *2 *1 *3) (-12 (-5 *3 (-130)) (-5 *2 (-589 *1)) (-4 *1 (-1056)))) (-3214 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133)))) (-3214 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) (-1313 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133)))) (-1313 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) (-1300 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133)))) (-1300 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) (-1937 (*1 *1 *1 *1) (-4 *1 (-1056)))) +(-13 (-19 (-133)) (-10 -8 (-15 -2052 ($ $)) (-15 -1353 ($ $)) (-15 -3137 ($ $)) (-15 -2458 ($ $)) (-15 -2164 ((-108) $ $)) (-15 -2141 ((-108) $ $)) (-15 -2119 ((-108) $ $ (-523))) (-15 -2178 ((-710) $ $ (-133))) (-15 -2676 ((-108) $ $ (-133))) (-15 -1694 ($ $ (-1136 (-523)) $)) (-15 -3449 ((-523) $ $ (-523))) (-15 -3449 ((-523) (-130) $ (-523))) (-15 -1691 ($ (-133))) (-15 -1980 ((-589 $) $ (-133))) (-15 -1980 ((-589 $) $ (-130))) (-15 -3214 ($ $ (-133))) (-15 -3214 ($ $ (-130))) (-15 -1313 ($ $ (-133))) (-15 -1313 ($ $ (-130))) (-15 -1300 ($ $ (-133))) (-15 -1300 ($ $ (-130))) (-15 -1937 ($ $ $)))) +(((-33) . T) ((-97) -3172 (|has| (-133) (-1016)) (|has| (-133) (-786))) ((-563 (-794)) -3172 (|has| (-133) (-1016)) (|has| (-133) (-786)) (|has| (-133) (-563 (-794)))) ((-140 #0=(-133)) . T) ((-564 (-499)) |has| (-133) (-564 (-499))) ((-263 #1=(-523) #0#) . T) ((-265 #1# #0#) . T) ((-286 #0#) -12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))) ((-349 #0#) . T) ((-462 #0#) . T) ((-556 #1# #0#) . T) ((-484 #0# #0#) -12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))) ((-594 #0#) . T) ((-19 #0#) . T) ((-786) |has| (-133) (-786)) ((-1016) -3172 (|has| (-133) (-1016)) (|has| (-133) (-786))) ((-1123) . T)) +((-3244 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) (-710)) 94)) (-2719 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710)) 53)) (-2396 (((-1174) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-710)) 85)) (-1795 (((-710) (-589 |#4|) (-589 |#5|)) 27)) (-3224 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710)) 55) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710) (-108)) 57)) (-3530 (((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108)) 77)) (-1400 (((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) 80)) (-1529 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|) 52)) (-1949 (((-710) (-589 |#4|) (-589 |#5|)) 19))) +(((-1057 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1949 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1795 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1529 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|)) (-15 -2719 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710))) (-15 -2719 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|)) (-15 -3224 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710) (-108))) (-15 -3224 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710))) (-15 -3224 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|)) (-15 -3530 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -3530 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3244 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) (-710))) (-15 -1400 ((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)))) (-15 -2396 ((-1174) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-710)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-1025 |#1| |#2| |#3| |#4|)) (T -1057)) +((-2396 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3643 *9)))) (-5 *4 (-710)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-1174)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3643 *8))) (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-1025 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1070)) (-5 *1 (-1057 *4 *5 *6 *7 *8)))) (-3244 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-589 *11)) (|:| |todo| (-589 (-2 (|:| |val| *3) (|:| -3643 *11)))))) (-5 *6 (-710)) (-5 *2 (-589 (-2 (|:| |val| (-589 *10)) (|:| -3643 *11)))) (-5 *3 (-589 *10)) (-5 *4 (-589 *11)) (-4 *10 (-987 *7 *8 *9)) (-4 *11 (-1025 *7 *8 *9 *10)) (-4 *7 (-427)) (-4 *8 (-732)) (-4 *9 (-786)) (-5 *1 (-1057 *7 *8 *9 *10 *11)))) (-3530 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3530 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3224 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3)))) (-3224 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1025 *6 *7 *8 *3)))) (-3224 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-710)) (-5 *6 (-108)) (-4 *7 (-427)) (-4 *8 (-732)) (-4 *9 (-786)) (-4 *3 (-987 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1025 *7 *8 *9 *3)))) (-2719 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3)))) (-2719 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1025 *6 *7 *8 *3)))) (-1529 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1949 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1795 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1529 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|)) (-15 -2719 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710))) (-15 -2719 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|)) (-15 -3224 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710) (-108))) (-15 -3224 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5| (-710))) (-15 -3224 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) |#4| |#5|)) (-15 -3530 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -3530 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3244 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))))) (-710))) (-15 -1400 ((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|)))) (-15 -2396 ((-1174) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3643 |#5|))) (-710)))) +((-1680 (((-108) $ $) NIL)) (-3385 (((-589 (-2 (|:| -1214 $) (|:| -2647 (-589 |#4|)))) (-589 |#4|)) NIL)) (-2591 (((-589 $) (-589 |#4|)) 110) (((-589 $) (-589 |#4|) (-108)) 111) (((-589 $) (-589 |#4|) (-108) (-108)) 109) (((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108)) 112)) (-1292 (((-589 |#3|) $) NIL)) (-2356 (((-108) $) NIL)) (-2192 (((-108) $) NIL (|has| |#1| (-515)))) (-2219 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2717 ((|#4| |#4| $) NIL)) (-3718 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 $))) |#4| $) 84)) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |#3|) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1903 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248))) (((-3 |#4| "failed") $ |#3|) 62)) (-4189 (($) NIL T CONST)) (-4002 (((-108) $) 26 (|has| |#1| (-515)))) (-3577 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3527 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2611 (((-108) $) NIL (|has| |#1| (-515)))) (-3586 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1291 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-1804 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-1220 (((-3 $ "failed") (-589 |#4|)) NIL)) (-3508 (($ (-589 |#4|)) NIL)) (-2441 (((-3 $ "failed") $) 39)) (-3546 ((|#4| |#4| $) 65)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-2514 (($ |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-3969 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-515)))) (-3087 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2848 ((|#4| |#4| $) NIL)) (-2116 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4248))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4248))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2860 (((-2 (|:| -1214 (-589 |#4|)) (|:| -2647 (-589 |#4|))) $) NIL)) (-2607 (((-108) |#4| $) NIL)) (-2072 (((-108) |#4| $) NIL)) (-3149 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3950 (((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108)) 124)) (-1871 (((-589 |#4|) $) 16 (|has| $ (-6 -4248)))) (-2605 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3556 ((|#3| $) 33)) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#4|) $) 17 (|has| $ (-6 -4248)))) (-3423 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-2043 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#4| |#4|) $) 21)) (-2709 (((-589 |#3|) $) NIL)) (-2528 (((-108) |#3| $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-3715 (((-3 |#4| (-589 $)) |#4| |#4| $) NIL)) (-3173 (((-589 (-2 (|:| |val| |#4|) (|:| -3643 $))) |#4| |#4| $) 103)) (-2535 (((-3 |#4| "failed") $) 37)) (-3130 (((-589 $) |#4| $) 88)) (-1338 (((-3 (-108) (-589 $)) |#4| $) NIL)) (-1446 (((-589 (-2 (|:| |val| (-108)) (|:| -3643 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-3196 (((-589 $) |#4| $) 107) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) 108) (((-589 $) |#4| (-589 $)) NIL)) (-1670 (((-589 $) (-589 |#4|) (-108) (-108) (-108)) 119)) (-2190 (($ |#4| $) 75) (($ (-589 |#4|) $) 76) (((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-2455 (((-589 |#4|) $) NIL)) (-2490 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2960 ((|#4| |#4| $) NIL)) (-2303 (((-108) $ $) NIL)) (-3473 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2569 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2897 ((|#4| |#4| $) NIL)) (-3951 (((-1034) $) NIL)) (-2428 (((-3 |#4| "failed") $) 35)) (-2509 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3367 (((-3 $ "failed") $ |#4|) 48)) (-3053 (($ $ |#4|) NIL) (((-589 $) |#4| $) 90) (((-589 $) |#4| (-589 $)) NIL) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) 86)) (-3379 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 15)) (-3320 (($) 13)) (-2640 (((-710) $) NIL)) (-3977 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) 12)) (-1400 (((-499) $) NIL (|has| |#4| (-564 (-499))))) (-1704 (($ (-589 |#4|)) 20)) (-2712 (($ $ |#3|) 42)) (-2742 (($ $ |#3|) 44)) (-1494 (($ $) NIL)) (-1591 (($ $ |#3|) NIL)) (-1691 (((-794) $) 31) (((-589 |#4|) $) 40)) (-2868 (((-710) $) NIL (|has| |#3| (-344)))) (-1645 (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3684 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) NIL)) (-3817 (((-589 $) |#4| $) 54) (((-589 $) |#4| (-589 $)) NIL) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) NIL)) (-2308 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-1574 (((-589 |#3|) $) NIL)) (-2776 (((-108) |#4| $) NIL)) (-1747 (((-108) |#3| $) 61)) (-3941 (((-108) $ $) NIL)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-1058 |#1| |#2| |#3| |#4|) (-13 (-1025 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2190 ((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2591 ((-589 $) (-589 |#4|) (-108) (-108))) (-15 -2591 ((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108))) (-15 -1670 ((-589 $) (-589 |#4|) (-108) (-108) (-108))) (-15 -3950 ((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108))))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -1058)) +((-2190 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) (-4 *3 (-987 *5 *6 *7)))) (-2591 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-2591 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-1670 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3950 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-589 *8)) (|:| |towers| (-589 (-1058 *5 *6 *7 *8))))) (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) +(-13 (-1025 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2190 ((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2591 ((-589 $) (-589 |#4|) (-108) (-108))) (-15 -2591 ((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108))) (-15 -1670 ((-589 $) (-589 |#4|) (-108) (-108) (-108))) (-15 -3950 ((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108))))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3781 ((|#1| $) 34)) (-4223 (($ (-589 |#1|)) 39)) (-1620 (((-108) $ (-710)) NIL)) (-4189 (($) NIL T CONST)) (-2581 ((|#1| |#1| $) 36)) (-2197 ((|#1| $) 32)) (-1871 (((-589 |#1|) $) 18 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2043 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 22)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1293 ((|#1| $) 35)) (-3108 (($ |#1| $) 37)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3048 ((|#1| $) 33)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 31)) (-3320 (($) 38)) (-1576 (((-710) $) 29)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) 27)) (-1691 (((-794) $) 14 (|has| |#1| (-563 (-794))))) (-2417 (($ (-589 |#1|)) NIL)) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 17 (|has| |#1| (-1016)))) (-2810 (((-710) $) 30 (|has| $ (-6 -4248))))) +(((-1059 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -4223 ($ (-589 |#1|))))) (-1123)) (T -1059)) +((-4223 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-1059 *3))))) +(-13 (-1035 |#1|) (-10 -8 (-15 -4223 ($ (-589 |#1|))))) +((-1849 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1136 (-523)) |#2|) 44) ((|#2| $ (-523) |#2|) 41)) (-1833 (((-108) $) 12)) (-2043 (($ (-1 |#2| |#2|) $) 39)) (-2428 ((|#2| $) NIL) (($ $ (-710)) 17)) (-4141 (($ $ |#2|) 40)) (-2430 (((-108) $) 11)) (-1937 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1136 (-523))) 31) ((|#2| $ (-523)) 23) ((|#2| $ (-523) |#2|) NIL)) (-2001 (($ $ $) 47) (($ $ |#2|) NIL)) (-2394 (($ $ $) 33) (($ |#2| $) NIL) (($ (-589 $)) 36) (($ $ |#2|) NIL))) +(((-1060 |#1| |#2|) (-10 -8 (-15 -1833 ((-108) |#1|)) (-15 -2430 ((-108) |#1|)) (-15 -1849 (|#2| |#1| (-523) |#2|)) (-15 -1937 (|#2| |#1| (-523) |#2|)) (-15 -1937 (|#2| |#1| (-523))) (-15 -4141 (|#1| |#1| |#2|)) (-15 -2394 (|#1| |#1| |#2|)) (-15 -2394 (|#1| (-589 |#1|))) (-15 -1937 (|#1| |#1| (-1136 (-523)))) (-15 -1849 (|#2| |#1| (-1136 (-523)) |#2|)) (-15 -1849 (|#2| |#1| "last" |#2|)) (-15 -1849 (|#1| |#1| "rest" |#1|)) (-15 -1849 (|#2| |#1| "first" |#2|)) (-15 -2001 (|#1| |#1| |#2|)) (-15 -2001 (|#1| |#1| |#1|)) (-15 -1937 (|#2| |#1| "last")) (-15 -1937 (|#1| |#1| "rest")) (-15 -2428 (|#1| |#1| (-710))) (-15 -1937 (|#2| |#1| "first")) (-15 -2428 (|#2| |#1|)) (-15 -2394 (|#1| |#2| |#1|)) (-15 -2394 (|#1| |#1| |#1|)) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -1937 (|#2| |#1| "value")) (-15 -2043 (|#1| (-1 |#2| |#2|) |#1|))) (-1061 |#2|) (-1123)) (T -1060)) +NIL +(-10 -8 (-15 -1833 ((-108) |#1|)) (-15 -2430 ((-108) |#1|)) (-15 -1849 (|#2| |#1| (-523) |#2|)) (-15 -1937 (|#2| |#1| (-523) |#2|)) (-15 -1937 (|#2| |#1| (-523))) (-15 -4141 (|#1| |#1| |#2|)) (-15 -2394 (|#1| |#1| |#2|)) (-15 -2394 (|#1| (-589 |#1|))) (-15 -1937 (|#1| |#1| (-1136 (-523)))) (-15 -1849 (|#2| |#1| (-1136 (-523)) |#2|)) (-15 -1849 (|#2| |#1| "last" |#2|)) (-15 -1849 (|#1| |#1| "rest" |#1|)) (-15 -1849 (|#2| |#1| "first" |#2|)) (-15 -2001 (|#1| |#1| |#2|)) (-15 -2001 (|#1| |#1| |#1|)) (-15 -1937 (|#2| |#1| "last")) (-15 -1937 (|#1| |#1| "rest")) (-15 -2428 (|#1| |#1| (-710))) (-15 -1937 (|#2| |#1| "first")) (-15 -2428 (|#2| |#1|)) (-15 -2394 (|#1| |#2| |#1|)) (-15 -2394 (|#1| |#1| |#1|)) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -1937 (|#2| |#1| "value")) (-15 -2043 (|#1| (-1 |#2| |#2|) |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3370 ((|#1| $) 48)) (-2176 ((|#1| $) 65)) (-2227 (($ $) 67)) (-4191 (((-1174) $ (-523) (-523)) 97 (|has| $ (-6 -4249)))) (-2856 (($ $ (-523)) 52 (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) 8)) (-1487 ((|#1| $ |#1|) 39 (|has| $ (-6 -4249)))) (-2470 (($ $ $) 56 (|has| $ (-6 -4249)))) (-2622 ((|#1| $ |#1|) 54 (|has| $ (-6 -4249)))) (-2027 ((|#1| $ |#1|) 58 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4249))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4249))) (($ $ "rest" $) 55 (|has| $ (-6 -4249))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) 117 (|has| $ (-6 -4249))) ((|#1| $ (-523) |#1|) 86 (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) 41 (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4248)))) (-2165 ((|#1| $) 66)) (-4189 (($) 7 T CONST)) (-2441 (($ $) 73) (($ $ (-710)) 71)) (-2462 (($ $) 99 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4248))) (($ |#1| $) 100 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2053 ((|#1| $ (-523) |#1|) 85 (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) 87)) (-1833 (((-108) $) 83)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) 50)) (-3675 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-3733 (($ (-710) |#1|) 108)) (-3051 (((-108) $ (-710)) 9)) (-2965 (((-523) $) 95 (|has| (-523) (-786)))) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 94 (|has| (-523) (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1418 (((-108) $ (-710)) 10)) (-1701 (((-589 |#1|) $) 45)) (-1799 (((-108) $) 49)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2535 ((|#1| $) 70) (($ $ (-710)) 68)) (-2912 (($ $ $ (-523)) 116) (($ |#1| $ (-523)) 115)) (-2536 (((-589 (-523)) $) 92)) (-2254 (((-108) (-523) $) 91)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2428 ((|#1| $) 76) (($ $ (-710)) 74)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-4141 (($ $ |#1|) 96 (|has| $ (-6 -4249)))) (-2430 (((-108) $) 84)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) 90)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1136 (-523))) 112) ((|#1| $ (-523)) 89) ((|#1| $ (-523) |#1|) 88)) (-3766 (((-523) $ $) 44)) (-1499 (($ $ (-1136 (-523))) 114) (($ $ (-523)) 113)) (-1221 (((-108) $) 46)) (-2582 (($ $) 62)) (-2075 (($ $) 59 (|has| $ (-6 -4249)))) (-2784 (((-710) $) 63)) (-1867 (($ $) 64)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-1400 (((-499) $) 98 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 107)) (-2001 (($ $ $) 61 (|has| $ (-6 -4249))) (($ $ |#1|) 60 (|has| $ (-6 -4249)))) (-2394 (($ $ $) 78) (($ |#1| $) 77) (($ (-589 $)) 110) (($ $ |#1|) 109)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) 51)) (-3313 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-1061 |#1|) (-129) (-1123)) (T -1061)) +((-2430 (*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1123)) (-5 *2 (-108)))) (-1833 (*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1123)) (-5 *2 (-108))))) +(-13 (-1157 |t#1|) (-594 |t#1|) (-10 -8 (-15 -2430 ((-108) $)) (-15 -1833 ((-108) $)))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1123) . T) ((-1157 |#1|) . T)) +((-1680 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3723 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-4191 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#2| $ |#1| |#2|) NIL)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-4216 (((-3 |#2| "failed") |#1| $) NIL)) (-4189 (($) NIL T CONST)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-3286 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-3 |#2| "failed") |#1| $) NIL)) (-2514 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#2| $ |#1|) NIL)) (-1871 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 ((|#1| $) NIL (|has| |#1| (-786)))) (-1584 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-2567 ((|#1| $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4249))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1255 (((-589 |#1|) $) NIL)) (-1862 (((-108) |#1| $) NIL)) (-1293 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3108 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-2536 (((-589 |#1|) $) NIL)) (-2254 (((-108) |#1| $) NIL)) (-3951 (((-1034) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2428 ((|#2| $) NIL (|has| |#1| (-786)))) (-2509 (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL)) (-4141 (($ $ |#2|) NIL (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3973 (((-589 |#2|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2963 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-1691 (((-794) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2417 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-1062 |#1| |#2| |#3|) (-1100 |#1| |#2|) (-1016) (-1016) |#2|) (T -1062)) +NIL +(-1100 |#1| |#2|) +((-1680 (((-108) $ $) 7)) (-2738 (((-3 $ "failed") $) 13)) (-2032 (((-1070) $) 9)) (-2773 (($) 14 T CONST)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11)) (-3941 (((-108) $ $) 6))) (((-1063) (-129)) (T -1063)) -((-2262 (*1 *1) (-4 *1 (-1063))) (-4058 (*1 *1 *1) (|partial| -4 *1 (-1063)))) -(-13 (-1016) (-10 -8 (-15 -2262 ($) -3059) (-15 -4058 ((-3 $ "failed") $)))) +((-2773 (*1 *1) (-4 *1 (-1063))) (-2738 (*1 *1 *1) (|partial| -4 *1 (-1063)))) +(-13 (-1016) (-10 -8 (-15 -2773 ($) -2501) (-15 -2738 ((-3 $ "failed") $)))) (((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) -((-3173 (((-1068 |#1|) (-1068 |#1|)) 17)) (-1379 (((-1068 |#1|) (-1068 |#1|)) 13)) (-1333 (((-1068 |#1|) (-1068 |#1|) (-523) (-523)) 20)) (-1425 (((-1068 |#1|) (-1068 |#1|)) 15))) -(((-1064 |#1|) (-10 -7 (-15 -1379 ((-1068 |#1|) (-1068 |#1|))) (-15 -1425 ((-1068 |#1|) (-1068 |#1|))) (-15 -3173 ((-1068 |#1|) (-1068 |#1|))) (-15 -1333 ((-1068 |#1|) (-1068 |#1|) (-523) (-523)))) (-13 (-515) (-136))) (T -1064)) -((-1333 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-1064 *4)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1064 *3)))) (-1425 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1064 *3)))) (-1379 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1064 *3))))) -(-10 -7 (-15 -1379 ((-1068 |#1|) (-1068 |#1|))) (-15 -1425 ((-1068 |#1|) (-1068 |#1|))) (-15 -3173 ((-1068 |#1|) (-1068 |#1|))) (-15 -1333 ((-1068 |#1|) (-1068 |#1|) (-523) (-523)))) -((-2326 (((-1068 |#1|) (-1068 (-1068 |#1|))) 15))) -(((-1065 |#1|) (-10 -7 (-15 -2326 ((-1068 |#1|) (-1068 (-1068 |#1|))))) (-1122)) (T -1065)) -((-2326 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1065 *4)) (-4 *4 (-1122))))) -(-10 -7 (-15 -2326 ((-1068 |#1|) (-1068 (-1068 |#1|))))) -((-2837 (((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 25)) (-2437 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 26)) (-3612 (((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)) 16))) -(((-1066 |#1| |#2|) (-10 -7 (-15 -3612 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|))) (-15 -2837 ((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|))) (-15 -2437 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)))) (-1122) (-1122)) (T -1066)) -((-2437 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-1066 *5 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1122)) (-4 *3 (-1122)) (-5 *2 (-1068 *3)) (-5 *1 (-1066 *6 *3)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1068 *6)) (-5 *1 (-1066 *5 *6))))) -(-10 -7 (-15 -3612 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|))) (-15 -2837 ((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|))) (-15 -2437 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)))) -((-3612 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)) 21))) -(((-1067 |#1| |#2| |#3|) (-10 -7 (-15 -3612 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)))) (-1122) (-1122) (-1122)) (T -1067)) -((-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-1068 *8)) (-5 *1 (-1067 *6 *7 *8))))) -(-10 -7 (-15 -3612 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) NIL)) (-1546 ((|#1| $) NIL)) (-4039 (($ $) 49)) (-4207 (((-1173) $ (-523) (-523)) 74 (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) 108 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-4201 (((-794) $) 38 (|has| |#1| (-1016)))) (-2057 (((-108)) 39 (|has| |#1| (-1016)))) (-1823 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-2110 (($ $ $) 96 (|has| $ (-6 -4245))) (($ $ (-523) $) 118)) (-3395 ((|#1| $ |#1|) 105 (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) 100 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4245))) (($ $ "rest" $) 104 (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 87 (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 56)) (-1532 ((|#1| $) NIL)) (-2518 (($) NIL T CONST)) (-3898 (($ $) 14)) (-1751 (($ $) 29) (($ $ (-710)) 86)) (-1691 (((-108) (-589 |#1|) $) 113 (|has| |#1| (-1016)))) (-2793 (($ (-589 |#1|)) 110)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) 55)) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1232 (((-108) $) NIL)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-3324 (((-1173) (-523) $) 117 (|has| |#1| (-1016)))) (-4122 (((-710) $) 115)) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2866 (((-108) $ (-710)) NIL)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) NIL)) (-3886 (($ $) 88)) (-2271 (((-108) $) 13)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2579 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-2847 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) 72)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3655 (($ (-1 |#1|)) 120) (($ (-1 |#1| |#1|) |#1|) 121)) (-1810 ((|#1| $) 10)) (-1738 ((|#1| $) 28) (($ $ (-710)) 47)) (-2633 (((-2 (|:| |cycle?| (-108)) (|:| -3977 (-710)) (|:| |period| (-710))) (-710) $) 25)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3699 (($ (-1 (-108) |#1|) $) 122)) (-3712 (($ (-1 (-108) |#1|) $) 123)) (-4203 (($ $ |#1|) 66 (|has| $ (-6 -4245)))) (-4097 (($ $ (-523)) 32)) (-2402 (((-108) $) 70)) (-3762 (((-108) $) 12)) (-2556 (((-108) $) 114)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 20)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) 15)) (-3988 (($) 41)) (-3223 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1135 (-523))) NIL) ((|#1| $ (-523)) 52) ((|#1| $ (-523) |#1|) NIL)) (-1549 (((-523) $ $) 46)) (-1469 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-1335 (($ (-1 $)) 45)) (-2524 (((-108) $) 67)) (-2732 (($ $) 68)) (-2363 (($ $) 97 (|has| $ (-6 -4245)))) (-2316 (((-710) $) NIL)) (-3562 (($ $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 42)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 51)) (-3449 (($ |#1| $) 95)) (-1746 (($ $ $) 98 (|has| $ (-6 -4245))) (($ $ |#1|) 99 (|has| $ (-6 -4245)))) (-2326 (($ $ $) 76) (($ |#1| $) 43) (($ (-589 $)) 81) (($ $ |#1|) 75)) (-1353 (($ $) 48)) (-1458 (($ (-589 |#1|)) 109) (((-794) $) 40 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 112 (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-1068 |#1|) (-13 (-616 |#1|) (-10 -8 (-6 -4245) (-15 -1458 ($ (-589 |#1|))) (-15 -2793 ($ (-589 |#1|))) (IF (|has| |#1| (-1016)) (-15 -1691 ((-108) (-589 |#1|) $)) |%noBranch|) (-15 -2633 ((-2 (|:| |cycle?| (-108)) (|:| -3977 (-710)) (|:| |period| (-710))) (-710) $)) (-15 -1335 ($ (-1 $))) (-15 -3449 ($ |#1| $)) (IF (|has| |#1| (-1016)) (PROGN (-15 -3324 ((-1173) (-523) $)) (-15 -4201 ((-794) $)) (-15 -2057 ((-108)))) |%noBranch|) (-15 -2110 ($ $ (-523) $)) (-15 -3655 ($ (-1 |#1|))) (-15 -3655 ($ (-1 |#1| |#1|) |#1|)) (-15 -3699 ($ (-1 (-108) |#1|) $)) (-15 -3712 ($ (-1 (-108) |#1|) $)))) (-1122)) (T -1068)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) (-2793 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) (-1691 (*1 *2 *3 *1) (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-4 *4 (-1122)) (-5 *2 (-108)) (-5 *1 (-1068 *4)))) (-2633 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -3977 (-710)) (|:| |period| (-710)))) (-5 *1 (-1068 *4)) (-4 *4 (-1122)) (-5 *3 (-710)))) (-1335 (*1 *1 *2) (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1122)))) (-3449 (*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1122)))) (-3324 (*1 *2 *3 *1) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-1068 *4)) (-4 *4 (-1016)) (-4 *4 (-1122)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1068 *3)) (-4 *3 (-1016)) (-4 *3 (-1122)))) (-2057 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1068 *3)) (-4 *3 (-1016)) (-4 *3 (-1122)))) (-2110 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1068 *3)) (-4 *3 (-1122)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) (-3655 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) (-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3))))) -(-13 (-616 |#1|) (-10 -8 (-6 -4245) (-15 -1458 ($ (-589 |#1|))) (-15 -2793 ($ (-589 |#1|))) (IF (|has| |#1| (-1016)) (-15 -1691 ((-108) (-589 |#1|) $)) |%noBranch|) (-15 -2633 ((-2 (|:| |cycle?| (-108)) (|:| -3977 (-710)) (|:| |period| (-710))) (-710) $)) (-15 -1335 ($ (-1 $))) (-15 -3449 ($ |#1| $)) (IF (|has| |#1| (-1016)) (PROGN (-15 -3324 ((-1173) (-523) $)) (-15 -4201 ((-794) $)) (-15 -2057 ((-108)))) |%noBranch|) (-15 -2110 ($ $ (-523) $)) (-15 -3655 ($ (-1 |#1|))) (-15 -3655 ($ (-1 |#1| |#1|) |#1|)) (-15 -3699 ($ (-1 (-108) |#1|) $)) (-15 -3712 ($ (-1 (-108) |#1|) $)))) -((-3924 (((-108) $ $) 19)) (-2109 (($ $) 120)) (-1303 (($ $) 121)) (-2874 (($ $ (-133)) 108) (($ $ (-130)) 107)) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-1545 (((-108) $ $) 118)) (-1521 (((-108) $ $ (-523)) 117)) (-3207 (($ (-523)) 127)) (-2063 (((-589 $) $ (-133)) 110) (((-589 $) $ (-130)) 109)) (-1964 (((-108) (-1 (-108) (-133) (-133)) $) 98) (((-108) $) 92 (|has| (-133) (-786)))) (-1506 (($ (-1 (-108) (-133) (-133)) $) 89 (|has| $ (-6 -4245))) (($ $) 88 (-12 (|has| (-133) (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) (-133) (-133)) $) 99) (($ $) 93 (|has| (-133) (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1641 (((-133) $ (-523) (-133)) 52 (|has| $ (-6 -4245))) (((-133) $ (-1135 (-523)) (-133)) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-133)) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-4123 (($ $ (-133)) 104) (($ $ (-130)) 103)) (-2867 (($ $) 90 (|has| $ (-6 -4245)))) (-3631 (($ $) 100)) (-2129 (($ $ (-1135 (-523)) $) 114)) (-1773 (($ $) 78 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ (-133) $) 77 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) (-133)) $) 74 (|has| $ (-6 -4244)))) (-2437 (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) 76 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244)))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) 73 (|has| $ (-6 -4244))) (((-133) (-1 (-133) (-133) (-133)) $) 72 (|has| $ (-6 -4244)))) (-2863 (((-133) $ (-523) (-133)) 53 (|has| $ (-6 -4245)))) (-2795 (((-133) $ (-523)) 51)) (-1569 (((-108) $ $) 119)) (-1479 (((-523) (-1 (-108) (-133)) $) 97) (((-523) (-133) $) 96 (|has| (-133) (-1016))) (((-523) (-133) $ (-523)) 95 (|has| (-133) (-1016))) (((-523) $ $ (-523)) 113) (((-523) (-130) $ (-523)) 112)) (-1666 (((-589 (-133)) $) 30 (|has| $ (-6 -4244)))) (-3052 (($ (-710) (-133)) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 87 (|has| (-133) (-786)))) (-2178 (($ (-1 (-108) (-133) (-133)) $ $) 101) (($ $ $) 94 (|has| (-133) (-786)))) (-2136 (((-589 (-133)) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) (-133) $) 27 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 86 (|has| (-133) (-786)))) (-2599 (((-108) $ $ (-133)) 115)) (-1547 (((-710) $ $ (-133)) 116)) (-2852 (($ (-1 (-133) (-133)) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-133) (-133)) $) 35) (($ (-1 (-133) (-133) (-133)) $ $) 64)) (-2858 (($ $) 122)) (-2674 (($ $) 123)) (-2866 (((-108) $ (-710)) 10)) (-4133 (($ $ (-133)) 106) (($ $ (-130)) 105)) (-3779 (((-1070) $) 22)) (-2847 (($ (-133) $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21)) (-1738 (((-133) $) 42 (|has| (-523) (-786)))) (-2114 (((-3 (-133) "failed") (-1 (-108) (-133)) $) 71)) (-4203 (($ $ (-133)) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-133)) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-133)))) 26 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) 25 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) 24 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-133)) (-589 (-133))) 23 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) (-133) $) 45 (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-1264 (((-589 (-133)) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 (((-133) $ (-523) (-133)) 50) (((-133) $ (-523)) 49) (($ $ (-1135 (-523))) 63) (($ $ $) 102)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2792 (((-710) (-1 (-108) (-133)) $) 31 (|has| $ (-6 -4244))) (((-710) (-133) $) 28 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 91 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| (-133) (-564 (-499))))) (-1472 (($ (-589 (-133))) 70)) (-2326 (($ $ (-133)) 68) (($ (-133) $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (($ (-133)) 111) (((-794) $) 18)) (-2096 (((-108) (-1 (-108) (-133)) $) 33 (|has| $ (-6 -4244)))) (-3790 (((-1070) $) 131) (((-1070) $ (-108)) 130) (((-1173) (-761) $) 129) (((-1173) (-761) $ (-108)) 128)) (-4043 (((-108) $ $) 84 (|has| (-133) (-786)))) (-4019 (((-108) $ $) 83 (|has| (-133) (-786)))) (-3983 (((-108) $ $) 20)) (-4030 (((-108) $ $) 85 (|has| (-133) (-786)))) (-4007 (((-108) $ $) 82 (|has| (-133) (-786)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +((-1298 (((-1068 |#1|) (-1068 |#1|)) 17)) (-2720 (((-1068 |#1|) (-1068 |#1|)) 13)) (-3432 (((-1068 |#1|) (-1068 |#1|) (-523) (-523)) 20)) (-2011 (((-1068 |#1|) (-1068 |#1|)) 15))) +(((-1064 |#1|) (-10 -7 (-15 -2720 ((-1068 |#1|) (-1068 |#1|))) (-15 -2011 ((-1068 |#1|) (-1068 |#1|))) (-15 -1298 ((-1068 |#1|) (-1068 |#1|))) (-15 -3432 ((-1068 |#1|) (-1068 |#1|) (-523) (-523)))) (-13 (-515) (-136))) (T -1064)) +((-3432 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-1064 *4)))) (-1298 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1064 *3)))) (-2011 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1064 *3)))) (-2720 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1064 *3))))) +(-10 -7 (-15 -2720 ((-1068 |#1|) (-1068 |#1|))) (-15 -2011 ((-1068 |#1|) (-1068 |#1|))) (-15 -1298 ((-1068 |#1|) (-1068 |#1|))) (-15 -3432 ((-1068 |#1|) (-1068 |#1|) (-523) (-523)))) +((-2394 (((-1068 |#1|) (-1068 (-1068 |#1|))) 15))) +(((-1065 |#1|) (-10 -7 (-15 -2394 ((-1068 |#1|) (-1068 (-1068 |#1|))))) (-1123)) (T -1065)) +((-2394 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1065 *4)) (-4 *4 (-1123))))) +(-10 -7 (-15 -2394 ((-1068 |#1|) (-1068 (-1068 |#1|))))) +((-4184 (((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 25)) (-2116 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 26)) (-1345 (((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)) 16))) +(((-1066 |#1| |#2|) (-10 -7 (-15 -1345 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|))) (-15 -4184 ((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|))) (-15 -2116 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)))) (-1123) (-1123)) (T -1066)) +((-2116 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1123)) (-4 *2 (-1123)) (-5 *1 (-1066 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1123)) (-4 *3 (-1123)) (-5 *2 (-1068 *3)) (-5 *1 (-1066 *6 *3)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-1068 *6)) (-5 *1 (-1066 *5 *6))))) +(-10 -7 (-15 -1345 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|))) (-15 -4184 ((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|))) (-15 -2116 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)))) +((-1345 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)) 21))) +(((-1067 |#1| |#2| |#3|) (-10 -7 (-15 -1345 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)))) (-1123) (-1123) (-1123)) (T -1067)) +((-1345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1123)) (-4 *7 (-1123)) (-4 *8 (-1123)) (-5 *2 (-1068 *8)) (-5 *1 (-1067 *6 *7 *8))))) +(-10 -7 (-15 -1345 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3370 ((|#1| $) NIL)) (-2176 ((|#1| $) NIL)) (-2227 (($ $) 49)) (-4191 (((-1174) $ (-523) (-523)) 74 (|has| $ (-6 -4249)))) (-2856 (($ $ (-523)) 108 (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) NIL)) (-4120 (((-794) $) 38 (|has| |#1| (-1016)))) (-3076 (((-108)) 39 (|has| |#1| (-1016)))) (-1487 ((|#1| $ |#1|) NIL (|has| $ (-6 -4249)))) (-2470 (($ $ $) 96 (|has| $ (-6 -4249))) (($ $ (-523) $) 119)) (-2622 ((|#1| $ |#1|) 105 (|has| $ (-6 -4249)))) (-2027 ((|#1| $ |#1|) 100 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4249))) (($ $ "rest" $) 104 (|has| $ (-6 -4249))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) 87 (|has| $ (-6 -4249))) ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) NIL (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) 56)) (-2165 ((|#1| $) NIL)) (-4189 (($) NIL T CONST)) (-1923 (($ $) 14)) (-2441 (($ $) 29) (($ $ (-710)) 86)) (-2705 (((-108) (-589 |#1|) $) 114 (|has| |#1| (-1016)))) (-1981 (($ (-589 |#1|)) 110)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) 55)) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2053 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) NIL)) (-1833 (((-108) $) NIL)) (-1871 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3930 (((-1174) (-523) $) 118 (|has| |#1| (-1016)))) (-2139 (((-710) $) 116)) (-2932 (((-589 $) $) NIL)) (-3675 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3733 (($ (-710) |#1|) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1418 (((-108) $ (-710)) NIL)) (-1701 (((-589 |#1|) $) NIL)) (-1799 (((-108) $) NIL)) (-1803 (($ $) 88)) (-3507 (((-108) $) 13)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2535 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-2912 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) 72)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1838 (($ (-1 |#1|)) 121) (($ (-1 |#1| |#1|) |#1|) 122)) (-1388 ((|#1| $) 10)) (-2428 ((|#1| $) 28) (($ $ (-710)) 47)) (-2820 (((-2 (|:| |cycle?| (-108)) (|:| -1600 (-710)) (|:| |period| (-710))) (-710) $) 25)) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1883 (($ (-1 (-108) |#1|) $) 123)) (-1894 (($ (-1 (-108) |#1|) $) 124)) (-4141 (($ $ |#1|) 66 (|has| $ (-6 -4249)))) (-3053 (($ $ (-523)) 32)) (-2430 (((-108) $) 70)) (-3057 (((-108) $) 12)) (-3281 (((-108) $) 115)) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 20)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) 15)) (-3320 (($) 41)) (-1937 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1136 (-523))) NIL) ((|#1| $ (-523)) 52) ((|#1| $ (-523) |#1|) NIL)) (-3766 (((-523) $ $) 46)) (-1499 (($ $ (-1136 (-523))) NIL) (($ $ (-523)) NIL)) (-3455 (($ (-1 $)) 45)) (-1221 (((-108) $) 67)) (-2582 (($ $) 68)) (-2075 (($ $) 97 (|has| $ (-6 -4249)))) (-2784 (((-710) $) NIL)) (-1867 (($ $) NIL)) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) 42)) (-1400 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 51)) (-3540 (($ |#1| $) 95)) (-2001 (($ $ $) 98 (|has| $ (-6 -4249))) (($ $ |#1|) 99 (|has| $ (-6 -4249)))) (-2394 (($ $ $) 76) (($ |#1| $) 43) (($ (-589 $)) 81) (($ $ |#1|) 75)) (-2488 (($ $) 48)) (-1691 (($ (-589 |#1|)) 109) (((-794) $) 40 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) NIL)) (-3313 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 112 (|has| |#1| (-1016)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-1068 |#1|) (-13 (-616 |#1|) (-10 -8 (-6 -4249) (-15 -1691 ($ (-589 |#1|))) (-15 -1981 ($ (-589 |#1|))) (IF (|has| |#1| (-1016)) (-15 -2705 ((-108) (-589 |#1|) $)) |%noBranch|) (-15 -2820 ((-2 (|:| |cycle?| (-108)) (|:| -1600 (-710)) (|:| |period| (-710))) (-710) $)) (-15 -3455 ($ (-1 $))) (-15 -3540 ($ |#1| $)) (IF (|has| |#1| (-1016)) (PROGN (-15 -3930 ((-1174) (-523) $)) (-15 -4120 ((-794) $)) (-15 -3076 ((-108)))) |%noBranch|) (-15 -2470 ($ $ (-523) $)) (-15 -1838 ($ (-1 |#1|))) (-15 -1838 ($ (-1 |#1| |#1|) |#1|)) (-15 -1883 ($ (-1 (-108) |#1|) $)) (-15 -1894 ($ (-1 (-108) |#1|) $)))) (-1123)) (T -1068)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-1068 *3)))) (-1981 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-1068 *3)))) (-2705 (*1 *2 *3 *1) (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-4 *4 (-1123)) (-5 *2 (-108)) (-5 *1 (-1068 *4)))) (-2820 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -1600 (-710)) (|:| |period| (-710)))) (-5 *1 (-1068 *4)) (-4 *4 (-1123)) (-5 *3 (-710)))) (-3455 (*1 *1 *2) (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1123)))) (-3540 (*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1123)))) (-3930 (*1 *2 *3 *1) (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-1068 *4)) (-4 *4 (-1016)) (-4 *4 (-1123)))) (-4120 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1068 *3)) (-4 *3 (-1016)) (-4 *3 (-1123)))) (-3076 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1068 *3)) (-4 *3 (-1016)) (-4 *3 (-1123)))) (-2470 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1068 *3)) (-4 *3 (-1123)))) (-1838 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1123)) (-5 *1 (-1068 *3)))) (-1838 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1123)) (-5 *1 (-1068 *3)))) (-1883 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1123)) (-5 *1 (-1068 *3)))) (-1894 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1123)) (-5 *1 (-1068 *3))))) +(-13 (-616 |#1|) (-10 -8 (-6 -4249) (-15 -1691 ($ (-589 |#1|))) (-15 -1981 ($ (-589 |#1|))) (IF (|has| |#1| (-1016)) (-15 -2705 ((-108) (-589 |#1|) $)) |%noBranch|) (-15 -2820 ((-2 (|:| |cycle?| (-108)) (|:| -1600 (-710)) (|:| |period| (-710))) (-710) $)) (-15 -3455 ($ (-1 $))) (-15 -3540 ($ |#1| $)) (IF (|has| |#1| (-1016)) (PROGN (-15 -3930 ((-1174) (-523) $)) (-15 -4120 ((-794) $)) (-15 -3076 ((-108)))) |%noBranch|) (-15 -2470 ($ $ (-523) $)) (-15 -1838 ($ (-1 |#1|))) (-15 -1838 ($ (-1 |#1| |#1|) |#1|)) (-15 -1883 ($ (-1 (-108) |#1|) $)) (-15 -1894 ($ (-1 (-108) |#1|) $)))) +((-1680 (((-108) $ $) 19)) (-2458 (($ $) 120)) (-3137 (($ $) 121)) (-3214 (($ $ (-133)) 108) (($ $ (-130)) 107)) (-4191 (((-1174) $ (-523) (-523)) 40 (|has| $ (-6 -4249)))) (-2141 (((-108) $ $) 118)) (-2119 (((-108) $ $ (-523)) 117)) (-3279 (($ (-523)) 127)) (-1980 (((-589 $) $ (-133)) 110) (((-589 $) $ (-130)) 109)) (-3337 (((-108) (-1 (-108) (-133) (-133)) $) 98) (((-108) $) 92 (|has| (-133) (-786)))) (-1632 (($ (-1 (-108) (-133) (-133)) $) 89 (|has| $ (-6 -4249))) (($ $) 88 (-12 (|has| (-133) (-786)) (|has| $ (-6 -4249))))) (-1581 (($ (-1 (-108) (-133) (-133)) $) 99) (($ $) 93 (|has| (-133) (-786)))) (-1620 (((-108) $ (-710)) 8)) (-1849 (((-133) $ (-523) (-133)) 52 (|has| $ (-6 -4249))) (((-133) $ (-1136 (-523)) (-133)) 58 (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) (-133)) $) 75 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-1300 (($ $ (-133)) 104) (($ $ (-130)) 103)) (-1426 (($ $) 90 (|has| $ (-6 -4249)))) (-3700 (($ $) 100)) (-1694 (($ $ (-1136 (-523)) $) 114)) (-2462 (($ $) 78 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ (-133) $) 77 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) (-133)) $) 74 (|has| $ (-6 -4248)))) (-2116 (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) 76 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4248)))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) 73 (|has| $ (-6 -4248))) (((-133) (-1 (-133) (-133) (-133)) $) 72 (|has| $ (-6 -4248)))) (-2053 (((-133) $ (-523) (-133)) 53 (|has| $ (-6 -4249)))) (-2000 (((-133) $ (-523)) 51)) (-2164 (((-108) $ $) 119)) (-3449 (((-523) (-1 (-108) (-133)) $) 97) (((-523) (-133) $) 96 (|has| (-133) (-1016))) (((-523) (-133) $ (-523)) 95 (|has| (-133) (-1016))) (((-523) $ $ (-523)) 113) (((-523) (-130) $ (-523)) 112)) (-1871 (((-589 (-133)) $) 30 (|has| $ (-6 -4248)))) (-3733 (($ (-710) (-133)) 69)) (-3051 (((-108) $ (-710)) 9)) (-2965 (((-523) $) 43 (|has| (-523) (-786)))) (-3239 (($ $ $) 87 (|has| (-133) (-786)))) (-3780 (($ (-1 (-108) (-133) (-133)) $ $) 101) (($ $ $) 94 (|has| (-133) (-786)))) (-1584 (((-589 (-133)) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) (-133) $) 27 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 44 (|has| (-523) (-786)))) (-3158 (($ $ $) 86 (|has| (-133) (-786)))) (-2676 (((-108) $ $ (-133)) 115)) (-2178 (((-710) $ $ (-133)) 116)) (-2043 (($ (-1 (-133) (-133)) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-133) (-133)) $) 35) (($ (-1 (-133) (-133) (-133)) $ $) 64)) (-1353 (($ $) 122)) (-2052 (($ $) 123)) (-1418 (((-108) $ (-710)) 10)) (-1313 (($ $ (-133)) 106) (($ $ (-130)) 105)) (-2032 (((-1070) $) 22)) (-2912 (($ (-133) $ (-523)) 60) (($ $ $ (-523)) 59)) (-2536 (((-589 (-523)) $) 46)) (-2254 (((-108) (-523) $) 47)) (-3951 (((-1034) $) 21)) (-2428 (((-133) $) 42 (|has| (-523) (-786)))) (-2509 (((-3 (-133) "failed") (-1 (-108) (-133)) $) 71)) (-4141 (($ $ (-133)) 41 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) (-133)) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-133)))) 26 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) 25 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) 24 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-133)) (-589 (-133))) 23 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) (-133) $) 45 (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-3973 (((-589 (-133)) $) 48)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 (((-133) $ (-523) (-133)) 50) (((-133) $ (-523)) 49) (($ $ (-1136 (-523))) 63) (($ $ $) 102)) (-1499 (($ $ (-523)) 62) (($ $ (-1136 (-523))) 61)) (-3977 (((-710) (-1 (-108) (-133)) $) 31 (|has| $ (-6 -4248))) (((-710) (-133) $) 28 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4248))))) (-4166 (($ $ $ (-523)) 91 (|has| $ (-6 -4249)))) (-1874 (($ $) 13)) (-1400 (((-499) $) 79 (|has| (-133) (-564 (-499))))) (-1704 (($ (-589 (-133))) 70)) (-2394 (($ $ (-133)) 68) (($ (-133) $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1691 (($ (-133)) 111) (((-794) $) 18)) (-2308 (((-108) (-1 (-108) (-133)) $) 33 (|has| $ (-6 -4248)))) (-2111 (((-1070) $) 131) (((-1070) $ (-108)) 130) (((-1174) (-761) $) 129) (((-1174) (-761) $ (-108)) 128)) (-4006 (((-108) $ $) 84 (|has| (-133) (-786)))) (-3980 (((-108) $ $) 83 (|has| (-133) (-786)))) (-3941 (((-108) $ $) 20)) (-3993 (((-108) $ $) 85 (|has| (-133) (-786)))) (-3966 (((-108) $ $) 82 (|has| (-133) (-786)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) (((-1069) (-129)) (T -1069)) -((-3207 (*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1069))))) -(-13 (-1056) (-1016) (-767) (-10 -8 (-15 -3207 ($ (-523))))) -(((-33) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 #0=(-133)) . T) ((-564 (-499)) |has| (-133) (-564 (-499))) ((-263 #1=(-523) #0#) . T) ((-265 #1# #0#) . T) ((-286 #0#) -12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))) ((-349 #0#) . T) ((-462 #0#) . T) ((-556 #1# #0#) . T) ((-484 #0# #0#) -12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))) ((-594 #0#) . T) ((-19 #0#) . T) ((-767) . T) ((-786) |has| (-133) (-786)) ((-1016) . T) ((-1056) . T) ((-1122) . T)) -((-3924 (((-108) $ $) NIL)) (-2109 (($ $) NIL)) (-1303 (($ $) NIL)) (-2874 (($ $ (-133)) NIL) (($ $ (-130)) NIL)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1545 (((-108) $ $) NIL)) (-1521 (((-108) $ $ (-523)) NIL)) (-3207 (($ (-523)) 7)) (-2063 (((-589 $) $ (-133)) NIL) (((-589 $) $ (-130)) NIL)) (-1964 (((-108) (-1 (-108) (-133) (-133)) $) NIL) (((-108) $) NIL (|has| (-133) (-786)))) (-1506 (($ (-1 (-108) (-133) (-133)) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| (-133) (-786))))) (-3974 (($ (-1 (-108) (-133) (-133)) $) NIL) (($ $) NIL (|has| (-133) (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 (((-133) $ (-523) (-133)) NIL (|has| $ (-6 -4245))) (((-133) $ (-1135 (-523)) (-133)) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-4123 (($ $ (-133)) NIL) (($ $ (-130)) NIL)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-2129 (($ $ (-1135 (-523)) $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-2557 (($ (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016)))) (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016)))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) NIL (|has| $ (-6 -4244))) (((-133) (-1 (-133) (-133) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2863 (((-133) $ (-523) (-133)) NIL (|has| $ (-6 -4245)))) (-2795 (((-133) $ (-523)) NIL)) (-1569 (((-108) $ $) NIL)) (-1479 (((-523) (-1 (-108) (-133)) $) NIL) (((-523) (-133) $) NIL (|has| (-133) (-1016))) (((-523) (-133) $ (-523)) NIL (|has| (-133) (-1016))) (((-523) $ $ (-523)) NIL) (((-523) (-130) $ (-523)) NIL)) (-1666 (((-589 (-133)) $) NIL (|has| $ (-6 -4244)))) (-3052 (($ (-710) (-133)) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| (-133) (-786)))) (-2178 (($ (-1 (-108) (-133) (-133)) $ $) NIL) (($ $ $) NIL (|has| (-133) (-786)))) (-2136 (((-589 (-133)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-133) (-786)))) (-2599 (((-108) $ $ (-133)) NIL)) (-1547 (((-710) $ $ (-133)) NIL)) (-2852 (($ (-1 (-133) (-133)) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-133) (-133)) $) NIL) (($ (-1 (-133) (-133) (-133)) $ $) NIL)) (-2858 (($ $) NIL)) (-2674 (($ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-4133 (($ $ (-133)) NIL) (($ $ (-130)) NIL)) (-3779 (((-1070) $) NIL)) (-2847 (($ (-133) $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-133) $) NIL (|has| (-523) (-786)))) (-2114 (((-3 (-133) "failed") (-1 (-108) (-133)) $) NIL)) (-4203 (($ $ (-133)) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-133)))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-133)) (-589 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-1264 (((-589 (-133)) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 (((-133) $ (-523) (-133)) NIL) (((-133) $ (-523)) NIL) (($ $ (-1135 (-523))) NIL) (($ $ $) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244))) (((-710) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-133) (-564 (-499))))) (-1472 (($ (-589 (-133))) NIL)) (-2326 (($ $ (-133)) NIL) (($ (-133) $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (($ (-133)) NIL) (((-794) $) NIL)) (-2096 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-3790 (((-1070) $) 18) (((-1070) $ (-108)) 20) (((-1173) (-761) $) 21) (((-1173) (-761) $ (-108)) 22)) (-4043 (((-108) $ $) NIL (|has| (-133) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-133) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-133) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-133) (-786)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +((-3279 (*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1069))))) +(-13 (-1056) (-1016) (-767) (-10 -8 (-15 -3279 ($ (-523))))) +(((-33) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 #0=(-133)) . T) ((-564 (-499)) |has| (-133) (-564 (-499))) ((-263 #1=(-523) #0#) . T) ((-265 #1# #0#) . T) ((-286 #0#) -12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))) ((-349 #0#) . T) ((-462 #0#) . T) ((-556 #1# #0#) . T) ((-484 #0# #0#) -12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))) ((-594 #0#) . T) ((-19 #0#) . T) ((-767) . T) ((-786) |has| (-133) (-786)) ((-1016) . T) ((-1056) . T) ((-1123) . T)) +((-1680 (((-108) $ $) NIL)) (-2458 (($ $) NIL)) (-3137 (($ $) NIL)) (-3214 (($ $ (-133)) NIL) (($ $ (-130)) NIL)) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-2141 (((-108) $ $) NIL)) (-2119 (((-108) $ $ (-523)) NIL)) (-3279 (($ (-523)) 7)) (-1980 (((-589 $) $ (-133)) NIL) (((-589 $) $ (-130)) NIL)) (-3337 (((-108) (-1 (-108) (-133) (-133)) $) NIL) (((-108) $) NIL (|has| (-133) (-786)))) (-1632 (($ (-1 (-108) (-133) (-133)) $) NIL (|has| $ (-6 -4249))) (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| (-133) (-786))))) (-1581 (($ (-1 (-108) (-133) (-133)) $) NIL) (($ $) NIL (|has| (-133) (-786)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 (((-133) $ (-523) (-133)) NIL (|has| $ (-6 -4249))) (((-133) $ (-1136 (-523)) (-133)) NIL (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-1300 (($ $ (-133)) NIL) (($ $ (-130)) NIL)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-1694 (($ $ (-1136 (-523)) $) NIL)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-2514 (($ (-133) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016)))) (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016)))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) NIL (|has| $ (-6 -4248))) (((-133) (-1 (-133) (-133) (-133)) $) NIL (|has| $ (-6 -4248)))) (-2053 (((-133) $ (-523) (-133)) NIL (|has| $ (-6 -4249)))) (-2000 (((-133) $ (-523)) NIL)) (-2164 (((-108) $ $) NIL)) (-3449 (((-523) (-1 (-108) (-133)) $) NIL) (((-523) (-133) $) NIL (|has| (-133) (-1016))) (((-523) (-133) $ (-523)) NIL (|has| (-133) (-1016))) (((-523) $ $ (-523)) NIL) (((-523) (-130) $ (-523)) NIL)) (-1871 (((-589 (-133)) $) NIL (|has| $ (-6 -4248)))) (-3733 (($ (-710) (-133)) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| (-133) (-786)))) (-3780 (($ (-1 (-108) (-133) (-133)) $ $) NIL) (($ $ $) NIL (|has| (-133) (-786)))) (-1584 (((-589 (-133)) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-133) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| (-133) (-786)))) (-2676 (((-108) $ $ (-133)) NIL)) (-2178 (((-710) $ $ (-133)) NIL)) (-2043 (($ (-1 (-133) (-133)) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-133) (-133)) $) NIL) (($ (-1 (-133) (-133) (-133)) $ $) NIL)) (-1353 (($ $) NIL)) (-2052 (($ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-1313 (($ $ (-133)) NIL) (($ $ (-130)) NIL)) (-2032 (((-1070) $) NIL)) (-2912 (($ (-133) $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL)) (-2428 (((-133) $) NIL (|has| (-523) (-786)))) (-2509 (((-3 (-133) "failed") (-1 (-108) (-133)) $) NIL)) (-4141 (($ $ (-133)) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-133)))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-133)) (-589 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) (-133) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-3973 (((-589 (-133)) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 (((-133) $ (-523) (-133)) NIL) (((-133) $ (-523)) NIL) (($ $ (-1136 (-523))) NIL) (($ $ $) NIL)) (-1499 (($ $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-3977 (((-710) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248))) (((-710) (-133) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-133) (-1016))))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-133) (-564 (-499))))) (-1704 (($ (-589 (-133))) NIL)) (-2394 (($ $ (-133)) NIL) (($ (-133) $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1691 (($ (-133)) NIL) (((-794) $) NIL)) (-2308 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4248)))) (-2111 (((-1070) $) 18) (((-1070) $ (-108)) 20) (((-1174) (-761) $) 21) (((-1174) (-761) $ (-108)) 22)) (-4006 (((-108) $ $) NIL (|has| (-133) (-786)))) (-3980 (((-108) $ $) NIL (|has| (-133) (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| (-133) (-786)))) (-3966 (((-108) $ $) NIL (|has| (-133) (-786)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) (((-1070) (-1069)) (T -1070)) NIL (-1069) -((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)) (|has| |#1| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL)) (-4207 (((-1173) $ (-1070) (-1070)) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-1070) |#1|) NIL)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#1| "failed") (-1070) $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#1| "failed") (-1070) $) NIL)) (-2557 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-1070) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-1070)) NIL)) (-1666 (((-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2136 (((-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)) (|has| |#1| (-1016))))) (-1330 (((-589 (-1070)) $) NIL)) (-2777 (((-108) (-1070) $) NIL)) (-1934 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL)) (-2412 (((-589 (-1070)) $) NIL)) (-4135 (((-108) (-1070) $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)) (|has| |#1| (-1016))))) (-1738 ((|#1| $) NIL (|has| (-1070) (-786)))) (-2114 (((-3 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) "failed") (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-1070)) NIL) ((|#1| $ (-1070) |#1|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-563 (-794))) (|has| |#1| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)) (|has| |#1| (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-1071 |#1|) (-13 (-1099 (-1070) |#1|) (-10 -7 (-6 -4244))) (-1016)) (T -1071)) -NIL -(-13 (-1099 (-1070) |#1|) (-10 -7 (-6 -4244))) -((-1492 (((-1068 |#1|) (-1068 |#1|)) 77)) (-2121 (((-3 (-1068 |#1|) "failed") (-1068 |#1|)) 37)) (-2405 (((-1068 |#1|) (-383 (-523)) (-1068 |#1|)) 117 (|has| |#1| (-37 (-383 (-523)))))) (-3829 (((-1068 |#1|) |#1| (-1068 |#1|)) 121 (|has| |#1| (-339)))) (-2673 (((-1068 |#1|) (-1068 |#1|)) 90)) (-2199 (((-1068 (-523)) (-523)) 57)) (-3521 (((-1068 |#1|) (-1068 (-1068 |#1|))) 108 (|has| |#1| (-37 (-383 (-523)))))) (-3235 (((-1068 |#1|) (-523) (-523) (-1068 |#1|)) 95)) (-2302 (((-1068 |#1|) |#1| (-523)) 45)) (-3004 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 60)) (-1926 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 119 (|has| |#1| (-339)))) (-3396 (((-1068 |#1|) |#1| (-1 (-1068 |#1|))) 107 (|has| |#1| (-37 (-383 (-523)))))) (-2426 (((-1068 |#1|) (-1 |#1| (-523)) |#1| (-1 (-1068 |#1|))) 120 (|has| |#1| (-339)))) (-2511 (((-1068 |#1|) (-1068 |#1|)) 89)) (-2548 (((-1068 |#1|) (-1068 |#1|)) 76)) (-1602 (((-1068 |#1|) (-523) (-523) (-1068 |#1|)) 96)) (-3417 (((-1068 |#1|) |#1| (-1068 |#1|)) 105 (|has| |#1| (-37 (-383 (-523)))))) (-2575 (((-1068 (-523)) (-523)) 56)) (-1464 (((-1068 |#1|) |#1|) 59)) (-1840 (((-1068 |#1|) (-1068 |#1|) (-523) (-523)) 92)) (-3006 (((-1068 |#1|) (-1 |#1| (-523)) (-1068 |#1|)) 66)) (-3746 (((-3 (-1068 |#1|) "failed") (-1068 |#1|) (-1068 |#1|)) 35)) (-3741 (((-1068 |#1|) (-1068 |#1|)) 91)) (-2679 (((-1068 |#1|) (-1068 |#1|) |#1|) 71)) (-2392 (((-1068 |#1|) (-1068 |#1|)) 62)) (-4100 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 72)) (-1458 (((-1068 |#1|) |#1|) 67)) (-3389 (((-1068 |#1|) (-1068 (-1068 |#1|))) 82)) (-4098 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 36)) (-4087 (((-1068 |#1|) (-1068 |#1|)) 21) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 23)) (-4075 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 17)) (* (((-1068 |#1|) (-1068 |#1|) |#1|) 29) (((-1068 |#1|) |#1| (-1068 |#1|)) 26) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 27))) -(((-1072 |#1|) (-10 -7 (-15 -4075 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -4087 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -4087 ((-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3746 ((-3 (-1068 |#1|) "failed") (-1068 |#1|) (-1068 |#1|))) (-15 -4098 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2121 ((-3 (-1068 |#1|) "failed") (-1068 |#1|))) (-15 -2302 ((-1068 |#1|) |#1| (-523))) (-15 -2575 ((-1068 (-523)) (-523))) (-15 -2199 ((-1068 (-523)) (-523))) (-15 -1464 ((-1068 |#1|) |#1|)) (-15 -3004 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2392 ((-1068 |#1|) (-1068 |#1|))) (-15 -3006 ((-1068 |#1|) (-1 |#1| (-523)) (-1068 |#1|))) (-15 -1458 ((-1068 |#1|) |#1|)) (-15 -2679 ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -4100 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2548 ((-1068 |#1|) (-1068 |#1|))) (-15 -1492 ((-1068 |#1|) (-1068 |#1|))) (-15 -3389 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -2511 ((-1068 |#1|) (-1068 |#1|))) (-15 -2673 ((-1068 |#1|) (-1068 |#1|))) (-15 -3741 ((-1068 |#1|) (-1068 |#1|))) (-15 -1840 ((-1068 |#1|) (-1068 |#1|) (-523) (-523))) (-15 -3235 ((-1068 |#1|) (-523) (-523) (-1068 |#1|))) (-15 -1602 ((-1068 |#1|) (-523) (-523) (-1068 |#1|))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 -3396 ((-1068 |#1|) |#1| (-1 (-1068 |#1|)))) (-15 -3521 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -2405 ((-1068 |#1|) (-383 (-523)) (-1068 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -1926 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2426 ((-1068 |#1|) (-1 |#1| (-523)) |#1| (-1 (-1068 |#1|)))) (-15 -3829 ((-1068 |#1|) |#1| (-1068 |#1|)))) |%noBranch|)) (-973)) (T -1072)) -((-3829 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-339)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-523))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-339)) (-4 *4 (-973)) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)))) (-1926 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-339)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2405 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-4 *4 (-37 *3)) (-4 *4 (-973)) (-5 *3 (-383 (-523))) (-5 *1 (-1072 *4)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)) (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)))) (-3417 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-1602 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) (-5 *1 (-1072 *4)))) (-3235 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) (-5 *1 (-1072 *4)))) (-1840 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) (-5 *1 (-1072 *4)))) (-3741 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2673 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2511 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)) (-4 *4 (-973)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2548 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4100 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2679 (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973)))) (-3006 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-523))) (-4 *4 (-973)) (-5 *1 (-1072 *4)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-3004 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-1464 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973)))) (-2199 (*1 *2 *3) (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-1072 *4)) (-4 *4 (-973)) (-5 *3 (-523)))) (-2575 (*1 *2 *3) (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-1072 *4)) (-4 *4 (-973)) (-5 *3 (-523)))) (-2302 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973)))) (-2121 (*1 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4098 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-3746 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4087 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4075 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) -(-10 -7 (-15 -4075 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -4087 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -4087 ((-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3746 ((-3 (-1068 |#1|) "failed") (-1068 |#1|) (-1068 |#1|))) (-15 -4098 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2121 ((-3 (-1068 |#1|) "failed") (-1068 |#1|))) (-15 -2302 ((-1068 |#1|) |#1| (-523))) (-15 -2575 ((-1068 (-523)) (-523))) (-15 -2199 ((-1068 (-523)) (-523))) (-15 -1464 ((-1068 |#1|) |#1|)) (-15 -3004 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2392 ((-1068 |#1|) (-1068 |#1|))) (-15 -3006 ((-1068 |#1|) (-1 |#1| (-523)) (-1068 |#1|))) (-15 -1458 ((-1068 |#1|) |#1|)) (-15 -2679 ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -4100 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2548 ((-1068 |#1|) (-1068 |#1|))) (-15 -1492 ((-1068 |#1|) (-1068 |#1|))) (-15 -3389 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -2511 ((-1068 |#1|) (-1068 |#1|))) (-15 -2673 ((-1068 |#1|) (-1068 |#1|))) (-15 -3741 ((-1068 |#1|) (-1068 |#1|))) (-15 -1840 ((-1068 |#1|) (-1068 |#1|) (-523) (-523))) (-15 -3235 ((-1068 |#1|) (-523) (-523) (-1068 |#1|))) (-15 -1602 ((-1068 |#1|) (-523) (-523) (-1068 |#1|))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 -3396 ((-1068 |#1|) |#1| (-1 (-1068 |#1|)))) (-15 -3521 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -2405 ((-1068 |#1|) (-383 (-523)) (-1068 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -1926 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2426 ((-1068 |#1|) (-1 |#1| (-523)) |#1| (-1 (-1068 |#1|)))) (-15 -3829 ((-1068 |#1|) |#1| (-1068 |#1|)))) |%noBranch|)) -((-1769 (((-1068 |#1|) (-1068 |#1|)) 57)) (-3780 (((-1068 |#1|) (-1068 |#1|)) 39)) (-1744 (((-1068 |#1|) (-1068 |#1|)) 53)) (-3711 (((-1068 |#1|) (-1068 |#1|)) 35)) (-1793 (((-1068 |#1|) (-1068 |#1|)) 60)) (-3805 (((-1068 |#1|) (-1068 |#1|)) 42)) (-2384 (((-1068 |#1|) (-1068 |#1|)) 31)) (-1811 (((-1068 |#1|) (-1068 |#1|)) 27)) (-1805 (((-1068 |#1|) (-1068 |#1|)) 61)) (-3816 (((-1068 |#1|) (-1068 |#1|)) 43)) (-1782 (((-1068 |#1|) (-1068 |#1|)) 58)) (-3793 (((-1068 |#1|) (-1068 |#1|)) 40)) (-1757 (((-1068 |#1|) (-1068 |#1|)) 55)) (-3767 (((-1068 |#1|) (-1068 |#1|)) 37)) (-1839 (((-1068 |#1|) (-1068 |#1|)) 65)) (-3847 (((-1068 |#1|) (-1068 |#1|)) 47)) (-1818 (((-1068 |#1|) (-1068 |#1|)) 63)) (-3828 (((-1068 |#1|) (-1068 |#1|)) 45)) (-1865 (((-1068 |#1|) (-1068 |#1|)) 68)) (-1719 (((-1068 |#1|) (-1068 |#1|)) 50)) (-2914 (((-1068 |#1|) (-1068 |#1|)) 69)) (-1731 (((-1068 |#1|) (-1068 |#1|)) 51)) (-1852 (((-1068 |#1|) (-1068 |#1|)) 67)) (-3859 (((-1068 |#1|) (-1068 |#1|)) 49)) (-1830 (((-1068 |#1|) (-1068 |#1|)) 66)) (-3838 (((-1068 |#1|) (-1068 |#1|)) 48)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 33))) -(((-1073 |#1|) (-10 -7 (-15 -1811 ((-1068 |#1|) (-1068 |#1|))) (-15 -2384 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3711 ((-1068 |#1|) (-1068 |#1|))) (-15 -3767 ((-1068 |#1|) (-1068 |#1|))) (-15 -3780 ((-1068 |#1|) (-1068 |#1|))) (-15 -3793 ((-1068 |#1|) (-1068 |#1|))) (-15 -3805 ((-1068 |#1|) (-1068 |#1|))) (-15 -3816 ((-1068 |#1|) (-1068 |#1|))) (-15 -3828 ((-1068 |#1|) (-1068 |#1|))) (-15 -3838 ((-1068 |#1|) (-1068 |#1|))) (-15 -3847 ((-1068 |#1|) (-1068 |#1|))) (-15 -3859 ((-1068 |#1|) (-1068 |#1|))) (-15 -1719 ((-1068 |#1|) (-1068 |#1|))) (-15 -1731 ((-1068 |#1|) (-1068 |#1|))) (-15 -1744 ((-1068 |#1|) (-1068 |#1|))) (-15 -1757 ((-1068 |#1|) (-1068 |#1|))) (-15 -1769 ((-1068 |#1|) (-1068 |#1|))) (-15 -1782 ((-1068 |#1|) (-1068 |#1|))) (-15 -1793 ((-1068 |#1|) (-1068 |#1|))) (-15 -1805 ((-1068 |#1|) (-1068 |#1|))) (-15 -1818 ((-1068 |#1|) (-1068 |#1|))) (-15 -1830 ((-1068 |#1|) (-1068 |#1|))) (-15 -1839 ((-1068 |#1|) (-1068 |#1|))) (-15 -1852 ((-1068 |#1|) (-1068 |#1|))) (-15 -1865 ((-1068 |#1|) (-1068 |#1|))) (-15 -2914 ((-1068 |#1|) (-1068 |#1|)))) (-37 (-383 (-523)))) (T -1073)) -((-2914 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1852 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1818 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1782 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1731 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3859 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-2384 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1811 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3))))) -(-10 -7 (-15 -1811 ((-1068 |#1|) (-1068 |#1|))) (-15 -2384 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3711 ((-1068 |#1|) (-1068 |#1|))) (-15 -3767 ((-1068 |#1|) (-1068 |#1|))) (-15 -3780 ((-1068 |#1|) (-1068 |#1|))) (-15 -3793 ((-1068 |#1|) (-1068 |#1|))) (-15 -3805 ((-1068 |#1|) (-1068 |#1|))) (-15 -3816 ((-1068 |#1|) (-1068 |#1|))) (-15 -3828 ((-1068 |#1|) (-1068 |#1|))) (-15 -3838 ((-1068 |#1|) (-1068 |#1|))) (-15 -3847 ((-1068 |#1|) (-1068 |#1|))) (-15 -3859 ((-1068 |#1|) (-1068 |#1|))) (-15 -1719 ((-1068 |#1|) (-1068 |#1|))) (-15 -1731 ((-1068 |#1|) (-1068 |#1|))) (-15 -1744 ((-1068 |#1|) (-1068 |#1|))) (-15 -1757 ((-1068 |#1|) (-1068 |#1|))) (-15 -1769 ((-1068 |#1|) (-1068 |#1|))) (-15 -1782 ((-1068 |#1|) (-1068 |#1|))) (-15 -1793 ((-1068 |#1|) (-1068 |#1|))) (-15 -1805 ((-1068 |#1|) (-1068 |#1|))) (-15 -1818 ((-1068 |#1|) (-1068 |#1|))) (-15 -1830 ((-1068 |#1|) (-1068 |#1|))) (-15 -1839 ((-1068 |#1|) (-1068 |#1|))) (-15 -1852 ((-1068 |#1|) (-1068 |#1|))) (-15 -1865 ((-1068 |#1|) (-1068 |#1|))) (-15 -2914 ((-1068 |#1|) (-1068 |#1|)))) -((-1769 (((-1068 |#1|) (-1068 |#1|)) 100)) (-3780 (((-1068 |#1|) (-1068 |#1|)) 64)) (-3438 (((-2 (|:| -1744 (-1068 |#1|)) (|:| -1757 (-1068 |#1|))) (-1068 |#1|)) 96)) (-1744 (((-1068 |#1|) (-1068 |#1|)) 97)) (-1313 (((-2 (|:| -3711 (-1068 |#1|)) (|:| -3767 (-1068 |#1|))) (-1068 |#1|)) 53)) (-3711 (((-1068 |#1|) (-1068 |#1|)) 54)) (-1793 (((-1068 |#1|) (-1068 |#1|)) 102)) (-3805 (((-1068 |#1|) (-1068 |#1|)) 71)) (-2384 (((-1068 |#1|) (-1068 |#1|)) 39)) (-1811 (((-1068 |#1|) (-1068 |#1|)) 36)) (-1805 (((-1068 |#1|) (-1068 |#1|)) 103)) (-3816 (((-1068 |#1|) (-1068 |#1|)) 72)) (-1782 (((-1068 |#1|) (-1068 |#1|)) 101)) (-3793 (((-1068 |#1|) (-1068 |#1|)) 67)) (-1757 (((-1068 |#1|) (-1068 |#1|)) 98)) (-3767 (((-1068 |#1|) (-1068 |#1|)) 55)) (-1839 (((-1068 |#1|) (-1068 |#1|)) 111)) (-3847 (((-1068 |#1|) (-1068 |#1|)) 86)) (-1818 (((-1068 |#1|) (-1068 |#1|)) 105)) (-3828 (((-1068 |#1|) (-1068 |#1|)) 82)) (-1865 (((-1068 |#1|) (-1068 |#1|)) 115)) (-1719 (((-1068 |#1|) (-1068 |#1|)) 90)) (-2914 (((-1068 |#1|) (-1068 |#1|)) 117)) (-1731 (((-1068 |#1|) (-1068 |#1|)) 92)) (-1852 (((-1068 |#1|) (-1068 |#1|)) 113)) (-3859 (((-1068 |#1|) (-1068 |#1|)) 88)) (-1830 (((-1068 |#1|) (-1068 |#1|)) 107)) (-3838 (((-1068 |#1|) (-1068 |#1|)) 84)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 40))) -(((-1074 |#1|) (-10 -7 (-15 -1811 ((-1068 |#1|) (-1068 |#1|))) (-15 -2384 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -1313 ((-2 (|:| -3711 (-1068 |#1|)) (|:| -3767 (-1068 |#1|))) (-1068 |#1|))) (-15 -3711 ((-1068 |#1|) (-1068 |#1|))) (-15 -3767 ((-1068 |#1|) (-1068 |#1|))) (-15 -3780 ((-1068 |#1|) (-1068 |#1|))) (-15 -3793 ((-1068 |#1|) (-1068 |#1|))) (-15 -3805 ((-1068 |#1|) (-1068 |#1|))) (-15 -3816 ((-1068 |#1|) (-1068 |#1|))) (-15 -3828 ((-1068 |#1|) (-1068 |#1|))) (-15 -3838 ((-1068 |#1|) (-1068 |#1|))) (-15 -3847 ((-1068 |#1|) (-1068 |#1|))) (-15 -3859 ((-1068 |#1|) (-1068 |#1|))) (-15 -1719 ((-1068 |#1|) (-1068 |#1|))) (-15 -1731 ((-1068 |#1|) (-1068 |#1|))) (-15 -3438 ((-2 (|:| -1744 (-1068 |#1|)) (|:| -1757 (-1068 |#1|))) (-1068 |#1|))) (-15 -1744 ((-1068 |#1|) (-1068 |#1|))) (-15 -1757 ((-1068 |#1|) (-1068 |#1|))) (-15 -1769 ((-1068 |#1|) (-1068 |#1|))) (-15 -1782 ((-1068 |#1|) (-1068 |#1|))) (-15 -1793 ((-1068 |#1|) (-1068 |#1|))) (-15 -1805 ((-1068 |#1|) (-1068 |#1|))) (-15 -1818 ((-1068 |#1|) (-1068 |#1|))) (-15 -1830 ((-1068 |#1|) (-1068 |#1|))) (-15 -1839 ((-1068 |#1|) (-1068 |#1|))) (-15 -1852 ((-1068 |#1|) (-1068 |#1|))) (-15 -1865 ((-1068 |#1|) (-1068 |#1|))) (-15 -2914 ((-1068 |#1|) (-1068 |#1|)))) (-37 (-383 (-523)))) (T -1074)) -((-2914 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1852 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1818 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1782 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3438 (*1 *2 *3) (-12 (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-2 (|:| -1744 (-1068 *4)) (|:| -1757 (-1068 *4)))) (-5 *1 (-1074 *4)) (-5 *3 (-1068 *4)))) (-1731 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3859 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1313 (*1 *2 *3) (-12 (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-2 (|:| -3711 (-1068 *4)) (|:| -3767 (-1068 *4)))) (-5 *1 (-1074 *4)) (-5 *3 (-1068 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-2384 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1811 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3))))) -(-10 -7 (-15 -1811 ((-1068 |#1|) (-1068 |#1|))) (-15 -2384 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -1313 ((-2 (|:| -3711 (-1068 |#1|)) (|:| -3767 (-1068 |#1|))) (-1068 |#1|))) (-15 -3711 ((-1068 |#1|) (-1068 |#1|))) (-15 -3767 ((-1068 |#1|) (-1068 |#1|))) (-15 -3780 ((-1068 |#1|) (-1068 |#1|))) (-15 -3793 ((-1068 |#1|) (-1068 |#1|))) (-15 -3805 ((-1068 |#1|) (-1068 |#1|))) (-15 -3816 ((-1068 |#1|) (-1068 |#1|))) (-15 -3828 ((-1068 |#1|) (-1068 |#1|))) (-15 -3838 ((-1068 |#1|) (-1068 |#1|))) (-15 -3847 ((-1068 |#1|) (-1068 |#1|))) (-15 -3859 ((-1068 |#1|) (-1068 |#1|))) (-15 -1719 ((-1068 |#1|) (-1068 |#1|))) (-15 -1731 ((-1068 |#1|) (-1068 |#1|))) (-15 -3438 ((-2 (|:| -1744 (-1068 |#1|)) (|:| -1757 (-1068 |#1|))) (-1068 |#1|))) (-15 -1744 ((-1068 |#1|) (-1068 |#1|))) (-15 -1757 ((-1068 |#1|) (-1068 |#1|))) (-15 -1769 ((-1068 |#1|) (-1068 |#1|))) (-15 -1782 ((-1068 |#1|) (-1068 |#1|))) (-15 -1793 ((-1068 |#1|) (-1068 |#1|))) (-15 -1805 ((-1068 |#1|) (-1068 |#1|))) (-15 -1818 ((-1068 |#1|) (-1068 |#1|))) (-15 -1830 ((-1068 |#1|) (-1068 |#1|))) (-15 -1839 ((-1068 |#1|) (-1068 |#1|))) (-15 -1852 ((-1068 |#1|) (-1068 |#1|))) (-15 -1865 ((-1068 |#1|) (-1068 |#1|))) (-15 -2914 ((-1068 |#1|) (-1068 |#1|)))) -((-1540 (((-888 |#2|) |#2| |#2|) 36)) (-2528 ((|#2| |#2| |#1|) 19 (|has| |#1| (-284))))) -(((-1075 |#1| |#2|) (-10 -7 (-15 -1540 ((-888 |#2|) |#2| |#2|)) (IF (|has| |#1| (-284)) (-15 -2528 (|#2| |#2| |#1|)) |%noBranch|)) (-515) (-1144 |#1|)) (T -1075)) -((-2528 (*1 *2 *2 *3) (-12 (-4 *3 (-284)) (-4 *3 (-515)) (-5 *1 (-1075 *3 *2)) (-4 *2 (-1144 *3)))) (-1540 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-888 *3)) (-5 *1 (-1075 *4 *3)) (-4 *3 (-1144 *4))))) -(-10 -7 (-15 -1540 ((-888 |#2|) |#2| |#2|)) (IF (|has| |#1| (-284)) (-15 -2528 (|#2| |#2| |#1|)) |%noBranch|)) -((-3924 (((-108) $ $) NIL)) (-3525 (($ $ (-589 (-710))) 67)) (-3097 (($) 26)) (-2399 (($ $) 42)) (-3444 (((-589 $) $) 51)) (-1573 (((-108) $) 16)) (-3177 (((-589 (-874 |#2|)) $) 74)) (-1743 (($ $) 68)) (-4001 (((-710) $) 37)) (-3052 (($) 25)) (-2377 (($ $ (-589 (-710)) (-874 |#2|)) 60) (($ $ (-589 (-710)) (-710)) 61) (($ $ (-710) (-874 |#2|)) 63)) (-2178 (($ $ $) 48) (($ (-589 $)) 50)) (-2390 (((-710) $) 75)) (-3555 (((-108) $) 15)) (-3779 (((-1070) $) NIL)) (-2432 (((-108) $) 18)) (-2783 (((-1034) $) NIL)) (-3855 (((-157) $) 73)) (-1772 (((-874 |#2|) $) 69)) (-2877 (((-710) $) 70)) (-2963 (((-108) $) 72)) (-2113 (($ $ (-589 (-710)) (-157)) 66)) (-1707 (($ $) 43)) (-1458 (((-794) $) 85)) (-2161 (($ $ (-589 (-710)) (-108)) 65)) (-2296 (((-589 $) $) 11)) (-2705 (($ $ (-710)) 36)) (-3672 (($ $) 32)) (-3019 (($ $ $ (-874 |#2|) (-710)) 56)) (-1668 (($ $ (-874 |#2|)) 55)) (-1916 (($ $ (-589 (-710)) (-874 |#2|)) 54) (($ $ (-589 (-710)) (-710)) 58) (((-710) $ (-874 |#2|)) 59)) (-3983 (((-108) $ $) 79))) -(((-1076 |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -3555 ((-108) $)) (-15 -1573 ((-108) $)) (-15 -2432 ((-108) $)) (-15 -3052 ($)) (-15 -3097 ($)) (-15 -3672 ($ $)) (-15 -2705 ($ $ (-710))) (-15 -2296 ((-589 $) $)) (-15 -4001 ((-710) $)) (-15 -2399 ($ $)) (-15 -1707 ($ $)) (-15 -2178 ($ $ $)) (-15 -2178 ($ (-589 $))) (-15 -3444 ((-589 $) $)) (-15 -1916 ($ $ (-589 (-710)) (-874 |#2|))) (-15 -1668 ($ $ (-874 |#2|))) (-15 -3019 ($ $ $ (-874 |#2|) (-710))) (-15 -2377 ($ $ (-589 (-710)) (-874 |#2|))) (-15 -1916 ($ $ (-589 (-710)) (-710))) (-15 -2377 ($ $ (-589 (-710)) (-710))) (-15 -1916 ((-710) $ (-874 |#2|))) (-15 -2377 ($ $ (-710) (-874 |#2|))) (-15 -2161 ($ $ (-589 (-710)) (-108))) (-15 -2113 ($ $ (-589 (-710)) (-157))) (-15 -3525 ($ $ (-589 (-710)))) (-15 -1772 ((-874 |#2|) $)) (-15 -2877 ((-710) $)) (-15 -2963 ((-108) $)) (-15 -3855 ((-157) $)) (-15 -2390 ((-710) $)) (-15 -1743 ($ $)) (-15 -3177 ((-589 (-874 |#2|)) $)))) (-852) (-973)) (T -1076)) -((-3555 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-1573 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-3052 (*1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-3097 (*1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-3672 (*1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-2705 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2399 (*1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-1707 (*1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-2178 (*1 *1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-2178 (*1 *1 *2) (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-1916 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-1668 (*1 *1 *1 *2) (-12 (-5 *2 (-874 *4)) (-4 *4 (-973)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)))) (-3019 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-874 *5)) (-5 *3 (-710)) (-4 *5 (-973)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-2377 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-1916 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-710)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)) (-4 *5 (-973)))) (-2377 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-710)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)) (-4 *5 (-973)))) (-1916 (*1 *2 *1 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *2 (-710)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-2377 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-2161 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-108)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)) (-4 *5 (-973)))) (-2113 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-157)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)) (-4 *5 (-973)))) (-3525 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-874 *4)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-1743 (*1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-589 (-874 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973))))) -(-13 (-1016) (-10 -8 (-15 -3555 ((-108) $)) (-15 -1573 ((-108) $)) (-15 -2432 ((-108) $)) (-15 -3052 ($)) (-15 -3097 ($)) (-15 -3672 ($ $)) (-15 -2705 ($ $ (-710))) (-15 -2296 ((-589 $) $)) (-15 -4001 ((-710) $)) (-15 -2399 ($ $)) (-15 -1707 ($ $)) (-15 -2178 ($ $ $)) (-15 -2178 ($ (-589 $))) (-15 -3444 ((-589 $) $)) (-15 -1916 ($ $ (-589 (-710)) (-874 |#2|))) (-15 -1668 ($ $ (-874 |#2|))) (-15 -3019 ($ $ $ (-874 |#2|) (-710))) (-15 -2377 ($ $ (-589 (-710)) (-874 |#2|))) (-15 -1916 ($ $ (-589 (-710)) (-710))) (-15 -2377 ($ $ (-589 (-710)) (-710))) (-15 -1916 ((-710) $ (-874 |#2|))) (-15 -2377 ($ $ (-710) (-874 |#2|))) (-15 -2161 ($ $ (-589 (-710)) (-108))) (-15 -2113 ($ $ (-589 (-710)) (-157))) (-15 -3525 ($ $ (-589 (-710)))) (-15 -1772 ((-874 |#2|) $)) (-15 -2877 ((-710) $)) (-15 -2963 ((-108) $)) (-15 -3855 ((-157) $)) (-15 -2390 ((-710) $)) (-15 -1743 ($ $)) (-15 -3177 ((-589 (-874 |#2|)) $)))) -((-3924 (((-108) $ $) NIL)) (-1797 ((|#2| $) 11)) (-1787 ((|#1| $) 10)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1472 (($ |#1| |#2|) 9)) (-1458 (((-794) $) 16)) (-3983 (((-108) $ $) NIL))) -(((-1077 |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -1472 ($ |#1| |#2|)) (-15 -1787 (|#1| $)) (-15 -1797 (|#2| $)))) (-1016) (-1016)) (T -1077)) -((-1472 (*1 *1 *2 *3) (-12 (-5 *1 (-1077 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-1787 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1016)))) (-1797 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-1077 *3 *2)) (-4 *3 (-1016))))) -(-13 (-1016) (-10 -8 (-15 -1472 ($ |#1| |#2|)) (-15 -1787 (|#1| $)) (-15 -1797 (|#2| $)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-1085 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-284)) (|has| |#1| (-339))))) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 11)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3345 (($ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3331 (((-108) $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3984 (($ $ (-523)) NIL) (($ $ (-523) (-523)) 66)) (-2133 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) NIL)) (-3951 (((-1085 |#1| |#2| |#3|) $) 36)) (-3989 (((-3 (-1085 |#1| |#2| |#3|) "failed") $) 29)) (-2015 (((-1085 |#1| |#2| |#3|) $) 30)) (-1769 (($ $) 107 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 83 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) 103 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 79 (|has| |#1| (-37 (-383 (-523)))))) (-3671 (((-523) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2417 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) 111 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 87 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-1085 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1087) "failed") $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-523) "failed") $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))))) (-3474 (((-1085 |#1| |#2| |#3|) $) 131) (((-1087) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (((-383 (-523)) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339)))) (((-523) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))))) (-1819 (($ $) 34) (($ (-523) $) 35)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-1085 |#1| |#2| |#3|)) (-629 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 (-1085 |#1| |#2| |#3|))) (|:| |vec| (-1168 (-1085 |#1| |#2| |#3|)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-585 (-523))) (|has| |#1| (-339)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-585 (-523))) (|has| |#1| (-339))))) (-2121 (((-3 $ "failed") $) 48)) (-3289 (((-383 (-883 |#1|)) $ (-523)) 65 (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) 67 (|has| |#1| (-515)))) (-4032 (($) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2604 (((-108) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2003 (((-108) $) 25)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-817 (-523))) (|has| |#1| (-339)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-817 (-355))) (|has| |#1| (-339))))) (-1640 (((-523) $) NIL) (((-523) $ (-523)) 24)) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL (|has| |#1| (-339)))) (-2785 (((-1085 |#1| |#2| |#3|) $) 38 (|has| |#1| (-339)))) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4058 (((-3 $ "failed") $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-1063)) (|has| |#1| (-339))))) (-4114 (((-108) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-1349 (($ $ (-852)) NIL)) (-3735 (($ (-1 |#1| (-523)) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-523)) 18) (($ $ (-1001) (-523)) NIL) (($ $ (-589 (-1001)) (-589 (-523))) NIL)) (-2454 (($ $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-2062 (($ $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-339)))) (-2384 (($ $) 72 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2028 (($ (-523) (-1085 |#1| |#2| |#3|)) 33)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3417 (($ $) 70 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 71 (|has| |#1| (-37 (-383 (-523)))))) (-2262 (($) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-1063)) (|has| |#1| (-339))) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2206 (($ $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-284)) (|has| |#1| (-339))))) (-3722 (((-1085 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-523)) 145)) (-3746 (((-3 $ "failed") $ $) 49 (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) 73 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-523))))) (($ $ (-1087) (-1085 |#1| |#2| |#3|)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-484 (-1087) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 (-1085 |#1| |#2| |#3|))) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-484 (-1087) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-271 (-1085 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-271 (-1085 |#1| |#2| |#3|))) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-1085 |#1| |#2| |#3|)) (-589 (-1085 |#1| |#2| |#3|))) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-523)) NIL) (($ $ $) 54 (|has| (-523) (-1028))) (($ $ (-1085 |#1| |#2| |#3|)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-263 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|))) NIL (|has| |#1| (-339))) (($ $ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) (-710)) NIL (|has| |#1| (-339))) (($ $ (-1164 |#2|)) 51) (($ $ (-710)) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 50 (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-3414 (($ $) NIL (|has| |#1| (-339)))) (-2797 (((-1085 |#1| |#2| |#3|) $) 41 (|has| |#1| (-339)))) (-2299 (((-523) $) 37)) (-1805 (($ $) 113 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 89 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 109 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 85 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 105 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 81 (|has| |#1| (-37 (-383 (-523)))))) (-3663 (((-499) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-564 (-499))) (|has| |#1| (-339)))) (((-355) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-949)) (|has| |#1| (-339)))) (((-203) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-949)) (|has| |#1| (-339)))) (((-823 (-355)) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-564 (-823 (-355)))) (|has| |#1| (-339)))) (((-823 (-523)) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-564 (-823 (-523)))) (|has| |#1| (-339))))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) 149) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1085 |#1| |#2| |#3|)) 27) (($ (-1164 |#2|)) 23) (($ (-1087)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (($ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515)))) (($ (-383 (-523))) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))) (|has| |#1| (-37 (-383 (-523))))))) (-2365 ((|#1| $ (-523)) 68)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 12)) (-1886 (((-1085 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-1839 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 95 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-1818 (($ $) 115 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 91 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 99 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-523)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 101 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 97 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 93 (|has| |#1| (-37 (-383 (-523)))))) (-2619 (($ $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 20 T CONST)) (-2767 (($) 16 T CONST)) (-2862 (($ $ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|))) NIL (|has| |#1| (-339))) (($ $ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) (-710)) NIL (|has| |#1| (-339))) (($ $ (-710)) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-4043 (((-108) $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4019 (((-108) $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4007 (((-108) $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) 44 (|has| |#1| (-339))) (($ (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) 45 (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 21)) (** (($ $ (-852)) NIL) (($ $ (-710)) 53) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) 74 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 128 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1085 |#1| |#2| |#3|)) 43 (|has| |#1| (-339))) (($ (-1085 |#1| |#2| |#3|) $) 42 (|has| |#1| (-339))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-1078 |#1| |#2| |#3|) (-13 (-1130 |#1| (-1085 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1078)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) -(-13 (-1130 |#1| (-1085 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) -((-1923 ((|#2| |#2| (-1009 |#2|)) 26) ((|#2| |#2| (-1087)) 28))) -(((-1079 |#1| |#2|) (-10 -7 (-15 -1923 (|#2| |#2| (-1087))) (-15 -1923 (|#2| |#2| (-1009 |#2|)))) (-13 (-515) (-786) (-964 (-523)) (-585 (-523))) (-13 (-406 |#1|) (-147) (-27) (-1108))) (T -1079)) -((-1923 (*1 *2 *2 *3) (-12 (-5 *3 (-1009 *2)) (-4 *2 (-13 (-406 *4) (-147) (-27) (-1108))) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1079 *4 *2)))) (-1923 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1079 *4 *2)) (-4 *2 (-13 (-406 *4) (-147) (-27) (-1108)))))) -(-10 -7 (-15 -1923 (|#2| |#2| (-1087))) (-15 -1923 (|#2| |#2| (-1009 |#2|)))) -((-1923 (((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1009 (-383 (-883 |#1|)))) 30) (((-383 (-883 |#1|)) (-883 |#1|) (-1009 (-883 |#1|))) 44) (((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1087)) 32) (((-383 (-883 |#1|)) (-883 |#1|) (-1087)) 36))) -(((-1080 |#1|) (-10 -7 (-15 -1923 ((-383 (-883 |#1|)) (-883 |#1|) (-1087))) (-15 -1923 ((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1087))) (-15 -1923 ((-383 (-883 |#1|)) (-883 |#1|) (-1009 (-883 |#1|)))) (-15 -1923 ((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1009 (-383 (-883 |#1|)))))) (-13 (-515) (-786) (-964 (-523)))) (T -1080)) -((-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-3 *3 (-292 *5))) (-5 *1 (-1080 *5)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-883 *5))) (-5 *3 (-883 *5)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-383 *3)) (-5 *1 (-1080 *5)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-3 (-383 (-883 *5)) (-292 *5))) (-5 *1 (-1080 *5)) (-5 *3 (-383 (-883 *5))))) (-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-383 (-883 *5))) (-5 *1 (-1080 *5)) (-5 *3 (-883 *5))))) -(-10 -7 (-15 -1923 ((-383 (-883 |#1|)) (-883 |#1|) (-1087))) (-15 -1923 ((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1087))) (-15 -1923 ((-383 (-883 |#1|)) (-883 |#1|) (-1009 (-883 |#1|)))) (-15 -1923 ((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1009 (-383 (-883 |#1|)))))) -((-3612 (((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)) 13))) -(((-1081 |#1| |#2|) (-10 -7 (-15 -3612 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)))) (-973) (-973)) (T -1081)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-1083 *6)) (-5 *1 (-1081 *5 *6))))) -(-10 -7 (-15 -3612 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)))) -((-3614 (((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|))) 50)) (-1820 (((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|))) 51))) -(((-1082 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|)))) (-15 -3614 ((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|))))) (-732) (-786) (-427) (-880 |#3| |#1| |#2|)) (T -1082)) -((-3614 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-427)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 (-383 *7)))) (-5 *1 (-1082 *4 *5 *6 *7)) (-5 *3 (-1083 (-383 *7))))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-427)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 (-383 *7)))) (-5 *1 (-1082 *4 *5 *6 *7)) (-5 *3 (-1083 (-383 *7)))))) -(-10 -7 (-15 -1820 ((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|)))) (-15 -3614 ((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|))))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 30)) (-2854 (((-1168 |#1|) $ (-710)) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-3131 (($ (-1083 |#1|)) NIL)) (-1786 (((-1083 $) $ (-1001)) 59) (((-1083 |#1|) $) 48)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) 133 (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1001))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2407 (($ $ $) 127 (|has| |#1| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) 72 (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 92 (|has| |#1| (-840)))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-2692 (($ $ (-710)) 42)) (-2482 (($ $ (-710)) 43)) (-3444 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-427)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1001) "failed") $) NIL)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1001) $) NIL)) (-3078 (($ $ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $ $) 129 (|has| |#1| (-158)))) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) 57)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-3666 (($ $ $) 105)) (-2349 (($ $ $) NIL (|has| |#1| (-515)))) (-2815 (((-2 (|:| -2935 |#1|) (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2528 (($ $) 134 (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-710) $) 46)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-3553 (((-794) $ (-794)) 118)) (-1640 (((-710) $ $) NIL (|has| |#1| (-515)))) (-2023 (((-108) $) 32)) (-3554 (((-710) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-1063)))) (-1945 (($ (-1083 |#1|) (-1001)) 50) (($ (-1083 $) (-1001)) 66)) (-1349 (($ $ (-710)) 34)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) 64) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1001)) NIL) (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 122)) (-1575 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-710) (-710)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (((-1083 |#1|) $) NIL)) (-2520 (((-3 (-1001) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) 53)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-2150 (((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710)) 41)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-1001)) (|:| -2735 (-710))) "failed") $) NIL)) (-3417 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2262 (($) NIL (|has| |#1| (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) 33)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 80 (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) 136 (|has| |#1| (-427)))) (-4034 (($ $ (-710) |#1| $) 100)) (-1219 (((-394 (-1083 $)) (-1083 $)) 78 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 77 (|has| |#1| (-840)))) (-1820 (((-394 $) $) 85 (|has| |#1| (-840)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ |#1|) 132 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#1|) NIL) (($ $ (-589 (-1001)) (-589 |#1|)) NIL) (($ $ (-1001) $) NIL) (($ $ (-589 (-1001)) (-589 $)) NIL)) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ |#1|) 120) (($ $ $) 121) (((-383 $) (-383 $) (-383 $)) NIL (|has| |#1| (-515))) ((|#1| (-383 $) |#1|) NIL (|has| |#1| (-339))) (((-383 $) $ (-383 $)) NIL (|has| |#1| (-515)))) (-3255 (((-3 $ "failed") $ (-710)) 37)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 139 (|has| |#1| (-339)))) (-3549 (($ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $) 125 (|has| |#1| (-158)))) (-3523 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2299 (((-710) $) 55) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) 131 (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1260 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515))) (((-3 (-383 $) "failed") (-383 $) $) NIL (|has| |#1| (-515)))) (-1458 (((-794) $) 119) (($ (-523)) NIL) (($ |#1|) 54) (($ (-1001)) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) 28 (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 15) (($ $ (-710)) 16)) (-2756 (($) 17 T CONST)) (-2767 (($) 18 T CONST)) (-2862 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 97)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) 140 (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 67)) (** (($ $ (-852)) 14) (($ $ (-710)) 12)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 27) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 103) (($ $ |#1|) NIL))) -(((-1083 |#1|) (-13 (-1144 |#1|) (-10 -8 (-15 -3553 ((-794) $ (-794))) (-15 -4034 ($ $ (-710) |#1| $)))) (-973)) (T -1083)) -((-3553 (*1 *2 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-1083 *3)) (-4 *3 (-973)))) (-4034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1083 *3)) (-4 *3 (-973))))) -(-13 (-1144 |#1|) (-10 -8 (-15 -3553 ((-794) $ (-794))) (-15 -4034 ($ $ (-710) |#1| $)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 11)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) NIL) (($ $ (-383 (-523)) (-383 (-523))) NIL)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-1078 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1085 |#1| |#2| |#3|) "failed") $) 35)) (-3474 (((-1078 |#1| |#2| |#3|) $) NIL) (((-1085 |#1| |#2| |#3|) $) NIL)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2290 (((-383 (-523)) $) 55)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-3717 (($ (-383 (-523)) (-1078 |#1| |#2| |#3|)) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) NIL) (((-383 (-523)) $ (-383 (-523))) NIL)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) NIL) (($ $ (-383 (-523))) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-383 (-523))) 19) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2508 (((-1078 |#1| |#2| |#3|) $) 40)) (-1745 (((-3 (-1078 |#1| |#2| |#3|) "failed") $) NIL)) (-2028 (((-1078 |#1| |#2| |#3|) $) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3417 (($ $) 38 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 39 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) NIL)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) NIL) (($ $ $) NIL (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $ (-1164 |#2|)) 37)) (-2299 (((-383 (-523)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) 58) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1078 |#1| |#2| |#3|)) 29) (($ (-1085 |#1| |#2| |#3|)) 30) (($ (-1164 |#2|)) 25) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 12)) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 21 T CONST)) (-2767 (($) 16 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 23)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-1084 |#1| |#2| |#3|) (-13 (-1151 |#1| (-1078 |#1| |#2| |#3|)) (-964 (-1085 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1084)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) -(-13 (-1151 |#1| (-1078 |#1| |#2| |#3|)) (-964 (-1085 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 125)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 116)) (-2053 (((-1141 |#2| |#1|) $ (-710)) 63)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-710)) 79) (($ $ (-710) (-710)) 76)) (-2133 (((-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|))) $) 102)) (-1769 (($ $) 169 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 145 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1744 (($ $) 165 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|)))) 115) (($ (-1068 |#1|)) 110)) (-1793 (($ $) 173 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 149 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) 23)) (-1956 (($ $) 26)) (-3566 (((-883 |#1|) $ (-710)) 75) (((-883 |#1|) $ (-710) (-710)) 77)) (-2003 (((-108) $) 120)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-710) $) 122) (((-710) $ (-710)) 124)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) NIL)) (-3735 (($ (-1 |#1| (-523)) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) 13) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2384 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-3417 (($ $) 129 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 130 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-4097 (($ $ (-710)) 15)) (-3746 (((-3 $ "failed") $ $) 24 (|has| |#1| (-515)))) (-1811 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-710)))))) (-3223 ((|#1| $ (-710)) 119) (($ $ $) 128 (|has| (-710) (-1028)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $ (-1164 |#2|)) 29)) (-2299 (((-710) $) NIL)) (-1805 (($ $) 175 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 151 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 171 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 147 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 167 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) 201) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) 126 (|has| |#1| (-158))) (($ (-1141 |#2| |#1|)) 51) (($ (-1164 |#2|)) 32)) (-1251 (((-1068 |#1|) $) 98)) (-2365 ((|#1| $ (-710)) 118)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 54)) (-1839 (($ $) 181 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 157 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) 177 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 153 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 185 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 161 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-710)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-710)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 187 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 163 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 183 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 159 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 179 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 155 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 17 T CONST)) (-2767 (($) 19 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) 194)) (-4075 (($ $ $) 31)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ |#1|) 198 (|has| |#1| (-339))) (($ $ $) 134 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 137 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-1085 |#1| |#2| |#3|) (-13 (-1159 |#1|) (-10 -8 (-15 -1458 ($ (-1141 |#2| |#1|))) (-15 -2053 ((-1141 |#2| |#1|) $ (-710))) (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1085)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1141 *4 *3)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-1085 *3 *4 *5)))) (-2053 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1141 *5 *4)) (-5 *1 (-1085 *4 *5 *6)) (-4 *4 (-973)) (-14 *5 (-1087)) (-14 *6 *4))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) -(-13 (-1159 |#1|) (-10 -8 (-15 -1458 ($ (-1141 |#2| |#1|))) (-15 -2053 ((-1141 |#2| |#1|) $ (-710))) (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) -((-1458 (((-794) $) 22) (($ (-1087)) 24)) (-3262 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 35)) (-3252 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 28) (($ $) 29)) (-3039 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 30)) (-4191 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 32)) (-4180 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 31)) (-4169 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 33)) (-2608 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 34))) -(((-1086) (-13 (-563 (-794)) (-10 -8 (-15 -1458 ($ (-1087))) (-15 -3039 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -4180 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -4191 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -4169 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3262 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -2608 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3252 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3252 ($ $))))) (T -1086)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1086)))) (-3039 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-4180 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-4191 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-4169 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-3262 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-2608 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-3252 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-3252 (*1 *1 *1) (-5 *1 (-1086)))) -(-13 (-563 (-794)) (-10 -8 (-15 -1458 ($ (-1087))) (-15 -3039 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -4180 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -4191 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -4169 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3262 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -2608 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3252 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3252 ($ $)))) -((-3924 (((-108) $ $) NIL)) (-1806 (($ $ (-589 (-794))) 59)) (-1783 (($ $ (-589 (-794))) 57)) (-3207 (((-1070) $) 83)) (-3005 (((-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794)))) $) 86)) (-2829 (((-108) $) 21)) (-3031 (($ $ (-589 (-589 (-794)))) 55) (($ $ (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794))))) 81)) (-2518 (($) 123 T CONST)) (-1385 (((-1173)) 105)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 66) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 72)) (-3052 (($) 94) (($ $) 100)) (-4038 (($ $) 82)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3992 (((-589 $) $) 106)) (-3779 (((-1070) $) 89)) (-2783 (((-1034) $) NIL)) (-3223 (($ $ (-589 (-794))) 58)) (-3663 (((-499) $) 46) (((-1087) $) 47) (((-823 (-523)) $) 76) (((-823 (-355)) $) 74)) (-1458 (((-794) $) 53) (($ (-1070)) 48)) (-2888 (($ $ (-589 (-794))) 60)) (-3790 (((-1070) $) 33) (((-1070) $ (-108)) 34) (((-1173) (-761) $) 35) (((-1173) (-761) $ (-108)) 36)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 49)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 50))) -(((-1087) (-13 (-786) (-564 (-499)) (-767) (-564 (-1087)) (-564 (-823 (-523))) (-564 (-823 (-355))) (-817 (-523)) (-817 (-355)) (-10 -8 (-15 -3052 ($)) (-15 -3052 ($ $)) (-15 -1385 ((-1173))) (-15 -1458 ($ (-1070))) (-15 -4038 ($ $)) (-15 -2829 ((-108) $)) (-15 -3005 ((-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794)))) $)) (-15 -3031 ($ $ (-589 (-589 (-794))))) (-15 -3031 ($ $ (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794)))))) (-15 -1783 ($ $ (-589 (-794)))) (-15 -1806 ($ $ (-589 (-794)))) (-15 -2888 ($ $ (-589 (-794)))) (-15 -3223 ($ $ (-589 (-794)))) (-15 -3207 ((-1070) $)) (-15 -3992 ((-589 $) $)) (-15 -2518 ($) -3059)))) (T -1087)) -((-3052 (*1 *1) (-5 *1 (-1087))) (-3052 (*1 *1 *1) (-5 *1 (-1087))) (-1385 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1087)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1087)))) (-4038 (*1 *1 *1) (-5 *1 (-1087))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1087)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794))))) (-5 *1 (-1087)))) (-3031 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 (-794)))) (-5 *1 (-1087)))) (-3031 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794))))) (-5 *1 (-1087)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) (-1806 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) (-2888 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1087)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1087)))) (-2518 (*1 *1) (-5 *1 (-1087)))) -(-13 (-786) (-564 (-499)) (-767) (-564 (-1087)) (-564 (-823 (-523))) (-564 (-823 (-355))) (-817 (-523)) (-817 (-355)) (-10 -8 (-15 -3052 ($)) (-15 -3052 ($ $)) (-15 -1385 ((-1173))) (-15 -1458 ($ (-1070))) (-15 -4038 ($ $)) (-15 -2829 ((-108) $)) (-15 -3005 ((-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794)))) $)) (-15 -3031 ($ $ (-589 (-589 (-794))))) (-15 -3031 ($ $ (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794)))))) (-15 -1783 ($ $ (-589 (-794)))) (-15 -1806 ($ $ (-589 (-794)))) (-15 -2888 ($ $ (-589 (-794)))) (-15 -3223 ($ $ (-589 (-794)))) (-15 -3207 ((-1070) $)) (-15 -3992 ((-589 $) $)) (-15 -2518 ($) -3059))) -((-3716 (((-1168 |#1|) |#1| (-852)) 16) (((-1168 |#1|) (-589 |#1|)) 20))) -(((-1088 |#1|) (-10 -7 (-15 -3716 ((-1168 |#1|) (-589 |#1|))) (-15 -3716 ((-1168 |#1|) |#1| (-852)))) (-973)) (T -1088)) -((-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-5 *2 (-1168 *3)) (-5 *1 (-1088 *3)) (-4 *3 (-973)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-973)) (-5 *2 (-1168 *4)) (-5 *1 (-1088 *4))))) -(-10 -7 (-15 -3716 ((-1168 |#1|) (-589 |#1|))) (-15 -3716 ((-1168 |#1|) |#1| (-852)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427)))) (-1284 (($ $ |#1| (-900) $) NIL)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-900)) NIL)) (-1575 (((-900) $) NIL)) (-3782 (($ (-1 (-900) (-900)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#1| $) NIL)) (-4034 (($ $ (-900) |#1| $) NIL (-12 (|has| (-900) (-124)) (|has| |#1| (-515))))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-2299 (((-900) $) NIL)) (-2438 ((|#1| $) NIL (|has| |#1| (-427)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-900)) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 9 T CONST)) (-2767 (($) 14 T CONST)) (-3983 (((-108) $ $) 16)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 19)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-1089 |#1|) (-13 (-302 |#1| (-900)) (-10 -8 (IF (|has| |#1| (-515)) (IF (|has| (-900) (-124)) (-15 -4034 ($ $ (-900) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|))) (-973)) (T -1089)) -((-4034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-900)) (-4 *2 (-124)) (-5 *1 (-1089 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) -(-13 (-302 |#1| (-900)) (-10 -8 (IF (|has| |#1| (-515)) (IF (|has| (-900) (-124)) (-15 -4034 ($ $ (-900) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|))) -((-1203 (((-1091) (-1087) $) 24)) (-1230 (($) 28)) (-3478 (((-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-1087) $) 21)) (-4070 (((-1173) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void")) $) 40) (((-1173) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) 41) (((-1173) (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) 42)) (-3373 (((-1173) (-1087)) 57)) (-2784 (((-1173) (-1087) $) 54) (((-1173) (-1087)) 55) (((-1173)) 56)) (-3683 (((-1173) (-1087)) 36)) (-2472 (((-1087)) 35)) (-3988 (($) 33)) (-2509 (((-413) (-1087) (-413) (-1087) $) 44) (((-413) (-589 (-1087)) (-413) (-1087) $) 48) (((-413) (-1087) (-413)) 45) (((-413) (-1087) (-413) (-1087)) 49)) (-3012 (((-1087)) 34)) (-1458 (((-794) $) 27)) (-2266 (((-1173)) 29) (((-1173) (-1087)) 32)) (-2719 (((-589 (-1087)) (-1087) $) 23)) (-1874 (((-1173) (-1087) (-589 (-1087)) $) 37) (((-1173) (-1087) (-589 (-1087))) 38) (((-1173) (-589 (-1087))) 39))) -(((-1090) (-13 (-563 (-794)) (-10 -8 (-15 -1230 ($)) (-15 -2266 ((-1173))) (-15 -2266 ((-1173) (-1087))) (-15 -2509 ((-413) (-1087) (-413) (-1087) $)) (-15 -2509 ((-413) (-589 (-1087)) (-413) (-1087) $)) (-15 -2509 ((-413) (-1087) (-413))) (-15 -2509 ((-413) (-1087) (-413) (-1087))) (-15 -3683 ((-1173) (-1087))) (-15 -3012 ((-1087))) (-15 -2472 ((-1087))) (-15 -1874 ((-1173) (-1087) (-589 (-1087)) $)) (-15 -1874 ((-1173) (-1087) (-589 (-1087)))) (-15 -1874 ((-1173) (-589 (-1087)))) (-15 -4070 ((-1173) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void")) $)) (-15 -4070 ((-1173) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void")))) (-15 -4070 ((-1173) (-3 (|:| |fst| (-410)) (|:| -3853 "void")))) (-15 -2784 ((-1173) (-1087) $)) (-15 -2784 ((-1173) (-1087))) (-15 -2784 ((-1173))) (-15 -3373 ((-1173) (-1087))) (-15 -3988 ($)) (-15 -3478 ((-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-1087) $)) (-15 -2719 ((-589 (-1087)) (-1087) $)) (-15 -1203 ((-1091) (-1087) $))))) (T -1090)) -((-1230 (*1 *1) (-5 *1 (-1090))) (-2266 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1090)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-2509 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) (-2509 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-413)) (-5 *3 (-589 (-1087))) (-5 *4 (-1087)) (-5 *1 (-1090)))) (-2509 (*1 *2 *3 *2) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) (-2509 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-3012 (*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1090)))) (-2472 (*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1090)))) (-1874 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-4070 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1087)) (-5 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-2784 (*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-2784 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1090)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-3988 (*1 *1) (-5 *1 (-1090))) (-3478 (*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *1 (-1090)))) (-2719 (*1 *2 *3 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1090)) (-5 *3 (-1087)))) (-1203 (*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-1091)) (-5 *1 (-1090))))) -(-13 (-563 (-794)) (-10 -8 (-15 -1230 ($)) (-15 -2266 ((-1173))) (-15 -2266 ((-1173) (-1087))) (-15 -2509 ((-413) (-1087) (-413) (-1087) $)) (-15 -2509 ((-413) (-589 (-1087)) (-413) (-1087) $)) (-15 -2509 ((-413) (-1087) (-413))) (-15 -2509 ((-413) (-1087) (-413) (-1087))) (-15 -3683 ((-1173) (-1087))) (-15 -3012 ((-1087))) (-15 -2472 ((-1087))) (-15 -1874 ((-1173) (-1087) (-589 (-1087)) $)) (-15 -1874 ((-1173) (-1087) (-589 (-1087)))) (-15 -1874 ((-1173) (-589 (-1087)))) (-15 -4070 ((-1173) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void")) $)) (-15 -4070 ((-1173) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void")))) (-15 -4070 ((-1173) (-3 (|:| |fst| (-410)) (|:| -3853 "void")))) (-15 -2784 ((-1173) (-1087) $)) (-15 -2784 ((-1173) (-1087))) (-15 -2784 ((-1173))) (-15 -3373 ((-1173) (-1087))) (-15 -3988 ($)) (-15 -3478 ((-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-1087) $)) (-15 -2719 ((-589 (-1087)) (-1087) $)) (-15 -1203 ((-1091) (-1087) $)))) -((-2865 (((-589 (-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) $) 57)) (-3347 (((-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))) (-410) $) 40)) (-3353 (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-413))))) 15)) (-3373 (((-1173) $) 65)) (-3018 (((-589 (-1087)) $) 20)) (-2840 (((-1020) $) 53)) (-2980 (((-413) (-1087) $) 27)) (-1736 (((-589 (-1087)) $) 30)) (-3988 (($) 17)) (-2509 (((-413) (-589 (-1087)) (-413) $) 25) (((-413) (-1087) (-413) $) 24)) (-1458 (((-794) $) 9) (((-1096 (-1087) (-413)) $) 11))) -(((-1091) (-13 (-563 (-794)) (-10 -8 (-15 -1458 ((-1096 (-1087) (-413)) $)) (-15 -3988 ($)) (-15 -2509 ((-413) (-589 (-1087)) (-413) $)) (-15 -2509 ((-413) (-1087) (-413) $)) (-15 -2980 ((-413) (-1087) $)) (-15 -3018 ((-589 (-1087)) $)) (-15 -3347 ((-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))) (-410) $)) (-15 -1736 ((-589 (-1087)) $)) (-15 -2865 ((-589 (-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) $)) (-15 -2840 ((-1020) $)) (-15 -3373 ((-1173) $)) (-15 -3353 ($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-413))))))))) (T -1091)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-1096 (-1087) (-413))) (-5 *1 (-1091)))) (-3988 (*1 *1) (-5 *1 (-1091))) (-2509 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-413)) (-5 *3 (-589 (-1087))) (-5 *1 (-1091)))) (-2509 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1091)))) (-2980 (*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-413)) (-5 *1 (-1091)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1091)))) (-3347 (*1 *2 *3 *1) (-12 (-5 *3 (-410)) (-5 *2 (-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) (-5 *1 (-1091)))) (-1736 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1091)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))))) (-5 *1 (-1091)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1091)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1091)))) (-3353 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-413))))) (-5 *1 (-1091))))) -(-13 (-563 (-794)) (-10 -8 (-15 -1458 ((-1096 (-1087) (-413)) $)) (-15 -3988 ($)) (-15 -2509 ((-413) (-589 (-1087)) (-413) $)) (-15 -2509 ((-413) (-1087) (-413) $)) (-15 -2980 ((-413) (-1087) $)) (-15 -3018 ((-589 (-1087)) $)) (-15 -3347 ((-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))) (-410) $)) (-15 -1736 ((-589 (-1087)) $)) (-15 -2865 ((-589 (-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) $)) (-15 -2840 ((-1020) $)) (-15 -3373 ((-1173) $)) (-15 -3353 ($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-413)))))))) -((-3924 (((-108) $ $) NIL)) (-1619 (((-108) $) 42)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-4139 (((-3 (-523) (-203) (-1087) (-1070) $) $) 50)) (-2936 (((-589 $) $) 55)) (-3663 (((-1020) $) 20) (($ (-1020)) 21)) (-2330 (((-108) $) 52)) (-1458 (((-794) $) NIL) (($ (-523)) 23) (((-523) $) 25) (($ (-203)) 27) (((-203) $) 29) (($ (-1087)) 31) (((-1087) $) 33) (($ (-1070)) 35) (((-1070) $) 37)) (-3689 (((-108) $ (|[\|\|]| (-523))) 10) (((-108) $ (|[\|\|]| (-203))) 13) (((-108) $ (|[\|\|]| (-1087))) 19) (((-108) $ (|[\|\|]| (-1070))) 16)) (-3697 (($ (-1087) (-589 $)) 39) (($ $ (-589 $)) 40)) (-1702 (((-523) $) 24) (((-203) $) 28) (((-1087) $) 32) (((-1070) $) 36)) (-3983 (((-108) $ $) 7))) -(((-1092) (-13 (-1163) (-1016) (-10 -8 (-15 -3663 ((-1020) $)) (-15 -3663 ($ (-1020))) (-15 -1458 ($ (-523))) (-15 -1458 ((-523) $)) (-15 -1702 ((-523) $)) (-15 -1458 ($ (-203))) (-15 -1458 ((-203) $)) (-15 -1702 ((-203) $)) (-15 -1458 ($ (-1087))) (-15 -1458 ((-1087) $)) (-15 -1702 ((-1087) $)) (-15 -1458 ($ (-1070))) (-15 -1458 ((-1070) $)) (-15 -1702 ((-1070) $)) (-15 -3697 ($ (-1087) (-589 $))) (-15 -3697 ($ $ (-589 $))) (-15 -1619 ((-108) $)) (-15 -4139 ((-3 (-523) (-203) (-1087) (-1070) $) $)) (-15 -2936 ((-589 $) $)) (-15 -2330 ((-108) $)) (-15 -3689 ((-108) $ (|[\|\|]| (-523)))) (-15 -3689 ((-108) $ (|[\|\|]| (-203)))) (-15 -3689 ((-108) $ (|[\|\|]| (-1087)))) (-15 -3689 ((-108) $ (|[\|\|]| (-1070))))))) (T -1092)) -((-3663 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1092)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-1092)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) (-3697 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-1092))) (-5 *1 (-1092)))) (-3697 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-1092)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-3 (-523) (-203) (-1087) (-1070) (-1092))) (-5 *1 (-1092)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-1092)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-108)) (-5 *1 (-1092)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-203))) (-5 *2 (-108)) (-5 *1 (-1092)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-108)) (-5 *1 (-1092)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-108)) (-5 *1 (-1092))))) -(-13 (-1163) (-1016) (-10 -8 (-15 -3663 ((-1020) $)) (-15 -3663 ($ (-1020))) (-15 -1458 ($ (-523))) (-15 -1458 ((-523) $)) (-15 -1702 ((-523) $)) (-15 -1458 ($ (-203))) (-15 -1458 ((-203) $)) (-15 -1702 ((-203) $)) (-15 -1458 ($ (-1087))) (-15 -1458 ((-1087) $)) (-15 -1702 ((-1087) $)) (-15 -1458 ($ (-1070))) (-15 -1458 ((-1070) $)) (-15 -1702 ((-1070) $)) (-15 -3697 ($ (-1087) (-589 $))) (-15 -3697 ($ $ (-589 $))) (-15 -1619 ((-108) $)) (-15 -4139 ((-3 (-523) (-203) (-1087) (-1070) $) $)) (-15 -2936 ((-589 $) $)) (-15 -2330 ((-108) $)) (-15 -3689 ((-108) $ (|[\|\|]| (-523)))) (-15 -3689 ((-108) $ (|[\|\|]| (-203)))) (-15 -3689 ((-108) $ (|[\|\|]| (-1087)))) (-15 -3689 ((-108) $ (|[\|\|]| (-1070)))))) -((-1456 (((-589 (-589 (-883 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087))) 55)) (-1940 (((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|)))) 67) (((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|))) 63) (((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087)) 68) (((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087)) 62) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|))))) 92) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|)))) 91) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087))) 93) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))) (-589 (-1087))) 90))) -(((-1093 |#1|) (-10 -7 (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))))) (-15 -1456 ((-589 (-589 (-883 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087))))) (-515)) (T -1093)) -((-1456 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-883 *5)))) (-5 *1 (-1093 *5)))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *4))))) (-5 *1 (-1093 *4)) (-5 *3 (-271 (-383 (-883 *4)))))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *4))))) (-5 *1 (-1093 *4)) (-5 *3 (-383 (-883 *4))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *5))))) (-5 *1 (-1093 *5)) (-5 *3 (-271 (-383 (-883 *5)))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *5))))) (-5 *1 (-1093 *5)) (-5 *3 (-383 (-883 *5))))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-1093 *4)) (-5 *3 (-589 (-271 (-383 (-883 *4))))))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-589 (-383 (-883 *4)))) (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-1093 *4)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-1093 *5)) (-5 *3 (-589 (-271 (-383 (-883 *5))))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-1093 *5))))) -(-10 -7 (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))))) (-15 -1456 ((-589 (-589 (-883 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087))))) -((-3515 (((-589 (-589 |#1|)) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|)))) 38)) (-2720 (((-589 (-589 (-589 |#1|))) (-589 (-589 |#1|))) 24)) (-2537 (((-1095 (-589 |#1|)) (-589 |#1|)) 34)) (-1394 (((-589 (-589 |#1|)) (-589 |#1|)) 30)) (-1466 (((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 (-589 (-589 |#1|)))) 37)) (-3662 (((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 |#1|) (-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|)))) 36)) (-2652 (((-589 (-589 |#1|)) (-589 (-589 |#1|))) 28)) (-3698 (((-589 |#1|) (-589 |#1|)) 31)) (-4045 (((-589 (-589 (-589 |#1|))) (-589 |#1|) (-589 (-589 (-589 |#1|)))) 18)) (-1525 (((-589 (-589 (-589 |#1|))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 (-589 |#1|)))) 15)) (-2763 (((-2 (|:| |fs| (-108)) (|:| |sd| (-589 |#1|)) (|:| |td| (-589 (-589 |#1|)))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 |#1|))) 13)) (-1226 (((-589 (-589 |#1|)) (-589 (-589 (-589 |#1|)))) 39)) (-3560 (((-589 (-589 |#1|)) (-1095 (-589 |#1|))) 41))) -(((-1094 |#1|) (-10 -7 (-15 -2763 ((-2 (|:| |fs| (-108)) (|:| |sd| (-589 |#1|)) (|:| |td| (-589 (-589 |#1|)))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 |#1|)))) (-15 -1525 ((-589 (-589 (-589 |#1|))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 (-589 |#1|))))) (-15 -4045 ((-589 (-589 (-589 |#1|))) (-589 |#1|) (-589 (-589 (-589 |#1|))))) (-15 -3515 ((-589 (-589 |#1|)) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))))) (-15 -1226 ((-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))))) (-15 -3560 ((-589 (-589 |#1|)) (-1095 (-589 |#1|)))) (-15 -2720 ((-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)))) (-15 -2537 ((-1095 (-589 |#1|)) (-589 |#1|))) (-15 -2652 ((-589 (-589 |#1|)) (-589 (-589 |#1|)))) (-15 -1394 ((-589 (-589 |#1|)) (-589 |#1|))) (-15 -3698 ((-589 |#1|) (-589 |#1|))) (-15 -3662 ((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 |#1|) (-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))))) (-15 -1466 ((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 (-589 (-589 |#1|)))))) (-786)) (T -1094)) -((-1466 (*1 *2 *3) (-12 (-4 *4 (-786)) (-5 *2 (-2 (|:| |f1| (-589 *4)) (|:| |f2| (-589 (-589 (-589 *4)))) (|:| |f3| (-589 (-589 *4))) (|:| |f4| (-589 (-589 (-589 *4)))))) (-5 *1 (-1094 *4)) (-5 *3 (-589 (-589 (-589 *4)))))) (-3662 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-786)) (-5 *3 (-589 *6)) (-5 *5 (-589 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-589 *5)) (|:| |f3| *5) (|:| |f4| (-589 *5)))) (-5 *1 (-1094 *6)) (-5 *4 (-589 *5)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-1094 *3)))) (-1394 (*1 *2 *3) (-12 (-4 *4 (-786)) (-5 *2 (-589 (-589 *4))) (-5 *1 (-1094 *4)) (-5 *3 (-589 *4)))) (-2652 (*1 *2 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-786)) (-5 *1 (-1094 *3)))) (-2537 (*1 *2 *3) (-12 (-4 *4 (-786)) (-5 *2 (-1095 (-589 *4))) (-5 *1 (-1094 *4)) (-5 *3 (-589 *4)))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-786)) (-5 *2 (-589 (-589 (-589 *4)))) (-5 *1 (-1094 *4)) (-5 *3 (-589 (-589 *4))))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-1095 (-589 *4))) (-4 *4 (-786)) (-5 *2 (-589 (-589 *4))) (-5 *1 (-1094 *4)))) (-1226 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-589 *4)))) (-5 *2 (-589 (-589 *4))) (-5 *1 (-1094 *4)) (-4 *4 (-786)))) (-3515 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-589 (-589 *4)))) (-5 *2 (-589 (-589 *4))) (-4 *4 (-786)) (-5 *1 (-1094 *4)))) (-4045 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-589 (-589 *4)))) (-5 *3 (-589 *4)) (-4 *4 (-786)) (-5 *1 (-1094 *4)))) (-1525 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-589 (-589 (-589 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-589 *5)) (-4 *5 (-786)) (-5 *1 (-1094 *5)))) (-2763 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-786)) (-5 *4 (-589 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-589 *4)))) (-5 *1 (-1094 *6)) (-5 *5 (-589 *4))))) -(-10 -7 (-15 -2763 ((-2 (|:| |fs| (-108)) (|:| |sd| (-589 |#1|)) (|:| |td| (-589 (-589 |#1|)))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 |#1|)))) (-15 -1525 ((-589 (-589 (-589 |#1|))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 (-589 |#1|))))) (-15 -4045 ((-589 (-589 (-589 |#1|))) (-589 |#1|) (-589 (-589 (-589 |#1|))))) (-15 -3515 ((-589 (-589 |#1|)) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))))) (-15 -1226 ((-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))))) (-15 -3560 ((-589 (-589 |#1|)) (-1095 (-589 |#1|)))) (-15 -2720 ((-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)))) (-15 -2537 ((-1095 (-589 |#1|)) (-589 |#1|))) (-15 -2652 ((-589 (-589 |#1|)) (-589 (-589 |#1|)))) (-15 -1394 ((-589 (-589 |#1|)) (-589 |#1|))) (-15 -3698 ((-589 |#1|) (-589 |#1|))) (-15 -3662 ((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 |#1|) (-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))))) (-15 -1466 ((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 (-589 (-589 |#1|)))))) -((-2233 (($ (-589 (-589 |#1|))) 9)) (-2289 (((-589 (-589 |#1|)) $) 10)) (-1458 (((-794) $) 25))) -(((-1095 |#1|) (-10 -8 (-15 -2233 ($ (-589 (-589 |#1|)))) (-15 -2289 ((-589 (-589 |#1|)) $)) (-15 -1458 ((-794) $))) (-1016)) (T -1095)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1095 *3)) (-4 *3 (-1016)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1016)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-1095 *3))))) -(-10 -8 (-15 -2233 ($ (-589 (-589 |#1|)))) (-15 -2289 ((-589 (-589 |#1|)) $)) (-15 -1458 ((-794) $))) -((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#2| $ |#1| |#2|) NIL)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) NIL)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1330 (((-589 |#1|) $) NIL)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2412 (((-589 |#1|) $) NIL)) (-4135 (((-108) |#1| $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-1096 |#1| |#2|) (-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) (-1016) (-1016)) (T -1096)) -NIL -(-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) -((-1845 ((|#1| (-589 |#1|)) 32)) (-2030 ((|#1| |#1| (-523)) 18)) (-1343 (((-1083 |#1|) |#1| (-852)) 15))) -(((-1097 |#1|) (-10 -7 (-15 -1845 (|#1| (-589 |#1|))) (-15 -1343 ((-1083 |#1|) |#1| (-852))) (-15 -2030 (|#1| |#1| (-523)))) (-339)) (T -1097)) -((-2030 (*1 *2 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-1097 *2)) (-4 *2 (-339)))) (-1343 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-5 *2 (-1083 *3)) (-5 *1 (-1097 *3)) (-4 *3 (-339)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-1097 *2)) (-4 *2 (-339))))) -(-10 -7 (-15 -1845 (|#1| (-589 |#1|))) (-15 -1343 ((-1083 |#1|) |#1| (-852))) (-15 -2030 (|#1| |#1| (-523)))) -((-3043 (($) 10) (($ (-589 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)))) 14)) (-2249 (($ (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) $) 60) (($ (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) 39) (((-589 |#3|) $) 41)) (-2852 (($ (-1 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-3612 (($ (-1 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1934 (((-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) $) 53)) (-3450 (($ (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) $) 16)) (-2412 (((-589 |#2|) $) 19)) (-4135 (((-108) |#2| $) 58)) (-2114 (((-3 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) "failed") (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) 57)) (-3761 (((-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) $) 62)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 66)) (-1264 (((-589 |#3|) $) 43)) (-3223 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) NIL) (((-710) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) $) NIL) (((-710) |#3| $) NIL) (((-710) (-1 (-108) |#3|) $) 67)) (-1458 (((-794) $) 27)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 64)) (-3983 (((-108) $ $) 48))) -(((-1098 |#1| |#2| |#3|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -3612 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3043 (|#1| (-589 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))))) (-15 -3043 (|#1|)) (-15 -3612 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2852 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2792 ((-710) (-1 (-108) |#3|) |#1|)) (-15 -1666 ((-589 |#3|) |#1|)) (-15 -2792 ((-710) |#3| |#1|)) (-15 -3223 (|#3| |#1| |#2| |#3|)) (-15 -3223 (|#3| |#1| |#2|)) (-15 -1264 ((-589 |#3|) |#1|)) (-15 -4135 ((-108) |#2| |#1|)) (-15 -2412 ((-589 |#2|) |#1|)) (-15 -2249 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2249 (|#1| (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2249 (|#1| (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -2114 ((-3 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) "failed") (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -1934 ((-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -3450 (|#1| (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -3761 ((-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -2792 ((-710) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -1666 ((-589 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2792 ((-710) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -1327 ((-108) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2096 ((-108) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2852 (|#1| (-1 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -3612 (|#1| (-1 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|))) (-1099 |#2| |#3|) (-1016) (-1016)) (T -1098)) -NIL -(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -3612 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3043 (|#1| (-589 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))))) (-15 -3043 (|#1|)) (-15 -3612 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2852 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2792 ((-710) (-1 (-108) |#3|) |#1|)) (-15 -1666 ((-589 |#3|) |#1|)) (-15 -2792 ((-710) |#3| |#1|)) (-15 -3223 (|#3| |#1| |#2| |#3|)) (-15 -3223 (|#3| |#1| |#2|)) (-15 -1264 ((-589 |#3|) |#1|)) (-15 -4135 ((-108) |#2| |#1|)) (-15 -2412 ((-589 |#2|) |#1|)) (-15 -2249 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2249 (|#1| (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2249 (|#1| (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -2114 ((-3 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) "failed") (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -1934 ((-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -3450 (|#1| (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -3761 ((-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -2792 ((-710) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -1666 ((-589 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2792 ((-710) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -1327 ((-108) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2096 ((-108) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2852 (|#1| (-1 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -3612 (|#1| (-1 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|))) -((-3924 (((-108) $ $) 19 (-3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-3043 (($) 72) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 71)) (-4207 (((-1173) $ |#1| |#1|) 99 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#2| $ |#1| |#2|) 73)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 55 (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) 61)) (-2518 (($) 7 T CONST)) (-1773 (($ $) 58 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 46 (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) 62)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 54 (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 56 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 53 (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 52 (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) 88)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 30 (|has| $ (-6 -4244))) (((-589 |#2|) $) 79 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-4084 ((|#1| $) 96 (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 29 (|has| $ (-6 -4244))) (((-589 |#2|) $) 80 (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-3056 ((|#1| $) 95 (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 34 (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (-3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-1330 (((-589 |#1|) $) 63)) (-2777 (((-108) |#1| $) 64)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 39)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 40)) (-2412 (((-589 |#1|) $) 93)) (-4135 (((-108) |#1| $) 92)) (-2783 (((-1034) $) 21 (-3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-1738 ((|#2| $) 97 (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 51)) (-4203 (($ $ |#2|) 98 (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 41)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 32 (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) 26 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 25 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 24 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 23 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 86 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 84 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) 83 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) 91)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3433 (($) 49) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 48)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 31 (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-710) |#2| $) 81 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4244)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 50)) (-1458 (((-794) $) 18 (-3262 (|has| |#2| (-563 (-794))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 42)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 33 (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (-3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-1099 |#1| |#2|) (-129) (-1016) (-1016)) (T -1099)) -((-1641 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-3043 (*1 *1) (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -1853 *3) (|:| -2433 *4)))) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *1 (-1099 *3 *4)))) (-3612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1099 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016))))) -(-13 (-560 |t#1| |t#2|) (-556 |t#1| |t#2|) (-10 -8 (-15 -1641 (|t#2| $ |t#1| |t#2|)) (-15 -3043 ($)) (-15 -3043 ($ (-589 (-2 (|:| -1853 |t#1|) (|:| -2433 |t#2|))))) (-15 -3612 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-33) . T) ((-102 #0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((-97) -3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-563 (-794)) -3262 (|has| |#2| (-1016)) (|has| |#2| (-563 (-794))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794)))) ((-140 #0#) . T) ((-564 (-499)) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))) ((-207 #0#) . T) ((-213 #0#) . T) ((-263 |#1| |#2|) . T) ((-265 |#1| |#2|) . T) ((-286 #0#) -12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-462 #0#) . T) ((-462 |#2|) . T) ((-556 |#1| |#2|) . T) ((-484 #0# #0#) -12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-560 |#1| |#2|) . T) ((-1016) -3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-1122) . T)) -((-1752 (((-108)) 24)) (-1942 (((-1173) (-1070)) 26)) (-1402 (((-108)) 36)) (-1969 (((-1173)) 34)) (-2801 (((-1173) (-1070) (-1070)) 25)) (-2254 (((-108)) 37)) (-3450 (((-1173) |#1| |#2|) 44)) (-2976 (((-1173)) 20)) (-3676 (((-3 |#2| "failed") |#1|) 42)) (-1849 (((-1173)) 35))) -(((-1100 |#1| |#2|) (-10 -7 (-15 -2976 ((-1173))) (-15 -2801 ((-1173) (-1070) (-1070))) (-15 -1942 ((-1173) (-1070))) (-15 -1969 ((-1173))) (-15 -1849 ((-1173))) (-15 -1752 ((-108))) (-15 -1402 ((-108))) (-15 -2254 ((-108))) (-15 -3676 ((-3 |#2| "failed") |#1|)) (-15 -3450 ((-1173) |#1| |#2|))) (-1016) (-1016)) (T -1100)) -((-3450 (*1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-3676 (*1 *2 *3) (|partial| -12 (-4 *2 (-1016)) (-5 *1 (-1100 *3 *2)) (-4 *3 (-1016)))) (-2254 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1402 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1752 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1849 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1969 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1100 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)))) (-2801 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1100 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)))) (-2976 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016))))) -(-10 -7 (-15 -2976 ((-1173))) (-15 -2801 ((-1173) (-1070) (-1070))) (-15 -1942 ((-1173) (-1070))) (-15 -1969 ((-1173))) (-15 -1849 ((-1173))) (-15 -1752 ((-108))) (-15 -1402 ((-108))) (-15 -2254 ((-108))) (-15 -3676 ((-3 |#2| "failed") |#1|)) (-15 -3450 ((-1173) |#1| |#2|))) -((-2058 (((-1070) (-1070)) 18)) (-3359 (((-51) (-1070)) 21))) -(((-1101) (-10 -7 (-15 -3359 ((-51) (-1070))) (-15 -2058 ((-1070) (-1070))))) (T -1101)) -((-2058 (*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1101)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-1101))))) -(-10 -7 (-15 -3359 ((-51) (-1070))) (-15 -2058 ((-1070) (-1070)))) -((-1458 (((-1103) |#1|) 11))) -(((-1102 |#1|) (-10 -7 (-15 -1458 ((-1103) |#1|))) (-1016)) (T -1102)) -((-1458 (*1 *2 *3) (-12 (-5 *2 (-1103)) (-5 *1 (-1102 *3)) (-4 *3 (-1016))))) -(-10 -7 (-15 -1458 ((-1103) |#1|))) -((-3924 (((-108) $ $) NIL)) (-3061 (((-589 (-1070)) $) 33)) (-1326 (((-589 (-1070)) $ (-589 (-1070))) 36)) (-4155 (((-589 (-1070)) $ (-589 (-1070))) 35)) (-2210 (((-589 (-1070)) $ (-589 (-1070))) 37)) (-2600 (((-589 (-1070)) $) 32)) (-3052 (($) 22)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3987 (((-589 (-1070)) $) 34)) (-3973 (((-1173) $ (-523)) 29) (((-1173) $) 30)) (-3663 (($ (-794) (-523)) 26) (($ (-794) (-523) (-794)) NIL)) (-1458 (((-794) $) 39) (($ (-794)) 24)) (-3983 (((-108) $ $) NIL))) -(((-1103) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-794))) (-15 -3663 ($ (-794) (-523))) (-15 -3663 ($ (-794) (-523) (-794))) (-15 -3973 ((-1173) $ (-523))) (-15 -3973 ((-1173) $)) (-15 -3987 ((-589 (-1070)) $)) (-15 -3061 ((-589 (-1070)) $)) (-15 -3052 ($)) (-15 -2600 ((-589 (-1070)) $)) (-15 -2210 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -1326 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -4155 ((-589 (-1070)) $ (-589 (-1070))))))) (T -1103)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-1103)))) (-3663 (*1 *1 *2 *3) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-1103)))) (-3663 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-1103)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-1103)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1103)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103)))) (-3052 (*1 *1) (-5 *1 (-1103))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103)))) (-2210 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103)))) (-1326 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103)))) (-4155 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) -(-13 (-1016) (-10 -8 (-15 -1458 ($ (-794))) (-15 -3663 ($ (-794) (-523))) (-15 -3663 ($ (-794) (-523) (-794))) (-15 -3973 ((-1173) $ (-523))) (-15 -3973 ((-1173) $)) (-15 -3987 ((-589 (-1070)) $)) (-15 -3061 ((-589 (-1070)) $)) (-15 -3052 ($)) (-15 -2600 ((-589 (-1070)) $)) (-15 -2210 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -1326 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -4155 ((-589 (-1070)) $ (-589 (-1070)))))) -((-3924 (((-108) $ $) NIL)) (-1331 (((-1070) $ (-1070)) 15) (((-1070) $) 14)) (-3715 (((-1070) $ (-1070)) 13)) (-2647 (($ $ (-1070)) NIL)) (-2841 (((-3 (-1070) "failed") $) 11)) (-4156 (((-1070) $) 8)) (-4096 (((-3 (-1070) "failed") $) 12)) (-3114 (((-1070) $) 9)) (-2625 (($ (-364)) NIL) (($ (-364) (-1070)) NIL)) (-4038 (((-364) $) NIL)) (-3779 (((-1070) $) NIL)) (-1998 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2736 (((-108) $) 17)) (-1458 (((-794) $) NIL)) (-1685 (($ $) NIL)) (-3983 (((-108) $ $) NIL))) -(((-1104) (-13 (-340 (-364) (-1070)) (-10 -8 (-15 -1331 ((-1070) $ (-1070))) (-15 -1331 ((-1070) $)) (-15 -4156 ((-1070) $)) (-15 -2841 ((-3 (-1070) "failed") $)) (-15 -4096 ((-3 (-1070) "failed") $)) (-15 -2736 ((-108) $))))) (T -1104)) -((-1331 (*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1104)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1104)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1104)))) (-2841 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-1104)))) (-4096 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-1104)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1104))))) -(-13 (-340 (-364) (-1070)) (-10 -8 (-15 -1331 ((-1070) $ (-1070))) (-15 -1331 ((-1070) $)) (-15 -4156 ((-1070) $)) (-15 -2841 ((-3 (-1070) "failed") $)) (-15 -4096 ((-3 (-1070) "failed") $)) (-15 -2736 ((-108) $)))) -((-3671 (((-3 (-523) "failed") |#1|) 19)) (-2172 (((-3 (-523) "failed") |#1|) 13)) (-3166 (((-523) (-1070)) 28))) -(((-1105 |#1|) (-10 -7 (-15 -3671 ((-3 (-523) "failed") |#1|)) (-15 -2172 ((-3 (-523) "failed") |#1|)) (-15 -3166 ((-523) (-1070)))) (-973)) (T -1105)) -((-3166 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-523)) (-5 *1 (-1105 *4)) (-4 *4 (-973)))) (-2172 (*1 *2 *3) (|partial| -12 (-5 *2 (-523)) (-5 *1 (-1105 *3)) (-4 *3 (-973)))) (-3671 (*1 *2 *3) (|partial| -12 (-5 *2 (-523)) (-5 *1 (-1105 *3)) (-4 *3 (-973))))) -(-10 -7 (-15 -3671 ((-3 (-523) "failed") |#1|)) (-15 -2172 ((-3 (-523) "failed") |#1|)) (-15 -3166 ((-523) (-1070)))) -((-3123 (((-1047 (-203))) 8))) -(((-1106) (-10 -7 (-15 -3123 ((-1047 (-203)))))) (T -1106)) -((-3123 (*1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1106))))) -(-10 -7 (-15 -3123 ((-1047 (-203))))) -((-2820 (($) 11)) (-1839 (($ $) 35)) (-1818 (($ $) 33)) (-3828 (($ $) 25)) (-1865 (($ $) 17)) (-2914 (($ $) 15)) (-1852 (($ $) 19)) (-3859 (($ $) 30)) (-1830 (($ $) 34)) (-3838 (($ $) 29))) -(((-1107 |#1|) (-10 -8 (-15 -2820 (|#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3859 (|#1| |#1|)) (-15 -3838 (|#1| |#1|))) (-1108)) (T -1107)) -NIL -(-10 -8 (-15 -2820 (|#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3859 (|#1| |#1|)) (-15 -3838 (|#1| |#1|))) -((-1769 (($ $) 26)) (-3780 (($ $) 11)) (-1744 (($ $) 27)) (-3711 (($ $) 10)) (-1793 (($ $) 28)) (-3805 (($ $) 9)) (-2820 (($) 16)) (-2384 (($ $) 19)) (-1811 (($ $) 18)) (-1805 (($ $) 29)) (-3816 (($ $) 8)) (-1782 (($ $) 30)) (-3793 (($ $) 7)) (-1757 (($ $) 31)) (-3767 (($ $) 6)) (-1839 (($ $) 20)) (-3847 (($ $) 32)) (-1818 (($ $) 21)) (-3828 (($ $) 33)) (-1865 (($ $) 22)) (-1719 (($ $) 34)) (-2914 (($ $) 23)) (-1731 (($ $) 35)) (-1852 (($ $) 24)) (-3859 (($ $) 36)) (-1830 (($ $) 25)) (-3838 (($ $) 37)) (** (($ $ $) 17))) -(((-1108) (-129)) (T -1108)) -((-2820 (*1 *1) (-4 *1 (-1108)))) -(-13 (-1111) (-91) (-464) (-34) (-261) (-10 -8 (-15 -2820 ($)))) -(((-34) . T) ((-91) . T) ((-261) . T) ((-464) . T) ((-1111) . T)) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) 17)) (-3283 (($ |#1| (-589 $)) 23) (($ (-589 |#1|)) 27) (($ |#1|) 25)) (-3079 (((-108) $ (-710)) 48)) (-1823 ((|#1| $ |#1|) 14 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 13 (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-1666 (((-589 |#1|) $) 52 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 43)) (-1238 (((-108) $ $) 33 (|has| |#1| (-1016)))) (-2346 (((-108) $ (-710)) 41)) (-2136 (((-589 |#1|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 51 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 22)) (-2866 (((-108) $ (-710)) 40)) (-2726 (((-589 |#1|) $) 37)) (-3555 (((-108) $) 36)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 74)) (-3883 (((-108) $) 9)) (-3988 (($) 10)) (-3223 ((|#1| $ "value") NIL)) (-1549 (((-523) $ $) 32)) (-2032 (((-589 $) $) 59)) (-4144 (((-108) $ $) 76)) (-2616 (((-589 $) $) 72)) (-1498 (($ $) 73)) (-2524 (((-108) $) 56)) (-2792 (((-710) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4244))) (((-710) |#1| $) 16 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 58)) (-1458 (((-794) $) 61 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 12)) (-3653 (((-108) $ $) 29 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 28 (|has| |#1| (-1016)))) (-2676 (((-710) $) 39 (|has| $ (-6 -4244))))) -(((-1109 |#1|) (-13 (-938 |#1|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -3283 ($ |#1| (-589 $))) (-15 -3283 ($ (-589 |#1|))) (-15 -3283 ($ |#1|)) (-15 -2524 ((-108) $)) (-15 -1498 ($ $)) (-15 -2616 ((-589 $) $)) (-15 -4144 ((-108) $ $)) (-15 -2032 ((-589 $) $)))) (-1016)) (T -1109)) -((-2524 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1109 *3)) (-4 *3 (-1016)))) (-3283 (*1 *1 *2 *3) (-12 (-5 *3 (-589 (-1109 *2))) (-5 *1 (-1109 *2)) (-4 *2 (-1016)))) (-3283 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-1109 *3)))) (-3283 (*1 *1 *2) (-12 (-5 *1 (-1109 *2)) (-4 *2 (-1016)))) (-1498 (*1 *1 *1) (-12 (-5 *1 (-1109 *2)) (-4 *2 (-1016)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-589 (-1109 *3))) (-5 *1 (-1109 *3)) (-4 *3 (-1016)))) (-4144 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1109 *3)) (-4 *3 (-1016)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-589 (-1109 *3))) (-5 *1 (-1109 *3)) (-4 *3 (-1016))))) -(-13 (-938 |#1|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -3283 ($ |#1| (-589 $))) (-15 -3283 ($ (-589 |#1|))) (-15 -3283 ($ |#1|)) (-15 -2524 ((-108) $)) (-15 -1498 ($ $)) (-15 -2616 ((-589 $) $)) (-15 -4144 ((-108) $ $)) (-15 -2032 ((-589 $) $)))) -((-3780 (($ $) 15)) (-3805 (($ $) 12)) (-3816 (($ $) 10)) (-3793 (($ $) 17))) -(((-1110 |#1|) (-10 -8 (-15 -3793 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3780 (|#1| |#1|))) (-1111)) (T -1110)) -NIL -(-10 -8 (-15 -3793 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3780 (|#1| |#1|))) -((-3780 (($ $) 11)) (-3711 (($ $) 10)) (-3805 (($ $) 9)) (-3816 (($ $) 8)) (-3793 (($ $) 7)) (-3767 (($ $) 6))) -(((-1111) (-129)) (T -1111)) -((-3780 (*1 *1 *1) (-4 *1 (-1111))) (-3711 (*1 *1 *1) (-4 *1 (-1111))) (-3805 (*1 *1 *1) (-4 *1 (-1111))) (-3816 (*1 *1 *1) (-4 *1 (-1111))) (-3793 (*1 *1 *1) (-4 *1 (-1111))) (-3767 (*1 *1 *1) (-4 *1 (-1111)))) -(-13 (-10 -8 (-15 -3767 ($ $)) (-15 -3793 ($ $)) (-15 -3816 ($ $)) (-15 -3805 ($ $)) (-15 -3711 ($ $)) (-15 -3780 ($ $)))) -((-2653 ((|#2| |#2|) 85)) (-3623 (((-108) |#2|) 25)) (-1842 ((|#2| |#2|) 29)) (-1856 ((|#2| |#2|) 31)) (-2902 ((|#2| |#2| (-1087)) 79) ((|#2| |#2|) 80)) (-3726 (((-155 |#2|) |#2|) 27)) (-1901 ((|#2| |#2| (-1087)) 81) ((|#2| |#2|) 82))) -(((-1112 |#1| |#2|) (-10 -7 (-15 -2902 (|#2| |#2|)) (-15 -2902 (|#2| |#2| (-1087))) (-15 -1901 (|#2| |#2|)) (-15 -1901 (|#2| |#2| (-1087))) (-15 -2653 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -3623 ((-108) |#2|)) (-15 -3726 ((-155 |#2|) |#2|))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -1112)) -((-3726 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-155 *3)) (-5 *1 (-1112 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4))))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-108)) (-5 *1 (-1112 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4))))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) (-1842 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) (-2653 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) (-1901 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) (-1901 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) (-2902 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) (-2902 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3)))))) -(-10 -7 (-15 -2902 (|#2| |#2|)) (-15 -2902 (|#2| |#2| (-1087))) (-15 -1901 (|#2| |#2|)) (-15 -1901 (|#2| |#2| (-1087))) (-15 -2653 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -3623 ((-108) |#2|)) (-15 -3726 ((-155 |#2|) |#2|))) -((-2234 ((|#4| |#4| |#1|) 27)) (-3475 ((|#4| |#4| |#1|) 28))) -(((-1113 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2234 (|#4| |#4| |#1|)) (-15 -3475 (|#4| |#4| |#1|))) (-515) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|)) (T -1113)) -((-3475 (*1 *2 *2 *3) (-12 (-4 *3 (-515)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-1113 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2234 (*1 *2 *2 *3) (-12 (-4 *3 (-515)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-1113 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -(-10 -7 (-15 -2234 (|#4| |#4| |#1|)) (-15 -3475 (|#4| |#4| |#1|))) -((-2481 ((|#2| |#2|) 132)) (-1961 ((|#2| |#2|) 129)) (-2414 ((|#2| |#2|) 120)) (-2675 ((|#2| |#2|) 117)) (-4171 ((|#2| |#2|) 125)) (-2680 ((|#2| |#2|) 113)) (-3849 ((|#2| |#2|) 42)) (-2533 ((|#2| |#2|) 93)) (-2267 ((|#2| |#2|) 73)) (-2460 ((|#2| |#2|) 127)) (-3245 ((|#2| |#2|) 115)) (-2681 ((|#2| |#2|) 137)) (-1509 ((|#2| |#2|) 135)) (-3635 ((|#2| |#2|) 136)) (-1277 ((|#2| |#2|) 134)) (-4025 ((|#2| |#2|) 146)) (-1912 ((|#2| |#2|) 30 (-12 (|has| |#2| (-564 (-823 |#1|))) (|has| |#2| (-817 |#1|)) (|has| |#1| (-564 (-823 |#1|))) (|has| |#1| (-817 |#1|))))) (-3382 ((|#2| |#2|) 74)) (-4002 ((|#2| |#2|) 138)) (-3686 ((|#2| |#2|) 139)) (-4208 ((|#2| |#2|) 126)) (-2202 ((|#2| |#2|) 114)) (-4120 ((|#2| |#2|) 133)) (-3463 ((|#2| |#2|) 131)) (-3576 ((|#2| |#2|) 121)) (-1761 ((|#2| |#2|) 119)) (-2213 ((|#2| |#2|) 123)) (-1505 ((|#2| |#2|) 111))) -(((-1114 |#1| |#2|) (-10 -7 (-15 -3686 (|#2| |#2|)) (-15 -2267 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -2533 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -2213 (|#2| |#2|)) (-15 -3576 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -2202 (|#2| |#2|)) (-15 -4208 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -2481 (|#2| |#2|)) (-15 -2675 (|#2| |#2|)) (-15 -1961 (|#2| |#2|)) (-15 -1761 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -1277 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -2681 (|#2| |#2|)) (IF (|has| |#1| (-817 |#1|)) (IF (|has| |#1| (-564 (-823 |#1|))) (IF (|has| |#2| (-564 (-823 |#1|))) (IF (|has| |#2| (-817 |#1|)) (-15 -1912 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-786) (-427)) (-13 (-406 |#1|) (-1108))) (T -1114)) -((-1912 (*1 *2 *2) (-12 (-4 *3 (-564 (-823 *3))) (-4 *3 (-817 *3)) (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-564 (-823 *3))) (-4 *2 (-817 *3)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2681 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-1509 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-1277 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-1761 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-1961 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2675 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2481 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2680 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3245 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-4208 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2202 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-4120 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3576 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2213 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3382 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2533 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-4025 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2267 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3686 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108)))))) -(-10 -7 (-15 -3686 (|#2| |#2|)) (-15 -2267 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -2533 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -2213 (|#2| |#2|)) (-15 -3576 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -2202 (|#2| |#2|)) (-15 -4208 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -2481 (|#2| |#2|)) (-15 -2675 (|#2| |#2|)) (-15 -1961 (|#2| |#2|)) (-15 -1761 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -1277 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -2681 (|#2| |#2|)) (IF (|has| |#1| (-817 |#1|)) (IF (|has| |#1| (-564 (-823 |#1|))) (IF (|has| |#2| (-564 (-823 |#1|))) (IF (|has| |#2| (-817 |#1|)) (-15 -1912 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2694 (((-108) |#5| $) 60) (((-108) $) 102)) (-2308 ((|#5| |#5| $) 75)) (-3724 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3375 (((-589 |#5|) (-589 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-3517 (((-3 $ "failed") (-589 |#5|)) 126)) (-1751 (((-3 $ "failed") $) 112)) (-4014 ((|#5| |#5| $) 94)) (-2663 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-2636 ((|#5| |#5| $) 98)) (-2437 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-3737 (((-2 (|:| -3952 (-589 |#5|)) (|:| -2625 (-589 |#5|))) $) 55)) (-4172 (((-108) |#5| $) 58) (((-108) $) 103)) (-2907 ((|#4| $) 108)) (-2579 (((-3 |#5| "failed") $) 110)) (-2404 (((-589 |#5|) $) 49)) (-2112 (((-108) |#5| $) 67) (((-108) $) 107)) (-2648 ((|#5| |#5| $) 81)) (-2391 (((-108) $ $) 27)) (-2001 (((-108) |#5| $) 63) (((-108) $) 105)) (-1398 ((|#5| |#5| $) 78)) (-1738 (((-3 |#5| "failed") $) 109)) (-4097 (($ $ |#5|) 127)) (-2299 (((-710) $) 52)) (-1472 (($ (-589 |#5|)) 124)) (-2621 (($ $ |#4|) 122)) (-2624 (($ $ |#4|) 121)) (-1824 (($ $) 120)) (-1458 (((-794) $) NIL) (((-589 |#5|) $) 113)) (-1395 (((-710) $) 130)) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-4031 (((-108) $ (-1 (-108) |#5| (-589 |#5|))) 100)) (-3862 (((-589 |#4|) $) 115)) (-2153 (((-108) |#4| $) 118)) (-3983 (((-108) $ $) 19))) -(((-1115 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1395 ((-710) |#1|)) (-15 -4097 (|#1| |#1| |#5|)) (-15 -3724 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2153 ((-108) |#4| |#1|)) (-15 -3862 ((-589 |#4|) |#1|)) (-15 -1751 ((-3 |#1| "failed") |#1|)) (-15 -2579 ((-3 |#5| "failed") |#1|)) (-15 -1738 ((-3 |#5| "failed") |#1|)) (-15 -2636 (|#5| |#5| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -4014 (|#5| |#5| |#1|)) (-15 -2648 (|#5| |#5| |#1|)) (-15 -1398 (|#5| |#5| |#1|)) (-15 -2308 (|#5| |#5| |#1|)) (-15 -3375 ((-589 |#5|) (-589 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2437 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2112 ((-108) |#1|)) (-15 -2001 ((-108) |#1|)) (-15 -2694 ((-108) |#1|)) (-15 -4031 ((-108) |#1| (-1 (-108) |#5| (-589 |#5|)))) (-15 -2112 ((-108) |#5| |#1|)) (-15 -2001 ((-108) |#5| |#1|)) (-15 -2694 ((-108) |#5| |#1|)) (-15 -2663 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -4172 ((-108) |#1|)) (-15 -4172 ((-108) |#5| |#1|)) (-15 -3737 ((-2 (|:| -3952 (-589 |#5|)) (|:| -2625 (-589 |#5|))) |#1|)) (-15 -2299 ((-710) |#1|)) (-15 -2404 ((-589 |#5|) |#1|)) (-15 -3869 ((-3 (-2 (|:| |bas| |#1|) (|:| -3125 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3869 ((-3 (-2 (|:| |bas| |#1|) (|:| -3125 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2391 ((-108) |#1| |#1|)) (-15 -2621 (|#1| |#1| |#4|)) (-15 -2624 (|#1| |#1| |#4|)) (-15 -2907 (|#4| |#1|)) (-15 -3517 ((-3 |#1| "failed") (-589 |#5|))) (-15 -1458 ((-589 |#5|) |#1|)) (-15 -1472 (|#1| (-589 |#5|))) (-15 -2437 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2437 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3724 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -2437 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-1116 |#2| |#3| |#4| |#5|) (-515) (-732) (-786) (-987 |#2| |#3| |#4|)) (T -1115)) -NIL -(-10 -8 (-15 -1395 ((-710) |#1|)) (-15 -4097 (|#1| |#1| |#5|)) (-15 -3724 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2153 ((-108) |#4| |#1|)) (-15 -3862 ((-589 |#4|) |#1|)) (-15 -1751 ((-3 |#1| "failed") |#1|)) (-15 -2579 ((-3 |#5| "failed") |#1|)) (-15 -1738 ((-3 |#5| "failed") |#1|)) (-15 -2636 (|#5| |#5| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -4014 (|#5| |#5| |#1|)) (-15 -2648 (|#5| |#5| |#1|)) (-15 -1398 (|#5| |#5| |#1|)) (-15 -2308 (|#5| |#5| |#1|)) (-15 -3375 ((-589 |#5|) (-589 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2437 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2112 ((-108) |#1|)) (-15 -2001 ((-108) |#1|)) (-15 -2694 ((-108) |#1|)) (-15 -4031 ((-108) |#1| (-1 (-108) |#5| (-589 |#5|)))) (-15 -2112 ((-108) |#5| |#1|)) (-15 -2001 ((-108) |#5| |#1|)) (-15 -2694 ((-108) |#5| |#1|)) (-15 -2663 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -4172 ((-108) |#1|)) (-15 -4172 ((-108) |#5| |#1|)) (-15 -3737 ((-2 (|:| -3952 (-589 |#5|)) (|:| -2625 (-589 |#5|))) |#1|)) (-15 -2299 ((-710) |#1|)) (-15 -2404 ((-589 |#5|) |#1|)) (-15 -3869 ((-3 (-2 (|:| |bas| |#1|) (|:| -3125 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3869 ((-3 (-2 (|:| |bas| |#1|) (|:| -3125 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2391 ((-108) |#1| |#1|)) (-15 -2621 (|#1| |#1| |#4|)) (-15 -2624 (|#1| |#1| |#4|)) (-15 -2907 (|#4| |#1|)) (-15 -3517 ((-3 |#1| "failed") (-589 |#5|))) (-15 -1458 ((-589 |#5|) |#1|)) (-15 -1472 (|#1| (-589 |#5|))) (-15 -2437 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2437 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3724 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -2437 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) -((-3924 (((-108) $ $) 7)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) 85)) (-3846 (((-589 $) (-589 |#4|)) 86)) (-1957 (((-589 |#3|) $) 33)) (-2100 (((-108) $) 26)) (-2376 (((-108) $) 17 (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) 101) (((-108) $) 97)) (-2308 ((|#4| |#4| $) 92)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) 27)) (-3079 (((-108) $ (-710)) 44)) (-3724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 79)) (-2518 (($) 45 T CONST)) (-3595 (((-108) $) 22 (|has| |#1| (-515)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3225 (((-108) $ $) 23 (|has| |#1| (-515)))) (-3393 (((-108) $) 25 (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3956 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 36)) (-3474 (($ (-589 |#4|)) 35)) (-1751 (((-3 $ "failed") $) 82)) (-4014 ((|#4| |#4| $) 89)) (-1773 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2636 ((|#4| |#4| $) 87)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) 105)) (-1666 (((-589 |#4|) $) 52 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) 104) (((-108) $) 103)) (-2907 ((|#3| $) 34)) (-2346 (((-108) $ (-710)) 43)) (-2136 (((-589 |#4|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 47)) (-4055 (((-589 |#3|) $) 32)) (-1357 (((-108) |#3| $) 31)) (-2866 (((-108) $ (-710)) 42)) (-3779 (((-1070) $) 9)) (-2579 (((-3 |#4| "failed") $) 83)) (-2404 (((-589 |#4|) $) 107)) (-2112 (((-108) |#4| $) 99) (((-108) $) 95)) (-2648 ((|#4| |#4| $) 90)) (-2391 (((-108) $ $) 110)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) 100) (((-108) $) 96)) (-1398 ((|#4| |#4| $) 91)) (-2783 (((-1034) $) 10)) (-1738 (((-3 |#4| "failed") $) 84)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2890 (((-3 $ "failed") $ |#4|) 78)) (-4097 (($ $ |#4|) 77)) (-1327 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) 38)) (-3883 (((-108) $) 41)) (-3988 (($) 40)) (-2299 (((-710) $) 106)) (-2792 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4244)))) (-1664 (($ $) 39)) (-3663 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 60)) (-2621 (($ $ |#3|) 28)) (-2624 (($ $ |#3|) 30)) (-1824 (($ $) 88)) (-3076 (($ $ |#3|) 29)) (-1458 (((-794) $) 11) (((-589 |#4|) $) 37)) (-1395 (((-710) $) 76 (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-2096 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) 81)) (-2153 (((-108) |#3| $) 80)) (-3983 (((-108) $ $) 6)) (-2676 (((-710) $) 46 (|has| $ (-6 -4244))))) -(((-1116 |#1| |#2| |#3| |#4|) (-129) (-515) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -1116)) -((-2391 (*1 *2 *1 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-3869 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3125 (-589 *8)))) (-5 *3 (-589 *8)) (-4 *1 (-1116 *5 *6 *7 *8)))) (-3869 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) (-4 *8 (-786)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3125 (-589 *9)))) (-5 *3 (-589 *9)) (-4 *1 (-1116 *6 *7 *8 *9)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *6)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-710)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-2 (|:| -3952 (-589 *6)) (|:| -2625 (-589 *6)))))) (-4172 (*1 *2 *3 *1) (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2663 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1116 *5 *6 *7 *3)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)))) (-2694 (*1 *2 *3 *1) (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2001 (*1 *2 *3 *1) (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2112 (*1 *2 *3 *1) (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-4031 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-589 *7))) (-4 *1 (-1116 *4 *5 *6 *7)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2694 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2112 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2437 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1116 *5 *6 *7 *2)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *2 (-987 *5 *6 *7)))) (-3375 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-589 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1116 *5 *6 *7 *8)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)))) (-2308 (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-1398 (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-2648 (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-4014 (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-1824 (*1 *1 *1) (-12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *2 (-515)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-987 *2 *3 *4)))) (-2636 (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-1116 *4 *5 *6 *7)))) (-1633 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-589 (-2 (|:| -3952 *1) (|:| -2625 (-589 *7))))) (-5 *3 (-589 *7)) (-4 *1 (-1116 *4 *5 *6 *7)))) (-1738 (*1 *2 *1) (|partial| -12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-2579 (*1 *2 *1) (|partial| -12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-1751 (*1 *1 *1) (|partial| -12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *2 (-515)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-987 *2 *3 *4)))) (-3862 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5)))) (-2153 (*1 *2 *3 *1) (-12 (-4 *1 (-1116 *4 *5 *3 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-108)))) (-3724 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1116 *4 *5 *3 *2)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *3 (-786)) (-4 *2 (-987 *4 *5 *3)))) (-2890 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-4097 (*1 *1 *1 *2) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *5 (-344)) (-5 *2 (-710))))) -(-13 (-905 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -2391 ((-108) $ $)) (-15 -3869 ((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |t#4|))) "failed") (-589 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3869 ((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |t#4|))) "failed") (-589 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2404 ((-589 |t#4|) $)) (-15 -2299 ((-710) $)) (-15 -3737 ((-2 (|:| -3952 (-589 |t#4|)) (|:| -2625 (-589 |t#4|))) $)) (-15 -4172 ((-108) |t#4| $)) (-15 -4172 ((-108) $)) (-15 -2663 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -2694 ((-108) |t#4| $)) (-15 -2001 ((-108) |t#4| $)) (-15 -2112 ((-108) |t#4| $)) (-15 -4031 ((-108) $ (-1 (-108) |t#4| (-589 |t#4|)))) (-15 -2694 ((-108) $)) (-15 -2001 ((-108) $)) (-15 -2112 ((-108) $)) (-15 -2437 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3375 ((-589 |t#4|) (-589 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2308 (|t#4| |t#4| $)) (-15 -1398 (|t#4| |t#4| $)) (-15 -2648 (|t#4| |t#4| $)) (-15 -4014 (|t#4| |t#4| $)) (-15 -1824 ($ $)) (-15 -2636 (|t#4| |t#4| $)) (-15 -3846 ((-589 $) (-589 |t#4|))) (-15 -1633 ((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |t#4|)))) (-589 |t#4|))) (-15 -1738 ((-3 |t#4| "failed") $)) (-15 -2579 ((-3 |t#4| "failed") $)) (-15 -1751 ((-3 $ "failed") $)) (-15 -3862 ((-589 |t#3|) $)) (-15 -2153 ((-108) |t#3| $)) (-15 -3724 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2890 ((-3 $ "failed") $ |t#4|)) (-15 -4097 ($ $ |t#4|)) (IF (|has| |t#3| (-344)) (-15 -1395 ((-710) $)) |%noBranch|))) -(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-905 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1122) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1087)) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3566 (((-883 |#1|) $ (-710)) 17) (((-883 |#1|) $ (-710) (-710)) NIL)) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-710) $ (-1087)) NIL) (((-710) $ (-1087) (-710)) NIL)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2620 (((-108) $) NIL)) (-1933 (($ $ (-589 (-1087)) (-589 (-495 (-1087)))) NIL) (($ $ (-1087) (-495 (-1087))) NIL) (($ |#1| (-495 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-3417 (($ $ (-1087)) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-2340 (($ (-1 $) (-1087) |#1|) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4097 (($ $ (-710)) NIL)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2679 (($ $ (-1087) $) NIL) (($ $ (-589 (-1087)) (-589 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL)) (-3523 (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-2299 (((-495 (-1087)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ $) NIL (|has| |#1| (-515))) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-1087)) NIL) (($ (-883 |#1|)) NIL)) (-2365 ((|#1| $ (-495 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (((-883 |#1|) $ (-710)) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1117 |#1|) (-13 (-680 |#1| (-1087)) (-10 -8 (-15 -2365 ((-883 |#1|) $ (-710))) (-15 -1458 ($ (-1087))) (-15 -1458 ($ (-883 |#1|))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $ (-1087) |#1|)) (-15 -2340 ($ (-1 $) (-1087) |#1|))) |%noBranch|))) (-973)) (T -1117)) -((-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-883 *4)) (-5 *1 (-1117 *4)) (-4 *4 (-973)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1117 *3)) (-4 *3 (-973)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-5 *1 (-1117 *3)))) (-3417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *1 (-1117 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)))) (-2340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1117 *4))) (-5 *3 (-1087)) (-5 *1 (-1117 *4)) (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973))))) -(-13 (-680 |#1| (-1087)) (-10 -8 (-15 -2365 ((-883 |#1|) $ (-710))) (-15 -1458 ($ (-1087))) (-15 -1458 ($ (-883 |#1|))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $ (-1087) |#1|)) (-15 -2340 ($ (-1 $) (-1087) |#1|))) |%noBranch|))) -((-2501 (($ |#1| (-589 (-589 (-874 (-203)))) (-108)) 16)) (-2970 (((-108) $ (-108)) 15)) (-2672 (((-108) $) 14)) (-2794 (((-589 (-589 (-874 (-203)))) $) 10)) (-3014 ((|#1| $) 8)) (-1553 (((-108) $) 12))) -(((-1118 |#1|) (-10 -8 (-15 -3014 (|#1| $)) (-15 -2794 ((-589 (-589 (-874 (-203)))) $)) (-15 -1553 ((-108) $)) (-15 -2672 ((-108) $)) (-15 -2970 ((-108) $ (-108))) (-15 -2501 ($ |#1| (-589 (-589 (-874 (-203)))) (-108)))) (-903)) (T -1118)) -((-2501 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-108)) (-5 *1 (-1118 *2)) (-4 *2 (-903)))) (-2970 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-903)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-903)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-903)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-1118 *3)) (-4 *3 (-903)))) (-3014 (*1 *2 *1) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-903))))) -(-10 -8 (-15 -3014 (|#1| $)) (-15 -2794 ((-589 (-589 (-874 (-203)))) $)) (-15 -1553 ((-108) $)) (-15 -2672 ((-108) $)) (-15 -2970 ((-108) $ (-108))) (-15 -2501 ($ |#1| (-589 (-589 (-874 (-203)))) (-108)))) -((-1890 (((-874 (-203)) (-874 (-203))) 25)) (-2388 (((-874 (-203)) (-203) (-203) (-203) (-203)) 10)) (-1800 (((-589 (-874 (-203))) (-874 (-203)) (-874 (-203)) (-874 (-203)) (-203) (-589 (-589 (-203)))) 37)) (-3269 (((-203) (-874 (-203)) (-874 (-203))) 21)) (-2240 (((-874 (-203)) (-874 (-203)) (-874 (-203))) 22)) (-3940 (((-589 (-589 (-203))) (-523)) 31)) (-4087 (((-874 (-203)) (-874 (-203)) (-874 (-203))) 20)) (-4075 (((-874 (-203)) (-874 (-203)) (-874 (-203))) 19)) (* (((-874 (-203)) (-203) (-874 (-203))) 18))) -(((-1119) (-10 -7 (-15 -2388 ((-874 (-203)) (-203) (-203) (-203) (-203))) (-15 * ((-874 (-203)) (-203) (-874 (-203)))) (-15 -4075 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -4087 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -3269 ((-203) (-874 (-203)) (-874 (-203)))) (-15 -2240 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -1890 ((-874 (-203)) (-874 (-203)))) (-15 -3940 ((-589 (-589 (-203))) (-523))) (-15 -1800 ((-589 (-874 (-203))) (-874 (-203)) (-874 (-203)) (-874 (-203)) (-203) (-589 (-589 (-203))))))) (T -1119)) -((-1800 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-589 (-589 (-203)))) (-5 *4 (-203)) (-5 *2 (-589 (-874 *4))) (-5 *1 (-1119)) (-5 *3 (-874 *4)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *2 (-589 (-589 (-203)))) (-5 *1 (-1119)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) (-2240 (*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) (-3269 (*1 *2 *3 *3) (-12 (-5 *3 (-874 (-203))) (-5 *2 (-203)) (-5 *1 (-1119)))) (-4087 (*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) (-4075 (*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-874 (-203))) (-5 *3 (-203)) (-5 *1 (-1119)))) (-2388 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)) (-5 *3 (-203))))) -(-10 -7 (-15 -2388 ((-874 (-203)) (-203) (-203) (-203) (-203))) (-15 * ((-874 (-203)) (-203) (-874 (-203)))) (-15 -4075 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -4087 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -3269 ((-203) (-874 (-203)) (-874 (-203)))) (-15 -2240 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -1890 ((-874 (-203)) (-874 (-203)))) (-15 -3940 ((-589 (-589 (-203))) (-523))) (-15 -1800 ((-589 (-874 (-203))) (-874 (-203)) (-874 (-203)) (-874 (-203)) (-203) (-589 (-589 (-203)))))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3724 ((|#1| $ (-710)) 13)) (-2996 (((-710) $) 12)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1458 (((-888 |#1|) $) 10) (($ (-888 |#1|)) 9) (((-794) $) 23 (|has| |#1| (-563 (-794))))) (-3983 (((-108) $ $) 16 (|has| |#1| (-1016))))) -(((-1120 |#1|) (-13 (-563 (-888 |#1|)) (-10 -8 (-15 -1458 ($ (-888 |#1|))) (-15 -3724 (|#1| $ (-710))) (-15 -2996 ((-710) $)) (IF (|has| |#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) (-1122)) (T -1120)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-888 *3)) (-4 *3 (-1122)) (-5 *1 (-1120 *3)))) (-3724 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-1120 *2)) (-4 *2 (-1122)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1120 *3)) (-4 *3 (-1122))))) -(-13 (-563 (-888 |#1|)) (-10 -8 (-15 -1458 ($ (-888 |#1|))) (-15 -3724 (|#1| $ (-710))) (-15 -2996 ((-710) $)) (IF (|has| |#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) -((-3075 (((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-523)) 79)) (-1875 (((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|))) 73)) (-1794 (((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|))) 58))) -(((-1121 |#1|) (-10 -7 (-15 -1875 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -1794 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -3075 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-523)))) (-325)) (T -1121)) -((-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-4 *5 (-325)) (-5 *2 (-394 (-1083 (-1083 *5)))) (-5 *1 (-1121 *5)) (-5 *3 (-1083 (-1083 *5))))) (-1794 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 (-1083 (-1083 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-1083 (-1083 *4))))) (-1875 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 (-1083 (-1083 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-1083 (-1083 *4)))))) -(-10 -7 (-15 -1875 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -1794 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -3075 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-523)))) -NIL -(((-1122) (-129)) (T -1122)) -NIL -(-13 (-10 -7 (-6 -3656))) -((-1985 (((-108)) 15)) (-4129 (((-1173) (-589 |#1|) (-589 |#1|)) 19) (((-1173) (-589 |#1|)) 20)) (-2346 (((-108) |#1| |#1|) 31 (|has| |#1| (-786)))) (-2866 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-2256 ((|#1| (-589 |#1|)) 32 (|has| |#1| (-786))) ((|#1| (-589 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-1567 (((-2 (|:| -2279 (-589 |#1|)) (|:| -2566 (-589 |#1|)))) 17))) -(((-1123 |#1|) (-10 -7 (-15 -4129 ((-1173) (-589 |#1|))) (-15 -4129 ((-1173) (-589 |#1|) (-589 |#1|))) (-15 -1567 ((-2 (|:| -2279 (-589 |#1|)) (|:| -2566 (-589 |#1|))))) (-15 -2866 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2866 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -2256 (|#1| (-589 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1985 ((-108))) (IF (|has| |#1| (-786)) (PROGN (-15 -2256 (|#1| (-589 |#1|))) (-15 -2346 ((-108) |#1| |#1|))) |%noBranch|)) (-1016)) (T -1123)) -((-2346 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-786)) (-4 *3 (-1016)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-786)) (-5 *1 (-1123 *2)))) (-1985 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-1016)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1123 *2)) (-4 *2 (-1016)))) (-2866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1016)) (-5 *2 (-108)) (-5 *1 (-1123 *3)))) (-2866 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-1016)))) (-1567 (*1 *2) (-12 (-5 *2 (-2 (|:| -2279 (-589 *3)) (|:| -2566 (-589 *3)))) (-5 *1 (-1123 *3)) (-4 *3 (-1016)))) (-4129 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-5 *2 (-1173)) (-5 *1 (-1123 *4)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-5 *2 (-1173)) (-5 *1 (-1123 *4))))) -(-10 -7 (-15 -4129 ((-1173) (-589 |#1|))) (-15 -4129 ((-1173) (-589 |#1|) (-589 |#1|))) (-15 -1567 ((-2 (|:| -2279 (-589 |#1|)) (|:| -2566 (-589 |#1|))))) (-15 -2866 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2866 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -2256 (|#1| (-589 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1985 ((-108))) (IF (|has| |#1| (-786)) (PROGN (-15 -2256 (|#1| (-589 |#1|))) (-15 -2346 ((-108) |#1| |#1|))) |%noBranch|)) -((-3000 (((-1173) (-589 (-1087)) (-589 (-1087))) 12) (((-1173) (-589 (-1087))) 10)) (-1931 (((-1173)) 13)) (-3144 (((-2 (|:| -2566 (-589 (-1087))) (|:| -2279 (-589 (-1087))))) 17))) -(((-1124) (-10 -7 (-15 -3000 ((-1173) (-589 (-1087)))) (-15 -3000 ((-1173) (-589 (-1087)) (-589 (-1087)))) (-15 -3144 ((-2 (|:| -2566 (-589 (-1087))) (|:| -2279 (-589 (-1087)))))) (-15 -1931 ((-1173))))) (T -1124)) -((-1931 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1124)))) (-3144 (*1 *2) (-12 (-5 *2 (-2 (|:| -2566 (-589 (-1087))) (|:| -2279 (-589 (-1087))))) (-5 *1 (-1124)))) (-3000 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1173)) (-5 *1 (-1124)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1173)) (-5 *1 (-1124))))) -(-10 -7 (-15 -3000 ((-1173) (-589 (-1087)))) (-15 -3000 ((-1173) (-589 (-1087)) (-589 (-1087)))) (-15 -3144 ((-2 (|:| -2566 (-589 (-1087))) (|:| -2279 (-589 (-1087)))))) (-15 -1931 ((-1173)))) -((-2291 (($ $) 16)) (-2657 (((-108) $) 23))) -(((-1125 |#1|) (-10 -8 (-15 -2291 (|#1| |#1|)) (-15 -2657 ((-108) |#1|))) (-1126)) (T -1125)) -NIL -(-10 -8 (-15 -2291 (|#1| |#1|)) (-15 -2657 ((-108) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 51)) (-3614 (((-394 $) $) 52)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2657 (((-108) $) 53)) (-2023 (((-108) $) 31)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1820 (((-394 $) $) 50)) (-3746 (((-3 $ "failed") $ $) 42)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) -(((-1126) (-129)) (T -1126)) -((-2657 (*1 *2 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-108)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-394 *1)) (-4 *1 (-1126)))) (-2291 (*1 *1 *1) (-4 *1 (-1126))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-394 *1)) (-4 *1 (-1126))))) -(-13 (-427) (-10 -8 (-15 -2657 ((-108) $)) (-15 -3614 ((-394 $) $)) (-15 -2291 ($ $)) (-15 -1820 ((-394 $) $)))) +((-1680 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)) (|has| |#1| (-1016))))) (-3723 (($) NIL) (($ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) NIL)) (-4191 (((-1174) $ (-1070) (-1070)) NIL (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#1| $ (-1070) |#1|) NIL)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248)))) (-4216 (((-3 |#1| "failed") (-1070) $) NIL)) (-4189 (($) NIL T CONST)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016))))) (-3286 (($ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248))) (((-3 |#1| "failed") (-1070) $) NIL)) (-2514 (($ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)))) (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-1070) |#1|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-1070)) NIL)) (-1871 (((-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-1070) $) NIL (|has| (-1070) (-786)))) (-1584 (((-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4249))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (-3172 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)) (|has| |#1| (-1016))))) (-1255 (((-589 (-1070)) $) NIL)) (-1862 (((-108) (-1070) $) NIL)) (-1293 (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL)) (-3108 (($ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL)) (-2536 (((-589 (-1070)) $) NIL)) (-2254 (((-108) (-1070) $) NIL)) (-3951 (((-1034) $) NIL (-3172 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)) (|has| |#1| (-1016))))) (-2428 ((|#1| $) NIL (|has| (-1070) (-786)))) (-2509 (((-3 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) "failed") (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL)) (-4141 (($ $ |#1|) NIL (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))))) NIL (-12 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) NIL (-12 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)))) (($ $ (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) NIL (-12 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)))) (($ $ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) NIL (-12 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-286 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ (-1070)) NIL) ((|#1| $ (-1070) |#1|) NIL)) (-2963 (($) NIL) (($ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) NIL)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) NIL)) (-1691 (((-794) $) NIL (-3172 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-563 (-794))) (|has| |#1| (-563 (-794)))))) (-2417 (($ (-589 (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)))) NIL)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 (-1070)) (|:| -2482 |#1|)) (-1016)) (|has| |#1| (-1016))))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-1071 |#1|) (-13 (-1100 (-1070) |#1|) (-10 -7 (-6 -4248))) (-1016)) (T -1071)) +NIL +(-13 (-1100 (-1070) |#1|) (-10 -7 (-6 -4248))) +((-1500 (((-1068 |#1|) (-1068 |#1|)) 77)) (-1444 (((-3 (-1068 |#1|) "failed") (-1068 |#1|)) 37)) (-2465 (((-1068 |#1|) (-383 (-523)) (-1068 |#1|)) 117 (|has| |#1| (-37 (-383 (-523)))))) (-2426 (((-1068 |#1|) |#1| (-1068 |#1|)) 122 (|has| |#1| (-339)))) (-2042 (((-1068 |#1|) (-1068 |#1|)) 90)) (-4023 (((-1068 (-523)) (-523)) 57)) (-1508 (((-1068 |#1|) (-1068 (-1068 |#1|))) 108 (|has| |#1| (-37 (-383 (-523)))))) (-3623 (((-1068 |#1|) (-523) (-523) (-1068 |#1|)) 95)) (-2836 (((-1068 |#1|) |#1| (-523)) 45)) (-2106 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 60)) (-1206 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 119 (|has| |#1| (-339)))) (-2632 (((-1068 |#1|) |#1| (-1 (-1068 |#1|))) 107 (|has| |#1| (-37 (-383 (-523)))))) (-1530 (((-1068 |#1|) (-1 |#1| (-523)) |#1| (-1 (-1068 |#1|))) 120 (|has| |#1| (-339)))) (-4118 (((-1068 |#1|) (-1068 |#1|)) 89)) (-3200 (((-1068 |#1|) (-1068 |#1|)) 76)) (-3088 (((-1068 |#1|) (-523) (-523) (-1068 |#1|)) 96)) (-2814 (((-1068 |#1|) |#1| (-1068 |#1|)) 105 (|has| |#1| (-37 (-383 (-523)))))) (-3445 (((-1068 (-523)) (-523)) 56)) (-2387 (((-1068 |#1|) |#1|) 59)) (-1627 (((-1068 |#1|) (-1068 |#1|) (-523) (-523)) 92)) (-2117 (((-1068 |#1|) (-1 |#1| (-523)) (-1068 |#1|)) 66)) (-4007 (((-3 (-1068 |#1|) "failed") (-1068 |#1|) (-1068 |#1|)) 35)) (-2891 (((-1068 |#1|) (-1068 |#1|)) 91)) (-2812 (((-1068 |#1|) (-1068 |#1|) |#1|) 71)) (-2315 (((-1068 |#1|) (-1068 |#1|)) 62)) (-3063 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 72)) (-1691 (((-1068 |#1|) |#1|) 67)) (-2574 (((-1068 |#1|) (-1068 (-1068 |#1|))) 82)) (-4074 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 36)) (-4060 (((-1068 |#1|) (-1068 |#1|)) 21) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 23)) (-4045 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 17)) (* (((-1068 |#1|) (-1068 |#1|) |#1|) 29) (((-1068 |#1|) |#1| (-1068 |#1|)) 26) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 27))) +(((-1072 |#1|) (-10 -7 (-15 -4045 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -4060 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -4060 ((-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -4007 ((-3 (-1068 |#1|) "failed") (-1068 |#1|) (-1068 |#1|))) (-15 -4074 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -1444 ((-3 (-1068 |#1|) "failed") (-1068 |#1|))) (-15 -2836 ((-1068 |#1|) |#1| (-523))) (-15 -3445 ((-1068 (-523)) (-523))) (-15 -4023 ((-1068 (-523)) (-523))) (-15 -2387 ((-1068 |#1|) |#1|)) (-15 -2106 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2315 ((-1068 |#1|) (-1068 |#1|))) (-15 -2117 ((-1068 |#1|) (-1 |#1| (-523)) (-1068 |#1|))) (-15 -1691 ((-1068 |#1|) |#1|)) (-15 -2812 ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3063 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3200 ((-1068 |#1|) (-1068 |#1|))) (-15 -1500 ((-1068 |#1|) (-1068 |#1|))) (-15 -2574 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -4118 ((-1068 |#1|) (-1068 |#1|))) (-15 -2042 ((-1068 |#1|) (-1068 |#1|))) (-15 -2891 ((-1068 |#1|) (-1068 |#1|))) (-15 -1627 ((-1068 |#1|) (-1068 |#1|) (-523) (-523))) (-15 -3623 ((-1068 |#1|) (-523) (-523) (-1068 |#1|))) (-15 -3088 ((-1068 |#1|) (-523) (-523) (-1068 |#1|))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -2814 ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 -2632 ((-1068 |#1|) |#1| (-1 (-1068 |#1|)))) (-15 -1508 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -2465 ((-1068 |#1|) (-383 (-523)) (-1068 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -1206 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -1530 ((-1068 |#1|) (-1 |#1| (-523)) |#1| (-1 (-1068 |#1|)))) (-15 -2426 ((-1068 |#1|) |#1| (-1068 |#1|)))) |%noBranch|)) (-973)) (T -1072)) +((-2426 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-339)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-1530 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-523))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-339)) (-4 *4 (-973)) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)))) (-1206 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-339)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2465 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-4 *4 (-37 *3)) (-4 *4 (-973)) (-5 *3 (-383 (-523))) (-5 *1 (-1072 *4)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)) (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)))) (-2814 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-3088 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) (-5 *1 (-1072 *4)))) (-3623 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) (-5 *1 (-1072 *4)))) (-1627 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) (-5 *1 (-1072 *4)))) (-2891 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)) (-4 *4 (-973)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-3063 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2812 (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-1691 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973)))) (-2117 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-523))) (-4 *4 (-973)) (-5 *1 (-1072 *4)))) (-2315 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2106 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2387 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973)))) (-4023 (*1 *2 *3) (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-1072 *4)) (-4 *4 (-973)) (-5 *3 (-523)))) (-3445 (*1 *2 *3) (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-1072 *4)) (-4 *4 (-973)) (-5 *3 (-523)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973)))) (-1444 (*1 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4074 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4007 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4060 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4060 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4045 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) +(-10 -7 (-15 -4045 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -4060 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -4060 ((-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -4007 ((-3 (-1068 |#1|) "failed") (-1068 |#1|) (-1068 |#1|))) (-15 -4074 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -1444 ((-3 (-1068 |#1|) "failed") (-1068 |#1|))) (-15 -2836 ((-1068 |#1|) |#1| (-523))) (-15 -3445 ((-1068 (-523)) (-523))) (-15 -4023 ((-1068 (-523)) (-523))) (-15 -2387 ((-1068 |#1|) |#1|)) (-15 -2106 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2315 ((-1068 |#1|) (-1068 |#1|))) (-15 -2117 ((-1068 |#1|) (-1 |#1| (-523)) (-1068 |#1|))) (-15 -1691 ((-1068 |#1|) |#1|)) (-15 -2812 ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3063 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3200 ((-1068 |#1|) (-1068 |#1|))) (-15 -1500 ((-1068 |#1|) (-1068 |#1|))) (-15 -2574 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -4118 ((-1068 |#1|) (-1068 |#1|))) (-15 -2042 ((-1068 |#1|) (-1068 |#1|))) (-15 -2891 ((-1068 |#1|) (-1068 |#1|))) (-15 -1627 ((-1068 |#1|) (-1068 |#1|) (-523) (-523))) (-15 -3623 ((-1068 |#1|) (-523) (-523) (-1068 |#1|))) (-15 -3088 ((-1068 |#1|) (-523) (-523) (-1068 |#1|))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -2814 ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 -2632 ((-1068 |#1|) |#1| (-1 (-1068 |#1|)))) (-15 -1508 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -2465 ((-1068 |#1|) (-383 (-523)) (-1068 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -1206 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -1530 ((-1068 |#1|) (-1 |#1| (-523)) |#1| (-1 (-1068 |#1|)))) (-15 -2426 ((-1068 |#1|) |#1| (-1068 |#1|)))) |%noBranch|)) +((-1462 (((-1068 |#1|) (-1068 |#1|)) 57)) (-1285 (((-1068 |#1|) (-1068 |#1|)) 39)) (-1441 (((-1068 |#1|) (-1068 |#1|)) 53)) (-1260 (((-1068 |#1|) (-1068 |#1|)) 35)) (-1481 (((-1068 |#1|) (-1068 |#1|)) 60)) (-1309 (((-1068 |#1|) (-1068 |#1|)) 42)) (-2313 (((-1068 |#1|) (-1068 |#1|)) 31)) (-2922 (((-1068 |#1|) (-1068 |#1|)) 27)) (-2306 (((-1068 |#1|) (-1068 |#1|)) 61)) (-1322 (((-1068 |#1|) (-1068 |#1|)) 43)) (-1471 (((-1068 |#1|) (-1068 |#1|)) 58)) (-1295 (((-1068 |#1|) (-1068 |#1|)) 40)) (-1453 (((-1068 |#1|) (-1068 |#1|)) 55)) (-1274 (((-1068 |#1|) (-1068 |#1|)) 37)) (-2341 (((-1068 |#1|) (-1068 |#1|)) 65)) (-1401 (((-1068 |#1|) (-1068 |#1|)) 47)) (-2318 (((-1068 |#1|) (-1068 |#1|)) 63)) (-1334 (((-1068 |#1|) (-1068 |#1|)) 45)) (-2366 (((-1068 |#1|) (-1068 |#1|)) 68)) (-1421 (((-1068 |#1|) (-1068 |#1|)) 50)) (-2102 (((-1068 |#1|) (-1068 |#1|)) 69)) (-1431 (((-1068 |#1|) (-1068 |#1|)) 51)) (-2353 (((-1068 |#1|) (-1068 |#1|)) 67)) (-1413 (((-1068 |#1|) (-1068 |#1|)) 49)) (-2330 (((-1068 |#1|) (-1068 |#1|)) 66)) (-1346 (((-1068 |#1|) (-1068 |#1|)) 48)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 33))) +(((-1073 |#1|) (-10 -7 (-15 -2922 ((-1068 |#1|) (-1068 |#1|))) (-15 -2313 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -1260 ((-1068 |#1|) (-1068 |#1|))) (-15 -1274 ((-1068 |#1|) (-1068 |#1|))) (-15 -1285 ((-1068 |#1|) (-1068 |#1|))) (-15 -1295 ((-1068 |#1|) (-1068 |#1|))) (-15 -1309 ((-1068 |#1|) (-1068 |#1|))) (-15 -1322 ((-1068 |#1|) (-1068 |#1|))) (-15 -1334 ((-1068 |#1|) (-1068 |#1|))) (-15 -1346 ((-1068 |#1|) (-1068 |#1|))) (-15 -1401 ((-1068 |#1|) (-1068 |#1|))) (-15 -1413 ((-1068 |#1|) (-1068 |#1|))) (-15 -1421 ((-1068 |#1|) (-1068 |#1|))) (-15 -1431 ((-1068 |#1|) (-1068 |#1|))) (-15 -1441 ((-1068 |#1|) (-1068 |#1|))) (-15 -1453 ((-1068 |#1|) (-1068 |#1|))) (-15 -1462 ((-1068 |#1|) (-1068 |#1|))) (-15 -1471 ((-1068 |#1|) (-1068 |#1|))) (-15 -1481 ((-1068 |#1|) (-1068 |#1|))) (-15 -2306 ((-1068 |#1|) (-1068 |#1|))) (-15 -2318 ((-1068 |#1|) (-1068 |#1|))) (-15 -2330 ((-1068 |#1|) (-1068 |#1|))) (-15 -2341 ((-1068 |#1|) (-1068 |#1|))) (-15 -2353 ((-1068 |#1|) (-1068 |#1|))) (-15 -2366 ((-1068 |#1|) (-1068 |#1|))) (-15 -2102 ((-1068 |#1|) (-1068 |#1|)))) (-37 (-383 (-523)))) (T -1073)) +((-2102 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-2353 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-2341 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-2306 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1471 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1462 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1453 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1431 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1421 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1346 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1334 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1322 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1309 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1295 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1285 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1274 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1260 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-2313 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-2922 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3))))) +(-10 -7 (-15 -2922 ((-1068 |#1|) (-1068 |#1|))) (-15 -2313 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -1260 ((-1068 |#1|) (-1068 |#1|))) (-15 -1274 ((-1068 |#1|) (-1068 |#1|))) (-15 -1285 ((-1068 |#1|) (-1068 |#1|))) (-15 -1295 ((-1068 |#1|) (-1068 |#1|))) (-15 -1309 ((-1068 |#1|) (-1068 |#1|))) (-15 -1322 ((-1068 |#1|) (-1068 |#1|))) (-15 -1334 ((-1068 |#1|) (-1068 |#1|))) (-15 -1346 ((-1068 |#1|) (-1068 |#1|))) (-15 -1401 ((-1068 |#1|) (-1068 |#1|))) (-15 -1413 ((-1068 |#1|) (-1068 |#1|))) (-15 -1421 ((-1068 |#1|) (-1068 |#1|))) (-15 -1431 ((-1068 |#1|) (-1068 |#1|))) (-15 -1441 ((-1068 |#1|) (-1068 |#1|))) (-15 -1453 ((-1068 |#1|) (-1068 |#1|))) (-15 -1462 ((-1068 |#1|) (-1068 |#1|))) (-15 -1471 ((-1068 |#1|) (-1068 |#1|))) (-15 -1481 ((-1068 |#1|) (-1068 |#1|))) (-15 -2306 ((-1068 |#1|) (-1068 |#1|))) (-15 -2318 ((-1068 |#1|) (-1068 |#1|))) (-15 -2330 ((-1068 |#1|) (-1068 |#1|))) (-15 -2341 ((-1068 |#1|) (-1068 |#1|))) (-15 -2353 ((-1068 |#1|) (-1068 |#1|))) (-15 -2366 ((-1068 |#1|) (-1068 |#1|))) (-15 -2102 ((-1068 |#1|) (-1068 |#1|)))) +((-1462 (((-1068 |#1|) (-1068 |#1|)) 100)) (-1285 (((-1068 |#1|) (-1068 |#1|)) 64)) (-3014 (((-2 (|:| -1441 (-1068 |#1|)) (|:| -1453 (-1068 |#1|))) (-1068 |#1|)) 96)) (-1441 (((-1068 |#1|) (-1068 |#1|)) 97)) (-3235 (((-2 (|:| -1260 (-1068 |#1|)) (|:| -1274 (-1068 |#1|))) (-1068 |#1|)) 53)) (-1260 (((-1068 |#1|) (-1068 |#1|)) 54)) (-1481 (((-1068 |#1|) (-1068 |#1|)) 102)) (-1309 (((-1068 |#1|) (-1068 |#1|)) 71)) (-2313 (((-1068 |#1|) (-1068 |#1|)) 39)) (-2922 (((-1068 |#1|) (-1068 |#1|)) 36)) (-2306 (((-1068 |#1|) (-1068 |#1|)) 103)) (-1322 (((-1068 |#1|) (-1068 |#1|)) 72)) (-1471 (((-1068 |#1|) (-1068 |#1|)) 101)) (-1295 (((-1068 |#1|) (-1068 |#1|)) 67)) (-1453 (((-1068 |#1|) (-1068 |#1|)) 98)) (-1274 (((-1068 |#1|) (-1068 |#1|)) 55)) (-2341 (((-1068 |#1|) (-1068 |#1|)) 111)) (-1401 (((-1068 |#1|) (-1068 |#1|)) 86)) (-2318 (((-1068 |#1|) (-1068 |#1|)) 105)) (-1334 (((-1068 |#1|) (-1068 |#1|)) 82)) (-2366 (((-1068 |#1|) (-1068 |#1|)) 115)) (-1421 (((-1068 |#1|) (-1068 |#1|)) 90)) (-2102 (((-1068 |#1|) (-1068 |#1|)) 117)) (-1431 (((-1068 |#1|) (-1068 |#1|)) 92)) (-2353 (((-1068 |#1|) (-1068 |#1|)) 113)) (-1413 (((-1068 |#1|) (-1068 |#1|)) 88)) (-2330 (((-1068 |#1|) (-1068 |#1|)) 107)) (-1346 (((-1068 |#1|) (-1068 |#1|)) 84)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 40))) +(((-1074 |#1|) (-10 -7 (-15 -2922 ((-1068 |#1|) (-1068 |#1|))) (-15 -2313 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3235 ((-2 (|:| -1260 (-1068 |#1|)) (|:| -1274 (-1068 |#1|))) (-1068 |#1|))) (-15 -1260 ((-1068 |#1|) (-1068 |#1|))) (-15 -1274 ((-1068 |#1|) (-1068 |#1|))) (-15 -1285 ((-1068 |#1|) (-1068 |#1|))) (-15 -1295 ((-1068 |#1|) (-1068 |#1|))) (-15 -1309 ((-1068 |#1|) (-1068 |#1|))) (-15 -1322 ((-1068 |#1|) (-1068 |#1|))) (-15 -1334 ((-1068 |#1|) (-1068 |#1|))) (-15 -1346 ((-1068 |#1|) (-1068 |#1|))) (-15 -1401 ((-1068 |#1|) (-1068 |#1|))) (-15 -1413 ((-1068 |#1|) (-1068 |#1|))) (-15 -1421 ((-1068 |#1|) (-1068 |#1|))) (-15 -1431 ((-1068 |#1|) (-1068 |#1|))) (-15 -3014 ((-2 (|:| -1441 (-1068 |#1|)) (|:| -1453 (-1068 |#1|))) (-1068 |#1|))) (-15 -1441 ((-1068 |#1|) (-1068 |#1|))) (-15 -1453 ((-1068 |#1|) (-1068 |#1|))) (-15 -1462 ((-1068 |#1|) (-1068 |#1|))) (-15 -1471 ((-1068 |#1|) (-1068 |#1|))) (-15 -1481 ((-1068 |#1|) (-1068 |#1|))) (-15 -2306 ((-1068 |#1|) (-1068 |#1|))) (-15 -2318 ((-1068 |#1|) (-1068 |#1|))) (-15 -2330 ((-1068 |#1|) (-1068 |#1|))) (-15 -2341 ((-1068 |#1|) (-1068 |#1|))) (-15 -2353 ((-1068 |#1|) (-1068 |#1|))) (-15 -2366 ((-1068 |#1|) (-1068 |#1|))) (-15 -2102 ((-1068 |#1|) (-1068 |#1|)))) (-37 (-383 (-523)))) (T -1074)) +((-2102 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-2353 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-2341 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-2306 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1471 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1462 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1453 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3014 (*1 *2 *3) (-12 (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-2 (|:| -1441 (-1068 *4)) (|:| -1453 (-1068 *4)))) (-5 *1 (-1074 *4)) (-5 *3 (-1068 *4)))) (-1431 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1421 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1346 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1334 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1322 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1309 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1295 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1285 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1274 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1260 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3235 (*1 *2 *3) (-12 (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-2 (|:| -1260 (-1068 *4)) (|:| -1274 (-1068 *4)))) (-5 *1 (-1074 *4)) (-5 *3 (-1068 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-2313 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-2922 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3))))) +(-10 -7 (-15 -2922 ((-1068 |#1|) (-1068 |#1|))) (-15 -2313 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3235 ((-2 (|:| -1260 (-1068 |#1|)) (|:| -1274 (-1068 |#1|))) (-1068 |#1|))) (-15 -1260 ((-1068 |#1|) (-1068 |#1|))) (-15 -1274 ((-1068 |#1|) (-1068 |#1|))) (-15 -1285 ((-1068 |#1|) (-1068 |#1|))) (-15 -1295 ((-1068 |#1|) (-1068 |#1|))) (-15 -1309 ((-1068 |#1|) (-1068 |#1|))) (-15 -1322 ((-1068 |#1|) (-1068 |#1|))) (-15 -1334 ((-1068 |#1|) (-1068 |#1|))) (-15 -1346 ((-1068 |#1|) (-1068 |#1|))) (-15 -1401 ((-1068 |#1|) (-1068 |#1|))) (-15 -1413 ((-1068 |#1|) (-1068 |#1|))) (-15 -1421 ((-1068 |#1|) (-1068 |#1|))) (-15 -1431 ((-1068 |#1|) (-1068 |#1|))) (-15 -3014 ((-2 (|:| -1441 (-1068 |#1|)) (|:| -1453 (-1068 |#1|))) (-1068 |#1|))) (-15 -1441 ((-1068 |#1|) (-1068 |#1|))) (-15 -1453 ((-1068 |#1|) (-1068 |#1|))) (-15 -1462 ((-1068 |#1|) (-1068 |#1|))) (-15 -1471 ((-1068 |#1|) (-1068 |#1|))) (-15 -1481 ((-1068 |#1|) (-1068 |#1|))) (-15 -2306 ((-1068 |#1|) (-1068 |#1|))) (-15 -2318 ((-1068 |#1|) (-1068 |#1|))) (-15 -2330 ((-1068 |#1|) (-1068 |#1|))) (-15 -2341 ((-1068 |#1|) (-1068 |#1|))) (-15 -2353 ((-1068 |#1|) (-1068 |#1|))) (-15 -2366 ((-1068 |#1|) (-1068 |#1|))) (-15 -2102 ((-1068 |#1|) (-1068 |#1|)))) +((-3716 (((-888 |#2|) |#2| |#2|) 35)) (-1272 ((|#2| |#2| |#1|) 19 (|has| |#1| (-284))))) +(((-1075 |#1| |#2|) (-10 -7 (-15 -3716 ((-888 |#2|) |#2| |#2|)) (IF (|has| |#1| (-284)) (-15 -1272 (|#2| |#2| |#1|)) |%noBranch|)) (-515) (-1145 |#1|)) (T -1075)) +((-1272 (*1 *2 *2 *3) (-12 (-4 *3 (-284)) (-4 *3 (-515)) (-5 *1 (-1075 *3 *2)) (-4 *2 (-1145 *3)))) (-3716 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-888 *3)) (-5 *1 (-1075 *4 *3)) (-4 *3 (-1145 *4))))) +(-10 -7 (-15 -3716 ((-888 |#2|) |#2| |#2|)) (IF (|has| |#1| (-284)) (-15 -1272 (|#2| |#2| |#1|)) |%noBranch|)) +((-1680 (((-108) $ $) NIL)) (-1540 (($ $ (-589 (-710))) 67)) (-1782 (($) 26)) (-2398 (($ $) 42)) (-3061 (((-589 $) $) 51)) (-4033 (((-108) $) 16)) (-1347 (((-589 (-874 |#2|)) $) 74)) (-1983 (($ $) 68)) (-3431 (((-710) $) 37)) (-3733 (($) 25)) (-2202 (($ $ (-589 (-710)) (-874 |#2|)) 60) (($ $ (-589 (-710)) (-710)) 61) (($ $ (-710) (-874 |#2|)) 63)) (-3780 (($ $ $) 48) (($ (-589 $)) 50)) (-2901 (((-710) $) 75)) (-1799 (((-108) $) 15)) (-2032 (((-1070) $) NIL)) (-1579 (((-108) $) 18)) (-3951 (((-1034) $) NIL)) (-1526 (((-157) $) 73)) (-2201 (((-874 |#2|) $) 69)) (-3245 (((-710) $) 70)) (-2877 (((-108) $) 72)) (-2498 (($ $ (-589 (-710)) (-157)) 66)) (-2830 (($ $) 43)) (-1691 (((-794) $) 86)) (-1820 (($ $ (-589 (-710)) (-108)) 65)) (-2612 (((-589 $) $) 11)) (-2310 (($ $ (-710)) 36)) (-3493 (($ $) 32)) (-2235 (($ $ $ (-874 |#2|) (-710)) 56)) (-2534 (($ $ (-874 |#2|)) 55)) (-4127 (($ $ (-589 (-710)) (-874 |#2|)) 54) (($ $ (-589 (-710)) (-710)) 58) (((-710) $ (-874 |#2|)) 59)) (-3941 (((-108) $ $) 80))) +(((-1076 |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -1799 ((-108) $)) (-15 -4033 ((-108) $)) (-15 -1579 ((-108) $)) (-15 -3733 ($)) (-15 -1782 ($)) (-15 -3493 ($ $)) (-15 -2310 ($ $ (-710))) (-15 -2612 ((-589 $) $)) (-15 -3431 ((-710) $)) (-15 -2398 ($ $)) (-15 -2830 ($ $)) (-15 -3780 ($ $ $)) (-15 -3780 ($ (-589 $))) (-15 -3061 ((-589 $) $)) (-15 -4127 ($ $ (-589 (-710)) (-874 |#2|))) (-15 -2534 ($ $ (-874 |#2|))) (-15 -2235 ($ $ $ (-874 |#2|) (-710))) (-15 -2202 ($ $ (-589 (-710)) (-874 |#2|))) (-15 -4127 ($ $ (-589 (-710)) (-710))) (-15 -2202 ($ $ (-589 (-710)) (-710))) (-15 -4127 ((-710) $ (-874 |#2|))) (-15 -2202 ($ $ (-710) (-874 |#2|))) (-15 -1820 ($ $ (-589 (-710)) (-108))) (-15 -2498 ($ $ (-589 (-710)) (-157))) (-15 -1540 ($ $ (-589 (-710)))) (-15 -2201 ((-874 |#2|) $)) (-15 -3245 ((-710) $)) (-15 -2877 ((-108) $)) (-15 -1526 ((-157) $)) (-15 -2901 ((-710) $)) (-15 -1983 ($ $)) (-15 -1347 ((-589 (-874 |#2|)) $)))) (-852) (-973)) (T -1076)) +((-1799 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-3733 (*1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-1782 (*1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-3493 (*1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-2310 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2398 (*1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-2830 (*1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-3780 (*1 *1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-3780 (*1 *1 *2) (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-2534 (*1 *1 *1 *2) (-12 (-5 *2 (-874 *4)) (-4 *4 (-973)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)))) (-2235 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-874 *5)) (-5 *3 (-710)) (-4 *5 (-973)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-2202 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-710)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)) (-4 *5 (-973)))) (-2202 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-710)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)) (-4 *5 (-973)))) (-4127 (*1 *2 *1 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *2 (-710)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-2202 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-1820 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-108)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)) (-4 *5 (-973)))) (-2498 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-157)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)) (-4 *5 (-973)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-874 *4)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2901 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-1983 (*1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-589 (-874 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973))))) +(-13 (-1016) (-10 -8 (-15 -1799 ((-108) $)) (-15 -4033 ((-108) $)) (-15 -1579 ((-108) $)) (-15 -3733 ($)) (-15 -1782 ($)) (-15 -3493 ($ $)) (-15 -2310 ($ $ (-710))) (-15 -2612 ((-589 $) $)) (-15 -3431 ((-710) $)) (-15 -2398 ($ $)) (-15 -2830 ($ $)) (-15 -3780 ($ $ $)) (-15 -3780 ($ (-589 $))) (-15 -3061 ((-589 $) $)) (-15 -4127 ($ $ (-589 (-710)) (-874 |#2|))) (-15 -2534 ($ $ (-874 |#2|))) (-15 -2235 ($ $ $ (-874 |#2|) (-710))) (-15 -2202 ($ $ (-589 (-710)) (-874 |#2|))) (-15 -4127 ($ $ (-589 (-710)) (-710))) (-15 -2202 ($ $ (-589 (-710)) (-710))) (-15 -4127 ((-710) $ (-874 |#2|))) (-15 -2202 ($ $ (-710) (-874 |#2|))) (-15 -1820 ($ $ (-589 (-710)) (-108))) (-15 -2498 ($ $ (-589 (-710)) (-157))) (-15 -1540 ($ $ (-589 (-710)))) (-15 -2201 ((-874 |#2|) $)) (-15 -3245 ((-710) $)) (-15 -2877 ((-108) $)) (-15 -1526 ((-157) $)) (-15 -2901 ((-710) $)) (-15 -1983 ($ $)) (-15 -1347 ((-589 (-874 |#2|)) $)))) +((-1680 (((-108) $ $) NIL)) (-1909 ((|#2| $) 11)) (-1899 ((|#1| $) 10)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1704 (($ |#1| |#2|) 9)) (-1691 (((-794) $) 16)) (-3941 (((-108) $ $) NIL))) +(((-1077 |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -1704 ($ |#1| |#2|)) (-15 -1899 (|#1| $)) (-15 -1909 (|#2| $)))) (-1016) (-1016)) (T -1077)) +((-1704 (*1 *1 *2 *3) (-12 (-5 *1 (-1077 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-1899 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1016)))) (-1909 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-1077 *3 *2)) (-4 *3 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -1704 ($ |#1| |#2|)) (-15 -1899 (|#1| $)) (-15 -1909 (|#2| $)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2046 (((-1085 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-284)) (|has| |#1| (-339))))) (-1292 (((-589 (-1001)) $) NIL)) (-2724 (((-1087) $) 11)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3306 (($ $) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3174 (((-108) $) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3276 (($ $ (-523)) NIL) (($ $ (-523) (-523)) 66)) (-1552 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) NIL)) (-1253 (((-1085 |#1| |#2| |#3|) $) 36)) (-3333 (((-3 (-1085 |#1| |#2| |#3|) "failed") $) 29)) (-1355 (((-1085 |#1| |#2| |#3|) $) 30)) (-1462 (($ $) 107 (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) 83 (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-3718 (($ $) NIL (|has| |#1| (-339)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2437 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1441 (($ $) 103 (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) 79 (|has| |#1| (-37 (-383 (-523)))))) (-3482 (((-523) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-3199 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) NIL)) (-1481 (($ $) 111 (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) 87 (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-1085 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1087) "failed") $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-523) "failed") $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))))) (-3508 (((-1085 |#1| |#2| |#3|) $) 131) (((-1087) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (((-383 (-523)) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339)))) (((-523) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))))) (-1458 (($ $) 34) (($ (-523) $) 35)) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-1457 (($ $) NIL)) (-2243 (((-629 (-1085 |#1| |#2| |#3|)) (-629 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -2600 (-629 (-1085 |#1| |#2| |#3|))) (|:| |vec| (-1169 (-1085 |#1| |#2| |#3|)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-585 (-523))) (|has| |#1| (-339)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-585 (-523))) (|has| |#1| (-339))))) (-1444 (((-3 $ "failed") $) 48)) (-4035 (((-383 (-883 |#1|)) $ (-523)) 65 (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) 67 (|has| |#1| (-515)))) (-1631 (($) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-3049 (((-108) $) NIL (|has| |#1| (-339)))) (-3712 (((-108) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2589 (((-108) $) 25)) (-3352 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-817 (-523))) (|has| |#1| (-339)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-817 (-355))) (|has| |#1| (-339))))) (-3437 (((-523) $) NIL) (((-523) $ (-523)) 24)) (-2769 (((-108) $) NIL)) (-1296 (($ $) NIL (|has| |#1| (-339)))) (-3316 (((-1085 |#1| |#2| |#3|) $) 38 (|has| |#1| (-339)))) (-1973 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2738 (((-3 $ "failed") $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-1063)) (|has| |#1| (-339))))) (-2057 (((-108) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-3590 (($ $ (-852)) NIL)) (-2839 (($ (-1 |#1| (-523)) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-523)) 18) (($ $ (-1001) (-523)) NIL) (($ $ (-589 (-1001)) (-589 (-523))) NIL)) (-3239 (($ $ $) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3158 (($ $ $) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-339)))) (-2313 (($ $) 72 (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1369 (($ (-523) (-1085 |#1| |#2| |#3|)) 33)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-339)))) (-2814 (($ $) 70 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3172 (-12 (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1109))))) (($ $ (-1165 |#2|)) 71 (|has| |#1| (-37 (-383 (-523)))))) (-2773 (($) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-1063)) (|has| |#1| (-339))) CONST)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4110 (($ $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-284)) (|has| |#1| (-339))))) (-2733 (((-1085 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-2424 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-3053 (($ $ (-523)) 145)) (-4007 (((-3 $ "failed") $ $) 49 (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2922 (($ $) 73 (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-523))))) (($ $ (-1087) (-1085 |#1| |#2| |#3|)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-484 (-1087) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 (-1085 |#1| |#2| |#3|))) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-484 (-1087) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-271 (-1085 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-271 (-1085 |#1| |#2| |#3|))) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-1085 |#1| |#2| |#3|)) (-589 (-1085 |#1| |#2| |#3|))) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339))))) (-3413 (((-710) $) NIL (|has| |#1| (-339)))) (-1937 ((|#1| $ (-523)) NIL) (($ $ $) 54 (|has| (-523) (-1028))) (($ $ (-1085 |#1| |#2| |#3|)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-263 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339))))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-3984 (($ $ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|))) NIL (|has| |#1| (-339))) (($ $ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) (-710)) NIL (|has| |#1| (-339))) (($ $ (-1165 |#2|)) 51) (($ $ (-710)) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 50 (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-2793 (($ $) NIL (|has| |#1| (-339)))) (-3329 (((-1085 |#1| |#2| |#3|) $) 41 (|has| |#1| (-339)))) (-2640 (((-523) $) 37)) (-2306 (($ $) 113 (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) 89 (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) 109 (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) 85 (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) 105 (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) 81 (|has| |#1| (-37 (-383 (-523)))))) (-1400 (((-499) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-564 (-499))) (|has| |#1| (-339)))) (((-355) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-949)) (|has| |#1| (-339)))) (((-203) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-949)) (|has| |#1| (-339)))) (((-823 (-355)) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-564 (-823 (-355)))) (|has| |#1| (-339)))) (((-823 (-523)) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-564 (-823 (-523)))) (|has| |#1| (-339))))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-2488 (($ $) NIL)) (-1691 (((-794) $) 149) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1085 |#1| |#2| |#3|)) 27) (($ (-1165 |#2|)) 23) (($ (-1087)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (($ $) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515)))) (($ (-383 (-523))) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))) (|has| |#1| (-37 (-383 (-523))))))) (-2084 ((|#1| $ (-523)) 68)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))))) (-3272 (((-710)) NIL)) (-3710 ((|#1| $) 12)) (-3809 (((-1085 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-2341 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) 95 (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-2318 (($ $) 115 (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) 91 (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) 99 (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-523)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) 101 (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) 97 (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) 93 (|has| |#1| (-37 (-383 (-523)))))) (-2695 (($ $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-1879 (($) 20 T CONST)) (-1891 (($) 16 T CONST)) (-2909 (($ $ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|))) NIL (|has| |#1| (-339))) (($ $ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) (-710)) NIL (|has| |#1| (-339))) (($ $ (-710)) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-4006 (((-108) $ $) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3980 (((-108) $ $) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3966 (((-108) $ $) NIL (-3172 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) 44 (|has| |#1| (-339))) (($ (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) 45 (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 21)) (** (($ $ (-852)) NIL) (($ $ (-710)) 53) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) 74 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 128 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1085 |#1| |#2| |#3|)) 43 (|has| |#1| (-339))) (($ (-1085 |#1| |#2| |#3|) $) 42 (|has| |#1| (-339))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1078 |#1| |#2| |#3|) (-13 (-1131 |#1| (-1085 |#1| |#2| |#3|)) (-10 -8 (-15 -1691 ($ (-1165 |#2|))) (-15 -3984 ($ $ (-1165 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1078)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-2814 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1131 |#1| (-1085 |#1| |#2| |#3|)) (-10 -8 (-15 -1691 ($ (-1165 |#2|))) (-15 -3984 ($ $ (-1165 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) +((-2990 ((|#2| |#2| (-1009 |#2|)) 26) ((|#2| |#2| (-1087)) 28))) +(((-1079 |#1| |#2|) (-10 -7 (-15 -2990 (|#2| |#2| (-1087))) (-15 -2990 (|#2| |#2| (-1009 |#2|)))) (-13 (-515) (-786) (-964 (-523)) (-585 (-523))) (-13 (-406 |#1|) (-147) (-27) (-1109))) (T -1079)) +((-2990 (*1 *2 *2 *3) (-12 (-5 *3 (-1009 *2)) (-4 *2 (-13 (-406 *4) (-147) (-27) (-1109))) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1079 *4 *2)))) (-2990 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1079 *4 *2)) (-4 *2 (-13 (-406 *4) (-147) (-27) (-1109)))))) +(-10 -7 (-15 -2990 (|#2| |#2| (-1087))) (-15 -2990 (|#2| |#2| (-1009 |#2|)))) +((-2990 (((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1009 (-383 (-883 |#1|)))) 30) (((-383 (-883 |#1|)) (-883 |#1|) (-1009 (-883 |#1|))) 44) (((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1087)) 32) (((-383 (-883 |#1|)) (-883 |#1|) (-1087)) 36))) +(((-1080 |#1|) (-10 -7 (-15 -2990 ((-383 (-883 |#1|)) (-883 |#1|) (-1087))) (-15 -2990 ((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1087))) (-15 -2990 ((-383 (-883 |#1|)) (-883 |#1|) (-1009 (-883 |#1|)))) (-15 -2990 ((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1009 (-383 (-883 |#1|)))))) (-13 (-515) (-786) (-964 (-523)))) (T -1080)) +((-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-3 *3 (-292 *5))) (-5 *1 (-1080 *5)))) (-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-883 *5))) (-5 *3 (-883 *5)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-383 *3)) (-5 *1 (-1080 *5)))) (-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-3 (-383 (-883 *5)) (-292 *5))) (-5 *1 (-1080 *5)) (-5 *3 (-383 (-883 *5))))) (-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-383 (-883 *5))) (-5 *1 (-1080 *5)) (-5 *3 (-883 *5))))) +(-10 -7 (-15 -2990 ((-383 (-883 |#1|)) (-883 |#1|) (-1087))) (-15 -2990 ((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1087))) (-15 -2990 ((-383 (-883 |#1|)) (-883 |#1|) (-1009 (-883 |#1|)))) (-15 -2990 ((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1009 (-383 (-883 |#1|)))))) +((-1345 (((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)) 13))) +(((-1081 |#1| |#2|) (-10 -7 (-15 -1345 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)))) (-973) (-973)) (T -1081)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-1083 *6)) (-5 *1 (-1081 *5 *6))))) +(-10 -7 (-15 -1345 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)))) +((-4226 (((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|))) 50)) (-2424 (((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|))) 51))) +(((-1082 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2424 ((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|)))) (-15 -4226 ((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|))))) (-732) (-786) (-427) (-880 |#3| |#1| |#2|)) (T -1082)) +((-4226 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-427)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 (-383 *7)))) (-5 *1 (-1082 *4 *5 *6 *7)) (-5 *3 (-1083 (-383 *7))))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-427)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 (-383 *7)))) (-5 *1 (-1082 *4 *5 *6 *7)) (-5 *3 (-1083 (-383 *7)))))) +(-10 -7 (-15 -2424 ((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|)))) (-15 -4226 ((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|))))) +((-1680 (((-108) $ $) 139)) (-2603 (((-108) $) 30)) (-1317 (((-1169 |#1|) $ (-710)) NIL)) (-1292 (((-589 (-1001)) $) NIL)) (-3859 (($ (-1083 |#1|)) NIL)) (-2389 (((-1083 $) $ (-1001)) 60) (((-1083 |#1|) $) 49)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) 134 (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 (-1001))) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2485 (($ $ $) 128 (|has| |#1| (-515)))) (-4130 (((-394 (-1083 $)) (-1083 $)) 73 (|has| |#1| (-840)))) (-3718 (($ $) NIL (|has| |#1| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 93 (|has| |#1| (-840)))) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-2199 (($ $ (-710)) 42)) (-3811 (($ $ (-710)) 43)) (-3061 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-427)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1001) "failed") $) NIL)) (-3508 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1001) $) NIL)) (-1611 (($ $ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $ $) 130 (|has| |#1| (-158)))) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-1457 (($ $) 58)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-3425 (($ $ $) 106)) (-3082 (($ $ $) NIL (|has| |#1| (-515)))) (-3999 (((-2 (|:| -3474 |#1|) (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-515)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-1272 (($ $) 135 (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#1| (-840)))) (-4222 (($ $ |#1| (-710) $) 47)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1781 (((-794) $ (-794)) 119)) (-3437 (((-710) $ $) NIL (|has| |#1| (-515)))) (-2769 (((-108) $) 32)) (-1789 (((-710) $) NIL)) (-2738 (((-3 $ "failed") $) NIL (|has| |#1| (-1063)))) (-1280 (($ (-1083 |#1|) (-1001)) 51) (($ (-1083 $) (-1001)) 67)) (-3590 (($ $ (-710)) 34)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-710)) 65) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ (-1001)) NIL) (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 123)) (-4047 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2041 (($ (-1 (-710) (-710)) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-3805 (((-1083 |#1|) $) NIL)) (-4213 (((-3 (-1001) "failed") $) NIL)) (-1427 (($ $) NIL)) (-1437 ((|#1| $) 54)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2032 (((-1070) $) NIL)) (-1716 (((-2 (|:| -3070 $) (|:| -3969 $)) $ (-710)) 41)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| (-1001)) (|:| -1475 (-710))) "failed") $) NIL)) (-2814 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2773 (($) NIL (|has| |#1| (-1063)) CONST)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) 33)) (-1419 ((|#1| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 81 (|has| |#1| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) 137 (|has| |#1| (-427)))) (-3707 (($ $ (-710) |#1| $) 101)) (-1708 (((-394 (-1083 $)) (-1083 $)) 79 (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) 78 (|has| |#1| (-840)))) (-2424 (((-394 $) $) 86 (|has| |#1| (-840)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-4007 (((-3 $ "failed") $ |#1|) 133 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 102 (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#1|) NIL) (($ $ (-589 (-1001)) (-589 |#1|)) NIL) (($ $ (-1001) $) NIL) (($ $ (-589 (-1001)) (-589 $)) NIL)) (-3413 (((-710) $) NIL (|has| |#1| (-339)))) (-1937 ((|#1| $ |#1|) 121) (($ $ $) 122) (((-383 $) (-383 $) (-383 $)) NIL (|has| |#1| (-515))) ((|#1| (-383 $) |#1|) NIL (|has| |#1| (-339))) (((-383 $) $ (-383 $)) NIL (|has| |#1| (-515)))) (-3801 (((-3 $ "failed") $ (-710)) 37)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 140 (|has| |#1| (-339)))) (-1744 (($ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $) 126 (|has| |#1| (-158)))) (-3984 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2640 (((-710) $) 56) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-1618 ((|#1| $) 132 (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-3923 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515))) (((-3 (-383 $) "failed") (-383 $) $) NIL (|has| |#1| (-515)))) (-1691 (((-794) $) 120) (($ (-523)) NIL) (($ |#1|) 55) (($ (-1001)) NIL) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-710)) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) 28 (|has| |#1| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2423 (($ $ (-852)) 15) (($ $ (-710)) 16)) (-1879 (($) 17 T CONST)) (-1891 (($) 18 T CONST)) (-2909 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) 98)) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4074 (($ $ |#1|) 141 (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 68)) (** (($ $ (-852)) 14) (($ $ (-710)) 12)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 27) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 104) (($ $ |#1|) NIL))) +(((-1083 |#1|) (-13 (-1145 |#1|) (-10 -8 (-15 -1781 ((-794) $ (-794))) (-15 -3707 ($ $ (-710) |#1| $)))) (-973)) (T -1083)) +((-1781 (*1 *2 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-1083 *3)) (-4 *3 (-973)))) (-3707 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1083 *3)) (-4 *3 (-973))))) +(-13 (-1145 |#1|) (-10 -8 (-15 -1781 ((-794) $ (-794))) (-15 -3707 ($ $ (-710) |#1| $)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1292 (((-589 (-1001)) $) NIL)) (-2724 (((-1087) $) 11)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-3276 (($ $ (-383 (-523))) NIL) (($ $ (-383 (-523)) (-383 (-523))) NIL)) (-1552 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL (|has| |#1| (-339)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2437 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1441 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3199 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) NIL)) (-1481 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-1078 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1085 |#1| |#2| |#3|) "failed") $) 35)) (-3508 (((-1078 |#1| |#2| |#3|) $) NIL) (((-1085 |#1| |#2| |#3|) $) NIL)) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-3705 (((-383 (-523)) $) 55)) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-1380 (($ (-383 (-523)) (-1078 |#1| |#2| |#3|)) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-3049 (((-108) $) NIL (|has| |#1| (-339)))) (-2589 (((-108) $) NIL)) (-3352 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-383 (-523)) $) NIL) (((-383 (-523)) $ (-383 (-523))) NIL)) (-2769 (((-108) $) NIL)) (-1973 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3590 (($ $ (-852)) NIL) (($ $ (-383 (-523))) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-383 (-523))) 19) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-2313 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4106 (((-1078 |#1| |#2| |#3|) $) 40)) (-1991 (((-3 (-1078 |#1| |#2| |#3|) "failed") $) NIL)) (-1369 (((-1078 |#1| |#2| |#3|) $) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-339)))) (-2814 (($ $) 38 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3172 (-12 (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1109))))) (($ $ (-1165 |#2|)) 39 (|has| |#1| (-37 (-383 (-523)))))) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-3053 (($ $ (-383 (-523))) NIL)) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2922 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-3413 (((-710) $) NIL (|has| |#1| (-339)))) (-1937 ((|#1| $ (-383 (-523))) NIL) (($ $ $) NIL (|has| (-383 (-523)) (-1028)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $ (-1165 |#2|)) 37)) (-2640 (((-383 (-523)) $) NIL)) (-2306 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) NIL)) (-1691 (((-794) $) 58) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1078 |#1| |#2| |#3|)) 29) (($ (-1085 |#1| |#2| |#3|)) 30) (($ (-1165 |#2|)) 25) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2084 ((|#1| $ (-383 (-523))) NIL)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-3710 ((|#1| $) 12)) (-2341 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2318 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-383 (-523))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-1879 (($) 21 T CONST)) (-1891 (($) 16 T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 23)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1084 |#1| |#2| |#3|) (-13 (-1152 |#1| (-1078 |#1| |#2| |#3|)) (-964 (-1085 |#1| |#2| |#3|)) (-10 -8 (-15 -1691 ($ (-1165 |#2|))) (-15 -3984 ($ $ (-1165 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1084)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-2814 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1152 |#1| (-1078 |#1| |#2| |#3|)) (-964 (-1085 |#1| |#2| |#3|)) (-10 -8 (-15 -1691 ($ (-1165 |#2|))) (-15 -3984 ($ $ (-1165 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 125)) (-1292 (((-589 (-1001)) $) NIL)) (-2724 (((-1087) $) 116)) (-3037 (((-1142 |#2| |#1|) $ (-710)) 63)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-3276 (($ $ (-710)) 79) (($ $ (-710) (-710)) 76)) (-1552 (((-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|))) $) 102)) (-1462 (($ $) 169 (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) 145 (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-2437 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1441 (($ $) 165 (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-3199 (($ (-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|)))) 115) (($ (-1068 |#1|)) 110)) (-1481 (($ $) 173 (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) 149 (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) NIL T CONST)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) 23)) (-3257 (($ $) 26)) (-3714 (((-883 |#1|) $ (-710)) 75) (((-883 |#1|) $ (-710) (-710)) 77)) (-2589 (((-108) $) 120)) (-3352 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-710) $) 122) (((-710) $ (-710)) 124)) (-2769 (((-108) $) NIL)) (-1973 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3590 (($ $ (-852)) NIL)) (-2839 (($ (-1 |#1| (-523)) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-710)) 13) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-2313 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-2814 (($ $) 129 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3172 (-12 (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1109))))) (($ $ (-1165 |#2|)) 130 (|has| |#1| (-37 (-383 (-523)))))) (-3951 (((-1034) $) NIL)) (-3053 (($ $ (-710)) 15)) (-4007 (((-3 $ "failed") $ $) 24 (|has| |#1| (-515)))) (-2922 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-710)))))) (-1937 ((|#1| $ (-710)) 119) (($ $ $) 128 (|has| (-710) (-1028)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $ (-1165 |#2|)) 29)) (-2640 (((-710) $) NIL)) (-2306 (($ $) 175 (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) 151 (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) 171 (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) 147 (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) 167 (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) NIL)) (-1691 (((-794) $) 201) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) 126 (|has| |#1| (-158))) (($ (-1142 |#2| |#1|)) 51) (($ (-1165 |#2|)) 32)) (-3819 (((-1068 |#1|) $) 98)) (-2084 ((|#1| $ (-710)) 118)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-3710 ((|#1| $) 54)) (-2341 (($ $) 181 (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) 157 (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2318 (($ $) 177 (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) 153 (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) 185 (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) 161 (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-710)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-710)))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) 187 (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) 163 (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) 183 (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) 159 (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) 179 (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) 155 (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 17 T CONST)) (-1891 (($) 19 T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) 194)) (-4045 (($ $ $) 31)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ |#1|) 198 (|has| |#1| (-339))) (($ $ $) 134 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 137 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1085 |#1| |#2| |#3|) (-13 (-1160 |#1|) (-10 -8 (-15 -1691 ($ (-1142 |#2| |#1|))) (-15 -3037 ((-1142 |#2| |#1|) $ (-710))) (-15 -1691 ($ (-1165 |#2|))) (-15 -3984 ($ $ (-1165 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1085)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1142 *4 *3)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-1085 *3 *4 *5)))) (-3037 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1142 *5 *4)) (-5 *1 (-1085 *4 *5 *6)) (-4 *4 (-973)) (-14 *5 (-1087)) (-14 *6 *4))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-2814 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1160 |#1|) (-10 -8 (-15 -1691 ($ (-1142 |#2| |#1|))) (-15 -3037 ((-1142 |#2| |#1|) $ (-710))) (-15 -1691 ($ (-1165 |#2|))) (-15 -3984 ($ $ (-1165 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) +((-1691 (((-794) $) 22) (($ (-1087)) 24)) (-3172 (($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 35)) (-3161 (($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 28) (($ $) 29)) (-3075 (($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 30)) (-3065 (($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 32)) (-3055 (($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 31)) (-3046 (($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 33)) (-2531 (($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 34))) +(((-1086) (-13 (-563 (-794)) (-10 -8 (-15 -1691 ($ (-1087))) (-15 -3075 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3055 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3065 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3046 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3172 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -2531 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3161 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3161 ($ $))))) (T -1086)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1086)))) (-3075 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-3055 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-3065 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-3046 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-3172 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-2531 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-3161 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-3161 (*1 *1 *1) (-5 *1 (-1086)))) +(-13 (-563 (-794)) (-10 -8 (-15 -1691 ($ (-1087))) (-15 -3075 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3055 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3065 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3046 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3172 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -2531 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3161 ($ (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3161 ($ $)))) +((-1680 (((-108) $ $) NIL)) (-2483 (($ $ (-589 (-794))) 59)) (-2280 (($ $ (-589 (-794))) 57)) (-3279 (((-1070) $) 83)) (-2625 (((-2 (|:| -4094 (-589 (-794))) (|:| -4016 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -3854 (-589 (-794))) (|:| |args| (-589 (-794)))) $) 86)) (-4113 (((-108) $) 21)) (-2160 (($ $ (-589 (-589 (-794)))) 55) (($ $ (-2 (|:| -4094 (-589 (-794))) (|:| -4016 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -3854 (-589 (-794))) (|:| |args| (-589 (-794))))) 81)) (-4189 (($) 123 T CONST)) (-2768 (((-1174)) 105)) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 66) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 72)) (-3733 (($) 94) (($ $) 100)) (-4198 (($ $) 82)) (-3239 (($ $ $) NIL)) (-3158 (($ $ $) NIL)) (-2301 (((-589 $) $) 106)) (-2032 (((-1070) $) 89)) (-3951 (((-1034) $) NIL)) (-1937 (($ $ (-589 (-794))) 58)) (-1400 (((-499) $) 46) (((-1087) $) 47) (((-823 (-523)) $) 76) (((-823 (-355)) $) 74)) (-1691 (((-794) $) 53) (($ (-1070)) 48)) (-3345 (($ $ (-589 (-794))) 60)) (-2111 (((-1070) $) 33) (((-1070) $ (-108)) 34) (((-1174) (-761) $) 35) (((-1174) (-761) $ (-108)) 36)) (-4006 (((-108) $ $) NIL)) (-3980 (((-108) $ $) NIL)) (-3941 (((-108) $ $) 49)) (-3993 (((-108) $ $) NIL)) (-3966 (((-108) $ $) 50))) +(((-1087) (-13 (-786) (-564 (-499)) (-767) (-564 (-1087)) (-564 (-823 (-523))) (-564 (-823 (-355))) (-817 (-523)) (-817 (-355)) (-10 -8 (-15 -3733 ($)) (-15 -3733 ($ $)) (-15 -2768 ((-1174))) (-15 -1691 ($ (-1070))) (-15 -4198 ($ $)) (-15 -4113 ((-108) $)) (-15 -2625 ((-2 (|:| -4094 (-589 (-794))) (|:| -4016 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -3854 (-589 (-794))) (|:| |args| (-589 (-794)))) $)) (-15 -2160 ($ $ (-589 (-589 (-794))))) (-15 -2160 ($ $ (-2 (|:| -4094 (-589 (-794))) (|:| -4016 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -3854 (-589 (-794))) (|:| |args| (-589 (-794)))))) (-15 -2280 ($ $ (-589 (-794)))) (-15 -2483 ($ $ (-589 (-794)))) (-15 -3345 ($ $ (-589 (-794)))) (-15 -1937 ($ $ (-589 (-794)))) (-15 -3279 ((-1070) $)) (-15 -2301 ((-589 $) $)) (-15 -4189 ($) -2501)))) (T -1087)) +((-3733 (*1 *1) (-5 *1 (-1087))) (-3733 (*1 *1 *1) (-5 *1 (-1087))) (-2768 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1087)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1087)))) (-4198 (*1 *1 *1) (-5 *1 (-1087))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1087)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4094 (-589 (-794))) (|:| -4016 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -3854 (-589 (-794))) (|:| |args| (-589 (-794))))) (-5 *1 (-1087)))) (-2160 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 (-794)))) (-5 *1 (-1087)))) (-2160 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -4094 (-589 (-794))) (|:| -4016 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -3854 (-589 (-794))) (|:| |args| (-589 (-794))))) (-5 *1 (-1087)))) (-2280 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) (-2483 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) (-3345 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1087)))) (-2301 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1087)))) (-4189 (*1 *1) (-5 *1 (-1087)))) +(-13 (-786) (-564 (-499)) (-767) (-564 (-1087)) (-564 (-823 (-523))) (-564 (-823 (-355))) (-817 (-523)) (-817 (-355)) (-10 -8 (-15 -3733 ($)) (-15 -3733 ($ $)) (-15 -2768 ((-1174))) (-15 -1691 ($ (-1070))) (-15 -4198 ($ $)) (-15 -4113 ((-108) $)) (-15 -2625 ((-2 (|:| -4094 (-589 (-794))) (|:| -4016 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -3854 (-589 (-794))) (|:| |args| (-589 (-794)))) $)) (-15 -2160 ($ $ (-589 (-589 (-794))))) (-15 -2160 ($ $ (-2 (|:| -4094 (-589 (-794))) (|:| -4016 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -3854 (-589 (-794))) (|:| |args| (-589 (-794)))))) (-15 -2280 ($ $ (-589 (-794)))) (-15 -2483 ($ $ (-589 (-794)))) (-15 -3345 ($ $ (-589 (-794)))) (-15 -1937 ($ $ (-589 (-794)))) (-15 -3279 ((-1070) $)) (-15 -2301 ((-589 $) $)) (-15 -4189 ($) -2501))) +((-2686 (((-1169 |#1|) |#1| (-852)) 16) (((-1169 |#1|) (-589 |#1|)) 20))) +(((-1088 |#1|) (-10 -7 (-15 -2686 ((-1169 |#1|) (-589 |#1|))) (-15 -2686 ((-1169 |#1|) |#1| (-852)))) (-973)) (T -1088)) +((-2686 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-5 *2 (-1169 *3)) (-5 *1 (-1088 *3)) (-4 *3 (-973)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-973)) (-5 *2 (-1169 *4)) (-5 *1 (-1088 *4))))) +(-10 -7 (-15 -2686 ((-1169 |#1|) (-589 |#1|))) (-15 -2686 ((-1169 |#1|) |#1| (-852)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3508 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-1272 (($ $) NIL (|has| |#1| (-427)))) (-4222 (($ $ |#1| (-900) $) NIL)) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-900)) NIL)) (-4047 (((-900) $) NIL)) (-2041 (($ (-1 (-900) (-900)) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) NIL)) (-1419 ((|#1| $) NIL)) (-3707 (($ $ (-900) |#1| $) NIL (-12 (|has| (-900) (-124)) (|has| |#1| (-515))))) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-2640 (((-900) $) NIL)) (-1618 ((|#1| $) NIL (|has| |#1| (-427)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) NIL) (($ (-383 (-523))) NIL (-3172 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ (-900)) NIL)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 9 T CONST)) (-1891 (($) 14 T CONST)) (-3941 (((-108) $ $) 16)) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 19)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1089 |#1|) (-13 (-302 |#1| (-900)) (-10 -8 (IF (|has| |#1| (-515)) (IF (|has| (-900) (-124)) (-15 -3707 ($ $ (-900) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4246)) (-6 -4246) |%noBranch|))) (-973)) (T -1089)) +((-3707 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-900)) (-4 *2 (-124)) (-5 *1 (-1089 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) +(-13 (-302 |#1| (-900)) (-10 -8 (IF (|has| |#1| (-515)) (IF (|has| (-900) (-124)) (-15 -3707 ($ $ (-900) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4246)) (-6 -4246) |%noBranch|))) +((-1546 (((-1091) (-1087) $) 24)) (-1814 (($) 28)) (-2233 (((-3 (|:| |fst| (-410)) (|:| -1495 "void")) (-1087) $) 21)) (-2844 (((-1174) (-1087) (-3 (|:| |fst| (-410)) (|:| -1495 "void")) $) 40) (((-1174) (-1087) (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) 41) (((-1174) (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) 42)) (-3564 (((-1174) (-1087)) 57)) (-1924 (((-1174) (-1087) $) 54) (((-1174) (-1087)) 55) (((-1174)) 56)) (-3593 (((-1174) (-1087)) 36)) (-1919 (((-1087)) 35)) (-3320 (($) 33)) (-3020 (((-413) (-1087) (-413) (-1087) $) 44) (((-413) (-589 (-1087)) (-413) (-1087) $) 48) (((-413) (-1087) (-413)) 45) (((-413) (-1087) (-413) (-1087)) 49)) (-2174 (((-1087)) 34)) (-1691 (((-794) $) 27)) (-3452 (((-1174)) 29) (((-1174) (-1087)) 32)) (-2461 (((-589 (-1087)) (-1087) $) 23)) (-1900 (((-1174) (-1087) (-589 (-1087)) $) 37) (((-1174) (-1087) (-589 (-1087))) 38) (((-1174) (-589 (-1087))) 39))) +(((-1090) (-13 (-563 (-794)) (-10 -8 (-15 -1814 ($)) (-15 -3452 ((-1174))) (-15 -3452 ((-1174) (-1087))) (-15 -3020 ((-413) (-1087) (-413) (-1087) $)) (-15 -3020 ((-413) (-589 (-1087)) (-413) (-1087) $)) (-15 -3020 ((-413) (-1087) (-413))) (-15 -3020 ((-413) (-1087) (-413) (-1087))) (-15 -3593 ((-1174) (-1087))) (-15 -2174 ((-1087))) (-15 -1919 ((-1087))) (-15 -1900 ((-1174) (-1087) (-589 (-1087)) $)) (-15 -1900 ((-1174) (-1087) (-589 (-1087)))) (-15 -1900 ((-1174) (-589 (-1087)))) (-15 -2844 ((-1174) (-1087) (-3 (|:| |fst| (-410)) (|:| -1495 "void")) $)) (-15 -2844 ((-1174) (-1087) (-3 (|:| |fst| (-410)) (|:| -1495 "void")))) (-15 -2844 ((-1174) (-3 (|:| |fst| (-410)) (|:| -1495 "void")))) (-15 -1924 ((-1174) (-1087) $)) (-15 -1924 ((-1174) (-1087))) (-15 -1924 ((-1174))) (-15 -3564 ((-1174) (-1087))) (-15 -3320 ($)) (-15 -2233 ((-3 (|:| |fst| (-410)) (|:| -1495 "void")) (-1087) $)) (-15 -2461 ((-589 (-1087)) (-1087) $)) (-15 -1546 ((-1091) (-1087) $))))) (T -1090)) +((-1814 (*1 *1) (-5 *1 (-1090))) (-3452 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1090)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-1090)))) (-3020 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) (-3020 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-413)) (-5 *3 (-589 (-1087))) (-5 *4 (-1087)) (-5 *1 (-1090)))) (-3020 (*1 *2 *3 *2) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) (-3020 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-1090)))) (-2174 (*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1090)))) (-1919 (*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1090)))) (-1900 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-1090)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-1090)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1174)) (-5 *1 (-1090)))) (-2844 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1087)) (-5 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-5 *2 (-1174)) (-5 *1 (-1090)))) (-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-5 *2 (-1174)) (-5 *1 (-1090)))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-5 *2 (-1174)) (-5 *1 (-1090)))) (-1924 (*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-1090)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-1090)))) (-1924 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1090)))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-1090)))) (-3320 (*1 *1) (-5 *1 (-1090))) (-2233 (*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-5 *1 (-1090)))) (-2461 (*1 *2 *3 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1090)) (-5 *3 (-1087)))) (-1546 (*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-1091)) (-5 *1 (-1090))))) +(-13 (-563 (-794)) (-10 -8 (-15 -1814 ($)) (-15 -3452 ((-1174))) (-15 -3452 ((-1174) (-1087))) (-15 -3020 ((-413) (-1087) (-413) (-1087) $)) (-15 -3020 ((-413) (-589 (-1087)) (-413) (-1087) $)) (-15 -3020 ((-413) (-1087) (-413))) (-15 -3020 ((-413) (-1087) (-413) (-1087))) (-15 -3593 ((-1174) (-1087))) (-15 -2174 ((-1087))) (-15 -1919 ((-1087))) (-15 -1900 ((-1174) (-1087) (-589 (-1087)) $)) (-15 -1900 ((-1174) (-1087) (-589 (-1087)))) (-15 -1900 ((-1174) (-589 (-1087)))) (-15 -2844 ((-1174) (-1087) (-3 (|:| |fst| (-410)) (|:| -1495 "void")) $)) (-15 -2844 ((-1174) (-1087) (-3 (|:| |fst| (-410)) (|:| -1495 "void")))) (-15 -2844 ((-1174) (-3 (|:| |fst| (-410)) (|:| -1495 "void")))) (-15 -1924 ((-1174) (-1087) $)) (-15 -1924 ((-1174) (-1087))) (-15 -1924 ((-1174))) (-15 -3564 ((-1174) (-1087))) (-15 -3320 ($)) (-15 -2233 ((-3 (|:| |fst| (-410)) (|:| -1495 "void")) (-1087) $)) (-15 -2461 ((-589 (-1087)) (-1087) $)) (-15 -1546 ((-1091) (-1087) $)))) +((-1407 (((-589 (-589 (-3 (|:| -4198 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) $) 57)) (-3331 (((-589 (-3 (|:| -4198 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))) (-410) $) 40)) (-3778 (($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-413))))) 15)) (-3564 (((-1174) $) 65)) (-2224 (((-589 (-1087)) $) 20)) (-4221 (((-1020) $) 53)) (-3043 (((-413) (-1087) $) 27)) (-1944 (((-589 (-1087)) $) 30)) (-3320 (($) 17)) (-3020 (((-413) (-589 (-1087)) (-413) $) 25) (((-413) (-1087) (-413) $) 24)) (-1691 (((-794) $) 9) (((-1097 (-1087) (-413)) $) 11))) +(((-1091) (-13 (-563 (-794)) (-10 -8 (-15 -1691 ((-1097 (-1087) (-413)) $)) (-15 -3320 ($)) (-15 -3020 ((-413) (-589 (-1087)) (-413) $)) (-15 -3020 ((-413) (-1087) (-413) $)) (-15 -3043 ((-413) (-1087) $)) (-15 -2224 ((-589 (-1087)) $)) (-15 -3331 ((-589 (-3 (|:| -4198 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))) (-410) $)) (-15 -1944 ((-589 (-1087)) $)) (-15 -1407 ((-589 (-589 (-3 (|:| -4198 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) $)) (-15 -4221 ((-1020) $)) (-15 -3564 ((-1174) $)) (-15 -3778 ($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-413))))))))) (T -1091)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-1097 (-1087) (-413))) (-5 *1 (-1091)))) (-3320 (*1 *1) (-5 *1 (-1091))) (-3020 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-413)) (-5 *3 (-589 (-1087))) (-5 *1 (-1091)))) (-3020 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1091)))) (-3043 (*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-413)) (-5 *1 (-1091)))) (-2224 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1091)))) (-3331 (*1 *2 *3 *1) (-12 (-5 *3 (-410)) (-5 *2 (-589 (-3 (|:| -4198 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) (-5 *1 (-1091)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1091)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-3 (|:| -4198 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))))) (-5 *1 (-1091)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1091)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1091)))) (-3778 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-413))))) (-5 *1 (-1091))))) +(-13 (-563 (-794)) (-10 -8 (-15 -1691 ((-1097 (-1087) (-413)) $)) (-15 -3320 ($)) (-15 -3020 ((-413) (-589 (-1087)) (-413) $)) (-15 -3020 ((-413) (-1087) (-413) $)) (-15 -3043 ((-413) (-1087) $)) (-15 -2224 ((-589 (-1087)) $)) (-15 -3331 ((-589 (-3 (|:| -4198 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))) (-410) $)) (-15 -1944 ((-589 (-1087)) $)) (-15 -1407 ((-589 (-589 (-3 (|:| -4198 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) $)) (-15 -4221 ((-1020) $)) (-15 -3564 ((-1174) $)) (-15 -3778 ($ (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-413)))))))) +((-1680 (((-108) $ $) NIL)) (-3251 (((-108) $) 42)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2295 (((-3 (-523) (-203) (-1087) (-1070) $) $) 50)) (-2652 (((-589 $) $) 55)) (-1400 (((-1020) $) 20) (($ (-1020)) 21)) (-2915 (((-108) $) 52)) (-1691 (((-794) $) NIL) (($ (-523)) 23) (((-523) $) 25) (($ (-203)) 27) (((-203) $) 29) (($ (-1087)) 31) (((-1087) $) 33) (($ (-1070)) 35) (((-1070) $) 37)) (-1868 (((-108) $ (|[\|\|]| (-523))) 10) (((-108) $ (|[\|\|]| (-203))) 13) (((-108) $ (|[\|\|]| (-1087))) 19) (((-108) $ (|[\|\|]| (-1070))) 16)) (-3699 (($ (-1087) (-589 $)) 39) (($ $ (-589 $)) 40)) (-2513 (((-523) $) 24) (((-203) $) 28) (((-1087) $) 32) (((-1070) $) 36)) (-3941 (((-108) $ $) 7))) +(((-1092) (-13 (-1164) (-1016) (-10 -8 (-15 -1400 ((-1020) $)) (-15 -1400 ($ (-1020))) (-15 -1691 ($ (-523))) (-15 -1691 ((-523) $)) (-15 -2513 ((-523) $)) (-15 -1691 ($ (-203))) (-15 -1691 ((-203) $)) (-15 -2513 ((-203) $)) (-15 -1691 ($ (-1087))) (-15 -1691 ((-1087) $)) (-15 -2513 ((-1087) $)) (-15 -1691 ($ (-1070))) (-15 -1691 ((-1070) $)) (-15 -2513 ((-1070) $)) (-15 -3699 ($ (-1087) (-589 $))) (-15 -3699 ($ $ (-589 $))) (-15 -3251 ((-108) $)) (-15 -2295 ((-3 (-523) (-203) (-1087) (-1070) $) $)) (-15 -2652 ((-589 $) $)) (-15 -2915 ((-108) $)) (-15 -1868 ((-108) $ (|[\|\|]| (-523)))) (-15 -1868 ((-108) $ (|[\|\|]| (-203)))) (-15 -1868 ((-108) $ (|[\|\|]| (-1087)))) (-15 -1868 ((-108) $ (|[\|\|]| (-1070))))))) (T -1092)) +((-1400 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1092)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-1092)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) (-3699 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-1092))) (-5 *1 (-1092)))) (-3699 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-1092)))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-3 (-523) (-203) (-1087) (-1070) (-1092))) (-5 *1 (-1092)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-1092)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092)))) (-1868 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-108)) (-5 *1 (-1092)))) (-1868 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-203))) (-5 *2 (-108)) (-5 *1 (-1092)))) (-1868 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-108)) (-5 *1 (-1092)))) (-1868 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-108)) (-5 *1 (-1092))))) +(-13 (-1164) (-1016) (-10 -8 (-15 -1400 ((-1020) $)) (-15 -1400 ($ (-1020))) (-15 -1691 ($ (-523))) (-15 -1691 ((-523) $)) (-15 -2513 ((-523) $)) (-15 -1691 ($ (-203))) (-15 -1691 ((-203) $)) (-15 -2513 ((-203) $)) (-15 -1691 ($ (-1087))) (-15 -1691 ((-1087) $)) (-15 -2513 ((-1087) $)) (-15 -1691 ($ (-1070))) (-15 -1691 ((-1070) $)) (-15 -2513 ((-1070) $)) (-15 -3699 ($ (-1087) (-589 $))) (-15 -3699 ($ $ (-589 $))) (-15 -3251 ((-108) $)) (-15 -2295 ((-3 (-523) (-203) (-1087) (-1070) $) $)) (-15 -2652 ((-589 $) $)) (-15 -2915 ((-108) $)) (-15 -1868 ((-108) $ (|[\|\|]| (-523)))) (-15 -1868 ((-108) $ (|[\|\|]| (-203)))) (-15 -1868 ((-108) $ (|[\|\|]| (-1087)))) (-15 -1868 ((-108) $ (|[\|\|]| (-1070)))))) +((-2320 (((-589 (-589 (-883 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087))) 54)) (-3112 (((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|)))) 66) (((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|))) 62) (((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087)) 67) (((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087)) 61) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|))))) 91) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|)))) 90) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087))) 92) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))) (-589 (-1087))) 89))) +(((-1093 |#1|) (-10 -7 (-15 -3112 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -3112 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087)))) (-15 -3112 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))))) (-15 -3112 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -3112 ((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087))) (-15 -3112 ((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -3112 ((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)))) (-15 -3112 ((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))))) (-15 -2320 ((-589 (-589 (-883 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087))))) (-515)) (T -1093)) +((-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-883 *5)))) (-5 *1 (-1093 *5)))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *4))))) (-5 *1 (-1093 *4)) (-5 *3 (-271 (-383 (-883 *4)))))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *4))))) (-5 *1 (-1093 *4)) (-5 *3 (-383 (-883 *4))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *5))))) (-5 *1 (-1093 *5)) (-5 *3 (-271 (-383 (-883 *5)))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *5))))) (-5 *1 (-1093 *5)) (-5 *3 (-383 (-883 *5))))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-1093 *4)) (-5 *3 (-589 (-271 (-383 (-883 *4))))))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-589 (-383 (-883 *4)))) (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-1093 *4)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-1093 *5)) (-5 *3 (-589 (-271 (-383 (-883 *5))))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-1093 *5))))) +(-10 -7 (-15 -3112 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -3112 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087)))) (-15 -3112 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))))) (-15 -3112 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -3112 ((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087))) (-15 -3112 ((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -3112 ((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)))) (-15 -3112 ((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))))) (-15 -2320 ((-589 (-589 (-883 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087))))) +((-3513 (((-1070)) 7)) (-3524 (((-1070)) 9)) (-3578 (((-1174) (-1070)) 11)) (-3535 (((-1070)) 8))) +(((-1094) (-10 -7 (-15 -3513 ((-1070))) (-15 -3535 ((-1070))) (-15 -3524 ((-1070))) (-15 -3578 ((-1174) (-1070))))) (T -1094)) +((-3578 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1094)))) (-3524 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1094)))) (-3535 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1094)))) (-3513 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1094))))) +(-10 -7 (-15 -3513 ((-1070))) (-15 -3535 ((-1070))) (-15 -3524 ((-1070))) (-15 -3578 ((-1174) (-1070)))) +((-1470 (((-589 (-589 |#1|)) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|)))) 38)) (-2472 (((-589 (-589 (-589 |#1|))) (-589 (-589 |#1|))) 24)) (-1359 (((-1096 (-589 |#1|)) (-589 |#1|)) 34)) (-2857 (((-589 (-589 |#1|)) (-589 |#1|)) 30)) (-1643 (((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 (-589 (-589 |#1|)))) 37)) (-3393 (((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 |#1|) (-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|)))) 36)) (-3001 (((-589 (-589 |#1|)) (-589 (-589 |#1|))) 28)) (-3713 (((-589 |#1|) (-589 |#1|)) 31)) (-3783 (((-589 (-589 (-589 |#1|))) (-589 |#1|) (-589 (-589 (-589 |#1|)))) 18)) (-1801 (((-589 (-589 (-589 |#1|))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 (-589 |#1|)))) 15)) (-1738 (((-2 (|:| |fs| (-108)) (|:| |sd| (-589 |#1|)) (|:| |td| (-589 (-589 |#1|)))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 |#1|))) 13)) (-1778 (((-589 (-589 |#1|)) (-589 (-589 (-589 |#1|)))) 39)) (-1846 (((-589 (-589 |#1|)) (-1096 (-589 |#1|))) 41))) +(((-1095 |#1|) (-10 -7 (-15 -1738 ((-2 (|:| |fs| (-108)) (|:| |sd| (-589 |#1|)) (|:| |td| (-589 (-589 |#1|)))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 |#1|)))) (-15 -1801 ((-589 (-589 (-589 |#1|))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 (-589 |#1|))))) (-15 -3783 ((-589 (-589 (-589 |#1|))) (-589 |#1|) (-589 (-589 (-589 |#1|))))) (-15 -1470 ((-589 (-589 |#1|)) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))))) (-15 -1778 ((-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))))) (-15 -1846 ((-589 (-589 |#1|)) (-1096 (-589 |#1|)))) (-15 -2472 ((-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)))) (-15 -1359 ((-1096 (-589 |#1|)) (-589 |#1|))) (-15 -3001 ((-589 (-589 |#1|)) (-589 (-589 |#1|)))) (-15 -2857 ((-589 (-589 |#1|)) (-589 |#1|))) (-15 -3713 ((-589 |#1|) (-589 |#1|))) (-15 -3393 ((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 |#1|) (-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))))) (-15 -1643 ((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 (-589 (-589 |#1|)))))) (-786)) (T -1095)) +((-1643 (*1 *2 *3) (-12 (-4 *4 (-786)) (-5 *2 (-2 (|:| |f1| (-589 *4)) (|:| |f2| (-589 (-589 (-589 *4)))) (|:| |f3| (-589 (-589 *4))) (|:| |f4| (-589 (-589 (-589 *4)))))) (-5 *1 (-1095 *4)) (-5 *3 (-589 (-589 (-589 *4)))))) (-3393 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-786)) (-5 *3 (-589 *6)) (-5 *5 (-589 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-589 *5)) (|:| |f3| *5) (|:| |f4| (-589 *5)))) (-5 *1 (-1095 *6)) (-5 *4 (-589 *5)))) (-3713 (*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-1095 *3)))) (-2857 (*1 *2 *3) (-12 (-4 *4 (-786)) (-5 *2 (-589 (-589 *4))) (-5 *1 (-1095 *4)) (-5 *3 (-589 *4)))) (-3001 (*1 *2 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-786)) (-5 *1 (-1095 *3)))) (-1359 (*1 *2 *3) (-12 (-4 *4 (-786)) (-5 *2 (-1096 (-589 *4))) (-5 *1 (-1095 *4)) (-5 *3 (-589 *4)))) (-2472 (*1 *2 *3) (-12 (-4 *4 (-786)) (-5 *2 (-589 (-589 (-589 *4)))) (-5 *1 (-1095 *4)) (-5 *3 (-589 (-589 *4))))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-1096 (-589 *4))) (-4 *4 (-786)) (-5 *2 (-589 (-589 *4))) (-5 *1 (-1095 *4)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-589 *4)))) (-5 *2 (-589 (-589 *4))) (-5 *1 (-1095 *4)) (-4 *4 (-786)))) (-1470 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-589 (-589 *4)))) (-5 *2 (-589 (-589 *4))) (-4 *4 (-786)) (-5 *1 (-1095 *4)))) (-3783 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-589 (-589 *4)))) (-5 *3 (-589 *4)) (-4 *4 (-786)) (-5 *1 (-1095 *4)))) (-1801 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-589 (-589 (-589 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-589 *5)) (-4 *5 (-786)) (-5 *1 (-1095 *5)))) (-1738 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-786)) (-5 *4 (-589 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-589 *4)))) (-5 *1 (-1095 *6)) (-5 *5 (-589 *4))))) +(-10 -7 (-15 -1738 ((-2 (|:| |fs| (-108)) (|:| |sd| (-589 |#1|)) (|:| |td| (-589 (-589 |#1|)))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 |#1|)))) (-15 -1801 ((-589 (-589 (-589 |#1|))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 (-589 |#1|))))) (-15 -3783 ((-589 (-589 (-589 |#1|))) (-589 |#1|) (-589 (-589 (-589 |#1|))))) (-15 -1470 ((-589 (-589 |#1|)) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))))) (-15 -1778 ((-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))))) (-15 -1846 ((-589 (-589 |#1|)) (-1096 (-589 |#1|)))) (-15 -2472 ((-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)))) (-15 -1359 ((-1096 (-589 |#1|)) (-589 |#1|))) (-15 -3001 ((-589 (-589 |#1|)) (-589 (-589 |#1|)))) (-15 -2857 ((-589 (-589 |#1|)) (-589 |#1|))) (-15 -3713 ((-589 |#1|) (-589 |#1|))) (-15 -3393 ((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 |#1|) (-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))))) (-15 -1643 ((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 (-589 (-589 |#1|)))))) +((-3133 (($ (-589 (-589 |#1|))) 9)) (-3692 (((-589 (-589 |#1|)) $) 10)) (-1691 (((-794) $) 25))) +(((-1096 |#1|) (-10 -8 (-15 -3133 ($ (-589 (-589 |#1|)))) (-15 -3692 ((-589 (-589 |#1|)) $)) (-15 -1691 ((-794) $))) (-1016)) (T -1096)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1096 *3)) (-4 *3 (-1016)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 *3))) (-5 *1 (-1096 *3)) (-4 *3 (-1016)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-1096 *3))))) +(-10 -8 (-15 -3133 ($ (-589 (-589 |#1|)))) (-15 -3692 ((-589 (-589 |#1|)) $)) (-15 -1691 ((-794) $))) +((-1680 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3723 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-4191 (((-1174) $ |#1| |#1|) NIL (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#2| $ |#1| |#2|) NIL)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-4216 (((-3 |#2| "failed") |#1| $) NIL)) (-4189 (($) NIL T CONST)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-3286 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-3 |#2| "failed") |#1| $) NIL)) (-2514 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#2| $ |#1|) NIL)) (-1871 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) NIL)) (-2965 ((|#1| $) NIL (|has| |#1| (-786)))) (-1584 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-589 |#2|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-2567 ((|#1| $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4249))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1255 (((-589 |#1|) $) NIL)) (-1862 (((-108) |#1| $) NIL)) (-1293 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3108 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-2536 (((-589 |#1|) $) NIL)) (-2254 (((-108) |#1| $) NIL)) (-3951 (((-1034) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2428 ((|#2| $) NIL (|has| |#1| (-786)))) (-2509 (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL)) (-4141 (($ $ |#2|) NIL (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3973 (((-589 |#2|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2963 (($) NIL) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) NIL (-12 (|has| $ (-6 -4248)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-1691 (((-794) $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2417 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) NIL)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) NIL (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) NIL (-3172 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-1097 |#1| |#2|) (-13 (-1100 |#1| |#2|) (-10 -7 (-6 -4248))) (-1016) (-1016)) (T -1097)) +NIL +(-13 (-1100 |#1| |#2|) (-10 -7 (-6 -4248))) +((-1667 ((|#1| (-589 |#1|)) 32)) (-2818 ((|#1| |#1| (-523)) 18)) (-3547 (((-1083 |#1|) |#1| (-852)) 15))) +(((-1098 |#1|) (-10 -7 (-15 -1667 (|#1| (-589 |#1|))) (-15 -3547 ((-1083 |#1|) |#1| (-852))) (-15 -2818 (|#1| |#1| (-523)))) (-339)) (T -1098)) +((-2818 (*1 *2 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-1098 *2)) (-4 *2 (-339)))) (-3547 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-5 *2 (-1083 *3)) (-5 *1 (-1098 *3)) (-4 *3 (-339)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-1098 *2)) (-4 *2 (-339))))) +(-10 -7 (-15 -1667 (|#1| (-589 |#1|))) (-15 -3547 ((-1083 |#1|) |#1| (-852))) (-15 -2818 (|#1| |#1| (-523)))) +((-3723 (($) 10) (($ (-589 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)))) 14)) (-3286 (($ (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) $) 61) (($ (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1871 (((-589 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) $) 39) (((-589 |#3|) $) 41)) (-2043 (($ (-1 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-1345 (($ (-1 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1293 (((-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) $) 54)) (-3108 (($ (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) $) 16)) (-2536 (((-589 |#2|) $) 19)) (-2254 (((-108) |#2| $) 59)) (-2509 (((-3 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) "failed") (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) $) 58)) (-3048 (((-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) $) 63)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 67)) (-3973 (((-589 |#3|) $) 43)) (-1937 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) $) NIL) (((-710) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) $) NIL) (((-710) |#3| $) NIL) (((-710) (-1 (-108) |#3|) $) 68)) (-1691 (((-794) $) 27)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 65)) (-3941 (((-108) $ $) 49))) +(((-1099 |#1| |#2| |#3|) (-10 -8 (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -1345 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3723 (|#1| (-589 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))))) (-15 -3723 (|#1|)) (-15 -1345 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2043 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2308 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3379 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3977 ((-710) (-1 (-108) |#3|) |#1|)) (-15 -1871 ((-589 |#3|) |#1|)) (-15 -3977 ((-710) |#3| |#1|)) (-15 -1937 (|#3| |#1| |#2| |#3|)) (-15 -1937 (|#3| |#1| |#2|)) (-15 -3973 ((-589 |#3|) |#1|)) (-15 -2254 ((-108) |#2| |#1|)) (-15 -2536 ((-589 |#2|) |#1|)) (-15 -3286 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3286 (|#1| (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -3286 (|#1| (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) |#1|)) (-15 -2509 ((-3 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) "failed") (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -1293 ((-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) |#1|)) (-15 -3108 (|#1| (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) |#1|)) (-15 -3048 ((-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) |#1|)) (-15 -3977 ((-710) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) |#1|)) (-15 -1871 ((-589 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -3977 ((-710) (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -3379 ((-108) (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -2308 ((-108) (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -2043 (|#1| (-1 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -1345 (|#1| (-1 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|))) (-1100 |#2| |#3|) (-1016) (-1016)) (T -1099)) +NIL +(-10 -8 (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -1345 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3723 (|#1| (-589 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))))) (-15 -3723 (|#1|)) (-15 -1345 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2043 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2308 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3379 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3977 ((-710) (-1 (-108) |#3|) |#1|)) (-15 -1871 ((-589 |#3|) |#1|)) (-15 -3977 ((-710) |#3| |#1|)) (-15 -1937 (|#3| |#1| |#2| |#3|)) (-15 -1937 (|#3| |#1| |#2|)) (-15 -3973 ((-589 |#3|) |#1|)) (-15 -2254 ((-108) |#2| |#1|)) (-15 -2536 ((-589 |#2|) |#1|)) (-15 -3286 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3286 (|#1| (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -3286 (|#1| (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) |#1|)) (-15 -2509 ((-3 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) "failed") (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -1293 ((-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) |#1|)) (-15 -3108 (|#1| (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) |#1|)) (-15 -3048 ((-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) |#1|)) (-15 -3977 ((-710) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) |#1|)) (-15 -1871 ((-589 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -3977 ((-710) (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -3379 ((-108) (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -2308 ((-108) (-1 (-108) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -2043 (|#1| (-1 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|)) (-15 -1345 (|#1| (-1 (-2 (|:| -3772 |#2|) (|:| -2482 |#3|)) (-2 (|:| -3772 |#2|) (|:| -2482 |#3|))) |#1|))) +((-1680 (((-108) $ $) 19 (-3172 (|has| |#2| (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-3723 (($) 72) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 71)) (-4191 (((-1174) $ |#1| |#1|) 99 (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) 8)) (-1849 ((|#2| $ |#1| |#2|) 73)) (-3703 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 45 (|has| $ (-6 -4248)))) (-1903 (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 55 (|has| $ (-6 -4248)))) (-4216 (((-3 |#2| "failed") |#1| $) 61)) (-4189 (($) 7 T CONST)) (-2462 (($ $) 58 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248))))) (-3286 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 47 (|has| $ (-6 -4248))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 46 (|has| $ (-6 -4248))) (((-3 |#2| "failed") |#1| $) 62)) (-2514 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 54 (|has| $ (-6 -4248)))) (-2116 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 56 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 53 (|has| $ (-6 -4248))) (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 52 (|has| $ (-6 -4248)))) (-2053 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4249)))) (-2000 ((|#2| $ |#1|) 88)) (-1871 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 30 (|has| $ (-6 -4248))) (((-589 |#2|) $) 79 (|has| $ (-6 -4248)))) (-3051 (((-108) $ (-710)) 9)) (-2965 ((|#1| $) 96 (|has| |#1| (-786)))) (-1584 (((-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 29 (|has| $ (-6 -4248))) (((-589 |#2|) $) 80 (|has| $ (-6 -4248)))) (-3423 (((-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4248))))) (-2567 ((|#1| $) 95 (|has| |#1| (-786)))) (-2043 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 34 (|has| $ (-6 -4249))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4249)))) (-1345 (($ (-1 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-1418 (((-108) $ (-710)) 10)) (-2032 (((-1070) $) 22 (-3172 (|has| |#2| (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-1255 (((-589 |#1|) $) 63)) (-1862 (((-108) |#1| $) 64)) (-1293 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 39)) (-3108 (($ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 40)) (-2536 (((-589 |#1|) $) 93)) (-2254 (((-108) |#1| $) 92)) (-3951 (((-1034) $) 21 (-3172 (|has| |#2| (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-2428 ((|#2| $) 97 (|has| |#1| (-786)))) (-2509 (((-3 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) "failed") (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 51)) (-4141 (($ $ |#2|) 98 (|has| $ (-6 -4249)))) (-3048 (((-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 41)) (-3379 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 32 (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))))) 26 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 25 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) 24 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 23 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 86 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 84 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) 83 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4248)) (|has| |#2| (-1016))))) (-3973 (((-589 |#2|) $) 91)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2963 (($) 49) (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 48)) (-3977 (((-710) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 31 (|has| $ (-6 -4248))) (((-710) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| $ (-6 -4248)))) (((-710) |#2| $) 81 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4248)))) (((-710) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4248)))) (-1874 (($ $) 13)) (-1400 (((-499) $) 59 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))))) (-1704 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 50)) (-1691 (((-794) $) 18 (-3172 (|has| |#2| (-563 (-794))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794)))))) (-2417 (($ (-589 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) 42)) (-2308 (((-108) (-1 (-108) (-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) $) 33 (|has| $ (-6 -4248))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (-3172 (|has| |#2| (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-1100 |#1| |#2|) (-129) (-1016) (-1016)) (T -1100)) +((-1849 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1100 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-3723 (*1 *1) (-12 (-4 *1 (-1100 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-3723 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -3772 *3) (|:| -2482 *4)))) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *1 (-1100 *3 *4)))) (-1345 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016))))) +(-13 (-560 |t#1| |t#2|) (-556 |t#1| |t#2|) (-10 -8 (-15 -1849 (|t#2| $ |t#1| |t#2|)) (-15 -3723 ($)) (-15 -3723 ($ (-589 (-2 (|:| -3772 |t#1|) (|:| -2482 |t#2|))))) (-15 -1345 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-33) . T) ((-102 #0=(-2 (|:| -3772 |#1|) (|:| -2482 |#2|))) . T) ((-97) -3172 (|has| |#2| (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))) ((-563 (-794)) -3172 (|has| |#2| (-1016)) (|has| |#2| (-563 (-794))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-563 (-794)))) ((-140 #0#) . T) ((-564 (-499)) |has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-564 (-499))) ((-207 #0#) . T) ((-213 #0#) . T) ((-263 |#1| |#2|) . T) ((-265 |#1| |#2|) . T) ((-286 #0#) -12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-462 #0#) . T) ((-462 |#2|) . T) ((-556 |#1| |#2|) . T) ((-484 #0# #0#) -12 (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-286 (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)))) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-560 |#1| |#2|) . T) ((-1016) -3172 (|has| |#2| (-1016)) (|has| (-2 (|:| -3772 |#1|) (|:| -2482 |#2|)) (-1016))) ((-1123) . T)) +((-2036 (((-108)) 24)) (-3128 (((-1174) (-1070)) 26)) (-2938 (((-108)) 36)) (-3391 (((-1174)) 34)) (-3852 (((-1174) (-1070) (-1070)) 25)) (-3343 (((-108)) 37)) (-3108 (((-1174) |#1| |#2|) 44)) (-3007 (((-1174)) 20)) (-3526 (((-3 |#2| "failed") |#1|) 42)) (-1710 (((-1174)) 35))) +(((-1101 |#1| |#2|) (-10 -7 (-15 -3007 ((-1174))) (-15 -3852 ((-1174) (-1070) (-1070))) (-15 -3128 ((-1174) (-1070))) (-15 -3391 ((-1174))) (-15 -1710 ((-1174))) (-15 -2036 ((-108))) (-15 -2938 ((-108))) (-15 -3343 ((-108))) (-15 -3526 ((-3 |#2| "failed") |#1|)) (-15 -3108 ((-1174) |#1| |#2|))) (-1016) (-1016)) (T -1101)) +((-3108 (*1 *2 *3 *4) (-12 (-5 *2 (-1174)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-3526 (*1 *2 *3) (|partial| -12 (-4 *2 (-1016)) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1016)))) (-3343 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-2938 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-2036 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1710 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-3391 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1101 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)))) (-3852 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1101 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)))) (-3007 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016))))) +(-10 -7 (-15 -3007 ((-1174))) (-15 -3852 ((-1174) (-1070) (-1070))) (-15 -3128 ((-1174) (-1070))) (-15 -3391 ((-1174))) (-15 -1710 ((-1174))) (-15 -2036 ((-108))) (-15 -2938 ((-108))) (-15 -3343 ((-108))) (-15 -3526 ((-3 |#2| "failed") |#1|)) (-15 -3108 ((-1174) |#1| |#2|))) +((-1958 (((-1070) (-1070)) 18)) (-3429 (((-51) (-1070)) 21))) +(((-1102) (-10 -7 (-15 -3429 ((-51) (-1070))) (-15 -1958 ((-1070) (-1070))))) (T -1102)) +((-1958 (*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1102)))) (-3429 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-1102))))) +(-10 -7 (-15 -3429 ((-51) (-1070))) (-15 -1958 ((-1070) (-1070)))) +((-1691 (((-1104) |#1|) 11))) +(((-1103 |#1|) (-10 -7 (-15 -1691 ((-1104) |#1|))) (-1016)) (T -1103)) +((-1691 (*1 *2 *3) (-12 (-5 *2 (-1104)) (-5 *1 (-1103 *3)) (-4 *3 (-1016))))) +(-10 -7 (-15 -1691 ((-1104) |#1|))) +((-1680 (((-108) $ $) NIL)) (-2193 (((-589 (-1070)) $) 33)) (-3368 (((-589 (-1070)) $ (-589 (-1070))) 36)) (-2467 (((-589 (-1070)) $ (-589 (-1070))) 35)) (-4145 (((-589 (-1070)) $ (-589 (-1070))) 37)) (-3667 (((-589 (-1070)) $) 32)) (-3733 (($) 22)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-3308 (((-589 (-1070)) $) 34)) (-1239 (((-1174) $ (-523)) 29) (((-1174) $) 30)) (-1400 (($ (-794) (-523)) 26) (($ (-794) (-523) (-794)) NIL)) (-1691 (((-794) $) 39) (($ (-794)) 24)) (-3941 (((-108) $ $) NIL))) +(((-1104) (-13 (-1016) (-10 -8 (-15 -1691 ($ (-794))) (-15 -1400 ($ (-794) (-523))) (-15 -1400 ($ (-794) (-523) (-794))) (-15 -1239 ((-1174) $ (-523))) (-15 -1239 ((-1174) $)) (-15 -3308 ((-589 (-1070)) $)) (-15 -2193 ((-589 (-1070)) $)) (-15 -3733 ($)) (-15 -3667 ((-589 (-1070)) $)) (-15 -4145 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -3368 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -2467 ((-589 (-1070)) $ (-589 (-1070))))))) (T -1104)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-1104)))) (-1400 (*1 *1 *2 *3) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-1104)))) (-1400 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-1104)))) (-1239 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-1104)))) (-1239 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1104)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1104)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1104)))) (-3733 (*1 *1) (-5 *1 (-1104))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1104)))) (-4145 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1104)))) (-3368 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1104)))) (-2467 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1104))))) +(-13 (-1016) (-10 -8 (-15 -1691 ($ (-794))) (-15 -1400 ($ (-794) (-523))) (-15 -1400 ($ (-794) (-523) (-794))) (-15 -1239 ((-1174) $ (-523))) (-15 -1239 ((-1174) $)) (-15 -3308 ((-589 (-1070)) $)) (-15 -2193 ((-589 (-1070)) $)) (-15 -3733 ($)) (-15 -3667 ((-589 (-1070)) $)) (-15 -4145 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -3368 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -2467 ((-589 (-1070)) $ (-589 (-1070)))))) +((-1680 (((-108) $ $) NIL)) (-3412 (((-1070) $ (-1070)) 17) (((-1070) $) 16)) (-2674 (((-1070) $ (-1070)) 15)) (-2949 (($ $ (-1070)) NIL)) (-1204 (((-3 (-1070) "failed") $) 11)) (-2477 (((-1070) $) 8)) (-3044 (((-3 (-1070) "failed") $) 12)) (-1928 (((-1070) $) 9)) (-2647 (($ (-364)) NIL) (($ (-364) (-1070)) NIL)) (-4198 (((-364) $) NIL)) (-2032 (((-1070) $) NIL)) (-2541 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1486 (((-108) $) 18)) (-1691 (((-794) $) NIL)) (-2667 (($ $) NIL)) (-3941 (((-108) $ $) NIL))) +(((-1105) (-13 (-340 (-364) (-1070)) (-10 -8 (-15 -3412 ((-1070) $ (-1070))) (-15 -3412 ((-1070) $)) (-15 -2477 ((-1070) $)) (-15 -1204 ((-3 (-1070) "failed") $)) (-15 -3044 ((-3 (-1070) "failed") $)) (-15 -1486 ((-108) $))))) (T -1105)) +((-3412 (*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1105)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1105)))) (-2477 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1105)))) (-1204 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-1105)))) (-3044 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-1105)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1105))))) +(-13 (-340 (-364) (-1070)) (-10 -8 (-15 -3412 ((-1070) $ (-1070))) (-15 -3412 ((-1070) $)) (-15 -2477 ((-1070) $)) (-15 -1204 ((-3 (-1070) "failed") $)) (-15 -3044 ((-3 (-1070) "failed") $)) (-15 -1486 ((-108) $)))) +((-3482 (((-3 (-523) "failed") |#1|) 19)) (-1930 (((-3 (-523) "failed") |#1|) 13)) (-1210 (((-523) (-1070)) 28))) +(((-1106 |#1|) (-10 -7 (-15 -3482 ((-3 (-523) "failed") |#1|)) (-15 -1930 ((-3 (-523) "failed") |#1|)) (-15 -1210 ((-523) (-1070)))) (-973)) (T -1106)) +((-1210 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-523)) (-5 *1 (-1106 *4)) (-4 *4 (-973)))) (-1930 (*1 *2 *3) (|partial| -12 (-5 *2 (-523)) (-5 *1 (-1106 *3)) (-4 *3 (-973)))) (-3482 (*1 *2 *3) (|partial| -12 (-5 *2 (-523)) (-5 *1 (-1106 *3)) (-4 *3 (-973))))) +(-10 -7 (-15 -3482 ((-3 (-523) "failed") |#1|)) (-15 -1930 ((-3 (-523) "failed") |#1|)) (-15 -1210 ((-523) (-1070)))) +((-1994 (((-1047 (-203))) 8))) +(((-1107) (-10 -7 (-15 -1994 ((-1047 (-203)))))) (T -1107)) +((-1994 (*1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1107))))) +(-10 -7 (-15 -1994 ((-1047 (-203))))) +((-3352 (($) 11)) (-2341 (($ $) 35)) (-2318 (($ $) 33)) (-1334 (($ $) 25)) (-2366 (($ $) 17)) (-2102 (($ $) 15)) (-2353 (($ $) 19)) (-1413 (($ $) 30)) (-2330 (($ $) 34)) (-1346 (($ $) 29))) +(((-1108 |#1|) (-10 -8 (-15 -3352 (|#1|)) (-15 -2341 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -2102 (|#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -1334 (|#1| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -1346 (|#1| |#1|))) (-1109)) (T -1108)) +NIL +(-10 -8 (-15 -3352 (|#1|)) (-15 -2341 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -2102 (|#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -1334 (|#1| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -1346 (|#1| |#1|))) +((-1462 (($ $) 26)) (-1285 (($ $) 11)) (-1441 (($ $) 27)) (-1260 (($ $) 10)) (-1481 (($ $) 28)) (-1309 (($ $) 9)) (-3352 (($) 16)) (-2313 (($ $) 19)) (-2922 (($ $) 18)) (-2306 (($ $) 29)) (-1322 (($ $) 8)) (-1471 (($ $) 30)) (-1295 (($ $) 7)) (-1453 (($ $) 31)) (-1274 (($ $) 6)) (-2341 (($ $) 20)) (-1401 (($ $) 32)) (-2318 (($ $) 21)) (-1334 (($ $) 33)) (-2366 (($ $) 22)) (-1421 (($ $) 34)) (-2102 (($ $) 23)) (-1431 (($ $) 35)) (-2353 (($ $) 24)) (-1413 (($ $) 36)) (-2330 (($ $) 25)) (-1346 (($ $) 37)) (** (($ $ $) 17))) +(((-1109) (-129)) (T -1109)) +((-3352 (*1 *1) (-4 *1 (-1109)))) +(-13 (-1112) (-91) (-464) (-34) (-261) (-10 -8 (-15 -3352 ($)))) +(((-34) . T) ((-91) . T) ((-261) . T) ((-464) . T) ((-1112) . T)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3370 ((|#1| $) 17)) (-3959 (($ |#1| (-589 $)) 23) (($ (-589 |#1|)) 27) (($ |#1|) 25)) (-1620 (((-108) $ (-710)) 48)) (-1487 ((|#1| $ |#1|) 14 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) 13 (|has| $ (-6 -4249)))) (-4189 (($) NIL T CONST)) (-1871 (((-589 |#1|) $) 52 (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) 43)) (-3675 (((-108) $ $) 33 (|has| |#1| (-1016)))) (-3051 (((-108) $ (-710)) 41)) (-1584 (((-589 |#1|) $) 53 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 51 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2043 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 22)) (-1418 (((-108) $ (-710)) 40)) (-1701 (((-589 |#1|) $) 37)) (-1799 (((-108) $) 36)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3379 (((-108) (-1 (-108) |#1|) $) 50 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 74)) (-1777 (((-108) $) 9)) (-3320 (($) 10)) (-1937 ((|#1| $ "value") NIL)) (-3766 (((-523) $ $) 32)) (-2837 (((-589 $) $) 59)) (-2340 (((-108) $ $) 77)) (-2666 (((-589 $) $) 72)) (-1560 (($ $) 73)) (-1221 (((-108) $) 56)) (-3977 (((-710) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4248))) (((-710) |#1| $) 16 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-1874 (($ $) 58)) (-1691 (((-794) $) 61 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) 12)) (-3313 (((-108) $ $) 29 (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 28 (|has| |#1| (-1016)))) (-2810 (((-710) $) 39 (|has| $ (-6 -4248))))) +(((-1110 |#1|) (-13 (-938 |#1|) (-10 -8 (-6 -4248) (-6 -4249) (-15 -3959 ($ |#1| (-589 $))) (-15 -3959 ($ (-589 |#1|))) (-15 -3959 ($ |#1|)) (-15 -1221 ((-108) $)) (-15 -1560 ($ $)) (-15 -2666 ((-589 $) $)) (-15 -2340 ((-108) $ $)) (-15 -2837 ((-589 $) $)))) (-1016)) (T -1110)) +((-1221 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1110 *3)) (-4 *3 (-1016)))) (-3959 (*1 *1 *2 *3) (-12 (-5 *3 (-589 (-1110 *2))) (-5 *1 (-1110 *2)) (-4 *2 (-1016)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-1110 *3)))) (-3959 (*1 *1 *2) (-12 (-5 *1 (-1110 *2)) (-4 *2 (-1016)))) (-1560 (*1 *1 *1) (-12 (-5 *1 (-1110 *2)) (-4 *2 (-1016)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-589 (-1110 *3))) (-5 *1 (-1110 *3)) (-4 *3 (-1016)))) (-2340 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1110 *3)) (-4 *3 (-1016)))) (-2837 (*1 *2 *1) (-12 (-5 *2 (-589 (-1110 *3))) (-5 *1 (-1110 *3)) (-4 *3 (-1016))))) +(-13 (-938 |#1|) (-10 -8 (-6 -4248) (-6 -4249) (-15 -3959 ($ |#1| (-589 $))) (-15 -3959 ($ (-589 |#1|))) (-15 -3959 ($ |#1|)) (-15 -1221 ((-108) $)) (-15 -1560 ($ $)) (-15 -2666 ((-589 $) $)) (-15 -2340 ((-108) $ $)) (-15 -2837 ((-589 $) $)))) +((-1285 (($ $) 15)) (-1309 (($ $) 12)) (-1322 (($ $) 10)) (-1295 (($ $) 17))) +(((-1111 |#1|) (-10 -8 (-15 -1295 (|#1| |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -1309 (|#1| |#1|)) (-15 -1285 (|#1| |#1|))) (-1112)) (T -1111)) +NIL +(-10 -8 (-15 -1295 (|#1| |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -1309 (|#1| |#1|)) (-15 -1285 (|#1| |#1|))) +((-1285 (($ $) 11)) (-1260 (($ $) 10)) (-1309 (($ $) 9)) (-1322 (($ $) 8)) (-1295 (($ $) 7)) (-1274 (($ $) 6))) +(((-1112) (-129)) (T -1112)) +((-1285 (*1 *1 *1) (-4 *1 (-1112))) (-1260 (*1 *1 *1) (-4 *1 (-1112))) (-1309 (*1 *1 *1) (-4 *1 (-1112))) (-1322 (*1 *1 *1) (-4 *1 (-1112))) (-1295 (*1 *1 *1) (-4 *1 (-1112))) (-1274 (*1 *1 *1) (-4 *1 (-1112)))) +(-13 (-10 -8 (-15 -1274 ($ $)) (-15 -1295 ($ $)) (-15 -1322 ($ $)) (-15 -1309 ($ $)) (-15 -1260 ($ $)) (-15 -1285 ($ $)))) +((-3011 ((|#2| |#2|) 85)) (-1308 (((-108) |#2|) 25)) (-2448 ((|#2| |#2|) 29)) (-2459 ((|#2| |#2|) 31)) (-3499 ((|#2| |#2| (-1087)) 79) ((|#2| |#2|) 80)) (-2752 (((-155 |#2|) |#2|) 27)) (-3961 ((|#2| |#2| (-1087)) 81) ((|#2| |#2|) 82))) +(((-1113 |#1| |#2|) (-10 -7 (-15 -3499 (|#2| |#2|)) (-15 -3499 (|#2| |#2| (-1087))) (-15 -3961 (|#2| |#2|)) (-15 -3961 (|#2| |#2| (-1087))) (-15 -3011 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -2459 (|#2| |#2|)) (-15 -1308 ((-108) |#2|)) (-15 -2752 ((-155 |#2|) |#2|))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1109) (-406 |#1|))) (T -1113)) +((-2752 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-155 *3)) (-5 *1 (-1113 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *4))))) (-1308 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-108)) (-5 *1 (-1113 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *4))))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1113 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3))))) (-2448 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1113 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3))))) (-3011 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1113 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3))))) (-3961 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1113 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4))))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1113 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3))))) (-3499 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1113 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1113 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3)))))) +(-10 -7 (-15 -3499 (|#2| |#2|)) (-15 -3499 (|#2| |#2| (-1087))) (-15 -3961 (|#2| |#2|)) (-15 -3961 (|#2| |#2| (-1087))) (-15 -3011 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -2459 (|#2| |#2|)) (-15 -1308 ((-108) |#2|)) (-15 -2752 ((-155 |#2|) |#2|))) +((-3144 ((|#4| |#4| |#1|) 27)) (-2203 ((|#4| |#4| |#1|) 28))) +(((-1114 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3144 (|#4| |#4| |#1|)) (-15 -2203 (|#4| |#4| |#1|))) (-515) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|)) (T -1114)) +((-2203 (*1 *2 *2 *3) (-12 (-4 *3 (-515)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3144 (*1 *2 *2 *3) (-12 (-4 *3 (-515)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(-10 -7 (-15 -3144 (|#4| |#4| |#1|)) (-15 -2203 (|#4| |#4| |#1|))) +((-3800 ((|#2| |#2|) 132)) (-3300 ((|#2| |#2|) 129)) (-2557 ((|#2| |#2|) 120)) (-2063 ((|#2| |#2|) 117)) (-2596 ((|#2| |#2|) 125)) (-2090 ((|#2| |#2|) 113)) (-1476 ((|#2| |#2|) 42)) (-1321 ((|#2| |#2|) 93)) (-3463 ((|#2| |#2|) 73)) (-1808 ((|#2| |#2|) 127)) (-3701 ((|#2| |#2|) 115)) (-2098 ((|#2| |#2|) 137)) (-1662 ((|#2| |#2|) 135)) (-3159 ((|#2| |#2|) 136)) (-4137 ((|#2| |#2|) 134)) (-3640 ((|#2| |#2|) 146)) (-4092 ((|#2| |#2|) 30 (-12 (|has| |#2| (-564 (-823 |#1|))) (|has| |#2| (-817 |#1|)) (|has| |#1| (-564 (-823 |#1|))) (|has| |#1| (-817 |#1|))))) (-3660 ((|#2| |#2|) 74)) (-3440 ((|#2| |#2|) 138)) (-1870 ((|#2| |#2|) 139)) (-4203 ((|#2| |#2|) 126)) (-4063 ((|#2| |#2|) 114)) (-2118 ((|#2| |#2|) 133)) (-2093 ((|#2| |#2|) 131)) (-3775 ((|#2| |#2|) 121)) (-2114 ((|#2| |#2|) 119)) (-4182 ((|#2| |#2|) 123)) (-1622 ((|#2| |#2|) 111))) +(((-1115 |#1| |#2|) (-10 -7 (-15 -1870 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -1321 (|#2| |#2|)) (-15 -1476 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3440 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -2118 (|#2| |#2|)) (-15 -4063 (|#2| |#2|)) (-15 -4203 (|#2| |#2|)) (-15 -3701 (|#2| |#2|)) (-15 -1808 (|#2| |#2|)) (-15 -2090 (|#2| |#2|)) (-15 -2596 (|#2| |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -2063 (|#2| |#2|)) (-15 -3300 (|#2| |#2|)) (-15 -2114 (|#2| |#2|)) (-15 -2093 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -3159 (|#2| |#2|)) (-15 -2098 (|#2| |#2|)) (IF (|has| |#1| (-817 |#1|)) (IF (|has| |#1| (-564 (-823 |#1|))) (IF (|has| |#2| (-564 (-823 |#1|))) (IF (|has| |#2| (-817 |#1|)) (-15 -4092 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-786) (-427)) (-13 (-406 |#1|) (-1109))) (T -1115)) +((-4092 (*1 *2 *2) (-12 (-4 *3 (-564 (-823 *3))) (-4 *3 (-817 *3)) (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-564 (-823 *3))) (-4 *2 (-817 *3)) (-4 *2 (-13 (-406 *3) (-1109))))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-3159 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-1662 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-2093 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-2114 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-3300 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-2063 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-2557 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-2596 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-2090 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-1808 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-3701 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-4203 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-2118 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-4182 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-3440 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-1476 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-1321 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109))))) (-1870 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-406 *3) (-1109)))))) +(-10 -7 (-15 -1870 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -1321 (|#2| |#2|)) (-15 -1476 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3440 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -2118 (|#2| |#2|)) (-15 -4063 (|#2| |#2|)) (-15 -4203 (|#2| |#2|)) (-15 -3701 (|#2| |#2|)) (-15 -1808 (|#2| |#2|)) (-15 -2090 (|#2| |#2|)) (-15 -2596 (|#2| |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -2063 (|#2| |#2|)) (-15 -3300 (|#2| |#2|)) (-15 -2114 (|#2| |#2|)) (-15 -2093 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -3159 (|#2| |#2|)) (-15 -2098 (|#2| |#2|)) (IF (|has| |#1| (-817 |#1|)) (IF (|has| |#1| (-564 (-823 |#1|))) (IF (|has| |#2| (-564 (-823 |#1|))) (IF (|has| |#2| (-817 |#1|)) (-15 -4092 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2219 (((-108) |#5| $) 60) (((-108) $) 102)) (-2717 ((|#5| |#5| $) 75)) (-1903 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3586 (((-589 |#5|) (-589 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-1220 (((-3 $ "failed") (-589 |#5|)) 126)) (-2441 (((-3 $ "failed") $) 112)) (-3546 ((|#5| |#5| $) 94)) (-3087 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-2848 ((|#5| |#5| $) 98)) (-2116 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-2860 (((-2 (|:| -1214 (-589 |#5|)) (|:| -2647 (-589 |#5|))) $) 55)) (-2605 (((-108) |#5| $) 58) (((-108) $) 103)) (-3556 ((|#4| $) 108)) (-2535 (((-3 |#5| "failed") $) 110)) (-2455 (((-589 |#5|) $) 49)) (-2490 (((-108) |#5| $) 67) (((-108) $) 107)) (-2960 ((|#5| |#5| $) 81)) (-2303 (((-108) $ $) 27)) (-2569 (((-108) |#5| $) 63) (((-108) $) 105)) (-2897 ((|#5| |#5| $) 78)) (-2428 (((-3 |#5| "failed") $) 109)) (-3053 (($ $ |#5|) 127)) (-2640 (((-710) $) 52)) (-1704 (($ (-589 |#5|)) 124)) (-2712 (($ $ |#4|) 122)) (-2742 (($ $ |#4|) 121)) (-1494 (($ $) 120)) (-1691 (((-794) $) NIL) (((-589 |#5|) $) 113)) (-2868 (((-710) $) 130)) (-1645 (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-3684 (((-108) $ (-1 (-108) |#5| (-589 |#5|))) 100)) (-1574 (((-589 |#4|) $) 115)) (-1747 (((-108) |#4| $) 118)) (-3941 (((-108) $ $) 19))) +(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2868 ((-710) |#1|)) (-15 -3053 (|#1| |#1| |#5|)) (-15 -1903 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1747 ((-108) |#4| |#1|)) (-15 -1574 ((-589 |#4|) |#1|)) (-15 -2441 ((-3 |#1| "failed") |#1|)) (-15 -2535 ((-3 |#5| "failed") |#1|)) (-15 -2428 ((-3 |#5| "failed") |#1|)) (-15 -2848 (|#5| |#5| |#1|)) (-15 -1494 (|#1| |#1|)) (-15 -3546 (|#5| |#5| |#1|)) (-15 -2960 (|#5| |#5| |#1|)) (-15 -2897 (|#5| |#5| |#1|)) (-15 -2717 (|#5| |#5| |#1|)) (-15 -3586 ((-589 |#5|) (-589 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2116 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2490 ((-108) |#1|)) (-15 -2569 ((-108) |#1|)) (-15 -2219 ((-108) |#1|)) (-15 -3684 ((-108) |#1| (-1 (-108) |#5| (-589 |#5|)))) (-15 -2490 ((-108) |#5| |#1|)) (-15 -2569 ((-108) |#5| |#1|)) (-15 -2219 ((-108) |#5| |#1|)) (-15 -3087 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -2605 ((-108) |#1|)) (-15 -2605 ((-108) |#5| |#1|)) (-15 -2860 ((-2 (|:| -1214 (-589 |#5|)) (|:| -2647 (-589 |#5|))) |#1|)) (-15 -2640 ((-710) |#1|)) (-15 -2455 ((-589 |#5|) |#1|)) (-15 -1645 ((-3 (-2 (|:| |bas| |#1|) (|:| -3781 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -1645 ((-3 (-2 (|:| |bas| |#1|) (|:| -3781 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2303 ((-108) |#1| |#1|)) (-15 -2712 (|#1| |#1| |#4|)) (-15 -2742 (|#1| |#1| |#4|)) (-15 -3556 (|#4| |#1|)) (-15 -1220 ((-3 |#1| "failed") (-589 |#5|))) (-15 -1691 ((-589 |#5|) |#1|)) (-15 -1704 (|#1| (-589 |#5|))) (-15 -2116 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2116 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1903 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -2116 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|))) (-1117 |#2| |#3| |#4| |#5|) (-515) (-732) (-786) (-987 |#2| |#3| |#4|)) (T -1116)) +NIL +(-10 -8 (-15 -2868 ((-710) |#1|)) (-15 -3053 (|#1| |#1| |#5|)) (-15 -1903 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1747 ((-108) |#4| |#1|)) (-15 -1574 ((-589 |#4|) |#1|)) (-15 -2441 ((-3 |#1| "failed") |#1|)) (-15 -2535 ((-3 |#5| "failed") |#1|)) (-15 -2428 ((-3 |#5| "failed") |#1|)) (-15 -2848 (|#5| |#5| |#1|)) (-15 -1494 (|#1| |#1|)) (-15 -3546 (|#5| |#5| |#1|)) (-15 -2960 (|#5| |#5| |#1|)) (-15 -2897 (|#5| |#5| |#1|)) (-15 -2717 (|#5| |#5| |#1|)) (-15 -3586 ((-589 |#5|) (-589 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2116 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2490 ((-108) |#1|)) (-15 -2569 ((-108) |#1|)) (-15 -2219 ((-108) |#1|)) (-15 -3684 ((-108) |#1| (-1 (-108) |#5| (-589 |#5|)))) (-15 -2490 ((-108) |#5| |#1|)) (-15 -2569 ((-108) |#5| |#1|)) (-15 -2219 ((-108) |#5| |#1|)) (-15 -3087 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -2605 ((-108) |#1|)) (-15 -2605 ((-108) |#5| |#1|)) (-15 -2860 ((-2 (|:| -1214 (-589 |#5|)) (|:| -2647 (-589 |#5|))) |#1|)) (-15 -2640 ((-710) |#1|)) (-15 -2455 ((-589 |#5|) |#1|)) (-15 -1645 ((-3 (-2 (|:| |bas| |#1|) (|:| -3781 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -1645 ((-3 (-2 (|:| |bas| |#1|) (|:| -3781 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2303 ((-108) |#1| |#1|)) (-15 -2712 (|#1| |#1| |#4|)) (-15 -2742 (|#1| |#1| |#4|)) (-15 -3556 (|#4| |#1|)) (-15 -1220 ((-3 |#1| "failed") (-589 |#5|))) (-15 -1691 ((-589 |#5|) |#1|)) (-15 -1704 (|#1| (-589 |#5|))) (-15 -2116 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2116 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1903 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -2116 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1691 ((-794) |#1|)) (-15 -3941 ((-108) |#1| |#1|))) +((-1680 (((-108) $ $) 7)) (-3385 (((-589 (-2 (|:| -1214 $) (|:| -2647 (-589 |#4|)))) (-589 |#4|)) 85)) (-2591 (((-589 $) (-589 |#4|)) 86)) (-1292 (((-589 |#3|) $) 33)) (-2356 (((-108) $) 26)) (-2192 (((-108) $) 17 (|has| |#1| (-515)))) (-2219 (((-108) |#4| $) 101) (((-108) $) 97)) (-2717 ((|#4| |#4| $) 92)) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |#3|) 27)) (-1620 (((-108) $ (-710)) 44)) (-1903 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4248))) (((-3 |#4| "failed") $ |#3|) 79)) (-4189 (($) 45 T CONST)) (-4002 (((-108) $) 22 (|has| |#1| (-515)))) (-3577 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3527 (((-108) $ $) 23 (|has| |#1| (-515)))) (-2611 (((-108) $) 25 (|has| |#1| (-515)))) (-3586 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1291 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-1804 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-1220 (((-3 $ "failed") (-589 |#4|)) 36)) (-3508 (($ (-589 |#4|)) 35)) (-2441 (((-3 $ "failed") $) 82)) (-3546 ((|#4| |#4| $) 89)) (-2462 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4248)))) (-3969 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-3087 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2848 ((|#4| |#4| $) 87)) (-2116 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4248))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4248))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2860 (((-2 (|:| -1214 (-589 |#4|)) (|:| -2647 (-589 |#4|))) $) 105)) (-1871 (((-589 |#4|) $) 52 (|has| $ (-6 -4248)))) (-2605 (((-108) |#4| $) 104) (((-108) $) 103)) (-3556 ((|#3| $) 34)) (-3051 (((-108) $ (-710)) 43)) (-1584 (((-589 |#4|) $) 53 (|has| $ (-6 -4248)))) (-3423 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#4| |#4|) $) 47)) (-2709 (((-589 |#3|) $) 32)) (-2528 (((-108) |#3| $) 31)) (-1418 (((-108) $ (-710)) 42)) (-2032 (((-1070) $) 9)) (-2535 (((-3 |#4| "failed") $) 83)) (-2455 (((-589 |#4|) $) 107)) (-2490 (((-108) |#4| $) 99) (((-108) $) 95)) (-2960 ((|#4| |#4| $) 90)) (-2303 (((-108) $ $) 110)) (-3473 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2569 (((-108) |#4| $) 100) (((-108) $) 96)) (-2897 ((|#4| |#4| $) 91)) (-3951 (((-1034) $) 10)) (-2428 (((-3 |#4| "failed") $) 84)) (-2509 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3367 (((-3 $ "failed") $ |#4|) 78)) (-3053 (($ $ |#4|) 77)) (-3379 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-2267 (((-108) $ $) 38)) (-1777 (((-108) $) 41)) (-3320 (($) 40)) (-2640 (((-710) $) 106)) (-3977 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4248)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4248)))) (-1874 (($ $) 39)) (-1400 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1704 (($ (-589 |#4|)) 60)) (-2712 (($ $ |#3|) 28)) (-2742 (($ $ |#3|) 30)) (-1494 (($ $) 88)) (-1591 (($ $ |#3|) 29)) (-1691 (((-794) $) 11) (((-589 |#4|) $) 37)) (-2868 (((-710) $) 76 (|has| |#3| (-344)))) (-1645 (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3684 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-2308 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4248)))) (-1574 (((-589 |#3|) $) 81)) (-1747 (((-108) |#3| $) 80)) (-3941 (((-108) $ $) 6)) (-2810 (((-710) $) 46 (|has| $ (-6 -4248))))) +(((-1117 |#1| |#2| |#3| |#4|) (-129) (-515) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -1117)) +((-2303 (*1 *2 *1 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-1645 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3781 (-589 *8)))) (-5 *3 (-589 *8)) (-4 *1 (-1117 *5 *6 *7 *8)))) (-1645 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) (-4 *8 (-786)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3781 (-589 *9)))) (-5 *3 (-589 *9)) (-4 *1 (-1117 *6 *7 *8 *9)))) (-2455 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *6)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-710)))) (-2860 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-2 (|:| -1214 (-589 *6)) (|:| -2647 (-589 *6)))))) (-2605 (*1 *2 *3 *1) (-12 (-4 *1 (-1117 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-3087 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1117 *5 *6 *7 *3)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)))) (-2219 (*1 *2 *3 *1) (-12 (-4 *1 (-1117 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2569 (*1 *2 *3 *1) (-12 (-4 *1 (-1117 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2490 (*1 *2 *3 *1) (-12 (-4 *1 (-1117 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-3684 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-589 *7))) (-4 *1 (-1117 *4 *5 *6 *7)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2116 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1117 *5 *6 *7 *2)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *2 (-987 *5 *6 *7)))) (-3586 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-589 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1117 *5 *6 *7 *8)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)))) (-2717 (*1 *2 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-2897 (*1 *2 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-2960 (*1 *2 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-3546 (*1 *2 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-1494 (*1 *1 *1) (-12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *2 (-515)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-987 *2 *3 *4)))) (-2848 (*1 *2 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-1117 *4 *5 *6 *7)))) (-3385 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-589 (-2 (|:| -1214 *1) (|:| -2647 (-589 *7))))) (-5 *3 (-589 *7)) (-4 *1 (-1117 *4 *5 *6 *7)))) (-2428 (*1 *2 *1) (|partial| -12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-2535 (*1 *2 *1) (|partial| -12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-2441 (*1 *1 *1) (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *2 (-515)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-987 *2 *3 *4)))) (-1574 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5)))) (-1747 (*1 *2 *3 *1) (-12 (-4 *1 (-1117 *4 *5 *3 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-108)))) (-1903 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1117 *4 *5 *3 *2)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *3 (-786)) (-4 *2 (-987 *4 *5 *3)))) (-3367 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-3053 (*1 *1 *1 *2) (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-2868 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *5 (-344)) (-5 *2 (-710))))) +(-13 (-905 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4248) (-6 -4249) (-15 -2303 ((-108) $ $)) (-15 -1645 ((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |t#4|))) "failed") (-589 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -1645 ((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |t#4|))) "failed") (-589 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2455 ((-589 |t#4|) $)) (-15 -2640 ((-710) $)) (-15 -2860 ((-2 (|:| -1214 (-589 |t#4|)) (|:| -2647 (-589 |t#4|))) $)) (-15 -2605 ((-108) |t#4| $)) (-15 -2605 ((-108) $)) (-15 -3087 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -2219 ((-108) |t#4| $)) (-15 -2569 ((-108) |t#4| $)) (-15 -2490 ((-108) |t#4| $)) (-15 -3684 ((-108) $ (-1 (-108) |t#4| (-589 |t#4|)))) (-15 -2219 ((-108) $)) (-15 -2569 ((-108) $)) (-15 -2490 ((-108) $)) (-15 -2116 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3586 ((-589 |t#4|) (-589 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2717 (|t#4| |t#4| $)) (-15 -2897 (|t#4| |t#4| $)) (-15 -2960 (|t#4| |t#4| $)) (-15 -3546 (|t#4| |t#4| $)) (-15 -1494 ($ $)) (-15 -2848 (|t#4| |t#4| $)) (-15 -2591 ((-589 $) (-589 |t#4|))) (-15 -3385 ((-589 (-2 (|:| -1214 $) (|:| -2647 (-589 |t#4|)))) (-589 |t#4|))) (-15 -2428 ((-3 |t#4| "failed") $)) (-15 -2535 ((-3 |t#4| "failed") $)) (-15 -2441 ((-3 $ "failed") $)) (-15 -1574 ((-589 |t#3|) $)) (-15 -1747 ((-108) |t#3| $)) (-15 -1903 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3367 ((-3 $ "failed") $ |t#4|)) (-15 -3053 ($ $ |t#4|)) (IF (|has| |t#3| (-344)) (-15 -2868 ((-710) $)) |%noBranch|))) +(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-905 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1123) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1292 (((-589 (-1087)) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-1462 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-2437 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1441 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1481 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) NIL T CONST)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-3714 (((-883 |#1|) $ (-710)) 17) (((-883 |#1|) $ (-710) (-710)) NIL)) (-2589 (((-108) $) NIL)) (-3352 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-710) $ (-1087)) NIL) (((-710) $ (-1087) (-710)) NIL)) (-2769 (((-108) $) NIL)) (-1973 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2704 (((-108) $) NIL)) (-1267 (($ $ (-589 (-1087)) (-589 (-495 (-1087)))) NIL) (($ $ (-1087) (-495 (-1087))) NIL) (($ |#1| (-495 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-2313 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-2814 (($ $ (-1087)) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3951 (((-1034) $) NIL)) (-2994 (($ (-1 $) (-1087) |#1|) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3053 (($ $ (-710)) NIL)) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2922 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2812 (($ $ (-1087) $) NIL) (($ $ (-589 (-1087)) (-589 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL)) (-3984 (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-2640 (((-495 (-1087)) $) NIL)) (-2306 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ $) NIL (|has| |#1| (-515))) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-1087)) NIL) (($ (-883 |#1|)) NIL)) (-2084 ((|#1| $ (-495 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (((-883 |#1|) $ (-710)) NIL)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-2341 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2318 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2102 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) NIL T CONST)) (-2909 (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1118 |#1|) (-13 (-680 |#1| (-1087)) (-10 -8 (-15 -2084 ((-883 |#1|) $ (-710))) (-15 -1691 ($ (-1087))) (-15 -1691 ($ (-883 |#1|))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -2814 ($ $ (-1087) |#1|)) (-15 -2994 ($ (-1 $) (-1087) |#1|))) |%noBranch|))) (-973)) (T -1118)) +((-2084 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-883 *4)) (-5 *1 (-1118 *4)) (-4 *4 (-973)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1118 *3)) (-4 *3 (-973)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-5 *1 (-1118 *3)))) (-2814 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *1 (-1118 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)))) (-2994 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1118 *4))) (-5 *3 (-1087)) (-5 *1 (-1118 *4)) (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973))))) +(-13 (-680 |#1| (-1087)) (-10 -8 (-15 -2084 ((-883 |#1|) $ (-710))) (-15 -1691 ($ (-1087))) (-15 -1691 ($ (-883 |#1|))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -2814 ($ $ (-1087) |#1|)) (-15 -2994 ($ (-1 $) (-1087) |#1|))) |%noBranch|))) +((-4029 (($ |#1| (-589 (-589 (-874 (-203)))) (-108)) 16)) (-2946 (((-108) $ (-108)) 15)) (-2033 (((-108) $) 14)) (-1990 (((-589 (-589 (-874 (-203)))) $) 10)) (-2185 ((|#1| $) 8)) (-3814 (((-108) $) 12))) +(((-1119 |#1|) (-10 -8 (-15 -2185 (|#1| $)) (-15 -1990 ((-589 (-589 (-874 (-203)))) $)) (-15 -3814 ((-108) $)) (-15 -2033 ((-108) $)) (-15 -2946 ((-108) $ (-108))) (-15 -4029 ($ |#1| (-589 (-589 (-874 (-203)))) (-108)))) (-903)) (T -1119)) +((-4029 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-108)) (-5 *1 (-1119 *2)) (-4 *2 (-903)))) (-2946 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1119 *3)) (-4 *3 (-903)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1119 *3)) (-4 *3 (-903)))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1119 *3)) (-4 *3 (-903)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-1119 *3)) (-4 *3 (-903)))) (-2185 (*1 *2 *1) (-12 (-5 *1 (-1119 *2)) (-4 *2 (-903))))) +(-10 -8 (-15 -2185 (|#1| $)) (-15 -1990 ((-589 (-589 (-874 (-203)))) $)) (-15 -3814 ((-108) $)) (-15 -2033 ((-108) $)) (-15 -2946 ((-108) $ (-108))) (-15 -4029 ($ |#1| (-589 (-589 (-874 (-203)))) (-108)))) +((-3845 (((-874 (-203)) (-874 (-203))) 25)) (-3171 (((-874 (-203)) (-203) (-203) (-203) (-203)) 10)) (-2427 (((-589 (-874 (-203))) (-874 (-203)) (-874 (-203)) (-874 (-203)) (-203) (-589 (-589 (-203)))) 37)) (-3839 (((-203) (-874 (-203)) (-874 (-203))) 21)) (-3203 (((-874 (-203)) (-874 (-203)) (-874 (-203))) 22)) (-4147 (((-589 (-589 (-203))) (-523)) 31)) (-4060 (((-874 (-203)) (-874 (-203)) (-874 (-203))) 20)) (-4045 (((-874 (-203)) (-874 (-203)) (-874 (-203))) 19)) (* (((-874 (-203)) (-203) (-874 (-203))) 18))) +(((-1120) (-10 -7 (-15 -3171 ((-874 (-203)) (-203) (-203) (-203) (-203))) (-15 * ((-874 (-203)) (-203) (-874 (-203)))) (-15 -4045 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -4060 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -3839 ((-203) (-874 (-203)) (-874 (-203)))) (-15 -3203 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -3845 ((-874 (-203)) (-874 (-203)))) (-15 -4147 ((-589 (-589 (-203))) (-523))) (-15 -2427 ((-589 (-874 (-203))) (-874 (-203)) (-874 (-203)) (-874 (-203)) (-203) (-589 (-589 (-203))))))) (T -1120)) +((-2427 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-589 (-589 (-203)))) (-5 *4 (-203)) (-5 *2 (-589 (-874 *4))) (-5 *1 (-1120)) (-5 *3 (-874 *4)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *2 (-589 (-589 (-203)))) (-5 *1 (-1120)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1120)))) (-3203 (*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1120)))) (-3839 (*1 *2 *3 *3) (-12 (-5 *3 (-874 (-203))) (-5 *2 (-203)) (-5 *1 (-1120)))) (-4060 (*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1120)))) (-4045 (*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1120)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-874 (-203))) (-5 *3 (-203)) (-5 *1 (-1120)))) (-3171 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1120)) (-5 *3 (-203))))) +(-10 -7 (-15 -3171 ((-874 (-203)) (-203) (-203) (-203) (-203))) (-15 * ((-874 (-203)) (-203) (-874 (-203)))) (-15 -4045 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -4060 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -3839 ((-203) (-874 (-203)) (-874 (-203)))) (-15 -3203 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -3845 ((-874 (-203)) (-874 (-203)))) (-15 -4147 ((-589 (-589 (-203))) (-523))) (-15 -2427 ((-589 (-874 (-203))) (-874 (-203)) (-874 (-203)) (-874 (-203)) (-203) (-589 (-589 (-203)))))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1903 ((|#1| $ (-710)) 13)) (-2616 (((-710) $) 12)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1691 (((-888 |#1|) $) 10) (($ (-888 |#1|)) 9) (((-794) $) 23 (|has| |#1| (-563 (-794))))) (-3941 (((-108) $ $) 16 (|has| |#1| (-1016))))) +(((-1121 |#1|) (-13 (-563 (-888 |#1|)) (-10 -8 (-15 -1691 ($ (-888 |#1|))) (-15 -1903 (|#1| $ (-710))) (-15 -2616 ((-710) $)) (IF (|has| |#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) (-1123)) (T -1121)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-888 *3)) (-4 *3 (-1123)) (-5 *1 (-1121 *3)))) (-1903 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-1121 *2)) (-4 *2 (-1123)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1121 *3)) (-4 *3 (-1123))))) +(-13 (-563 (-888 |#1|)) (-10 -8 (-15 -1691 ($ (-888 |#1|))) (-15 -1903 (|#1| $ (-710))) (-15 -2616 ((-710) $)) (IF (|has| |#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) +((-1580 (((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-523)) 80)) (-1910 (((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|))) 74)) (-2371 (((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|))) 59))) +(((-1122 |#1|) (-10 -7 (-15 -1910 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -2371 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -1580 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-523)))) (-325)) (T -1122)) +((-1580 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-4 *5 (-325)) (-5 *2 (-394 (-1083 (-1083 *5)))) (-5 *1 (-1122 *5)) (-5 *3 (-1083 (-1083 *5))))) (-2371 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 (-1083 (-1083 *4)))) (-5 *1 (-1122 *4)) (-5 *3 (-1083 (-1083 *4))))) (-1910 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 (-1083 (-1083 *4)))) (-5 *1 (-1122 *4)) (-5 *3 (-1083 (-1083 *4)))))) +(-10 -7 (-15 -1910 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -2371 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -1580 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-523)))) +NIL +(((-1123) (-129)) (T -1123)) +NIL +(-13 (-10 -7 (-6 -4069))) +((-3548 (((-108)) 15)) (-2205 (((-1174) (-589 |#1|) (-589 |#1|)) 19) (((-1174) (-589 |#1|)) 20)) (-3051 (((-108) |#1| |#1|) 32 (|has| |#1| (-786)))) (-1418 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-3354 ((|#1| (-589 |#1|)) 33 (|has| |#1| (-786))) ((|#1| (-589 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-3968 (((-2 (|:| -3585 (-589 |#1|)) (|:| -3372 (-589 |#1|)))) 17))) +(((-1124 |#1|) (-10 -7 (-15 -2205 ((-1174) (-589 |#1|))) (-15 -2205 ((-1174) (-589 |#1|) (-589 |#1|))) (-15 -3968 ((-2 (|:| -3585 (-589 |#1|)) (|:| -3372 (-589 |#1|))))) (-15 -1418 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1418 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -3354 (|#1| (-589 |#1|) (-1 (-108) |#1| |#1|))) (-15 -3548 ((-108))) (IF (|has| |#1| (-786)) (PROGN (-15 -3354 (|#1| (-589 |#1|))) (-15 -3051 ((-108) |#1| |#1|))) |%noBranch|)) (-1016)) (T -1124)) +((-3051 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-786)) (-4 *3 (-1016)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-786)) (-5 *1 (-1124 *2)))) (-3548 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-1016)))) (-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1124 *2)) (-4 *2 (-1016)))) (-1418 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1016)) (-5 *2 (-108)) (-5 *1 (-1124 *3)))) (-1418 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-1016)))) (-3968 (*1 *2) (-12 (-5 *2 (-2 (|:| -3585 (-589 *3)) (|:| -3372 (-589 *3)))) (-5 *1 (-1124 *3)) (-4 *3 (-1016)))) (-2205 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-5 *2 (-1174)) (-5 *1 (-1124 *4)))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-5 *2 (-1174)) (-5 *1 (-1124 *4))))) +(-10 -7 (-15 -2205 ((-1174) (-589 |#1|))) (-15 -2205 ((-1174) (-589 |#1|) (-589 |#1|))) (-15 -3968 ((-2 (|:| -3585 (-589 |#1|)) (|:| -3372 (-589 |#1|))))) (-15 -1418 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1418 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -3354 (|#1| (-589 |#1|) (-1 (-108) |#1| |#1|))) (-15 -3548 ((-108))) (IF (|has| |#1| (-786)) (PROGN (-15 -3354 (|#1| (-589 |#1|))) (-15 -3051 ((-108) |#1| |#1|))) |%noBranch|)) +((-2068 (((-1174) (-589 (-1087)) (-589 (-1087))) 12) (((-1174) (-589 (-1087))) 10)) (-1270 (((-1174)) 13)) (-3992 (((-2 (|:| -3372 (-589 (-1087))) (|:| -3585 (-589 (-1087))))) 17))) +(((-1125) (-10 -7 (-15 -2068 ((-1174) (-589 (-1087)))) (-15 -2068 ((-1174) (-589 (-1087)) (-589 (-1087)))) (-15 -3992 ((-2 (|:| -3372 (-589 (-1087))) (|:| -3585 (-589 (-1087)))))) (-15 -1270 ((-1174))))) (T -1125)) +((-1270 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1125)))) (-3992 (*1 *2) (-12 (-5 *2 (-2 (|:| -3372 (-589 (-1087))) (|:| -3585 (-589 (-1087))))) (-5 *1 (-1125)))) (-2068 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1174)) (-5 *1 (-1125)))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1174)) (-5 *1 (-1125))))) +(-10 -7 (-15 -2068 ((-1174) (-589 (-1087)))) (-15 -2068 ((-1174) (-589 (-1087)) (-589 (-1087)))) (-15 -3992 ((-2 (|:| -3372 (-589 (-1087))) (|:| -3585 (-589 (-1087)))))) (-15 -1270 ((-1174)))) +((-3718 (($ $) 16)) (-3049 (((-108) $) 23))) +(((-1126 |#1|) (-10 -8 (-15 -3718 (|#1| |#1|)) (-15 -3049 ((-108) |#1|))) (-1127)) (T -1126)) +NIL +(-10 -8 (-15 -3718 (|#1| |#1|)) (-15 -3049 ((-108) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 51)) (-4226 (((-394 $) $) 52)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-3049 (((-108) $) 53)) (-2769 (((-108) $) 31)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-2424 (((-394 $) $) 50)) (-4007 (((-3 $ "failed") $ $) 42)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-1127) (-129)) (T -1127)) +((-3049 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-108)))) (-4226 (*1 *2 *1) (-12 (-5 *2 (-394 *1)) (-4 *1 (-1127)))) (-3718 (*1 *1 *1) (-4 *1 (-1127))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-394 *1)) (-4 *1 (-1127))))) +(-13 (-427) (-10 -8 (-15 -3049 ((-108) $)) (-15 -4226 ((-394 $) $)) (-15 -3718 ($ $)) (-15 -2424 ((-394 $) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3612 (((-1132 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1132 |#1| |#3| |#5|)) 23))) -(((-1127 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3612 ((-1132 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1132 |#1| |#3| |#5|)))) (-973) (-973) (-1087) (-1087) |#1| |#2|) (T -1127)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5 *7 *9)) (-4 *5 (-973)) (-4 *6 (-973)) (-14 *7 (-1087)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1132 *6 *8 *10)) (-5 *1 (-1127 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1087))))) -(-10 -7 (-15 -3612 ((-1132 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1132 |#1| |#3| |#5|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 (-1001)) $) 74)) (-2700 (((-1087) $) 103)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3984 (($ $ (-523)) 98) (($ $ (-523) (-523)) 97)) (-2133 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 105)) (-1769 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 162 (|has| |#1| (-339)))) (-3614 (((-394 $) $) 163 (|has| |#1| (-339)))) (-1832 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) 153 (|has| |#1| (-339)))) (-1744 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 174)) (-1793 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) 17 T CONST)) (-3796 (($ $ $) 157 (|has| |#1| (-339)))) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-3289 (((-383 (-883 |#1|)) $ (-523)) 172 (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) 171 (|has| |#1| (-515)))) (-3769 (($ $ $) 156 (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 151 (|has| |#1| (-339)))) (-2657 (((-108) $) 164 (|has| |#1| (-339)))) (-2003 (((-108) $) 73)) (-2820 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-523) $) 100) (((-523) $ (-523)) 99)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) 101)) (-3735 (($ (-1 |#1| (-523)) $) 173)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 160 (|has| |#1| (-339)))) (-2620 (((-108) $) 62)) (-1933 (($ |#1| (-523)) 61) (($ $ (-1001) (-523)) 76) (($ $ (-589 (-1001)) (-589 (-523))) 75)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-2384 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3244 (($ (-589 $)) 149 (|has| |#1| (-339))) (($ $ $) 148 (|has| |#1| (-339)))) (-3779 (((-1070) $) 9)) (-3738 (($ $) 165 (|has| |#1| (-339)))) (-3417 (($ $) 170 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 169 (-3262 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1108)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 150 (|has| |#1| (-339)))) (-3278 (($ (-589 $)) 147 (|has| |#1| (-339))) (($ $ $) 146 (|has| |#1| (-339)))) (-1820 (((-394 $) $) 161 (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 158 (|has| |#1| (-339)))) (-4097 (($ $ (-523)) 95)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 152 (|has| |#1| (-339)))) (-1811 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-523)))))) (-1972 (((-710) $) 154 (|has| |#1| (-339)))) (-3223 ((|#1| $ (-523)) 104) (($ $ $) 81 (|has| (-523) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 155 (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (-2299 (((-523) $) 64)) (-1805 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 47 (|has| |#1| (-158))) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515)))) (-2365 ((|#1| $ (-523)) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1288 ((|#1| $) 102)) (-1839 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-1818 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-523)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 166 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339))) (($ $ $) 168 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 167 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) -(((-1128 |#1|) (-129) (-973)) (T -1128)) -((-2417 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) (-4 *3 (-973)) (-4 *1 (-1128 *3)))) (-3735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-523))) (-4 *1 (-1128 *3)) (-4 *3 (-973)))) (-3289 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-1128 *4)) (-4 *4 (-973)) (-4 *4 (-515)) (-5 *2 (-383 (-883 *4))))) (-3289 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-1128 *4)) (-4 *4 (-973)) (-4 *4 (-515)) (-5 *2 (-383 (-883 *4))))) (-3417 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) (-3417 (*1 *1 *1 *2) (-3262 (-12 (-5 *2 (-1087)) (-4 *1 (-1128 *3)) (-4 *3 (-973)) (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1108)) (-4 *3 (-37 (-383 (-523)))))) (-12 (-5 *2 (-1087)) (-4 *1 (-1128 *3)) (-4 *3 (-973)) (-12 (|has| *3 (-15 -1957 ((-589 *2) *3))) (|has| *3 (-15 -3417 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523))))))))) -(-13 (-1146 |t#1| (-523)) (-10 -8 (-15 -2417 ($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |t#1|))))) (-15 -3735 ($ (-1 |t#1| (-523)) $)) (IF (|has| |t#1| (-515)) (PROGN (-15 -3289 ((-383 (-883 |t#1|)) $ (-523))) (-15 -3289 ((-383 (-883 |t#1|)) $ (-523) (-523)))) |%noBranch|) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $)) (IF (|has| |t#1| (-15 -3417 (|t#1| |t#1| (-1087)))) (IF (|has| |t#1| (-15 -1957 ((-589 (-1087)) |t#1|))) (-15 -3417 ($ $ (-1087))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1108)) (IF (|has| |t#1| (-889)) (IF (|has| |t#1| (-29 (-523))) (-15 -3417 ($ $ (-1087))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-930)) (-6 (-1108))) |%noBranch|) (IF (|has| |t#1| (-339)) (-6 (-339)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-523)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| (-523) |#1|))) ((-221) |has| |#1| (-339)) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 $ $) |has| (-523) (-1028)) ((-267) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-339) |has| |#1| (-339)) ((-427) |has| |#1| (-339)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-515) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-591 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| #0# (-1001)) . T) ((-851) |has| |#1| (-339)) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-979 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1108) |has| |#1| (-37 (-383 (-523)))) ((-1111) |has| |#1| (-37 (-383 (-523)))) ((-1126) |has| |#1| (-339)) ((-1146 |#1| #0#) . T)) -((-2295 (((-108) $) 12)) (-3517 (((-3 |#3| "failed") $) 17) (((-3 (-1087) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL)) (-3474 ((|#3| $) 14) (((-1087) $) NIL) (((-383 (-523)) $) NIL) (((-523) $) NIL))) -(((-1129 |#1| |#2| |#3|) (-10 -8 (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-1087) |#1|)) (-15 -3517 ((-3 (-1087) "failed") |#1|)) (-15 -3474 (|#3| |#1|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -2295 ((-108) |#1|))) (-1130 |#2| |#3|) (-973) (-1159 |#2|)) (T -1129)) -NIL -(-10 -8 (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-1087) |#1|)) (-15 -3517 ((-3 (-1087) "failed") |#1|)) (-15 -3474 (|#3| |#1|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -2295 ((-108) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3458 ((|#2| $) 231 (-4099 (|has| |#2| (-284)) (|has| |#1| (-339))))) (-1957 (((-589 (-1001)) $) 74)) (-2700 (((-1087) $) 103)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3984 (($ $ (-523)) 98) (($ $ (-523) (-523)) 97)) (-2133 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 105)) (-3951 ((|#2| $) 267)) (-3989 (((-3 |#2| "failed") $) 263)) (-2015 ((|#2| $) 264)) (-1769 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) 19)) (-3156 (((-394 (-1083 $)) (-1083 $)) 240 (-4099 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-2291 (($ $) 162 (|has| |#1| (-339)))) (-3614 (((-394 $) $) 163 (|has| |#1| (-339)))) (-1832 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 237 (-4099 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-1387 (((-108) $ $) 153 (|has| |#1| (-339)))) (-1744 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-3671 (((-523) $) 249 (-4099 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2417 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 174)) (-1793 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#2| "failed") $) 270) (((-3 (-523) "failed") $) 259 (-4099 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-383 (-523)) "failed") $) 257 (-4099 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-1087) "failed") $) 242 (-4099 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339))))) (-3474 ((|#2| $) 269) (((-523) $) 260 (-4099 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-383 (-523)) $) 258 (-4099 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-1087) $) 243 (-4099 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339))))) (-1819 (($ $) 266) (($ (-523) $) 265)) (-3796 (($ $ $) 157 (|has| |#1| (-339)))) (-3810 (($ $) 60)) (-2381 (((-629 |#2|) (-629 $)) 221 (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) 220 (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 219 (-4099 (|has| |#2| (-585 (-523))) (|has| |#1| (-339)))) (((-629 (-523)) (-629 $)) 218 (-4099 (|has| |#2| (-585 (-523))) (|has| |#1| (-339))))) (-2121 (((-3 $ "failed") $) 34)) (-3289 (((-383 (-883 |#1|)) $ (-523)) 172 (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) 171 (|has| |#1| (-515)))) (-4032 (($) 233 (-4099 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-3769 (($ $ $) 156 (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 151 (|has| |#1| (-339)))) (-2657 (((-108) $) 164 (|has| |#1| (-339)))) (-2604 (((-108) $) 247 (-4099 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2003 (((-108) $) 73)) (-2820 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 225 (-4099 (|has| |#2| (-817 (-355))) (|has| |#1| (-339)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 224 (-4099 (|has| |#2| (-817 (-523))) (|has| |#1| (-339))))) (-1640 (((-523) $) 100) (((-523) $ (-523)) 99)) (-2023 (((-108) $) 31)) (-2531 (($ $) 229 (|has| |#1| (-339)))) (-2785 ((|#2| $) 227 (|has| |#1| (-339)))) (-1420 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-4058 (((-3 $ "failed") $) 261 (-4099 (|has| |#2| (-1063)) (|has| |#1| (-339))))) (-4114 (((-108) $) 248 (-4099 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-1349 (($ $ (-852)) 101)) (-3735 (($ (-1 |#1| (-523)) $) 173)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 160 (|has| |#1| (-339)))) (-2620 (((-108) $) 62)) (-1933 (($ |#1| (-523)) 61) (($ $ (-1001) (-523)) 76) (($ $ (-589 (-1001)) (-589 (-523))) 75)) (-2454 (($ $ $) 251 (-4099 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-2062 (($ $ $) 252 (-4099 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3612 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-339)))) (-2384 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3244 (($ (-589 $)) 149 (|has| |#1| (-339))) (($ $ $) 148 (|has| |#1| (-339)))) (-2028 (($ (-523) |#2|) 268)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 165 (|has| |#1| (-339)))) (-3417 (($ $) 170 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 169 (-3262 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1108)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-2262 (($) 262 (-4099 (|has| |#2| (-1063)) (|has| |#1| (-339))) CONST)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 150 (|has| |#1| (-339)))) (-3278 (($ (-589 $)) 147 (|has| |#1| (-339))) (($ $ $) 146 (|has| |#1| (-339)))) (-2206 (($ $) 232 (-4099 (|has| |#2| (-284)) (|has| |#1| (-339))))) (-3722 ((|#2| $) 235 (-4099 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-1219 (((-394 (-1083 $)) (-1083 $)) 238 (-4099 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-3967 (((-394 (-1083 $)) (-1083 $)) 239 (-4099 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-1820 (((-394 $) $) 161 (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 158 (|has| |#1| (-339)))) (-4097 (($ $ (-523)) 95)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 152 (|has| |#1| (-339)))) (-1811 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-523))))) (($ $ (-1087) |#2|) 212 (-4099 (|has| |#2| (-484 (-1087) |#2|)) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 |#2|)) 211 (-4099 (|has| |#2| (-484 (-1087) |#2|)) (|has| |#1| (-339)))) (($ $ (-589 (-271 |#2|))) 210 (-4099 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ (-271 |#2|)) 209 (-4099 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ |#2| |#2|) 208 (-4099 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ (-589 |#2|) (-589 |#2|)) 207 (-4099 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339))))) (-1972 (((-710) $) 154 (|has| |#1| (-339)))) (-3223 ((|#1| $ (-523)) 104) (($ $ $) 81 (|has| (-523) (-1028))) (($ $ |#2|) 206 (-4099 (|has| |#2| (-263 |#2| |#2|)) (|has| |#1| (-339))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 155 (|has| |#1| (-339)))) (-3523 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-339))) (($ $ (-1 |#2| |#2|) (-710)) 216 (|has| |#1| (-339))) (($ $ (-710)) 84 (-3262 (-4099 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 82 (-3262 (-4099 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) 89 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-1087) (-710)) 88 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-589 (-1087))) 87 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-1087)) 86 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))))) (-3414 (($ $) 230 (|has| |#1| (-339)))) (-2797 ((|#2| $) 228 (|has| |#1| (-339)))) (-2299 (((-523) $) 64)) (-1805 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-3663 (((-203) $) 246 (-4099 (|has| |#2| (-949)) (|has| |#1| (-339)))) (((-355) $) 245 (-4099 (|has| |#2| (-949)) (|has| |#1| (-339)))) (((-499) $) 244 (-4099 (|has| |#2| (-564 (-499))) (|has| |#1| (-339)))) (((-823 (-355)) $) 223 (-4099 (|has| |#2| (-564 (-823 (-355)))) (|has| |#1| (-339)))) (((-823 (-523)) $) 222 (-4099 (|has| |#2| (-564 (-823 (-523)))) (|has| |#1| (-339))))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 236 (-4099 (-4099 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#1| (-339))))) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 47 (|has| |#1| (-158))) (($ |#2|) 271) (($ (-1087)) 241 (-4099 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339)))) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515)))) (-2365 ((|#1| $ (-523)) 59)) (-3901 (((-3 $ "failed") $) 48 (-3262 (-4099 (-3262 (|has| |#2| (-134)) (-4099 (|has| $ (-134)) (|has| |#2| (-840)))) (|has| |#1| (-339))) (|has| |#1| (-134))))) (-1621 (((-710)) 29)) (-1288 ((|#1| $) 102)) (-1886 ((|#2| $) 234 (-4099 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-1839 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-1818 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-523)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2619 (($ $) 250 (-4099 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 166 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-339))) (($ $ (-1 |#2| |#2|) (-710)) 214 (|has| |#1| (-339))) (($ $ (-710)) 85 (-3262 (-4099 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 83 (-3262 (-4099 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) 93 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-1087) (-710)) 92 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-589 (-1087))) 91 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-1087)) 90 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))))) (-4043 (((-108) $ $) 254 (-4099 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4019 (((-108) $ $) 255 (-4099 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 253 (-4099 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4007 (((-108) $ $) 256 (-4099 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339))) (($ $ $) 168 (|has| |#1| (-339))) (($ |#2| |#2|) 226 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 167 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-339))) (($ |#2| $) 204 (|has| |#1| (-339))) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) -(((-1130 |#1| |#2|) (-129) (-973) (-1159 |t#1|)) (T -1130)) -((-2299 (*1 *2 *1) (-12 (-4 *1 (-1130 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1159 *3)) (-5 *2 (-523)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *1 (-1130 *3 *2)) (-4 *2 (-1159 *3)))) (-2028 (*1 *1 *2 *3) (-12 (-5 *2 (-523)) (-4 *4 (-973)) (-4 *1 (-1130 *4 *3)) (-4 *3 (-1159 *4)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1159 *3)))) (-1819 (*1 *1 *1) (-12 (-4 *1 (-1130 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1159 *2)))) (-1819 (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-4 *1 (-1130 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1159 *3)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1159 *3)))) (-3989 (*1 *2 *1) (|partial| -12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1159 *3))))) -(-13 (-1128 |t#1|) (-964 |t#2|) (-10 -8 (-15 -2028 ($ (-523) |t#2|)) (-15 -2299 ((-523) $)) (-15 -3951 (|t#2| $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)) (-15 -1458 ($ |t#2|)) (-15 -2015 (|t#2| $)) (-15 -3989 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-339)) (-6 (-921 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-523)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-37 |#1|) |has| |#1| (-158)) ((-37 |#2|) |has| |#1| (-339)) ((-37 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-339)) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) -3262 (-12 (|has| |#1| (-339)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-136) -3262 (-12 (|has| |#1| (-339)) (|has| |#2| (-136))) (|has| |#1| (-136))) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-564 (-203)) -12 (|has| |#1| (-339)) (|has| |#2| (-949))) ((-564 (-355)) -12 (|has| |#1| (-339)) (|has| |#2| (-949))) ((-564 (-499)) -12 (|has| |#1| (-339)) (|has| |#2| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| |#1| (-339)) (|has| |#2| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| |#1| (-339)) (|has| |#2| (-564 (-823 (-523))))) ((-209 |#2|) |has| |#1| (-339)) ((-211) -3262 (-12 (|has| |#1| (-339)) (|has| |#2| (-211))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))) ((-221) |has| |#1| (-339)) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 |#2| $) -12 (|has| |#1| (-339)) (|has| |#2| (-263 |#2| |#2|))) ((-263 $ $) |has| (-523) (-1028)) ((-267) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-286 |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-286 |#2|))) ((-339) |has| |#1| (-339)) ((-314 |#2|) |has| |#1| (-339)) ((-353 |#2|) |has| |#1| (-339)) ((-376 |#2|) |has| |#1| (-339)) ((-427) |has| |#1| (-339)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-484 (-1087) |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-484 (-1087) |#2|))) ((-484 |#2| |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-286 |#2|))) ((-515) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-591 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-591 |#1|) . T) ((-591 |#2|) |has| |#1| (-339)) ((-591 $) . T) ((-585 (-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-585 (-523)))) ((-585 |#2|) |has| |#1| (-339)) ((-657 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-657 |#1|) |has| |#1| (-158)) ((-657 |#2|) |has| |#1| (-339)) ((-657 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-666) . T) ((-730) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-731) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-733) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-734) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-759) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-784) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-786) -3262 (-12 (|has| |#1| (-339)) (|has| |#2| (-786))) (-12 (|has| |#1| (-339)) (|has| |#2| (-759)))) ((-831 (-1087)) -3262 (-12 (|has| |#1| (-339)) (|has| |#2| (-831 (-1087)))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) ((-817 (-355)) -12 (|has| |#1| (-339)) (|has| |#2| (-817 (-355)))) ((-817 (-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-817 (-523)))) ((-815 |#2|) |has| |#1| (-339)) ((-840) -12 (|has| |#1| (-339)) (|has| |#2| (-840))) ((-902 |#1| #0# (-1001)) . T) ((-851) |has| |#1| (-339)) ((-921 |#2|) |has| |#1| (-339)) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-949) -12 (|has| |#1| (-339)) (|has| |#2| (-949))) ((-964 (-383 (-523))) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-523)))) ((-964 (-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-523)))) ((-964 (-1087)) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-1087)))) ((-964 |#2|) . T) ((-979 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-979 |#1|) . T) ((-979 |#2|) |has| |#1| (-339)) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) -12 (|has| |#1| (-339)) (|has| |#2| (-1063))) ((-1108) |has| |#1| (-37 (-383 (-523)))) ((-1111) |has| |#1| (-37 (-383 (-523)))) ((-1122) |has| |#1| (-339)) ((-1126) |has| |#1| (-339)) ((-1128 |#1|) . T) ((-1146 |#1| #0#) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 70)) (-3458 ((|#2| $) NIL (-12 (|has| |#2| (-284)) (|has| |#1| (-339))))) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 88)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-523)) 97) (($ $ (-523) (-523)) 99)) (-2133 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 47)) (-3951 ((|#2| $) 11)) (-3989 (((-3 |#2| "failed") $) 30)) (-2015 ((|#2| $) 31)) (-1769 (($ $) 192 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 168 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) 188 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 164 (|has| |#1| (-37 (-383 (-523)))))) (-3671 (((-523) $) NIL (-12 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2417 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 57)) (-1793 (($ $) 196 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 172 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) 144) (((-3 (-523) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-1087) "failed") $) NIL (-12 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339))))) (-3474 ((|#2| $) 143) (((-523) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-383 (-523)) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-1087) $) NIL (-12 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339))))) (-1819 (($ $) 61) (($ (-523) $) 24)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2381 (((-629 |#2|) (-629 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#1| (-339)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#1| (-339))))) (-2121 (((-3 $ "failed") $) 77)) (-3289 (((-383 (-883 |#1|)) $ (-523)) 112 (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) 114 (|has| |#1| (-515)))) (-4032 (($) NIL (-12 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2604 (((-108) $) NIL (-12 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2003 (((-108) $) 64)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| |#2| (-817 (-355))) (|has| |#1| (-339)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| |#2| (-817 (-523))) (|has| |#1| (-339))))) (-1640 (((-523) $) 93) (((-523) $ (-523)) 95)) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL (|has| |#1| (-339)))) (-2785 ((|#2| $) 151 (|has| |#1| (-339)))) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4058 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1063)) (|has| |#1| (-339))))) (-4114 (((-108) $) NIL (-12 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-1349 (($ $ (-852)) 136)) (-3735 (($ (-1 |#1| (-523)) $) 132)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-523)) 19) (($ $ (-1001) (-523)) NIL) (($ $ (-589 (-1001)) (-589 (-523))) NIL)) (-2454 (($ $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-2062 (($ $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3612 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-339)))) (-2384 (($ $) 162 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2028 (($ (-523) |#2|) 10)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 145 (|has| |#1| (-339)))) (-3417 (($ $) 214 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 219 (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108)))))) (-2262 (($) NIL (-12 (|has| |#2| (-1063)) (|has| |#1| (-339))) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2206 (($ $) NIL (-12 (|has| |#2| (-284)) (|has| |#1| (-339))))) (-3722 ((|#2| $) NIL (-12 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-523)) 126)) (-3746 (((-3 $ "failed") $ $) 116 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) 160 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-523))))) (($ $ (-1087) |#2|) NIL (-12 (|has| |#2| (-484 (-1087) |#2|)) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 |#2|)) NIL (-12 (|has| |#2| (-484 (-1087) |#2|)) (|has| |#1| (-339)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-523)) 91) (($ $ $) 79 (|has| (-523) (-1028))) (($ $ |#2|) NIL (-12 (|has| |#2| (-263 |#2| |#2|)) (|has| |#1| (-339))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-339))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#1| (-339))) (($ $ (-710)) NIL (-3262 (-12 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 137 (-3262 (-12 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) 140 (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-3414 (($ $) NIL (|has| |#1| (-339)))) (-2797 ((|#2| $) 152 (|has| |#1| (-339)))) (-2299 (((-523) $) 12)) (-1805 (($ $) 198 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 174 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 194 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 170 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 190 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 166 (|has| |#1| (-37 (-383 (-523)))))) (-3663 (((-203) $) NIL (-12 (|has| |#2| (-949)) (|has| |#1| (-339)))) (((-355) $) NIL (-12 (|has| |#2| (-949)) (|has| |#1| (-339)))) (((-499) $) NIL (-12 (|has| |#2| (-564 (-499))) (|has| |#1| (-339)))) (((-823 (-355)) $) NIL (-12 (|has| |#2| (-564 (-823 (-355)))) (|has| |#1| (-339)))) (((-823 (-523)) $) NIL (-12 (|has| |#2| (-564 (-823 (-523)))) (|has| |#1| (-339))))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840)) (|has| |#1| (-339))))) (-1353 (($ $) 124)) (-1458 (((-794) $) 243) (($ (-523)) 23) (($ |#1|) 21 (|has| |#1| (-158))) (($ |#2|) 20) (($ (-1087)) NIL (-12 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339)))) (($ (-383 (-523))) 155 (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2365 ((|#1| $ (-523)) 74)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840)) (|has| |#1| (-339))) (-12 (|has| |#2| (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))))) (-1621 (((-710)) 142)) (-1288 ((|#1| $) 90)) (-1886 ((|#2| $) NIL (-12 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-1839 (($ $) 204 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 180 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) 200 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 176 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 208 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 184 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-523)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 210 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 186 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 206 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 182 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 202 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 178 (|has| |#1| (-37 (-383 (-523)))))) (-2619 (($ $) NIL (-12 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 13 T CONST)) (-2767 (($) 17 T CONST)) (-2862 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-339))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#1| (-339))) (($ $ (-710)) NIL (-3262 (-12 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) NIL (-3262 (-12 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-4043 (((-108) $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4019 (((-108) $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3983 (((-108) $ $) 63)) (-4030 (((-108) $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4007 (((-108) $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) 149 (|has| |#1| (-339))) (($ |#2| |#2|) 150 (|has| |#1| (-339)))) (-4087 (($ $) 213) (($ $ $) 68)) (-4075 (($ $ $) 66)) (** (($ $ (-852)) NIL) (($ $ (-710)) 73) (($ $ (-523)) 146 (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-339))) (($ |#2| $) 147 (|has| |#1| (-339))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-1131 |#1| |#2|) (-1130 |#1| |#2|) (-973) (-1159 |#1|)) (T -1131)) -NIL -(-1130 |#1| |#2|) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-1160 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-284)) (|has| |#1| (-339))))) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 10)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3345 (($ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3331 (((-108) $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3984 (($ $ (-523)) NIL) (($ $ (-523) (-523)) NIL)) (-2133 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) NIL)) (-3951 (((-1160 |#1| |#2| |#3|) $) NIL)) (-3989 (((-3 (-1160 |#1| |#2| |#3|) "failed") $) NIL)) (-2015 (((-1160 |#1| |#2| |#3|) $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3671 (((-523) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2417 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-1160 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-523) "failed") $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))))) (-3474 (((-1160 |#1| |#2| |#3|) $) NIL) (((-1087) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (((-383 (-523)) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339)))) (((-523) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))))) (-1819 (($ $) NIL) (($ (-523) $) NIL)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-1160 |#1| |#2| |#3|)) (-629 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 (-1160 |#1| |#2| |#3|))) (|:| |vec| (-1168 (-1160 |#1| |#2| |#3|)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-585 (-523))) (|has| |#1| (-339)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-585 (-523))) (|has| |#1| (-339))))) (-2121 (((-3 $ "failed") $) NIL)) (-3289 (((-383 (-883 |#1|)) $ (-523)) NIL (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) NIL (|has| |#1| (-515)))) (-4032 (($) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2604 (((-108) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-817 (-523))) (|has| |#1| (-339)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-817 (-355))) (|has| |#1| (-339))))) (-1640 (((-523) $) NIL) (((-523) $ (-523)) NIL)) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL (|has| |#1| (-339)))) (-2785 (((-1160 |#1| |#2| |#3|) $) NIL (|has| |#1| (-339)))) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4058 (((-3 $ "failed") $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-1063)) (|has| |#1| (-339))))) (-4114 (((-108) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-1349 (($ $ (-852)) NIL)) (-3735 (($ (-1 |#1| (-523)) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-523)) 17) (($ $ (-1001) (-523)) NIL) (($ $ (-589 (-1001)) (-589 (-523))) NIL)) (-2454 (($ $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-2062 (($ $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-339)))) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2028 (($ (-523) (-1160 |#1| |#2| |#3|)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3417 (($ $) 25 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 26 (|has| |#1| (-37 (-383 (-523)))))) (-2262 (($) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-1063)) (|has| |#1| (-339))) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2206 (($ $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-284)) (|has| |#1| (-339))))) (-3722 (((-1160 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-523)) NIL)) (-3746 (((-3 $ "failed") $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-523))))) (($ $ (-1087) (-1160 |#1| |#2| |#3|)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-484 (-1087) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 (-1160 |#1| |#2| |#3|))) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-484 (-1087) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-271 (-1160 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-286 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-271 (-1160 |#1| |#2| |#3|))) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-286 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-286 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-1160 |#1| |#2| |#3|)) (-589 (-1160 |#1| |#2| |#3|))) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-286 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-523)) NIL) (($ $ $) NIL (|has| (-523) (-1028))) (($ $ (-1160 |#1| |#2| |#3|)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-263 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) NIL (|has| |#1| (-339))) (($ $ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) (-710)) NIL (|has| |#1| (-339))) (($ $ (-1164 |#2|)) 24) (($ $ (-710)) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 23 (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-3414 (($ $) NIL (|has| |#1| (-339)))) (-2797 (((-1160 |#1| |#2| |#3|) $) NIL (|has| |#1| (-339)))) (-2299 (((-523) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3663 (((-499) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-564 (-499))) (|has| |#1| (-339)))) (((-355) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-949)) (|has| |#1| (-339)))) (((-203) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-949)) (|has| |#1| (-339)))) (((-823 (-355)) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-564 (-823 (-355)))) (|has| |#1| (-339)))) (((-823 (-523)) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-564 (-823 (-523)))) (|has| |#1| (-339))))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1160 |#1| |#2| |#3|)) NIL) (($ (-1164 |#2|)) 22) (($ (-1087)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (($ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515)))) (($ (-383 (-523))) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))) (|has| |#1| (-37 (-383 (-523))))))) (-2365 ((|#1| $ (-523)) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 11)) (-1886 (((-1160 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-523)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2619 (($ $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 19 T CONST)) (-2767 (($) 15 T CONST)) (-2862 (($ $ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) NIL (|has| |#1| (-339))) (($ $ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) (-710)) NIL (|has| |#1| (-339))) (($ $ (-710)) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-4043 (((-108) $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4019 (((-108) $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4007 (((-108) $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339))) (($ (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 20)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1160 |#1| |#2| |#3|)) NIL (|has| |#1| (-339))) (($ (-1160 |#1| |#2| |#3|) $) NIL (|has| |#1| (-339))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-1132 |#1| |#2| |#3|) (-13 (-1130 |#1| (-1160 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1132)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) -(-13 (-1130 |#1| (-1160 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) -((-2550 (((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108)) 10)) (-3906 (((-394 |#1|) |#1|) 21)) (-1820 (((-394 |#1|) |#1|) 20))) -(((-1133 |#1|) (-10 -7 (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3906 ((-394 |#1|) |#1|)) (-15 -2550 ((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108)))) (-1144 (-523))) (T -1133)) -((-2550 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) (-5 *1 (-1133 *3)) (-4 *3 (-1144 (-523))))) (-3906 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1144 (-523))))) (-1820 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1144 (-523)))))) -(-10 -7 (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3906 ((-394 |#1|) |#1|)) (-15 -2550 ((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108)))) -((-3612 (((-1068 |#2|) (-1 |#2| |#1|) (-1135 |#1|)) 23 (|has| |#1| (-784))) (((-1135 |#2|) (-1 |#2| |#1|) (-1135 |#1|)) 17))) -(((-1134 |#1| |#2|) (-10 -7 (-15 -3612 ((-1135 |#2|) (-1 |#2| |#1|) (-1135 |#1|))) (IF (|has| |#1| (-784)) (-15 -3612 ((-1068 |#2|) (-1 |#2| |#1|) (-1135 |#1|))) |%noBranch|)) (-1122) (-1122)) (T -1134)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-784)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1068 *6)) (-5 *1 (-1134 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1135 *6)) (-5 *1 (-1134 *5 *6))))) -(-10 -7 (-15 -3612 ((-1135 |#2|) (-1 |#2| |#1|) (-1135 |#1|))) (IF (|has| |#1| (-784)) (-15 -3612 ((-1068 |#2|) (-1 |#2| |#1|) (-1135 |#1|))) |%noBranch|)) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2644 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3612 (((-1068 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-784)))) (-2279 ((|#1| $) 14)) (-3519 ((|#1| $) 10)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3530 (((-523) $) 18)) (-2566 ((|#1| $) 17)) (-3539 ((|#1| $) 11)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2231 (((-108) $) 16)) (-3686 (((-1068 |#1|) $) 38 (|has| |#1| (-784))) (((-1068 |#1|) (-589 $)) 37 (|has| |#1| (-784)))) (-3663 (($ |#1|) 25)) (-1458 (($ (-1011 |#1|)) 24) (((-794) $) 34 (|has| |#1| (-1016)))) (-3410 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3763 (($ $ (-523)) 13)) (-3983 (((-108) $ $) 27 (|has| |#1| (-1016))))) -(((-1135 |#1|) (-13 (-1010 |#1|) (-10 -8 (-15 -3410 ($ |#1|)) (-15 -2644 ($ |#1|)) (-15 -1458 ($ (-1011 |#1|))) (-15 -2231 ((-108) $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-1012 |#1| (-1068 |#1|))) |%noBranch|))) (-1122)) (T -1135)) -((-3410 (*1 *1 *2) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1122)))) (-2644 (*1 *1 *2) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1122)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1011 *3)) (-4 *3 (-1122)) (-5 *1 (-1135 *3)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1135 *3)) (-4 *3 (-1122))))) -(-13 (-1010 |#1|) (-10 -8 (-15 -3410 ($ |#1|)) (-15 -2644 ($ |#1|)) (-15 -1458 ($ (-1011 |#1|))) (-15 -2231 ((-108) $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-1012 |#1| (-1068 |#1|))) |%noBranch|))) -((-3612 (((-1141 |#3| |#4|) (-1 |#4| |#2|) (-1141 |#1| |#2|)) 15))) -(((-1136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 ((-1141 |#3| |#4|) (-1 |#4| |#2|) (-1141 |#1| |#2|)))) (-1087) (-973) (-1087) (-973)) (T -1136)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1141 *5 *6)) (-14 *5 (-1087)) (-4 *6 (-973)) (-4 *8 (-973)) (-5 *2 (-1141 *7 *8)) (-5 *1 (-1136 *5 *6 *7 *8)) (-14 *7 (-1087))))) -(-10 -7 (-15 -3612 ((-1141 |#3| |#4|) (-1 |#4| |#2|) (-1141 |#1| |#2|)))) -((-1199 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3616 ((|#1| |#3|) 13)) (-3604 ((|#3| |#3|) 19))) -(((-1137 |#1| |#2| |#3|) (-10 -7 (-15 -3616 (|#1| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -1199 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-515) (-921 |#1|) (-1144 |#2|)) (T -1137)) -((-1199 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1137 *4 *5 *3)) (-4 *3 (-1144 *5)))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-515)) (-4 *4 (-921 *3)) (-5 *1 (-1137 *3 *4 *2)) (-4 *2 (-1144 *4)))) (-3616 (*1 *2 *3) (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-1137 *2 *4 *3)) (-4 *3 (-1144 *4))))) -(-10 -7 (-15 -3616 (|#1| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -1199 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2498 (((-3 |#2| "failed") |#2| (-710) |#1|) 29)) (-2099 (((-3 |#2| "failed") |#2| (-710)) 30)) (-1897 (((-3 (-2 (|:| -3149 |#2|) (|:| -3159 |#2|)) "failed") |#2|) 43)) (-3772 (((-589 |#2|) |#2|) 45)) (-3103 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1138 |#1| |#2|) (-10 -7 (-15 -2099 ((-3 |#2| "failed") |#2| (-710))) (-15 -2498 ((-3 |#2| "failed") |#2| (-710) |#1|)) (-15 -3103 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1897 ((-3 (-2 (|:| -3149 |#2|) (|:| -3159 |#2|)) "failed") |#2|)) (-15 -3772 ((-589 |#2|) |#2|))) (-13 (-515) (-136)) (-1144 |#1|)) (T -1138)) -((-3772 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-136))) (-5 *2 (-589 *3)) (-5 *1 (-1138 *4 *3)) (-4 *3 (-1144 *4)))) (-1897 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-515) (-136))) (-5 *2 (-2 (|:| -3149 *3) (|:| -3159 *3))) (-5 *1 (-1138 *4 *3)) (-4 *3 (-1144 *4)))) (-3103 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1144 *3)))) (-2498 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-710)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-1138 *4 *2)) (-4 *2 (-1144 *4)))) (-2099 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-710)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-1138 *4 *2)) (-4 *2 (-1144 *4))))) -(-10 -7 (-15 -2099 ((-3 |#2| "failed") |#2| (-710))) (-15 -2498 ((-3 |#2| "failed") |#2| (-710) |#1|)) (-15 -3103 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1897 ((-3 (-2 (|:| -3149 |#2|) (|:| -3159 |#2|)) "failed") |#2|)) (-15 -3772 ((-589 |#2|) |#2|))) -((-3336 (((-3 (-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) "failed") |#2| |#2|) 32))) -(((-1139 |#1| |#2|) (-10 -7 (-15 -3336 ((-3 (-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) "failed") |#2| |#2|))) (-515) (-1144 |#1|)) (T -1139)) -((-3336 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-515)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-1139 *4 *3)) (-4 *3 (-1144 *4))))) -(-10 -7 (-15 -3336 ((-3 (-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) "failed") |#2| |#2|))) -((-2796 ((|#2| |#2| |#2|) 19)) (-4153 ((|#2| |#2| |#2|) 30)) (-2798 ((|#2| |#2| |#2| (-710) (-710)) 36))) -(((-1140 |#1| |#2|) (-10 -7 (-15 -2796 (|#2| |#2| |#2|)) (-15 -4153 (|#2| |#2| |#2|)) (-15 -2798 (|#2| |#2| |#2| (-710) (-710)))) (-973) (-1144 |#1|)) (T -1140)) -((-2798 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-5 *1 (-1140 *4 *2)) (-4 *2 (-1144 *4)))) (-4153 (*1 *2 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-1144 *3)))) (-2796 (*1 *2 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-1144 *3))))) -(-10 -7 (-15 -2796 (|#2| |#2| |#2|)) (-15 -4153 (|#2| |#2| |#2|)) (-15 -2798 (|#2| |#2| |#2| (-710) (-710)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2854 (((-1168 |#2|) $ (-710)) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-3131 (($ (-1083 |#2|)) NIL)) (-1786 (((-1083 $) $ (-1001)) NIL) (((-1083 |#2|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3345 (($ $) NIL (|has| |#2| (-515)))) (-3331 (((-108) $) NIL (|has| |#2| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1001))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2407 (($ $ $) NIL (|has| |#2| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2291 (($ $) NIL (|has| |#2| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1387 (((-108) $ $) NIL (|has| |#2| (-339)))) (-2692 (($ $ (-710)) NIL)) (-2482 (($ $ (-710)) NIL)) (-3444 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-427)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-1001) "failed") $) NIL)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-1001) $) NIL)) (-3078 (($ $ $ (-1001)) NIL (|has| |#2| (-158))) ((|#2| $ $) NIL (|has| |#2| (-158)))) (-3796 (($ $ $) NIL (|has| |#2| (-339)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL (|has| |#2| (-339)))) (-3666 (($ $ $) NIL)) (-2349 (($ $ $) NIL (|has| |#2| (-515)))) (-2815 (((-2 (|:| -2935 |#2|) (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#2| (-339)))) (-2528 (($ $) NIL (|has| |#2| (-427))) (($ $ (-1001)) NIL (|has| |#2| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#2| (-840)))) (-1284 (($ $ |#2| (-710) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1001) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1001) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-1640 (((-710) $ $) NIL (|has| |#2| (-515)))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| |#2| (-1063)))) (-1945 (($ (-1083 |#2|) (-1001)) NIL) (($ (-1083 $) (-1001)) NIL)) (-1349 (($ $ (-710)) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#2| (-339)))) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#2| (-710)) 17) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1001)) NIL) (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1575 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-2454 (($ $ $) NIL (|has| |#2| (-786)))) (-2062 (($ $ $) NIL (|has| |#2| (-786)))) (-3782 (($ (-1 (-710) (-710)) $) NIL)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2180 (((-1083 |#2|) $) NIL)) (-2520 (((-3 (-1001) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#2| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-3779 (((-1070) $) NIL)) (-2150 (((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710)) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-1001)) (|:| -2735 (-710))) "failed") $) NIL)) (-3417 (($ $) NIL (|has| |#2| (-37 (-383 (-523)))))) (-2262 (($) NIL (|has| |#2| (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#2| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-4034 (($ $ (-710) |#2| $) NIL)) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#2| (-840)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#2| (-339)))) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#2| (-339)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#2|) NIL) (($ $ (-589 (-1001)) (-589 |#2|)) NIL) (($ $ (-1001) $) NIL) (($ $ (-589 (-1001)) (-589 $)) NIL)) (-1972 (((-710) $) NIL (|has| |#2| (-339)))) (-3223 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-383 $) (-383 $) (-383 $)) NIL (|has| |#2| (-515))) ((|#2| (-383 $) |#2|) NIL (|has| |#2| (-339))) (((-383 $) $ (-383 $)) NIL (|has| |#2| (-515)))) (-3255 (((-3 $ "failed") $ (-710)) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-339)))) (-3549 (($ $ (-1001)) NIL (|has| |#2| (-158))) ((|#2| $) NIL (|has| |#2| (-158)))) (-3523 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2299 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1001) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-2438 ((|#2| $) NIL (|has| |#2| (-427))) (($ $ (-1001)) NIL (|has| |#2| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1260 (((-3 $ "failed") $ $) NIL (|has| |#2| (-515))) (((-3 (-383 $) "failed") (-383 $) $) NIL (|has| |#2| (-515)))) (-1458 (((-794) $) 13) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-1001)) NIL) (($ (-1164 |#1|)) 19) (($ (-383 (-523))) NIL (-3262 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#2| (-515)))) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-710)) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) 14 T CONST)) (-2862 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1141 |#1| |#2|) (-13 (-1144 |#2|) (-10 -8 (-15 -1458 ($ (-1164 |#1|))) (-15 -4034 ($ $ (-710) |#2| $)))) (-1087) (-973)) (T -1141)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-14 *3 (-1087)) (-5 *1 (-1141 *3 *4)) (-4 *4 (-973)))) (-4034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1141 *4 *3)) (-14 *4 (-1087)) (-4 *3 (-973))))) -(-13 (-1144 |#2|) (-10 -8 (-15 -1458 ($ (-1164 |#1|))) (-15 -4034 ($ $ (-710) |#2| $)))) -((-3612 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-1142 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|))) (-973) (-1144 |#1|) (-973) (-1144 |#3|)) (T -1142)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-4 *2 (-1144 *6)) (-5 *1 (-1142 *5 *4 *6 *2)) (-4 *4 (-1144 *5))))) -(-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|))) -((-2854 (((-1168 |#2|) $ (-710)) 113)) (-1957 (((-589 (-1001)) $) 15)) (-3131 (($ (-1083 |#2|)) 66)) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1001))) 18)) (-3156 (((-394 (-1083 $)) (-1083 $)) 184)) (-2291 (($ $) 174)) (-3614 (((-394 $) $) 172)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 81)) (-2692 (($ $ (-710)) 70)) (-2482 (($ $ (-710)) 72)) (-3444 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-3517 (((-3 |#2| "failed") $) 116) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 (-1001) "failed") $) NIL)) (-3474 ((|#2| $) 114) (((-383 (-523)) $) NIL) (((-523) $) NIL) (((-1001) $) NIL)) (-2349 (($ $ $) 150)) (-2815 (((-2 (|:| -2935 |#2|) (|:| -3445 $) (|:| -3282 $)) $ $) 152)) (-1640 (((-710) $ $) 169)) (-4058 (((-3 $ "failed") $) 122)) (-1933 (($ |#2| (-710)) NIL) (($ $ (-1001) (-710)) 46) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-1575 (((-710) $) NIL) (((-710) $ (-1001)) 41) (((-589 (-710)) $ (-589 (-1001))) 42)) (-2180 (((-1083 |#2|) $) 58)) (-2520 (((-3 (-1001) "failed") $) 39)) (-2150 (((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710)) 69)) (-3417 (($ $) 195)) (-2262 (($) 118)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 181)) (-1219 (((-394 (-1083 $)) (-1083 $)) 87)) (-3967 (((-394 (-1083 $)) (-1083 $)) 85)) (-1820 (((-394 $) $) 105)) (-2679 (($ $ (-589 (-271 $))) 38) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#2|) 31) (($ $ (-589 (-1001)) (-589 |#2|)) 28) (($ $ (-1001) $) 25) (($ $ (-589 (-1001)) (-589 $)) 23)) (-1972 (((-710) $) 187)) (-3223 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-383 $) (-383 $) (-383 $)) 146) ((|#2| (-383 $) |#2|) 186) (((-383 $) $ (-383 $)) 168)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 190)) (-3523 (($ $ (-1001)) 139) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) 137) (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-2299 (((-710) $) NIL) (((-710) $ (-1001)) 16) (((-589 (-710)) $ (-589 (-1001))) 20)) (-2438 ((|#2| $) NIL) (($ $ (-1001)) 124)) (-1260 (((-3 $ "failed") $ $) 160) (((-3 (-383 $) "failed") (-383 $) $) 156)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-1001)) 50) (($ (-383 (-523))) NIL) (($ $) NIL))) -(((-1143 |#1| |#2|) (-10 -8 (-15 -1458 (|#1| |#1|)) (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -3223 ((-383 |#1|) |#1| (-383 |#1|))) (-15 -1972 ((-710) |#1|)) (-15 -3462 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3417 (|#1| |#1|)) (-15 -3223 (|#2| (-383 |#1|) |#2|)) (-15 -3444 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2815 ((-2 (|:| -2935 |#2|) (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -1260 ((-3 (-383 |#1|) "failed") (-383 |#1|) |#1|)) (-15 -1260 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1640 ((-710) |#1| |#1|)) (-15 -3223 ((-383 |#1|) (-383 |#1|) (-383 |#1|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2482 (|#1| |#1| (-710))) (-15 -2692 (|#1| |#1| (-710))) (-15 -2150 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| (-710))) (-15 -3131 (|#1| (-1083 |#2|))) (-15 -2180 ((-1083 |#2|) |#1|)) (-15 -2854 ((-1168 |#2|) |#1| (-710))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3223 (|#1| |#1| |#1|)) (-15 -3223 (|#2| |#1| |#2|)) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3156 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3967 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1219 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -2438 (|#1| |#1| (-1001))) (-15 -1957 ((-589 (-1001)) |#1|)) (-15 -3893 ((-710) |#1| (-589 (-1001)))) (-15 -3893 ((-710) |#1|)) (-15 -1933 (|#1| |#1| (-589 (-1001)) (-589 (-710)))) (-15 -1933 (|#1| |#1| (-1001) (-710))) (-15 -1575 ((-589 (-710)) |#1| (-589 (-1001)))) (-15 -1575 ((-710) |#1| (-1001))) (-15 -2520 ((-3 (-1001) "failed") |#1|)) (-15 -2299 ((-589 (-710)) |#1| (-589 (-1001)))) (-15 -2299 ((-710) |#1| (-1001))) (-15 -3474 ((-1001) |#1|)) (-15 -3517 ((-3 (-1001) "failed") |#1|)) (-15 -1458 (|#1| (-1001))) (-15 -2679 (|#1| |#1| (-589 (-1001)) (-589 |#1|))) (-15 -2679 (|#1| |#1| (-1001) |#1|)) (-15 -2679 (|#1| |#1| (-589 (-1001)) (-589 |#2|))) (-15 -2679 (|#1| |#1| (-1001) |#2|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2299 ((-710) |#1|)) (-15 -1933 (|#1| |#2| (-710))) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -1575 ((-710) |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -3523 (|#1| |#1| (-589 (-1001)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1001) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1001)))) (-15 -3523 (|#1| |#1| (-1001))) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-1144 |#2|) (-973)) (T -1143)) -NIL -(-10 -8 (-15 -1458 (|#1| |#1|)) (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -3223 ((-383 |#1|) |#1| (-383 |#1|))) (-15 -1972 ((-710) |#1|)) (-15 -3462 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3417 (|#1| |#1|)) (-15 -3223 (|#2| (-383 |#1|) |#2|)) (-15 -3444 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2815 ((-2 (|:| -2935 |#2|) (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -1260 ((-3 (-383 |#1|) "failed") (-383 |#1|) |#1|)) (-15 -1260 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1640 ((-710) |#1| |#1|)) (-15 -3223 ((-383 |#1|) (-383 |#1|) (-383 |#1|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2482 (|#1| |#1| (-710))) (-15 -2692 (|#1| |#1| (-710))) (-15 -2150 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| (-710))) (-15 -3131 (|#1| (-1083 |#2|))) (-15 -2180 ((-1083 |#2|) |#1|)) (-15 -2854 ((-1168 |#2|) |#1| (-710))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3223 (|#1| |#1| |#1|)) (-15 -3223 (|#2| |#1| |#2|)) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3156 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3967 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1219 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -2438 (|#1| |#1| (-1001))) (-15 -1957 ((-589 (-1001)) |#1|)) (-15 -3893 ((-710) |#1| (-589 (-1001)))) (-15 -3893 ((-710) |#1|)) (-15 -1933 (|#1| |#1| (-589 (-1001)) (-589 (-710)))) (-15 -1933 (|#1| |#1| (-1001) (-710))) (-15 -1575 ((-589 (-710)) |#1| (-589 (-1001)))) (-15 -1575 ((-710) |#1| (-1001))) (-15 -2520 ((-3 (-1001) "failed") |#1|)) (-15 -2299 ((-589 (-710)) |#1| (-589 (-1001)))) (-15 -2299 ((-710) |#1| (-1001))) (-15 -3474 ((-1001) |#1|)) (-15 -3517 ((-3 (-1001) "failed") |#1|)) (-15 -1458 (|#1| (-1001))) (-15 -2679 (|#1| |#1| (-589 (-1001)) (-589 |#1|))) (-15 -2679 (|#1| |#1| (-1001) |#1|)) (-15 -2679 (|#1| |#1| (-589 (-1001)) (-589 |#2|))) (-15 -2679 (|#1| |#1| (-1001) |#2|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2299 ((-710) |#1|)) (-15 -1933 (|#1| |#2| (-710))) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -1575 ((-710) |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -3523 (|#1| |#1| (-589 (-1001)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1001) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1001)))) (-15 -3523 (|#1| |#1| (-1001))) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2854 (((-1168 |#1|) $ (-710)) 238)) (-1957 (((-589 (-1001)) $) 110)) (-3131 (($ (-1083 |#1|)) 236)) (-1786 (((-1083 $) $ (-1001)) 125) (((-1083 |#1|) $) 124)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 87 (|has| |#1| (-515)))) (-3345 (($ $) 88 (|has| |#1| (-515)))) (-3331 (((-108) $) 90 (|has| |#1| (-515)))) (-3893 (((-710) $) 112) (((-710) $ (-589 (-1001))) 111)) (-3212 (((-3 $ "failed") $ $) 19)) (-2407 (($ $ $) 223 (|has| |#1| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) 100 (|has| |#1| (-840)))) (-2291 (($ $) 98 (|has| |#1| (-427)))) (-3614 (((-394 $) $) 97 (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-840)))) (-1387 (((-108) $ $) 208 (|has| |#1| (-339)))) (-2692 (($ $ (-710)) 231)) (-2482 (($ $ (-710)) 230)) (-3444 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-427)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 164) (((-3 (-383 (-523)) "failed") $) 162 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 160 (|has| |#1| (-964 (-523)))) (((-3 (-1001) "failed") $) 136)) (-3474 ((|#1| $) 165) (((-383 (-523)) $) 161 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 159 (|has| |#1| (-964 (-523)))) (((-1001) $) 135)) (-3078 (($ $ $ (-1001)) 108 (|has| |#1| (-158))) ((|#1| $ $) 226 (|has| |#1| (-158)))) (-3796 (($ $ $) 212 (|has| |#1| (-339)))) (-3810 (($ $) 154)) (-2381 (((-629 (-523)) (-629 $)) 134 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 133 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 132) (((-629 |#1|) (-629 $)) 131)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 211 (|has| |#1| (-339)))) (-3666 (($ $ $) 229)) (-2349 (($ $ $) 220 (|has| |#1| (-515)))) (-2815 (((-2 (|:| -2935 |#1|) (|:| -3445 $) (|:| -3282 $)) $ $) 219 (|has| |#1| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 206 (|has| |#1| (-339)))) (-2528 (($ $) 176 (|has| |#1| (-427))) (($ $ (-1001)) 105 (|has| |#1| (-427)))) (-3799 (((-589 $) $) 109)) (-2657 (((-108) $) 96 (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-710) $) 172)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 84 (-12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 83 (-12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1640 (((-710) $ $) 224 (|has| |#1| (-515)))) (-2023 (((-108) $) 31)) (-3554 (((-710) $) 169)) (-4058 (((-3 $ "failed") $) 204 (|has| |#1| (-1063)))) (-1945 (($ (-1083 |#1|) (-1001)) 117) (($ (-1083 $) (-1001)) 116)) (-1349 (($ $ (-710)) 235)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 215 (|has| |#1| (-339)))) (-3679 (((-589 $) $) 126)) (-2620 (((-108) $) 152)) (-1933 (($ |#1| (-710)) 153) (($ $ (-1001) (-710)) 119) (($ $ (-589 (-1001)) (-589 (-710))) 118)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1001)) 120) (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 233)) (-1575 (((-710) $) 170) (((-710) $ (-1001)) 122) (((-589 (-710)) $ (-589 (-1001))) 121)) (-2454 (($ $ $) 79 (|has| |#1| (-786)))) (-2062 (($ $ $) 78 (|has| |#1| (-786)))) (-3782 (($ (-1 (-710) (-710)) $) 171)) (-3612 (($ (-1 |#1| |#1|) $) 151)) (-2180 (((-1083 |#1|) $) 237)) (-2520 (((-3 (-1001) "failed") $) 123)) (-3774 (($ $) 149)) (-3786 ((|#1| $) 148)) (-3244 (($ (-589 $)) 94 (|has| |#1| (-427))) (($ $ $) 93 (|has| |#1| (-427)))) (-3779 (((-1070) $) 9)) (-2150 (((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710)) 232)) (-3226 (((-3 (-589 $) "failed") $) 114)) (-4006 (((-3 (-589 $) "failed") $) 115)) (-2630 (((-3 (-2 (|:| |var| (-1001)) (|:| -2735 (-710))) "failed") $) 113)) (-3417 (($ $) 216 (|has| |#1| (-37 (-383 (-523)))))) (-2262 (($) 203 (|has| |#1| (-1063)) CONST)) (-2783 (((-1034) $) 10)) (-3749 (((-108) $) 166)) (-3760 ((|#1| $) 167)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 95 (|has| |#1| (-427)))) (-3278 (($ (-589 $)) 92 (|has| |#1| (-427))) (($ $ $) 91 (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 101 (|has| |#1| (-840)))) (-1820 (((-394 $) $) 99 (|has| |#1| (-840)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 213 (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 207 (|has| |#1| (-339)))) (-2679 (($ $ (-589 (-271 $))) 145) (($ $ (-271 $)) 144) (($ $ $ $) 143) (($ $ (-589 $) (-589 $)) 142) (($ $ (-1001) |#1|) 141) (($ $ (-589 (-1001)) (-589 |#1|)) 140) (($ $ (-1001) $) 139) (($ $ (-589 (-1001)) (-589 $)) 138)) (-1972 (((-710) $) 209 (|has| |#1| (-339)))) (-3223 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-383 $) (-383 $) (-383 $)) 225 (|has| |#1| (-515))) ((|#1| (-383 $) |#1|) 217 (|has| |#1| (-339))) (((-383 $) $ (-383 $)) 205 (|has| |#1| (-515)))) (-3255 (((-3 $ "failed") $ (-710)) 234)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 210 (|has| |#1| (-339)))) (-3549 (($ $ (-1001)) 107 (|has| |#1| (-158))) ((|#1| $) 227 (|has| |#1| (-158)))) (-3523 (($ $ (-1001)) 42) (($ $ (-589 (-1001))) 41) (($ $ (-1001) (-710)) 40) (($ $ (-589 (-1001)) (-589 (-710))) 39) (($ $ (-710)) 253) (($ $) 251) (($ $ (-1087)) 250 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 249 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 248 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 247 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2299 (((-710) $) 150) (((-710) $ (-1001)) 130) (((-589 (-710)) $ (-589 (-1001))) 129)) (-3663 (((-823 (-355)) $) 82 (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) 81 (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) 80 (-12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) 175 (|has| |#1| (-427))) (($ $ (-1001)) 106 (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 104 (-4099 (|has| $ (-134)) (|has| |#1| (-840))))) (-1260 (((-3 $ "failed") $ $) 222 (|has| |#1| (-515))) (((-3 (-383 $) "failed") (-383 $) $) 221 (|has| |#1| (-515)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 163) (($ (-1001)) 137) (($ (-383 (-523))) 72 (-3262 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))))) (($ $) 85 (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) 168)) (-2365 ((|#1| $ (-710)) 155) (($ $ (-1001) (-710)) 128) (($ $ (-589 (-1001)) (-589 (-710))) 127)) (-3901 (((-3 $ "failed") $) 73 (-3262 (-4099 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) 29)) (-2276 (($ $ $ (-710)) 173 (|has| |#1| (-158)))) (-1704 (((-108) $ $) 89 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1001)) 38) (($ $ (-589 (-1001))) 37) (($ $ (-1001) (-710)) 36) (($ $ (-589 (-1001)) (-589 (-710))) 35) (($ $ (-710)) 254) (($ $) 252) (($ $ (-1087)) 246 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 245 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 244 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 243 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-4043 (((-108) $ $) 76 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 75 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 77 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 74 (|has| |#1| (-786)))) (-4098 (($ $ |#1|) 156 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 157 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1144 |#1|) (-129) (-973)) (T -1144)) -((-2854 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-1144 *4)) (-4 *4 (-973)) (-5 *2 (-1168 *4)))) (-2180 (*1 *2 *1) (-12 (-4 *1 (-1144 *3)) (-4 *3 (-973)) (-5 *2 (-1083 *3)))) (-3131 (*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-973)) (-4 *1 (-1144 *3)))) (-1349 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) (-3255 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) (-2981 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-1144 *3)))) (-2150 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-1144 *4)))) (-2692 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) (-2482 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) (-3666 (*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)))) (-3523 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-158)))) (-3078 (*1 *2 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-158)))) (-3223 (*1 *2 *2 *2) (-12 (-5 *2 (-383 *1)) (-4 *1 (-1144 *3)) (-4 *3 (-973)) (-4 *3 (-515)))) (-1640 (*1 *2 *1 *1) (-12 (-4 *1 (-1144 *3)) (-4 *3 (-973)) (-4 *3 (-515)) (-5 *2 (-710)))) (-2407 (*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) (-1260 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) (-1260 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-383 *1)) (-4 *1 (-1144 *3)) (-4 *3 (-973)) (-4 *3 (-515)))) (-2349 (*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) (-2815 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -2935 *3) (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-1144 *3)))) (-3444 (*1 *2 *1 *1) (-12 (-4 *3 (-427)) (-4 *3 (-973)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1144 *3)))) (-3223 (*1 *2 *3 *2) (-12 (-5 *3 (-383 *1)) (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3417 (*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523))))))) -(-13 (-880 |t#1| (-710) (-1001)) (-263 |t#1| |t#1|) (-263 $ $) (-211) (-209 |t#1|) (-10 -8 (-15 -2854 ((-1168 |t#1|) $ (-710))) (-15 -2180 ((-1083 |t#1|) $)) (-15 -3131 ($ (-1083 |t#1|))) (-15 -1349 ($ $ (-710))) (-15 -3255 ((-3 $ "failed") $ (-710))) (-15 -2981 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -2150 ((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710))) (-15 -2692 ($ $ (-710))) (-15 -2482 ($ $ (-710))) (-15 -3666 ($ $ $)) (-15 -3523 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |t#1| (-158)) (PROGN (-15 -3549 (|t#1| $)) (-15 -3078 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-6 (-263 (-383 $) (-383 $))) (-15 -3223 ((-383 $) (-383 $) (-383 $))) (-15 -1640 ((-710) $ $)) (-15 -2407 ($ $ $)) (-15 -1260 ((-3 $ "failed") $ $)) (-15 -1260 ((-3 (-383 $) "failed") (-383 $) $)) (-15 -2349 ($ $ $)) (-15 -2815 ((-2 (|:| -2935 |t#1|) (|:| -3445 $) (|:| -3282 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-427)) (-15 -3444 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-339)) (PROGN (-6 (-284)) (-6 -4240) (-15 -3223 (|t#1| (-383 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-383 (-523)))) (-15 -3417 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-710)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-564 (-499)) -12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523))))) ((-209 |#1|) . T) ((-211) . T) ((-263 (-383 $) (-383 $)) |has| |#1| (-515)) ((-263 |#1| |#1|) . T) ((-263 $ $) . T) ((-267) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-286 $) . T) ((-302 |#1| #0#) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3262 (|has| |#1| (-840)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-484 #2=(-1001) |#1|) . T) ((-484 #2# $) . T) ((-484 $ $) . T) ((-515) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-591 #1#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #1#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 #2#) . T) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-817 (-355)) -12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355)))) ((-817 (-523)) -12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))) ((-880 |#1| #0# #2#) . T) ((-840) |has| |#1| (-840)) ((-851) |has| |#1| (-339)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 #2#) . T) ((-964 |#1|) . T) ((-979 #1#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-1063)) ((-1126) |has| |#1| (-840))) -((-1957 (((-589 (-1001)) $) 28)) (-3810 (($ $) 25)) (-1933 (($ |#2| |#3|) NIL) (($ $ (-1001) |#3|) 22) (($ $ (-589 (-1001)) (-589 |#3|)) 20)) (-3774 (($ $) 14)) (-3786 ((|#2| $) 12)) (-2299 ((|#3| $) 10))) -(((-1145 |#1| |#2| |#3|) (-10 -8 (-15 -1957 ((-589 (-1001)) |#1|)) (-15 -1933 (|#1| |#1| (-589 (-1001)) (-589 |#3|))) (-15 -1933 (|#1| |#1| (-1001) |#3|)) (-15 -3810 (|#1| |#1|)) (-15 -1933 (|#1| |#2| |#3|)) (-15 -2299 (|#3| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3786 (|#2| |#1|))) (-1146 |#2| |#3|) (-973) (-731)) (T -1145)) -NIL -(-10 -8 (-15 -1957 ((-589 (-1001)) |#1|)) (-15 -1933 (|#1| |#1| (-589 (-1001)) (-589 |#3|))) (-15 -1933 (|#1| |#1| (-1001) |#3|)) (-15 -3810 (|#1| |#1|)) (-15 -1933 (|#1| |#2| |#3|)) (-15 -2299 (|#3| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3786 (|#2| |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 (-1001)) $) 74)) (-2700 (((-1087) $) 103)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3984 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-2133 (((-1068 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-2003 (((-108) $) 73)) (-1640 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-2023 (((-108) $) 31)) (-1349 (($ $ (-852)) 101)) (-2620 (((-108) $) 62)) (-1933 (($ |#1| |#2|) 61) (($ $ (-1001) |#2|) 76) (($ $ (-589 (-1001)) (-589 |#2|)) 75)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-4097 (($ $ |#2|) 95)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-2679 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3223 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1028)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2299 ((|#2| $) 64)) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47 (|has| |#1| (-158)))) (-2365 ((|#1| $ |#2|) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1288 ((|#1| $) 102)) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2562 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) -(((-1146 |#1| |#2|) (-129) (-973) (-731)) (T -1146)) -((-2133 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3223 (*1 *2 *1 *3) (-12 (-4 *1 (-1146 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-1087)))) (-1288 (*1 *2 *1) (-12 (-4 *1 (-1146 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-1349 (*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-1640 (*1 *2 *1 *2) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-3984 (*1 *1 *1 *2) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-3984 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-2562 (*1 *2 *1 *3) (-12 (-4 *1 (-1146 *2 *3)) (-4 *3 (-731)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1458 (*2 (-1087)))) (-4 *2 (-973)))) (-4097 (*1 *1 *1 *2) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-2679 (*1 *2 *1 *3) (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3))))) -(-13 (-902 |t#1| |t#2| (-1001)) (-10 -8 (-15 -2133 ((-1068 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3223 (|t#1| $ |t#2|)) (-15 -2700 ((-1087) $)) (-15 -1288 (|t#1| $)) (-15 -1349 ($ $ (-852))) (-15 -1640 (|t#2| $)) (-15 -1640 (|t#2| $ |t#2|)) (-15 -3984 ($ $ |t#2|)) (-15 -3984 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1458 (|t#1| (-1087)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2562 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4097 ($ $ |t#2|)) (IF (|has| |t#2| (-1028)) (-6 (-263 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-211)) (IF (|has| |t#1| (-831 (-1087))) (-6 (-831 (-1087))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2679 ((-1068 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-263 $ $) |has| |#2| (-1028)) ((-267) |has| |#1| (-515)) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| |#2| (-1001)) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-2291 ((|#2| |#2|) 12)) (-3614 (((-394 |#2|) |#2|) 14)) (-3419 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523)))) 30))) -(((-1147 |#1| |#2|) (-10 -7 (-15 -3614 ((-394 |#2|) |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -3419 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523)))))) (-515) (-13 (-1144 |#1|) (-515) (-10 -8 (-15 -3278 ($ $ $))))) (T -1147)) -((-3419 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-523)))) (-4 *4 (-13 (-1144 *3) (-515) (-10 -8 (-15 -3278 ($ $ $))))) (-4 *3 (-515)) (-5 *1 (-1147 *3 *4)))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-1144 *3) (-515) (-10 -8 (-15 -3278 ($ $ $))))))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-1144 *4) (-515) (-10 -8 (-15 -3278 ($ $ $)))))))) -(-10 -7 (-15 -3614 ((-394 |#2|) |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -3419 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523)))))) -((-3612 (((-1153 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1153 |#1| |#3| |#5|)) 23))) -(((-1148 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3612 ((-1153 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1153 |#1| |#3| |#5|)))) (-973) (-973) (-1087) (-1087) |#1| |#2|) (T -1148)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5 *7 *9)) (-4 *5 (-973)) (-4 *6 (-973)) (-14 *7 (-1087)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1153 *6 *8 *10)) (-5 *1 (-1148 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1087))))) -(-10 -7 (-15 -3612 ((-1153 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1153 |#1| |#3| |#5|)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 (-1001)) $) 74)) (-2700 (((-1087) $) 103)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) 98) (($ $ (-383 (-523)) (-383 (-523))) 97)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) 105)) (-1769 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 162 (|has| |#1| (-339)))) (-3614 (((-394 $) $) 163 (|has| |#1| (-339)))) (-1832 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) 153 (|has| |#1| (-339)))) (-1744 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) 172)) (-1793 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) 17 T CONST)) (-3796 (($ $ $) 157 (|has| |#1| (-339)))) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 156 (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 151 (|has| |#1| (-339)))) (-2657 (((-108) $) 164 (|has| |#1| (-339)))) (-2003 (((-108) $) 73)) (-2820 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) 100) (((-383 (-523)) $ (-383 (-523))) 99)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) 101) (($ $ (-383 (-523))) 171)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 160 (|has| |#1| (-339)))) (-2620 (((-108) $) 62)) (-1933 (($ |#1| (-383 (-523))) 61) (($ $ (-1001) (-383 (-523))) 76) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) 75)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-2384 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3244 (($ (-589 $)) 149 (|has| |#1| (-339))) (($ $ $) 148 (|has| |#1| (-339)))) (-3779 (((-1070) $) 9)) (-3738 (($ $) 165 (|has| |#1| (-339)))) (-3417 (($ $) 170 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 169 (-3262 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1108)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 150 (|has| |#1| (-339)))) (-3278 (($ (-589 $)) 147 (|has| |#1| (-339))) (($ $ $) 146 (|has| |#1| (-339)))) (-1820 (((-394 $) $) 161 (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 158 (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) 95)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 152 (|has| |#1| (-339)))) (-1811 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) 154 (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) 104) (($ $ $) 81 (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 155 (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-2299 (((-383 (-523)) $) 64)) (-1805 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 47 (|has| |#1| (-158))) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1288 ((|#1| $) 102)) (-1839 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-1818 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 166 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339))) (($ $ $) 168 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 167 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) -(((-1149 |#1|) (-129) (-973)) (T -1149)) -((-2417 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| *4)))) (-4 *4 (-973)) (-4 *1 (-1149 *4)))) (-1349 (*1 *1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-4 *1 (-1149 *3)) (-4 *3 (-973)))) (-3417 (*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) (-3417 (*1 *1 *1 *2) (-3262 (-12 (-5 *2 (-1087)) (-4 *1 (-1149 *3)) (-4 *3 (-973)) (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1108)) (-4 *3 (-37 (-383 (-523)))))) (-12 (-5 *2 (-1087)) (-4 *1 (-1149 *3)) (-4 *3 (-973)) (-12 (|has| *3 (-15 -1957 ((-589 *2) *3))) (|has| *3 (-15 -3417 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523))))))))) -(-13 (-1146 |t#1| (-383 (-523))) (-10 -8 (-15 -2417 ($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |t#1|))))) (-15 -1349 ($ $ (-383 (-523)))) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $)) (IF (|has| |t#1| (-15 -3417 (|t#1| |t#1| (-1087)))) (IF (|has| |t#1| (-15 -1957 ((-589 (-1087)) |t#1|))) (-15 -3417 ($ $ (-1087))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1108)) (IF (|has| |t#1| (-889)) (IF (|has| |t#1| (-29 (-523))) (-15 -3417 ($ $ (-1087))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-930)) (-6 (-1108))) |%noBranch|) (IF (|has| |t#1| (-339)) (-6 (-339)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-383 (-523))) . T) ((-25) . T) ((-37 #1=(-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) ((-221) |has| |#1| (-339)) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 $ $) |has| (-383 (-523)) (-1028)) ((-267) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-339) |has| |#1| (-339)) ((-427) |has| |#1| (-339)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-515) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-591 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| #0# (-1001)) . T) ((-851) |has| |#1| (-339)) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-979 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1108) |has| |#1| (-37 (-383 (-523)))) ((-1111) |has| |#1| (-37 (-383 (-523)))) ((-1126) |has| |#1| (-339)) ((-1146 |#1| #0#) . T)) -((-2295 (((-108) $) 12)) (-3517 (((-3 |#3| "failed") $) 17)) (-3474 ((|#3| $) 14))) -(((-1150 |#1| |#2| |#3|) (-10 -8 (-15 -3474 (|#3| |#1|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -2295 ((-108) |#1|))) (-1151 |#2| |#3|) (-973) (-1128 |#2|)) (T -1150)) -NIL -(-10 -8 (-15 -3474 (|#3| |#1|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -2295 ((-108) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 (-1001)) $) 74)) (-2700 (((-1087) $) 103)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) 98) (($ $ (-383 (-523)) (-383 (-523))) 97)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) 105)) (-1769 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 162 (|has| |#1| (-339)))) (-3614 (((-394 $) $) 163 (|has| |#1| (-339)))) (-1832 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) 153 (|has| |#1| (-339)))) (-1744 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) 172)) (-1793 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#2| "failed") $) 183)) (-3474 ((|#2| $) 182)) (-3796 (($ $ $) 157 (|has| |#1| (-339)))) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-2290 (((-383 (-523)) $) 180)) (-3769 (($ $ $) 156 (|has| |#1| (-339)))) (-3717 (($ (-383 (-523)) |#2|) 181)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 151 (|has| |#1| (-339)))) (-2657 (((-108) $) 164 (|has| |#1| (-339)))) (-2003 (((-108) $) 73)) (-2820 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) 100) (((-383 (-523)) $ (-383 (-523))) 99)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) 101) (($ $ (-383 (-523))) 171)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 160 (|has| |#1| (-339)))) (-2620 (((-108) $) 62)) (-1933 (($ |#1| (-383 (-523))) 61) (($ $ (-1001) (-383 (-523))) 76) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) 75)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-2384 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3244 (($ (-589 $)) 149 (|has| |#1| (-339))) (($ $ $) 148 (|has| |#1| (-339)))) (-2508 ((|#2| $) 179)) (-1745 (((-3 |#2| "failed") $) 177)) (-2028 ((|#2| $) 178)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 165 (|has| |#1| (-339)))) (-3417 (($ $) 170 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 169 (-3262 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1108)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 150 (|has| |#1| (-339)))) (-3278 (($ (-589 $)) 147 (|has| |#1| (-339))) (($ $ $) 146 (|has| |#1| (-339)))) (-1820 (((-394 $) $) 161 (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 158 (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) 95)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 152 (|has| |#1| (-339)))) (-1811 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) 154 (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) 104) (($ $ $) 81 (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 155 (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-2299 (((-383 (-523)) $) 64)) (-1805 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 47 (|has| |#1| (-158))) (($ |#2|) 184) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1288 ((|#1| $) 102)) (-1839 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-1818 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 166 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339))) (($ $ $) 168 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 167 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) -(((-1151 |#1| |#2|) (-129) (-973) (-1128 |t#1|)) (T -1151)) -((-2299 (*1 *2 *1) (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1128 *3)) (-5 *2 (-383 (-523))))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *1 (-1151 *3 *2)) (-4 *2 (-1128 *3)))) (-3717 (*1 *1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-4 *4 (-973)) (-4 *1 (-1151 *4 *3)) (-4 *3 (-1128 *4)))) (-2290 (*1 *2 *1) (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1128 *3)) (-5 *2 (-383 (-523))))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1128 *3)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1128 *3)))) (-1745 (*1 *2 *1) (|partial| -12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1128 *3))))) -(-13 (-1149 |t#1|) (-964 |t#2|) (-10 -8 (-15 -3717 ($ (-383 (-523)) |t#2|)) (-15 -2290 ((-383 (-523)) $)) (-15 -2508 (|t#2| $)) (-15 -2299 ((-383 (-523)) $)) (-15 -1458 ($ |t#2|)) (-15 -2028 (|t#2| $)) (-15 -1745 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-383 (-523))) . T) ((-25) . T) ((-37 #1=(-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) ((-221) |has| |#1| (-339)) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 $ $) |has| (-383 (-523)) (-1028)) ((-267) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-339) |has| |#1| (-339)) ((-427) |has| |#1| (-339)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-515) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-591 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| #0# (-1001)) . T) ((-851) |has| |#1| (-339)) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-964 |#2|) . T) ((-979 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1108) |has| |#1| (-37 (-383 (-523)))) ((-1111) |has| |#1| (-37 (-383 (-523)))) ((-1126) |has| |#1| (-339)) ((-1146 |#1| #0#) . T) ((-1149 |#1|) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 96)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) 106) (($ $ (-383 (-523)) (-383 (-523))) 108)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) 51)) (-1769 (($ $) 179 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 155 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) 175 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 151 (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) 61)) (-1793 (($ $) 183 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 159 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL)) (-3474 ((|#2| $) NIL)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) 79)) (-2290 (((-383 (-523)) $) 12)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-3717 (($ (-383 (-523)) |#2|) 10)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2003 (((-108) $) 68)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) 103) (((-383 (-523)) $ (-383 (-523))) 104)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) 120) (($ $ (-383 (-523))) 118)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-383 (-523))) 31) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) 115)) (-2384 (($ $) 149 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2508 ((|#2| $) 11)) (-1745 (((-3 |#2| "failed") $) 41)) (-2028 ((|#2| $) 42)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 93 (|has| |#1| (-339)))) (-3417 (($ $) 135 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 140 (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108)))))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) 112)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) 147 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) 100) (($ $ $) 86 (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) 127 (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-2299 (((-383 (-523)) $) 16)) (-1805 (($ $) 185 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 161 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 181 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 157 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 177 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 153 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 110)) (-1458 (((-794) $) NIL) (($ (-523)) 35) (($ |#1|) 27 (|has| |#1| (-158))) (($ |#2|) 32) (($ (-383 (-523))) 128 (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) 99)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) 117)) (-1288 ((|#1| $) 98)) (-1839 (($ $) 191 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 167 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) 187 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 163 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 195 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 171 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 197 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 173 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 193 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 169 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 189 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 165 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 21 T CONST)) (-2767 (($) 17 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3983 (((-108) $ $) 66)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) 92 (|has| |#1| (-339)))) (-4087 (($ $) 131) (($ $ $) 72)) (-4075 (($ $ $) 70)) (** (($ $ (-852)) NIL) (($ $ (-710)) 76) (($ $ (-523)) 144 (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 145 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-1152 |#1| |#2|) (-1151 |#1| |#2|) (-973) (-1128 |#1|)) (T -1152)) -NIL -(-1151 |#1| |#2|) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 11)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) NIL) (($ $ (-383 (-523)) (-383 (-523))) NIL)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-1132 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1160 |#1| |#2| |#3|) "failed") $) 22)) (-3474 (((-1132 |#1| |#2| |#3|) $) NIL) (((-1160 |#1| |#2| |#3|) $) NIL)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2290 (((-383 (-523)) $) 57)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-3717 (($ (-383 (-523)) (-1132 |#1| |#2| |#3|)) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) NIL) (((-383 (-523)) $ (-383 (-523))) NIL)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) NIL) (($ $ (-383 (-523))) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-383 (-523))) 29) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2508 (((-1132 |#1| |#2| |#3|) $) 60)) (-1745 (((-3 (-1132 |#1| |#2| |#3|) "failed") $) NIL)) (-2028 (((-1132 |#1| |#2| |#3|) $) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3417 (($ $) 38 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 39 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) NIL)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) NIL) (($ $ $) NIL (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $ (-1164 |#2|)) 37)) (-2299 (((-383 (-523)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) 88) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1132 |#1| |#2| |#3|)) 16) (($ (-1160 |#1| |#2| |#3|)) 17) (($ (-1164 |#2|)) 35) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 12)) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 31 T CONST)) (-2767 (($) 26 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 33)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-1153 |#1| |#2| |#3|) (-13 (-1151 |#1| (-1132 |#1| |#2| |#3|)) (-964 (-1160 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1153)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1153 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1153 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1153 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) -(-13 (-1151 |#1| (-1132 |#1| |#2| |#3|)) (-964 (-1160 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 32)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| (-1153 |#2| |#3| |#4|) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-1153 |#2| |#3| |#4|) (-964 (-383 (-523))))) (((-3 (-1153 |#2| |#3| |#4|) "failed") $) 20)) (-3474 (((-523) $) NIL (|has| (-1153 |#2| |#3| |#4|) (-964 (-523)))) (((-383 (-523)) $) NIL (|has| (-1153 |#2| |#3| |#4|) (-964 (-383 (-523))))) (((-1153 |#2| |#3| |#4|) $) NIL)) (-3810 (($ $) 33)) (-2121 (((-3 $ "failed") $) 25)) (-2528 (($ $) NIL (|has| (-1153 |#2| |#3| |#4|) (-427)))) (-1284 (($ $ (-1153 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|) $) NIL)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) 11)) (-2620 (((-108) $) NIL)) (-1933 (($ (-1153 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) 23)) (-1575 (((-295 |#2| |#3| |#4|) $) NIL)) (-3782 (($ (-1 (-295 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) $) NIL)) (-3612 (($ (-1 (-1153 |#2| |#3| |#4|) (-1153 |#2| |#3| |#4|)) $) NIL)) (-3684 (((-3 (-779 |#2|) "failed") $) 73)) (-3774 (($ $) NIL)) (-3786 (((-1153 |#2| |#3| |#4|) $) 18)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 (((-1153 |#2| |#3| |#4|) $) NIL)) (-3746 (((-3 $ "failed") $ (-1153 |#2| |#3| |#4|)) NIL (|has| (-1153 |#2| |#3| |#4|) (-515))) (((-3 $ "failed") $ $) NIL)) (-3227 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1153 |#2| |#3| |#4|)) (|:| |%expon| (-295 |#2| |#3| |#4|)) (|:| |%expTerms| (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#2|)))))) (|:| |%type| (-1070))) "failed") $) 56)) (-2299 (((-295 |#2| |#3| |#4|) $) 14)) (-2438 (((-1153 |#2| |#3| |#4|) $) NIL (|has| (-1153 |#2| |#3| |#4|) (-427)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-1153 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL (-3262 (|has| (-1153 |#2| |#3| |#4|) (-37 (-383 (-523)))) (|has| (-1153 |#2| |#3| |#4|) (-964 (-383 (-523))))))) (-1251 (((-589 (-1153 |#2| |#3| |#4|)) $) NIL)) (-2365 (((-1153 |#2| |#3| |#4|) $ (-295 |#2| |#3| |#4|)) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| (-1153 |#2| |#3| |#4|) (-134)))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| (-1153 |#2| |#3| |#4|) (-158)))) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 61 T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ (-1153 |#2| |#3| |#4|)) NIL (|has| (-1153 |#2| |#3| |#4|) (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-1153 |#2| |#3| |#4|)) NIL) (($ (-1153 |#2| |#3| |#4|) $) NIL) (($ (-383 (-523)) $) NIL (|has| (-1153 |#2| |#3| |#4|) (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| (-1153 |#2| |#3| |#4|) (-37 (-383 (-523))))))) -(((-1154 |#1| |#2| |#3| |#4|) (-13 (-302 (-1153 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) (-515) (-10 -8 (-15 -3684 ((-3 (-779 |#2|) "failed") $)) (-15 -3227 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1153 |#2| |#3| |#4|)) (|:| |%expon| (-295 |#2| |#3| |#4|)) (|:| |%expTerms| (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#2|)))))) (|:| |%type| (-1070))) "failed") $)))) (-13 (-786) (-964 (-523)) (-585 (-523)) (-427)) (-13 (-27) (-1108) (-406 |#1|)) (-1087) |#2|) (T -1154)) -((-3684 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *2 (-779 *4)) (-5 *1 (-1154 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1108) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4))) (-3227 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1153 *4 *5 *6)) (|:| |%expon| (-295 *4 *5 *6)) (|:| |%expTerms| (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| *4)))))) (|:| |%type| (-1070)))) (-5 *1 (-1154 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1108) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4)))) -(-13 (-302 (-1153 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) (-515) (-10 -8 (-15 -3684 ((-3 (-779 |#2|) "failed") $)) (-15 -3227 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1153 |#2| |#3| |#4|)) (|:| |%expon| (-295 |#2| |#3| |#4|)) (|:| |%expTerms| (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#2|)))))) (|:| |%type| (-1070))) "failed") $)))) -((-1733 ((|#2| $) 29)) (-1546 ((|#2| $) 18)) (-4039 (($ $) 36)) (-2961 (($ $ (-523)) 64)) (-3079 (((-108) $ (-710)) 33)) (-1823 ((|#2| $ |#2|) 61)) (-3395 ((|#2| $ |#2|) 59)) (-1641 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3100 (($ $ (-589 $)) 60)) (-1532 ((|#2| $) 17)) (-1751 (($ $) NIL) (($ $ (-710)) 42)) (-2645 (((-589 $) $) 26)) (-1238 (((-108) $ $) 50)) (-2346 (((-108) $ (-710)) 32)) (-2866 (((-108) $ (-710)) 31)) (-3555 (((-108) $) 28)) (-2579 ((|#2| $) 24) (($ $ (-710)) 46)) (-3223 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2524 (((-108) $) 22)) (-2732 (($ $) 39)) (-2363 (($ $) 65)) (-2316 (((-710) $) 41)) (-3562 (($ $) 40)) (-2326 (($ $ $) 58) (($ |#2| $) NIL)) (-2296 (((-589 $) $) 27)) (-3983 (((-108) $ $) 48)) (-2676 (((-710) $) 35))) -(((-1155 |#1| |#2|) (-10 -8 (-15 -2961 (|#1| |#1| (-523))) (-15 -1641 (|#2| |#1| "last" |#2|)) (-15 -3395 (|#2| |#1| |#2|)) (-15 -1641 (|#1| |#1| "rest" |#1|)) (-15 -1641 (|#2| |#1| "first" |#2|)) (-15 -2363 (|#1| |#1|)) (-15 -2732 (|#1| |#1|)) (-15 -2316 ((-710) |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -1546 (|#2| |#1|)) (-15 -1532 (|#2| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2579 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "last")) (-15 -2579 (|#2| |#1|)) (-15 -1751 (|#1| |#1| (-710))) (-15 -3223 (|#1| |#1| "rest")) (-15 -1751 (|#1| |#1|)) (-15 -3223 (|#2| |#1| "first")) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#1|)) (-15 -1823 (|#2| |#1| |#2|)) (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -3100 (|#1| |#1| (-589 |#1|))) (-15 -1238 ((-108) |#1| |#1|)) (-15 -2524 ((-108) |#1|)) (-15 -3223 (|#2| |#1| "value")) (-15 -1733 (|#2| |#1|)) (-15 -3555 ((-108) |#1|)) (-15 -2645 ((-589 |#1|) |#1|)) (-15 -2296 ((-589 |#1|) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710)))) (-1156 |#2|) (-1122)) (T -1155)) -NIL -(-10 -8 (-15 -2961 (|#1| |#1| (-523))) (-15 -1641 (|#2| |#1| "last" |#2|)) (-15 -3395 (|#2| |#1| |#2|)) (-15 -1641 (|#1| |#1| "rest" |#1|)) (-15 -1641 (|#2| |#1| "first" |#2|)) (-15 -2363 (|#1| |#1|)) (-15 -2732 (|#1| |#1|)) (-15 -2316 ((-710) |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -1546 (|#2| |#1|)) (-15 -1532 (|#2| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2579 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "last")) (-15 -2579 (|#2| |#1|)) (-15 -1751 (|#1| |#1| (-710))) (-15 -3223 (|#1| |#1| "rest")) (-15 -1751 (|#1| |#1|)) (-15 -3223 (|#2| |#1| "first")) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#1|)) (-15 -1823 (|#2| |#1| |#2|)) (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -3100 (|#1| |#1| (-589 |#1|))) (-15 -1238 ((-108) |#1| |#1|)) (-15 -2524 ((-108) |#1|)) (-15 -3223 (|#2| |#1| "value")) (-15 -1733 (|#2| |#1|)) (-15 -3555 ((-108) |#1|)) (-15 -2645 ((-589 |#1|) |#1|)) (-15 -2296 ((-589 |#1|) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710)))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-1546 ((|#1| $) 65)) (-4039 (($ $) 67)) (-2961 (($ $ (-523)) 52 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-2110 (($ $ $) 56 (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) 54 (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) 58 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4245))) (($ $ "rest" $) 55 (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-1532 ((|#1| $) 66)) (-2518 (($) 7 T CONST)) (-1751 (($ $) 73) (($ $ (-710)) 71)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2579 ((|#1| $) 70) (($ $ (-710)) 68)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 76) (($ $ (-710)) 74)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1549 (((-523) $ $) 44)) (-2524 (((-108) $) 46)) (-2732 (($ $) 62)) (-2363 (($ $) 59 (|has| $ (-6 -4245)))) (-2316 (((-710) $) 63)) (-3562 (($ $) 64)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1746 (($ $ $) 61 (|has| $ (-6 -4245))) (($ $ |#1|) 60 (|has| $ (-6 -4245)))) (-2326 (($ $ $) 78) (($ |#1| $) 77)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-1156 |#1|) (-129) (-1122)) (T -1156)) -((-2326 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-2326 (*1 *1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1738 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) (-1751 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) (-2579 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) (-4039 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1532 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1546 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-3562 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1122)) (-5 *2 (-710)))) (-2732 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1746 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1746 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-2363 (*1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-3456 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1641 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-2110 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1641 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4245)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) (-3395 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1641 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-2961 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (|has| *1 (-6 -4245)) (-4 *1 (-1156 *3)) (-4 *3 (-1122))))) -(-13 (-938 |t#1|) (-10 -8 (-15 -2326 ($ $ $)) (-15 -2326 ($ |t#1| $)) (-15 -1738 (|t#1| $)) (-15 -3223 (|t#1| $ "first")) (-15 -1738 ($ $ (-710))) (-15 -1751 ($ $)) (-15 -3223 ($ $ "rest")) (-15 -1751 ($ $ (-710))) (-15 -2579 (|t#1| $)) (-15 -3223 (|t#1| $ "last")) (-15 -2579 ($ $ (-710))) (-15 -4039 ($ $)) (-15 -1532 (|t#1| $)) (-15 -1546 (|t#1| $)) (-15 -3562 ($ $)) (-15 -2316 ((-710) $)) (-15 -2732 ($ $)) (IF (|has| $ (-6 -4245)) (PROGN (-15 -1746 ($ $ $)) (-15 -1746 ($ $ |t#1|)) (-15 -2363 ($ $)) (-15 -3456 (|t#1| $ |t#1|)) (-15 -1641 (|t#1| $ "first" |t#1|)) (-15 -2110 ($ $ $)) (-15 -1641 ($ $ "rest" $)) (-15 -3395 (|t#1| $ |t#1|)) (-15 -1641 (|t#1| $ "last" |t#1|)) (-15 -2961 ($ $ (-523)))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) -((-3612 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1157 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| (-1 |#2| |#1|) |#3|))) (-973) (-973) (-1159 |#1|) (-1159 |#2|)) (T -1157)) -((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-4 *2 (-1159 *6)) (-5 *1 (-1157 *5 *6 *4 *2)) (-4 *4 (-1159 *5))))) -(-10 -7 (-15 -3612 (|#4| (-1 |#2| |#1|) |#3|))) -((-2295 (((-108) $) 15)) (-1769 (($ $) 91)) (-3780 (($ $) 67)) (-1744 (($ $) 87)) (-3711 (($ $) 63)) (-1793 (($ $) 95)) (-3805 (($ $) 71)) (-2384 (($ $) 61)) (-1811 (($ $) 59)) (-1805 (($ $) 97)) (-3816 (($ $) 73)) (-1782 (($ $) 93)) (-3793 (($ $) 69)) (-1757 (($ $) 89)) (-3767 (($ $) 65)) (-1458 (((-794) $) 47) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1839 (($ $) 103)) (-3847 (($ $) 79)) (-1818 (($ $) 99)) (-3828 (($ $) 75)) (-1865 (($ $) 107)) (-1719 (($ $) 83)) (-2914 (($ $) 109)) (-1731 (($ $) 85)) (-1852 (($ $) 105)) (-3859 (($ $) 81)) (-1830 (($ $) 101)) (-3838 (($ $) 77)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-383 (-523))) 57))) -(((-1158 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -3780 (|#1| |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3859 (|#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -1719 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1782 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| (-523))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852))) (-15 -2295 ((-108) |#1|)) (-15 -1458 ((-794) |#1|))) (-1159 |#2|) (-973)) (T -1158)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -3780 (|#1| |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3859 (|#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -1719 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1782 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| (-523))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852))) (-15 -2295 ((-108) |#1|)) (-15 -1458 ((-794) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 (-1001)) $) 74)) (-2700 (((-1087) $) 103)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3984 (($ $ (-710)) 98) (($ $ (-710) (-710)) 97)) (-2133 (((-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|))) $) 105)) (-1769 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) 19)) (-1832 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-1744 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|)))) 155) (($ (-1068 |#1|)) 153)) (-1793 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) 17 T CONST)) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-1956 (($ $) 152)) (-3566 (((-883 |#1|) $ (-710)) 150) (((-883 |#1|) $ (-710) (-710)) 149)) (-2003 (((-108) $) 73)) (-2820 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-710) $) 100) (((-710) $ (-710)) 99)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) 101)) (-3735 (($ (-1 |#1| (-523)) $) 151)) (-2620 (((-108) $) 62)) (-1933 (($ |#1| (-710)) 61) (($ $ (-1001) (-710)) 76) (($ $ (-589 (-1001)) (-589 (-710))) 75)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-2384 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3779 (((-1070) $) 9)) (-3417 (($ $) 147 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 146 (-3262 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1108)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-2783 (((-1034) $) 10)) (-4097 (($ $ (-710)) 95)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-1811 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-710)))))) (-3223 ((|#1| $ (-710)) 104) (($ $ $) 81 (|has| (-710) (-1028)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (-2299 (((-710) $) 64)) (-1805 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47 (|has| |#1| (-158)))) (-1251 (((-1068 |#1|) $) 154)) (-2365 ((|#1| $ (-710)) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1288 ((|#1| $) 102)) (-1839 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-1818 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-710)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-710)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ |#1|) 148 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) -(((-1159 |#1|) (-129) (-973)) (T -1159)) -((-2417 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-710)) (|:| |c| *3)))) (-4 *3 (-973)) (-4 *1 (-1159 *3)))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-973)) (-5 *2 (-1068 *3)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-4 *1 (-1159 *3)))) (-1956 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-973)))) (-3735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-523))) (-4 *1 (-1159 *3)) (-4 *3 (-973)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-1159 *4)) (-4 *4 (-973)) (-5 *2 (-883 *4)))) (-3566 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-4 *1 (-1159 *4)) (-4 *4 (-973)) (-5 *2 (-883 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3417 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) (-3417 (*1 *1 *1 *2) (-3262 (-12 (-5 *2 (-1087)) (-4 *1 (-1159 *3)) (-4 *3 (-973)) (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1108)) (-4 *3 (-37 (-383 (-523)))))) (-12 (-5 *2 (-1087)) (-4 *1 (-1159 *3)) (-4 *3 (-973)) (-12 (|has| *3 (-15 -1957 ((-589 *2) *3))) (|has| *3 (-15 -3417 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523))))))))) -(-13 (-1146 |t#1| (-710)) (-10 -8 (-15 -2417 ($ (-1068 (-2 (|:| |k| (-710)) (|:| |c| |t#1|))))) (-15 -1251 ((-1068 |t#1|) $)) (-15 -2417 ($ (-1068 |t#1|))) (-15 -1956 ($ $)) (-15 -3735 ($ (-1 |t#1| (-523)) $)) (-15 -3566 ((-883 |t#1|) $ (-710))) (-15 -3566 ((-883 |t#1|) $ (-710) (-710))) (IF (|has| |t#1| (-339)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $)) (IF (|has| |t#1| (-15 -3417 (|t#1| |t#1| (-1087)))) (IF (|has| |t#1| (-15 -1957 ((-589 (-1087)) |t#1|))) (-15 -3417 ($ $ (-1087))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1108)) (IF (|has| |t#1| (-889)) (IF (|has| |t#1| (-29 (-523))) (-15 -3417 ($ $ (-1087))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-930)) (-6 (-1108))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-710)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| (-710) |#1|))) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 $ $) |has| (-710) (-1028)) ((-267) |has| |#1| (-515)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-515) |has| |#1| (-515)) ((-591 #1#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| #0# (-1001)) . T) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-979 #1#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1108) |has| |#1| (-37 (-383 (-523)))) ((-1111) |has| |#1| (-37 (-383 (-523)))) ((-1146 |#1| #0#) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 87)) (-2053 (((-1141 |#2| |#1|) $ (-710)) 73)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) 136 (|has| |#1| (-515)))) (-3984 (($ $ (-710)) 121) (($ $ (-710) (-710)) 123)) (-2133 (((-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|))) $) 42)) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|)))) 53) (($ (-1068 |#1|)) NIL)) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-1492 (($ $) 127)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1956 (($ $) 134)) (-3566 (((-883 |#1|) $ (-710)) 63) (((-883 |#1|) $ (-710) (-710)) 65)) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-710) $) NIL) (((-710) $ (-710)) NIL)) (-2023 (((-108) $) NIL)) (-2673 (($ $) 111)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3235 (($ (-523) (-523) $) 129)) (-1349 (($ $ (-852)) 133)) (-3735 (($ (-1 |#1| (-523)) $) 105)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) 15) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) 93)) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2511 (($ $) 109)) (-2548 (($ $) 107)) (-1602 (($ (-523) (-523) $) 131)) (-3417 (($ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 150 (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 145 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-1840 (($ $ (-523) (-523)) 115)) (-4097 (($ $ (-710)) 117)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3741 (($ $) 113)) (-2679 (((-1068 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-710)))))) (-3223 ((|#1| $ (-710)) 90) (($ $ $) 125 (|has| (-710) (-1028)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) 102 (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $ (-1164 |#2|)) 98)) (-2299 (((-710) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 119)) (-1458 (((-794) $) NIL) (($ (-523)) 24) (($ (-383 (-523))) 142 (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) 23 (|has| |#1| (-158))) (($ (-1141 |#2| |#1|)) 80) (($ (-1164 |#2|)) 20)) (-1251 (((-1068 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) 89)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 88)) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-710)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-710)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 17 T CONST)) (-2767 (($) 13 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) 101)) (-4075 (($ $ $) 18)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ |#1|) 139 (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) -(((-1160 |#1| |#2| |#3|) (-13 (-1159 |#1|) (-10 -8 (-15 -1458 ($ (-1141 |#2| |#1|))) (-15 -2053 ((-1141 |#2| |#1|) $ (-710))) (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (-15 -2548 ($ $)) (-15 -2511 ($ $)) (-15 -2673 ($ $)) (-15 -3741 ($ $)) (-15 -1840 ($ $ (-523) (-523))) (-15 -1492 ($ $)) (-15 -3235 ($ (-523) (-523) $)) (-15 -1602 ($ (-523) (-523) $)) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1160)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-1141 *4 *3)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-1160 *3 *4 *5)))) (-2053 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1141 *5 *4)) (-5 *1 (-1160 *4 *5 *6)) (-4 *4 (-973)) (-14 *5 (-1087)) (-14 *6 *4))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-2548 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-2511 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-2673 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-3741 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-1840 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3))) (-1492 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-3235 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3))) (-1602 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) -(-13 (-1159 |#1|) (-10 -8 (-15 -1458 ($ (-1141 |#2| |#1|))) (-15 -2053 ((-1141 |#2| |#1|) $ (-710))) (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (-15 -2548 ($ $)) (-15 -2511 ($ $)) (-15 -2673 ($ $)) (-15 -3741 ($ $)) (-15 -1840 ($ $ (-523) (-523))) (-15 -1492 ($ $)) (-15 -3235 ($ (-523) (-523) $)) (-15 -1602 ($ (-523) (-523) $)) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) -((-3192 (((-1 (-1068 |#1|) (-589 (-1068 |#1|))) (-1 |#2| (-589 |#2|))) 24)) (-3280 (((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2283 (((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|)) 13)) (-2843 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2097 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3033 ((|#2| (-1 |#2| (-589 |#2|)) (-589 |#1|)) 54)) (-1390 (((-589 |#2|) (-589 |#1|) (-589 (-1 |#2| (-589 |#2|)))) 61)) (-2543 ((|#2| |#2| |#2|) 43))) -(((-1161 |#1| |#2|) (-10 -7 (-15 -2283 ((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|))) (-15 -3280 ((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3192 ((-1 (-1068 |#1|) (-589 (-1068 |#1|))) (-1 |#2| (-589 |#2|)))) (-15 -2543 (|#2| |#2| |#2|)) (-15 -2097 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3033 (|#2| (-1 |#2| (-589 |#2|)) (-589 |#1|))) (-15 -1390 ((-589 |#2|) (-589 |#1|) (-589 (-1 |#2| (-589 |#2|)))))) (-37 (-383 (-523))) (-1159 |#1|)) (T -1161)) -((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 (-1 *6 (-589 *6)))) (-4 *5 (-37 (-383 (-523)))) (-4 *6 (-1159 *5)) (-5 *2 (-589 *6)) (-5 *1 (-1161 *5 *6)))) (-3033 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-589 *2))) (-5 *4 (-589 *5)) (-4 *5 (-37 (-383 (-523)))) (-4 *2 (-1159 *5)) (-5 *1 (-1161 *5 *2)))) (-2843 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-1161 *4 *2)) (-4 *4 (-37 (-383 (-523)))))) (-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-1161 *4 *2)) (-4 *4 (-37 (-383 (-523)))))) (-2543 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-1159 *3)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-589 *5))) (-4 *5 (-1159 *4)) (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-1 (-1068 *4) (-589 (-1068 *4)))) (-5 *1 (-1161 *4 *5)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1159 *4)) (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1161 *4 *5)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1159 *4)) (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1161 *4 *5))))) -(-10 -7 (-15 -2283 ((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|))) (-15 -3280 ((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3192 ((-1 (-1068 |#1|) (-589 (-1068 |#1|))) (-1 |#2| (-589 |#2|)))) (-15 -2543 (|#2| |#2| |#2|)) (-15 -2097 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3033 (|#2| (-1 |#2| (-589 |#2|)) (-589 |#1|))) (-15 -1390 ((-589 |#2|) (-589 |#1|) (-589 (-1 |#2| (-589 |#2|)))))) -((-3065 ((|#2| |#4| (-710)) 30)) (-2068 ((|#4| |#2|) 25)) (-3083 ((|#4| (-383 |#2|)) 51 (|has| |#1| (-515)))) (-2931 (((-1 |#4| (-589 |#4|)) |#3|) 45))) -(((-1162 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2068 (|#4| |#2|)) (-15 -3065 (|#2| |#4| (-710))) (-15 -2931 ((-1 |#4| (-589 |#4|)) |#3|)) (IF (|has| |#1| (-515)) (-15 -3083 (|#4| (-383 |#2|))) |%noBranch|)) (-973) (-1144 |#1|) (-599 |#2|) (-1159 |#1|)) (T -1162)) -((-3083 (*1 *2 *3) (-12 (-5 *3 (-383 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-515)) (-4 *4 (-973)) (-4 *2 (-1159 *4)) (-5 *1 (-1162 *4 *5 *6 *2)) (-4 *6 (-599 *5)))) (-2931 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *5 (-1144 *4)) (-5 *2 (-1 *6 (-589 *6))) (-5 *1 (-1162 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-1159 *4)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-973)) (-4 *2 (-1144 *5)) (-5 *1 (-1162 *5 *2 *6 *3)) (-4 *6 (-599 *2)) (-4 *3 (-1159 *5)))) (-2068 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *3 (-1144 *4)) (-4 *2 (-1159 *4)) (-5 *1 (-1162 *4 *3 *5 *2)) (-4 *5 (-599 *3))))) -(-10 -7 (-15 -2068 (|#4| |#2|)) (-15 -3065 (|#2| |#4| (-710))) (-15 -2931 ((-1 |#4| (-589 |#4|)) |#3|)) (IF (|has| |#1| (-515)) (-15 -3083 (|#4| (-383 |#2|))) |%noBranch|)) -NIL -(((-1163) (-129)) (T -1163)) -NIL -(-13 (-10 -7 (-6 -3656))) -((-3924 (((-108) $ $) NIL)) (-2700 (((-1087)) 12)) (-3779 (((-1070) $) 17)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 11) (((-1087) $) 8)) (-3983 (((-108) $ $) 14))) -(((-1164 |#1|) (-13 (-1016) (-563 (-1087)) (-10 -8 (-15 -1458 ((-1087) $)) (-15 -2700 ((-1087))))) (-1087)) (T -1164)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1164 *3)) (-14 *3 *2))) (-2700 (*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1164 *3)) (-14 *3 *2)))) -(-13 (-1016) (-563 (-1087)) (-10 -8 (-15 -1458 ((-1087) $)) (-15 -2700 ((-1087))))) -((-2821 (($ (-710)) 16)) (-1777 (((-629 |#2|) $ $) 37)) (-3798 ((|#2| $) 46)) (-2996 ((|#2| $) 45)) (-3269 ((|#2| $ $) 33)) (-2240 (($ $ $) 42)) (-4087 (($ $) 20) (($ $ $) 26)) (-4075 (($ $ $) 13)) (* (($ (-523) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28))) -(((-1165 |#1| |#2|) (-10 -8 (-15 -3798 (|#2| |#1|)) (-15 -2996 (|#2| |#1|)) (-15 -2240 (|#1| |#1| |#1|)) (-15 -1777 ((-629 |#2|) |#1| |#1|)) (-15 -3269 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -2821 (|#1| (-710))) (-15 -4075 (|#1| |#1| |#1|))) (-1166 |#2|) (-1122)) (T -1165)) -NIL -(-10 -8 (-15 -3798 (|#2| |#1|)) (-15 -2996 (|#2| |#1|)) (-15 -2240 (|#1| |#1| |#1|)) (-15 -1777 ((-629 |#2|) |#1| |#1|)) (-15 -3269 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -2821 (|#1| (-710))) (-15 -4075 (|#1| |#1| |#1|))) -((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-2821 (($ (-710)) 112 (|has| |#1| (-23)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4245))) (($ $) 88 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-2867 (($ $) 90 (|has| $ (-6 -4245)))) (-3631 (($ $) 100)) (-1773 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 51)) (-1479 (((-523) (-1 (-108) |#1|) $) 97) (((-523) |#1| $) 96 (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) 95 (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-1777 (((-629 |#1|) $ $) 105 (|has| |#1| (-973)))) (-3052 (($ (-710) |#1|) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 87 (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 86 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3798 ((|#1| $) 102 (-12 (|has| |#1| (-973)) (|has| |#1| (-930))))) (-2866 (((-108) $ (-710)) 10)) (-2996 ((|#1| $) 103 (-12 (|has| |#1| (-973)) (|has| |#1| (-930))))) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 42 (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4203 (($ $ |#1|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1135 (-523))) 63)) (-3269 ((|#1| $ $) 106 (|has| |#1| (-973)))) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2240 (($ $ $) 104 (|has| |#1| (-973)))) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 91 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 70)) (-2326 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 84 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 83 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4030 (((-108) $ $) 85 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 82 (|has| |#1| (-786)))) (-4087 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4075 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-523) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-666))) (($ $ |#1|) 107 (|has| |#1| (-666)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) -(((-1166 |#1|) (-129) (-1122)) (T -1166)) -((-4075 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-25)))) (-2821 (*1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1166 *3)) (-4 *3 (-23)) (-4 *3 (-1122)))) (-4087 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-21)))) (-4087 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-4 *1 (-1166 *3)) (-4 *3 (-1122)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) (-3269 (*1 *2 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-973)))) (-1777 (*1 *2 *1 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1122)) (-4 *3 (-973)) (-5 *2 (-629 *3)))) (-2240 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-973)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-930)) (-4 *2 (-973)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-930)) (-4 *2 (-973))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4075 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2821 ($ (-710))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4087 ($ $)) (-15 -4087 ($ $ $)) (-15 * ($ (-523) $))) |%noBranch|) (IF (|has| |t#1| (-666)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-973)) (PROGN (-15 -3269 (|t#1| $ $)) (-15 -1777 ((-629 |t#1|) $ $)) (-15 -2240 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-930)) (IF (|has| |t#1| (-973)) (PROGN (-15 -2996 (|t#1| $)) (-15 -3798 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-33) . T) ((-97) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-349 |#1|) . T) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-786) |has| |#1| (-786)) ((-1016) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1122) . T)) -((-2837 (((-1168 |#2|) (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|) 13)) (-2437 ((|#2| (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|) 15)) (-3612 (((-3 (-1168 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1168 |#1|)) 28) (((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|)) 18))) -(((-1167 |#1| |#2|) (-10 -7 (-15 -2837 ((-1168 |#2|) (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|)) (-15 -3612 ((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|))) (-15 -3612 ((-3 (-1168 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1168 |#1|)))) (-1122) (-1122)) (T -1167)) -((-3612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1168 *6)) (-5 *1 (-1167 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1168 *6)) (-5 *1 (-1167 *5 *6)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1168 *5)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-1167 *5 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1168 *6)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-5 *2 (-1168 *5)) (-5 *1 (-1167 *6 *5))))) -(-10 -7 (-15 -2837 ((-1168 |#2|) (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|)) (-15 -3612 ((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|))) (-15 -3612 ((-3 (-1168 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1168 |#1|)))) -((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2821 (($ (-710)) NIL (|has| |#1| (-23)))) (-3510 (($ (-589 |#1|)) 9)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) 15 (|has| $ (-6 -4244)))) (-1777 (((-629 |#1|) $ $) NIL (|has| |#1| (-973)))) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3798 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-2866 (((-108) $ (-710)) NIL)) (-2996 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-3269 ((|#1| $ $) NIL (|has| |#1| (-973)))) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2240 (($ $ $) NIL (|has| |#1| (-973)))) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) 19 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 8)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4087 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4075 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-523) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-666))) (($ $ |#1|) NIL (|has| |#1| (-666)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-1168 |#1|) (-13 (-1166 |#1|) (-10 -8 (-15 -3510 ($ (-589 |#1|))))) (-1122)) (T -1168)) -((-3510 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1168 *3))))) -(-13 (-1166 |#1|) (-10 -8 (-15 -3510 ($ (-589 |#1|))))) -((-3924 (((-108) $ $) NIL)) (-2529 (((-1070) $ (-1070)) 87) (((-1070) $ (-1070) (-1070)) 85) (((-1070) $ (-1070) (-589 (-1070))) 84)) (-3186 (($) 56)) (-1412 (((-1173) $ (-443) (-852)) 42)) (-3142 (((-1173) $ (-852) (-1070)) 70) (((-1173) $ (-852) (-805)) 71)) (-3706 (((-1173) $ (-852) (-355) (-355)) 45)) (-2331 (((-1173) $ (-1070)) 66)) (-4164 (((-1173) $ (-852) (-1070)) 75)) (-3495 (((-1173) $ (-852) (-355) (-355)) 46)) (-3185 (((-1173) $ (-852) (-852)) 43)) (-2506 (((-1173) $) 67)) (-3999 (((-1173) $ (-852) (-1070)) 74)) (-3920 (((-1173) $ (-443) (-852)) 30)) (-3582 (((-1173) $ (-852) (-1070)) 73)) (-1866 (((-589 (-240)) $) 22) (($ $ (-589 (-240))) 23)) (-2990 (((-1173) $ (-710) (-710)) 40)) (-3034 (($ $) 57) (($ (-443) (-589 (-240))) 58)) (-3779 (((-1070) $) NIL)) (-1853 (((-523) $) 37)) (-2783 (((-1034) $) NIL)) (-2951 (((-1168 (-3 (-443) "undefined")) $) 36)) (-3151 (((-1168 (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3582 (-523)) (|:| -4134 (-523)) (|:| |spline| (-523)) (|:| -4166 (-523)) (|:| |axesColor| (-805)) (|:| -3142 (-523)) (|:| |unitsColor| (-805)) (|:| |showing| (-523)))) $) 35)) (-2614 (((-1173) $ (-852) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-805) (-523) (-805) (-523)) 65)) (-1646 (((-589 (-874 (-203))) $) NIL)) (-2526 (((-443) $ (-852)) 32)) (-4160 (((-1173) $ (-710) (-710) (-852) (-852)) 39)) (-2389 (((-1173) $ (-1070)) 76)) (-4134 (((-1173) $ (-852) (-1070)) 72)) (-1458 (((-794) $) 82)) (-3952 (((-1173) $) 77)) (-4166 (((-1173) $ (-852) (-1070)) 68) (((-1173) $ (-852) (-805)) 69)) (-3983 (((-108) $ $) NIL))) -(((-1169) (-13 (-1016) (-10 -8 (-15 -1646 ((-589 (-874 (-203))) $)) (-15 -3186 ($)) (-15 -3034 ($ $)) (-15 -1866 ((-589 (-240)) $)) (-15 -1866 ($ $ (-589 (-240)))) (-15 -3034 ($ (-443) (-589 (-240)))) (-15 -2614 ((-1173) $ (-852) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-805) (-523) (-805) (-523))) (-15 -3151 ((-1168 (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3582 (-523)) (|:| -4134 (-523)) (|:| |spline| (-523)) (|:| -4166 (-523)) (|:| |axesColor| (-805)) (|:| -3142 (-523)) (|:| |unitsColor| (-805)) (|:| |showing| (-523)))) $)) (-15 -2951 ((-1168 (-3 (-443) "undefined")) $)) (-15 -2331 ((-1173) $ (-1070))) (-15 -3920 ((-1173) $ (-443) (-852))) (-15 -2526 ((-443) $ (-852))) (-15 -4166 ((-1173) $ (-852) (-1070))) (-15 -4166 ((-1173) $ (-852) (-805))) (-15 -3142 ((-1173) $ (-852) (-1070))) (-15 -3142 ((-1173) $ (-852) (-805))) (-15 -3582 ((-1173) $ (-852) (-1070))) (-15 -3999 ((-1173) $ (-852) (-1070))) (-15 -4134 ((-1173) $ (-852) (-1070))) (-15 -2389 ((-1173) $ (-1070))) (-15 -3952 ((-1173) $)) (-15 -4160 ((-1173) $ (-710) (-710) (-852) (-852))) (-15 -3495 ((-1173) $ (-852) (-355) (-355))) (-15 -3706 ((-1173) $ (-852) (-355) (-355))) (-15 -4164 ((-1173) $ (-852) (-1070))) (-15 -2990 ((-1173) $ (-710) (-710))) (-15 -1412 ((-1173) $ (-443) (-852))) (-15 -3185 ((-1173) $ (-852) (-852))) (-15 -2529 ((-1070) $ (-1070))) (-15 -2529 ((-1070) $ (-1070) (-1070))) (-15 -2529 ((-1070) $ (-1070) (-589 (-1070)))) (-15 -2506 ((-1173) $)) (-15 -1853 ((-523) $)) (-15 -1458 ((-794) $))))) (T -1169)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1169)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-589 (-874 (-203)))) (-5 *1 (-1169)))) (-3186 (*1 *1) (-5 *1 (-1169))) (-3034 (*1 *1 *1) (-5 *1 (-1169))) (-1866 (*1 *2 *1) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1169)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1169)))) (-3034 (*1 *1 *2 *3) (-12 (-5 *2 (-443)) (-5 *3 (-589 (-240))) (-5 *1 (-1169)))) (-2614 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-852)) (-5 *4 (-203)) (-5 *5 (-523)) (-5 *6 (-805)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-1168 (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3582 (-523)) (|:| -4134 (-523)) (|:| |spline| (-523)) (|:| -4166 (-523)) (|:| |axesColor| (-805)) (|:| -3142 (-523)) (|:| |unitsColor| (-805)) (|:| |showing| (-523))))) (-5 *1 (-1169)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1168 (-3 (-443) "undefined"))) (-5 *1 (-1169)))) (-2331 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3920 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-443)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-2526 (*1 *2 *1 *3) (-12 (-5 *3 (-852)) (-5 *2 (-443)) (-5 *1 (-1169)))) (-4166 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-4166 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-805)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3142 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3142 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-805)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3582 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3999 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-4134 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-2389 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1169)))) (-4160 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-710)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3495 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-852)) (-5 *4 (-355)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3706 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-852)) (-5 *4 (-355)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-4164 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-2990 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-1412 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-443)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3185 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-2529 (*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1169)))) (-2529 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1169)))) (-2529 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-1169)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1169)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1169))))) -(-13 (-1016) (-10 -8 (-15 -1646 ((-589 (-874 (-203))) $)) (-15 -3186 ($)) (-15 -3034 ($ $)) (-15 -1866 ((-589 (-240)) $)) (-15 -1866 ($ $ (-589 (-240)))) (-15 -3034 ($ (-443) (-589 (-240)))) (-15 -2614 ((-1173) $ (-852) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-805) (-523) (-805) (-523))) (-15 -3151 ((-1168 (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3582 (-523)) (|:| -4134 (-523)) (|:| |spline| (-523)) (|:| -4166 (-523)) (|:| |axesColor| (-805)) (|:| -3142 (-523)) (|:| |unitsColor| (-805)) (|:| |showing| (-523)))) $)) (-15 -2951 ((-1168 (-3 (-443) "undefined")) $)) (-15 -2331 ((-1173) $ (-1070))) (-15 -3920 ((-1173) $ (-443) (-852))) (-15 -2526 ((-443) $ (-852))) (-15 -4166 ((-1173) $ (-852) (-1070))) (-15 -4166 ((-1173) $ (-852) (-805))) (-15 -3142 ((-1173) $ (-852) (-1070))) (-15 -3142 ((-1173) $ (-852) (-805))) (-15 -3582 ((-1173) $ (-852) (-1070))) (-15 -3999 ((-1173) $ (-852) (-1070))) (-15 -4134 ((-1173) $ (-852) (-1070))) (-15 -2389 ((-1173) $ (-1070))) (-15 -3952 ((-1173) $)) (-15 -4160 ((-1173) $ (-710) (-710) (-852) (-852))) (-15 -3495 ((-1173) $ (-852) (-355) (-355))) (-15 -3706 ((-1173) $ (-852) (-355) (-355))) (-15 -4164 ((-1173) $ (-852) (-1070))) (-15 -2990 ((-1173) $ (-710) (-710))) (-15 -1412 ((-1173) $ (-443) (-852))) (-15 -3185 ((-1173) $ (-852) (-852))) (-15 -2529 ((-1070) $ (-1070))) (-15 -2529 ((-1070) $ (-1070) (-1070))) (-15 -2529 ((-1070) $ (-1070) (-589 (-1070)))) (-15 -2506 ((-1173) $)) (-15 -1853 ((-523) $)) (-15 -1458 ((-794) $)))) -((-3924 (((-108) $ $) NIL)) (-4197 (((-1173) $ (-355)) 138) (((-1173) $ (-355) (-355) (-355)) 139)) (-2529 (((-1070) $ (-1070)) 146) (((-1070) $ (-1070) (-1070)) 144) (((-1070) $ (-1070) (-589 (-1070))) 143)) (-2730 (($) 49)) (-3087 (((-1173) $ (-355) (-355) (-355) (-355) (-355)) 114) (((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) $) 112) (((-1173) $ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) 113) (((-1173) $ (-523) (-523) (-355) (-355) (-355)) 115) (((-1173) $ (-355) (-355)) 116) (((-1173) $ (-355) (-355) (-355)) 123)) (-2985 (((-355)) 96) (((-355) (-355)) 97)) (-3524 (((-355)) 91) (((-355) (-355)) 93)) (-2123 (((-355)) 94) (((-355) (-355)) 95)) (-2912 (((-355)) 100) (((-355) (-355)) 101)) (-3673 (((-355)) 98) (((-355) (-355)) 99)) (-3706 (((-1173) $ (-355) (-355)) 140)) (-2331 (((-1173) $ (-1070)) 124)) (-3097 (((-1047 (-203)) $) 50) (($ $ (-1047 (-203))) 51)) (-3985 (((-1173) $ (-1070)) 152)) (-4000 (((-1173) $ (-1070)) 153)) (-4149 (((-1173) $ (-355) (-355)) 122) (((-1173) $ (-523) (-523)) 137)) (-3185 (((-1173) $ (-852) (-852)) 130)) (-2506 (((-1173) $) 110)) (-1921 (((-1173) $ (-1070)) 151)) (-1269 (((-1173) $ (-1070)) 107)) (-1866 (((-589 (-240)) $) 52) (($ $ (-589 (-240))) 53)) (-2990 (((-1173) $ (-710) (-710)) 129)) (-3247 (((-1173) $ (-710) (-874 (-203))) 158)) (-2237 (($ $) 56) (($ (-1047 (-203)) (-1070)) 57) (($ (-1047 (-203)) (-589 (-240))) 58)) (-3430 (((-1173) $ (-355) (-355) (-355)) 104)) (-3779 (((-1070) $) NIL)) (-1853 (((-523) $) 102)) (-3921 (((-1173) $ (-355)) 141)) (-3848 (((-1173) $ (-355)) 156)) (-2783 (((-1034) $) NIL)) (-1375 (((-1173) $ (-355)) 155)) (-3383 (((-1173) $ (-1070)) 109)) (-4160 (((-1173) $ (-710) (-710) (-852) (-852)) 128)) (-2538 (((-1173) $ (-1070)) 106)) (-2389 (((-1173) $ (-1070)) 108)) (-3789 (((-1173) $ (-144) (-144)) 127)) (-1458 (((-794) $) 135)) (-3952 (((-1173) $) 111)) (-3184 (((-1173) $ (-1070)) 154)) (-4166 (((-1173) $ (-1070)) 105)) (-3983 (((-108) $ $) NIL))) -(((-1170) (-13 (-1016) (-10 -8 (-15 -3524 ((-355))) (-15 -3524 ((-355) (-355))) (-15 -2123 ((-355))) (-15 -2123 ((-355) (-355))) (-15 -2985 ((-355))) (-15 -2985 ((-355) (-355))) (-15 -3673 ((-355))) (-15 -3673 ((-355) (-355))) (-15 -2912 ((-355))) (-15 -2912 ((-355) (-355))) (-15 -2730 ($)) (-15 -2237 ($ $)) (-15 -2237 ($ (-1047 (-203)) (-1070))) (-15 -2237 ($ (-1047 (-203)) (-589 (-240)))) (-15 -3097 ((-1047 (-203)) $)) (-15 -3097 ($ $ (-1047 (-203)))) (-15 -3247 ((-1173) $ (-710) (-874 (-203)))) (-15 -1866 ((-589 (-240)) $)) (-15 -1866 ($ $ (-589 (-240)))) (-15 -2990 ((-1173) $ (-710) (-710))) (-15 -3185 ((-1173) $ (-852) (-852))) (-15 -2331 ((-1173) $ (-1070))) (-15 -4160 ((-1173) $ (-710) (-710) (-852) (-852))) (-15 -3087 ((-1173) $ (-355) (-355) (-355) (-355) (-355))) (-15 -3087 ((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) $)) (-15 -3087 ((-1173) $ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -3087 ((-1173) $ (-523) (-523) (-355) (-355) (-355))) (-15 -3087 ((-1173) $ (-355) (-355))) (-15 -3087 ((-1173) $ (-355) (-355) (-355))) (-15 -2389 ((-1173) $ (-1070))) (-15 -4166 ((-1173) $ (-1070))) (-15 -2538 ((-1173) $ (-1070))) (-15 -1269 ((-1173) $ (-1070))) (-15 -3383 ((-1173) $ (-1070))) (-15 -4149 ((-1173) $ (-355) (-355))) (-15 -4149 ((-1173) $ (-523) (-523))) (-15 -4197 ((-1173) $ (-355))) (-15 -4197 ((-1173) $ (-355) (-355) (-355))) (-15 -3706 ((-1173) $ (-355) (-355))) (-15 -1921 ((-1173) $ (-1070))) (-15 -1375 ((-1173) $ (-355))) (-15 -3848 ((-1173) $ (-355))) (-15 -3985 ((-1173) $ (-1070))) (-15 -4000 ((-1173) $ (-1070))) (-15 -3184 ((-1173) $ (-1070))) (-15 -3430 ((-1173) $ (-355) (-355) (-355))) (-15 -3921 ((-1173) $ (-355))) (-15 -2506 ((-1173) $)) (-15 -3789 ((-1173) $ (-144) (-144))) (-15 -2529 ((-1070) $ (-1070))) (-15 -2529 ((-1070) $ (-1070) (-1070))) (-15 -2529 ((-1070) $ (-1070) (-589 (-1070)))) (-15 -3952 ((-1173) $)) (-15 -1853 ((-523) $))))) (T -1170)) -((-3524 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-3524 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2123 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2123 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2985 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2985 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-3673 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-3673 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2912 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2912 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2730 (*1 *1) (-5 *1 (-1170))) (-2237 (*1 *1 *1) (-5 *1 (-1170))) (-2237 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-1070)) (-5 *1 (-1170)))) (-2237 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-589 (-240))) (-5 *1 (-1170)))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1170)))) (-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1170)))) (-3247 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-874 (-203))) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-1866 (*1 *2 *1) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1170)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1170)))) (-2990 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3185 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-2331 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4160 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-710)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3087 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) (-5 *1 (-1170)))) (-3087 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3087 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-523)) (-5 *4 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3087 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3087 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-2389 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4166 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-2538 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-1269 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3383 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4149 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4149 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4197 (*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4197 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3706 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-1921 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-1375 (*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3848 (*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3985 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4000 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3184 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3430 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3921 (*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3789 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-144)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-2529 (*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1170)))) (-2529 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1170)))) (-2529 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-1170)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1170)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1170))))) -(-13 (-1016) (-10 -8 (-15 -3524 ((-355))) (-15 -3524 ((-355) (-355))) (-15 -2123 ((-355))) (-15 -2123 ((-355) (-355))) (-15 -2985 ((-355))) (-15 -2985 ((-355) (-355))) (-15 -3673 ((-355))) (-15 -3673 ((-355) (-355))) (-15 -2912 ((-355))) (-15 -2912 ((-355) (-355))) (-15 -2730 ($)) (-15 -2237 ($ $)) (-15 -2237 ($ (-1047 (-203)) (-1070))) (-15 -2237 ($ (-1047 (-203)) (-589 (-240)))) (-15 -3097 ((-1047 (-203)) $)) (-15 -3097 ($ $ (-1047 (-203)))) (-15 -3247 ((-1173) $ (-710) (-874 (-203)))) (-15 -1866 ((-589 (-240)) $)) (-15 -1866 ($ $ (-589 (-240)))) (-15 -2990 ((-1173) $ (-710) (-710))) (-15 -3185 ((-1173) $ (-852) (-852))) (-15 -2331 ((-1173) $ (-1070))) (-15 -4160 ((-1173) $ (-710) (-710) (-852) (-852))) (-15 -3087 ((-1173) $ (-355) (-355) (-355) (-355) (-355))) (-15 -3087 ((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) $)) (-15 -3087 ((-1173) $ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -3087 ((-1173) $ (-523) (-523) (-355) (-355) (-355))) (-15 -3087 ((-1173) $ (-355) (-355))) (-15 -3087 ((-1173) $ (-355) (-355) (-355))) (-15 -2389 ((-1173) $ (-1070))) (-15 -4166 ((-1173) $ (-1070))) (-15 -2538 ((-1173) $ (-1070))) (-15 -1269 ((-1173) $ (-1070))) (-15 -3383 ((-1173) $ (-1070))) (-15 -4149 ((-1173) $ (-355) (-355))) (-15 -4149 ((-1173) $ (-523) (-523))) (-15 -4197 ((-1173) $ (-355))) (-15 -4197 ((-1173) $ (-355) (-355) (-355))) (-15 -3706 ((-1173) $ (-355) (-355))) (-15 -1921 ((-1173) $ (-1070))) (-15 -1375 ((-1173) $ (-355))) (-15 -3848 ((-1173) $ (-355))) (-15 -3985 ((-1173) $ (-1070))) (-15 -4000 ((-1173) $ (-1070))) (-15 -3184 ((-1173) $ (-1070))) (-15 -3430 ((-1173) $ (-355) (-355) (-355))) (-15 -3921 ((-1173) $ (-355))) (-15 -2506 ((-1173) $)) (-15 -3789 ((-1173) $ (-144) (-144))) (-15 -2529 ((-1070) $ (-1070))) (-15 -2529 ((-1070) $ (-1070) (-1070))) (-15 -2529 ((-1070) $ (-1070) (-589 (-1070)))) (-15 -3952 ((-1173) $)) (-15 -1853 ((-523) $)))) -((-2203 (((-589 (-1070)) (-589 (-1070))) 94) (((-589 (-1070))) 89)) (-3041 (((-589 (-1070))) 87)) (-1355 (((-589 (-852)) (-589 (-852))) 62) (((-589 (-852))) 59)) (-2101 (((-589 (-710)) (-589 (-710))) 56) (((-589 (-710))) 52)) (-3274 (((-1173)) 64)) (-2496 (((-852) (-852)) 80) (((-852)) 79)) (-4136 (((-852) (-852)) 78) (((-852)) 77)) (-3299 (((-805) (-805)) 74) (((-805)) 73)) (-3481 (((-203)) 84) (((-203) (-355)) 86)) (-1208 (((-852)) 81) (((-852) (-852)) 82)) (-3590 (((-852) (-852)) 76) (((-852)) 75)) (-3404 (((-805) (-805)) 68) (((-805)) 66)) (-2563 (((-805) (-805)) 70) (((-805)) 69)) (-2186 (((-805) (-805)) 72) (((-805)) 71))) -(((-1171) (-10 -7 (-15 -3404 ((-805))) (-15 -3404 ((-805) (-805))) (-15 -2563 ((-805))) (-15 -2563 ((-805) (-805))) (-15 -2186 ((-805))) (-15 -2186 ((-805) (-805))) (-15 -3299 ((-805))) (-15 -3299 ((-805) (-805))) (-15 -3590 ((-852))) (-15 -3590 ((-852) (-852))) (-15 -2101 ((-589 (-710)))) (-15 -2101 ((-589 (-710)) (-589 (-710)))) (-15 -1355 ((-589 (-852)))) (-15 -1355 ((-589 (-852)) (-589 (-852)))) (-15 -3274 ((-1173))) (-15 -2203 ((-589 (-1070)))) (-15 -2203 ((-589 (-1070)) (-589 (-1070)))) (-15 -3041 ((-589 (-1070)))) (-15 -4136 ((-852))) (-15 -2496 ((-852))) (-15 -4136 ((-852) (-852))) (-15 -2496 ((-852) (-852))) (-15 -1208 ((-852) (-852))) (-15 -1208 ((-852))) (-15 -3481 ((-203) (-355))) (-15 -3481 ((-203))))) (T -1171)) -((-3481 (*1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-1171)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-203)) (-5 *1 (-1171)))) (-1208 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-1208 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-2496 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-4136 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-2496 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-4136 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-3041 (*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1171)))) (-2203 (*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1171)))) (-2203 (*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1171)))) (-3274 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1171)))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1171)))) (-1355 (*1 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1171)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1171)))) (-2101 (*1 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1171)))) (-3590 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-3590 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-3299 (*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-2186 (*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-2186 (*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-2563 (*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-2563 (*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-3404 (*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-3404 (*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171))))) -(-10 -7 (-15 -3404 ((-805))) (-15 -3404 ((-805) (-805))) (-15 -2563 ((-805))) (-15 -2563 ((-805) (-805))) (-15 -2186 ((-805))) (-15 -2186 ((-805) (-805))) (-15 -3299 ((-805))) (-15 -3299 ((-805) (-805))) (-15 -3590 ((-852))) (-15 -3590 ((-852) (-852))) (-15 -2101 ((-589 (-710)))) (-15 -2101 ((-589 (-710)) (-589 (-710)))) (-15 -1355 ((-589 (-852)))) (-15 -1355 ((-589 (-852)) (-589 (-852)))) (-15 -3274 ((-1173))) (-15 -2203 ((-589 (-1070)))) (-15 -2203 ((-589 (-1070)) (-589 (-1070)))) (-15 -3041 ((-589 (-1070)))) (-15 -4136 ((-852))) (-15 -2496 ((-852))) (-15 -4136 ((-852) (-852))) (-15 -2496 ((-852) (-852))) (-15 -1208 ((-852) (-852))) (-15 -1208 ((-852))) (-15 -3481 ((-203) (-355))) (-15 -3481 ((-203)))) -((-2605 (((-443) (-589 (-589 (-874 (-203)))) (-589 (-240))) 17) (((-443) (-589 (-589 (-874 (-203))))) 16) (((-443) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240))) 15)) (-1437 (((-1169) (-589 (-589 (-874 (-203)))) (-589 (-240))) 23) (((-1169) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240))) 22)) (-1458 (((-1169) (-443)) 34))) -(((-1172) (-10 -7 (-15 -2605 ((-443) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240)))) (-15 -2605 ((-443) (-589 (-589 (-874 (-203)))))) (-15 -2605 ((-443) (-589 (-589 (-874 (-203)))) (-589 (-240)))) (-15 -1437 ((-1169) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240)))) (-15 -1437 ((-1169) (-589 (-589 (-874 (-203)))) (-589 (-240)))) (-15 -1458 ((-1169) (-443))))) (T -1172)) -((-1458 (*1 *2 *3) (-12 (-5 *3 (-443)) (-5 *2 (-1169)) (-5 *1 (-1172)))) (-1437 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-1172)))) (-1437 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-805)) (-5 *5 (-852)) (-5 *6 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-1172)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-589 (-240))) (-5 *2 (-443)) (-5 *1 (-1172)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-443)) (-5 *1 (-1172)))) (-2605 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-805)) (-5 *5 (-852)) (-5 *6 (-589 (-240))) (-5 *2 (-443)) (-5 *1 (-1172))))) -(-10 -7 (-15 -2605 ((-443) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240)))) (-15 -2605 ((-443) (-589 (-589 (-874 (-203)))))) (-15 -2605 ((-443) (-589 (-589 (-874 (-203)))) (-589 (-240)))) (-15 -1437 ((-1169) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240)))) (-15 -1437 ((-1169) (-589 (-589 (-874 (-203)))) (-589 (-240)))) (-15 -1458 ((-1169) (-443)))) -((-3853 (($) 7)) (-1458 (((-794) $) 10))) -(((-1173) (-10 -8 (-15 -3853 ($)) (-15 -1458 ((-794) $)))) (T -1173)) -((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1173)))) (-3853 (*1 *1) (-5 *1 (-1173)))) -(-10 -8 (-15 -3853 ($)) (-15 -1458 ((-794) $))) -((-4098 (($ $ |#2|) 10))) -(((-1174 |#1| |#2|) (-10 -8 (-15 -4098 (|#1| |#1| |#2|))) (-1175 |#2|) (-339)) (T -1174)) -NIL -(-10 -8 (-15 -4098 (|#1| |#1| |#2|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3203 (((-126)) 28)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 29)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1175 |#1|) (-129) (-339)) (T -1175)) -((-4098 (*1 *1 *1 *2) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-339)))) (-3203 (*1 *2) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-339)) (-5 *2 (-126))))) -(-13 (-657 |t#1|) (-10 -8 (-15 -4098 ($ $ |t#1|)) (-15 -3203 ((-126))))) +((-1345 (((-1133 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1133 |#1| |#3| |#5|)) 23))) +(((-1128 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1345 ((-1133 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1133 |#1| |#3| |#5|)))) (-973) (-973) (-1087) (-1087) |#1| |#2|) (T -1128)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1133 *5 *7 *9)) (-4 *5 (-973)) (-4 *6 (-973)) (-14 *7 (-1087)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1133 *6 *8 *10)) (-5 *1 (-1128 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1087))))) +(-10 -7 (-15 -1345 ((-1133 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1133 |#1| |#3| |#5|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1292 (((-589 (-1001)) $) 74)) (-2724 (((-1087) $) 103)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3306 (($ $) 52 (|has| |#1| (-515)))) (-3174 (((-108) $) 54 (|has| |#1| (-515)))) (-3276 (($ $ (-523)) 98) (($ $ (-523) (-523)) 97)) (-1552 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 105)) (-1462 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 162 (|has| |#1| (-339)))) (-4226 (((-394 $) $) 163 (|has| |#1| (-339)))) (-2437 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-2787 (((-108) $ $) 153 (|has| |#1| (-339)))) (-1441 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-3199 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 174)) (-1481 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) 17 T CONST)) (-4059 (($ $ $) 157 (|has| |#1| (-339)))) (-1457 (($ $) 60)) (-1444 (((-3 $ "failed") $) 34)) (-4035 (((-383 (-883 |#1|)) $ (-523)) 172 (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) 171 (|has| |#1| (-515)))) (-4032 (($ $ $) 156 (|has| |#1| (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 151 (|has| |#1| (-339)))) (-3049 (((-108) $) 164 (|has| |#1| (-339)))) (-2589 (((-108) $) 73)) (-3352 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-523) $) 100) (((-523) $ (-523)) 99)) (-2769 (((-108) $) 31)) (-1973 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-3590 (($ $ (-852)) 101)) (-2839 (($ (-1 |#1| (-523)) $) 173)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 160 (|has| |#1| (-339)))) (-2704 (((-108) $) 62)) (-1267 (($ |#1| (-523)) 61) (($ $ (-1001) (-523)) 76) (($ $ (-589 (-1001)) (-589 (-523))) 75)) (-1345 (($ (-1 |#1| |#1|) $) 63)) (-2313 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) 65)) (-1437 ((|#1| $) 66)) (-3278 (($ (-589 $)) 149 (|has| |#1| (-339))) (($ $ $) 148 (|has| |#1| (-339)))) (-2032 (((-1070) $) 9)) (-1396 (($ $) 165 (|has| |#1| (-339)))) (-2814 (($ $) 170 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 169 (-3172 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1109)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 150 (|has| |#1| (-339)))) (-3310 (($ (-589 $)) 147 (|has| |#1| (-339))) (($ $ $) 146 (|has| |#1| (-339)))) (-2424 (((-394 $) $) 161 (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 158 (|has| |#1| (-339)))) (-3053 (($ $ (-523)) 95)) (-4007 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 152 (|has| |#1| (-339)))) (-2922 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-523)))))) (-3413 (((-710) $) 154 (|has| |#1| (-339)))) (-1937 ((|#1| $ (-523)) 104) (($ $ $) 81 (|has| (-523) (-1028)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 155 (|has| |#1| (-339)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (-2640 (((-523) $) 64)) (-2306 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) 72)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 47 (|has| |#1| (-158))) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515)))) (-2084 ((|#1| $ (-523)) 59)) (-1942 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-3710 ((|#1| $) 102)) (-2341 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2318 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-523)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 166 (|has| |#1| (-339)))) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#1|) 58 (|has| |#1| (-339))) (($ $ $) 168 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 167 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-1129 |#1|) (-129) (-973)) (T -1129)) +((-3199 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) (-4 *3 (-973)) (-4 *1 (-1129 *3)))) (-2839 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-523))) (-4 *1 (-1129 *3)) (-4 *3 (-973)))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-1129 *4)) (-4 *4 (-973)) (-4 *4 (-515)) (-5 *2 (-383 (-883 *4))))) (-4035 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-1129 *4)) (-4 *4 (-973)) (-4 *4 (-515)) (-5 *2 (-383 (-883 *4))))) (-2814 (*1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) (-2814 (*1 *1 *1 *2) (-3172 (-12 (-5 *2 (-1087)) (-4 *1 (-1129 *3)) (-4 *3 (-973)) (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1109)) (-4 *3 (-37 (-383 (-523)))))) (-12 (-5 *2 (-1087)) (-4 *1 (-1129 *3)) (-4 *3 (-973)) (-12 (|has| *3 (-15 -1292 ((-589 *2) *3))) (|has| *3 (-15 -2814 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523))))))))) +(-13 (-1147 |t#1| (-523)) (-10 -8 (-15 -3199 ($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |t#1|))))) (-15 -2839 ($ (-1 |t#1| (-523)) $)) (IF (|has| |t#1| (-515)) (PROGN (-15 -4035 ((-383 (-883 |t#1|)) $ (-523))) (-15 -4035 ((-383 (-883 |t#1|)) $ (-523) (-523)))) |%noBranch|) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -2814 ($ $)) (IF (|has| |t#1| (-15 -2814 (|t#1| |t#1| (-1087)))) (IF (|has| |t#1| (-15 -1292 ((-589 (-1087)) |t#1|))) (-15 -2814 ($ $ (-1087))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1109)) (IF (|has| |t#1| (-889)) (IF (|has| |t#1| (-29 (-523))) (-15 -2814 ($ $ (-1087))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-930)) (-6 (-1109))) |%noBranch|) (IF (|has| |t#1| (-339)) (-6 (-339)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-523)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| (-523) |#1|))) ((-221) |has| |#1| (-339)) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 $ $) |has| (-523) (-1028)) ((-267) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-339) |has| |#1| (-339)) ((-427) |has| |#1| (-339)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-515) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-591 #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| #0# (-1001)) . T) ((-851) |has| |#1| (-339)) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-979 #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1109) |has| |#1| (-37 (-383 (-523)))) ((-1112) |has| |#1| (-37 (-383 (-523)))) ((-1127) |has| |#1| (-339)) ((-1147 |#1| #0#) . T)) +((-2603 (((-108) $) 12)) (-1220 (((-3 |#3| "failed") $) 17) (((-3 (-1087) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL)) (-3508 ((|#3| $) 14) (((-1087) $) NIL) (((-383 (-523)) $) NIL) (((-523) $) NIL))) +(((-1130 |#1| |#2| |#3|) (-10 -8 (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3508 ((-1087) |#1|)) (-15 -1220 ((-3 (-1087) "failed") |#1|)) (-15 -3508 (|#3| |#1|)) (-15 -1220 ((-3 |#3| "failed") |#1|)) (-15 -2603 ((-108) |#1|))) (-1131 |#2| |#3|) (-973) (-1160 |#2|)) (T -1130)) +NIL +(-10 -8 (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3508 ((-1087) |#1|)) (-15 -1220 ((-3 (-1087) "failed") |#1|)) (-15 -3508 (|#3| |#1|)) (-15 -1220 ((-3 |#3| "failed") |#1|)) (-15 -2603 ((-108) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2046 ((|#2| $) 231 (-3147 (|has| |#2| (-284)) (|has| |#1| (-339))))) (-1292 (((-589 (-1001)) $) 74)) (-2724 (((-1087) $) 103)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3306 (($ $) 52 (|has| |#1| (-515)))) (-3174 (((-108) $) 54 (|has| |#1| (-515)))) (-3276 (($ $ (-523)) 98) (($ $ (-523) (-523)) 97)) (-1552 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 105)) (-1253 ((|#2| $) 267)) (-3333 (((-3 |#2| "failed") $) 263)) (-1355 ((|#2| $) 264)) (-1462 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) 19)) (-4130 (((-394 (-1083 $)) (-1083 $)) 240 (-3147 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-3718 (($ $) 162 (|has| |#1| (-339)))) (-4226 (((-394 $) $) 163 (|has| |#1| (-339)))) (-2437 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 237 (-3147 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-2787 (((-108) $ $) 153 (|has| |#1| (-339)))) (-1441 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-3482 (((-523) $) 249 (-3147 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-3199 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 174)) (-1481 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) 17 T CONST)) (-1220 (((-3 |#2| "failed") $) 270) (((-3 (-523) "failed") $) 259 (-3147 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-383 (-523)) "failed") $) 257 (-3147 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-1087) "failed") $) 242 (-3147 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339))))) (-3508 ((|#2| $) 269) (((-523) $) 260 (-3147 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-383 (-523)) $) 258 (-3147 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-1087) $) 243 (-3147 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339))))) (-1458 (($ $) 266) (($ (-523) $) 265)) (-4059 (($ $ $) 157 (|has| |#1| (-339)))) (-1457 (($ $) 60)) (-2243 (((-629 |#2|) (-629 $)) 221 (|has| |#1| (-339))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) 220 (|has| |#1| (-339))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 219 (-3147 (|has| |#2| (-585 (-523))) (|has| |#1| (-339)))) (((-629 (-523)) (-629 $)) 218 (-3147 (|has| |#2| (-585 (-523))) (|has| |#1| (-339))))) (-1444 (((-3 $ "failed") $) 34)) (-4035 (((-383 (-883 |#1|)) $ (-523)) 172 (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) 171 (|has| |#1| (-515)))) (-1631 (($) 233 (-3147 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-4032 (($ $ $) 156 (|has| |#1| (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 151 (|has| |#1| (-339)))) (-3049 (((-108) $) 164 (|has| |#1| (-339)))) (-3712 (((-108) $) 247 (-3147 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2589 (((-108) $) 73)) (-3352 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 225 (-3147 (|has| |#2| (-817 (-355))) (|has| |#1| (-339)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 224 (-3147 (|has| |#2| (-817 (-523))) (|has| |#1| (-339))))) (-3437 (((-523) $) 100) (((-523) $ (-523)) 99)) (-2769 (((-108) $) 31)) (-1296 (($ $) 229 (|has| |#1| (-339)))) (-3316 ((|#2| $) 227 (|has| |#1| (-339)))) (-1973 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-2738 (((-3 $ "failed") $) 261 (-3147 (|has| |#2| (-1063)) (|has| |#1| (-339))))) (-2057 (((-108) $) 248 (-3147 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-3590 (($ $ (-852)) 101)) (-2839 (($ (-1 |#1| (-523)) $) 173)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 160 (|has| |#1| (-339)))) (-2704 (((-108) $) 62)) (-1267 (($ |#1| (-523)) 61) (($ $ (-1001) (-523)) 76) (($ $ (-589 (-1001)) (-589 (-523))) 75)) (-3239 (($ $ $) 251 (-3147 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3158 (($ $ $) 252 (-3147 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-1345 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-339)))) (-2313 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) 65)) (-1437 ((|#1| $) 66)) (-3278 (($ (-589 $)) 149 (|has| |#1| (-339))) (($ $ $) 148 (|has| |#1| (-339)))) (-1369 (($ (-523) |#2|) 268)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 165 (|has| |#1| (-339)))) (-2814 (($ $) 170 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 169 (-3172 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1109)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-2773 (($) 262 (-3147 (|has| |#2| (-1063)) (|has| |#1| (-339))) CONST)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 150 (|has| |#1| (-339)))) (-3310 (($ (-589 $)) 147 (|has| |#1| (-339))) (($ $ $) 146 (|has| |#1| (-339)))) (-4110 (($ $) 232 (-3147 (|has| |#2| (-284)) (|has| |#1| (-339))))) (-2733 ((|#2| $) 235 (-3147 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-1708 (((-394 (-1083 $)) (-1083 $)) 238 (-3147 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-1417 (((-394 (-1083 $)) (-1083 $)) 239 (-3147 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-2424 (((-394 $) $) 161 (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 158 (|has| |#1| (-339)))) (-3053 (($ $ (-523)) 95)) (-4007 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 152 (|has| |#1| (-339)))) (-2922 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-523))))) (($ $ (-1087) |#2|) 212 (-3147 (|has| |#2| (-484 (-1087) |#2|)) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 |#2|)) 211 (-3147 (|has| |#2| (-484 (-1087) |#2|)) (|has| |#1| (-339)))) (($ $ (-589 (-271 |#2|))) 210 (-3147 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ (-271 |#2|)) 209 (-3147 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ |#2| |#2|) 208 (-3147 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ (-589 |#2|) (-589 |#2|)) 207 (-3147 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339))))) (-3413 (((-710) $) 154 (|has| |#1| (-339)))) (-1937 ((|#1| $ (-523)) 104) (($ $ $) 81 (|has| (-523) (-1028))) (($ $ |#2|) 206 (-3147 (|has| |#2| (-263 |#2| |#2|)) (|has| |#1| (-339))))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 155 (|has| |#1| (-339)))) (-3984 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-339))) (($ $ (-1 |#2| |#2|) (-710)) 216 (|has| |#1| (-339))) (($ $ (-710)) 84 (-3172 (-3147 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 82 (-3172 (-3147 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) 89 (-3172 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-1087) (-710)) 88 (-3172 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-589 (-1087))) 87 (-3172 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-1087)) 86 (-3172 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))))) (-2793 (($ $) 230 (|has| |#1| (-339)))) (-3329 ((|#2| $) 228 (|has| |#1| (-339)))) (-2640 (((-523) $) 64)) (-2306 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-1400 (((-203) $) 246 (-3147 (|has| |#2| (-949)) (|has| |#1| (-339)))) (((-355) $) 245 (-3147 (|has| |#2| (-949)) (|has| |#1| (-339)))) (((-499) $) 244 (-3147 (|has| |#2| (-564 (-499))) (|has| |#1| (-339)))) (((-823 (-355)) $) 223 (-3147 (|has| |#2| (-564 (-823 (-355)))) (|has| |#1| (-339)))) (((-823 (-523)) $) 222 (-3147 (|has| |#2| (-564 (-823 (-523)))) (|has| |#1| (-339))))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 236 (-3147 (-3147 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#1| (-339))))) (-2488 (($ $) 72)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 47 (|has| |#1| (-158))) (($ |#2|) 271) (($ (-1087)) 241 (-3147 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339)))) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515)))) (-2084 ((|#1| $ (-523)) 59)) (-1942 (((-3 $ "failed") $) 48 (-3172 (-3147 (-3172 (|has| |#2| (-134)) (-3147 (|has| $ (-134)) (|has| |#2| (-840)))) (|has| |#1| (-339))) (|has| |#1| (-134))))) (-3272 (((-710)) 29)) (-3710 ((|#1| $) 102)) (-3809 ((|#2| $) 234 (-3147 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-2341 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2318 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-523)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2695 (($ $) 250 (-3147 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 166 (|has| |#1| (-339)))) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-339))) (($ $ (-1 |#2| |#2|) (-710)) 214 (|has| |#1| (-339))) (($ $ (-710)) 85 (-3172 (-3147 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 83 (-3172 (-3147 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) 93 (-3172 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-1087) (-710)) 92 (-3172 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-589 (-1087))) 91 (-3172 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-1087)) 90 (-3172 (-3147 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))))) (-4006 (((-108) $ $) 254 (-3147 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3980 (((-108) $ $) 255 (-3147 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 253 (-3147 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3966 (((-108) $ $) 256 (-3147 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4074 (($ $ |#1|) 58 (|has| |#1| (-339))) (($ $ $) 168 (|has| |#1| (-339))) (($ |#2| |#2|) 226 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 167 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-339))) (($ |#2| $) 204 (|has| |#1| (-339))) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-1131 |#1| |#2|) (-129) (-973) (-1160 |t#1|)) (T -1131)) +((-2640 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1160 *3)) (-5 *2 (-523)))) (-1691 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *1 (-1131 *3 *2)) (-4 *2 (-1160 *3)))) (-1369 (*1 *1 *2 *3) (-12 (-5 *2 (-523)) (-4 *4 (-973)) (-4 *1 (-1131 *4 *3)) (-4 *3 (-1160 *4)))) (-1253 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1160 *3)))) (-1458 (*1 *1 *1) (-12 (-4 *1 (-1131 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1160 *2)))) (-1458 (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-4 *1 (-1131 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1160 *3)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1160 *3)))) (-3333 (*1 *2 *1) (|partial| -12 (-4 *1 (-1131 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1160 *3))))) +(-13 (-1129 |t#1|) (-964 |t#2|) (-10 -8 (-15 -1369 ($ (-523) |t#2|)) (-15 -2640 ((-523) $)) (-15 -1253 (|t#2| $)) (-15 -1458 ($ $)) (-15 -1458 ($ (-523) $)) (-15 -1691 ($ |t#2|)) (-15 -1355 (|t#2| $)) (-15 -3333 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-339)) (-6 (-921 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-523)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-37 |#1|) |has| |#1| (-158)) ((-37 |#2|) |has| |#1| (-339)) ((-37 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-339)) ((-107 $ $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) -3172 (-12 (|has| |#1| (-339)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-136) -3172 (-12 (|has| |#1| (-339)) (|has| |#2| (-136))) (|has| |#1| (-136))) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-564 (-203)) -12 (|has| |#1| (-339)) (|has| |#2| (-949))) ((-564 (-355)) -12 (|has| |#1| (-339)) (|has| |#2| (-949))) ((-564 (-499)) -12 (|has| |#1| (-339)) (|has| |#2| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| |#1| (-339)) (|has| |#2| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| |#1| (-339)) (|has| |#2| (-564 (-823 (-523))))) ((-209 |#2|) |has| |#1| (-339)) ((-211) -3172 (-12 (|has| |#1| (-339)) (|has| |#2| (-211))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))) ((-221) |has| |#1| (-339)) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 |#2| $) -12 (|has| |#1| (-339)) (|has| |#2| (-263 |#2| |#2|))) ((-263 $ $) |has| (-523) (-1028)) ((-267) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-286 |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-286 |#2|))) ((-339) |has| |#1| (-339)) ((-314 |#2|) |has| |#1| (-339)) ((-353 |#2|) |has| |#1| (-339)) ((-376 |#2|) |has| |#1| (-339)) ((-427) |has| |#1| (-339)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-484 (-1087) |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-484 (-1087) |#2|))) ((-484 |#2| |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-286 |#2|))) ((-515) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-591 #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-591 |#1|) . T) ((-591 |#2|) |has| |#1| (-339)) ((-591 $) . T) ((-585 (-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-585 (-523)))) ((-585 |#2|) |has| |#1| (-339)) ((-657 #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-657 |#1|) |has| |#1| (-158)) ((-657 |#2|) |has| |#1| (-339)) ((-657 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-666) . T) ((-730) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-731) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-733) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-734) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-759) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-784) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-786) -3172 (-12 (|has| |#1| (-339)) (|has| |#2| (-786))) (-12 (|has| |#1| (-339)) (|has| |#2| (-759)))) ((-831 (-1087)) -3172 (-12 (|has| |#1| (-339)) (|has| |#2| (-831 (-1087)))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) ((-817 (-355)) -12 (|has| |#1| (-339)) (|has| |#2| (-817 (-355)))) ((-817 (-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-817 (-523)))) ((-815 |#2|) |has| |#1| (-339)) ((-840) -12 (|has| |#1| (-339)) (|has| |#2| (-840))) ((-902 |#1| #0# (-1001)) . T) ((-851) |has| |#1| (-339)) ((-921 |#2|) |has| |#1| (-339)) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-949) -12 (|has| |#1| (-339)) (|has| |#2| (-949))) ((-964 (-383 (-523))) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-523)))) ((-964 (-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-523)))) ((-964 (-1087)) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-1087)))) ((-964 |#2|) . T) ((-979 #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-979 |#1|) . T) ((-979 |#2|) |has| |#1| (-339)) ((-979 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) -12 (|has| |#1| (-339)) (|has| |#2| (-1063))) ((-1109) |has| |#1| (-37 (-383 (-523)))) ((-1112) |has| |#1| (-37 (-383 (-523)))) ((-1123) |has| |#1| (-339)) ((-1127) |has| |#1| (-339)) ((-1129 |#1|) . T) ((-1147 |#1| #0#) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 70)) (-2046 ((|#2| $) NIL (-12 (|has| |#2| (-284)) (|has| |#1| (-339))))) (-1292 (((-589 (-1001)) $) NIL)) (-2724 (((-1087) $) 88)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-3276 (($ $ (-523)) 97) (($ $ (-523) (-523)) 99)) (-1552 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 47)) (-1253 ((|#2| $) 11)) (-3333 (((-3 |#2| "failed") $) 30)) (-1355 ((|#2| $) 31)) (-1462 (($ $) 192 (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) 168 (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-3718 (($ $) NIL (|has| |#1| (-339)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2437 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1441 (($ $) 188 (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) 164 (|has| |#1| (-37 (-383 (-523)))))) (-3482 (((-523) $) NIL (-12 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-3199 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 57)) (-1481 (($ $) 196 (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) 172 (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#2| "failed") $) 144) (((-3 (-523) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-1087) "failed") $) NIL (-12 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339))))) (-3508 ((|#2| $) 143) (((-523) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-383 (-523)) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-1087) $) NIL (-12 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339))))) (-1458 (($ $) 61) (($ (-523) $) 24)) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-1457 (($ $) NIL)) (-2243 (((-629 |#2|) (-629 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#1| (-339)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#1| (-339))))) (-1444 (((-3 $ "failed") $) 77)) (-4035 (((-383 (-883 |#1|)) $ (-523)) 112 (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) 114 (|has| |#1| (-515)))) (-1631 (($) NIL (-12 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-3049 (((-108) $) NIL (|has| |#1| (-339)))) (-3712 (((-108) $) NIL (-12 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2589 (((-108) $) 64)) (-3352 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| |#2| (-817 (-355))) (|has| |#1| (-339)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| |#2| (-817 (-523))) (|has| |#1| (-339))))) (-3437 (((-523) $) 93) (((-523) $ (-523)) 95)) (-2769 (((-108) $) NIL)) (-1296 (($ $) NIL (|has| |#1| (-339)))) (-3316 ((|#2| $) 151 (|has| |#1| (-339)))) (-1973 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2738 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1063)) (|has| |#1| (-339))))) (-2057 (((-108) $) NIL (-12 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-3590 (($ $ (-852)) 136)) (-2839 (($ (-1 |#1| (-523)) $) 132)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-523)) 19) (($ $ (-1001) (-523)) NIL) (($ $ (-589 (-1001)) (-589 (-523))) NIL)) (-3239 (($ $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3158 (($ $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-1345 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-339)))) (-2313 (($ $) 162 (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1369 (($ (-523) |#2|) 10)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 145 (|has| |#1| (-339)))) (-2814 (($ $) 214 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 219 (-3172 (-12 (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1109)))))) (-2773 (($) NIL (-12 (|has| |#2| (-1063)) (|has| |#1| (-339))) CONST)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4110 (($ $) NIL (-12 (|has| |#2| (-284)) (|has| |#1| (-339))))) (-2733 ((|#2| $) NIL (-12 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-2424 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-3053 (($ $ (-523)) 126)) (-4007 (((-3 $ "failed") $ $) 116 (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2922 (($ $) 160 (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-523))))) (($ $ (-1087) |#2|) NIL (-12 (|has| |#2| (-484 (-1087) |#2|)) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 |#2|)) NIL (-12 (|has| |#2| (-484 (-1087) |#2|)) (|has| |#1| (-339)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339))))) (-3413 (((-710) $) NIL (|has| |#1| (-339)))) (-1937 ((|#1| $ (-523)) 91) (($ $ $) 79 (|has| (-523) (-1028))) (($ $ |#2|) NIL (-12 (|has| |#2| (-263 |#2| |#2|)) (|has| |#1| (-339))))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-3984 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-339))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#1| (-339))) (($ $ (-710)) NIL (-3172 (-12 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 137 (-3172 (-12 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3172 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3172 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3172 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) 140 (-3172 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-2793 (($ $) NIL (|has| |#1| (-339)))) (-3329 ((|#2| $) 152 (|has| |#1| (-339)))) (-2640 (((-523) $) 12)) (-2306 (($ $) 198 (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) 174 (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) 194 (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) 170 (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) 190 (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) 166 (|has| |#1| (-37 (-383 (-523)))))) (-1400 (((-203) $) NIL (-12 (|has| |#2| (-949)) (|has| |#1| (-339)))) (((-355) $) NIL (-12 (|has| |#2| (-949)) (|has| |#1| (-339)))) (((-499) $) NIL (-12 (|has| |#2| (-564 (-499))) (|has| |#1| (-339)))) (((-823 (-355)) $) NIL (-12 (|has| |#2| (-564 (-823 (-355)))) (|has| |#1| (-339)))) (((-823 (-523)) $) NIL (-12 (|has| |#2| (-564 (-823 (-523)))) (|has| |#1| (-339))))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840)) (|has| |#1| (-339))))) (-2488 (($ $) 124)) (-1691 (((-794) $) 244) (($ (-523)) 23) (($ |#1|) 21 (|has| |#1| (-158))) (($ |#2|) 20) (($ (-1087)) NIL (-12 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339)))) (($ (-383 (-523))) 155 (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2084 ((|#1| $ (-523)) 74)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#2| (-840)) (|has| |#1| (-339))) (-12 (|has| |#2| (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))))) (-3272 (((-710)) 142)) (-3710 ((|#1| $) 90)) (-3809 ((|#2| $) NIL (-12 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-2341 (($ $) 204 (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) 180 (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2318 (($ $) 200 (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) 176 (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) 208 (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) 184 (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-523)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) 210 (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) 186 (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) 206 (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) 182 (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) 202 (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) 178 (|has| |#1| (-37 (-383 (-523)))))) (-2695 (($ $) NIL (-12 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-1879 (($) 13 T CONST)) (-1891 (($) 17 T CONST)) (-2909 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-339))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#1| (-339))) (($ $ (-710)) NIL (-3172 (-12 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) NIL (-3172 (-12 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3172 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3172 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3172 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3172 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-4006 (((-108) $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3980 (((-108) $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3941 (((-108) $ $) 63)) (-3993 (((-108) $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3966 (((-108) $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) 149 (|has| |#1| (-339))) (($ |#2| |#2|) 150 (|has| |#1| (-339)))) (-4060 (($ $) 213) (($ $ $) 68)) (-4045 (($ $ $) 66)) (** (($ $ (-852)) NIL) (($ $ (-710)) 73) (($ $ (-523)) 146 (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-339))) (($ |#2| $) 147 (|has| |#1| (-339))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1132 |#1| |#2|) (-1131 |#1| |#2|) (-973) (-1160 |#1|)) (T -1132)) +NIL +(-1131 |#1| |#2|) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2046 (((-1161 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-284)) (|has| |#1| (-339))))) (-1292 (((-589 (-1001)) $) NIL)) (-2724 (((-1087) $) 10)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3306 (($ $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3174 (((-108) $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3276 (($ $ (-523)) NIL) (($ $ (-523) (-523)) NIL)) (-1552 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) NIL)) (-1253 (((-1161 |#1| |#2| |#3|) $) NIL)) (-3333 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) NIL)) (-1355 (((-1161 |#1| |#2| |#3|) $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-3718 (($ $) NIL (|has| |#1| (-339)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2437 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1441 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3482 (((-523) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-3199 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) NIL)) (-1481 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-523) "failed") $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))))) (-3508 (((-1161 |#1| |#2| |#3|) $) NIL) (((-1087) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (((-383 (-523)) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339)))) (((-523) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))))) (-1458 (($ $) NIL) (($ (-523) $) NIL)) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-1457 (($ $) NIL)) (-2243 (((-629 (-1161 |#1| |#2| |#3|)) (-629 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -2600 (-629 (-1161 |#1| |#2| |#3|))) (|:| |vec| (-1169 (-1161 |#1| |#2| |#3|)))) (-629 $) (-1169 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-585 (-523))) (|has| |#1| (-339)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-585 (-523))) (|has| |#1| (-339))))) (-1444 (((-3 $ "failed") $) NIL)) (-4035 (((-383 (-883 |#1|)) $ (-523)) NIL (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) NIL (|has| |#1| (-515)))) (-1631 (($) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-3049 (((-108) $) NIL (|has| |#1| (-339)))) (-3712 (((-108) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2589 (((-108) $) NIL)) (-3352 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1524 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-817 (-523))) (|has| |#1| (-339)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-817 (-355))) (|has| |#1| (-339))))) (-3437 (((-523) $) NIL) (((-523) $ (-523)) NIL)) (-2769 (((-108) $) NIL)) (-1296 (($ $) NIL (|has| |#1| (-339)))) (-3316 (((-1161 |#1| |#2| |#3|) $) NIL (|has| |#1| (-339)))) (-1973 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2738 (((-3 $ "failed") $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1063)) (|has| |#1| (-339))))) (-2057 (((-108) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-3590 (($ $ (-852)) NIL)) (-2839 (($ (-1 |#1| (-523)) $) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-523)) 17) (($ $ (-1001) (-523)) NIL) (($ $ (-589 (-1001)) (-589 (-523))) NIL)) (-3239 (($ $ $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3158 (($ $ $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-339)))) (-2313 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1369 (($ (-523) (-1161 |#1| |#2| |#3|)) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-339)))) (-2814 (($ $) 25 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3172 (-12 (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1109))))) (($ $ (-1165 |#2|)) 26 (|has| |#1| (-37 (-383 (-523)))))) (-2773 (($) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1063)) (|has| |#1| (-339))) CONST)) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4110 (($ $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-284)) (|has| |#1| (-339))))) (-2733 (((-1161 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-2424 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-3053 (($ $ (-523)) NIL)) (-4007 (((-3 $ "failed") $ $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2922 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-523))))) (($ $ (-1087) (-1161 |#1| |#2| |#3|)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-484 (-1087) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 (-1161 |#1| |#2| |#3|))) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-484 (-1087) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-271 (-1161 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-286 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-271 (-1161 |#1| |#2| |#3|))) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-286 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-286 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-1161 |#1| |#2| |#3|)) (-589 (-1161 |#1| |#2| |#3|))) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-286 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-339))))) (-3413 (((-710) $) NIL (|has| |#1| (-339)))) (-1937 ((|#1| $ (-523)) NIL) (($ $ $) NIL (|has| (-523) (-1028))) (($ $ (-1161 |#1| |#2| |#3|)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-263 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-339))))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-3984 (($ $ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) NIL (|has| |#1| (-339))) (($ $ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) (-710)) NIL (|has| |#1| (-339))) (($ $ (-1165 |#2|)) 24) (($ $ (-710)) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 23 (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-2793 (($ $) NIL (|has| |#1| (-339)))) (-3329 (((-1161 |#1| |#2| |#3|) $) NIL (|has| |#1| (-339)))) (-2640 (((-523) $) NIL)) (-2306 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1400 (((-499) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-564 (-499))) (|has| |#1| (-339)))) (((-355) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-949)) (|has| |#1| (-339)))) (((-203) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-949)) (|has| |#1| (-339)))) (((-823 (-355)) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-564 (-823 (-355)))) (|has| |#1| (-339)))) (((-823 (-523)) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-564 (-823 (-523)))) (|has| |#1| (-339))))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-1161 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-2488 (($ $) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1161 |#1| |#2| |#3|)) NIL) (($ (-1165 |#2|)) 22) (($ (-1087)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (($ $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515)))) (($ (-383 (-523))) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))) (|has| |#1| (-37 (-383 (-523))))))) (-2084 ((|#1| $ (-523)) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| (-1161 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))))) (-3272 (((-710)) NIL)) (-3710 ((|#1| $) 11)) (-3809 (((-1161 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-2341 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-523)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2695 (($ $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-1879 (($) 19 T CONST)) (-1891 (($) 15 T CONST)) (-2909 (($ $ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) NIL (|has| |#1| (-339))) (($ $ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) (-710)) NIL (|has| |#1| (-339))) (($ $ (-710)) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-4006 (((-108) $ $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3980 (((-108) $ $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3966 (((-108) $ $) NIL (-3172 (-12 (|has| (-1161 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339))) (($ (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 20)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1161 |#1| |#2| |#3|)) NIL (|has| |#1| (-339))) (($ (-1161 |#1| |#2| |#3|) $) NIL (|has| |#1| (-339))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1133 |#1| |#2| |#3|) (-13 (-1131 |#1| (-1161 |#1| |#2| |#3|)) (-10 -8 (-15 -1691 ($ (-1165 |#2|))) (-15 -3984 ($ $ (-1165 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1133)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-2814 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1131 |#1| (-1161 |#1| |#2| |#3|)) (-10 -8 (-15 -1691 ($ (-1165 |#2|))) (-15 -3984 ($ $ (-1165 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) +((-3218 (((-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| |#1|) (|:| -1787 (-523)))))) |#1| (-108)) 10)) (-1982 (((-394 |#1|) |#1|) 21)) (-2424 (((-394 |#1|) |#1|) 20))) +(((-1134 |#1|) (-10 -7 (-15 -2424 ((-394 |#1|) |#1|)) (-15 -1982 ((-394 |#1|) |#1|)) (-15 -3218 ((-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| |#1|) (|:| -1787 (-523)))))) |#1| (-108)))) (-1145 (-523))) (T -1134)) +((-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| *3) (|:| -1787 (-523))))))) (-5 *1 (-1134 *3)) (-4 *3 (-1145 (-523))))) (-1982 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-1134 *3)) (-4 *3 (-1145 (-523))))) (-2424 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-1134 *3)) (-4 *3 (-1145 (-523)))))) +(-10 -7 (-15 -2424 ((-394 |#1|) |#1|)) (-15 -1982 ((-394 |#1|) |#1|)) (-15 -3218 ((-2 (|:| |contp| (-523)) (|:| -3491 (-589 (-2 (|:| |irr| |#1|) (|:| -1787 (-523)))))) |#1| (-108)))) +((-1345 (((-1068 |#2|) (-1 |#2| |#1|) (-1136 |#1|)) 23 (|has| |#1| (-784))) (((-1136 |#2|) (-1 |#2| |#1|) (-1136 |#1|)) 17))) +(((-1135 |#1| |#2|) (-10 -7 (-15 -1345 ((-1136 |#2|) (-1 |#2| |#1|) (-1136 |#1|))) (IF (|has| |#1| (-784)) (-15 -1345 ((-1068 |#2|) (-1 |#2| |#1|) (-1136 |#1|))) |%noBranch|)) (-1123) (-1123)) (T -1135)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5)) (-4 *5 (-784)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-1068 *6)) (-5 *1 (-1135 *5 *6)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-1136 *6)) (-5 *1 (-1135 *5 *6))))) +(-10 -7 (-15 -1345 ((-1136 |#2|) (-1 |#2| |#1|) (-1136 |#1|))) (IF (|has| |#1| (-784)) (-15 -1345 ((-1068 |#2|) (-1 |#2| |#1|) (-1136 |#1|))) |%noBranch|)) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3141 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1345 (((-1068 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-784)))) (-3585 ((|#1| $) 14)) (-1702 ((|#1| $) 10)) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1714 (((-523) $) 18)) (-3372 ((|#1| $) 17)) (-1725 ((|#1| $) 11)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1377 (((-108) $) 16)) (-1870 (((-1068 |#1|) $) 38 (|has| |#1| (-784))) (((-1068 |#1|) (-589 $)) 37 (|has| |#1| (-784)))) (-1400 (($ |#1|) 25)) (-1691 (($ (-1011 |#1|)) 24) (((-794) $) 34 (|has| |#1| (-1016)))) (-3447 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3704 (($ $ (-523)) 13)) (-3941 (((-108) $ $) 27 (|has| |#1| (-1016))))) +(((-1136 |#1|) (-13 (-1010 |#1|) (-10 -8 (-15 -3447 ($ |#1|)) (-15 -3141 ($ |#1|)) (-15 -1691 ($ (-1011 |#1|))) (-15 -1377 ((-108) $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-1012 |#1| (-1068 |#1|))) |%noBranch|))) (-1123)) (T -1136)) +((-3447 (*1 *1 *2) (-12 (-5 *1 (-1136 *2)) (-4 *2 (-1123)))) (-3141 (*1 *1 *2) (-12 (-5 *1 (-1136 *2)) (-4 *2 (-1123)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1011 *3)) (-4 *3 (-1123)) (-5 *1 (-1136 *3)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1136 *3)) (-4 *3 (-1123))))) +(-13 (-1010 |#1|) (-10 -8 (-15 -3447 ($ |#1|)) (-15 -3141 ($ |#1|)) (-15 -1691 ($ (-1011 |#1|))) (-15 -1377 ((-108) $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-1012 |#1| (-1068 |#1|))) |%noBranch|))) +((-1345 (((-1142 |#3| |#4|) (-1 |#4| |#2|) (-1142 |#1| |#2|)) 15))) +(((-1137 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1345 ((-1142 |#3| |#4|) (-1 |#4| |#2|) (-1142 |#1| |#2|)))) (-1087) (-973) (-1087) (-973)) (T -1137)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1142 *5 *6)) (-14 *5 (-1087)) (-4 *6 (-973)) (-4 *8 (-973)) (-5 *2 (-1142 *7 *8)) (-5 *1 (-1137 *5 *6 *7 *8)) (-14 *7 (-1087))))) +(-10 -7 (-15 -1345 ((-1142 |#3| |#4|) (-1 |#4| |#2|) (-1142 |#1| |#2|)))) +((-1505 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1222 ((|#1| |#3|) 13)) (-4117 ((|#3| |#3|) 19))) +(((-1138 |#1| |#2| |#3|) (-10 -7 (-15 -1222 (|#1| |#3|)) (-15 -4117 (|#3| |#3|)) (-15 -1505 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-515) (-921 |#1|) (-1145 |#2|)) (T -1138)) +((-1505 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1138 *4 *5 *3)) (-4 *3 (-1145 *5)))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-515)) (-4 *4 (-921 *3)) (-5 *1 (-1138 *3 *4 *2)) (-4 *2 (-1145 *4)))) (-1222 (*1 *2 *3) (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-1138 *2 *4 *3)) (-4 *3 (-1145 *4))))) +(-10 -7 (-15 -1222 (|#1| |#3|)) (-15 -4117 (|#3| |#3|)) (-15 -1505 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3990 (((-3 |#2| "failed") |#2| (-710) |#1|) 29)) (-2344 (((-3 |#2| "failed") |#2| (-710)) 30)) (-3913 (((-3 (-2 (|:| -3844 |#2|) (|:| -3855 |#2|)) "failed") |#2|) 43)) (-3121 (((-589 |#2|) |#2|) 45)) (-1839 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1139 |#1| |#2|) (-10 -7 (-15 -2344 ((-3 |#2| "failed") |#2| (-710))) (-15 -3990 ((-3 |#2| "failed") |#2| (-710) |#1|)) (-15 -1839 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3913 ((-3 (-2 (|:| -3844 |#2|) (|:| -3855 |#2|)) "failed") |#2|)) (-15 -3121 ((-589 |#2|) |#2|))) (-13 (-515) (-136)) (-1145 |#1|)) (T -1139)) +((-3121 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-136))) (-5 *2 (-589 *3)) (-5 *1 (-1139 *4 *3)) (-4 *3 (-1145 *4)))) (-3913 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-515) (-136))) (-5 *2 (-2 (|:| -3844 *3) (|:| -3855 *3))) (-5 *1 (-1139 *4 *3)) (-4 *3 (-1145 *4)))) (-1839 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1139 *3 *2)) (-4 *2 (-1145 *3)))) (-3990 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-710)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-1139 *4 *2)) (-4 *2 (-1145 *4)))) (-2344 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-710)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-1139 *4 *2)) (-4 *2 (-1145 *4))))) +(-10 -7 (-15 -2344 ((-3 |#2| "failed") |#2| (-710))) (-15 -3990 ((-3 |#2| "failed") |#2| (-710) |#1|)) (-15 -1839 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3913 ((-3 (-2 (|:| -3844 |#2|) (|:| -3855 |#2|)) "failed") |#2|)) (-15 -3121 ((-589 |#2|) |#2|))) +((-3212 (((-3 (-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) "failed") |#2| |#2|) 32))) +(((-1140 |#1| |#2|) (-10 -7 (-15 -3212 ((-3 (-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) "failed") |#2| |#2|))) (-515) (-1145 |#1|)) (T -1140)) +((-3212 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-515)) (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-1140 *4 *3)) (-4 *3 (-1145 *4))))) +(-10 -7 (-15 -3212 ((-3 (-2 (|:| -3070 |#2|) (|:| -3969 |#2|)) "failed") |#2| |#2|))) +((-1999 ((|#2| |#2| |#2|) 19)) (-2445 ((|#2| |#2| |#2|) 30)) (-3818 ((|#2| |#2| |#2| (-710) (-710)) 36))) +(((-1141 |#1| |#2|) (-10 -7 (-15 -1999 (|#2| |#2| |#2|)) (-15 -2445 (|#2| |#2| |#2|)) (-15 -3818 (|#2| |#2| |#2| (-710) (-710)))) (-973) (-1145 |#1|)) (T -1141)) +((-3818 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-5 *1 (-1141 *4 *2)) (-4 *2 (-1145 *4)))) (-2445 (*1 *2 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-1141 *3 *2)) (-4 *2 (-1145 *3)))) (-1999 (*1 *2 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-1141 *3 *2)) (-4 *2 (-1145 *3))))) +(-10 -7 (-15 -1999 (|#2| |#2| |#2|)) (-15 -2445 (|#2| |#2| |#2|)) (-15 -3818 (|#2| |#2| |#2| (-710) (-710)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1317 (((-1169 |#2|) $ (-710)) NIL)) (-1292 (((-589 (-1001)) $) NIL)) (-3859 (($ (-1083 |#2|)) NIL)) (-2389 (((-1083 $) $ (-1001)) NIL) (((-1083 |#2|) $) NIL)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3306 (($ $) NIL (|has| |#2| (-515)))) (-3174 (((-108) $) NIL (|has| |#2| (-515)))) (-1877 (((-710) $) NIL) (((-710) $ (-589 (-1001))) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2485 (($ $ $) NIL (|has| |#2| (-515)))) (-4130 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3718 (($ $) NIL (|has| |#2| (-427)))) (-4226 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2787 (((-108) $ $) NIL (|has| |#2| (-339)))) (-2199 (($ $ (-710)) NIL)) (-3811 (($ $ (-710)) NIL)) (-3061 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-427)))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-1001) "failed") $) NIL)) (-3508 ((|#2| $) NIL) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-1001) $) NIL)) (-1611 (($ $ $ (-1001)) NIL (|has| |#2| (-158))) ((|#2| $ $) NIL (|has| |#2| (-158)))) (-4059 (($ $ $) NIL (|has| |#2| (-339)))) (-1457 (($ $) NIL)) (-2243 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#2|)) (|:| |vec| (-1169 |#2|))) (-629 $) (-1169 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-4032 (($ $ $) NIL (|has| |#2| (-339)))) (-3425 (($ $ $) NIL)) (-3082 (($ $ $) NIL (|has| |#2| (-515)))) (-3999 (((-2 (|:| -3474 |#2|) (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#2| (-515)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#2| (-339)))) (-1272 (($ $) NIL (|has| |#2| (-427))) (($ $ (-1001)) NIL (|has| |#2| (-427)))) (-1447 (((-589 $) $) NIL)) (-3049 (((-108) $) NIL (|has| |#2| (-840)))) (-4222 (($ $ |#2| (-710) $) NIL)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1001) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1001) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-3437 (((-710) $ $) NIL (|has| |#2| (-515)))) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-2738 (((-3 $ "failed") $) NIL (|has| |#2| (-1063)))) (-1280 (($ (-1083 |#2|) (-1001)) NIL) (($ (-1083 $) (-1001)) NIL)) (-3590 (($ $ (-710)) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#2| (-339)))) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-1267 (($ |#2| (-710)) 17) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ (-1001)) NIL) (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL)) (-4047 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-3239 (($ $ $) NIL (|has| |#2| (-786)))) (-3158 (($ $ $) NIL (|has| |#2| (-786)))) (-2041 (($ (-1 (-710) (-710)) $) NIL)) (-1345 (($ (-1 |#2| |#2|) $) NIL)) (-3805 (((-1083 |#2|) $) NIL)) (-4213 (((-3 (-1001) "failed") $) NIL)) (-1427 (($ $) NIL)) (-1437 ((|#2| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-2032 (((-1070) $) NIL)) (-1716 (((-2 (|:| -3070 $) (|:| -3969 $)) $ (-710)) NIL)) (-3538 (((-3 (-589 $) "failed") $) NIL)) (-3478 (((-3 (-589 $) "failed") $) NIL)) (-2790 (((-3 (-2 (|:| |var| (-1001)) (|:| -1475 (-710))) "failed") $) NIL)) (-2814 (($ $) NIL (|has| |#2| (-37 (-383 (-523)))))) (-2773 (($) NIL (|has| |#2| (-1063)) CONST)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) NIL)) (-1419 ((|#2| $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3310 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-3707 (($ $ (-710) |#2| $) NIL)) (-1708 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2424 (((-394 $) $) NIL (|has| |#2| (-840)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#2| (-339)))) (-4007 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#2| (-339)))) (-2812 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#2|) NIL) (($ $ (-589 (-1001)) (-589 |#2|)) NIL) (($ $ (-1001) $) NIL) (($ $ (-589 (-1001)) (-589 $)) NIL)) (-3413 (((-710) $) NIL (|has| |#2| (-339)))) (-1937 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-383 $) (-383 $) (-383 $)) NIL (|has| |#2| (-515))) ((|#2| (-383 $) |#2|) NIL (|has| |#2| (-339))) (((-383 $) $ (-383 $)) NIL (|has| |#2| (-515)))) (-3801 (((-3 $ "failed") $ (-710)) NIL)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#2| (-339)))) (-1744 (($ $ (-1001)) NIL (|has| |#2| (-158))) ((|#2| $) NIL (|has| |#2| (-158)))) (-3984 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2640 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-1400 (((-823 (-355)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1001) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-1618 ((|#2| $) NIL (|has| |#2| (-427))) (($ $ (-1001)) NIL (|has| |#2| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-3923 (((-3 $ "failed") $ $) NIL (|has| |#2| (-515))) (((-3 (-383 $) "failed") (-383 $) $) NIL (|has| |#2| (-515)))) (-1691 (((-794) $) 13) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-1001)) NIL) (($ (-1165 |#1|)) 19) (($ (-383 (-523))) NIL (-3172 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#2| (-515)))) (-3819 (((-589 |#2|) $) NIL)) (-2084 ((|#2| $ (-710)) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-1942 (((-3 $ "failed") $) NIL (-3172 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-2801 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1891 (($) 14 T CONST)) (-2909 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4006 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3941 (((-108) $ $) NIL)) (-3993 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4074 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1142 |#1| |#2|) (-13 (-1145 |#2|) (-10 -8 (-15 -1691 ($ (-1165 |#1|))) (-15 -3707 ($ $ (-710) |#2| $)))) (-1087) (-973)) (T -1142)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-14 *3 (-1087)) (-5 *1 (-1142 *3 *4)) (-4 *4 (-973)))) (-3707 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1142 *4 *3)) (-14 *4 (-1087)) (-4 *3 (-973))))) +(-13 (-1145 |#2|) (-10 -8 (-15 -1691 ($ (-1165 |#1|))) (-15 -3707 ($ $ (-710) |#2| $)))) +((-1345 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1143 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1345 (|#4| (-1 |#3| |#1|) |#2|))) (-973) (-1145 |#1|) (-973) (-1145 |#3|)) (T -1143)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-4 *2 (-1145 *6)) (-5 *1 (-1143 *5 *4 *6 *2)) (-4 *4 (-1145 *5))))) +(-10 -7 (-15 -1345 (|#4| (-1 |#3| |#1|) |#2|))) +((-1317 (((-1169 |#2|) $ (-710)) 113)) (-1292 (((-589 (-1001)) $) 15)) (-3859 (($ (-1083 |#2|)) 66)) (-1877 (((-710) $) NIL) (((-710) $ (-589 (-1001))) 18)) (-4130 (((-394 (-1083 $)) (-1083 $)) 184)) (-3718 (($ $) 174)) (-4226 (((-394 $) $) 172)) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 81)) (-2199 (($ $ (-710)) 70)) (-3811 (($ $ (-710)) 72)) (-3061 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-1220 (((-3 |#2| "failed") $) 116) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 (-1001) "failed") $) NIL)) (-3508 ((|#2| $) 114) (((-383 (-523)) $) NIL) (((-523) $) NIL) (((-1001) $) NIL)) (-3082 (($ $ $) 150)) (-3999 (((-2 (|:| -3474 |#2|) (|:| -3070 $) (|:| -3969 $)) $ $) 152)) (-3437 (((-710) $ $) 169)) (-2738 (((-3 $ "failed") $) 122)) (-1267 (($ |#2| (-710)) NIL) (($ $ (-1001) (-710)) 46) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-4047 (((-710) $) NIL) (((-710) $ (-1001)) 41) (((-589 (-710)) $ (-589 (-1001))) 42)) (-3805 (((-1083 |#2|) $) 58)) (-4213 (((-3 (-1001) "failed") $) 39)) (-1716 (((-2 (|:| -3070 $) (|:| -3969 $)) $ (-710)) 69)) (-2814 (($ $) 196)) (-2773 (($) 118)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 181)) (-1708 (((-394 (-1083 $)) (-1083 $)) 87)) (-1417 (((-394 (-1083 $)) (-1083 $)) 85)) (-2424 (((-394 $) $) 105)) (-2812 (($ $ (-589 (-271 $))) 38) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#2|) 31) (($ $ (-589 (-1001)) (-589 |#2|)) 28) (($ $ (-1001) $) 25) (($ $ (-589 (-1001)) (-589 $)) 23)) (-3413 (((-710) $) 187)) (-1937 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-383 $) (-383 $) (-383 $)) 146) ((|#2| (-383 $) |#2|) 186) (((-383 $) $ (-383 $)) 168)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 190)) (-3984 (($ $ (-1001)) 139) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) 137) (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-2640 (((-710) $) NIL) (((-710) $ (-1001)) 16) (((-589 (-710)) $ (-589 (-1001))) 20)) (-1618 ((|#2| $) NIL) (($ $ (-1001)) 124)) (-3923 (((-3 $ "failed") $ $) 160) (((-3 (-383 $) "failed") (-383 $) $) 156)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-1001)) 50) (($ (-383 (-523))) NIL) (($ $) NIL))) +(((-1144 |#1| |#2|) (-10 -8 (-15 -1691 (|#1| |#1|)) (-15 -3120 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -4226 ((-394 |#1|) |#1|)) (-15 -3718 (|#1| |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -2773 (|#1|)) (-15 -2738 ((-3 |#1| "failed") |#1|)) (-15 -1937 ((-383 |#1|) |#1| (-383 |#1|))) (-15 -3413 ((-710) |#1|)) (-15 -2083 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -1937 (|#2| (-383 |#1|) |#2|)) (-15 -3061 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3999 ((-2 (|:| -3474 |#2|) (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3923 ((-3 (-383 |#1|) "failed") (-383 |#1|) |#1|)) (-15 -3923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3437 ((-710) |#1| |#1|)) (-15 -1937 ((-383 |#1|) (-383 |#1|) (-383 |#1|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3811 (|#1| |#1| (-710))) (-15 -2199 (|#1| |#1| (-710))) (-15 -1716 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| (-710))) (-15 -3859 (|#1| (-1083 |#2|))) (-15 -3805 ((-1083 |#2|) |#1|)) (-15 -1317 ((-1169 |#2|) |#1| (-710))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -1937 (|#1| |#1| |#1|)) (-15 -1937 (|#2| |#1| |#2|)) (-15 -2424 ((-394 |#1|) |#1|)) (-15 -4130 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1417 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1708 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3302 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -1618 (|#1| |#1| (-1001))) (-15 -1292 ((-589 (-1001)) |#1|)) (-15 -1877 ((-710) |#1| (-589 (-1001)))) (-15 -1877 ((-710) |#1|)) (-15 -1267 (|#1| |#1| (-589 (-1001)) (-589 (-710)))) (-15 -1267 (|#1| |#1| (-1001) (-710))) (-15 -4047 ((-589 (-710)) |#1| (-589 (-1001)))) (-15 -4047 ((-710) |#1| (-1001))) (-15 -4213 ((-3 (-1001) "failed") |#1|)) (-15 -2640 ((-589 (-710)) |#1| (-589 (-1001)))) (-15 -2640 ((-710) |#1| (-1001))) (-15 -3508 ((-1001) |#1|)) (-15 -1220 ((-3 (-1001) "failed") |#1|)) (-15 -1691 (|#1| (-1001))) (-15 -2812 (|#1| |#1| (-589 (-1001)) (-589 |#1|))) (-15 -2812 (|#1| |#1| (-1001) |#1|)) (-15 -2812 (|#1| |#1| (-589 (-1001)) (-589 |#2|))) (-15 -2812 (|#1| |#1| (-1001) |#2|)) (-15 -2812 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| (-271 |#1|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2640 ((-710) |#1|)) (-15 -1267 (|#1| |#2| (-710))) (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -4047 ((-710) |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -3984 (|#1| |#1| (-589 (-1001)) (-589 (-710)))) (-15 -3984 (|#1| |#1| (-1001) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1001)))) (-15 -3984 (|#1| |#1| (-1001))) (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) (-1145 |#2|) (-973)) (T -1144)) +NIL +(-10 -8 (-15 -1691 (|#1| |#1|)) (-15 -3120 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -4226 ((-394 |#1|) |#1|)) (-15 -3718 (|#1| |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -2773 (|#1|)) (-15 -2738 ((-3 |#1| "failed") |#1|)) (-15 -1937 ((-383 |#1|) |#1| (-383 |#1|))) (-15 -3413 ((-710) |#1|)) (-15 -2083 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -1937 (|#2| (-383 |#1|) |#2|)) (-15 -3061 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3999 ((-2 (|:| -3474 |#2|) (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3923 ((-3 (-383 |#1|) "failed") (-383 |#1|) |#1|)) (-15 -3923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3437 ((-710) |#1| |#1|)) (-15 -1937 ((-383 |#1|) (-383 |#1|) (-383 |#1|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3811 (|#1| |#1| (-710))) (-15 -2199 (|#1| |#1| (-710))) (-15 -1716 ((-2 (|:| -3070 |#1|) (|:| -3969 |#1|)) |#1| (-710))) (-15 -3859 (|#1| (-1083 |#2|))) (-15 -3805 ((-1083 |#2|) |#1|)) (-15 -1317 ((-1169 |#2|) |#1| (-710))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3984 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3984 (|#1| |#1| (-1087) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1087)))) (-15 -3984 (|#1| |#1| (-1087))) (-15 -3984 (|#1| |#1|)) (-15 -3984 (|#1| |#1| (-710))) (-15 -1937 (|#1| |#1| |#1|)) (-15 -1937 (|#2| |#1| |#2|)) (-15 -2424 ((-394 |#1|) |#1|)) (-15 -4130 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1417 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1708 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3302 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -1618 (|#1| |#1| (-1001))) (-15 -1292 ((-589 (-1001)) |#1|)) (-15 -1877 ((-710) |#1| (-589 (-1001)))) (-15 -1877 ((-710) |#1|)) (-15 -1267 (|#1| |#1| (-589 (-1001)) (-589 (-710)))) (-15 -1267 (|#1| |#1| (-1001) (-710))) (-15 -4047 ((-589 (-710)) |#1| (-589 (-1001)))) (-15 -4047 ((-710) |#1| (-1001))) (-15 -4213 ((-3 (-1001) "failed") |#1|)) (-15 -2640 ((-589 (-710)) |#1| (-589 (-1001)))) (-15 -2640 ((-710) |#1| (-1001))) (-15 -3508 ((-1001) |#1|)) (-15 -1220 ((-3 (-1001) "failed") |#1|)) (-15 -1691 (|#1| (-1001))) (-15 -2812 (|#1| |#1| (-589 (-1001)) (-589 |#1|))) (-15 -2812 (|#1| |#1| (-1001) |#1|)) (-15 -2812 (|#1| |#1| (-589 (-1001)) (-589 |#2|))) (-15 -2812 (|#1| |#1| (-1001) |#2|)) (-15 -2812 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2812 (|#1| |#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| (-271 |#1|))) (-15 -2812 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2640 ((-710) |#1|)) (-15 -1267 (|#1| |#2| (-710))) (-15 -3508 ((-523) |#1|)) (-15 -1220 ((-3 (-523) "failed") |#1|)) (-15 -3508 ((-383 (-523)) |#1|)) (-15 -1220 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1691 (|#1| |#2|)) (-15 -1220 ((-3 |#2| "failed") |#1|)) (-15 -3508 (|#2| |#1|)) (-15 -4047 ((-710) |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -3984 (|#1| |#1| (-589 (-1001)) (-589 (-710)))) (-15 -3984 (|#1| |#1| (-1001) (-710))) (-15 -3984 (|#1| |#1| (-589 (-1001)))) (-15 -3984 (|#1| |#1| (-1001))) (-15 -1691 (|#1| (-523))) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1317 (((-1169 |#1|) $ (-710)) 238)) (-1292 (((-589 (-1001)) $) 110)) (-3859 (($ (-1083 |#1|)) 236)) (-2389 (((-1083 $) $ (-1001)) 125) (((-1083 |#1|) $) 124)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 87 (|has| |#1| (-515)))) (-3306 (($ $) 88 (|has| |#1| (-515)))) (-3174 (((-108) $) 90 (|has| |#1| (-515)))) (-1877 (((-710) $) 112) (((-710) $ (-589 (-1001))) 111)) (-3405 (((-3 $ "failed") $ $) 19)) (-2485 (($ $ $) 223 (|has| |#1| (-515)))) (-4130 (((-394 (-1083 $)) (-1083 $)) 100 (|has| |#1| (-840)))) (-3718 (($ $) 98 (|has| |#1| (-427)))) (-4226 (((-394 $) $) 97 (|has| |#1| (-427)))) (-3302 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-840)))) (-2787 (((-108) $ $) 208 (|has| |#1| (-339)))) (-2199 (($ $ (-710)) 231)) (-3811 (($ $ (-710)) 230)) (-3061 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-427)))) (-4189 (($) 17 T CONST)) (-1220 (((-3 |#1| "failed") $) 164) (((-3 (-383 (-523)) "failed") $) 162 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 160 (|has| |#1| (-964 (-523)))) (((-3 (-1001) "failed") $) 136)) (-3508 ((|#1| $) 165) (((-383 (-523)) $) 161 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 159 (|has| |#1| (-964 (-523)))) (((-1001) $) 135)) (-1611 (($ $ $ (-1001)) 108 (|has| |#1| (-158))) ((|#1| $ $) 226 (|has| |#1| (-158)))) (-4059 (($ $ $) 212 (|has| |#1| (-339)))) (-1457 (($ $) 154)) (-2243 (((-629 (-523)) (-629 $)) 134 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 (-523))) (|:| |vec| (-1169 (-523)))) (-629 $) (-1169 $)) 133 (|has| |#1| (-585 (-523)))) (((-2 (|:| -2600 (-629 |#1|)) (|:| |vec| (-1169 |#1|))) (-629 $) (-1169 $)) 132) (((-629 |#1|) (-629 $)) 131)) (-1444 (((-3 $ "failed") $) 34)) (-4032 (($ $ $) 211 (|has| |#1| (-339)))) (-3425 (($ $ $) 229)) (-3082 (($ $ $) 220 (|has| |#1| (-515)))) (-3999 (((-2 (|:| -3474 |#1|) (|:| -3070 $) (|:| -3969 $)) $ $) 219 (|has| |#1| (-515)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 206 (|has| |#1| (-339)))) (-1272 (($ $) 176 (|has| |#1| (-427))) (($ $ (-1001)) 105 (|has| |#1| (-427)))) (-1447 (((-589 $) $) 109)) (-3049 (((-108) $) 96 (|has| |#1| (-840)))) (-4222 (($ $ |#1| (-710) $) 172)) (-1524 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 84 (-12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 83 (-12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-3437 (((-710) $ $) 224 (|has| |#1| (-515)))) (-2769 (((-108) $) 31)) (-1789 (((-710) $) 169)) (-2738 (((-3 $ "failed") $) 204 (|has| |#1| (-1063)))) (-1280 (($ (-1083 |#1|) (-1001)) 117) (($ (-1083 $) (-1001)) 116)) (-3590 (($ $ (-710)) 235)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 215 (|has| |#1| (-339)))) (-3560 (((-589 $) $) 126)) (-2704 (((-108) $) 152)) (-1267 (($ |#1| (-710)) 153) (($ $ (-1001) (-710)) 119) (($ $ (-589 (-1001)) (-589 (-710))) 118)) (-3052 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $ (-1001)) 120) (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 233)) (-4047 (((-710) $) 170) (((-710) $ (-1001)) 122) (((-589 (-710)) $ (-589 (-1001))) 121)) (-3239 (($ $ $) 79 (|has| |#1| (-786)))) (-3158 (($ $ $) 78 (|has| |#1| (-786)))) (-2041 (($ (-1 (-710) (-710)) $) 171)) (-1345 (($ (-1 |#1| |#1|) $) 151)) (-3805 (((-1083 |#1|) $) 237)) (-4213 (((-3 (-1001) "failed") $) 123)) (-1427 (($ $) 149)) (-1437 ((|#1| $) 148)) (-3278 (($ (-589 $)) 94 (|has| |#1| (-427))) (($ $ $) 93 (|has| |#1| (-427)))) (-2032 (((-1070) $) 9)) (-1716 (((-2 (|:| -3070 $) (|:| -3969 $)) $ (-710)) 232)) (-3538 (((-3 (-589 $) "failed") $) 114)) (-3478 (((-3 (-589 $) "failed") $) 115)) (-2790 (((-3 (-2 (|:| |var| (-1001)) (|:| -1475 (-710))) "failed") $) 113)) (-2814 (($ $) 216 (|has| |#1| (-37 (-383 (-523)))))) (-2773 (($) 203 (|has| |#1| (-1063)) CONST)) (-3951 (((-1034) $) 10)) (-1408 (((-108) $) 166)) (-1419 ((|#1| $) 167)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 95 (|has| |#1| (-427)))) (-3310 (($ (-589 $)) 92 (|has| |#1| (-427))) (($ $ $) 91 (|has| |#1| (-427)))) (-1708 (((-394 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-840)))) (-1417 (((-394 (-1083 $)) (-1083 $)) 101 (|has| |#1| (-840)))) (-2424 (((-394 $) $) 99 (|has| |#1| (-840)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 213 (|has| |#1| (-339)))) (-4007 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 207 (|has| |#1| (-339)))) (-2812 (($ $ (-589 (-271 $))) 145) (($ $ (-271 $)) 144) (($ $ $ $) 143) (($ $ (-589 $) (-589 $)) 142) (($ $ (-1001) |#1|) 141) (($ $ (-589 (-1001)) (-589 |#1|)) 140) (($ $ (-1001) $) 139) (($ $ (-589 (-1001)) (-589 $)) 138)) (-3413 (((-710) $) 209 (|has| |#1| (-339)))) (-1937 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-383 $) (-383 $) (-383 $)) 225 (|has| |#1| (-515))) ((|#1| (-383 $) |#1|) 217 (|has| |#1| (-339))) (((-383 $) $ (-383 $)) 205 (|has| |#1| (-515)))) (-3801 (((-3 $ "failed") $ (-710)) 234)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 210 (|has| |#1| (-339)))) (-1744 (($ $ (-1001)) 107 (|has| |#1| (-158))) ((|#1| $) 227 (|has| |#1| (-158)))) (-3984 (($ $ (-1001)) 42) (($ $ (-589 (-1001))) 41) (($ $ (-1001) (-710)) 40) (($ $ (-589 (-1001)) (-589 (-710))) 39) (($ $ (-710)) 253) (($ $) 251) (($ $ (-1087)) 250 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 249 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 248 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 247 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2640 (((-710) $) 150) (((-710) $ (-1001)) 130) (((-589 (-710)) $ (-589 (-1001))) 129)) (-1400 (((-823 (-355)) $) 82 (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) 81 (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) 80 (-12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-1618 ((|#1| $) 175 (|has| |#1| (-427))) (($ $ (-1001)) 106 (|has| |#1| (-427)))) (-2593 (((-3 (-1169 $) "failed") (-629 $)) 104 (-3147 (|has| $ (-134)) (|has| |#1| (-840))))) (-3923 (((-3 $ "failed") $ $) 222 (|has| |#1| (-515))) (((-3 (-383 $) "failed") (-383 $) $) 221 (|has| |#1| (-515)))) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 163) (($ (-1001)) 137) (($ (-383 (-523))) 72 (-3172 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))))) (($ $) 85 (|has| |#1| (-515)))) (-3819 (((-589 |#1|) $) 168)) (-2084 ((|#1| $ (-710)) 155) (($ $ (-1001) (-710)) 128) (($ $ (-589 (-1001)) (-589 (-710))) 127)) (-1942 (((-3 $ "failed") $) 73 (-3172 (-3147 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-3272 (((-710)) 29)) (-3553 (($ $ $ (-710)) 173 (|has| |#1| (-158)))) (-2801 (((-108) $ $) 89 (|has| |#1| (-515)))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-1001)) 38) (($ $ (-589 (-1001))) 37) (($ $ (-1001) (-710)) 36) (($ $ (-589 (-1001)) (-589 (-710))) 35) (($ $ (-710)) 254) (($ $) 252) (($ $ (-1087)) 246 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 245 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 244 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 243 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-4006 (((-108) $ $) 76 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 75 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 6)) (-3993 (((-108) $ $) 77 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 74 (|has| |#1| (-786)))) (-4074 (($ $ |#1|) 156 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 157 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1145 |#1|) (-129) (-973)) (T -1145)) +((-1317 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-1145 *4)) (-4 *4 (-973)) (-5 *2 (-1169 *4)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-973)) (-5 *2 (-1083 *3)))) (-3859 (*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-973)) (-4 *1 (-1145 *3)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1145 *3)) (-4 *3 (-973)))) (-3801 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-710)) (-4 *1 (-1145 *3)) (-4 *3 (-973)))) (-3052 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-1145 *3)))) (-1716 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-1145 *4)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1145 *3)) (-4 *3 (-973)))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1145 *3)) (-4 *3 (-973)))) (-3425 (*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-973)))) (-3984 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1145 *3)) (-4 *3 (-973)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-158)))) (-1611 (*1 *2 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-158)))) (-1937 (*1 *2 *2 *2) (-12 (-5 *2 (-383 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-973)) (-4 *3 (-515)))) (-3437 (*1 *2 *1 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-973)) (-4 *3 (-515)) (-5 *2 (-710)))) (-2485 (*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) (-3923 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) (-3923 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-383 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-973)) (-4 *3 (-515)))) (-3082 (*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) (-3999 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3474 *3) (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-1145 *3)))) (-3061 (*1 *2 *1 *1) (-12 (-4 *3 (-427)) (-4 *3 (-973)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1145 *3)))) (-1937 (*1 *2 *3 *2) (-12 (-5 *3 (-383 *1)) (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2814 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523))))))) +(-13 (-880 |t#1| (-710) (-1001)) (-263 |t#1| |t#1|) (-263 $ $) (-211) (-209 |t#1|) (-10 -8 (-15 -1317 ((-1169 |t#1|) $ (-710))) (-15 -3805 ((-1083 |t#1|) $)) (-15 -3859 ($ (-1083 |t#1|))) (-15 -3590 ($ $ (-710))) (-15 -3801 ((-3 $ "failed") $ (-710))) (-15 -3052 ((-2 (|:| -3070 $) (|:| -3969 $)) $ $)) (-15 -1716 ((-2 (|:| -3070 $) (|:| -3969 $)) $ (-710))) (-15 -2199 ($ $ (-710))) (-15 -3811 ($ $ (-710))) (-15 -3425 ($ $ $)) (-15 -3984 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |t#1| (-158)) (PROGN (-15 -1744 (|t#1| $)) (-15 -1611 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-6 (-263 (-383 $) (-383 $))) (-15 -1937 ((-383 $) (-383 $) (-383 $))) (-15 -3437 ((-710) $ $)) (-15 -2485 ($ $ $)) (-15 -3923 ((-3 $ "failed") $ $)) (-15 -3923 ((-3 (-383 $) "failed") (-383 $) $)) (-15 -3082 ($ $ $)) (-15 -3999 ((-2 (|:| -3474 |t#1|) (|:| -3070 $) (|:| -3969 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-427)) (-15 -3061 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-339)) (PROGN (-6 (-284)) (-6 -4244) (-15 -1937 (|t#1| (-383 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-383 (-523)))) (-15 -2814 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-710)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-564 (-499)) -12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523))))) ((-209 |#1|) . T) ((-211) . T) ((-263 (-383 $) (-383 $)) |has| |#1| (-515)) ((-263 |#1| |#1|) . T) ((-263 $ $) . T) ((-267) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-286 $) . T) ((-302 |#1| #0#) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3172 (|has| |#1| (-840)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-484 #2=(-1001) |#1|) . T) ((-484 #2# $) . T) ((-484 $ $) . T) ((-515) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-591 #1#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #1#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 #2#) . T) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-817 (-355)) -12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355)))) ((-817 (-523)) -12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))) ((-880 |#1| #0# #2#) . T) ((-840) |has| |#1| (-840)) ((-851) |has| |#1| (-339)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 #2#) . T) ((-964 |#1|) . T) ((-979 #1#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-1063)) ((-1127) |has| |#1| (-840))) +((-1292 (((-589 (-1001)) $) 28)) (-1457 (($ $) 25)) (-1267 (($ |#2| |#3|) NIL) (($ $ (-1001) |#3|) 22) (($ $ (-589 (-1001)) (-589 |#3|)) 20)) (-1427 (($ $) 14)) (-1437 ((|#2| $) 12)) (-2640 ((|#3| $) 10))) +(((-1146 |#1| |#2| |#3|) (-10 -8 (-15 -1292 ((-589 (-1001)) |#1|)) (-15 -1267 (|#1| |#1| (-589 (-1001)) (-589 |#3|))) (-15 -1267 (|#1| |#1| (-1001) |#3|)) (-15 -1457 (|#1| |#1|)) (-15 -1267 (|#1| |#2| |#3|)) (-15 -2640 (|#3| |#1|)) (-15 -1427 (|#1| |#1|)) (-15 -1437 (|#2| |#1|))) (-1147 |#2| |#3|) (-973) (-731)) (T -1146)) +NIL +(-10 -8 (-15 -1292 ((-589 (-1001)) |#1|)) (-15 -1267 (|#1| |#1| (-589 (-1001)) (-589 |#3|))) (-15 -1267 (|#1| |#1| (-1001) |#3|)) (-15 -1457 (|#1| |#1|)) (-15 -1267 (|#1| |#2| |#3|)) (-15 -2640 (|#3| |#1|)) (-15 -1427 (|#1| |#1|)) (-15 -1437 (|#2| |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1292 (((-589 (-1001)) $) 74)) (-2724 (((-1087) $) 103)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3306 (($ $) 52 (|has| |#1| (-515)))) (-3174 (((-108) $) 54 (|has| |#1| (-515)))) (-3276 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-1552 (((-1068 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1457 (($ $) 60)) (-1444 (((-3 $ "failed") $) 34)) (-2589 (((-108) $) 73)) (-3437 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-2769 (((-108) $) 31)) (-3590 (($ $ (-852)) 101)) (-2704 (((-108) $) 62)) (-1267 (($ |#1| |#2|) 61) (($ $ (-1001) |#2|) 76) (($ $ (-589 (-1001)) (-589 |#2|)) 75)) (-1345 (($ (-1 |#1| |#1|) $) 63)) (-1427 (($ $) 65)) (-1437 ((|#1| $) 66)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3053 (($ $ |#2|) 95)) (-4007 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-2812 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1937 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1028)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2640 ((|#2| $) 64)) (-2488 (($ $) 72)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47 (|has| |#1| (-158)))) (-2084 ((|#1| $ |#2|) 59)) (-1942 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-3710 ((|#1| $) 102)) (-2801 (((-108) $ $) 53 (|has| |#1| (-515)))) (-4108 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-1147 |#1| |#2|) (-129) (-973) (-731)) (T -1147)) +((-1552 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1937 (*1 *2 *1 *3) (-12 (-4 *1 (-1147 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-1087)))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-1147 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-1147 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-3437 (*1 *2 *1 *2) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-3276 (*1 *1 *1 *2) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-3276 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-4108 (*1 *2 *1 *3) (-12 (-4 *1 (-1147 *2 *3)) (-4 *3 (-731)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1691 (*2 (-1087)))) (-4 *2 (-973)))) (-3053 (*1 *1 *1 *2) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-2812 (*1 *2 *1 *3) (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3))))) +(-13 (-902 |t#1| |t#2| (-1001)) (-10 -8 (-15 -1552 ((-1068 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1937 (|t#1| $ |t#2|)) (-15 -2724 ((-1087) $)) (-15 -3710 (|t#1| $)) (-15 -3590 ($ $ (-852))) (-15 -3437 (|t#2| $)) (-15 -3437 (|t#2| $ |t#2|)) (-15 -3276 ($ $ |t#2|)) (-15 -3276 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1691 (|t#1| (-1087)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4108 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3053 ($ $ |t#2|)) (IF (|has| |t#2| (-1028)) (-6 (-263 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-211)) (IF (|has| |t#1| (-831 (-1087))) (-6 (-831 (-1087))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2812 ((-1068 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-263 $ $) |has| |#2| (-1028)) ((-267) |has| |#1| (-515)) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| |#2| (-1001)) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3718 ((|#2| |#2|) 12)) (-4226 (((-394 |#2|) |#2|) 14)) (-2832 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523)))) 30))) +(((-1148 |#1| |#2|) (-10 -7 (-15 -4226 ((-394 |#2|) |#2|)) (-15 -3718 (|#2| |#2|)) (-15 -2832 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523)))))) (-515) (-13 (-1145 |#1|) (-515) (-10 -8 (-15 -3310 ($ $ $))))) (T -1148)) +((-2832 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-523)))) (-4 *4 (-13 (-1145 *3) (-515) (-10 -8 (-15 -3310 ($ $ $))))) (-4 *3 (-515)) (-5 *1 (-1148 *3 *4)))) (-3718 (*1 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-1148 *3 *2)) (-4 *2 (-13 (-1145 *3) (-515) (-10 -8 (-15 -3310 ($ $ $))))))) (-4226 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-1148 *4 *3)) (-4 *3 (-13 (-1145 *4) (-515) (-10 -8 (-15 -3310 ($ $ $)))))))) +(-10 -7 (-15 -4226 ((-394 |#2|) |#2|)) (-15 -3718 (|#2| |#2|)) (-15 -2832 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523)))))) +((-1345 (((-1154 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1154 |#1| |#3| |#5|)) 23))) +(((-1149 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1345 ((-1154 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1154 |#1| |#3| |#5|)))) (-973) (-973) (-1087) (-1087) |#1| |#2|) (T -1149)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1154 *5 *7 *9)) (-4 *5 (-973)) (-4 *6 (-973)) (-14 *7 (-1087)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1154 *6 *8 *10)) (-5 *1 (-1149 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1087))))) +(-10 -7 (-15 -1345 ((-1154 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1154 |#1| |#3| |#5|)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1292 (((-589 (-1001)) $) 74)) (-2724 (((-1087) $) 103)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3306 (($ $) 52 (|has| |#1| (-515)))) (-3174 (((-108) $) 54 (|has| |#1| (-515)))) (-3276 (($ $ (-383 (-523))) 98) (($ $ (-383 (-523)) (-383 (-523))) 97)) (-1552 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) 105)) (-1462 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 162 (|has| |#1| (-339)))) (-4226 (((-394 $) $) 163 (|has| |#1| (-339)))) (-2437 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-2787 (((-108) $ $) 153 (|has| |#1| (-339)))) (-1441 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-3199 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) 172)) (-1481 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) 17 T CONST)) (-4059 (($ $ $) 157 (|has| |#1| (-339)))) (-1457 (($ $) 60)) (-1444 (((-3 $ "failed") $) 34)) (-4032 (($ $ $) 156 (|has| |#1| (-339)))) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 151 (|has| |#1| (-339)))) (-3049 (((-108) $) 164 (|has| |#1| (-339)))) (-2589 (((-108) $) 73)) (-3352 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-383 (-523)) $) 100) (((-383 (-523)) $ (-383 (-523))) 99)) (-2769 (((-108) $) 31)) (-1973 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-3590 (($ $ (-852)) 101) (($ $ (-383 (-523))) 171)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 160 (|has| |#1| (-339)))) (-2704 (((-108) $) 62)) (-1267 (($ |#1| (-383 (-523))) 61) (($ $ (-1001) (-383 (-523))) 76) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) 75)) (-1345 (($ (-1 |#1| |#1|) $) 63)) (-2313 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) 65)) (-1437 ((|#1| $) 66)) (-3278 (($ (-589 $)) 149 (|has| |#1| (-339))) (($ $ $) 148 (|has| |#1| (-339)))) (-2032 (((-1070) $) 9)) (-1396 (($ $) 165 (|has| |#1| (-339)))) (-2814 (($ $) 170 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 169 (-3172 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1109)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 150 (|has| |#1| (-339)))) (-3310 (($ (-589 $)) 147 (|has| |#1| (-339))) (($ $ $) 146 (|has| |#1| (-339)))) (-2424 (((-394 $) $) 161 (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 158 (|has| |#1| (-339)))) (-3053 (($ $ (-383 (-523))) 95)) (-4007 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 152 (|has| |#1| (-339)))) (-2922 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-3413 (((-710) $) 154 (|has| |#1| (-339)))) (-1937 ((|#1| $ (-383 (-523))) 104) (($ $ $) 81 (|has| (-383 (-523)) (-1028)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 155 (|has| |#1| (-339)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-2640 (((-383 (-523)) $) 64)) (-2306 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) 72)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 47 (|has| |#1| (-158))) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515)))) (-2084 ((|#1| $ (-383 (-523))) 59)) (-1942 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-3710 ((|#1| $) 102)) (-2341 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2318 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-383 (-523))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 166 (|has| |#1| (-339)))) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#1|) 58 (|has| |#1| (-339))) (($ $ $) 168 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 167 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-1150 |#1|) (-129) (-973)) (T -1150)) +((-3199 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| *4)))) (-4 *4 (-973)) (-4 *1 (-1150 *4)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-4 *1 (-1150 *3)) (-4 *3 (-973)))) (-2814 (*1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) (-2814 (*1 *1 *1 *2) (-3172 (-12 (-5 *2 (-1087)) (-4 *1 (-1150 *3)) (-4 *3 (-973)) (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1109)) (-4 *3 (-37 (-383 (-523)))))) (-12 (-5 *2 (-1087)) (-4 *1 (-1150 *3)) (-4 *3 (-973)) (-12 (|has| *3 (-15 -1292 ((-589 *2) *3))) (|has| *3 (-15 -2814 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523))))))))) +(-13 (-1147 |t#1| (-383 (-523))) (-10 -8 (-15 -3199 ($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |t#1|))))) (-15 -3590 ($ $ (-383 (-523)))) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -2814 ($ $)) (IF (|has| |t#1| (-15 -2814 (|t#1| |t#1| (-1087)))) (IF (|has| |t#1| (-15 -1292 ((-589 (-1087)) |t#1|))) (-15 -2814 ($ $ (-1087))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1109)) (IF (|has| |t#1| (-889)) (IF (|has| |t#1| (-29 (-523))) (-15 -2814 ($ $ (-1087))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-930)) (-6 (-1109))) |%noBranch|) (IF (|has| |t#1| (-339)) (-6 (-339)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-383 (-523))) . T) ((-25) . T) ((-37 #1=(-383 (-523))) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) ((-221) |has| |#1| (-339)) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 $ $) |has| (-383 (-523)) (-1028)) ((-267) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-339) |has| |#1| (-339)) ((-427) |has| |#1| (-339)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-515) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-591 #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| #0# (-1001)) . T) ((-851) |has| |#1| (-339)) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-979 #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1109) |has| |#1| (-37 (-383 (-523)))) ((-1112) |has| |#1| (-37 (-383 (-523)))) ((-1127) |has| |#1| (-339)) ((-1147 |#1| #0#) . T)) +((-2603 (((-108) $) 12)) (-1220 (((-3 |#3| "failed") $) 17)) (-3508 ((|#3| $) 14))) +(((-1151 |#1| |#2| |#3|) (-10 -8 (-15 -3508 (|#3| |#1|)) (-15 -1220 ((-3 |#3| "failed") |#1|)) (-15 -2603 ((-108) |#1|))) (-1152 |#2| |#3|) (-973) (-1129 |#2|)) (T -1151)) +NIL +(-10 -8 (-15 -3508 (|#3| |#1|)) (-15 -1220 ((-3 |#3| "failed") |#1|)) (-15 -2603 ((-108) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1292 (((-589 (-1001)) $) 74)) (-2724 (((-1087) $) 103)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3306 (($ $) 52 (|has| |#1| (-515)))) (-3174 (((-108) $) 54 (|has| |#1| (-515)))) (-3276 (($ $ (-383 (-523))) 98) (($ $ (-383 (-523)) (-383 (-523))) 97)) (-1552 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) 105)) (-1462 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 162 (|has| |#1| (-339)))) (-4226 (((-394 $) $) 163 (|has| |#1| (-339)))) (-2437 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-2787 (((-108) $ $) 153 (|has| |#1| (-339)))) (-1441 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-3199 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) 172)) (-1481 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) 17 T CONST)) (-1220 (((-3 |#2| "failed") $) 183)) (-3508 ((|#2| $) 182)) (-4059 (($ $ $) 157 (|has| |#1| (-339)))) (-1457 (($ $) 60)) (-1444 (((-3 $ "failed") $) 34)) (-3705 (((-383 (-523)) $) 180)) (-4032 (($ $ $) 156 (|has| |#1| (-339)))) (-1380 (($ (-383 (-523)) |#2|) 181)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 151 (|has| |#1| (-339)))) (-3049 (((-108) $) 164 (|has| |#1| (-339)))) (-2589 (((-108) $) 73)) (-3352 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-383 (-523)) $) 100) (((-383 (-523)) $ (-383 (-523))) 99)) (-2769 (((-108) $) 31)) (-1973 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-3590 (($ $ (-852)) 101) (($ $ (-383 (-523))) 171)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 160 (|has| |#1| (-339)))) (-2704 (((-108) $) 62)) (-1267 (($ |#1| (-383 (-523))) 61) (($ $ (-1001) (-383 (-523))) 76) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) 75)) (-1345 (($ (-1 |#1| |#1|) $) 63)) (-2313 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) 65)) (-1437 ((|#1| $) 66)) (-3278 (($ (-589 $)) 149 (|has| |#1| (-339))) (($ $ $) 148 (|has| |#1| (-339)))) (-4106 ((|#2| $) 179)) (-1991 (((-3 |#2| "failed") $) 177)) (-1369 ((|#2| $) 178)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 165 (|has| |#1| (-339)))) (-2814 (($ $) 170 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 169 (-3172 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1109)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 150 (|has| |#1| (-339)))) (-3310 (($ (-589 $)) 147 (|has| |#1| (-339))) (($ $ $) 146 (|has| |#1| (-339)))) (-2424 (((-394 $) $) 161 (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 158 (|has| |#1| (-339)))) (-3053 (($ $ (-383 (-523))) 95)) (-4007 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 152 (|has| |#1| (-339)))) (-2922 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-3413 (((-710) $) 154 (|has| |#1| (-339)))) (-1937 ((|#1| $ (-383 (-523))) 104) (($ $ $) 81 (|has| (-383 (-523)) (-1028)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 155 (|has| |#1| (-339)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-2640 (((-383 (-523)) $) 64)) (-2306 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) 72)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 47 (|has| |#1| (-158))) (($ |#2|) 184) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515)))) (-2084 ((|#1| $ (-383 (-523))) 59)) (-1942 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-3710 ((|#1| $) 102)) (-2341 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2318 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-383 (-523))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 166 (|has| |#1| (-339)))) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#1|) 58 (|has| |#1| (-339))) (($ $ $) 168 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 167 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-1152 |#1| |#2|) (-129) (-973) (-1129 |t#1|)) (T -1152)) +((-2640 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1129 *3)) (-5 *2 (-383 (-523))))) (-1691 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *1 (-1152 *3 *2)) (-4 *2 (-1129 *3)))) (-1380 (*1 *1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-4 *4 (-973)) (-4 *1 (-1152 *4 *3)) (-4 *3 (-1129 *4)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1129 *3)) (-5 *2 (-383 (-523))))) (-4106 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1129 *3)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1129 *3)))) (-1991 (*1 *2 *1) (|partial| -12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1129 *3))))) +(-13 (-1150 |t#1|) (-964 |t#2|) (-10 -8 (-15 -1380 ($ (-383 (-523)) |t#2|)) (-15 -3705 ((-383 (-523)) $)) (-15 -4106 (|t#2| $)) (-15 -2640 ((-383 (-523)) $)) (-15 -1691 ($ |t#2|)) (-15 -1369 (|t#2| $)) (-15 -1991 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-383 (-523))) . T) ((-25) . T) ((-37 #1=(-383 (-523))) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) ((-221) |has| |#1| (-339)) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 $ $) |has| (-383 (-523)) (-1028)) ((-267) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-339) |has| |#1| (-339)) ((-427) |has| |#1| (-339)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-515) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-591 #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| #0# (-1001)) . T) ((-851) |has| |#1| (-339)) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-964 |#2|) . T) ((-979 #1#) -3172 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1109) |has| |#1| (-37 (-383 (-523)))) ((-1112) |has| |#1| (-37 (-383 (-523)))) ((-1127) |has| |#1| (-339)) ((-1147 |#1| #0#) . T) ((-1150 |#1|) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1292 (((-589 (-1001)) $) NIL)) (-2724 (((-1087) $) 96)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-3276 (($ $ (-383 (-523))) 106) (($ $ (-383 (-523)) (-383 (-523))) 108)) (-1552 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) 51)) (-1462 (($ $) 179 (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) 155 (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL (|has| |#1| (-339)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2437 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1441 (($ $) 175 (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) 151 (|has| |#1| (-37 (-383 (-523)))))) (-3199 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) 61)) (-1481 (($ $) 183 (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) 159 (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#2| "failed") $) NIL)) (-3508 ((|#2| $) NIL)) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) 79)) (-3705 (((-383 (-523)) $) 12)) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-1380 (($ (-383 (-523)) |#2|) 10)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-3049 (((-108) $) NIL (|has| |#1| (-339)))) (-2589 (((-108) $) 68)) (-3352 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-383 (-523)) $) 103) (((-383 (-523)) $ (-383 (-523))) 104)) (-2769 (((-108) $) NIL)) (-1973 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3590 (($ $ (-852)) 120) (($ $ (-383 (-523))) 118)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-383 (-523))) 31) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-1345 (($ (-1 |#1| |#1|) $) 115)) (-2313 (($ $) 149 (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4106 ((|#2| $) 11)) (-1991 (((-3 |#2| "failed") $) 41)) (-1369 ((|#2| $) 42)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) 93 (|has| |#1| (-339)))) (-2814 (($ $) 135 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 140 (-3172 (-12 (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1109)))))) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-3053 (($ $ (-383 (-523))) 112)) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2922 (($ $) 147 (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-3413 (((-710) $) NIL (|has| |#1| (-339)))) (-1937 ((|#1| $ (-383 (-523))) 100) (($ $ $) 86 (|has| (-383 (-523)) (-1028)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) 127 (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-2640 (((-383 (-523)) $) 16)) (-2306 (($ $) 185 (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) 161 (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) 181 (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) 157 (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) 177 (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) 153 (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) 110)) (-1691 (((-794) $) NIL) (($ (-523)) 35) (($ |#1|) 27 (|has| |#1| (-158))) (($ |#2|) 32) (($ (-383 (-523))) 128 (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2084 ((|#1| $ (-383 (-523))) 99)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) 117)) (-3710 ((|#1| $) 98)) (-2341 (($ $) 191 (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) 167 (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2318 (($ $) 187 (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) 163 (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) 195 (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) 171 (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-383 (-523))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) 197 (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) 173 (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) 193 (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) 169 (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) 189 (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) 165 (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-1879 (($) 21 T CONST)) (-1891 (($) 17 T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3941 (((-108) $ $) 66)) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) 92 (|has| |#1| (-339)))) (-4060 (($ $) 131) (($ $ $) 72)) (-4045 (($ $ $) 70)) (** (($ $ (-852)) NIL) (($ $ (-710)) 76) (($ $ (-523)) 144 (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 145 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1153 |#1| |#2|) (-1152 |#1| |#2|) (-973) (-1129 |#1|)) (T -1153)) +NIL +(-1152 |#1| |#2|) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1292 (((-589 (-1001)) $) NIL)) (-2724 (((-1087) $) 11)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) NIL (|has| |#1| (-515)))) (-3276 (($ $ (-383 (-523))) NIL) (($ $ (-383 (-523)) (-383 (-523))) NIL)) (-1552 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-3718 (($ $) NIL (|has| |#1| (-339)))) (-4226 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2437 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2787 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1441 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3199 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) NIL)) (-1481 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-1133 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 22)) (-3508 (((-1133 |#1| |#2| |#3|) $) NIL) (((-1161 |#1| |#2| |#3|) $) NIL)) (-4059 (($ $ $) NIL (|has| |#1| (-339)))) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-3705 (((-383 (-523)) $) 57)) (-4032 (($ $ $) NIL (|has| |#1| (-339)))) (-1380 (($ (-383 (-523)) (-1133 |#1| |#2| |#3|)) NIL)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-3049 (((-108) $) NIL (|has| |#1| (-339)))) (-2589 (((-108) $) NIL)) (-3352 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-383 (-523)) $) NIL) (((-383 (-523)) $ (-383 (-523))) NIL)) (-2769 (((-108) $) NIL)) (-1973 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3590 (($ $ (-852)) NIL) (($ $ (-383 (-523))) NIL)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-383 (-523))) 29) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-2313 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4106 (((-1133 |#1| |#2| |#3|) $) 60)) (-1991 (((-3 (-1133 |#1| |#2| |#3|) "failed") $) NIL)) (-1369 (((-1133 |#1| |#2| |#3|) $) NIL)) (-2032 (((-1070) $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-339)))) (-2814 (($ $) 38 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3172 (-12 (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1109))))) (($ $ (-1165 |#2|)) 39 (|has| |#1| (-37 (-383 (-523)))))) (-3951 (((-1034) $) NIL)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3310 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2424 (((-394 $) $) NIL (|has| |#1| (-339)))) (-2100 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) NIL (|has| |#1| (-339)))) (-3053 (($ $ (-383 (-523))) NIL)) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1251 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2922 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-3413 (((-710) $) NIL (|has| |#1| (-339)))) (-1937 ((|#1| $ (-383 (-523))) NIL) (($ $ $) NIL (|has| (-383 (-523)) (-1028)))) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) NIL (|has| |#1| (-339)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $ (-1165 |#2|)) 37)) (-2640 (((-383 (-523)) $) NIL)) (-2306 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) NIL)) (-1691 (((-794) $) 89) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1133 |#1| |#2| |#3|)) 16) (($ (-1161 |#1| |#2| |#3|)) 17) (($ (-1165 |#2|)) 35) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2084 ((|#1| $ (-383 (-523))) NIL)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-3710 ((|#1| $) 12)) (-2341 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2318 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-383 (-523))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-1879 (($) 31 T CONST)) (-1891 (($) 26 T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 33)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1154 |#1| |#2| |#3|) (-13 (-1152 |#1| (-1133 |#1| |#2| |#3|)) (-964 (-1161 |#1| |#2| |#3|)) (-10 -8 (-15 -1691 ($ (-1165 |#2|))) (-15 -3984 ($ $ (-1165 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1154)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-2814 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1152 |#1| (-1133 |#1| |#2| |#3|)) (-964 (-1161 |#1| |#2| |#3|)) (-10 -8 (-15 -1691 ($ (-1165 |#2|))) (-15 -3984 ($ $ (-1165 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 32)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL)) (-3306 (($ $) NIL)) (-3174 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 (-523) "failed") $) NIL (|has| (-1154 |#2| |#3| |#4|) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-1154 |#2| |#3| |#4|) (-964 (-383 (-523))))) (((-3 (-1154 |#2| |#3| |#4|) "failed") $) 20)) (-3508 (((-523) $) NIL (|has| (-1154 |#2| |#3| |#4|) (-964 (-523)))) (((-383 (-523)) $) NIL (|has| (-1154 |#2| |#3| |#4|) (-964 (-383 (-523))))) (((-1154 |#2| |#3| |#4|) $) NIL)) (-1457 (($ $) 33)) (-1444 (((-3 $ "failed") $) 25)) (-1272 (($ $) NIL (|has| (-1154 |#2| |#3| |#4|) (-427)))) (-4222 (($ $ (-1154 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|) $) NIL)) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) 11)) (-2704 (((-108) $) NIL)) (-1267 (($ (-1154 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) 23)) (-4047 (((-295 |#2| |#3| |#4|) $) NIL)) (-2041 (($ (-1 (-295 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) $) NIL)) (-1345 (($ (-1 (-1154 |#2| |#3| |#4|) (-1154 |#2| |#3| |#4|)) $) NIL)) (-3603 (((-3 (-779 |#2|) "failed") $) 73)) (-1427 (($ $) NIL)) (-1437 (((-1154 |#2| |#3| |#4|) $) 18)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1408 (((-108) $) NIL)) (-1419 (((-1154 |#2| |#3| |#4|) $) NIL)) (-4007 (((-3 $ "failed") $ (-1154 |#2| |#3| |#4|)) NIL (|has| (-1154 |#2| |#3| |#4|) (-515))) (((-3 $ "failed") $ $) NIL)) (-3551 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1154 |#2| |#3| |#4|)) (|:| |%expon| (-295 |#2| |#3| |#4|)) (|:| |%expTerms| (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#2|)))))) (|:| |%type| (-1070))) "failed") $) 56)) (-2640 (((-295 |#2| |#3| |#4|) $) 14)) (-1618 (((-1154 |#2| |#3| |#4|) $) NIL (|has| (-1154 |#2| |#3| |#4|) (-427)))) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ (-1154 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL (-3172 (|has| (-1154 |#2| |#3| |#4|) (-37 (-383 (-523)))) (|has| (-1154 |#2| |#3| |#4|) (-964 (-383 (-523))))))) (-3819 (((-589 (-1154 |#2| |#3| |#4|)) $) NIL)) (-2084 (((-1154 |#2| |#3| |#4|) $ (-295 |#2| |#3| |#4|)) NIL)) (-1942 (((-3 $ "failed") $) NIL (|has| (-1154 |#2| |#3| |#4|) (-134)))) (-3272 (((-710)) NIL)) (-3553 (($ $ $ (-710)) NIL (|has| (-1154 |#2| |#3| |#4|) (-158)))) (-2801 (((-108) $ $) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 61 T CONST)) (-1891 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ (-1154 |#2| |#3| |#4|)) NIL (|has| (-1154 |#2| |#3| |#4|) (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-1154 |#2| |#3| |#4|)) NIL) (($ (-1154 |#2| |#3| |#4|) $) NIL) (($ (-383 (-523)) $) NIL (|has| (-1154 |#2| |#3| |#4|) (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| (-1154 |#2| |#3| |#4|) (-37 (-383 (-523))))))) +(((-1155 |#1| |#2| |#3| |#4|) (-13 (-302 (-1154 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) (-515) (-10 -8 (-15 -3603 ((-3 (-779 |#2|) "failed") $)) (-15 -3551 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1154 |#2| |#3| |#4|)) (|:| |%expon| (-295 |#2| |#3| |#4|)) (|:| |%expTerms| (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#2|)))))) (|:| |%type| (-1070))) "failed") $)))) (-13 (-786) (-964 (-523)) (-585 (-523)) (-427)) (-13 (-27) (-1109) (-406 |#1|)) (-1087) |#2|) (T -1155)) +((-3603 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *2 (-779 *4)) (-5 *1 (-1155 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1109) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4))) (-3551 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1154 *4 *5 *6)) (|:| |%expon| (-295 *4 *5 *6)) (|:| |%expTerms| (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| *4)))))) (|:| |%type| (-1070)))) (-5 *1 (-1155 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1109) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4)))) +(-13 (-302 (-1154 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) (-515) (-10 -8 (-15 -3603 ((-3 (-779 |#2|) "failed") $)) (-15 -3551 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1154 |#2| |#3| |#4|)) (|:| |%expon| (-295 |#2| |#3| |#4|)) (|:| |%expTerms| (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#2|)))))) (|:| |%type| (-1070))) "failed") $)))) +((-3370 ((|#2| $) 29)) (-2176 ((|#2| $) 18)) (-2227 (($ $) 36)) (-2856 (($ $ (-523)) 64)) (-1620 (((-108) $ (-710)) 33)) (-1487 ((|#2| $ |#2|) 61)) (-2622 ((|#2| $ |#2|) 59)) (-1849 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-1809 (($ $ (-589 $)) 60)) (-2165 ((|#2| $) 17)) (-2441 (($ $) NIL) (($ $ (-710)) 42)) (-2932 (((-589 $) $) 26)) (-3675 (((-108) $ $) 50)) (-3051 (((-108) $ (-710)) 32)) (-1418 (((-108) $ (-710)) 31)) (-1799 (((-108) $) 28)) (-2535 ((|#2| $) 24) (($ $ (-710)) 46)) (-1937 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1221 (((-108) $) 22)) (-2582 (($ $) 39)) (-2075 (($ $) 65)) (-2784 (((-710) $) 41)) (-1867 (($ $) 40)) (-2394 (($ $ $) 58) (($ |#2| $) NIL)) (-2612 (((-589 $) $) 27)) (-3941 (((-108) $ $) 48)) (-2810 (((-710) $) 35))) +(((-1156 |#1| |#2|) (-10 -8 (-15 -2856 (|#1| |#1| (-523))) (-15 -1849 (|#2| |#1| "last" |#2|)) (-15 -2622 (|#2| |#1| |#2|)) (-15 -1849 (|#1| |#1| "rest" |#1|)) (-15 -1849 (|#2| |#1| "first" |#2|)) (-15 -2075 (|#1| |#1|)) (-15 -2582 (|#1| |#1|)) (-15 -2784 ((-710) |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2176 (|#2| |#1|)) (-15 -2165 (|#2| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2535 (|#1| |#1| (-710))) (-15 -1937 (|#2| |#1| "last")) (-15 -2535 (|#2| |#1|)) (-15 -2441 (|#1| |#1| (-710))) (-15 -1937 (|#1| |#1| "rest")) (-15 -2441 (|#1| |#1|)) (-15 -1937 (|#2| |#1| "first")) (-15 -2394 (|#1| |#2| |#1|)) (-15 -2394 (|#1| |#1| |#1|)) (-15 -1487 (|#2| |#1| |#2|)) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -1809 (|#1| |#1| (-589 |#1|))) (-15 -3675 ((-108) |#1| |#1|)) (-15 -1221 ((-108) |#1|)) (-15 -1937 (|#2| |#1| "value")) (-15 -3370 (|#2| |#1|)) (-15 -1799 ((-108) |#1|)) (-15 -2932 ((-589 |#1|) |#1|)) (-15 -2612 ((-589 |#1|) |#1|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -2810 ((-710) |#1|)) (-15 -1620 ((-108) |#1| (-710))) (-15 -3051 ((-108) |#1| (-710))) (-15 -1418 ((-108) |#1| (-710)))) (-1157 |#2|) (-1123)) (T -1156)) +NIL +(-10 -8 (-15 -2856 (|#1| |#1| (-523))) (-15 -1849 (|#2| |#1| "last" |#2|)) (-15 -2622 (|#2| |#1| |#2|)) (-15 -1849 (|#1| |#1| "rest" |#1|)) (-15 -1849 (|#2| |#1| "first" |#2|)) (-15 -2075 (|#1| |#1|)) (-15 -2582 (|#1| |#1|)) (-15 -2784 ((-710) |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2176 (|#2| |#1|)) (-15 -2165 (|#2| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2535 (|#1| |#1| (-710))) (-15 -1937 (|#2| |#1| "last")) (-15 -2535 (|#2| |#1|)) (-15 -2441 (|#1| |#1| (-710))) (-15 -1937 (|#1| |#1| "rest")) (-15 -2441 (|#1| |#1|)) (-15 -1937 (|#2| |#1| "first")) (-15 -2394 (|#1| |#2| |#1|)) (-15 -2394 (|#1| |#1| |#1|)) (-15 -1487 (|#2| |#1| |#2|)) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -1809 (|#1| |#1| (-589 |#1|))) (-15 -3675 ((-108) |#1| |#1|)) (-15 -1221 ((-108) |#1|)) (-15 -1937 (|#2| |#1| "value")) (-15 -3370 (|#2| |#1|)) (-15 -1799 ((-108) |#1|)) (-15 -2932 ((-589 |#1|) |#1|)) (-15 -2612 ((-589 |#1|) |#1|)) (-15 -3941 ((-108) |#1| |#1|)) (-15 -2810 ((-710) |#1|)) (-15 -1620 ((-108) |#1| (-710))) (-15 -3051 ((-108) |#1| (-710))) (-15 -1418 ((-108) |#1| (-710)))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3370 ((|#1| $) 48)) (-2176 ((|#1| $) 65)) (-2227 (($ $) 67)) (-2856 (($ $ (-523)) 52 (|has| $ (-6 -4249)))) (-1620 (((-108) $ (-710)) 8)) (-1487 ((|#1| $ |#1|) 39 (|has| $ (-6 -4249)))) (-2470 (($ $ $) 56 (|has| $ (-6 -4249)))) (-2622 ((|#1| $ |#1|) 54 (|has| $ (-6 -4249)))) (-2027 ((|#1| $ |#1|) 58 (|has| $ (-6 -4249)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4249))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4249))) (($ $ "rest" $) 55 (|has| $ (-6 -4249))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4249)))) (-1809 (($ $ (-589 $)) 41 (|has| $ (-6 -4249)))) (-2165 ((|#1| $) 66)) (-4189 (($) 7 T CONST)) (-2441 (($ $) 73) (($ $ (-710)) 71)) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-2932 (((-589 $) $) 50)) (-3675 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-3051 (((-108) $ (-710)) 9)) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35)) (-1418 (((-108) $ (-710)) 10)) (-1701 (((-589 |#1|) $) 45)) (-1799 (((-108) $) 49)) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2535 ((|#1| $) 70) (($ $ (-710)) 68)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2428 ((|#1| $) 76) (($ $ (-710)) 74)) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3766 (((-523) $ $) 44)) (-1221 (((-108) $) 46)) (-2582 (($ $) 62)) (-2075 (($ $) 59 (|has| $ (-6 -4249)))) (-2784 (((-710) $) 63)) (-1867 (($ $) 64)) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-1874 (($ $) 13)) (-2001 (($ $ $) 61 (|has| $ (-6 -4249))) (($ $ |#1|) 60 (|has| $ (-6 -4249)))) (-2394 (($ $ $) 78) (($ |#1| $) 77)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2612 (((-589 $) $) 51)) (-3313 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-1157 |#1|) (-129) (-1123)) (T -1157)) +((-2394 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2394 (*1 *1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2428 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1157 *3)) (-4 *3 (-1123)))) (-2441 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1157 *3)) (-4 *3 (-1123)))) (-2441 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1157 *3)) (-4 *3 (-1123)))) (-2535 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2535 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1157 *3)) (-4 *3 (-1123)))) (-2227 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2165 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-1867 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-1123)) (-5 *2 (-710)))) (-2582 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2001 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2001 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2075 (*1 *1 *1) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2027 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2470 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-1849 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4249)) (-4 *1 (-1157 *3)) (-4 *3 (-1123)))) (-2622 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) (-2856 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (|has| *1 (-6 -4249)) (-4 *1 (-1157 *3)) (-4 *3 (-1123))))) +(-13 (-938 |t#1|) (-10 -8 (-15 -2394 ($ $ $)) (-15 -2394 ($ |t#1| $)) (-15 -2428 (|t#1| $)) (-15 -1937 (|t#1| $ "first")) (-15 -2428 ($ $ (-710))) (-15 -2441 ($ $)) (-15 -1937 ($ $ "rest")) (-15 -2441 ($ $ (-710))) (-15 -2535 (|t#1| $)) (-15 -1937 (|t#1| $ "last")) (-15 -2535 ($ $ (-710))) (-15 -2227 ($ $)) (-15 -2165 (|t#1| $)) (-15 -2176 (|t#1| $)) (-15 -1867 ($ $)) (-15 -2784 ((-710) $)) (-15 -2582 ($ $)) (IF (|has| $ (-6 -4249)) (PROGN (-15 -2001 ($ $ $)) (-15 -2001 ($ $ |t#1|)) (-15 -2075 ($ $)) (-15 -2027 (|t#1| $ |t#1|)) (-15 -1849 (|t#1| $ "first" |t#1|)) (-15 -2470 ($ $ $)) (-15 -1849 ($ $ "rest" $)) (-15 -2622 (|t#1| $ |t#1|)) (-15 -1849 (|t#1| $ "last" |t#1|)) (-15 -2856 ($ $ (-523)))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1123) . T)) +((-1345 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1158 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1345 (|#4| (-1 |#2| |#1|) |#3|))) (-973) (-973) (-1160 |#1|) (-1160 |#2|)) (T -1158)) +((-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-4 *2 (-1160 *6)) (-5 *1 (-1158 *5 *6 *4 *2)) (-4 *4 (-1160 *5))))) +(-10 -7 (-15 -1345 (|#4| (-1 |#2| |#1|) |#3|))) +((-2603 (((-108) $) 15)) (-1462 (($ $) 92)) (-1285 (($ $) 68)) (-1441 (($ $) 88)) (-1260 (($ $) 64)) (-1481 (($ $) 96)) (-1309 (($ $) 72)) (-2313 (($ $) 62)) (-2922 (($ $) 60)) (-2306 (($ $) 98)) (-1322 (($ $) 74)) (-1471 (($ $) 94)) (-1295 (($ $) 70)) (-1453 (($ $) 90)) (-1274 (($ $) 66)) (-1691 (((-794) $) 48) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2341 (($ $) 104)) (-1401 (($ $) 80)) (-2318 (($ $) 100)) (-1334 (($ $) 76)) (-2366 (($ $) 108)) (-1421 (($ $) 84)) (-2102 (($ $) 110)) (-1431 (($ $) 86)) (-2353 (($ $) 106)) (-1413 (($ $) 82)) (-2330 (($ $) 102)) (-1346 (($ $) 78)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-383 (-523))) 58))) +(((-1159 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -1285 (|#1| |#1|)) (-15 -1260 (|#1| |#1|)) (-15 -1309 (|#1| |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -1295 (|#1| |#1|)) (-15 -1274 (|#1| |#1|)) (-15 -1346 (|#1| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -1431 (|#1| |#1|)) (-15 -1421 (|#1| |#1|)) (-15 -1334 (|#1| |#1|)) (-15 -1401 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -2306 (|#1| |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1462 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -2102 (|#1| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2341 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2922 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1691 (|#1| |#2|)) (-15 -1691 (|#1| |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 (|#1| (-523))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852))) (-15 -2603 ((-108) |#1|)) (-15 -1691 ((-794) |#1|))) (-1160 |#2|) (-973)) (T -1159)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -1285 (|#1| |#1|)) (-15 -1260 (|#1| |#1|)) (-15 -1309 (|#1| |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -1295 (|#1| |#1|)) (-15 -1274 (|#1| |#1|)) (-15 -1346 (|#1| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -1431 (|#1| |#1|)) (-15 -1421 (|#1| |#1|)) (-15 -1334 (|#1| |#1|)) (-15 -1401 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -2306 (|#1| |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1462 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -2102 (|#1| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2341 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2922 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1691 (|#1| |#2|)) (-15 -1691 (|#1| |#1|)) (-15 -1691 (|#1| (-383 (-523)))) (-15 -1691 (|#1| (-523))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852))) (-15 -2603 ((-108) |#1|)) (-15 -1691 ((-794) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-1292 (((-589 (-1001)) $) 74)) (-2724 (((-1087) $) 103)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3306 (($ $) 52 (|has| |#1| (-515)))) (-3174 (((-108) $) 54 (|has| |#1| (-515)))) (-3276 (($ $ (-710)) 98) (($ $ (-710) (-710)) 97)) (-1552 (((-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|))) $) 105)) (-1462 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) 19)) (-2437 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-1441 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-3199 (($ (-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|)))) 155) (($ (-1068 |#1|)) 153)) (-1481 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) 17 T CONST)) (-1457 (($ $) 60)) (-1444 (((-3 $ "failed") $) 34)) (-3257 (($ $) 152)) (-3714 (((-883 |#1|) $ (-710)) 150) (((-883 |#1|) $ (-710) (-710)) 149)) (-2589 (((-108) $) 73)) (-3352 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-710) $) 100) (((-710) $ (-710)) 99)) (-2769 (((-108) $) 31)) (-1973 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-3590 (($ $ (-852)) 101)) (-2839 (($ (-1 |#1| (-523)) $) 151)) (-2704 (((-108) $) 62)) (-1267 (($ |#1| (-710)) 61) (($ $ (-1001) (-710)) 76) (($ $ (-589 (-1001)) (-589 (-710))) 75)) (-1345 (($ (-1 |#1| |#1|) $) 63)) (-2313 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) 65)) (-1437 ((|#1| $) 66)) (-2032 (((-1070) $) 9)) (-2814 (($ $) 147 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 146 (-3172 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1109)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-3951 (((-1034) $) 10)) (-3053 (($ $ (-710)) 95)) (-4007 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-2922 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2812 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-710)))))) (-1937 ((|#1| $ (-710)) 104) (($ $ $) 81 (|has| (-710) (-1028)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (-2640 (((-710) $) 64)) (-2306 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) 72)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47 (|has| |#1| (-158)))) (-3819 (((-1068 |#1|) $) 154)) (-2084 ((|#1| $ (-710)) 59)) (-1942 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-3272 (((-710)) 29)) (-3710 ((|#1| $) 102)) (-2341 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2318 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-710)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-710)))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ |#1|) 148 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-1160 |#1|) (-129) (-973)) (T -1160)) +((-3199 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-710)) (|:| |c| *3)))) (-4 *3 (-973)) (-4 *1 (-1160 *3)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-973)) (-5 *2 (-1068 *3)))) (-3199 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-4 *1 (-1160 *3)))) (-3257 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-973)))) (-2839 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-523))) (-4 *1 (-1160 *3)) (-4 *3 (-973)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-1160 *4)) (-4 *4 (-973)) (-5 *2 (-883 *4)))) (-3714 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-4 *1 (-1160 *4)) (-4 *4 (-973)) (-5 *2 (-883 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2814 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) (-2814 (*1 *1 *1 *2) (-3172 (-12 (-5 *2 (-1087)) (-4 *1 (-1160 *3)) (-4 *3 (-973)) (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1109)) (-4 *3 (-37 (-383 (-523)))))) (-12 (-5 *2 (-1087)) (-4 *1 (-1160 *3)) (-4 *3 (-973)) (-12 (|has| *3 (-15 -1292 ((-589 *2) *3))) (|has| *3 (-15 -2814 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523))))))))) +(-13 (-1147 |t#1| (-710)) (-10 -8 (-15 -3199 ($ (-1068 (-2 (|:| |k| (-710)) (|:| |c| |t#1|))))) (-15 -3819 ((-1068 |t#1|) $)) (-15 -3199 ($ (-1068 |t#1|))) (-15 -3257 ($ $)) (-15 -2839 ($ (-1 |t#1| (-523)) $)) (-15 -3714 ((-883 |t#1|) $ (-710))) (-15 -3714 ((-883 |t#1|) $ (-710) (-710))) (IF (|has| |t#1| (-339)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -2814 ($ $)) (IF (|has| |t#1| (-15 -2814 (|t#1| |t#1| (-1087)))) (IF (|has| |t#1| (-15 -1292 ((-589 (-1087)) |t#1|))) (-15 -2814 ($ $ (-1087))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1109)) (IF (|has| |t#1| (-889)) (IF (|has| |t#1| (-29 (-523))) (-15 -2814 ($ $ (-1087))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-930)) (-6 (-1109))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-710)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| (-710) |#1|))) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 $ $) |has| (-710) (-1028)) ((-267) |has| |#1| (-515)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-515) |has| |#1| (-515)) ((-591 #1#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| #0# (-1001)) . T) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-979 #1#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3172 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1109) |has| |#1| (-37 (-383 (-523)))) ((-1112) |has| |#1| (-37 (-383 (-523)))) ((-1147 |#1| #0#) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-1292 (((-589 (-1001)) $) NIL)) (-2724 (((-1087) $) 87)) (-3037 (((-1142 |#2| |#1|) $ (-710)) 73)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3306 (($ $) NIL (|has| |#1| (-515)))) (-3174 (((-108) $) 137 (|has| |#1| (-515)))) (-3276 (($ $ (-710)) 122) (($ $ (-710) (-710)) 124)) (-1552 (((-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|))) $) 42)) (-1462 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1285 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3405 (((-3 $ "failed") $ $) NIL)) (-2437 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1441 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1260 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3199 (($ (-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|)))) 53) (($ (-1068 |#1|)) NIL)) (-1481 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1309 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4189 (($) NIL T CONST)) (-1500 (($ $) 128)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-3257 (($ $) 135)) (-3714 (((-883 |#1|) $ (-710)) 63) (((-883 |#1|) $ (-710) (-710)) 65)) (-2589 (((-108) $) NIL)) (-3352 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3437 (((-710) $) NIL) (((-710) $ (-710)) NIL)) (-2769 (((-108) $) NIL)) (-2042 (($ $) 112)) (-1973 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3623 (($ (-523) (-523) $) 130)) (-3590 (($ $ (-852)) 134)) (-2839 (($ (-1 |#1| (-523)) $) 106)) (-2704 (((-108) $) NIL)) (-1267 (($ |#1| (-710)) 15) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-1345 (($ (-1 |#1| |#1|) $) 94)) (-2313 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1427 (($ $) NIL)) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-4118 (($ $) 110)) (-3200 (($ $) 108)) (-3088 (($ (-523) (-523) $) 132)) (-2814 (($ $) 145 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 151 (-3172 (-12 (|has| |#1| (-15 -2814 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1292 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1109))))) (($ $ (-1165 |#2|)) 146 (|has| |#1| (-37 (-383 (-523)))))) (-3951 (((-1034) $) NIL)) (-1627 (($ $ (-523) (-523)) 116)) (-3053 (($ $ (-710)) 118)) (-4007 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2922 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2891 (($ $) 114)) (-2812 (((-1068 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-710)))))) (-1937 ((|#1| $ (-710)) 91) (($ $ $) 126 (|has| (-710) (-1028)))) (-3984 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) 103 (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $ (-1165 |#2|)) 99)) (-2640 (((-710) $) NIL)) (-2306 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1322 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1295 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1453 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1274 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2488 (($ $) 120)) (-1691 (((-794) $) NIL) (($ (-523)) 24) (($ (-383 (-523))) 143 (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) 23 (|has| |#1| (-158))) (($ (-1142 |#2| |#1|)) 80) (($ (-1165 |#2|)) 20)) (-3819 (((-1068 |#1|) $) NIL)) (-2084 ((|#1| $ (-710)) 90)) (-1942 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-3272 (((-710)) NIL)) (-3710 ((|#1| $) 88)) (-2341 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1401 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2801 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2318 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1334 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2366 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1421 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4108 ((|#1| $ (-710)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-710)))) (|has| |#1| (-15 -1691 (|#1| (-1087))))))) (-2102 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1431 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2353 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1413 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2330 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1346 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 17 T CONST)) (-1891 (($) 13 T CONST)) (-2909 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (-3941 (((-108) $ $) NIL)) (-4074 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) 102)) (-4045 (($ $ $) 18)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ |#1|) 140 (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1161 |#1| |#2| |#3|) (-13 (-1160 |#1|) (-10 -8 (-15 -1691 ($ (-1142 |#2| |#1|))) (-15 -3037 ((-1142 |#2| |#1|) $ (-710))) (-15 -1691 ($ (-1165 |#2|))) (-15 -3984 ($ $ (-1165 |#2|))) (-15 -3200 ($ $)) (-15 -4118 ($ $)) (-15 -2042 ($ $)) (-15 -2891 ($ $)) (-15 -1627 ($ $ (-523) (-523))) (-15 -1500 ($ $)) (-15 -3623 ($ (-523) (-523) $)) (-15 -3088 ($ (-523) (-523) $)) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1161)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-1142 *4 *3)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-1161 *3 *4 *5)))) (-3037 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1142 *5 *4)) (-5 *1 (-1161 *4 *5 *6)) (-4 *4 (-973)) (-14 *5 (-1087)) (-14 *6 *4))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3200 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-4118 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-2042 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-2891 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-1627 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3))) (-1500 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-3623 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3))) (-3088 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3))) (-2814 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1160 |#1|) (-10 -8 (-15 -1691 ($ (-1142 |#2| |#1|))) (-15 -3037 ((-1142 |#2| |#1|) $ (-710))) (-15 -1691 ($ (-1165 |#2|))) (-15 -3984 ($ $ (-1165 |#2|))) (-15 -3200 ($ $)) (-15 -4118 ($ $)) (-15 -2042 ($ $)) (-15 -2891 ($ $)) (-15 -1627 ($ $ (-523) (-523))) (-15 -1500 ($ $)) (-15 -3623 ($ (-523) (-523) $)) (-15 -3088 ($ (-523) (-523) $)) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -2814 ($ $ (-1165 |#2|))) |%noBranch|))) +((-3228 (((-1 (-1068 |#1|) (-589 (-1068 |#1|))) (-1 |#2| (-589 |#2|))) 24)) (-3944 (((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3626 (((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|)) 13)) (-1216 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2321 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2365 ((|#2| (-1 |#2| (-589 |#2|)) (-589 |#1|)) 54)) (-2817 (((-589 |#2|) (-589 |#1|) (-589 (-1 |#2| (-589 |#2|)))) 61)) (-3160 ((|#2| |#2| |#2|) 43))) +(((-1162 |#1| |#2|) (-10 -7 (-15 -3626 ((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|))) (-15 -3944 ((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3228 ((-1 (-1068 |#1|) (-589 (-1068 |#1|))) (-1 |#2| (-589 |#2|)))) (-15 -3160 (|#2| |#2| |#2|)) (-15 -2321 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1216 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2365 (|#2| (-1 |#2| (-589 |#2|)) (-589 |#1|))) (-15 -2817 ((-589 |#2|) (-589 |#1|) (-589 (-1 |#2| (-589 |#2|)))))) (-37 (-383 (-523))) (-1160 |#1|)) (T -1162)) +((-2817 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 (-1 *6 (-589 *6)))) (-4 *5 (-37 (-383 (-523)))) (-4 *6 (-1160 *5)) (-5 *2 (-589 *6)) (-5 *1 (-1162 *5 *6)))) (-2365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-589 *2))) (-5 *4 (-589 *5)) (-4 *5 (-37 (-383 (-523)))) (-4 *2 (-1160 *5)) (-5 *1 (-1162 *5 *2)))) (-1216 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-1162 *4 *2)) (-4 *4 (-37 (-383 (-523)))))) (-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-1162 *4 *2)) (-4 *4 (-37 (-383 (-523)))))) (-3160 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1162 *3 *2)) (-4 *2 (-1160 *3)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-589 *5))) (-4 *5 (-1160 *4)) (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-1 (-1068 *4) (-589 (-1068 *4)))) (-5 *1 (-1162 *4 *5)))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1162 *4 *5)))) (-3626 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1162 *4 *5))))) +(-10 -7 (-15 -3626 ((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|))) (-15 -3944 ((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3228 ((-1 (-1068 |#1|) (-589 (-1068 |#1|))) (-1 |#2| (-589 |#2|)))) (-15 -3160 (|#2| |#2| |#2|)) (-15 -2321 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1216 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2365 (|#2| (-1 |#2| (-589 |#2|)) (-589 |#1|))) (-15 -2817 ((-589 |#2|) (-589 |#1|) (-589 (-1 |#2| (-589 |#2|)))))) +((-1498 ((|#2| |#4| (-710)) 30)) (-2021 ((|#4| |#2|) 25)) (-1661 ((|#4| (-383 |#2|)) 51 (|has| |#1| (-515)))) (-3770 (((-1 |#4| (-589 |#4|)) |#3|) 45))) +(((-1163 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2021 (|#4| |#2|)) (-15 -1498 (|#2| |#4| (-710))) (-15 -3770 ((-1 |#4| (-589 |#4|)) |#3|)) (IF (|has| |#1| (-515)) (-15 -1661 (|#4| (-383 |#2|))) |%noBranch|)) (-973) (-1145 |#1|) (-599 |#2|) (-1160 |#1|)) (T -1163)) +((-1661 (*1 *2 *3) (-12 (-5 *3 (-383 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-515)) (-4 *4 (-973)) (-4 *2 (-1160 *4)) (-5 *1 (-1163 *4 *5 *6 *2)) (-4 *6 (-599 *5)))) (-3770 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *5 (-1145 *4)) (-5 *2 (-1 *6 (-589 *6))) (-5 *1 (-1163 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-1160 *4)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-973)) (-4 *2 (-1145 *5)) (-5 *1 (-1163 *5 *2 *6 *3)) (-4 *6 (-599 *2)) (-4 *3 (-1160 *5)))) (-2021 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *3 (-1145 *4)) (-4 *2 (-1160 *4)) (-5 *1 (-1163 *4 *3 *5 *2)) (-4 *5 (-599 *3))))) +(-10 -7 (-15 -2021 (|#4| |#2|)) (-15 -1498 (|#2| |#4| (-710))) (-15 -3770 ((-1 |#4| (-589 |#4|)) |#3|)) (IF (|has| |#1| (-515)) (-15 -1661 (|#4| (-383 |#2|))) |%noBranch|)) +NIL +(((-1164) (-129)) (T -1164)) +NIL +(-13 (-10 -7 (-6 -4069))) +((-1680 (((-108) $ $) NIL)) (-2724 (((-1087)) 12)) (-2032 (((-1070) $) 17)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 11) (((-1087) $) 8)) (-3941 (((-108) $ $) 14))) +(((-1165 |#1|) (-13 (-1016) (-563 (-1087)) (-10 -8 (-15 -1691 ((-1087) $)) (-15 -2724 ((-1087))))) (-1087)) (T -1165)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1165 *3)) (-14 *3 *2))) (-2724 (*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1165 *3)) (-14 *3 *2)))) +(-13 (-1016) (-563 (-1087)) (-10 -8 (-15 -1691 ((-1087) $)) (-15 -2724 ((-1087))))) +((-1709 (($ (-710)) 18)) (-2359 (((-629 |#2|) $ $) 39)) (-2169 ((|#2| $) 48)) (-2616 ((|#2| $) 47)) (-3839 ((|#2| $ $) 35)) (-3203 (($ $ $) 44)) (-4060 (($ $) 22) (($ $ $) 28)) (-4045 (($ $ $) 15)) (* (($ (-523) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1166 |#1| |#2|) (-10 -8 (-15 -2169 (|#2| |#1|)) (-15 -2616 (|#2| |#1|)) (-15 -3203 (|#1| |#1| |#1|)) (-15 -2359 ((-629 |#2|) |#1| |#1|)) (-15 -3839 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -1709 (|#1| (-710))) (-15 -4045 (|#1| |#1| |#1|))) (-1167 |#2|) (-1123)) (T -1166)) +NIL +(-10 -8 (-15 -2169 (|#2| |#1|)) (-15 -2616 (|#2| |#1|)) (-15 -3203 (|#1| |#1| |#1|)) (-15 -2359 ((-629 |#2|) |#1| |#1|)) (-15 -3839 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4060 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -1709 (|#1| (-710))) (-15 -4045 (|#1| |#1| |#1|))) +((-1680 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1709 (($ (-710)) 112 (|has| |#1| (-23)))) (-4191 (((-1174) $ (-523) (-523)) 40 (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-786)))) (-1632 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4249))) (($ $) 88 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4249))))) (-1581 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-786)))) (-1620 (((-108) $ (-710)) 8)) (-1849 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) 58 (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4248)))) (-4189 (($) 7 T CONST)) (-1426 (($ $) 90 (|has| $ (-6 -4249)))) (-3700 (($ $) 100)) (-2462 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2514 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) 51)) (-3449 (((-523) (-1 (-108) |#1|) $) 97) (((-523) |#1| $) 96 (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) 95 (|has| |#1| (-1016)))) (-1871 (((-589 |#1|) $) 30 (|has| $ (-6 -4248)))) (-2359 (((-629 |#1|) $ $) 105 (|has| |#1| (-973)))) (-3733 (($ (-710) |#1|) 69)) (-3051 (((-108) $ (-710)) 9)) (-2965 (((-523) $) 43 (|has| (-523) (-786)))) (-3239 (($ $ $) 87 (|has| |#1| (-786)))) (-3780 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-2567 (((-523) $) 44 (|has| (-523) (-786)))) (-3158 (($ $ $) 86 (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2169 ((|#1| $) 102 (-12 (|has| |#1| (-973)) (|has| |#1| (-930))))) (-1418 (((-108) $ (-710)) 10)) (-2616 ((|#1| $) 103 (-12 (|has| |#1| (-973)) (|has| |#1| (-930))))) (-2032 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2912 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2536 (((-589 (-523)) $) 46)) (-2254 (((-108) (-523) $) 47)) (-3951 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2428 ((|#1| $) 42 (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4141 (($ $ |#1|) 41 (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) 14)) (-2633 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) 48)) (-1777 (((-108) $) 11)) (-3320 (($) 12)) (-1937 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1136 (-523))) 63)) (-3839 ((|#1| $ $) 106 (|has| |#1| (-973)))) (-1499 (($ $ (-523)) 62) (($ $ (-1136 (-523))) 61)) (-3203 (($ $ $) 104 (|has| |#1| (-973)))) (-3977 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4248))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4248))))) (-4166 (($ $ $ (-523)) 91 (|has| $ (-6 -4249)))) (-1874 (($ $) 13)) (-1400 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 70)) (-2394 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1691 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) 84 (|has| |#1| (-786)))) (-3980 (((-108) $ $) 83 (|has| |#1| (-786)))) (-3941 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-3993 (((-108) $ $) 85 (|has| |#1| (-786)))) (-3966 (((-108) $ $) 82 (|has| |#1| (-786)))) (-4060 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4045 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-523) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-666))) (($ $ |#1|) 107 (|has| |#1| (-666)))) (-2810 (((-710) $) 6 (|has| $ (-6 -4248))))) +(((-1167 |#1|) (-129) (-1123)) (T -1167)) +((-4045 (*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-25)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1167 *3)) (-4 *3 (-23)) (-4 *3 (-1123)))) (-4060 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-21)))) (-4060 (*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-4 *1 (-1167 *3)) (-4 *3 (-1123)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-666)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-666)))) (-3839 (*1 *2 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-973)))) (-2359 (*1 *2 *1 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1123)) (-4 *3 (-973)) (-5 *2 (-629 *3)))) (-3203 (*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-973)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-930)) (-4 *2 (-973)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-930)) (-4 *2 (-973))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4045 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1709 ($ (-710))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4060 ($ $)) (-15 -4060 ($ $ $)) (-15 * ($ (-523) $))) |%noBranch|) (IF (|has| |t#1| (-666)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-973)) (PROGN (-15 -3839 (|t#1| $ $)) (-15 -2359 ((-629 |t#1|) $ $)) (-15 -3203 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-930)) (IF (|has| |t#1| (-973)) (PROGN (-15 -2616 (|t#1| $)) (-15 -2169 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-33) . T) ((-97) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-349 |#1|) . T) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-786) |has| |#1| (-786)) ((-1016) -3172 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1123) . T)) +((-4184 (((-1169 |#2|) (-1 |#2| |#1| |#2|) (-1169 |#1|) |#2|) 13)) (-2116 ((|#2| (-1 |#2| |#1| |#2|) (-1169 |#1|) |#2|) 15)) (-1345 (((-3 (-1169 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1169 |#1|)) 28) (((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|)) 18))) +(((-1168 |#1| |#2|) (-10 -7 (-15 -4184 ((-1169 |#2|) (-1 |#2| |#1| |#2|) (-1169 |#1|) |#2|)) (-15 -2116 (|#2| (-1 |#2| |#1| |#2|) (-1169 |#1|) |#2|)) (-15 -1345 ((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|))) (-15 -1345 ((-3 (-1169 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1169 |#1|)))) (-1123) (-1123)) (T -1168)) +((-1345 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-1169 *6)) (-5 *1 (-1168 *5 *6)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-1169 *6)) (-5 *1 (-1168 *5 *6)))) (-2116 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1169 *5)) (-4 *5 (-1123)) (-4 *2 (-1123)) (-5 *1 (-1168 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1169 *6)) (-4 *6 (-1123)) (-4 *5 (-1123)) (-5 *2 (-1169 *5)) (-5 *1 (-1168 *6 *5))))) +(-10 -7 (-15 -4184 ((-1169 |#2|) (-1 |#2| |#1| |#2|) (-1169 |#1|) |#2|)) (-15 -2116 (|#2| (-1 |#2| |#1| |#2|) (-1169 |#1|) |#2|)) (-15 -1345 ((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|))) (-15 -1345 ((-3 (-1169 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1169 |#1|)))) +((-1680 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1709 (($ (-710)) NIL (|has| |#1| (-23)))) (-3967 (($ (-589 |#1|)) 9)) (-4191 (((-1174) $ (-523) (-523)) NIL (|has| $ (-6 -4249)))) (-3337 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1632 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4249))) (($ $) NIL (-12 (|has| $ (-6 -4249)) (|has| |#1| (-786))))) (-1581 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-1620 (((-108) $ (-710)) NIL)) (-1849 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249))) ((|#1| $ (-1136 (-523)) |#1|) NIL (|has| $ (-6 -4249)))) (-1903 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4189 (($) NIL T CONST)) (-1426 (($ $) NIL (|has| $ (-6 -4249)))) (-3700 (($ $) NIL)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2116 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4248))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4248)))) (-2053 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4249)))) (-2000 ((|#1| $ (-523)) NIL)) (-3449 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1871 (((-589 |#1|) $) 15 (|has| $ (-6 -4248)))) (-2359 (((-629 |#1|) $ $) NIL (|has| |#1| (-973)))) (-3733 (($ (-710) |#1|) NIL)) (-3051 (((-108) $ (-710)) NIL)) (-2965 (((-523) $) NIL (|has| (-523) (-786)))) (-3239 (($ $ $) NIL (|has| |#1| (-786)))) (-3780 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-1584 (((-589 |#1|) $) NIL (|has| $ (-6 -4248)))) (-3423 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-2567 (((-523) $) NIL (|has| (-523) (-786)))) (-3158 (($ $ $) NIL (|has| |#1| (-786)))) (-2043 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2169 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-1418 (((-108) $ (-710)) NIL)) (-2616 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-2032 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2912 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2536 (((-589 (-523)) $) NIL)) (-2254 (((-108) (-523) $) NIL)) (-3951 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2428 ((|#1| $) NIL (|has| (-523) (-786)))) (-2509 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4141 (($ $ |#1|) NIL (|has| $ (-6 -4249)))) (-3379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-2267 (((-108) $ $) NIL)) (-2633 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-3973 (((-589 |#1|) $) NIL)) (-1777 (((-108) $) NIL)) (-3320 (($) NIL)) (-1937 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-3839 ((|#1| $ $) NIL (|has| |#1| (-973)))) (-1499 (($ $ (-523)) NIL) (($ $ (-1136 (-523))) NIL)) (-3203 (($ $ $) NIL (|has| |#1| (-973)))) (-3977 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#1| (-1016))))) (-4166 (($ $ $ (-523)) NIL (|has| $ (-6 -4249)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) 19 (|has| |#1| (-564 (-499))))) (-1704 (($ (-589 |#1|)) 8)) (-2394 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1691 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2308 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4248)))) (-4006 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3980 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3941 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3993 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3966 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4060 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4045 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-523) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-666))) (($ $ |#1|) NIL (|has| |#1| (-666)))) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-1169 |#1|) (-13 (-1167 |#1|) (-10 -8 (-15 -3967 ($ (-589 |#1|))))) (-1123)) (T -1169)) +((-3967 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-1169 *3))))) +(-13 (-1167 |#1|) (-10 -8 (-15 -3967 ($ (-589 |#1|))))) +((-1680 (((-108) $ $) NIL)) (-2580 (((-1070) $ (-1070)) 89) (((-1070) $ (-1070) (-1070)) 87) (((-1070) $ (-1070) (-589 (-1070))) 86)) (-1442 (($) 58)) (-3384 (((-1174) $ (-443) (-852)) 44)) (-2061 (((-1174) $ (-852) (-1070)) 72) (((-1174) $ (-852) (-805)) 73)) (-1371 (((-1174) $ (-852) (-355) (-355)) 47)) (-2402 (((-1174) $ (-1070)) 68)) (-1456 (((-1174) $ (-852) (-1070)) 77)) (-2418 (((-1174) $ (-852) (-355) (-355)) 48)) (-1432 (((-1174) $ (-852) (-852)) 45)) (-2563 (((-1174) $) 69)) (-3411 (((-1174) $ (-852) (-1070)) 76)) (-3911 (((-1174) $ (-443) (-852)) 30)) (-3847 (((-1174) $ (-852) (-1070)) 75)) (-3785 (((-589 (-240)) $) 22) (($ $ (-589 (-240))) 23)) (-3126 (((-1174) $ (-710) (-710)) 42)) (-2376 (($ $) 59) (($ (-443) (-589 (-240))) 60)) (-2032 (((-1070) $) NIL)) (-3772 (((-523) $) 37)) (-3951 (((-1034) $) NIL)) (-2777 (((-1169 (-3 (-443) "undefined")) $) 36)) (-4073 (((-1169 (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3847 (-523)) (|:| -2246 (-523)) (|:| |spline| (-523)) (|:| -2559 (-523)) (|:| |axesColor| (-805)) (|:| -2061 (-523)) (|:| |unitsColor| (-805)) (|:| |showing| (-523)))) $) 35)) (-2646 (((-1174) $ (-852) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-805) (-523) (-805) (-523)) 67)) (-3495 (((-589 (-874 (-203))) $) NIL)) (-1246 (((-443) $ (-852)) 32)) (-2518 (((-1174) $ (-710) (-710) (-852) (-852)) 39)) (-2293 (((-1174) $ (-1070)) 78)) (-2246 (((-1174) $ (-852) (-1070)) 74)) (-1691 (((-794) $) 84)) (-1214 (((-1174) $) 79)) (-2559 (((-1174) $ (-852) (-1070)) 70) (((-1174) $ (-852) (-805)) 71)) (-3941 (((-108) $ $) NIL))) +(((-1170) (-13 (-1016) (-10 -8 (-15 -3495 ((-589 (-874 (-203))) $)) (-15 -1442 ($)) (-15 -2376 ($ $)) (-15 -3785 ((-589 (-240)) $)) (-15 -3785 ($ $ (-589 (-240)))) (-15 -2376 ($ (-443) (-589 (-240)))) (-15 -2646 ((-1174) $ (-852) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-805) (-523) (-805) (-523))) (-15 -4073 ((-1169 (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3847 (-523)) (|:| -2246 (-523)) (|:| |spline| (-523)) (|:| -2559 (-523)) (|:| |axesColor| (-805)) (|:| -2061 (-523)) (|:| |unitsColor| (-805)) (|:| |showing| (-523)))) $)) (-15 -2777 ((-1169 (-3 (-443) "undefined")) $)) (-15 -2402 ((-1174) $ (-1070))) (-15 -3911 ((-1174) $ (-443) (-852))) (-15 -1246 ((-443) $ (-852))) (-15 -2559 ((-1174) $ (-852) (-1070))) (-15 -2559 ((-1174) $ (-852) (-805))) (-15 -2061 ((-1174) $ (-852) (-1070))) (-15 -2061 ((-1174) $ (-852) (-805))) (-15 -3847 ((-1174) $ (-852) (-1070))) (-15 -3411 ((-1174) $ (-852) (-1070))) (-15 -2246 ((-1174) $ (-852) (-1070))) (-15 -2293 ((-1174) $ (-1070))) (-15 -1214 ((-1174) $)) (-15 -2518 ((-1174) $ (-710) (-710) (-852) (-852))) (-15 -2418 ((-1174) $ (-852) (-355) (-355))) (-15 -1371 ((-1174) $ (-852) (-355) (-355))) (-15 -1456 ((-1174) $ (-852) (-1070))) (-15 -3126 ((-1174) $ (-710) (-710))) (-15 -3384 ((-1174) $ (-443) (-852))) (-15 -1432 ((-1174) $ (-852) (-852))) (-15 -2580 ((-1070) $ (-1070))) (-15 -2580 ((-1070) $ (-1070) (-1070))) (-15 -2580 ((-1070) $ (-1070) (-589 (-1070)))) (-15 -2563 ((-1174) $)) (-15 -3772 ((-523) $)) (-15 -1691 ((-794) $))))) (T -1170)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1170)))) (-3495 (*1 *2 *1) (-12 (-5 *2 (-589 (-874 (-203)))) (-5 *1 (-1170)))) (-1442 (*1 *1) (-5 *1 (-1170))) (-2376 (*1 *1 *1) (-5 *1 (-1170))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1170)))) (-3785 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1170)))) (-2376 (*1 *1 *2 *3) (-12 (-5 *2 (-443)) (-5 *3 (-589 (-240))) (-5 *1 (-1170)))) (-2646 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-852)) (-5 *4 (-203)) (-5 *5 (-523)) (-5 *6 (-805)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-1169 (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3847 (-523)) (|:| -2246 (-523)) (|:| |spline| (-523)) (|:| -2559 (-523)) (|:| |axesColor| (-805)) (|:| -2061 (-523)) (|:| |unitsColor| (-805)) (|:| |showing| (-523))))) (-5 *1 (-1170)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-1169 (-3 (-443) "undefined"))) (-5 *1 (-1170)))) (-2402 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-3911 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-443)) (-5 *4 (-852)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-1246 (*1 *2 *1 *3) (-12 (-5 *3 (-852)) (-5 *2 (-443)) (-5 *1 (-1170)))) (-2559 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-2559 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-805)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-2061 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-2061 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-805)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-3411 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-2246 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-2293 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-1214 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1170)))) (-2518 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-710)) (-5 *4 (-852)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-2418 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-852)) (-5 *4 (-355)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-1371 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-852)) (-5 *4 (-355)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-1456 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-3126 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-3384 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-443)) (-5 *4 (-852)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-1432 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1174)) (-5 *1 (-1170)))) (-2580 (*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1170)))) (-2580 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1170)))) (-2580 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-1170)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1170)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1170))))) +(-13 (-1016) (-10 -8 (-15 -3495 ((-589 (-874 (-203))) $)) (-15 -1442 ($)) (-15 -2376 ($ $)) (-15 -3785 ((-589 (-240)) $)) (-15 -3785 ($ $ (-589 (-240)))) (-15 -2376 ($ (-443) (-589 (-240)))) (-15 -2646 ((-1174) $ (-852) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-805) (-523) (-805) (-523))) (-15 -4073 ((-1169 (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3847 (-523)) (|:| -2246 (-523)) (|:| |spline| (-523)) (|:| -2559 (-523)) (|:| |axesColor| (-805)) (|:| -2061 (-523)) (|:| |unitsColor| (-805)) (|:| |showing| (-523)))) $)) (-15 -2777 ((-1169 (-3 (-443) "undefined")) $)) (-15 -2402 ((-1174) $ (-1070))) (-15 -3911 ((-1174) $ (-443) (-852))) (-15 -1246 ((-443) $ (-852))) (-15 -2559 ((-1174) $ (-852) (-1070))) (-15 -2559 ((-1174) $ (-852) (-805))) (-15 -2061 ((-1174) $ (-852) (-1070))) (-15 -2061 ((-1174) $ (-852) (-805))) (-15 -3847 ((-1174) $ (-852) (-1070))) (-15 -3411 ((-1174) $ (-852) (-1070))) (-15 -2246 ((-1174) $ (-852) (-1070))) (-15 -2293 ((-1174) $ (-1070))) (-15 -1214 ((-1174) $)) (-15 -2518 ((-1174) $ (-710) (-710) (-852) (-852))) (-15 -2418 ((-1174) $ (-852) (-355) (-355))) (-15 -1371 ((-1174) $ (-852) (-355) (-355))) (-15 -1456 ((-1174) $ (-852) (-1070))) (-15 -3126 ((-1174) $ (-710) (-710))) (-15 -3384 ((-1174) $ (-443) (-852))) (-15 -1432 ((-1174) $ (-852) (-852))) (-15 -2580 ((-1070) $ (-1070))) (-15 -2580 ((-1070) $ (-1070) (-1070))) (-15 -2580 ((-1070) $ (-1070) (-589 (-1070)))) (-15 -2563 ((-1174) $)) (-15 -3772 ((-523) $)) (-15 -1691 ((-794) $)))) +((-1680 (((-108) $ $) NIL)) (-4085 (((-1174) $ (-355)) 139) (((-1174) $ (-355) (-355) (-355)) 140)) (-2580 (((-1070) $ (-1070)) 147) (((-1070) $ (-1070) (-1070)) 145) (((-1070) $ (-1070) (-589 (-1070))) 144)) (-2564 (($) 49)) (-1689 (((-1174) $ (-355) (-355) (-355) (-355) (-355)) 115) (((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) $) 113) (((-1174) $ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) 114) (((-1174) $ (-523) (-523) (-355) (-355) (-355)) 116) (((-1174) $ (-355) (-355)) 117) (((-1174) $ (-355) (-355) (-355)) 124)) (-3084 (((-355)) 96) (((-355) (-355)) 97)) (-1531 (((-355)) 91) (((-355) (-355)) 93)) (-1465 (((-355)) 94) (((-355) (-355)) 95)) (-3609 (((-355)) 100) (((-355) (-355)) 101)) (-3503 (((-355)) 98) (((-355) (-355)) 99)) (-1371 (((-1174) $ (-355) (-355)) 141)) (-2402 (((-1174) $ (-1070)) 125)) (-1782 (((-1047 (-203)) $) 50) (($ $ (-1047 (-203))) 51)) (-3288 (((-1174) $ (-1070)) 153)) (-3421 (((-1174) $ (-1070)) 154)) (-2400 (((-1174) $ (-355) (-355)) 123) (((-1174) $ (-523) (-523)) 138)) (-1432 (((-1174) $ (-852) (-852)) 131)) (-2563 (((-1174) $) 111)) (-4187 (((-1174) $ (-1070)) 152)) (-4038 (((-1174) $ (-1070)) 108)) (-3785 (((-589 (-240)) $) 52) (($ $ (-589 (-240))) 53)) (-3126 (((-1174) $ (-710) (-710)) 130)) (-3726 (((-1174) $ (-710) (-874 (-203))) 159)) (-3175 (($ $) 56) (($ (-1047 (-203)) (-1070)) 57) (($ (-1047 (-203)) (-589 (-240))) 58)) (-2944 (((-1174) $ (-355) (-355) (-355)) 105)) (-2032 (((-1070) $) NIL)) (-3772 (((-523) $) 102)) (-3922 (((-1174) $ (-355)) 142)) (-1467 (((-1174) $ (-355)) 157)) (-3951 (((-1034) $) NIL)) (-2682 (((-1174) $ (-355)) 156)) (-3672 (((-1174) $ (-1070)) 110)) (-2518 (((-1174) $ (-710) (-710) (-852) (-852)) 129)) (-1373 (((-1174) $ (-1070)) 107)) (-2293 (((-1174) $ (-1070)) 109)) (-2099 (((-1174) $ (-144) (-144)) 128)) (-1691 (((-794) $) 136)) (-1214 (((-1174) $) 112)) (-1422 (((-1174) $ (-1070)) 155)) (-2559 (((-1174) $ (-1070)) 106)) (-3941 (((-108) $ $) NIL))) +(((-1171) (-13 (-1016) (-10 -8 (-15 -1531 ((-355))) (-15 -1531 ((-355) (-355))) (-15 -1465 ((-355))) (-15 -1465 ((-355) (-355))) (-15 -3084 ((-355))) (-15 -3084 ((-355) (-355))) (-15 -3503 ((-355))) (-15 -3503 ((-355) (-355))) (-15 -3609 ((-355))) (-15 -3609 ((-355) (-355))) (-15 -2564 ($)) (-15 -3175 ($ $)) (-15 -3175 ($ (-1047 (-203)) (-1070))) (-15 -3175 ($ (-1047 (-203)) (-589 (-240)))) (-15 -1782 ((-1047 (-203)) $)) (-15 -1782 ($ $ (-1047 (-203)))) (-15 -3726 ((-1174) $ (-710) (-874 (-203)))) (-15 -3785 ((-589 (-240)) $)) (-15 -3785 ($ $ (-589 (-240)))) (-15 -3126 ((-1174) $ (-710) (-710))) (-15 -1432 ((-1174) $ (-852) (-852))) (-15 -2402 ((-1174) $ (-1070))) (-15 -2518 ((-1174) $ (-710) (-710) (-852) (-852))) (-15 -1689 ((-1174) $ (-355) (-355) (-355) (-355) (-355))) (-15 -1689 ((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) $)) (-15 -1689 ((-1174) $ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -1689 ((-1174) $ (-523) (-523) (-355) (-355) (-355))) (-15 -1689 ((-1174) $ (-355) (-355))) (-15 -1689 ((-1174) $ (-355) (-355) (-355))) (-15 -2293 ((-1174) $ (-1070))) (-15 -2559 ((-1174) $ (-1070))) (-15 -1373 ((-1174) $ (-1070))) (-15 -4038 ((-1174) $ (-1070))) (-15 -3672 ((-1174) $ (-1070))) (-15 -2400 ((-1174) $ (-355) (-355))) (-15 -2400 ((-1174) $ (-523) (-523))) (-15 -4085 ((-1174) $ (-355))) (-15 -4085 ((-1174) $ (-355) (-355) (-355))) (-15 -1371 ((-1174) $ (-355) (-355))) (-15 -4187 ((-1174) $ (-1070))) (-15 -2682 ((-1174) $ (-355))) (-15 -1467 ((-1174) $ (-355))) (-15 -3288 ((-1174) $ (-1070))) (-15 -3421 ((-1174) $ (-1070))) (-15 -1422 ((-1174) $ (-1070))) (-15 -2944 ((-1174) $ (-355) (-355) (-355))) (-15 -3922 ((-1174) $ (-355))) (-15 -2563 ((-1174) $)) (-15 -2099 ((-1174) $ (-144) (-144))) (-15 -2580 ((-1070) $ (-1070))) (-15 -2580 ((-1070) $ (-1070) (-1070))) (-15 -2580 ((-1070) $ (-1070) (-589 (-1070)))) (-15 -1214 ((-1174) $)) (-15 -3772 ((-523) $))))) (T -1171)) +((-1531 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) (-1531 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) (-1465 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) (-1465 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) (-3084 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) (-3084 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) (-3503 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) (-3609 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) (-3609 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) (-2564 (*1 *1) (-5 *1 (-1171))) (-3175 (*1 *1 *1) (-5 *1 (-1171))) (-3175 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-1070)) (-5 *1 (-1171)))) (-3175 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-589 (-240))) (-5 *1 (-1171)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1171)))) (-1782 (*1 *1 *1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1171)))) (-3726 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-874 (-203))) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1171)))) (-3785 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1171)))) (-3126 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-1432 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-2402 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-2518 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-710)) (-5 *4 (-852)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-1689 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) (-5 *1 (-1171)))) (-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-1689 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-523)) (-5 *4 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-1689 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-1689 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-2293 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-2559 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-1373 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-4038 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3672 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-2400 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-2400 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-4085 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-1371 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-4187 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-2682 (*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-1467 (*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3288 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-1422 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-2944 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3922 (*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1171)))) (-2099 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-144)) (-5 *2 (-1174)) (-5 *1 (-1171)))) (-2580 (*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1171)))) (-2580 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1171)))) (-2580 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-1171)))) (-1214 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1171)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1171))))) +(-13 (-1016) (-10 -8 (-15 -1531 ((-355))) (-15 -1531 ((-355) (-355))) (-15 -1465 ((-355))) (-15 -1465 ((-355) (-355))) (-15 -3084 ((-355))) (-15 -3084 ((-355) (-355))) (-15 -3503 ((-355))) (-15 -3503 ((-355) (-355))) (-15 -3609 ((-355))) (-15 -3609 ((-355) (-355))) (-15 -2564 ($)) (-15 -3175 ($ $)) (-15 -3175 ($ (-1047 (-203)) (-1070))) (-15 -3175 ($ (-1047 (-203)) (-589 (-240)))) (-15 -1782 ((-1047 (-203)) $)) (-15 -1782 ($ $ (-1047 (-203)))) (-15 -3726 ((-1174) $ (-710) (-874 (-203)))) (-15 -3785 ((-589 (-240)) $)) (-15 -3785 ($ $ (-589 (-240)))) (-15 -3126 ((-1174) $ (-710) (-710))) (-15 -1432 ((-1174) $ (-852) (-852))) (-15 -2402 ((-1174) $ (-1070))) (-15 -2518 ((-1174) $ (-710) (-710) (-852) (-852))) (-15 -1689 ((-1174) $ (-355) (-355) (-355) (-355) (-355))) (-15 -1689 ((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) $)) (-15 -1689 ((-1174) $ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -1689 ((-1174) $ (-523) (-523) (-355) (-355) (-355))) (-15 -1689 ((-1174) $ (-355) (-355))) (-15 -1689 ((-1174) $ (-355) (-355) (-355))) (-15 -2293 ((-1174) $ (-1070))) (-15 -2559 ((-1174) $ (-1070))) (-15 -1373 ((-1174) $ (-1070))) (-15 -4038 ((-1174) $ (-1070))) (-15 -3672 ((-1174) $ (-1070))) (-15 -2400 ((-1174) $ (-355) (-355))) (-15 -2400 ((-1174) $ (-523) (-523))) (-15 -4085 ((-1174) $ (-355))) (-15 -4085 ((-1174) $ (-355) (-355) (-355))) (-15 -1371 ((-1174) $ (-355) (-355))) (-15 -4187 ((-1174) $ (-1070))) (-15 -2682 ((-1174) $ (-355))) (-15 -1467 ((-1174) $ (-355))) (-15 -3288 ((-1174) $ (-1070))) (-15 -3421 ((-1174) $ (-1070))) (-15 -1422 ((-1174) $ (-1070))) (-15 -2944 ((-1174) $ (-355) (-355) (-355))) (-15 -3922 ((-1174) $ (-355))) (-15 -2563 ((-1174) $)) (-15 -2099 ((-1174) $ (-144) (-144))) (-15 -2580 ((-1070) $ (-1070))) (-15 -2580 ((-1070) $ (-1070) (-1070))) (-15 -2580 ((-1070) $ (-1070) (-589 (-1070)))) (-15 -1214 ((-1174) $)) (-15 -3772 ((-523) $)))) +((-4077 (((-589 (-1070)) (-589 (-1070))) 94) (((-589 (-1070))) 89)) (-2432 (((-589 (-1070))) 87)) (-2508 (((-589 (-852)) (-589 (-852))) 62) (((-589 (-852))) 59)) (-2368 (((-589 (-710)) (-589 (-710))) 56) (((-589 (-710))) 52)) (-3885 (((-1174)) 64)) (-3963 (((-852) (-852)) 80) (((-852)) 79)) (-2264 (((-852) (-852)) 78) (((-852)) 77)) (-4134 (((-805) (-805)) 74) (((-805)) 73)) (-2262 (((-203)) 84) (((-203) (-355)) 86)) (-1596 (((-852)) 81) (((-852) (-852)) 82)) (-3938 (((-852) (-852)) 76) (((-852)) 75)) (-2707 (((-805) (-805)) 68) (((-805)) 66)) (-3339 (((-805) (-805)) 70) (((-805)) 69)) (-3874 (((-805) (-805)) 72) (((-805)) 71))) +(((-1172) (-10 -7 (-15 -2707 ((-805))) (-15 -2707 ((-805) (-805))) (-15 -3339 ((-805))) (-15 -3339 ((-805) (-805))) (-15 -3874 ((-805))) (-15 -3874 ((-805) (-805))) (-15 -4134 ((-805))) (-15 -4134 ((-805) (-805))) (-15 -3938 ((-852))) (-15 -3938 ((-852) (-852))) (-15 -2368 ((-589 (-710)))) (-15 -2368 ((-589 (-710)) (-589 (-710)))) (-15 -2508 ((-589 (-852)))) (-15 -2508 ((-589 (-852)) (-589 (-852)))) (-15 -3885 ((-1174))) (-15 -4077 ((-589 (-1070)))) (-15 -4077 ((-589 (-1070)) (-589 (-1070)))) (-15 -2432 ((-589 (-1070)))) (-15 -2264 ((-852))) (-15 -3963 ((-852))) (-15 -2264 ((-852) (-852))) (-15 -3963 ((-852) (-852))) (-15 -1596 ((-852) (-852))) (-15 -1596 ((-852))) (-15 -2262 ((-203) (-355))) (-15 -2262 ((-203))))) (T -1172)) +((-2262 (*1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-1172)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-203)) (-5 *1 (-1172)))) (-1596 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172)))) (-1596 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172)))) (-3963 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172)))) (-2264 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172)))) (-2432 (*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1172)))) (-4077 (*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1172)))) (-4077 (*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1172)))) (-3885 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1172)))) (-2508 (*1 *2 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1172)))) (-2508 (*1 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1172)))) (-2368 (*1 *2 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1172)))) (-2368 (*1 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1172)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172)))) (-3938 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172)))) (-4134 (*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172)))) (-4134 (*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172)))) (-3874 (*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172)))) (-3874 (*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172)))) (-3339 (*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172)))) (-3339 (*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172)))) (-2707 (*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172)))) (-2707 (*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172))))) +(-10 -7 (-15 -2707 ((-805))) (-15 -2707 ((-805) (-805))) (-15 -3339 ((-805))) (-15 -3339 ((-805) (-805))) (-15 -3874 ((-805))) (-15 -3874 ((-805) (-805))) (-15 -4134 ((-805))) (-15 -4134 ((-805) (-805))) (-15 -3938 ((-852))) (-15 -3938 ((-852) (-852))) (-15 -2368 ((-589 (-710)))) (-15 -2368 ((-589 (-710)) (-589 (-710)))) (-15 -2508 ((-589 (-852)))) (-15 -2508 ((-589 (-852)) (-589 (-852)))) (-15 -3885 ((-1174))) (-15 -4077 ((-589 (-1070)))) (-15 -4077 ((-589 (-1070)) (-589 (-1070)))) (-15 -2432 ((-589 (-1070)))) (-15 -2264 ((-852))) (-15 -3963 ((-852))) (-15 -2264 ((-852) (-852))) (-15 -3963 ((-852) (-852))) (-15 -1596 ((-852) (-852))) (-15 -1596 ((-852))) (-15 -2262 ((-203) (-355))) (-15 -2262 ((-203)))) +((-3725 (((-443) (-589 (-589 (-874 (-203)))) (-589 (-240))) 17) (((-443) (-589 (-589 (-874 (-203))))) 16) (((-443) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240))) 15)) (-2120 (((-1170) (-589 (-589 (-874 (-203)))) (-589 (-240))) 23) (((-1170) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240))) 22)) (-1691 (((-1170) (-443)) 34))) +(((-1173) (-10 -7 (-15 -3725 ((-443) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240)))) (-15 -3725 ((-443) (-589 (-589 (-874 (-203)))))) (-15 -3725 ((-443) (-589 (-589 (-874 (-203)))) (-589 (-240)))) (-15 -2120 ((-1170) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240)))) (-15 -2120 ((-1170) (-589 (-589 (-874 (-203)))) (-589 (-240)))) (-15 -1691 ((-1170) (-443))))) (T -1173)) +((-1691 (*1 *2 *3) (-12 (-5 *3 (-443)) (-5 *2 (-1170)) (-5 *1 (-1173)))) (-2120 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-1173)))) (-2120 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-805)) (-5 *5 (-852)) (-5 *6 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-1173)))) (-3725 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-589 (-240))) (-5 *2 (-443)) (-5 *1 (-1173)))) (-3725 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-443)) (-5 *1 (-1173)))) (-3725 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-805)) (-5 *5 (-852)) (-5 *6 (-589 (-240))) (-5 *2 (-443)) (-5 *1 (-1173))))) +(-10 -7 (-15 -3725 ((-443) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240)))) (-15 -3725 ((-443) (-589 (-589 (-874 (-203)))))) (-15 -3725 ((-443) (-589 (-589 (-874 (-203)))) (-589 (-240)))) (-15 -2120 ((-1170) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240)))) (-15 -2120 ((-1170) (-589 (-589 (-874 (-203)))) (-589 (-240)))) (-15 -1691 ((-1170) (-443)))) +((-1495 (($) 7)) (-1691 (((-794) $) 10))) +(((-1174) (-10 -8 (-15 -1495 ($)) (-15 -1691 ((-794) $)))) (T -1174)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1174)))) (-1495 (*1 *1) (-5 *1 (-1174)))) +(-10 -8 (-15 -1495 ($)) (-15 -1691 ((-794) $))) +((-4074 (($ $ |#2|) 10))) +(((-1175 |#1| |#2|) (-10 -8 (-15 -4074 (|#1| |#1| |#2|))) (-1176 |#2|) (-339)) (T -1175)) +NIL +(-10 -8 (-15 -4074 (|#1| |#1| |#2|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-3314 (((-126)) 28)) (-1691 (((-794) $) 11)) (-1879 (($) 18 T CONST)) (-3941 (((-108) $ $) 6)) (-4074 (($ $ |#1|) 29)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1176 |#1|) (-129) (-339)) (T -1176)) +((-4074 (*1 *1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-339)))) (-3314 (*1 *2) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-339)) (-5 *2 (-126))))) +(-13 (-657 |t#1|) (-10 -8 (-15 -4074 ($ $ |t#1|)) (-15 -3314 ((-126))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-657 |#1|) . T) ((-979 |#1|) . T) ((-1016) . T)) -((-2535 (((-589 (-1117 |#1|)) (-1087) (-1117 |#1|)) 78)) (-2148 (((-1068 (-1068 (-883 |#1|))) (-1087) (-1068 (-883 |#1|))) 57)) (-1812 (((-1 (-1068 (-1117 |#1|)) (-1068 (-1117 |#1|))) (-710) (-1117 |#1|) (-1068 (-1117 |#1|))) 68)) (-1581 (((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710)) 59)) (-3513 (((-1 (-1083 (-883 |#1|)) (-883 |#1|)) (-1087)) 27)) (-2824 (((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710)) 58))) -(((-1176 |#1|) (-10 -7 (-15 -1581 ((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710))) (-15 -2824 ((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710))) (-15 -2148 ((-1068 (-1068 (-883 |#1|))) (-1087) (-1068 (-883 |#1|)))) (-15 -3513 ((-1 (-1083 (-883 |#1|)) (-883 |#1|)) (-1087))) (-15 -2535 ((-589 (-1117 |#1|)) (-1087) (-1117 |#1|))) (-15 -1812 ((-1 (-1068 (-1117 |#1|)) (-1068 (-1117 |#1|))) (-710) (-1117 |#1|) (-1068 (-1117 |#1|))))) (-339)) (T -1176)) -((-1812 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710)) (-4 *6 (-339)) (-5 *4 (-1117 *6)) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1176 *6)) (-5 *5 (-1068 *4)))) (-2535 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-4 *5 (-339)) (-5 *2 (-589 (-1117 *5))) (-5 *1 (-1176 *5)) (-5 *4 (-1117 *5)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1 (-1083 (-883 *4)) (-883 *4))) (-5 *1 (-1176 *4)) (-4 *4 (-339)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-4 *5 (-339)) (-5 *2 (-1068 (-1068 (-883 *5)))) (-5 *1 (-1176 *5)) (-5 *4 (-1068 (-883 *5))))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-1068 (-883 *4)) (-1068 (-883 *4)))) (-5 *1 (-1176 *4)) (-4 *4 (-339)))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-1068 (-883 *4)) (-1068 (-883 *4)))) (-5 *1 (-1176 *4)) (-4 *4 (-339))))) -(-10 -7 (-15 -1581 ((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710))) (-15 -2824 ((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710))) (-15 -2148 ((-1068 (-1068 (-883 |#1|))) (-1087) (-1068 (-883 |#1|)))) (-15 -3513 ((-1 (-1083 (-883 |#1|)) (-883 |#1|)) (-1087))) (-15 -2535 ((-589 (-1117 |#1|)) (-1087) (-1117 |#1|))) (-15 -1812 ((-1 (-1068 (-1117 |#1|)) (-1068 (-1117 |#1|))) (-710) (-1117 |#1|) (-1068 (-1117 |#1|))))) -((-4029 (((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|) 74)) (-4158 (((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) 73))) -(((-1177 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4158 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -4029 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|))) (-325) (-1144 |#1|) (-1144 |#2|) (-385 |#2| |#3|)) (T -1177)) -((-4029 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 *3)) (-5 *2 (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-1177 *4 *3 *5 *6)) (-4 *6 (-385 *3 *5)))) (-4158 (*1 *2) (-12 (-4 *3 (-325)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -4041 (-629 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-629 *4)))) (-5 *1 (-1177 *3 *4 *5 *6)) (-4 *6 (-385 *4 *5))))) -(-10 -7 (-15 -4158 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -4029 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 42)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 63) (($ (-523)) NIL) ((|#4| $) 53) (($ |#4|) 48) (($ |#1|) NIL (|has| |#1| (-158)))) (-1621 (((-710)) NIL)) (-2924 (((-1173) (-710)) 16)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 27 T CONST)) (-2767 (($) 66 T CONST)) (-3983 (((-108) $ $) 68)) (-4098 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) 70) (($ $ $) NIL)) (-4075 (($ $ $) 46)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))))) -(((-1178 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-973) (-10 -8 (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1458 (|#4| $)) (IF (|has| |#1| (-339)) (-15 -4098 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1458 ($ |#4|)) (-15 -2924 ((-1173) (-710))))) (-973) (-786) (-732) (-880 |#1| |#3| |#2|) (-589 |#2|) (-589 (-710)) (-710)) (T -1178)) -((-1458 (*1 *2 *1) (-12 (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-1178 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-14 *6 (-589 *4)) (-14 *7 (-589 (-710))) (-14 *8 (-710)))) (-4098 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-339)) (-4 *2 (-973)) (-4 *3 (-786)) (-4 *4 (-732)) (-14 *6 (-589 *3)) (-5 *1 (-1178 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-880 *2 *4 *3)) (-14 *7 (-589 (-710))) (-14 *8 (-710)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-14 *6 (-589 *4)) (-5 *1 (-1178 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-880 *3 *5 *4)) (-14 *7 (-589 (-710))) (-14 *8 (-710)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) (-14 *8 (-589 *5)) (-5 *2 (-1173)) (-5 *1 (-1178 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-880 *4 *6 *5)) (-14 *9 (-589 *3)) (-14 *10 *3)))) -(-13 (-973) (-10 -8 (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1458 (|#4| $)) (IF (|has| |#1| (-339)) (-15 -4098 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1458 ($ |#4|)) (-15 -2924 ((-1173) (-710))))) -((-3924 (((-108) $ $) NIL)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) NIL)) (-3846 (((-589 $) (-589 |#4|)) 88)) (-1957 (((-589 |#3|) $) NIL)) (-2100 (((-108) $) NIL)) (-2376 (((-108) $) NIL (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2308 ((|#4| |#4| $) NIL)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-3724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2518 (($) NIL T CONST)) (-3595 (((-108) $) NIL (|has| |#1| (-515)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3225 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3393 (((-108) $) NIL (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-3956 (((-589 |#4|) (-589 |#4|) $) 25 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) NIL)) (-3474 (($ (-589 |#4|)) NIL)) (-1751 (((-3 $ "failed") $) 70)) (-4014 ((|#4| |#4| $) 75)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2557 (($ |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2636 ((|#4| |#4| $) NIL)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) NIL)) (-1666 (((-589 |#4|) $) NIL (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2907 ((|#3| $) 76)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#4|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2235 (((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-589 |#4|)) 35)) (-2852 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) NIL)) (-4055 (((-589 |#3|) $) NIL)) (-1357 (((-108) |#3| $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2579 (((-3 |#4| "failed") $) NIL)) (-2404 (((-589 |#4|) $) 50)) (-2112 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2648 ((|#4| |#4| $) 74)) (-2391 (((-108) $ $) 85)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1398 ((|#4| |#4| $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-3 |#4| "failed") $) 69)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2890 (((-3 $ "failed") $ |#4|) NIL)) (-4097 (($ $ |#4|) NIL)) (-1327 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 67)) (-3988 (($) 42)) (-2299 (((-710) $) NIL)) (-2792 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) NIL)) (-2621 (($ $ |#3|) NIL)) (-2624 (($ $ |#3|) NIL)) (-1824 (($ $) NIL)) (-3076 (($ $ |#3|) NIL)) (-1458 (((-794) $) NIL) (((-589 |#4|) $) 57)) (-1395 (((-710) $) NIL (|has| |#3| (-344)))) (-2093 (((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-589 |#4|)) 41)) (-2939 (((-589 $) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-589 $) (-589 |#4|)) 66)) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) NIL)) (-2096 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) NIL)) (-2153 (((-108) |#3| $) NIL)) (-3983 (((-108) $ $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) -(((-1179 |#1| |#2| |#3| |#4|) (-13 (-1116 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2235 ((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2235 ((-3 $ "failed") (-589 |#4|))) (-15 -2093 ((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2093 ((-3 $ "failed") (-589 |#4|))) (-15 -2939 ((-589 $) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2939 ((-589 $) (-589 |#4|))))) (-515) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -1179)) -((-2235 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1179 *5 *6 *7 *8)))) (-2235 (*1 *1 *2) (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-1179 *3 *4 *5 *6)))) (-2093 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1179 *5 *6 *7 *8)))) (-2093 (*1 *1 *2) (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-1179 *3 *4 *5 *6)))) (-2939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) (-4 *8 (-786)) (-5 *2 (-589 (-1179 *6 *7 *8 *9))) (-5 *1 (-1179 *6 *7 *8 *9)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-1179 *4 *5 *6 *7))) (-5 *1 (-1179 *4 *5 *6 *7))))) -(-13 (-1116 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2235 ((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2235 ((-3 $ "failed") (-589 |#4|))) (-15 -2093 ((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2093 ((-3 $ "failed") (-589 |#4|))) (-15 -2939 ((-589 $) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2939 ((-589 $) (-589 |#4|))))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 38)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-1180 |#1|) (-129) (-973)) (T -1180)) -((-1458 (*1 *1 *2) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-973))))) -(-13 (-973) (-107 |t#1| |t#1|) (-10 -8 (-15 -1458 ($ |t#1|)) (IF (|has| |t#1| (-158)) (-6 (-37 |t#1|)) |%noBranch|))) +((-1344 (((-589 (-1118 |#1|)) (-1087) (-1118 |#1|)) 78)) (-1693 (((-1068 (-1068 (-883 |#1|))) (-1087) (-1068 (-883 |#1|))) 57)) (-1397 (((-1 (-1068 (-1118 |#1|)) (-1068 (-1118 |#1|))) (-710) (-1118 |#1|) (-1068 (-1118 |#1|))) 68)) (-4121 (((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710)) 59)) (-1460 (((-1 (-1083 (-883 |#1|)) (-883 |#1|)) (-1087)) 27)) (-4065 (((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710)) 58))) +(((-1177 |#1|) (-10 -7 (-15 -4121 ((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710))) (-15 -4065 ((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710))) (-15 -1693 ((-1068 (-1068 (-883 |#1|))) (-1087) (-1068 (-883 |#1|)))) (-15 -1460 ((-1 (-1083 (-883 |#1|)) (-883 |#1|)) (-1087))) (-15 -1344 ((-589 (-1118 |#1|)) (-1087) (-1118 |#1|))) (-15 -1397 ((-1 (-1068 (-1118 |#1|)) (-1068 (-1118 |#1|))) (-710) (-1118 |#1|) (-1068 (-1118 |#1|))))) (-339)) (T -1177)) +((-1397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710)) (-4 *6 (-339)) (-5 *4 (-1118 *6)) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1177 *6)) (-5 *5 (-1068 *4)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-4 *5 (-339)) (-5 *2 (-589 (-1118 *5))) (-5 *1 (-1177 *5)) (-5 *4 (-1118 *5)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1 (-1083 (-883 *4)) (-883 *4))) (-5 *1 (-1177 *4)) (-4 *4 (-339)))) (-1693 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-4 *5 (-339)) (-5 *2 (-1068 (-1068 (-883 *5)))) (-5 *1 (-1177 *5)) (-5 *4 (-1068 (-883 *5))))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-1068 (-883 *4)) (-1068 (-883 *4)))) (-5 *1 (-1177 *4)) (-4 *4 (-339)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-1068 (-883 *4)) (-1068 (-883 *4)))) (-5 *1 (-1177 *4)) (-4 *4 (-339))))) +(-10 -7 (-15 -4121 ((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710))) (-15 -4065 ((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710))) (-15 -1693 ((-1068 (-1068 (-883 |#1|))) (-1087) (-1068 (-883 |#1|)))) (-15 -1460 ((-1 (-1083 (-883 |#1|)) (-883 |#1|)) (-1087))) (-15 -1344 ((-589 (-1118 |#1|)) (-1087) (-1118 |#1|))) (-15 -1397 ((-1 (-1068 (-1118 |#1|)) (-1068 (-1118 |#1|))) (-710) (-1118 |#1|) (-1068 (-1118 |#1|))))) +((-3674 (((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|) 74)) (-2496 (((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) 73))) +(((-1178 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 ((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -3674 ((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|))) (-325) (-1145 |#1|) (-1145 |#2|) (-385 |#2| |#3|)) (T -1178)) +((-3674 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 *3)) (-5 *2 (-2 (|:| -3760 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-1178 *4 *3 *5 *6)) (-4 *6 (-385 *3 *5)))) (-2496 (*1 *2) (-12 (-4 *3 (-325)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| -3760 (-629 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-629 *4)))) (-5 *1 (-1178 *3 *4 *5 *6)) (-4 *6 (-385 *4 *5))))) +(-10 -7 (-15 -2496 ((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -3674 ((-2 (|:| -3760 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 43)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) NIL)) (-2769 (((-108) $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1691 (((-794) $) 64) (($ (-523)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-158)))) (-3272 (((-710)) NIL)) (-3720 (((-1174) (-710)) 16)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 27 T CONST)) (-1891 (($) 67 T CONST)) (-3941 (((-108) $ $) 69)) (-4074 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-4060 (($ $) 71) (($ $ $) NIL)) (-4045 (($ $ $) 47)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))))) +(((-1179 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-973) (-10 -8 (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1691 (|#4| $)) (IF (|has| |#1| (-339)) (-15 -4074 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1691 ($ |#4|)) (-15 -3720 ((-1174) (-710))))) (-973) (-786) (-732) (-880 |#1| |#3| |#2|) (-589 |#2|) (-589 (-710)) (-710)) (T -1179)) +((-1691 (*1 *2 *1) (-12 (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-1179 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-14 *6 (-589 *4)) (-14 *7 (-589 (-710))) (-14 *8 (-710)))) (-4074 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-339)) (-4 *2 (-973)) (-4 *3 (-786)) (-4 *4 (-732)) (-14 *6 (-589 *3)) (-5 *1 (-1179 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-880 *2 *4 *3)) (-14 *7 (-589 (-710))) (-14 *8 (-710)))) (-1691 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-14 *6 (-589 *4)) (-5 *1 (-1179 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-880 *3 *5 *4)) (-14 *7 (-589 (-710))) (-14 *8 (-710)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) (-14 *8 (-589 *5)) (-5 *2 (-1174)) (-5 *1 (-1179 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-880 *4 *6 *5)) (-14 *9 (-589 *3)) (-14 *10 *3)))) +(-13 (-973) (-10 -8 (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1691 (|#4| $)) (IF (|has| |#1| (-339)) (-15 -4074 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1691 ($ |#4|)) (-15 -3720 ((-1174) (-710))))) +((-1680 (((-108) $ $) NIL)) (-3385 (((-589 (-2 (|:| -1214 $) (|:| -2647 (-589 |#4|)))) (-589 |#4|)) NIL)) (-2591 (((-589 $) (-589 |#4|)) 88)) (-1292 (((-589 |#3|) $) NIL)) (-2356 (((-108) $) NIL)) (-2192 (((-108) $) NIL (|has| |#1| (-515)))) (-2219 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2717 ((|#4| |#4| $) NIL)) (-1581 (((-2 (|:| |under| $) (|:| -2733 $) (|:| |upper| $)) $ |#3|) NIL)) (-1620 (((-108) $ (-710)) NIL)) (-1903 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4189 (($) NIL T CONST)) (-4002 (((-108) $) NIL (|has| |#1| (-515)))) (-3577 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3527 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2611 (((-108) $) NIL (|has| |#1| (-515)))) (-3586 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-1291 (((-589 |#4|) (-589 |#4|) $) 25 (|has| |#1| (-515)))) (-1804 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-1220 (((-3 $ "failed") (-589 |#4|)) NIL)) (-3508 (($ (-589 |#4|)) NIL)) (-2441 (((-3 $ "failed") $) 70)) (-3546 ((|#4| |#4| $) 75)) (-2462 (($ $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-2514 (($ |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-3969 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-3087 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2848 ((|#4| |#4| $) NIL)) (-2116 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4248))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4248))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2860 (((-2 (|:| -1214 (-589 |#4|)) (|:| -2647 (-589 |#4|))) $) NIL)) (-1871 (((-589 |#4|) $) NIL (|has| $ (-6 -4248)))) (-2605 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3556 ((|#3| $) 76)) (-3051 (((-108) $ (-710)) NIL)) (-1584 (((-589 |#4|) $) 29 (|has| $ (-6 -4248)))) (-3423 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016))))) (-3152 (((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-589 |#4|)) 35)) (-2043 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4249)))) (-1345 (($ (-1 |#4| |#4|) $) NIL)) (-2709 (((-589 |#3|) $) NIL)) (-2528 (((-108) |#3| $) NIL)) (-1418 (((-108) $ (-710)) NIL)) (-2032 (((-1070) $) NIL)) (-2535 (((-3 |#4| "failed") $) NIL)) (-2455 (((-589 |#4|) $) 50)) (-2490 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2960 ((|#4| |#4| $) 74)) (-2303 (((-108) $ $) 85)) (-3473 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2569 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2897 ((|#4| |#4| $) NIL)) (-3951 (((-1034) $) NIL)) (-2428 (((-3 |#4| "failed") $) 69)) (-2509 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3367 (((-3 $ "failed") $ |#4|) NIL)) (-3053 (($ $ |#4|) NIL)) (-3379 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-2812 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-2267 (((-108) $ $) NIL)) (-1777 (((-108) $) 67)) (-3320 (($) 42)) (-2640 (((-710) $) NIL)) (-3977 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4248)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-1874 (($ $) NIL)) (-1400 (((-499) $) NIL (|has| |#4| (-564 (-499))))) (-1704 (($ (-589 |#4|)) NIL)) (-2712 (($ $ |#3|) NIL)) (-2742 (($ $ |#3|) NIL)) (-1494 (($ $) NIL)) (-1591 (($ $ |#3|) NIL)) (-1691 (((-794) $) NIL) (((-589 |#4|) $) 57)) (-2868 (((-710) $) NIL (|has| |#3| (-344)))) (-2276 (((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-589 |#4|)) 41)) (-2681 (((-589 $) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-589 $) (-589 |#4|)) 66)) (-1645 (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3781 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3684 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) NIL)) (-2308 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4248)))) (-1574 (((-589 |#3|) $) NIL)) (-1747 (((-108) |#3| $) NIL)) (-3941 (((-108) $ $) NIL)) (-2810 (((-710) $) NIL (|has| $ (-6 -4248))))) +(((-1180 |#1| |#2| |#3| |#4|) (-13 (-1117 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3152 ((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3152 ((-3 $ "failed") (-589 |#4|))) (-15 -2276 ((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2276 ((-3 $ "failed") (-589 |#4|))) (-15 -2681 ((-589 $) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2681 ((-589 $) (-589 |#4|))))) (-515) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -1180)) +((-3152 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1180 *5 *6 *7 *8)))) (-3152 (*1 *1 *2) (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-1180 *3 *4 *5 *6)))) (-2276 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1180 *5 *6 *7 *8)))) (-2276 (*1 *1 *2) (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-1180 *3 *4 *5 *6)))) (-2681 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) (-4 *8 (-786)) (-5 *2 (-589 (-1180 *6 *7 *8 *9))) (-5 *1 (-1180 *6 *7 *8 *9)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-1180 *4 *5 *6 *7))) (-5 *1 (-1180 *4 *5 *6 *7))))) +(-13 (-1117 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3152 ((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3152 ((-3 $ "failed") (-589 |#4|))) (-15 -2276 ((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2276 ((-3 $ "failed") (-589 |#4|))) (-15 -2681 ((-589 $) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2681 ((-589 $) (-589 |#4|))))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-3405 (((-3 $ "failed") $ $) 19)) (-4189 (($) 17 T CONST)) (-1444 (((-3 $ "failed") $) 34)) (-2769 (((-108) $) 31)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 38)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-1181 |#1|) (-129) (-973)) (T -1181)) +((-1691 (*1 *1 *2) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-973))))) +(-13 (-973) (-107 |t#1| |t#1|) (-10 -8 (-15 -1691 ($ |t#1|)) (IF (|has| |t#1| (-158)) (-6 (-37 |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-158)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) |has| |#1| (-158)) ((-666) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2061 (((-589 |#1|) $) 45)) (-3296 (($ $ (-710)) 39)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2435 (($ $ (-710)) 17 (|has| |#2| (-158))) (($ $ $) 18 (|has| |#2| (-158)))) (-2518 (($) NIL T CONST)) (-4111 (($ $ $) 62) (($ $ (-758 |#1|)) 49) (($ $ |#1|) 53)) (-3517 (((-3 (-758 |#1|) "failed") $) NIL)) (-3474 (((-758 |#1|) $) NIL)) (-3810 (($ $) 32)) (-2121 (((-3 $ "failed") $) NIL)) (-4061 (((-108) $) NIL)) (-2468 (($ $) NIL)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-2302 (($ (-758 |#1|) |#2|) 31)) (-1419 (($ $) 33)) (-3385 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) 11)) (-2286 (((-758 |#1|) $) NIL)) (-2910 (((-758 |#1|) $) 34)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2701 (($ $ $) 61) (($ $ (-758 |#1|)) 51) (($ $ |#1|) 55)) (-4184 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3774 (((-758 |#1|) $) 28)) (-3786 ((|#2| $) 30)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2299 (((-710) $) 36)) (-1869 (((-108) $) 40)) (-3059 ((|#2| $) NIL)) (-1458 (((-794) $) NIL) (($ (-758 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-523)) NIL)) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-758 |#1|)) NIL)) (-2935 ((|#2| $ $) 64) ((|#2| $ (-758 |#1|)) NIL)) (-1621 (((-710)) NIL)) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2756 (($) 12 T CONST)) (-2767 (($) 14 T CONST)) (-1643 (((-589 (-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3983 (((-108) $ $) 38)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 21)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 60) (($ |#2| (-758 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1181 |#1| |#2|) (-13 (-358 |#2| (-758 |#1|)) (-1187 |#1| |#2|)) (-786) (-973)) (T -1181)) -NIL -(-13 (-358 |#2| (-758 |#1|)) (-1187 |#1| |#2|)) -((-2384 ((|#3| |#3| (-710)) 23)) (-1811 ((|#3| |#3| (-710)) 28)) (-1680 ((|#3| |#3| |#3| (-710)) 29))) -(((-1182 |#1| |#2| |#3|) (-10 -7 (-15 -1811 (|#3| |#3| (-710))) (-15 -2384 (|#3| |#3| (-710))) (-15 -1680 (|#3| |#3| |#3| (-710)))) (-13 (-973) (-657 (-383 (-523)))) (-786) (-1187 |#2| |#1|)) (T -1182)) -((-1680 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) (-4 *5 (-786)) (-5 *1 (-1182 *4 *5 *2)) (-4 *2 (-1187 *5 *4)))) (-2384 (*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) (-4 *5 (-786)) (-5 *1 (-1182 *4 *5 *2)) (-4 *2 (-1187 *5 *4)))) (-1811 (*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) (-4 *5 (-786)) (-5 *1 (-1182 *4 *5 *2)) (-4 *2 (-1187 *5 *4))))) -(-10 -7 (-15 -1811 (|#3| |#3| (-710))) (-15 -2384 (|#3| |#3| (-710))) (-15 -1680 (|#3| |#3| |#3| (-710)))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2061 (((-589 |#1|) $) 40)) (-3212 (((-3 $ "failed") $ $) 19)) (-2435 (($ $ $) 43 (|has| |#2| (-158))) (($ $ (-710)) 42 (|has| |#2| (-158)))) (-2518 (($) 17 T CONST)) (-4111 (($ $ |#1|) 54) (($ $ (-758 |#1|)) 53) (($ $ $) 52)) (-3517 (((-3 (-758 |#1|) "failed") $) 64)) (-3474 (((-758 |#1|) $) 63)) (-2121 (((-3 $ "failed") $) 34)) (-4061 (((-108) $) 45)) (-2468 (($ $) 44)) (-2023 (((-108) $) 31)) (-2620 (((-108) $) 50)) (-2302 (($ (-758 |#1|) |#2|) 51)) (-1419 (($ $) 49)) (-3385 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) 60)) (-2286 (((-758 |#1|) $) 61)) (-3612 (($ (-1 |#2| |#2|) $) 41)) (-2701 (($ $ |#1|) 57) (($ $ (-758 |#1|)) 56) (($ $ $) 55)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1869 (((-108) $) 47)) (-3059 ((|#2| $) 46)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#2|) 68) (($ (-758 |#1|)) 65) (($ |#1|) 48)) (-2935 ((|#2| $ (-758 |#1|)) 59) ((|#2| $ $) 58)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) -(((-1183 |#1| |#2|) (-129) (-786) (-973)) (T -1183)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-2286 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-758 *3)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-2 (|:| |k| (-758 *3)) (|:| |c| *4))))) (-2935 (*1 *2 *1 *3) (-12 (-5 *3 (-758 *4)) (-4 *1 (-1183 *4 *2)) (-4 *4 (-786)) (-4 *2 (-973)))) (-2935 (*1 *2 *1 *1) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) (-2701 (*1 *1 *1 *2) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-758 *3)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)))) (-2701 (*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-4111 (*1 *1 *1 *2) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-758 *3)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)))) (-4111 (*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-2302 (*1 *1 *2 *3) (-12 (-5 *2 (-758 *4)) (-4 *4 (-786)) (-4 *1 (-1183 *4 *3)) (-4 *3 (-973)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-108)))) (-1419 (*1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-1458 (*1 *1 *2) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-108)))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-108)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-2435 (*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)) (-4 *3 (-158)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-4 *4 (-158)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-589 *3))))) -(-13 (-973) (-1180 |t#2|) (-964 (-758 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2286 ((-758 |t#1|) $)) (-15 -3385 ((-2 (|:| |k| (-758 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2935 (|t#2| $ (-758 |t#1|))) (-15 -2935 (|t#2| $ $)) (-15 -2701 ($ $ |t#1|)) (-15 -2701 ($ $ (-758 |t#1|))) (-15 -2701 ($ $ $)) (-15 -4111 ($ $ |t#1|)) (-15 -4111 ($ $ (-758 |t#1|))) (-15 -4111 ($ $ $)) (-15 -2302 ($ (-758 |t#1|) |t#2|)) (-15 -2620 ((-108) $)) (-15 -1419 ($ $)) (-15 -1458 ($ |t#1|)) (-15 -1869 ((-108) $)) (-15 -3059 (|t#2| $)) (-15 -4061 ((-108) $)) (-15 -2468 ($ $)) (IF (|has| |t#2| (-158)) (PROGN (-15 -2435 ($ $ $)) (-15 -2435 ($ $ (-710)))) |%noBranch|) (-15 -3612 ($ (-1 |t#2| |t#2|) $)) (-15 -2061 ((-589 |t#1|) $)) (IF (|has| |t#2| (-6 -4237)) (-6 -4237) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-158)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-657 |#2|) |has| |#2| (-158)) ((-666) . T) ((-964 (-758 |#1|)) . T) ((-979 |#2|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1180 |#2|) . T)) -((-2318 (((-108) $) 14)) (-2153 (((-108) $) 13)) (-3454 (($ $) 18) (($ $ (-710)) 19))) -(((-1184 |#1| |#2|) (-10 -8 (-15 -3454 (|#1| |#1| (-710))) (-15 -3454 (|#1| |#1|)) (-15 -2318 ((-108) |#1|)) (-15 -2153 ((-108) |#1|))) (-1185 |#2|) (-339)) (T -1184)) -NIL -(-10 -8 (-15 -3454 (|#1| |#1| (-710))) (-15 -3454 (|#1| |#1|)) (-15 -2318 ((-108) |#1|)) (-15 -2153 ((-108) |#1|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-2318 (((-108) $) 94)) (-2654 (((-710)) 90)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 101)) (-3474 ((|#1| $) 100)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-1991 (($ $ (-710)) 87 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) 86 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) 71)) (-1640 (((-772 (-852)) $) 84 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) 31)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-1290 (((-108) $) 93)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1820 (((-394 $) $) 74)) (-4124 (((-772 (-852))) 91)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-2974 (((-3 (-710) "failed") $ $) 85 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) 99)) (-2299 (((-772 (-852)) $) 92)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ |#1|) 102)) (-3901 (((-3 $ "failed") $) 83 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2153 (((-108) $) 95)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3454 (($ $) 89 (|has| |#1| (-344))) (($ $ (-710)) 88 (|has| |#1| (-344)))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 64) (($ $ |#1|) 98)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) -(((-1185 |#1|) (-129) (-339)) (T -1185)) -((-2153 (*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-108)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-108)))) (-1290 (*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-108)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-772 (-852))))) (-4124 (*1 *2) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-772 (-852))))) (-2654 (*1 *2) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-710)))) (-3454 (*1 *1 *1) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-339)) (-4 *2 (-344)))) (-3454 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-4 *3 (-344))))) -(-13 (-339) (-964 |t#1|) (-1175 |t#1|) (-10 -8 (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-378)) |%noBranch|) (-15 -2153 ((-108) $)) (-15 -2318 ((-108) $)) (-15 -1290 ((-108) $)) (-15 -2299 ((-772 (-852)) $)) (-15 -4124 ((-772 (-852)))) (-15 -2654 ((-710))) (IF (|has| |t#1| (-344)) (PROGN (-6 (-378)) (-15 -3454 ($ $)) (-15 -3454 ($ $ (-710)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3262 (|has| |#1| (-344)) (|has| |#1| (-134))) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-378) -3262 (|has| |#1| (-344)) (|has| |#1| (-134))) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-964 |#1|) . T) ((-979 #0#) . T) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T) ((-1175 |#1|) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2061 (((-589 |#1|) $) 85)) (-3296 (($ $ (-710)) 88)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2435 (($ $ $) NIL (|has| |#2| (-158))) (($ $ (-710)) NIL (|has| |#2| (-158)))) (-2518 (($) NIL T CONST)) (-4111 (($ $ |#1|) NIL) (($ $ (-758 |#1|)) NIL) (($ $ $) NIL)) (-3517 (((-3 (-758 |#1|) "failed") $) NIL) (((-3 (-824 |#1|) "failed") $) NIL)) (-3474 (((-758 |#1|) $) NIL) (((-824 |#1|) $) NIL)) (-3810 (($ $) 87)) (-2121 (((-3 $ "failed") $) NIL)) (-4061 (((-108) $) 76)) (-2468 (($ $) 80)) (-1656 (($ $ $ (-710)) 89)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-2302 (($ (-758 |#1|) |#2|) NIL) (($ (-824 |#1|) |#2|) 26)) (-1419 (($ $) 102)) (-3385 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2286 (((-758 |#1|) $) NIL)) (-2910 (((-758 |#1|) $) NIL)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2701 (($ $ |#1|) NIL) (($ $ (-758 |#1|)) NIL) (($ $ $) NIL)) (-2384 (($ $ (-710)) 96 (|has| |#2| (-657 (-383 (-523)))))) (-4184 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3774 (((-824 |#1|) $) 70)) (-3786 ((|#2| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1811 (($ $ (-710)) 93 (|has| |#2| (-657 (-383 (-523)))))) (-2299 (((-710) $) 86)) (-1869 (((-108) $) 71)) (-3059 ((|#2| $) 75)) (-1458 (((-794) $) 57) (($ (-523)) NIL) (($ |#2|) 51) (($ (-758 |#1|)) NIL) (($ |#1|) 59) (($ (-824 |#1|)) NIL) (($ (-607 |#1| |#2|)) 43) (((-1181 |#1| |#2|) $) 64) (((-1190 |#1| |#2|) $) 69)) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-824 |#1|)) NIL)) (-2935 ((|#2| $ (-758 |#1|)) NIL) ((|#2| $ $) NIL)) (-1621 (((-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 21 T CONST)) (-2767 (($) 25 T CONST)) (-1643 (((-589 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3442 (((-3 (-607 |#1| |#2|) "failed") $) 101)) (-3983 (((-108) $ $) 65)) (-4087 (($ $) 95) (($ $ $) 94)) (-4075 (($ $ $) 20)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-824 |#1|)) NIL))) -(((-1186 |#1| |#2|) (-13 (-1187 |#1| |#2|) (-358 |#2| (-824 |#1|)) (-10 -8 (-15 -1458 ($ (-607 |#1| |#2|))) (-15 -1458 ((-1181 |#1| |#2|) $)) (-15 -1458 ((-1190 |#1| |#2|) $)) (-15 -3442 ((-3 (-607 |#1| |#2|) "failed") $)) (-15 -1656 ($ $ $ (-710))) (IF (|has| |#2| (-657 (-383 (-523)))) (PROGN (-15 -1811 ($ $ (-710))) (-15 -2384 ($ $ (-710)))) |%noBranch|))) (-786) (-158)) (T -1186)) -((-1458 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *1 (-1186 *3 *4)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-3442 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-1656 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-1811 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-1186 *3 *4)) (-4 *4 (-657 (-383 (-523)))) (-4 *3 (-786)) (-4 *4 (-158)))) (-2384 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-1186 *3 *4)) (-4 *4 (-657 (-383 (-523)))) (-4 *3 (-786)) (-4 *4 (-158))))) -(-13 (-1187 |#1| |#2|) (-358 |#2| (-824 |#1|)) (-10 -8 (-15 -1458 ($ (-607 |#1| |#2|))) (-15 -1458 ((-1181 |#1| |#2|) $)) (-15 -1458 ((-1190 |#1| |#2|) $)) (-15 -3442 ((-3 (-607 |#1| |#2|) "failed") $)) (-15 -1656 ($ $ $ (-710))) (IF (|has| |#2| (-657 (-383 (-523)))) (PROGN (-15 -1811 ($ $ (-710))) (-15 -2384 ($ $ (-710)))) |%noBranch|))) -((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2061 (((-589 |#1|) $) 40)) (-3296 (($ $ (-710)) 73)) (-3212 (((-3 $ "failed") $ $) 19)) (-2435 (($ $ $) 43 (|has| |#2| (-158))) (($ $ (-710)) 42 (|has| |#2| (-158)))) (-2518 (($) 17 T CONST)) (-4111 (($ $ |#1|) 54) (($ $ (-758 |#1|)) 53) (($ $ $) 52)) (-3517 (((-3 (-758 |#1|) "failed") $) 64)) (-3474 (((-758 |#1|) $) 63)) (-2121 (((-3 $ "failed") $) 34)) (-4061 (((-108) $) 45)) (-2468 (($ $) 44)) (-2023 (((-108) $) 31)) (-2620 (((-108) $) 50)) (-2302 (($ (-758 |#1|) |#2|) 51)) (-1419 (($ $) 49)) (-3385 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) 60)) (-2286 (((-758 |#1|) $) 61)) (-2910 (((-758 |#1|) $) 75)) (-3612 (($ (-1 |#2| |#2|) $) 41)) (-2701 (($ $ |#1|) 57) (($ $ (-758 |#1|)) 56) (($ $ $) 55)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2299 (((-710) $) 74)) (-1869 (((-108) $) 47)) (-3059 ((|#2| $) 46)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#2|) 68) (($ (-758 |#1|)) 65) (($ |#1|) 48)) (-2935 ((|#2| $ (-758 |#1|)) 59) ((|#2| $ $) 58)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) -(((-1187 |#1| |#2|) (-129) (-786) (-973)) (T -1187)) -((-2910 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-758 *3)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-710)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973))))) -(-13 (-1183 |t#1| |t#2|) (-10 -8 (-15 -2910 ((-758 |t#1|) $)) (-15 -2299 ((-710) $)) (-15 -3296 ($ $ (-710))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-158)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-657 |#2|) |has| |#2| (-158)) ((-666) . T) ((-964 (-758 |#1|)) . T) ((-979 |#2|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1180 |#2|) . T) ((-1183 |#1| |#2|) . T)) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2061 (((-589 (-1087)) $) NIL)) (-3111 (($ (-1181 (-1087) |#1|)) NIL)) (-3296 (($ $ (-710)) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2435 (($ $ $) NIL (|has| |#1| (-158))) (($ $ (-710)) NIL (|has| |#1| (-158)))) (-2518 (($) NIL T CONST)) (-4111 (($ $ (-1087)) NIL) (($ $ (-758 (-1087))) NIL) (($ $ $) NIL)) (-3517 (((-3 (-758 (-1087)) "failed") $) NIL)) (-3474 (((-758 (-1087)) $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4061 (((-108) $) NIL)) (-2468 (($ $) NIL)) (-2023 (((-108) $) NIL)) (-2620 (((-108) $) NIL)) (-2302 (($ (-758 (-1087)) |#1|) NIL)) (-1419 (($ $) NIL)) (-3385 (((-2 (|:| |k| (-758 (-1087))) (|:| |c| |#1|)) $) NIL)) (-2286 (((-758 (-1087)) $) NIL)) (-2910 (((-758 (-1087)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2701 (($ $ (-1087)) NIL) (($ $ (-758 (-1087))) NIL) (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3686 (((-1181 (-1087) |#1|) $) NIL)) (-2299 (((-710) $) NIL)) (-1869 (((-108) $) NIL)) (-3059 ((|#1| $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-758 (-1087))) NIL) (($ (-1087)) NIL)) (-2935 ((|#1| $ (-758 (-1087))) NIL) ((|#1| $ $) NIL)) (-1621 (((-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-3879 (((-589 (-2 (|:| |k| (-1087)) (|:| |c| $))) $) NIL)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1087) $) NIL))) -(((-1188 |#1|) (-13 (-1187 (-1087) |#1|) (-10 -8 (-15 -3686 ((-1181 (-1087) |#1|) $)) (-15 -3111 ($ (-1181 (-1087) |#1|))) (-15 -3879 ((-589 (-2 (|:| |k| (-1087)) (|:| |c| $))) $)))) (-973)) (T -1188)) -((-3686 (*1 *2 *1) (-12 (-5 *2 (-1181 (-1087) *3)) (-5 *1 (-1188 *3)) (-4 *3 (-973)))) (-3111 (*1 *1 *2) (-12 (-5 *2 (-1181 (-1087) *3)) (-4 *3 (-973)) (-5 *1 (-1188 *3)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |k| (-1087)) (|:| |c| (-1188 *3))))) (-5 *1 (-1188 *3)) (-4 *3 (-973))))) -(-13 (-1187 (-1087) |#1|) (-10 -8 (-15 -3686 ((-1181 (-1087) |#1|) $)) (-15 -3111 ($ (-1181 (-1087) |#1|))) (-15 -3879 ((-589 (-2 (|:| |k| (-1087)) (|:| |c| $))) $)))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL)) (-3474 ((|#2| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) 35)) (-4061 (((-108) $) 30)) (-2468 (($ $) 31)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-2302 (($ |#2| |#1|) NIL)) (-2286 ((|#2| $) 19)) (-2910 ((|#2| $) 16)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-4184 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3774 ((|#2| $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1869 (((-108) $) 27)) (-3059 ((|#1| $) 28)) (-1458 (((-794) $) 54) (($ (-523)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ |#2|) NIL)) (-2935 ((|#1| $ |#2|) 24)) (-1621 (((-710)) 14)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 25 T CONST)) (-2767 (($) 11 T CONST)) (-1643 (((-589 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3983 (((-108) $ $) 26)) (-4098 (($ $ |#1|) 56 (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 43)) (** (($ $ (-852)) NIL) (($ $ (-710)) 45)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2676 (((-710) $) 15))) -(((-1189 |#1| |#2|) (-13 (-973) (-1180 |#1|) (-358 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2676 ((-710) $)) (-15 -1458 ($ |#2|)) (-15 -2910 (|#2| $)) (-15 -2286 (|#2| $)) (-15 -3810 ($ $)) (-15 -2935 (|#1| $ |#2|)) (-15 -1869 ((-108) $)) (-15 -3059 (|#1| $)) (-15 -4061 ((-108) $)) (-15 -2468 ($ $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-339)) (-15 -4098 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4237)) (-6 -4237) |%noBranch|) (IF (|has| |#1| (-6 -4241)) (-6 -4241) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|))) (-973) (-782)) (T -1189)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782)))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-1189 *3 *4)) (-4 *4 (-782)))) (-1458 (*1 *1 *2) (-12 (-5 *1 (-1189 *3 *2)) (-4 *3 (-973)) (-4 *2 (-782)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-973)) (-4 *4 (-782)))) (-2910 (*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-1189 *3 *2)) (-4 *3 (-973)))) (-2286 (*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-1189 *3 *2)) (-4 *3 (-973)))) (-2935 (*1 *2 *1 *3) (-12 (-4 *2 (-973)) (-5 *1 (-1189 *2 *3)) (-4 *3 (-782)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-973)) (-4 *4 (-782)))) (-3059 (*1 *2 *1) (-12 (-4 *2 (-973)) (-5 *1 (-1189 *2 *3)) (-4 *3 (-782)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-973)) (-4 *4 (-782)))) (-2468 (*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782)))) (-4098 (*1 *1 *1 *2) (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-339)) (-4 *2 (-973)) (-4 *3 (-782))))) -(-13 (-973) (-1180 |#1|) (-358 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2676 ((-710) $)) (-15 -1458 ($ |#2|)) (-15 -2910 (|#2| $)) (-15 -2286 (|#2| $)) (-15 -3810 ($ $)) (-15 -2935 (|#1| $ |#2|)) (-15 -1869 ((-108) $)) (-15 -3059 (|#1| $)) (-15 -4061 ((-108) $)) (-15 -2468 ($ $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-339)) (-15 -4098 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4237)) (-6 -4237) |%noBranch|) (IF (|has| |#1| (-6 -4241)) (-6 -4241) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2061 (((-589 |#1|) $) 120)) (-3111 (($ (-1181 |#1| |#2|)) 44)) (-3296 (($ $ (-710)) 32)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2435 (($ $ $) 48 (|has| |#2| (-158))) (($ $ (-710)) 46 (|has| |#2| (-158)))) (-2518 (($) NIL T CONST)) (-4111 (($ $ |#1|) 102) (($ $ (-758 |#1|)) 103) (($ $ $) 25)) (-3517 (((-3 (-758 |#1|) "failed") $) NIL)) (-3474 (((-758 |#1|) $) NIL)) (-2121 (((-3 $ "failed") $) 110)) (-4061 (((-108) $) 105)) (-2468 (($ $) 106)) (-2023 (((-108) $) NIL)) (-2620 (((-108) $) NIL)) (-2302 (($ (-758 |#1|) |#2|) 19)) (-1419 (($ $) NIL)) (-3385 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2286 (((-758 |#1|) $) 111)) (-2910 (((-758 |#1|) $) 114)) (-3612 (($ (-1 |#2| |#2|) $) 119)) (-2701 (($ $ |#1|) 100) (($ $ (-758 |#1|)) 101) (($ $ $) 56)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3686 (((-1181 |#1| |#2|) $) 84)) (-2299 (((-710) $) 117)) (-1869 (((-108) $) 70)) (-3059 ((|#2| $) 28)) (-1458 (((-794) $) 63) (($ (-523)) 77) (($ |#2|) 74) (($ (-758 |#1|)) 17) (($ |#1|) 73)) (-2935 ((|#2| $ (-758 |#1|)) 104) ((|#2| $ $) 27)) (-1621 (((-710)) 108)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 14 T CONST)) (-3879 (((-589 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2767 (($) 29 T CONST)) (-3983 (((-108) $ $) 13)) (-4087 (($ $) 88) (($ $ $) 91)) (-4075 (($ $ $) 55)) (** (($ $ (-852)) NIL) (($ $ (-710)) 49)) (* (($ (-852) $) NIL) (($ (-710) $) 47) (($ (-523) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1190 |#1| |#2|) (-13 (-1187 |#1| |#2|) (-10 -8 (-15 -3686 ((-1181 |#1| |#2|) $)) (-15 -3111 ($ (-1181 |#1| |#2|))) (-15 -3879 ((-589 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-786) (-973)) (T -1190)) -((-3686 (*1 *2 *1) (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)))) (-3111 (*1 *1 *2) (-12 (-5 *2 (-1181 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *1 (-1190 *3 *4)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |k| *3) (|:| |c| (-1190 *3 *4))))) (-5 *1 (-1190 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973))))) -(-13 (-1187 |#1| |#2|) (-10 -8 (-15 -3686 ((-1181 |#1| |#2|) $)) (-15 -3111 ($ (-1181 |#1| |#2|))) (-15 -3879 ((-589 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1294 (((-589 (-1068 |#1|)) (-1 (-589 (-1068 |#1|)) (-589 (-1068 |#1|))) (-523)) 15) (((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|))) 11))) -(((-1191 |#1|) (-10 -7 (-15 -1294 ((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|)))) (-15 -1294 ((-589 (-1068 |#1|)) (-1 (-589 (-1068 |#1|)) (-589 (-1068 |#1|))) (-523)))) (-1122)) (T -1191)) -((-1294 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-589 (-1068 *5)) (-589 (-1068 *5)))) (-5 *4 (-523)) (-5 *2 (-589 (-1068 *5))) (-5 *1 (-1191 *5)) (-4 *5 (-1122)))) (-1294 (*1 *2 *3) (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1191 *4)) (-4 *4 (-1122))))) -(-10 -7 (-15 -1294 ((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|)))) (-15 -1294 ((-589 (-1068 |#1|)) (-1 (-589 (-1068 |#1|)) (-589 (-1068 |#1|))) (-523)))) -((-2252 (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|))) 146) (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108)) 145) (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108)) 144) (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108) (-108)) 143) (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-970 |#1| |#2|)) 128)) (-2655 (((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|))) 71) (((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108)) 70) (((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108) (-108)) 69)) (-3614 (((-589 (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))) (-970 |#1| |#2|)) 60)) (-2897 (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|))) 113) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108)) 112) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108)) 111) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108) (-108)) 110) (((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|)) 105)) (-2583 (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|))) 118) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108)) 117) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108)) 116) (((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|)) 115)) (-3663 (((-589 (-719 |#1| (-796 |#3|))) (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))) 97) (((-1083 (-951 (-383 |#1|))) (-1083 |#1|)) 88) (((-883 (-951 (-383 |#1|))) (-719 |#1| (-796 |#3|))) 95) (((-883 (-951 (-383 |#1|))) (-883 |#1|)) 93) (((-719 |#1| (-796 |#3|)) (-719 |#1| (-796 |#2|))) 33))) -(((-1192 |#1| |#2| |#3|) (-10 -7 (-15 -2655 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2655 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108))) (-15 -2655 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-970 |#1| |#2|))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108) (-108))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108) (-108))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)))) (-15 -3614 ((-589 (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))) (-970 |#1| |#2|))) (-15 -3663 ((-719 |#1| (-796 |#3|)) (-719 |#1| (-796 |#2|)))) (-15 -3663 ((-883 (-951 (-383 |#1|))) (-883 |#1|))) (-15 -3663 ((-883 (-951 (-383 |#1|))) (-719 |#1| (-796 |#3|)))) (-15 -3663 ((-1083 (-951 (-383 |#1|))) (-1083 |#1|))) (-15 -3663 ((-589 (-719 |#1| (-796 |#3|))) (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))))) (-13 (-784) (-284) (-136) (-949)) (-589 (-1087)) (-589 (-1087))) (T -1192)) -((-3663 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 (-495 (-796 *6)) (-796 *6) (-719 *4 (-796 *6)))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-719 *4 (-796 *6)))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-1083 (-951 (-383 *4)))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-719 *4 (-796 *6))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *6 (-589 (-1087))) (-5 *2 (-883 (-951 (-383 *4)))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-883 (-951 (-383 *4)))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-719 *4 (-796 *5))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-719 *4 (-796 *6))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-1058 *4 (-495 (-796 *6)) (-796 *6) (-719 *4 (-796 *6))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-2583 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2583 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-2897 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2897 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2897 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-2252 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *4)) (|:| -2966 (-589 (-883 *4)))))) (-5 *1 (-1192 *4 *5 *6)) (-5 *3 (-589 (-883 *4))) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-2252 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2252 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2252 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *4)) (|:| -2966 (-589 (-883 *4)))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-970 *4 *5))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2655 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087)))))) -(-10 -7 (-15 -2655 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2655 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108))) (-15 -2655 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-970 |#1| |#2|))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108) (-108))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108) (-108))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)))) (-15 -3614 ((-589 (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))) (-970 |#1| |#2|))) (-15 -3663 ((-719 |#1| (-796 |#3|)) (-719 |#1| (-796 |#2|)))) (-15 -3663 ((-883 (-951 (-383 |#1|))) (-883 |#1|))) (-15 -3663 ((-883 (-951 (-383 |#1|))) (-719 |#1| (-796 |#3|)))) (-15 -3663 ((-1083 (-951 (-383 |#1|))) (-1083 |#1|))) (-15 -3663 ((-589 (-719 |#1| (-796 |#3|))) (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))))) -((-3607 (((-3 (-1168 (-383 (-523))) "failed") (-1168 |#1|) |#1|) 17)) (-1568 (((-108) (-1168 |#1|)) 11)) (-3978 (((-3 (-1168 (-523)) "failed") (-1168 |#1|)) 14))) -(((-1193 |#1|) (-10 -7 (-15 -1568 ((-108) (-1168 |#1|))) (-15 -3978 ((-3 (-1168 (-523)) "failed") (-1168 |#1|))) (-15 -3607 ((-3 (-1168 (-383 (-523))) "failed") (-1168 |#1|) |#1|))) (-585 (-523))) (T -1193)) -((-3607 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 (-523))) (-5 *2 (-1168 (-383 (-523)))) (-5 *1 (-1193 *4)))) (-3978 (*1 *2 *3) (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 (-523))) (-5 *2 (-1168 (-523))) (-5 *1 (-1193 *4)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-585 (-523))) (-5 *2 (-108)) (-5 *1 (-1193 *4))))) -(-10 -7 (-15 -1568 ((-108) (-1168 |#1|))) (-15 -3978 ((-3 (-1168 (-523)) "failed") (-1168 |#1|))) (-15 -3607 ((-3 (-1168 (-383 (-523))) "failed") (-1168 |#1|) |#1|))) -((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 11)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1703 (((-710)) 8)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) 43)) (-4032 (($) 36)) (-2023 (((-108) $) NIL)) (-4058 (((-3 $ "failed") $) 29)) (-2072 (((-852) $) 15)) (-3779 (((-1070) $) NIL)) (-2262 (($) 25 T CONST)) (-3878 (($ (-852)) 37)) (-2783 (((-1034) $) NIL)) (-3663 (((-523) $) 13)) (-1458 (((-794) $) 22) (($ (-523)) 19)) (-1621 (((-710)) 9)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 23 T CONST)) (-2767 (($) 24 T CONST)) (-3983 (((-108) $ $) 27)) (-4087 (($ $) 38) (($ $ $) 35)) (-4075 (($ $ $) 26)) (** (($ $ (-852)) NIL) (($ $ (-710)) 40)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 32) (($ $ $) 31))) -(((-1194 |#1|) (-13 (-158) (-344) (-564 (-523)) (-1063)) (-852)) (T -1194)) +((-1680 (((-108) $ $) 60)) (-2603 (((-108) $) NIL)) (-2634 (((-589 |#1|) $) 45)) (-4111 (($ $ (-710)) 39)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1599 (($ $ (-710)) 17 (|has| |#2| (-158))) (($ $ $) 18 (|has| |#2| (-158)))) (-4189 (($) NIL T CONST)) (-3166 (($ $ $) 63) (($ $ (-758 |#1|)) 49) (($ $ |#1|) 53)) (-1220 (((-3 (-758 |#1|) "failed") $) NIL)) (-3508 (((-758 |#1|) $) NIL)) (-1457 (($ $) 32)) (-1444 (((-3 $ "failed") $) NIL)) (-2767 (((-108) $) NIL)) (-1881 (($ $) NIL)) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-2836 (($ (-758 |#1|) |#2|) 31)) (-1965 (($ $) 33)) (-3682 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) 11)) (-3661 (((-758 |#1|) $) NIL)) (-3588 (((-758 |#1|) $) 34)) (-1345 (($ (-1 |#2| |#2|) $) NIL)) (-2278 (($ $ $) 62) (($ $ (-758 |#1|)) 51) (($ $ |#1|) 55)) (-3940 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1427 (((-758 |#1|) $) 28)) (-1437 ((|#2| $) 30)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2640 (((-710) $) 36)) (-1844 (((-108) $) 40)) (-2501 ((|#2| $) NIL)) (-1691 (((-794) $) NIL) (($ (-758 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-523)) NIL)) (-3819 (((-589 |#2|) $) NIL)) (-2084 ((|#2| $ (-758 |#1|)) NIL)) (-3474 ((|#2| $ $) 65) ((|#2| $ (-758 |#1|)) NIL)) (-3272 (((-710)) NIL)) (-2423 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-1879 (($) 12 T CONST)) (-1891 (($) 14 T CONST)) (-3461 (((-589 (-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3941 (((-108) $ $) 38)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 21)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 61) (($ |#2| (-758 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1182 |#1| |#2|) (-13 (-358 |#2| (-758 |#1|)) (-1188 |#1| |#2|)) (-786) (-973)) (T -1182)) +NIL +(-13 (-358 |#2| (-758 |#1|)) (-1188 |#1| |#2|)) +((-2313 ((|#3| |#3| (-710)) 23)) (-2922 ((|#3| |#3| (-710)) 28)) (-2630 ((|#3| |#3| |#3| (-710)) 29))) +(((-1183 |#1| |#2| |#3|) (-10 -7 (-15 -2922 (|#3| |#3| (-710))) (-15 -2313 (|#3| |#3| (-710))) (-15 -2630 (|#3| |#3| |#3| (-710)))) (-13 (-973) (-657 (-383 (-523)))) (-786) (-1188 |#2| |#1|)) (T -1183)) +((-2630 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) (-4 *5 (-786)) (-5 *1 (-1183 *4 *5 *2)) (-4 *2 (-1188 *5 *4)))) (-2313 (*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) (-4 *5 (-786)) (-5 *1 (-1183 *4 *5 *2)) (-4 *2 (-1188 *5 *4)))) (-2922 (*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) (-4 *5 (-786)) (-5 *1 (-1183 *4 *5 *2)) (-4 *2 (-1188 *5 *4))))) +(-10 -7 (-15 -2922 (|#3| |#3| (-710))) (-15 -2313 (|#3| |#3| (-710))) (-15 -2630 (|#3| |#3| |#3| (-710)))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2634 (((-589 |#1|) $) 40)) (-3405 (((-3 $ "failed") $ $) 19)) (-1599 (($ $ $) 43 (|has| |#2| (-158))) (($ $ (-710)) 42 (|has| |#2| (-158)))) (-4189 (($) 17 T CONST)) (-3166 (($ $ |#1|) 54) (($ $ (-758 |#1|)) 53) (($ $ $) 52)) (-1220 (((-3 (-758 |#1|) "failed") $) 64)) (-3508 (((-758 |#1|) $) 63)) (-1444 (((-3 $ "failed") $) 34)) (-2767 (((-108) $) 45)) (-1881 (($ $) 44)) (-2769 (((-108) $) 31)) (-2704 (((-108) $) 50)) (-2836 (($ (-758 |#1|) |#2|) 51)) (-1965 (($ $) 49)) (-3682 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) 60)) (-3661 (((-758 |#1|) $) 61)) (-1345 (($ (-1 |#2| |#2|) $) 41)) (-2278 (($ $ |#1|) 57) (($ $ (-758 |#1|)) 56) (($ $ $) 55)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-1844 (((-108) $) 47)) (-2501 ((|#2| $) 46)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#2|) 68) (($ (-758 |#1|)) 65) (($ |#1|) 48)) (-3474 ((|#2| $ (-758 |#1|)) 59) ((|#2| $ $) 58)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) +(((-1184 |#1| |#2|) (-129) (-786) (-973)) (T -1184)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-758 *3)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-2 (|:| |k| (-758 *3)) (|:| |c| *4))))) (-3474 (*1 *2 *1 *3) (-12 (-5 *3 (-758 *4)) (-4 *1 (-1184 *4 *2)) (-4 *4 (-786)) (-4 *2 (-973)))) (-3474 (*1 *2 *1 *1) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) (-2278 (*1 *1 *1 *2) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-2278 (*1 *1 *1 *2) (-12 (-5 *2 (-758 *3)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)))) (-2278 (*1 *1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-3166 (*1 *1 *1 *2) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-3166 (*1 *1 *1 *2) (-12 (-5 *2 (-758 *3)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)))) (-3166 (*1 *1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-2836 (*1 *1 *2 *3) (-12 (-5 *2 (-758 *4)) (-4 *4 (-786)) (-4 *1 (-1184 *4 *3)) (-4 *3 (-973)))) (-2704 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-108)))) (-1965 (*1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-1691 (*1 *1 *2) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-108)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) (-2767 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-108)))) (-1881 (*1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-1599 (*1 *1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)) (-4 *3 (-158)))) (-1599 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-4 *4 (-158)))) (-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)))) (-2634 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-589 *3))))) +(-13 (-973) (-1181 |t#2|) (-964 (-758 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3661 ((-758 |t#1|) $)) (-15 -3682 ((-2 (|:| |k| (-758 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3474 (|t#2| $ (-758 |t#1|))) (-15 -3474 (|t#2| $ $)) (-15 -2278 ($ $ |t#1|)) (-15 -2278 ($ $ (-758 |t#1|))) (-15 -2278 ($ $ $)) (-15 -3166 ($ $ |t#1|)) (-15 -3166 ($ $ (-758 |t#1|))) (-15 -3166 ($ $ $)) (-15 -2836 ($ (-758 |t#1|) |t#2|)) (-15 -2704 ((-108) $)) (-15 -1965 ($ $)) (-15 -1691 ($ |t#1|)) (-15 -1844 ((-108) $)) (-15 -2501 (|t#2| $)) (-15 -2767 ((-108) $)) (-15 -1881 ($ $)) (IF (|has| |t#2| (-158)) (PROGN (-15 -1599 ($ $ $)) (-15 -1599 ($ $ (-710)))) |%noBranch|) (-15 -1345 ($ (-1 |t#2| |t#2|) $)) (-15 -2634 ((-589 |t#1|) $)) (IF (|has| |t#2| (-6 -4241)) (-6 -4241) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-158)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-657 |#2|) |has| |#2| (-158)) ((-666) . T) ((-964 (-758 |#1|)) . T) ((-979 |#2|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1181 |#2|) . T)) +((-2803 (((-108) $) 14)) (-1747 (((-108) $) 13)) (-2009 (($ $) 18) (($ $ (-710)) 19))) +(((-1185 |#1| |#2|) (-10 -8 (-15 -2009 (|#1| |#1| (-710))) (-15 -2009 (|#1| |#1|)) (-15 -2803 ((-108) |#1|)) (-15 -1747 ((-108) |#1|))) (-1186 |#2|) (-339)) (T -1185)) +NIL +(-10 -8 (-15 -2009 (|#1| |#1| (-710))) (-15 -2009 (|#1| |#1|)) (-15 -2803 ((-108) |#1|)) (-15 -1747 ((-108) |#1|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2545 (((-2 (|:| -2345 $) (|:| -4235 $) (|:| |associate| $)) $) 41)) (-3306 (($ $) 40)) (-3174 (((-108) $) 38)) (-2803 (((-108) $) 94)) (-3019 (((-710)) 90)) (-3405 (((-3 $ "failed") $ $) 19)) (-3718 (($ $) 73)) (-4226 (((-394 $) $) 72)) (-2787 (((-108) $ $) 59)) (-4189 (($) 17 T CONST)) (-1220 (((-3 |#1| "failed") $) 101)) (-3508 ((|#1| $) 100)) (-4059 (($ $ $) 55)) (-1444 (((-3 $ "failed") $) 34)) (-4032 (($ $ $) 56)) (-4217 (((-2 (|:| -3474 (-589 $)) (|:| -1621 $)) (-589 $)) 51)) (-3610 (($ $ (-710)) 87 (-3172 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) 86 (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3049 (((-108) $) 71)) (-3437 (((-772 (-852)) $) 84 (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2769 (((-108) $) 31)) (-3496 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3278 (($ $ $) 46) (($ (-589 $)) 45)) (-2032 (((-1070) $) 9)) (-1396 (($ $) 70)) (-3026 (((-108) $) 93)) (-3951 (((-1034) $) 10)) (-3120 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3310 (($ $ $) 48) (($ (-589 $)) 47)) (-2424 (((-394 $) $) 74)) (-2151 (((-772 (-852))) 91)) (-2100 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1621 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4007 (((-3 $ "failed") $ $) 42)) (-1251 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-3413 (((-710) $) 58)) (-2083 (((-2 (|:| -3070 $) (|:| -3969 $)) $ $) 57)) (-2984 (((-3 (-710) "failed") $ $) 85 (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3314 (((-126)) 99)) (-2640 (((-772 (-852)) $) 92)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ |#1|) 102)) (-1942 (((-3 $ "failed") $) 83 (-3172 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3272 (((-710)) 29)) (-2801 (((-108) $ $) 39)) (-1747 (((-108) $) 95)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-2009 (($ $) 89 (|has| |#1| (-344))) (($ $ (-710)) 88 (|has| |#1| (-344)))) (-3941 (((-108) $ $) 6)) (-4074 (($ $ $) 64) (($ $ |#1|) 98)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) +(((-1186 |#1|) (-129) (-339)) (T -1186)) +((-1747 (*1 *2 *1) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-5 *2 (-108)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-5 *2 (-108)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-5 *2 (-108)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-5 *2 (-772 (-852))))) (-2151 (*1 *2) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-5 *2 (-772 (-852))))) (-3019 (*1 *2) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-5 *2 (-710)))) (-2009 (*1 *1 *1) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-339)) (-4 *2 (-344)))) (-2009 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-4 *3 (-344))))) +(-13 (-339) (-964 |t#1|) (-1176 |t#1|) (-10 -8 (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-378)) |%noBranch|) (-15 -1747 ((-108) $)) (-15 -2803 ((-108) $)) (-15 -3026 ((-108) $)) (-15 -2640 ((-772 (-852)) $)) (-15 -2151 ((-772 (-852)))) (-15 -3019 ((-710))) (IF (|has| |t#1| (-344)) (PROGN (-6 (-378)) (-15 -2009 ($ $)) (-15 -2009 ($ $ (-710)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3172 (|has| |#1| (-344)) (|has| |#1| (-134))) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-378) -3172 (|has| |#1| (-344)) (|has| |#1| (-134))) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-964 |#1|) . T) ((-979 #0#) . T) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1127) . T) ((-1176 |#1|) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2634 (((-589 |#1|) $) 86)) (-4111 (($ $ (-710)) 89)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1599 (($ $ $) NIL (|has| |#2| (-158))) (($ $ (-710)) NIL (|has| |#2| (-158)))) (-4189 (($) NIL T CONST)) (-3166 (($ $ |#1|) NIL) (($ $ (-758 |#1|)) NIL) (($ $ $) NIL)) (-1220 (((-3 (-758 |#1|) "failed") $) NIL) (((-3 (-824 |#1|) "failed") $) NIL)) (-3508 (((-758 |#1|) $) NIL) (((-824 |#1|) $) NIL)) (-1457 (($ $) 88)) (-1444 (((-3 $ "failed") $) NIL)) (-2767 (((-108) $) 77)) (-1881 (($ $) 81)) (-3584 (($ $ $ (-710)) 90)) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-2836 (($ (-758 |#1|) |#2|) NIL) (($ (-824 |#1|) |#2|) 26)) (-1965 (($ $) 103)) (-3682 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3661 (((-758 |#1|) $) NIL)) (-3588 (((-758 |#1|) $) NIL)) (-1345 (($ (-1 |#2| |#2|) $) NIL)) (-2278 (($ $ |#1|) NIL) (($ $ (-758 |#1|)) NIL) (($ $ $) NIL)) (-2313 (($ $ (-710)) 97 (|has| |#2| (-657 (-383 (-523)))))) (-3940 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1427 (((-824 |#1|) $) 70)) (-1437 ((|#2| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-2922 (($ $ (-710)) 94 (|has| |#2| (-657 (-383 (-523)))))) (-2640 (((-710) $) 87)) (-1844 (((-108) $) 71)) (-2501 ((|#2| $) 75)) (-1691 (((-794) $) 57) (($ (-523)) NIL) (($ |#2|) 51) (($ (-758 |#1|)) NIL) (($ |#1|) 59) (($ (-824 |#1|)) NIL) (($ (-607 |#1| |#2|)) 43) (((-1182 |#1| |#2|) $) 64) (((-1191 |#1| |#2|) $) 69)) (-3819 (((-589 |#2|) $) NIL)) (-2084 ((|#2| $ (-824 |#1|)) NIL)) (-3474 ((|#2| $ (-758 |#1|)) NIL) ((|#2| $ $) NIL)) (-3272 (((-710)) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 21 T CONST)) (-1891 (($) 25 T CONST)) (-3461 (((-589 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3042 (((-3 (-607 |#1| |#2|) "failed") $) 102)) (-3941 (((-108) $ $) 65)) (-4060 (($ $) 96) (($ $ $) 95)) (-4045 (($ $ $) 20)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-824 |#1|)) NIL))) +(((-1187 |#1| |#2|) (-13 (-1188 |#1| |#2|) (-358 |#2| (-824 |#1|)) (-10 -8 (-15 -1691 ($ (-607 |#1| |#2|))) (-15 -1691 ((-1182 |#1| |#2|) $)) (-15 -1691 ((-1191 |#1| |#2|) $)) (-15 -3042 ((-3 (-607 |#1| |#2|) "failed") $)) (-15 -3584 ($ $ $ (-710))) (IF (|has| |#2| (-657 (-383 (-523)))) (PROGN (-15 -2922 ($ $ (-710))) (-15 -2313 ($ $ (-710)))) |%noBranch|))) (-786) (-158)) (T -1187)) +((-1691 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *1 (-1187 *3 *4)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1182 *3 *4)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1191 *3 *4)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-3042 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-3584 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-2922 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-1187 *3 *4)) (-4 *4 (-657 (-383 (-523)))) (-4 *3 (-786)) (-4 *4 (-158)))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-1187 *3 *4)) (-4 *4 (-657 (-383 (-523)))) (-4 *3 (-786)) (-4 *4 (-158))))) +(-13 (-1188 |#1| |#2|) (-358 |#2| (-824 |#1|)) (-10 -8 (-15 -1691 ($ (-607 |#1| |#2|))) (-15 -1691 ((-1182 |#1| |#2|) $)) (-15 -1691 ((-1191 |#1| |#2|) $)) (-15 -3042 ((-3 (-607 |#1| |#2|) "failed") $)) (-15 -3584 ($ $ $ (-710))) (IF (|has| |#2| (-657 (-383 (-523)))) (PROGN (-15 -2922 ($ $ (-710))) (-15 -2313 ($ $ (-710)))) |%noBranch|))) +((-1680 (((-108) $ $) 7)) (-2603 (((-108) $) 16)) (-2634 (((-589 |#1|) $) 40)) (-4111 (($ $ (-710)) 73)) (-3405 (((-3 $ "failed") $ $) 19)) (-1599 (($ $ $) 43 (|has| |#2| (-158))) (($ $ (-710)) 42 (|has| |#2| (-158)))) (-4189 (($) 17 T CONST)) (-3166 (($ $ |#1|) 54) (($ $ (-758 |#1|)) 53) (($ $ $) 52)) (-1220 (((-3 (-758 |#1|) "failed") $) 64)) (-3508 (((-758 |#1|) $) 63)) (-1444 (((-3 $ "failed") $) 34)) (-2767 (((-108) $) 45)) (-1881 (($ $) 44)) (-2769 (((-108) $) 31)) (-2704 (((-108) $) 50)) (-2836 (($ (-758 |#1|) |#2|) 51)) (-1965 (($ $) 49)) (-3682 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) 60)) (-3661 (((-758 |#1|) $) 61)) (-3588 (((-758 |#1|) $) 75)) (-1345 (($ (-1 |#2| |#2|) $) 41)) (-2278 (($ $ |#1|) 57) (($ $ (-758 |#1|)) 56) (($ $ $) 55)) (-2032 (((-1070) $) 9)) (-3951 (((-1034) $) 10)) (-2640 (((-710) $) 74)) (-1844 (((-108) $) 47)) (-2501 ((|#2| $) 46)) (-1691 (((-794) $) 11) (($ (-523)) 28) (($ |#2|) 68) (($ (-758 |#1|)) 65) (($ |#1|) 48)) (-3474 ((|#2| $ (-758 |#1|)) 59) ((|#2| $ $) 58)) (-3272 (((-710)) 29)) (-2423 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-1879 (($) 18 T CONST)) (-1891 (($) 30 T CONST)) (-3941 (((-108) $ $) 6)) (-4060 (($ $) 22) (($ $ $) 21)) (-4045 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) +(((-1188 |#1| |#2|) (-129) (-786) (-973)) (T -1188)) +((-3588 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-758 *3)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-710)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973))))) +(-13 (-1184 |t#1| |t#2|) (-10 -8 (-15 -3588 ((-758 |t#1|) $)) (-15 -2640 ((-710) $)) (-15 -4111 ($ $ (-710))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-158)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-657 |#2|) |has| |#2| (-158)) ((-666) . T) ((-964 (-758 |#1|)) . T) ((-979 |#2|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1181 |#2|) . T) ((-1184 |#1| |#2|) . T)) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-2634 (((-589 (-1087)) $) NIL)) (-1904 (($ (-1182 (-1087) |#1|)) NIL)) (-4111 (($ $ (-710)) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1599 (($ $ $) NIL (|has| |#1| (-158))) (($ $ (-710)) NIL (|has| |#1| (-158)))) (-4189 (($) NIL T CONST)) (-3166 (($ $ (-1087)) NIL) (($ $ (-758 (-1087))) NIL) (($ $ $) NIL)) (-1220 (((-3 (-758 (-1087)) "failed") $) NIL)) (-3508 (((-758 (-1087)) $) NIL)) (-1444 (((-3 $ "failed") $) NIL)) (-2767 (((-108) $) NIL)) (-1881 (($ $) NIL)) (-2769 (((-108) $) NIL)) (-2704 (((-108) $) NIL)) (-2836 (($ (-758 (-1087)) |#1|) NIL)) (-1965 (($ $) NIL)) (-3682 (((-2 (|:| |k| (-758 (-1087))) (|:| |c| |#1|)) $) NIL)) (-3661 (((-758 (-1087)) $) NIL)) (-3588 (((-758 (-1087)) $) NIL)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-2278 (($ $ (-1087)) NIL) (($ $ (-758 (-1087))) NIL) (($ $ $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1870 (((-1182 (-1087) |#1|) $) NIL)) (-2640 (((-710) $) NIL)) (-1844 (((-108) $) NIL)) (-2501 ((|#1| $) NIL)) (-1691 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-758 (-1087))) NIL) (($ (-1087)) NIL)) (-3474 ((|#1| $ (-758 (-1087))) NIL) ((|#1| $ $) NIL)) (-3272 (((-710)) NIL)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) NIL T CONST)) (-1739 (((-589 (-2 (|:| |k| (-1087)) (|:| |c| $))) $) NIL)) (-1891 (($) NIL T CONST)) (-3941 (((-108) $ $) NIL)) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1087) $) NIL))) +(((-1189 |#1|) (-13 (-1188 (-1087) |#1|) (-10 -8 (-15 -1870 ((-1182 (-1087) |#1|) $)) (-15 -1904 ($ (-1182 (-1087) |#1|))) (-15 -1739 ((-589 (-2 (|:| |k| (-1087)) (|:| |c| $))) $)))) (-973)) (T -1189)) +((-1870 (*1 *2 *1) (-12 (-5 *2 (-1182 (-1087) *3)) (-5 *1 (-1189 *3)) (-4 *3 (-973)))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1182 (-1087) *3)) (-4 *3 (-973)) (-5 *1 (-1189 *3)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |k| (-1087)) (|:| |c| (-1189 *3))))) (-5 *1 (-1189 *3)) (-4 *3 (-973))))) +(-13 (-1188 (-1087) |#1|) (-10 -8 (-15 -1870 ((-1182 (-1087) |#1|) $)) (-15 -1904 ($ (-1182 (-1087) |#1|))) (-15 -1739 ((-589 (-2 (|:| |k| (-1087)) (|:| |c| $))) $)))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) NIL)) (-3405 (((-3 $ "failed") $ $) NIL)) (-4189 (($) NIL T CONST)) (-1220 (((-3 |#2| "failed") $) NIL)) (-3508 ((|#2| $) NIL)) (-1457 (($ $) NIL)) (-1444 (((-3 $ "failed") $) 36)) (-2767 (((-108) $) 30)) (-1881 (($ $) 32)) (-2769 (((-108) $) NIL)) (-1789 (((-710) $) NIL)) (-3560 (((-589 $) $) NIL)) (-2704 (((-108) $) NIL)) (-2836 (($ |#2| |#1|) NIL)) (-3661 ((|#2| $) 19)) (-3588 ((|#2| $) 16)) (-1345 (($ (-1 |#1| |#1|) $) NIL)) (-3940 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1427 ((|#2| $) NIL)) (-1437 ((|#1| $) NIL)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1844 (((-108) $) 27)) (-2501 ((|#1| $) 28)) (-1691 (((-794) $) 55) (($ (-523)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3819 (((-589 |#1|) $) NIL)) (-2084 ((|#1| $ |#2|) NIL)) (-3474 ((|#1| $ |#2|) 24)) (-3272 (((-710)) 14)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 25 T CONST)) (-1891 (($) 11 T CONST)) (-3461 (((-589 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3941 (((-108) $ $) 26)) (-4074 (($ $ |#1|) 57 (|has| |#1| (-339)))) (-4060 (($ $) NIL) (($ $ $) NIL)) (-4045 (($ $ $) 44)) (** (($ $ (-852)) NIL) (($ $ (-710)) 46)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2810 (((-710) $) 15))) +(((-1190 |#1| |#2|) (-13 (-973) (-1181 |#1|) (-358 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2810 ((-710) $)) (-15 -1691 ($ |#2|)) (-15 -3588 (|#2| $)) (-15 -3661 (|#2| $)) (-15 -1457 ($ $)) (-15 -3474 (|#1| $ |#2|)) (-15 -1844 ((-108) $)) (-15 -2501 (|#1| $)) (-15 -2767 ((-108) $)) (-15 -1881 ($ $)) (-15 -1345 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-339)) (-15 -4074 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4241)) (-6 -4241) |%noBranch|) (IF (|has| |#1| (-6 -4245)) (-6 -4245) |%noBranch|) (IF (|has| |#1| (-6 -4246)) (-6 -4246) |%noBranch|))) (-973) (-782)) (T -1190)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1190 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782)))) (-1457 (*1 *1 *1) (-12 (-5 *1 (-1190 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782)))) (-1345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-1190 *3 *4)) (-4 *4 (-782)))) (-1691 (*1 *1 *2) (-12 (-5 *1 (-1190 *3 *2)) (-4 *3 (-973)) (-4 *2 (-782)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-973)) (-4 *4 (-782)))) (-3588 (*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-1190 *3 *2)) (-4 *3 (-973)))) (-3661 (*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-1190 *3 *2)) (-4 *3 (-973)))) (-3474 (*1 *2 *1 *3) (-12 (-4 *2 (-973)) (-5 *1 (-1190 *2 *3)) (-4 *3 (-782)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-973)) (-4 *4 (-782)))) (-2501 (*1 *2 *1) (-12 (-4 *2 (-973)) (-5 *1 (-1190 *2 *3)) (-4 *3 (-782)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-973)) (-4 *4 (-782)))) (-1881 (*1 *1 *1) (-12 (-5 *1 (-1190 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782)))) (-4074 (*1 *1 *1 *2) (-12 (-5 *1 (-1190 *2 *3)) (-4 *2 (-339)) (-4 *2 (-973)) (-4 *3 (-782))))) +(-13 (-973) (-1181 |#1|) (-358 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2810 ((-710) $)) (-15 -1691 ($ |#2|)) (-15 -3588 (|#2| $)) (-15 -3661 (|#2| $)) (-15 -1457 ($ $)) (-15 -3474 (|#1| $ |#2|)) (-15 -1844 ((-108) $)) (-15 -2501 (|#1| $)) (-15 -2767 ((-108) $)) (-15 -1881 ($ $)) (-15 -1345 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-339)) (-15 -4074 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4241)) (-6 -4241) |%noBranch|) (IF (|has| |#1| (-6 -4245)) (-6 -4245) |%noBranch|) (IF (|has| |#1| (-6 -4246)) (-6 -4246) |%noBranch|))) +((-1680 (((-108) $ $) 26)) (-2603 (((-108) $) NIL)) (-2634 (((-589 |#1|) $) 120)) (-1904 (($ (-1182 |#1| |#2|)) 44)) (-4111 (($ $ (-710)) 32)) (-3405 (((-3 $ "failed") $ $) NIL)) (-1599 (($ $ $) 48 (|has| |#2| (-158))) (($ $ (-710)) 46 (|has| |#2| (-158)))) (-4189 (($) NIL T CONST)) (-3166 (($ $ |#1|) 102) (($ $ (-758 |#1|)) 103) (($ $ $) 25)) (-1220 (((-3 (-758 |#1|) "failed") $) NIL)) (-3508 (((-758 |#1|) $) NIL)) (-1444 (((-3 $ "failed") $) 110)) (-2767 (((-108) $) 105)) (-1881 (($ $) 106)) (-2769 (((-108) $) NIL)) (-2704 (((-108) $) NIL)) (-2836 (($ (-758 |#1|) |#2|) 19)) (-1965 (($ $) NIL)) (-3682 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3661 (((-758 |#1|) $) 111)) (-3588 (((-758 |#1|) $) 114)) (-1345 (($ (-1 |#2| |#2|) $) 119)) (-2278 (($ $ |#1|) 100) (($ $ (-758 |#1|)) 101) (($ $ $) 56)) (-2032 (((-1070) $) NIL)) (-3951 (((-1034) $) NIL)) (-1870 (((-1182 |#1| |#2|) $) 84)) (-2640 (((-710) $) 117)) (-1844 (((-108) $) 70)) (-2501 ((|#2| $) 28)) (-1691 (((-794) $) 63) (($ (-523)) 77) (($ |#2|) 74) (($ (-758 |#1|)) 17) (($ |#1|) 73)) (-3474 ((|#2| $ (-758 |#1|)) 104) ((|#2| $ $) 27)) (-3272 (((-710)) 108)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 14 T CONST)) (-1739 (((-589 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-1891 (($) 29 T CONST)) (-3941 (((-108) $ $) 13)) (-4060 (($ $) 88) (($ $ $) 91)) (-4045 (($ $ $) 55)) (** (($ $ (-852)) NIL) (($ $ (-710)) 49)) (* (($ (-852) $) NIL) (($ (-710) $) 47) (($ (-523) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1191 |#1| |#2|) (-13 (-1188 |#1| |#2|) (-10 -8 (-15 -1870 ((-1182 |#1| |#2|) $)) (-15 -1904 ($ (-1182 |#1| |#2|))) (-15 -1739 ((-589 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-786) (-973)) (T -1191)) +((-1870 (*1 *2 *1) (-12 (-5 *2 (-1182 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1182 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *1 (-1191 *3 *4)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |k| *3) (|:| |c| (-1191 *3 *4))))) (-5 *1 (-1191 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973))))) +(-13 (-1188 |#1| |#2|) (-10 -8 (-15 -1870 ((-1182 |#1| |#2|) $)) (-15 -1904 ($ (-1182 |#1| |#2|))) (-15 -1739 ((-589 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-1343 (((-589 (-1068 |#1|)) (-1 (-589 (-1068 |#1|)) (-589 (-1068 |#1|))) (-523)) 15) (((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|))) 11))) +(((-1192 |#1|) (-10 -7 (-15 -1343 ((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|)))) (-15 -1343 ((-589 (-1068 |#1|)) (-1 (-589 (-1068 |#1|)) (-589 (-1068 |#1|))) (-523)))) (-1123)) (T -1192)) +((-1343 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-589 (-1068 *5)) (-589 (-1068 *5)))) (-5 *4 (-523)) (-5 *2 (-589 (-1068 *5))) (-5 *1 (-1192 *5)) (-4 *5 (-1123)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1192 *4)) (-4 *4 (-1123))))) +(-10 -7 (-15 -1343 ((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|)))) (-15 -1343 ((-589 (-1068 |#1|)) (-1 (-589 (-1068 |#1|)) (-589 (-1068 |#1|))) (-523)))) +((-3318 (((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|))) 146) (((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108)) 145) (((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108)) 144) (((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108) (-108)) 143) (((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-970 |#1| |#2|)) 128)) (-3029 (((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|))) 71) (((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108)) 70) (((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108) (-108)) 69)) (-4226 (((-589 (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))) (-970 |#1| |#2|)) 60)) (-3441 (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|))) 113) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108)) 112) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108)) 111) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108) (-108)) 110) (((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|)) 105)) (-3515 (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|))) 118) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108)) 117) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108)) 116) (((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|)) 115)) (-1400 (((-589 (-719 |#1| (-796 |#3|))) (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))) 97) (((-1083 (-951 (-383 |#1|))) (-1083 |#1|)) 88) (((-883 (-951 (-383 |#1|))) (-719 |#1| (-796 |#3|))) 95) (((-883 (-951 (-383 |#1|))) (-883 |#1|)) 93) (((-719 |#1| (-796 |#3|)) (-719 |#1| (-796 |#2|))) 33))) +(((-1193 |#1| |#2| |#3|) (-10 -7 (-15 -3029 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108) (-108))) (-15 -3029 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108))) (-15 -3029 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)))) (-15 -3318 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-970 |#1| |#2|))) (-15 -3318 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108) (-108))) (-15 -3318 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -3318 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108))) (-15 -3318 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -3441 ((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|))) (-15 -3441 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108) (-108))) (-15 -3441 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -3441 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108))) (-15 -3441 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)))) (-15 -3515 ((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|))) (-15 -3515 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -3515 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108))) (-15 -3515 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)))) (-15 -4226 ((-589 (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))) (-970 |#1| |#2|))) (-15 -1400 ((-719 |#1| (-796 |#3|)) (-719 |#1| (-796 |#2|)))) (-15 -1400 ((-883 (-951 (-383 |#1|))) (-883 |#1|))) (-15 -1400 ((-883 (-951 (-383 |#1|))) (-719 |#1| (-796 |#3|)))) (-15 -1400 ((-1083 (-951 (-383 |#1|))) (-1083 |#1|))) (-15 -1400 ((-589 (-719 |#1| (-796 |#3|))) (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))))) (-13 (-784) (-284) (-136) (-949)) (-589 (-1087)) (-589 (-1087))) (T -1193)) +((-1400 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 (-495 (-796 *6)) (-796 *6) (-719 *4 (-796 *6)))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-719 *4 (-796 *6)))) (-5 *1 (-1193 *4 *5 *6)) (-14 *5 (-589 (-1087))))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-1083 (-951 (-383 *4)))) (-5 *1 (-1193 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-719 *4 (-796 *6))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *6 (-589 (-1087))) (-5 *2 (-883 (-951 (-383 *4)))) (-5 *1 (-1193 *4 *5 *6)) (-14 *5 (-589 (-1087))))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-883 (-951 (-383 *4)))) (-5 *1 (-1193 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-719 *4 (-796 *5))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-719 *4 (-796 *6))) (-5 *1 (-1193 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-1058 *4 (-495 (-796 *6)) (-796 *6) (-719 *4 (-796 *6))))) (-5 *1 (-1193 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1193 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-3515 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1193 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-3515 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1193 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1193 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1193 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-3441 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1193 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-3441 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1193 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-3441 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1193 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1193 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-3318 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-2 (|:| -3558 (-1083 *4)) (|:| -2906 (-589 (-883 *4)))))) (-5 *1 (-1193 *4 *5 *6)) (-5 *3 (-589 (-883 *4))) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-3318 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-2 (|:| -3558 (-1083 *5)) (|:| -2906 (-589 (-883 *5)))))) (-5 *1 (-1193 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-3318 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-2 (|:| -3558 (-1083 *5)) (|:| -2906 (-589 (-883 *5)))))) (-5 *1 (-1193 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-3318 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-2 (|:| -3558 (-1083 *5)) (|:| -2906 (-589 (-883 *5)))))) (-5 *1 (-1193 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-2 (|:| -3558 (-1083 *4)) (|:| -2906 (-589 (-883 *4)))))) (-5 *1 (-1193 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-970 *4 *5))) (-5 *1 (-1193 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-3029 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-1193 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-3029 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-1193 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087)))))) +(-10 -7 (-15 -3029 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108) (-108))) (-15 -3029 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108))) (-15 -3029 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)))) (-15 -3318 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-970 |#1| |#2|))) (-15 -3318 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108) (-108))) (-15 -3318 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -3318 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108))) (-15 -3318 ((-589 (-2 (|:| -3558 (-1083 |#1|)) (|:| -2906 (-589 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -3441 ((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|))) (-15 -3441 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108) (-108))) (-15 -3441 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -3441 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108))) (-15 -3441 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)))) (-15 -3515 ((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|))) (-15 -3515 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -3515 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108))) (-15 -3515 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)))) (-15 -4226 ((-589 (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))) (-970 |#1| |#2|))) (-15 -1400 ((-719 |#1| (-796 |#3|)) (-719 |#1| (-796 |#2|)))) (-15 -1400 ((-883 (-951 (-383 |#1|))) (-883 |#1|))) (-15 -1400 ((-883 (-951 (-383 |#1|))) (-719 |#1| (-796 |#3|)))) (-15 -1400 ((-1083 (-951 (-383 |#1|))) (-1083 |#1|))) (-15 -1400 ((-589 (-719 |#1| (-796 |#3|))) (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))))) +((-4153 (((-3 (-1169 (-383 (-523))) "failed") (-1169 |#1|) |#1|) 17)) (-3982 (((-108) (-1169 |#1|)) 11)) (-3223 (((-3 (-1169 (-523)) "failed") (-1169 |#1|)) 14))) +(((-1194 |#1|) (-10 -7 (-15 -3982 ((-108) (-1169 |#1|))) (-15 -3223 ((-3 (-1169 (-523)) "failed") (-1169 |#1|))) (-15 -4153 ((-3 (-1169 (-383 (-523))) "failed") (-1169 |#1|) |#1|))) (-585 (-523))) (T -1194)) +((-4153 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-585 (-523))) (-5 *2 (-1169 (-383 (-523)))) (-5 *1 (-1194 *4)))) (-3223 (*1 *2 *3) (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-585 (-523))) (-5 *2 (-1169 (-523))) (-5 *1 (-1194 *4)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-585 (-523))) (-5 *2 (-108)) (-5 *1 (-1194 *4))))) +(-10 -7 (-15 -3982 ((-108) (-1169 |#1|))) (-15 -3223 ((-3 (-1169 (-523)) "failed") (-1169 |#1|))) (-15 -4153 ((-3 (-1169 (-383 (-523))) "failed") (-1169 |#1|) |#1|))) +((-1680 (((-108) $ $) NIL)) (-2603 (((-108) $) 11)) (-3405 (((-3 $ "failed") $ $) NIL)) (-2395 (((-710)) 8)) (-4189 (($) NIL T CONST)) (-1444 (((-3 $ "failed") $) 43)) (-1631 (($) 36)) (-2769 (((-108) $) NIL)) (-2738 (((-3 $ "failed") $) 29)) (-2060 (((-852) $) 15)) (-2032 (((-1070) $) NIL)) (-2773 (($) 25 T CONST)) (-4013 (($ (-852)) 37)) (-3951 (((-1034) $) NIL)) (-1400 (((-523) $) 13)) (-1691 (((-794) $) 22) (($ (-523)) 19)) (-3272 (((-710)) 9)) (-2423 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-1879 (($) 23 T CONST)) (-1891 (($) 24 T CONST)) (-3941 (((-108) $ $) 27)) (-4060 (($ $) 38) (($ $ $) 35)) (-4045 (($ $ $) 26)) (** (($ $ (-852)) NIL) (($ $ (-710)) 40)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 32) (($ $ $) 31))) +(((-1195 |#1|) (-13 (-158) (-344) (-564 (-523)) (-1063)) (-852)) (T -1195)) NIL (-13 (-158) (-344) (-564 (-523)) (-1063)) NIL @@ -4905,4 +4909,4 @@ NIL NIL NIL NIL -((-3 3139311 3139316 3139321 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3139296 3139301 3139306 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3139281 3139286 3139291 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3139266 3139271 3139276 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1194 3138396 3139141 3139218 "ZMOD" 3139223 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1193 3137506 3137670 3137879 "ZLINDEP" 3138228 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1192 3126910 3128655 3130607 "ZDSOLVE" 3135655 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1191 3126156 3126297 3126486 "YSTREAM" 3126756 NIL YSTREAM (NIL T) -7 NIL NIL) (-1190 3123924 3125461 3125664 "XRPOLY" 3125999 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1189 3120386 3121715 3122297 "XPR" 3123388 NIL XPR (NIL T T) -8 NIL NIL) (-1188 3118100 3119721 3119924 "XPOLY" 3120217 NIL XPOLY (NIL T) -8 NIL NIL) (-1187 3115914 3117292 3117346 "XPOLYC" 3117631 NIL XPOLYC (NIL T T) -9 NIL 3117744) (-1186 3112286 3114431 3114819 "XPBWPOLY" 3115572 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1185 3108214 3110527 3110569 "XF" 3111190 NIL XF (NIL T) -9 NIL 3111589) (-1184 3107835 3107923 3108092 "XF-" 3108097 NIL XF- (NIL T T) -8 NIL NIL) (-1183 3103215 3104514 3104568 "XFALG" 3106716 NIL XFALG (NIL T T) -9 NIL 3107503) (-1182 3102352 3102456 3102660 "XEXPPKG" 3103107 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1181 3100450 3102203 3102298 "XDPOLY" 3102303 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1180 3099329 3099939 3099981 "XALG" 3100043 NIL XALG (NIL T) -9 NIL 3100162) (-1179 3092805 3097313 3097806 "WUTSET" 3098921 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1178 3090617 3091424 3091775 "WP" 3092587 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1177 3089503 3089701 3089996 "WFFINTBS" 3090414 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1176 3087407 3087834 3088296 "WEIER" 3089075 NIL WEIER (NIL T) -7 NIL NIL) (-1175 3086556 3086980 3087022 "VSPACE" 3087158 NIL VSPACE (NIL T) -9 NIL 3087232) (-1174 3086394 3086421 3086512 "VSPACE-" 3086517 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1173 3086140 3086183 3086254 "VOID" 3086345 T VOID (NIL) -8 NIL NIL) (-1172 3084276 3084635 3085041 "VIEW" 3085756 T VIEW (NIL) -7 NIL NIL) (-1171 3080701 3081339 3082076 "VIEWDEF" 3083561 T VIEWDEF (NIL) -7 NIL NIL) (-1170 3070040 3072249 3074422 "VIEW3D" 3078550 T VIEW3D (NIL) -8 NIL NIL) (-1169 3062322 3063951 3065530 "VIEW2D" 3068483 T VIEW2D (NIL) -8 NIL NIL) (-1168 3057731 3062092 3062184 "VECTOR" 3062265 NIL VECTOR (NIL T) -8 NIL NIL) (-1167 3056308 3056567 3056885 "VECTOR2" 3057461 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1166 3049848 3054100 3054143 "VECTCAT" 3055131 NIL VECTCAT (NIL T) -9 NIL 3055715) (-1165 3048862 3049116 3049506 "VECTCAT-" 3049511 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1164 3048343 3048513 3048633 "VARIABLE" 3048777 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1163 3048276 3048281 3048311 "UTYPE" 3048316 T UTYPE (NIL) -9 NIL NIL) (-1162 3047111 3047265 3047526 "UTSODETL" 3048102 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1161 3044551 3045011 3045535 "UTSODE" 3046652 NIL UTSODE (NIL T T) -7 NIL NIL) (-1160 3036395 3042191 3042679 "UTS" 3044120 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1159 3027740 3033105 3033147 "UTSCAT" 3034248 NIL UTSCAT (NIL T) -9 NIL 3035005) (-1158 3025096 3025811 3026799 "UTSCAT-" 3026804 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1157 3024727 3024770 3024901 "UTS2" 3025047 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1156 3019003 3021568 3021611 "URAGG" 3023681 NIL URAGG (NIL T) -9 NIL 3024403) (-1155 3015942 3016805 3017928 "URAGG-" 3017933 NIL URAGG- (NIL T T) -8 NIL NIL) (-1154 3011628 3014559 3015030 "UPXSSING" 3015606 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1153 3003519 3010749 3011029 "UPXS" 3011405 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1152 2996548 3003424 3003495 "UPXSCONS" 3003500 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1151 2986837 2993667 2993728 "UPXSCCA" 2994377 NIL UPXSCCA (NIL T T) -9 NIL 2994618) (-1150 2986476 2986561 2986734 "UPXSCCA-" 2986739 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1149 2976687 2983290 2983332 "UPXSCAT" 2983975 NIL UPXSCAT (NIL T) -9 NIL 2984583) (-1148 2976121 2976200 2976377 "UPXS2" 2976602 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1147 2974775 2975028 2975379 "UPSQFREE" 2975864 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1146 2968666 2971721 2971775 "UPSCAT" 2972924 NIL UPSCAT (NIL T T) -9 NIL 2973698) (-1145 2967871 2968078 2968404 "UPSCAT-" 2968409 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1144 2953957 2961994 2962036 "UPOLYC" 2964114 NIL UPOLYC (NIL T) -9 NIL 2965335) (-1143 2945287 2947712 2950858 "UPOLYC-" 2950863 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1142 2944918 2944961 2945092 "UPOLYC2" 2945238 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1141 2936337 2944487 2944624 "UP" 2944828 NIL UP (NIL NIL T) -8 NIL NIL) (-1140 2935680 2935787 2935950 "UPMP" 2936226 NIL UPMP (NIL T T) -7 NIL NIL) (-1139 2935233 2935314 2935453 "UPDIVP" 2935593 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1138 2933801 2934050 2934366 "UPDECOMP" 2934982 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1137 2933036 2933148 2933333 "UPCDEN" 2933685 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1136 2932559 2932628 2932775 "UP2" 2932961 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1135 2931076 2931763 2932040 "UNISEG" 2932317 NIL UNISEG (NIL T) -8 NIL NIL) (-1134 2930291 2930418 2930623 "UNISEG2" 2930919 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1133 2929351 2929531 2929757 "UNIFACT" 2930107 NIL UNIFACT (NIL T) -7 NIL NIL) (-1132 2913247 2928532 2928782 "ULS" 2929158 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1131 2901212 2913152 2913223 "ULSCONS" 2913228 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1130 2883962 2895975 2896036 "ULSCCAT" 2896748 NIL ULSCCAT (NIL T T) -9 NIL 2897044) (-1129 2883013 2883258 2883645 "ULSCCAT-" 2883650 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1128 2873003 2879520 2879562 "ULSCAT" 2880418 NIL ULSCAT (NIL T) -9 NIL 2881148) (-1127 2872437 2872516 2872693 "ULS2" 2872918 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1126 2870835 2871802 2871832 "UFD" 2872044 T UFD (NIL) -9 NIL 2872158) (-1125 2870629 2870675 2870770 "UFD-" 2870775 NIL UFD- (NIL T) -8 NIL NIL) (-1124 2869711 2869894 2870110 "UDVO" 2870435 T UDVO (NIL) -7 NIL NIL) (-1123 2867527 2867936 2868407 "UDPO" 2869275 NIL UDPO (NIL T) -7 NIL NIL) (-1122 2867460 2867465 2867495 "TYPE" 2867500 T TYPE (NIL) -9 NIL NIL) (-1121 2866431 2866633 2866873 "TWOFACT" 2867254 NIL TWOFACT (NIL T) -7 NIL NIL) (-1120 2865369 2865706 2865969 "TUPLE" 2866203 NIL TUPLE (NIL T) -8 NIL NIL) (-1119 2863060 2863579 2864118 "TUBETOOL" 2864852 T TUBETOOL (NIL) -7 NIL NIL) (-1118 2861909 2862114 2862355 "TUBE" 2862853 NIL TUBE (NIL T) -8 NIL NIL) (-1117 2856633 2860887 2861169 "TS" 2861661 NIL TS (NIL T) -8 NIL NIL) (-1116 2845337 2849429 2849525 "TSETCAT" 2854759 NIL TSETCAT (NIL T T T T) -9 NIL 2856290) (-1115 2840072 2841670 2843560 "TSETCAT-" 2843565 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1114 2834335 2835181 2836123 "TRMANIP" 2839208 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1113 2833776 2833839 2834002 "TRIMAT" 2834267 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1112 2831582 2831819 2832182 "TRIGMNIP" 2833525 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1111 2831102 2831215 2831245 "TRIGCAT" 2831458 T TRIGCAT (NIL) -9 NIL NIL) (-1110 2830771 2830850 2830991 "TRIGCAT-" 2830996 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1109 2827670 2829631 2829911 "TREE" 2830526 NIL TREE (NIL T) -8 NIL NIL) (-1108 2826944 2827472 2827502 "TRANFUN" 2827537 T TRANFUN (NIL) -9 NIL 2827603) (-1107 2826223 2826414 2826694 "TRANFUN-" 2826699 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1106 2826027 2826059 2826120 "TOPSP" 2826184 T TOPSP (NIL) -7 NIL NIL) (-1105 2825379 2825494 2825647 "TOOLSIGN" 2825908 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1104 2824040 2824556 2824795 "TEXTFILE" 2825162 T TEXTFILE (NIL) -8 NIL NIL) (-1103 2821905 2822419 2822857 "TEX" 2823624 T TEX (NIL) -8 NIL NIL) (-1102 2821686 2821717 2821789 "TEX1" 2821868 NIL TEX1 (NIL T) -7 NIL NIL) (-1101 2821334 2821397 2821487 "TEMUTL" 2821618 T TEMUTL (NIL) -7 NIL NIL) (-1100 2819488 2819768 2820093 "TBCMPPK" 2821057 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1099 2811377 2817649 2817705 "TBAGG" 2818105 NIL TBAGG (NIL T T) -9 NIL 2818316) (-1098 2806447 2807935 2809689 "TBAGG-" 2809694 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1097 2805831 2805938 2806083 "TANEXP" 2806336 NIL TANEXP (NIL T) -7 NIL NIL) (-1096 2799332 2805688 2805781 "TABLE" 2805786 NIL TABLE (NIL T T) -8 NIL NIL) (-1095 2798745 2798843 2798981 "TABLEAU" 2799229 NIL TABLEAU (NIL T) -8 NIL NIL) (-1094 2793353 2794573 2795821 "TABLBUMP" 2797531 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1093 2789816 2790511 2791294 "SYSSOLP" 2792604 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1092 2786107 2786815 2787549 "SYNTAX" 2789104 T SYNTAX (NIL) -8 NIL NIL) (-1091 2783241 2783849 2784487 "SYMTAB" 2785491 T SYMTAB (NIL) -8 NIL NIL) (-1090 2778490 2779392 2780375 "SYMS" 2782280 T SYMS (NIL) -8 NIL NIL) (-1089 2775723 2777950 2778179 "SYMPOLY" 2778295 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1088 2775243 2775318 2775440 "SYMFUNC" 2775635 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1087 2771220 2772480 2773302 "SYMBOL" 2774443 T SYMBOL (NIL) -8 NIL NIL) (-1086 2764759 2766448 2768168 "SWITCH" 2769522 T SWITCH (NIL) -8 NIL NIL) (-1085 2757989 2763586 2763888 "SUTS" 2764514 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1084 2749879 2757110 2757390 "SUPXS" 2757766 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1083 2741371 2749500 2749625 "SUP" 2749788 NIL SUP (NIL T) -8 NIL NIL) (-1082 2740530 2740657 2740874 "SUPFRACF" 2741239 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1081 2740155 2740214 2740325 "SUP2" 2740465 NIL SUP2 (NIL T T) -7 NIL NIL) (-1080 2738573 2738847 2739209 "SUMRF" 2739854 NIL SUMRF (NIL T) -7 NIL NIL) (-1079 2737890 2737956 2738154 "SUMFS" 2738494 NIL SUMFS (NIL T T) -7 NIL NIL) (-1078 2721826 2737071 2737321 "SULS" 2737697 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1077 2721148 2721351 2721491 "SUCH" 2721734 NIL SUCH (NIL T T) -8 NIL NIL) (-1076 2715075 2716087 2717045 "SUBSPACE" 2720236 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1075 2714505 2714595 2714759 "SUBRESP" 2714963 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1074 2707874 2709170 2710481 "STTF" 2713241 NIL STTF (NIL T) -7 NIL NIL) (-1073 2702047 2703167 2704314 "STTFNC" 2706774 NIL STTFNC (NIL T) -7 NIL NIL) (-1072 2693398 2695265 2697058 "STTAYLOR" 2700288 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1071 2686642 2693262 2693345 "STRTBL" 2693350 NIL STRTBL (NIL T) -8 NIL NIL) (-1070 2682033 2686597 2686628 "STRING" 2686633 T STRING (NIL) -8 NIL NIL) (-1069 2676922 2681407 2681437 "STRICAT" 2681496 T STRICAT (NIL) -9 NIL 2681558) (-1068 2669638 2674445 2675065 "STREAM" 2676337 NIL STREAM (NIL T) -8 NIL NIL) (-1067 2669148 2669225 2669369 "STREAM3" 2669555 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1066 2668130 2668313 2668548 "STREAM2" 2668961 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1065 2667818 2667870 2667963 "STREAM1" 2668072 NIL STREAM1 (NIL T) -7 NIL NIL) (-1064 2666834 2667015 2667246 "STINPROD" 2667634 NIL STINPROD (NIL T) -7 NIL NIL) (-1063 2666413 2666597 2666627 "STEP" 2666707 T STEP (NIL) -9 NIL 2666785) (-1062 2659956 2666312 2666389 "STBL" 2666394 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1061 2655132 2659179 2659222 "STAGG" 2659375 NIL STAGG (NIL T) -9 NIL 2659464) (-1060 2652834 2653436 2654308 "STAGG-" 2654313 NIL STAGG- (NIL T T) -8 NIL NIL) (-1059 2651029 2652604 2652696 "STACK" 2652777 NIL STACK (NIL T) -8 NIL NIL) (-1058 2643760 2649176 2649631 "SREGSET" 2650659 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1057 2636200 2637568 2639080 "SRDCMPK" 2642366 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1056 2629168 2633641 2633671 "SRAGG" 2634974 T SRAGG (NIL) -9 NIL 2635582) (-1055 2628185 2628440 2628819 "SRAGG-" 2628824 NIL SRAGG- (NIL T) -8 NIL NIL) (-1054 2622634 2627104 2627531 "SQMATRIX" 2627804 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1053 2616386 2619354 2620080 "SPLTREE" 2621980 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1052 2612376 2613042 2613688 "SPLNODE" 2615812 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1051 2611423 2611656 2611686 "SPFCAT" 2612130 T SPFCAT (NIL) -9 NIL NIL) (-1050 2610160 2610370 2610634 "SPECOUT" 2611181 T SPECOUT (NIL) -7 NIL NIL) (-1049 2609921 2609961 2610030 "SPADPRSR" 2610113 T SPADPRSR (NIL) -7 NIL NIL) (-1048 2601944 2603691 2603733 "SPACEC" 2608056 NIL SPACEC (NIL T) -9 NIL 2609872) (-1047 2600116 2601877 2601925 "SPACE3" 2601930 NIL SPACE3 (NIL T) -8 NIL NIL) (-1046 2598868 2599039 2599330 "SORTPAK" 2599921 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1045 2596924 2597227 2597645 "SOLVETRA" 2598532 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1044 2595935 2596157 2596431 "SOLVESER" 2596697 NIL SOLVESER (NIL T) -7 NIL NIL) (-1043 2591155 2592036 2593038 "SOLVERAD" 2594987 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1042 2586970 2587579 2588308 "SOLVEFOR" 2590522 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1041 2581270 2586322 2586418 "SNTSCAT" 2586423 NIL SNTSCAT (NIL T T T T) -9 NIL 2586493) (-1040 2575375 2579601 2579991 "SMTS" 2580960 NIL SMTS (NIL T T T) -8 NIL NIL) (-1039 2569786 2575264 2575340 "SMP" 2575345 NIL SMP (NIL T T) -8 NIL NIL) (-1038 2567945 2568246 2568644 "SMITH" 2569483 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1037 2560910 2565106 2565208 "SMATCAT" 2566548 NIL SMATCAT (NIL NIL T T T) -9 NIL 2567097) (-1036 2557851 2558674 2559851 "SMATCAT-" 2559856 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1035 2555565 2557088 2557131 "SKAGG" 2557392 NIL SKAGG (NIL T) -9 NIL 2557527) (-1034 2551623 2554669 2554947 "SINT" 2555309 T SINT (NIL) -8 NIL NIL) (-1033 2551395 2551433 2551499 "SIMPAN" 2551579 T SIMPAN (NIL) -7 NIL NIL) (-1032 2550233 2550454 2550729 "SIGNRF" 2551154 NIL SIGNRF (NIL T) -7 NIL NIL) (-1031 2549042 2549193 2549483 "SIGNEF" 2550062 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1030 2546732 2547186 2547692 "SHP" 2548583 NIL SHP (NIL T NIL) -7 NIL NIL) (-1029 2540585 2546633 2546709 "SHDP" 2546714 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1028 2540075 2540267 2540297 "SGROUP" 2540449 T SGROUP (NIL) -9 NIL 2540536) (-1027 2539845 2539897 2540001 "SGROUP-" 2540006 NIL SGROUP- (NIL T) -8 NIL NIL) (-1026 2536681 2537378 2538101 "SGCF" 2539144 T SGCF (NIL) -7 NIL NIL) (-1025 2531080 2536132 2536228 "SFRTCAT" 2536233 NIL SFRTCAT (NIL T T T T) -9 NIL 2536271) (-1024 2524540 2525555 2526689 "SFRGCD" 2530063 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1023 2517706 2518777 2519961 "SFQCMPK" 2523473 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1022 2517328 2517417 2517527 "SFORT" 2517647 NIL SFORT (NIL T T) -8 NIL NIL) (-1021 2516473 2517168 2517289 "SEXOF" 2517294 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1020 2515607 2516354 2516422 "SEX" 2516427 T SEX (NIL) -8 NIL NIL) (-1019 2510384 2511073 2511168 "SEXCAT" 2514939 NIL SEXCAT (NIL T T T T T) -9 NIL 2515558) (-1018 2507564 2510318 2510366 "SET" 2510371 NIL SET (NIL T) -8 NIL NIL) (-1017 2505815 2506277 2506582 "SETMN" 2507305 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1016 2505423 2505549 2505579 "SETCAT" 2505696 T SETCAT (NIL) -9 NIL 2505780) (-1015 2505203 2505255 2505354 "SETCAT-" 2505359 NIL SETCAT- (NIL T) -8 NIL NIL) (-1014 2501591 2503665 2503708 "SETAGG" 2504578 NIL SETAGG (NIL T) -9 NIL 2504918) (-1013 2501049 2501165 2501402 "SETAGG-" 2501407 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1012 2500253 2500546 2500607 "SEGXCAT" 2500893 NIL SEGXCAT (NIL T T) -9 NIL 2501013) (-1011 2499309 2499919 2500101 "SEG" 2500106 NIL SEG (NIL T) -8 NIL NIL) (-1010 2498216 2498429 2498472 "SEGCAT" 2499054 NIL SEGCAT (NIL T) -9 NIL 2499292) (-1009 2497265 2497595 2497795 "SEGBIND" 2498051 NIL SEGBIND (NIL T) -8 NIL NIL) (-1008 2496886 2496945 2497058 "SEGBIND2" 2497200 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1007 2496105 2496231 2496435 "SEG2" 2496730 NIL SEG2 (NIL T T) -7 NIL NIL) (-1006 2495542 2496040 2496087 "SDVAR" 2496092 NIL SDVAR (NIL T) -8 NIL NIL) (-1005 2487794 2495315 2495443 "SDPOL" 2495448 NIL SDPOL (NIL T) -8 NIL NIL) (-1004 2486387 2486653 2486972 "SCPKG" 2487509 NIL SCPKG (NIL T) -7 NIL NIL) (-1003 2485524 2485703 2485903 "SCOPE" 2486209 T SCOPE (NIL) -8 NIL NIL) (-1002 2484745 2484878 2485057 "SCACHE" 2485379 NIL SCACHE (NIL T) -7 NIL NIL) (-1001 2484184 2484505 2484590 "SAOS" 2484682 T SAOS (NIL) -8 NIL NIL) (-1000 2483749 2483784 2483957 "SAERFFC" 2484143 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-999 2477645 2483648 2483726 "SAE" 2483731 NIL SAE (NIL T T NIL) -8 NIL NIL) (-998 2477241 2477276 2477433 "SAEFACT" 2477604 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-997 2475567 2475881 2476280 "RURPK" 2476907 NIL RURPK (NIL T NIL) -7 NIL NIL) (-996 2474220 2474497 2474804 "RULESET" 2475403 NIL RULESET (NIL T T T) -8 NIL NIL) (-995 2471428 2471931 2472392 "RULE" 2473902 NIL RULE (NIL T T T) -8 NIL NIL) (-994 2471070 2471225 2471306 "RULECOLD" 2471380 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-993 2465962 2466756 2467672 "RSETGCD" 2470269 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-992 2455277 2460329 2460423 "RSETCAT" 2464488 NIL RSETCAT (NIL T T T T) -9 NIL 2465585) (-991 2453208 2453747 2454567 "RSETCAT-" 2454572 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-990 2445638 2447013 2448529 "RSDCMPK" 2451807 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-989 2443656 2444097 2444169 "RRCC" 2445245 NIL RRCC (NIL T T) -9 NIL 2445589) (-988 2443010 2443184 2443460 "RRCC-" 2443465 NIL RRCC- (NIL T T T) -8 NIL NIL) (-987 2417377 2427002 2427066 "RPOLCAT" 2437568 NIL RPOLCAT (NIL T T T) -9 NIL 2440726) (-986 2408881 2411219 2414337 "RPOLCAT-" 2414342 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-985 2399947 2407111 2407591 "ROUTINE" 2408421 T ROUTINE (NIL) -8 NIL NIL) (-984 2396652 2399503 2399650 "ROMAN" 2399820 T ROMAN (NIL) -8 NIL NIL) (-983 2394938 2395523 2395780 "ROIRC" 2396458 NIL ROIRC (NIL T T) -8 NIL NIL) (-982 2391343 2393647 2393675 "RNS" 2393971 T RNS (NIL) -9 NIL 2394241) (-981 2389857 2390240 2390771 "RNS-" 2390844 NIL RNS- (NIL T) -8 NIL NIL) (-980 2389283 2389691 2389719 "RNG" 2389724 T RNG (NIL) -9 NIL 2389745) (-979 2388681 2389043 2389083 "RMODULE" 2389143 NIL RMODULE (NIL T) -9 NIL 2389185) (-978 2387533 2387627 2387957 "RMCAT2" 2388582 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-977 2384247 2386716 2387037 "RMATRIX" 2387268 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-976 2377244 2379478 2379590 "RMATCAT" 2382899 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2383881) (-975 2376623 2376770 2377073 "RMATCAT-" 2377078 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-974 2376193 2376268 2376394 "RINTERP" 2376542 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-973 2375244 2375808 2375836 "RING" 2375946 T RING (NIL) -9 NIL 2376040) (-972 2375039 2375083 2375177 "RING-" 2375182 NIL RING- (NIL T) -8 NIL NIL) (-971 2373887 2374124 2374380 "RIDIST" 2374803 T RIDIST (NIL) -7 NIL NIL) (-970 2365209 2373361 2373564 "RGCHAIN" 2373736 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-969 2362214 2362828 2363496 "RF" 2364573 NIL RF (NIL T) -7 NIL NIL) (-968 2361863 2361926 2362027 "RFFACTOR" 2362145 NIL RFFACTOR (NIL T) -7 NIL NIL) (-967 2361591 2361626 2361721 "RFFACT" 2361822 NIL RFFACT (NIL T) -7 NIL NIL) (-966 2359721 2360085 2360465 "RFDIST" 2361231 T RFDIST (NIL) -7 NIL NIL) (-965 2359179 2359271 2359431 "RETSOL" 2359623 NIL RETSOL (NIL T T) -7 NIL NIL) (-964 2358772 2358852 2358893 "RETRACT" 2359083 NIL RETRACT (NIL T) -9 NIL NIL) (-963 2358624 2358649 2358733 "RETRACT-" 2358738 NIL RETRACT- (NIL T T) -8 NIL NIL) (-962 2351482 2358281 2358406 "RESULT" 2358519 T RESULT (NIL) -8 NIL NIL) (-961 2350067 2350756 2350953 "RESRING" 2351385 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-960 2349707 2349756 2349852 "RESLATC" 2350004 NIL RESLATC (NIL T) -7 NIL NIL) (-959 2349416 2349450 2349555 "REPSQ" 2349666 NIL REPSQ (NIL T) -7 NIL NIL) (-958 2346847 2347427 2348027 "REP" 2348836 T REP (NIL) -7 NIL NIL) (-957 2346548 2346582 2346691 "REPDB" 2346806 NIL REPDB (NIL T) -7 NIL NIL) (-956 2340493 2341872 2343092 "REP2" 2345360 NIL REP2 (NIL T) -7 NIL NIL) (-955 2336899 2337580 2338385 "REP1" 2339720 NIL REP1 (NIL T) -7 NIL NIL) (-954 2329645 2335060 2335512 "REGSET" 2336530 NIL REGSET (NIL T T T T) -8 NIL NIL) (-953 2328466 2328801 2329049 "REF" 2329430 NIL REF (NIL T) -8 NIL NIL) (-952 2327847 2327950 2328115 "REDORDER" 2328350 NIL REDORDER (NIL T T) -7 NIL NIL) (-951 2323816 2327081 2327302 "RECLOS" 2327678 NIL RECLOS (NIL T) -8 NIL NIL) (-950 2322873 2323054 2323267 "REALSOLV" 2323623 T REALSOLV (NIL) -7 NIL NIL) (-949 2322721 2322762 2322790 "REAL" 2322795 T REAL (NIL) -9 NIL 2322830) (-948 2319212 2320014 2320896 "REAL0Q" 2321886 NIL REAL0Q (NIL T) -7 NIL NIL) (-947 2314823 2315811 2316870 "REAL0" 2318193 NIL REAL0 (NIL T) -7 NIL NIL) (-946 2314231 2314303 2314508 "RDIV" 2314745 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-945 2313304 2313478 2313689 "RDIST" 2314053 NIL RDIST (NIL T) -7 NIL NIL) (-944 2311908 2312195 2312564 "RDETRS" 2313012 NIL RDETRS (NIL T T) -7 NIL NIL) (-943 2309729 2310183 2310718 "RDETR" 2311450 NIL RDETR (NIL T T) -7 NIL NIL) (-942 2308345 2308623 2309024 "RDEEFS" 2309445 NIL RDEEFS (NIL T T) -7 NIL NIL) (-941 2306845 2307151 2307580 "RDEEF" 2308033 NIL RDEEF (NIL T T) -7 NIL NIL) (-940 2301130 2304062 2304090 "RCFIELD" 2305367 T RCFIELD (NIL) -9 NIL 2306097) (-939 2299199 2299703 2300396 "RCFIELD-" 2300469 NIL RCFIELD- (NIL T) -8 NIL NIL) (-938 2295531 2297316 2297357 "RCAGG" 2298428 NIL RCAGG (NIL T) -9 NIL 2298893) (-937 2295162 2295256 2295416 "RCAGG-" 2295421 NIL RCAGG- (NIL T T) -8 NIL NIL) (-936 2294507 2294618 2294780 "RATRET" 2295046 NIL RATRET (NIL T) -7 NIL NIL) (-935 2294064 2294131 2294250 "RATFACT" 2294435 NIL RATFACT (NIL T) -7 NIL NIL) (-934 2293379 2293499 2293649 "RANDSRC" 2293934 T RANDSRC (NIL) -7 NIL NIL) (-933 2293116 2293160 2293231 "RADUTIL" 2293328 T RADUTIL (NIL) -7 NIL NIL) (-932 2286123 2291859 2292176 "RADIX" 2292831 NIL RADIX (NIL NIL) -8 NIL NIL) (-931 2277693 2285967 2286095 "RADFF" 2286100 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-930 2277345 2277420 2277448 "RADCAT" 2277605 T RADCAT (NIL) -9 NIL NIL) (-929 2277130 2277178 2277275 "RADCAT-" 2277280 NIL RADCAT- (NIL T) -8 NIL NIL) (-928 2275281 2276905 2276994 "QUEUE" 2277074 NIL QUEUE (NIL T) -8 NIL NIL) (-927 2271778 2275218 2275263 "QUAT" 2275268 NIL QUAT (NIL T) -8 NIL NIL) (-926 2271416 2271459 2271586 "QUATCT2" 2271729 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-925 2265210 2268590 2268630 "QUATCAT" 2269409 NIL QUATCAT (NIL T) -9 NIL 2270174) (-924 2261354 2262391 2263778 "QUATCAT-" 2263872 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-923 2258875 2260439 2260480 "QUAGG" 2260855 NIL QUAGG (NIL T) -9 NIL 2261030) (-922 2257800 2258273 2258445 "QFORM" 2258747 NIL QFORM (NIL NIL T) -8 NIL NIL) (-921 2249097 2254355 2254395 "QFCAT" 2255053 NIL QFCAT (NIL T) -9 NIL 2256046) (-920 2244669 2245870 2247461 "QFCAT-" 2247555 NIL QFCAT- (NIL T T) -8 NIL NIL) (-919 2244307 2244350 2244477 "QFCAT2" 2244620 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-918 2243767 2243877 2244007 "QEQUAT" 2244197 T QEQUAT (NIL) -8 NIL NIL) (-917 2236953 2238024 2239206 "QCMPACK" 2242700 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-916 2234529 2234950 2235378 "QALGSET" 2236608 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-915 2233774 2233948 2234180 "QALGSET2" 2234349 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-914 2232465 2232688 2233005 "PWFFINTB" 2233547 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-913 2230653 2230821 2231174 "PUSHVAR" 2232279 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-912 2226571 2227625 2227666 "PTRANFN" 2229550 NIL PTRANFN (NIL T) -9 NIL NIL) (-911 2224983 2225274 2225595 "PTPACK" 2226282 NIL PTPACK (NIL T) -7 NIL NIL) (-910 2224619 2224676 2224783 "PTFUNC2" 2224920 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-909 2219096 2223437 2223477 "PTCAT" 2223845 NIL PTCAT (NIL T) -9 NIL 2224007) (-908 2218754 2218789 2218913 "PSQFR" 2219055 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-907 2217349 2217647 2217981 "PSEUDLIN" 2218452 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-906 2204157 2206521 2208844 "PSETPK" 2215109 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-905 2197244 2199958 2200052 "PSETCAT" 2203033 NIL PSETCAT (NIL T T T T) -9 NIL 2203847) (-904 2195082 2195716 2196535 "PSETCAT-" 2196540 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-903 2194431 2194596 2194624 "PSCURVE" 2194892 T PSCURVE (NIL) -9 NIL 2195059) (-902 2190883 2192409 2192473 "PSCAT" 2193309 NIL PSCAT (NIL T T T) -9 NIL 2193549) (-901 2189947 2190163 2190562 "PSCAT-" 2190567 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-900 2188600 2189232 2189446 "PRTITION" 2189753 T PRTITION (NIL) -8 NIL NIL) (-899 2177698 2179904 2182092 "PRS" 2186462 NIL PRS (NIL T T) -7 NIL NIL) (-898 2175557 2177049 2177089 "PRQAGG" 2177272 NIL PRQAGG (NIL T) -9 NIL 2177374) (-897 2175128 2175230 2175258 "PROPLOG" 2175443 T PROPLOG (NIL) -9 NIL NIL) (-896 2172251 2172816 2173343 "PROPFRML" 2174633 NIL PROPFRML (NIL T) -8 NIL NIL) (-895 2171711 2171821 2171951 "PROPERTY" 2172141 T PROPERTY (NIL) -8 NIL NIL) (-894 2165485 2169877 2170697 "PRODUCT" 2170937 NIL PRODUCT (NIL T T) -8 NIL NIL) (-893 2162761 2164945 2165178 "PR" 2165296 NIL PR (NIL T T) -8 NIL NIL) (-892 2162557 2162589 2162648 "PRINT" 2162722 T PRINT (NIL) -7 NIL NIL) (-891 2161897 2162014 2162166 "PRIMES" 2162437 NIL PRIMES (NIL T) -7 NIL NIL) (-890 2159962 2160363 2160829 "PRIMELT" 2161476 NIL PRIMELT (NIL T) -7 NIL NIL) (-889 2159691 2159740 2159768 "PRIMCAT" 2159892 T PRIMCAT (NIL) -9 NIL NIL) (-888 2155852 2159629 2159674 "PRIMARR" 2159679 NIL PRIMARR (NIL T) -8 NIL NIL) (-887 2154859 2155037 2155265 "PRIMARR2" 2155670 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-886 2154502 2154558 2154669 "PREASSOC" 2154797 NIL PREASSOC (NIL T T) -7 NIL NIL) (-885 2153977 2154110 2154138 "PPCURVE" 2154343 T PPCURVE (NIL) -9 NIL 2154479) (-884 2151336 2151735 2152327 "POLYROOT" 2153558 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-883 2145242 2150942 2151101 "POLY" 2151209 NIL POLY (NIL T) -8 NIL NIL) (-882 2144627 2144685 2144918 "POLYLIFT" 2145178 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-881 2140912 2141361 2141989 "POLYCATQ" 2144172 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-880 2127953 2133350 2133414 "POLYCAT" 2136899 NIL POLYCAT (NIL T T T) -9 NIL 2138826) (-879 2121404 2123265 2125648 "POLYCAT-" 2125653 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-878 2120993 2121061 2121180 "POLY2UP" 2121330 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-877 2120629 2120686 2120793 "POLY2" 2120930 NIL POLY2 (NIL T T) -7 NIL NIL) (-876 2119314 2119553 2119829 "POLUTIL" 2120403 NIL POLUTIL (NIL T T) -7 NIL NIL) (-875 2117676 2117953 2118283 "POLTOPOL" 2119036 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-874 2113199 2117613 2117658 "POINT" 2117663 NIL POINT (NIL T) -8 NIL NIL) (-873 2111386 2111743 2112118 "PNTHEORY" 2112844 T PNTHEORY (NIL) -7 NIL NIL) (-872 2109814 2110111 2110520 "PMTOOLS" 2111084 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-871 2109407 2109485 2109602 "PMSYM" 2109730 NIL PMSYM (NIL T) -7 NIL NIL) (-870 2108917 2108986 2109160 "PMQFCAT" 2109332 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-869 2108272 2108382 2108538 "PMPRED" 2108794 NIL PMPRED (NIL T) -7 NIL NIL) (-868 2107668 2107754 2107915 "PMPREDFS" 2108173 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-867 2106314 2106522 2106906 "PMPLCAT" 2107430 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-866 2105846 2105925 2106077 "PMLSAGG" 2106229 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-865 2105323 2105399 2105579 "PMKERNEL" 2105764 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-864 2104940 2105015 2105128 "PMINS" 2105242 NIL PMINS (NIL T) -7 NIL NIL) (-863 2104370 2104439 2104654 "PMFS" 2104865 NIL PMFS (NIL T T T) -7 NIL NIL) (-862 2103601 2103719 2103923 "PMDOWN" 2104247 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-861 2102764 2102923 2103105 "PMASS" 2103439 T PMASS (NIL) -7 NIL NIL) (-860 2102038 2102149 2102312 "PMASSFS" 2102650 NIL PMASSFS (NIL T T) -7 NIL NIL) (-859 2101693 2101761 2101855 "PLOTTOOL" 2101964 T PLOTTOOL (NIL) -7 NIL NIL) (-858 2096315 2097504 2098652 "PLOT" 2100565 T PLOT (NIL) -8 NIL NIL) (-857 2092129 2093163 2094084 "PLOT3D" 2095414 T PLOT3D (NIL) -8 NIL NIL) (-856 2091041 2091218 2091453 "PLOT1" 2091933 NIL PLOT1 (NIL T) -7 NIL NIL) (-855 2066436 2071107 2075958 "PLEQN" 2086307 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-854 2065754 2065876 2066056 "PINTERP" 2066301 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-853 2065447 2065494 2065597 "PINTERPA" 2065701 NIL PINTERPA (NIL T T) -7 NIL NIL) (-852 2064674 2065241 2065334 "PI" 2065374 T PI (NIL) -8 NIL NIL) (-851 2063066 2064051 2064079 "PID" 2064261 T PID (NIL) -9 NIL 2064395) (-850 2062791 2062828 2062916 "PICOERCE" 2063023 NIL PICOERCE (NIL T) -7 NIL NIL) (-849 2062112 2062250 2062426 "PGROEB" 2062647 NIL PGROEB (NIL T) -7 NIL NIL) (-848 2057699 2058513 2059418 "PGE" 2061227 T PGE (NIL) -7 NIL NIL) (-847 2055823 2056069 2056435 "PGCD" 2057416 NIL PGCD (NIL T T T T) -7 NIL NIL) (-846 2055161 2055264 2055425 "PFRPAC" 2055707 NIL PFRPAC (NIL T) -7 NIL NIL) (-845 2051776 2053709 2054062 "PFR" 2054840 NIL PFR (NIL T) -8 NIL NIL) (-844 2050165 2050409 2050734 "PFOTOOLS" 2051523 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-843 2048698 2048937 2049288 "PFOQ" 2049922 NIL PFOQ (NIL T T T) -7 NIL NIL) (-842 2047175 2047387 2047749 "PFO" 2048482 NIL PFO (NIL T T T T T) -7 NIL NIL) (-841 2043698 2047064 2047133 "PF" 2047138 NIL PF (NIL NIL) -8 NIL NIL) (-840 2041127 2042408 2042436 "PFECAT" 2043021 T PFECAT (NIL) -9 NIL 2043405) (-839 2040572 2040726 2040940 "PFECAT-" 2040945 NIL PFECAT- (NIL T) -8 NIL NIL) (-838 2039176 2039427 2039728 "PFBRU" 2040321 NIL PFBRU (NIL T T) -7 NIL NIL) (-837 2037043 2037394 2037826 "PFBR" 2038827 NIL PFBR (NIL T T T T) -7 NIL NIL) (-836 2032895 2034419 2035095 "PERM" 2036400 NIL PERM (NIL T) -8 NIL NIL) (-835 2028161 2029102 2029972 "PERMGRP" 2032058 NIL PERMGRP (NIL T) -8 NIL NIL) (-834 2026232 2027225 2027266 "PERMCAT" 2027712 NIL PERMCAT (NIL T) -9 NIL 2028017) (-833 2025887 2025928 2026051 "PERMAN" 2026185 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-832 2023327 2025456 2025587 "PENDTREE" 2025789 NIL PENDTREE (NIL T) -8 NIL NIL) (-831 2021400 2022178 2022219 "PDRING" 2022876 NIL PDRING (NIL T) -9 NIL 2023161) (-830 2020503 2020721 2021083 "PDRING-" 2021088 NIL PDRING- (NIL T T) -8 NIL NIL) (-829 2017645 2018395 2019086 "PDEPROB" 2019832 T PDEPROB (NIL) -8 NIL NIL) (-828 2015216 2015712 2016261 "PDEPACK" 2017116 T PDEPACK (NIL) -7 NIL NIL) (-827 2014128 2014318 2014569 "PDECOMP" 2015015 NIL PDECOMP (NIL T T) -7 NIL NIL) (-826 2011740 2012555 2012583 "PDECAT" 2013368 T PDECAT (NIL) -9 NIL 2014079) (-825 2011493 2011526 2011615 "PCOMP" 2011701 NIL PCOMP (NIL T T) -7 NIL NIL) (-824 2009700 2010296 2010592 "PBWLB" 2011223 NIL PBWLB (NIL T) -8 NIL NIL) (-823 2002209 2003777 2005113 "PATTERN" 2008385 NIL PATTERN (NIL T) -8 NIL NIL) (-822 2001841 2001898 2002007 "PATTERN2" 2002146 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-821 1999598 1999986 2000443 "PATTERN1" 2001430 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-820 1996993 1997547 1998028 "PATRES" 1999163 NIL PATRES (NIL T T) -8 NIL NIL) (-819 1996557 1996624 1996756 "PATRES2" 1996920 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-818 1994454 1994854 1995259 "PATMATCH" 1996226 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-817 1993991 1994174 1994215 "PATMAB" 1994322 NIL PATMAB (NIL T) -9 NIL 1994405) (-816 1992536 1992845 1993103 "PATLRES" 1993796 NIL PATLRES (NIL T T T) -8 NIL NIL) (-815 1992082 1992205 1992246 "PATAB" 1992251 NIL PATAB (NIL T) -9 NIL 1992423) (-814 1989563 1990095 1990668 "PARTPERM" 1991529 T PARTPERM (NIL) -7 NIL NIL) (-813 1989184 1989247 1989349 "PARSURF" 1989494 NIL PARSURF (NIL T) -8 NIL NIL) (-812 1988816 1988873 1988982 "PARSU2" 1989121 NIL PARSU2 (NIL T T) -7 NIL NIL) (-811 1988580 1988620 1988687 "PARSER" 1988769 T PARSER (NIL) -7 NIL NIL) (-810 1988201 1988264 1988366 "PARSCURV" 1988511 NIL PARSCURV (NIL T) -8 NIL NIL) (-809 1987833 1987890 1987999 "PARSC2" 1988138 NIL PARSC2 (NIL T T) -7 NIL NIL) (-808 1987472 1987530 1987627 "PARPCURV" 1987769 NIL PARPCURV (NIL T) -8 NIL NIL) (-807 1987104 1987161 1987270 "PARPC2" 1987409 NIL PARPC2 (NIL T T) -7 NIL NIL) (-806 1986624 1986710 1986829 "PAN2EXPR" 1987005 T PAN2EXPR (NIL) -7 NIL NIL) (-805 1985430 1985745 1985973 "PALETTE" 1986416 T PALETTE (NIL) -8 NIL NIL) (-804 1983898 1984435 1984795 "PAIR" 1985116 NIL PAIR (NIL T T) -8 NIL NIL) (-803 1977748 1983157 1983351 "PADICRC" 1983753 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-802 1970956 1977094 1977278 "PADICRAT" 1977596 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-801 1969260 1970893 1970938 "PADIC" 1970943 NIL PADIC (NIL NIL) -8 NIL NIL) (-800 1966465 1968039 1968079 "PADICCT" 1968660 NIL PADICCT (NIL NIL) -9 NIL 1968942) (-799 1965422 1965622 1965890 "PADEPAC" 1966252 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-798 1964634 1964767 1964973 "PADE" 1965284 NIL PADE (NIL T T T) -7 NIL NIL) (-797 1962645 1963477 1963792 "OWP" 1964402 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-796 1961754 1962250 1962422 "OVAR" 1962513 NIL OVAR (NIL NIL) -8 NIL NIL) (-795 1961018 1961139 1961300 "OUT" 1961613 T OUT (NIL) -7 NIL NIL) (-794 1950064 1952243 1954413 "OUTFORM" 1958868 T OUTFORM (NIL) -8 NIL NIL) (-793 1949472 1949793 1949882 "OSI" 1949995 T OSI (NIL) -8 NIL NIL) (-792 1948217 1948444 1948729 "ORTHPOL" 1949219 NIL ORTHPOL (NIL T) -7 NIL NIL) (-791 1945588 1947878 1948016 "OREUP" 1948160 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-790 1942984 1945281 1945407 "ORESUP" 1945530 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-789 1940519 1941019 1941579 "OREPCTO" 1942473 NIL OREPCTO (NIL T T) -7 NIL NIL) (-788 1934429 1936635 1936675 "OREPCAT" 1938996 NIL OREPCAT (NIL T) -9 NIL 1940099) (-787 1931577 1932359 1933416 "OREPCAT-" 1933421 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-786 1930755 1931027 1931055 "ORDSET" 1931364 T ORDSET (NIL) -9 NIL 1931528) (-785 1930274 1930396 1930589 "ORDSET-" 1930594 NIL ORDSET- (NIL T) -8 NIL NIL) (-784 1928888 1929689 1929717 "ORDRING" 1929919 T ORDRING (NIL) -9 NIL 1930043) (-783 1928533 1928627 1928771 "ORDRING-" 1928776 NIL ORDRING- (NIL T) -8 NIL NIL) (-782 1927909 1928390 1928418 "ORDMON" 1928423 T ORDMON (NIL) -9 NIL 1928444) (-781 1927071 1927218 1927413 "ORDFUNS" 1927758 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-780 1926583 1926942 1926970 "ORDFIN" 1926975 T ORDFIN (NIL) -9 NIL 1926996) (-779 1923095 1925169 1925578 "ORDCOMP" 1926207 NIL ORDCOMP (NIL T) -8 NIL NIL) (-778 1922361 1922488 1922674 "ORDCOMP2" 1922955 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-777 1918869 1919751 1920588 "OPTPROB" 1921544 T OPTPROB (NIL) -8 NIL NIL) (-776 1915711 1916340 1917034 "OPTPACK" 1918195 T OPTPACK (NIL) -7 NIL NIL) (-775 1913437 1914173 1914201 "OPTCAT" 1915016 T OPTCAT (NIL) -9 NIL 1915662) (-774 1913205 1913244 1913310 "OPQUERY" 1913391 T OPQUERY (NIL) -7 NIL NIL) (-773 1910341 1911532 1912032 "OP" 1912737 NIL OP (NIL T) -8 NIL NIL) (-772 1907106 1909138 1909507 "ONECOMP" 1910005 NIL ONECOMP (NIL T) -8 NIL NIL) (-771 1906411 1906526 1906700 "ONECOMP2" 1906978 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-770 1905830 1905936 1906066 "OMSERVER" 1906301 T OMSERVER (NIL) -7 NIL NIL) (-769 1902719 1905271 1905311 "OMSAGG" 1905372 NIL OMSAGG (NIL T) -9 NIL 1905436) (-768 1901342 1901605 1901887 "OMPKG" 1902457 T OMPKG (NIL) -7 NIL NIL) (-767 1900772 1900875 1900903 "OM" 1901202 T OM (NIL) -9 NIL NIL) (-766 1899311 1900324 1900492 "OMLO" 1900653 NIL OMLO (NIL T T) -8 NIL NIL) (-765 1898241 1898388 1898614 "OMEXPR" 1899137 NIL OMEXPR (NIL T) -7 NIL NIL) (-764 1897559 1897787 1897923 "OMERR" 1898125 T OMERR (NIL) -8 NIL NIL) (-763 1896737 1896980 1897140 "OMERRK" 1897419 T OMERRK (NIL) -8 NIL NIL) (-762 1896215 1896414 1896522 "OMENC" 1896649 T OMENC (NIL) -8 NIL NIL) (-761 1890110 1891295 1892466 "OMDEV" 1895064 T OMDEV (NIL) -8 NIL NIL) (-760 1889179 1889350 1889544 "OMCONN" 1889936 T OMCONN (NIL) -8 NIL NIL) (-759 1887795 1888781 1888809 "OINTDOM" 1888814 T OINTDOM (NIL) -9 NIL 1888835) (-758 1883557 1884787 1885502 "OFMONOID" 1887112 NIL OFMONOID (NIL T) -8 NIL NIL) (-757 1882995 1883494 1883539 "ODVAR" 1883544 NIL ODVAR (NIL T) -8 NIL NIL) (-756 1880120 1882492 1882677 "ODR" 1882870 NIL ODR (NIL T T NIL) -8 NIL NIL) (-755 1872426 1879899 1880023 "ODPOL" 1880028 NIL ODPOL (NIL T) -8 NIL NIL) (-754 1866249 1872298 1872403 "ODP" 1872408 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-753 1865015 1865230 1865505 "ODETOOLS" 1866023 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-752 1861984 1862640 1863356 "ODESYS" 1864348 NIL ODESYS (NIL T T) -7 NIL NIL) (-751 1856888 1857796 1858819 "ODERTRIC" 1861059 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-750 1856314 1856396 1856590 "ODERED" 1856800 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-749 1853216 1853764 1854439 "ODERAT" 1855737 NIL ODERAT (NIL T T) -7 NIL NIL) (-748 1850184 1850648 1851244 "ODEPRRIC" 1852745 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-747 1848055 1848622 1849131 "ODEPROB" 1849695 T ODEPROB (NIL) -8 NIL NIL) (-746 1844587 1845070 1845716 "ODEPRIM" 1847534 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-745 1843840 1843942 1844200 "ODEPAL" 1844479 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-744 1840042 1840823 1841677 "ODEPACK" 1843006 T ODEPACK (NIL) -7 NIL NIL) (-743 1839079 1839186 1839414 "ODEINT" 1839931 NIL ODEINT (NIL T T) -7 NIL NIL) (-742 1833180 1834605 1836052 "ODEIFTBL" 1837652 T ODEIFTBL (NIL) -8 NIL NIL) (-741 1828524 1829310 1830268 "ODEEF" 1832339 NIL ODEEF (NIL T T) -7 NIL NIL) (-740 1827861 1827950 1828179 "ODECONST" 1828429 NIL ODECONST (NIL T T T) -7 NIL NIL) (-739 1826019 1826652 1826680 "ODECAT" 1827283 T ODECAT (NIL) -9 NIL 1827812) (-738 1822891 1825731 1825850 "OCT" 1825932 NIL OCT (NIL T) -8 NIL NIL) (-737 1822529 1822572 1822699 "OCTCT2" 1822842 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-736 1817363 1819801 1819841 "OC" 1820937 NIL OC (NIL T) -9 NIL 1821794) (-735 1814590 1815338 1816328 "OC-" 1816422 NIL OC- (NIL T T) -8 NIL NIL) (-734 1813969 1814411 1814439 "OCAMON" 1814444 T OCAMON (NIL) -9 NIL 1814465) (-733 1813423 1813830 1813858 "OASGP" 1813863 T OASGP (NIL) -9 NIL 1813883) (-732 1812711 1813174 1813202 "OAMONS" 1813242 T OAMONS (NIL) -9 NIL 1813285) (-731 1812152 1812559 1812587 "OAMON" 1812592 T OAMON (NIL) -9 NIL 1812612) (-730 1811457 1811949 1811977 "OAGROUP" 1811982 T OAGROUP (NIL) -9 NIL 1812002) (-729 1811147 1811197 1811285 "NUMTUBE" 1811401 NIL NUMTUBE (NIL T) -7 NIL NIL) (-728 1804720 1806238 1807774 "NUMQUAD" 1809631 T NUMQUAD (NIL) -7 NIL NIL) (-727 1800476 1801464 1802489 "NUMODE" 1803715 T NUMODE (NIL) -7 NIL NIL) (-726 1797880 1798726 1798754 "NUMINT" 1799671 T NUMINT (NIL) -9 NIL 1800427) (-725 1796828 1797025 1797243 "NUMFMT" 1797682 T NUMFMT (NIL) -7 NIL NIL) (-724 1783210 1786144 1788674 "NUMERIC" 1794337 NIL NUMERIC (NIL T) -7 NIL NIL) (-723 1777611 1782663 1782757 "NTSCAT" 1782762 NIL NTSCAT (NIL T T T T) -9 NIL 1782800) (-722 1776805 1776970 1777163 "NTPOLFN" 1777450 NIL NTPOLFN (NIL T) -7 NIL NIL) (-721 1764621 1773647 1774457 "NSUP" 1776027 NIL NSUP (NIL T) -8 NIL NIL) (-720 1764257 1764314 1764421 "NSUP2" 1764558 NIL NSUP2 (NIL T T) -7 NIL NIL) (-719 1754219 1764036 1764166 "NSMP" 1764171 NIL NSMP (NIL T T) -8 NIL NIL) (-718 1752651 1752952 1753309 "NREP" 1753907 NIL NREP (NIL T) -7 NIL NIL) (-717 1751242 1751494 1751852 "NPCOEF" 1752394 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-716 1750308 1750423 1750639 "NORMRETR" 1751123 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-715 1748361 1748651 1749058 "NORMPK" 1750016 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-714 1748046 1748074 1748198 "NORMMA" 1748327 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-713 1747873 1748003 1748032 "NONE" 1748037 T NONE (NIL) -8 NIL NIL) (-712 1747662 1747691 1747760 "NONE1" 1747837 NIL NONE1 (NIL T) -7 NIL NIL) (-711 1747147 1747209 1747394 "NODE1" 1747594 NIL NODE1 (NIL T T) -7 NIL NIL) (-710 1745440 1746310 1746565 "NNI" 1746912 T NNI (NIL) -8 NIL NIL) (-709 1743860 1744173 1744537 "NLINSOL" 1745108 NIL NLINSOL (NIL T) -7 NIL NIL) (-708 1740028 1740995 1741917 "NIPROB" 1742958 T NIPROB (NIL) -8 NIL NIL) (-707 1738785 1739019 1739321 "NFINTBAS" 1739790 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-706 1737493 1737724 1738005 "NCODIV" 1738553 NIL NCODIV (NIL T T) -7 NIL NIL) (-705 1737255 1737292 1737367 "NCNTFRAC" 1737450 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-704 1735435 1735799 1736219 "NCEP" 1736880 NIL NCEP (NIL T) -7 NIL NIL) (-703 1734347 1735086 1735114 "NASRING" 1735224 T NASRING (NIL) -9 NIL 1735298) (-702 1734142 1734186 1734280 "NASRING-" 1734285 NIL NASRING- (NIL T) -8 NIL NIL) (-701 1733296 1733795 1733823 "NARNG" 1733940 T NARNG (NIL) -9 NIL 1734031) (-700 1732988 1733055 1733189 "NARNG-" 1733194 NIL NARNG- (NIL T) -8 NIL NIL) (-699 1731867 1732074 1732309 "NAGSP" 1732773 T NAGSP (NIL) -7 NIL NIL) (-698 1723291 1724937 1726572 "NAGS" 1730252 T NAGS (NIL) -7 NIL NIL) (-697 1721855 1722159 1722486 "NAGF07" 1722984 T NAGF07 (NIL) -7 NIL NIL) (-696 1716437 1717717 1719013 "NAGF04" 1720579 T NAGF04 (NIL) -7 NIL NIL) (-695 1709469 1711067 1712684 "NAGF02" 1714840 T NAGF02 (NIL) -7 NIL NIL) (-694 1704733 1705823 1706930 "NAGF01" 1708382 T NAGF01 (NIL) -7 NIL NIL) (-693 1698393 1699951 1701528 "NAGE04" 1703176 T NAGE04 (NIL) -7 NIL NIL) (-692 1689634 1691737 1693849 "NAGE02" 1696301 T NAGE02 (NIL) -7 NIL NIL) (-691 1685627 1686564 1687518 "NAGE01" 1688700 T NAGE01 (NIL) -7 NIL NIL) (-690 1683434 1683965 1684520 "NAGD03" 1685092 T NAGD03 (NIL) -7 NIL NIL) (-689 1675220 1677139 1679084 "NAGD02" 1681509 T NAGD02 (NIL) -7 NIL NIL) (-688 1669079 1670492 1671920 "NAGD01" 1673812 T NAGD01 (NIL) -7 NIL NIL) (-687 1665336 1666146 1666971 "NAGC06" 1668274 T NAGC06 (NIL) -7 NIL NIL) (-686 1663813 1664142 1664495 "NAGC05" 1665003 T NAGC05 (NIL) -7 NIL NIL) (-685 1663197 1663314 1663456 "NAGC02" 1663691 T NAGC02 (NIL) -7 NIL NIL) (-684 1662259 1662816 1662856 "NAALG" 1662935 NIL NAALG (NIL T) -9 NIL 1662996) (-683 1662094 1662123 1662213 "NAALG-" 1662218 NIL NAALG- (NIL T T) -8 NIL NIL) (-682 1656044 1657152 1658339 "MULTSQFR" 1660990 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-681 1655363 1655438 1655622 "MULTFACT" 1655956 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-680 1648557 1652468 1652520 "MTSCAT" 1653580 NIL MTSCAT (NIL T T) -9 NIL 1654094) (-679 1648269 1648323 1648415 "MTHING" 1648497 NIL MTHING (NIL T) -7 NIL NIL) (-678 1648061 1648094 1648154 "MSYSCMD" 1648229 T MSYSCMD (NIL) -7 NIL NIL) (-677 1644173 1646816 1647136 "MSET" 1647774 NIL MSET (NIL T) -8 NIL NIL) (-676 1641269 1643735 1643776 "MSETAGG" 1643781 NIL MSETAGG (NIL T) -9 NIL 1643815) (-675 1637125 1638667 1639408 "MRING" 1640572 NIL MRING (NIL T T) -8 NIL NIL) (-674 1636695 1636762 1636891 "MRF2" 1637052 NIL MRF2 (NIL T T T) -7 NIL NIL) (-673 1636313 1636348 1636492 "MRATFAC" 1636654 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-672 1633925 1634220 1634651 "MPRFF" 1636018 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-671 1627945 1633780 1633876 "MPOLY" 1633881 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-670 1627435 1627470 1627678 "MPCPF" 1627904 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-669 1626951 1626994 1627177 "MPC3" 1627386 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-668 1626152 1626233 1626452 "MPC2" 1626866 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-667 1624453 1624790 1625180 "MONOTOOL" 1625812 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-666 1623578 1623913 1623941 "MONOID" 1624218 T MONOID (NIL) -9 NIL 1624390) (-665 1622956 1623119 1623362 "MONOID-" 1623367 NIL MONOID- (NIL T) -8 NIL NIL) (-664 1613937 1619923 1619982 "MONOGEN" 1620656 NIL MONOGEN (NIL T T) -9 NIL 1621112) (-663 1611155 1611890 1612890 "MONOGEN-" 1613009 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-662 1610015 1610435 1610463 "MONADWU" 1610855 T MONADWU (NIL) -9 NIL 1611093) (-661 1609387 1609546 1609794 "MONADWU-" 1609799 NIL MONADWU- (NIL T) -8 NIL NIL) (-660 1608773 1608991 1609019 "MONAD" 1609226 T MONAD (NIL) -9 NIL 1609338) (-659 1608458 1608536 1608668 "MONAD-" 1608673 NIL MONAD- (NIL T) -8 NIL NIL) (-658 1606709 1607371 1607650 "MOEBIUS" 1608211 NIL MOEBIUS (NIL T) -8 NIL NIL) (-657 1606103 1606481 1606521 "MODULE" 1606526 NIL MODULE (NIL T) -9 NIL 1606552) (-656 1605671 1605767 1605957 "MODULE-" 1605962 NIL MODULE- (NIL T T) -8 NIL NIL) (-655 1603342 1604037 1604363 "MODRING" 1605496 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-654 1600298 1601463 1601980 "MODOP" 1602874 NIL MODOP (NIL T T) -8 NIL NIL) (-653 1598485 1598937 1599278 "MODMONOM" 1600097 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-652 1588163 1596689 1597111 "MODMON" 1598113 NIL MODMON (NIL T T) -8 NIL NIL) (-651 1585289 1587007 1587283 "MODFIELD" 1588038 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-650 1584293 1584570 1584760 "MMLFORM" 1585119 T MMLFORM (NIL) -8 NIL NIL) (-649 1583819 1583862 1584041 "MMAP" 1584244 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-648 1582056 1582833 1582873 "MLO" 1583290 NIL MLO (NIL T) -9 NIL 1583531) (-647 1579423 1579938 1580540 "MLIFT" 1581537 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-646 1578814 1578898 1579052 "MKUCFUNC" 1579334 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-645 1578413 1578483 1578606 "MKRECORD" 1578737 NIL MKRECORD (NIL T T) -7 NIL NIL) (-644 1577461 1577622 1577850 "MKFUNC" 1578224 NIL MKFUNC (NIL T) -7 NIL NIL) (-643 1576849 1576953 1577109 "MKFLCFN" 1577344 NIL MKFLCFN (NIL T) -7 NIL NIL) (-642 1576275 1576642 1576731 "MKCHSET" 1576793 NIL MKCHSET (NIL T) -8 NIL NIL) (-641 1575552 1575654 1575839 "MKBCFUNC" 1576168 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-640 1572236 1575106 1575242 "MINT" 1575436 T MINT (NIL) -8 NIL NIL) (-639 1571048 1571291 1571568 "MHROWRED" 1571991 NIL MHROWRED (NIL T) -7 NIL NIL) (-638 1566319 1569493 1569917 "MFLOAT" 1570644 T MFLOAT (NIL) -8 NIL NIL) (-637 1565676 1565752 1565923 "MFINFACT" 1566231 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-636 1561991 1562839 1563723 "MESH" 1564812 T MESH (NIL) -7 NIL NIL) (-635 1560381 1560693 1561046 "MDDFACT" 1561678 NIL MDDFACT (NIL T) -7 NIL NIL) (-634 1557224 1559541 1559582 "MDAGG" 1559837 NIL MDAGG (NIL T) -9 NIL 1559980) (-633 1546922 1556517 1556724 "MCMPLX" 1557037 T MCMPLX (NIL) -8 NIL NIL) (-632 1546063 1546209 1546409 "MCDEN" 1546771 NIL MCDEN (NIL T T) -7 NIL NIL) (-631 1543953 1544223 1544603 "MCALCFN" 1545793 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-630 1541575 1542098 1542659 "MATSTOR" 1543424 NIL MATSTOR (NIL T) -7 NIL NIL) (-629 1537584 1540950 1541197 "MATRIX" 1541360 NIL MATRIX (NIL T) -8 NIL NIL) (-628 1533354 1534057 1534793 "MATLIN" 1536941 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-627 1523552 1526690 1526766 "MATCAT" 1531604 NIL MATCAT (NIL T T T) -9 NIL 1533021) (-626 1519917 1520930 1522285 "MATCAT-" 1522290 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-625 1518519 1518672 1519003 "MATCAT2" 1519752 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-624 1516631 1516955 1517339 "MAPPKG3" 1518194 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-623 1515612 1515785 1516007 "MAPPKG2" 1516455 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-622 1514111 1514395 1514722 "MAPPKG1" 1515318 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-621 1513722 1513780 1513903 "MAPHACK3" 1514047 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-620 1513314 1513375 1513489 "MAPHACK2" 1513654 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-619 1512752 1512855 1512997 "MAPHACK1" 1513205 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-618 1510860 1511454 1511757 "MAGMA" 1512481 NIL MAGMA (NIL T) -8 NIL NIL) (-617 1507334 1509104 1509564 "M3D" 1510433 NIL M3D (NIL T) -8 NIL NIL) (-616 1501490 1505705 1505746 "LZSTAGG" 1506528 NIL LZSTAGG (NIL T) -9 NIL 1506823) (-615 1497463 1498621 1500078 "LZSTAGG-" 1500083 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-614 1494579 1495356 1495842 "LWORD" 1497009 NIL LWORD (NIL T) -8 NIL NIL) (-613 1487739 1494350 1494484 "LSQM" 1494489 NIL LSQM (NIL NIL T) -8 NIL NIL) (-612 1486963 1487102 1487330 "LSPP" 1487594 NIL LSPP (NIL T T T T) -7 NIL NIL) (-611 1484775 1485076 1485532 "LSMP" 1486652 NIL LSMP (NIL T T T T) -7 NIL NIL) (-610 1481554 1482228 1482958 "LSMP1" 1484077 NIL LSMP1 (NIL T) -7 NIL NIL) (-609 1475481 1480723 1480764 "LSAGG" 1480826 NIL LSAGG (NIL T) -9 NIL 1480904) (-608 1472176 1473100 1474313 "LSAGG-" 1474318 NIL LSAGG- (NIL T T) -8 NIL NIL) (-607 1469802 1471320 1471569 "LPOLY" 1471971 NIL LPOLY (NIL T T) -8 NIL NIL) (-606 1469384 1469469 1469592 "LPEFRAC" 1469711 NIL LPEFRAC (NIL T) -7 NIL NIL) (-605 1467731 1468478 1468731 "LO" 1469216 NIL LO (NIL T T T) -8 NIL NIL) (-604 1467385 1467497 1467525 "LOGIC" 1467636 T LOGIC (NIL) -9 NIL 1467716) (-603 1467247 1467270 1467341 "LOGIC-" 1467346 NIL LOGIC- (NIL T) -8 NIL NIL) (-602 1466440 1466580 1466773 "LODOOPS" 1467103 NIL LODOOPS (NIL T T) -7 NIL NIL) (-601 1463858 1466357 1466422 "LODO" 1466427 NIL LODO (NIL T NIL) -8 NIL NIL) (-600 1462404 1462639 1462990 "LODOF" 1463605 NIL LODOF (NIL T T) -7 NIL NIL) (-599 1458824 1461260 1461300 "LODOCAT" 1461732 NIL LODOCAT (NIL T) -9 NIL 1461943) (-598 1458558 1458616 1458742 "LODOCAT-" 1458747 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-597 1455872 1458399 1458517 "LODO2" 1458522 NIL LODO2 (NIL T T) -8 NIL NIL) (-596 1453301 1455809 1455854 "LODO1" 1455859 NIL LODO1 (NIL T) -8 NIL NIL) (-595 1452164 1452329 1452640 "LODEEF" 1453124 NIL LODEEF (NIL T T T) -7 NIL NIL) (-594 1447451 1450295 1450336 "LNAGG" 1451283 NIL LNAGG (NIL T) -9 NIL 1451727) (-593 1446598 1446812 1447154 "LNAGG-" 1447159 NIL LNAGG- (NIL T T) -8 NIL NIL) (-592 1442763 1443525 1444163 "LMOPS" 1446014 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-591 1442161 1442523 1442563 "LMODULE" 1442623 NIL LMODULE (NIL T) -9 NIL 1442665) (-590 1439407 1441806 1441929 "LMDICT" 1442071 NIL LMDICT (NIL T) -8 NIL NIL) (-589 1432634 1438353 1438651 "LIST" 1439142 NIL LIST (NIL T) -8 NIL NIL) (-588 1432159 1432233 1432372 "LIST3" 1432554 NIL LIST3 (NIL T T T) -7 NIL NIL) (-587 1431166 1431344 1431572 "LIST2" 1431977 NIL LIST2 (NIL T T) -7 NIL NIL) (-586 1429300 1429612 1430011 "LIST2MAP" 1430813 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-585 1428013 1428693 1428733 "LINEXP" 1428986 NIL LINEXP (NIL T) -9 NIL 1429134) (-584 1426660 1426920 1427217 "LINDEP" 1427765 NIL LINDEP (NIL T T) -7 NIL NIL) (-583 1423427 1424146 1424923 "LIMITRF" 1425915 NIL LIMITRF (NIL T) -7 NIL NIL) (-582 1421707 1422002 1422417 "LIMITPS" 1423122 NIL LIMITPS (NIL T T) -7 NIL NIL) (-581 1416162 1421218 1421446 "LIE" 1421528 NIL LIE (NIL T T) -8 NIL NIL) (-580 1415213 1415656 1415696 "LIECAT" 1415836 NIL LIECAT (NIL T) -9 NIL 1415987) (-579 1415054 1415081 1415169 "LIECAT-" 1415174 NIL LIECAT- (NIL T T) -8 NIL NIL) (-578 1407666 1414503 1414668 "LIB" 1414909 T LIB (NIL) -8 NIL NIL) (-577 1403303 1404184 1405119 "LGROBP" 1406783 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-576 1401169 1401443 1401805 "LF" 1403024 NIL LF (NIL T T) -7 NIL NIL) (-575 1400009 1400701 1400729 "LFCAT" 1400936 T LFCAT (NIL) -9 NIL 1401075) (-574 1396921 1397547 1398233 "LEXTRIPK" 1399375 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-573 1393627 1394491 1394994 "LEXP" 1396501 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-572 1392025 1392338 1392739 "LEADCDET" 1393309 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-571 1391221 1391295 1391522 "LAZM3PK" 1391946 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-570 1386137 1389300 1389837 "LAUPOL" 1390734 NIL LAUPOL (NIL T T) -8 NIL NIL) (-569 1385704 1385748 1385915 "LAPLACE" 1386087 NIL LAPLACE (NIL T T) -7 NIL NIL) (-568 1383632 1384805 1385056 "LA" 1385537 NIL LA (NIL T T T) -8 NIL NIL) (-567 1382695 1383289 1383329 "LALG" 1383390 NIL LALG (NIL T) -9 NIL 1383448) (-566 1382410 1382469 1382604 "LALG-" 1382609 NIL LALG- (NIL T T) -8 NIL NIL) (-565 1381320 1381507 1381804 "KOVACIC" 1382210 NIL KOVACIC (NIL T T) -7 NIL NIL) (-564 1381155 1381179 1381220 "KONVERT" 1381282 NIL KONVERT (NIL T) -9 NIL NIL) (-563 1380990 1381014 1381055 "KOERCE" 1381117 NIL KOERCE (NIL T) -9 NIL NIL) (-562 1378724 1379484 1379877 "KERNEL" 1380629 NIL KERNEL (NIL T) -8 NIL NIL) (-561 1378226 1378307 1378437 "KERNEL2" 1378638 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-560 1372078 1376766 1376820 "KDAGG" 1377197 NIL KDAGG (NIL T T) -9 NIL 1377403) (-559 1371607 1371731 1371936 "KDAGG-" 1371941 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-558 1364782 1371268 1371423 "KAFILE" 1371485 NIL KAFILE (NIL T) -8 NIL NIL) (-557 1359237 1364293 1364521 "JORDAN" 1364603 NIL JORDAN (NIL T T) -8 NIL NIL) (-556 1355537 1357443 1357497 "IXAGG" 1358426 NIL IXAGG (NIL T T) -9 NIL 1358885) (-555 1354456 1354762 1355181 "IXAGG-" 1355186 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-554 1350041 1354378 1354437 "IVECTOR" 1354442 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-553 1348807 1349044 1349310 "ITUPLE" 1349808 NIL ITUPLE (NIL T) -8 NIL NIL) (-552 1347243 1347420 1347726 "ITRIGMNP" 1348629 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-551 1345988 1346192 1346475 "ITFUN3" 1347019 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-550 1345620 1345677 1345786 "ITFUN2" 1345925 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-549 1343422 1344493 1344790 "ITAYLOR" 1345355 NIL ITAYLOR (NIL T) -8 NIL NIL) (-548 1332410 1337608 1338767 "ISUPS" 1342295 NIL ISUPS (NIL T) -8 NIL NIL) (-547 1331514 1331654 1331890 "ISUMP" 1332257 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-546 1326778 1331315 1331394 "ISTRING" 1331467 NIL ISTRING (NIL NIL) -8 NIL NIL) (-545 1325991 1326072 1326287 "IRURPK" 1326692 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-544 1324927 1325128 1325368 "IRSN" 1325771 T IRSN (NIL) -7 NIL NIL) (-543 1322962 1323317 1323752 "IRRF2F" 1324565 NIL IRRF2F (NIL T) -7 NIL NIL) (-542 1322709 1322747 1322823 "IRREDFFX" 1322918 NIL IRREDFFX (NIL T) -7 NIL NIL) (-541 1321324 1321583 1321882 "IROOT" 1322442 NIL IROOT (NIL T) -7 NIL NIL) (-540 1317962 1319013 1319703 "IR" 1320666 NIL IR (NIL T) -8 NIL NIL) (-539 1315575 1316070 1316636 "IR2" 1317440 NIL IR2 (NIL T T) -7 NIL NIL) (-538 1314651 1314764 1314984 "IR2F" 1315458 NIL IR2F (NIL T T) -7 NIL NIL) (-537 1314442 1314476 1314536 "IPRNTPK" 1314611 T IPRNTPK (NIL) -7 NIL NIL) (-536 1310996 1314331 1314400 "IPF" 1314405 NIL IPF (NIL NIL) -8 NIL NIL) (-535 1309313 1310921 1310978 "IPADIC" 1310983 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-534 1308812 1308870 1309059 "INVLAPLA" 1309249 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-533 1298461 1300814 1303200 "INTTR" 1306476 NIL INTTR (NIL T T) -7 NIL NIL) (-532 1294809 1295550 1296413 "INTTOOLS" 1297647 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-531 1294395 1294486 1294603 "INTSLPE" 1294712 T INTSLPE (NIL) -7 NIL NIL) (-530 1292345 1294318 1294377 "INTRVL" 1294382 NIL INTRVL (NIL T) -8 NIL NIL) (-529 1289952 1290464 1291038 "INTRF" 1291830 NIL INTRF (NIL T) -7 NIL NIL) (-528 1289367 1289464 1289605 "INTRET" 1289850 NIL INTRET (NIL T) -7 NIL NIL) (-527 1287369 1287758 1288227 "INTRAT" 1288975 NIL INTRAT (NIL T T) -7 NIL NIL) (-526 1284602 1285185 1285810 "INTPM" 1286854 NIL INTPM (NIL T T) -7 NIL NIL) (-525 1281311 1281910 1282654 "INTPAF" 1283988 NIL INTPAF (NIL T T T) -7 NIL NIL) (-524 1276554 1277500 1278535 "INTPACK" 1280296 T INTPACK (NIL) -7 NIL NIL) (-523 1273408 1276283 1276410 "INT" 1276447 T INT (NIL) -8 NIL NIL) (-522 1272660 1272812 1273020 "INTHERTR" 1273250 NIL INTHERTR (NIL T T) -7 NIL NIL) (-521 1272099 1272179 1272367 "INTHERAL" 1272574 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-520 1269945 1270388 1270845 "INTHEORY" 1271662 T INTHEORY (NIL) -7 NIL NIL) (-519 1261268 1262888 1264666 "INTG0" 1268297 NIL INTG0 (NIL T T T) -7 NIL NIL) (-518 1241841 1246631 1251441 "INTFTBL" 1256478 T INTFTBL (NIL) -8 NIL NIL) (-517 1241090 1241228 1241401 "INTFACT" 1241700 NIL INTFACT (NIL T) -7 NIL NIL) (-516 1238481 1238927 1239490 "INTEF" 1240644 NIL INTEF (NIL T T) -7 NIL NIL) (-515 1236943 1237692 1237720 "INTDOM" 1238021 T INTDOM (NIL) -9 NIL 1238228) (-514 1236312 1236486 1236728 "INTDOM-" 1236733 NIL INTDOM- (NIL T) -8 NIL NIL) (-513 1232805 1234737 1234791 "INTCAT" 1235590 NIL INTCAT (NIL T) -9 NIL 1235909) (-512 1232278 1232380 1232508 "INTBIT" 1232697 T INTBIT (NIL) -7 NIL NIL) (-511 1230953 1231107 1231420 "INTALG" 1232123 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-510 1230410 1230500 1230670 "INTAF" 1230857 NIL INTAF (NIL T T) -7 NIL NIL) (-509 1223864 1230220 1230360 "INTABL" 1230365 NIL INTABL (NIL T T T) -8 NIL NIL) (-508 1218815 1221544 1221572 "INS" 1222540 T INS (NIL) -9 NIL 1223221) (-507 1216055 1216826 1217800 "INS-" 1217873 NIL INS- (NIL T) -8 NIL NIL) (-506 1214834 1215061 1215358 "INPSIGN" 1215808 NIL INPSIGN (NIL T T) -7 NIL NIL) (-505 1213952 1214069 1214266 "INPRODPF" 1214714 NIL INPRODPF (NIL T T) -7 NIL NIL) (-504 1212846 1212963 1213200 "INPRODFF" 1213832 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-503 1211846 1211998 1212258 "INNMFACT" 1212682 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-502 1211043 1211140 1211328 "INMODGCD" 1211745 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-501 1209552 1209796 1210120 "INFSP" 1210788 NIL INFSP (NIL T T T) -7 NIL NIL) (-500 1208736 1208853 1209036 "INFPROD0" 1209432 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-499 1205746 1206905 1207396 "INFORM" 1208253 T INFORM (NIL) -8 NIL NIL) (-498 1205356 1205416 1205514 "INFORM1" 1205681 NIL INFORM1 (NIL T) -7 NIL NIL) (-497 1204879 1204968 1205082 "INFINITY" 1205262 T INFINITY (NIL) -7 NIL NIL) (-496 1203497 1203745 1204066 "INEP" 1204627 NIL INEP (NIL T T T) -7 NIL NIL) (-495 1202773 1203394 1203459 "INDE" 1203464 NIL INDE (NIL T) -8 NIL NIL) (-494 1202337 1202405 1202522 "INCRMAPS" 1202700 NIL INCRMAPS (NIL T) -7 NIL NIL) (-493 1197648 1198573 1199517 "INBFF" 1201425 NIL INBFF (NIL T) -7 NIL NIL) (-492 1194143 1197493 1197596 "IMATRIX" 1197601 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-491 1192855 1192978 1193293 "IMATQF" 1193999 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-490 1191075 1191302 1191639 "IMATLIN" 1192611 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-489 1185701 1190999 1191057 "ILIST" 1191062 NIL ILIST (NIL T NIL) -8 NIL NIL) (-488 1183654 1185561 1185674 "IIARRAY2" 1185679 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-487 1179022 1183565 1183629 "IFF" 1183634 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-486 1174065 1178314 1178502 "IFARRAY" 1178879 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-485 1173272 1173969 1174042 "IFAMON" 1174047 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-484 1172856 1172921 1172975 "IEVALAB" 1173182 NIL IEVALAB (NIL T T) -9 NIL NIL) (-483 1172531 1172599 1172759 "IEVALAB-" 1172764 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-482 1172189 1172445 1172508 "IDPO" 1172513 NIL IDPO (NIL T T) -8 NIL NIL) (-481 1171466 1172078 1172153 "IDPOAMS" 1172158 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-480 1170800 1171355 1171430 "IDPOAM" 1171435 NIL IDPOAM (NIL T T) -8 NIL NIL) (-479 1169886 1170136 1170189 "IDPC" 1170602 NIL IDPC (NIL T T) -9 NIL 1170751) (-478 1169382 1169778 1169851 "IDPAM" 1169856 NIL IDPAM (NIL T T) -8 NIL NIL) (-477 1168785 1169274 1169347 "IDPAG" 1169352 NIL IDPAG (NIL T T) -8 NIL NIL) (-476 1165040 1165888 1166783 "IDECOMP" 1167942 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-475 1157914 1158963 1160010 "IDEAL" 1164076 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-474 1157078 1157190 1157389 "ICDEN" 1157798 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-473 1156177 1156558 1156705 "ICARD" 1156951 T ICARD (NIL) -8 NIL NIL) (-472 1154249 1154562 1154965 "IBPTOOLS" 1155854 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-471 1149863 1153869 1153982 "IBITS" 1154168 NIL IBITS (NIL NIL) -8 NIL NIL) (-470 1146586 1147162 1147857 "IBATOOL" 1149280 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-469 1144366 1144827 1145360 "IBACHIN" 1146121 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-468 1142243 1144212 1144315 "IARRAY2" 1144320 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-467 1138396 1142169 1142226 "IARRAY1" 1142231 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-466 1132335 1136814 1137292 "IAN" 1137938 T IAN (NIL) -8 NIL NIL) (-465 1131846 1131903 1132076 "IALGFACT" 1132272 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-464 1131374 1131487 1131515 "HYPCAT" 1131722 T HYPCAT (NIL) -9 NIL NIL) (-463 1130912 1131029 1131215 "HYPCAT-" 1131220 NIL HYPCAT- (NIL T) -8 NIL NIL) (-462 1127592 1128923 1128964 "HOAGG" 1129945 NIL HOAGG (NIL T) -9 NIL 1130624) (-461 1126186 1126585 1127111 "HOAGG-" 1127116 NIL HOAGG- (NIL T T) -8 NIL NIL) (-460 1120017 1125627 1125793 "HEXADEC" 1126040 T HEXADEC (NIL) -8 NIL NIL) (-459 1118765 1118987 1119250 "HEUGCD" 1119794 NIL HEUGCD (NIL T) -7 NIL NIL) (-458 1117868 1118602 1118732 "HELLFDIV" 1118737 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-457 1116096 1117645 1117733 "HEAP" 1117812 NIL HEAP (NIL T) -8 NIL NIL) (-456 1109963 1116011 1116073 "HDP" 1116078 NIL HDP (NIL NIL T) -8 NIL NIL) (-455 1103675 1109600 1109751 "HDMP" 1109864 NIL HDMP (NIL NIL T) -8 NIL NIL) (-454 1103000 1103139 1103303 "HB" 1103531 T HB (NIL) -7 NIL NIL) (-453 1096497 1102846 1102950 "HASHTBL" 1102955 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-452 1094250 1096125 1096304 "HACKPI" 1096338 T HACKPI (NIL) -8 NIL NIL) (-451 1089946 1094104 1094216 "GTSET" 1094221 NIL GTSET (NIL T T T T) -8 NIL NIL) (-450 1083472 1089824 1089922 "GSTBL" 1089927 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-449 1075705 1082508 1082772 "GSERIES" 1083263 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-448 1074728 1075181 1075209 "GROUP" 1075470 T GROUP (NIL) -9 NIL 1075629) (-447 1073844 1074067 1074411 "GROUP-" 1074416 NIL GROUP- (NIL T) -8 NIL NIL) (-446 1072213 1072532 1072919 "GROEBSOL" 1073521 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-445 1071154 1071416 1071467 "GRMOD" 1071996 NIL GRMOD (NIL T T) -9 NIL 1072164) (-444 1070922 1070958 1071086 "GRMOD-" 1071091 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-443 1066250 1067276 1068276 "GRIMAGE" 1069942 T GRIMAGE (NIL) -8 NIL NIL) (-442 1064717 1064977 1065301 "GRDEF" 1065946 T GRDEF (NIL) -7 NIL NIL) (-441 1064161 1064277 1064418 "GRAY" 1064596 T GRAY (NIL) -7 NIL NIL) (-440 1063395 1063775 1063826 "GRALG" 1063979 NIL GRALG (NIL T T) -9 NIL 1064071) (-439 1063056 1063129 1063292 "GRALG-" 1063297 NIL GRALG- (NIL T T T) -8 NIL NIL) (-438 1059864 1062645 1062821 "GPOLSET" 1062963 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-437 1059220 1059277 1059534 "GOSPER" 1059801 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-436 1054979 1055658 1056184 "GMODPOL" 1058919 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-435 1053984 1054168 1054406 "GHENSEL" 1054791 NIL GHENSEL (NIL T T) -7 NIL NIL) (-434 1048050 1048893 1049919 "GENUPS" 1053068 NIL GENUPS (NIL T T) -7 NIL NIL) (-433 1047747 1047798 1047887 "GENUFACT" 1047993 NIL GENUFACT (NIL T) -7 NIL NIL) (-432 1047159 1047236 1047401 "GENPGCD" 1047665 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-431 1046633 1046668 1046881 "GENMFACT" 1047118 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-430 1045201 1045456 1045763 "GENEEZ" 1046376 NIL GENEEZ (NIL T T) -7 NIL NIL) (-429 1039075 1044814 1044975 "GDMP" 1045124 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-428 1028457 1032846 1033952 "GCNAALG" 1038058 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-427 1026879 1027751 1027779 "GCDDOM" 1028034 T GCDDOM (NIL) -9 NIL 1028191) (-426 1026349 1026476 1026691 "GCDDOM-" 1026696 NIL GCDDOM- (NIL T) -8 NIL NIL) (-425 1025021 1025206 1025510 "GB" 1026128 NIL GB (NIL T T T T) -7 NIL NIL) (-424 1013641 1015967 1018359 "GBINTERN" 1022712 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-423 1011478 1011770 1012191 "GBF" 1013316 NIL GBF (NIL T T T T) -7 NIL NIL) (-422 1010259 1010424 1010691 "GBEUCLID" 1011294 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-421 1009608 1009733 1009882 "GAUSSFAC" 1010130 T GAUSSFAC (NIL) -7 NIL NIL) (-420 1007985 1008287 1008600 "GALUTIL" 1009327 NIL GALUTIL (NIL T) -7 NIL NIL) (-419 1006302 1006576 1006899 "GALPOLYU" 1007712 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-418 1003691 1003981 1004386 "GALFACTU" 1005999 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-417 995497 996996 998604 "GALFACT" 1002123 NIL GALFACT (NIL T) -7 NIL NIL) (-416 992885 993543 993571 "FVFUN" 994727 T FVFUN (NIL) -9 NIL 995447) (-415 992151 992333 992361 "FVC" 992652 T FVC (NIL) -9 NIL 992835) (-414 991793 991948 992029 "FUNCTION" 992103 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-413 989463 990014 990503 "FT" 991324 T FT (NIL) -8 NIL NIL) (-412 988281 988764 988967 "FTEM" 989280 T FTEM (NIL) -8 NIL NIL) (-411 986546 986834 987236 "FSUPFACT" 987973 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-410 984943 985232 985564 "FST" 986234 T FST (NIL) -8 NIL NIL) (-409 984118 984224 984418 "FSRED" 984825 NIL FSRED (NIL T T) -7 NIL NIL) (-408 982797 983052 983406 "FSPRMELT" 983833 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-407 979882 980320 980819 "FSPECF" 982360 NIL FSPECF (NIL T T) -7 NIL NIL) (-406 962256 970813 970853 "FS" 974691 NIL FS (NIL T) -9 NIL 976973) (-405 950906 953896 957952 "FS-" 958249 NIL FS- (NIL T T) -8 NIL NIL) (-404 950422 950476 950652 "FSINT" 950847 NIL FSINT (NIL T T) -7 NIL NIL) (-403 948703 949415 949718 "FSERIES" 950201 NIL FSERIES (NIL T T) -8 NIL NIL) (-402 947721 947837 948067 "FSCINT" 948583 NIL FSCINT (NIL T T) -7 NIL NIL) (-401 943956 946666 946707 "FSAGG" 947077 NIL FSAGG (NIL T) -9 NIL 947336) (-400 941718 942319 943115 "FSAGG-" 943210 NIL FSAGG- (NIL T T) -8 NIL NIL) (-399 940760 940903 941130 "FSAGG2" 941571 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-398 938419 938698 939251 "FS2UPS" 940478 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-397 938005 938048 938201 "FS2" 938370 NIL FS2 (NIL T T T T) -7 NIL NIL) (-396 936865 937036 937344 "FS2EXPXP" 937830 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-395 936291 936406 936558 "FRUTIL" 936745 NIL FRUTIL (NIL T) -7 NIL NIL) (-394 927712 931790 933146 "FR" 934967 NIL FR (NIL T) -8 NIL NIL) (-393 922789 925432 925472 "FRNAALG" 926868 NIL FRNAALG (NIL T) -9 NIL 927475) (-392 918468 919538 920813 "FRNAALG-" 921563 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-391 918106 918149 918276 "FRNAAF2" 918419 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-390 916471 916963 917257 "FRMOD" 917919 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-389 914194 914862 915178 "FRIDEAL" 916262 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-388 913393 913480 913767 "FRIDEAL2" 914101 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-387 912651 913059 913100 "FRETRCT" 913105 NIL FRETRCT (NIL T) -9 NIL 913276) (-386 911763 911994 912345 "FRETRCT-" 912350 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-385 908973 910193 910252 "FRAMALG" 911134 NIL FRAMALG (NIL T T) -9 NIL 911426) (-384 907106 907562 908192 "FRAMALG-" 908415 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-383 901008 906581 906857 "FRAC" 906862 NIL FRAC (NIL T) -8 NIL NIL) (-382 900644 900701 900808 "FRAC2" 900945 NIL FRAC2 (NIL T T) -7 NIL NIL) (-381 900280 900337 900444 "FR2" 900581 NIL FR2 (NIL T T) -7 NIL NIL) (-380 894954 897867 897895 "FPS" 899014 T FPS (NIL) -9 NIL 899570) (-379 894403 894512 894676 "FPS-" 894822 NIL FPS- (NIL T) -8 NIL NIL) (-378 891852 893549 893577 "FPC" 893802 T FPC (NIL) -9 NIL 893944) (-377 891645 891685 891782 "FPC-" 891787 NIL FPC- (NIL T) -8 NIL NIL) (-376 890524 891134 891175 "FPATMAB" 891180 NIL FPATMAB (NIL T) -9 NIL 891332) (-375 888224 888700 889126 "FPARFRAC" 890161 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-374 883619 884116 884798 "FORTRAN" 887656 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-373 881335 881835 882374 "FORT" 883100 T FORT (NIL) -7 NIL NIL) (-372 879011 879573 879601 "FORTFN" 880661 T FORTFN (NIL) -9 NIL 881285) (-371 878775 878825 878853 "FORTCAT" 878912 T FORTCAT (NIL) -9 NIL 878974) (-370 876835 877318 877717 "FORMULA" 878396 T FORMULA (NIL) -8 NIL NIL) (-369 876623 876653 876722 "FORMULA1" 876799 NIL FORMULA1 (NIL T) -7 NIL NIL) (-368 876146 876198 876371 "FORDER" 876565 NIL FORDER (NIL T T T T) -7 NIL NIL) (-367 875242 875406 875599 "FOP" 875973 T FOP (NIL) -7 NIL NIL) (-366 873850 874522 874696 "FNLA" 875124 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-365 872519 872908 872936 "FNCAT" 873508 T FNCAT (NIL) -9 NIL 873801) (-364 872085 872478 872506 "FNAME" 872511 T FNAME (NIL) -8 NIL NIL) (-363 870745 871718 871746 "FMTC" 871751 T FMTC (NIL) -9 NIL 871786) (-362 867063 868270 868898 "FMONOID" 870150 NIL FMONOID (NIL T) -8 NIL NIL) (-361 866283 866806 866954 "FM" 866959 NIL FM (NIL T T) -8 NIL NIL) (-360 863707 864353 864381 "FMFUN" 865525 T FMFUN (NIL) -9 NIL 866233) (-359 862976 863157 863185 "FMC" 863475 T FMC (NIL) -9 NIL 863657) (-358 860206 861040 861093 "FMCAT" 862275 NIL FMCAT (NIL T T) -9 NIL 862769) (-357 859101 859974 860073 "FM1" 860151 NIL FM1 (NIL T T) -8 NIL NIL) (-356 856875 857291 857785 "FLOATRP" 858652 NIL FLOATRP (NIL T) -7 NIL NIL) (-355 850361 854531 855161 "FLOAT" 856265 T FLOAT (NIL) -8 NIL NIL) (-354 847799 848299 848877 "FLOATCP" 849828 NIL FLOATCP (NIL T) -7 NIL NIL) (-353 846588 847436 847476 "FLINEXP" 847481 NIL FLINEXP (NIL T) -9 NIL 847574) (-352 845743 845978 846305 "FLINEXP-" 846310 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-351 844819 844963 845187 "FLASORT" 845595 NIL FLASORT (NIL T T) -7 NIL NIL) (-350 842038 842880 842932 "FLALG" 844159 NIL FLALG (NIL T T) -9 NIL 844626) (-349 835823 839525 839566 "FLAGG" 840828 NIL FLAGG (NIL T) -9 NIL 841480) (-348 834549 834888 835378 "FLAGG-" 835383 NIL FLAGG- (NIL T T) -8 NIL NIL) (-347 833591 833734 833961 "FLAGG2" 834402 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-346 830564 831582 831641 "FINRALG" 832769 NIL FINRALG (NIL T T) -9 NIL 833277) (-345 829724 829953 830292 "FINRALG-" 830297 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-344 829131 829344 829372 "FINITE" 829568 T FINITE (NIL) -9 NIL 829675) (-343 821591 823752 823792 "FINAALG" 827459 NIL FINAALG (NIL T) -9 NIL 828912) (-342 816932 817973 819117 "FINAALG-" 820496 NIL FINAALG- (NIL T T) -8 NIL NIL) (-341 816327 816687 816790 "FILE" 816862 NIL FILE (NIL T) -8 NIL NIL) (-340 815012 815324 815378 "FILECAT" 816062 NIL FILECAT (NIL T T) -9 NIL 816278) (-339 812875 814431 814459 "FIELD" 814499 T FIELD (NIL) -9 NIL 814579) (-338 811495 811880 812391 "FIELD-" 812396 NIL FIELD- (NIL T) -8 NIL NIL) (-337 809310 810132 810478 "FGROUP" 811182 NIL FGROUP (NIL T) -8 NIL NIL) (-336 808400 808564 808784 "FGLMICPK" 809142 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-335 804202 808325 808382 "FFX" 808387 NIL FFX (NIL T NIL) -8 NIL NIL) (-334 803803 803864 803999 "FFSLPE" 804135 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-333 799798 800575 801371 "FFPOLY" 803039 NIL FFPOLY (NIL T) -7 NIL NIL) (-332 799302 799338 799547 "FFPOLY2" 799756 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-331 795124 799221 799284 "FFP" 799289 NIL FFP (NIL T NIL) -8 NIL NIL) (-330 790492 795035 795099 "FF" 795104 NIL FF (NIL NIL NIL) -8 NIL NIL) (-329 785588 789835 790025 "FFNBX" 790346 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-328 780498 784723 784981 "FFNBP" 785442 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-327 775101 779782 779993 "FFNB" 780331 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-326 773933 774131 774446 "FFINTBAS" 774898 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-325 770157 772397 772425 "FFIELDC" 773045 T FFIELDC (NIL) -9 NIL 773421) (-324 768820 769190 769687 "FFIELDC-" 769692 NIL FFIELDC- (NIL T) -8 NIL NIL) (-323 768390 768435 768559 "FFHOM" 768762 NIL FFHOM (NIL T T T) -7 NIL NIL) (-322 766088 766572 767089 "FFF" 767905 NIL FFF (NIL T) -7 NIL NIL) (-321 761676 765830 765931 "FFCGX" 766031 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-320 757278 761408 761515 "FFCGP" 761619 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-319 752431 757005 757113 "FFCG" 757214 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-318 734377 743500 743586 "FFCAT" 748751 NIL FFCAT (NIL T T T) -9 NIL 750238) (-317 729575 730622 731936 "FFCAT-" 733166 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-316 728986 729029 729264 "FFCAT2" 729526 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-315 718186 721976 723193 "FEXPR" 727841 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-314 717186 717621 717662 "FEVALAB" 717746 NIL FEVALAB (NIL T) -9 NIL 718007) (-313 716345 716555 716893 "FEVALAB-" 716898 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-312 714938 715728 715931 "FDIV" 716244 NIL FDIV (NIL T T T T) -8 NIL NIL) (-311 712005 712720 712835 "FDIVCAT" 714403 NIL FDIVCAT (NIL T T T T) -9 NIL 714840) (-310 711767 711794 711964 "FDIVCAT-" 711969 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-309 710987 711074 711351 "FDIV2" 711674 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-308 709673 709932 710221 "FCPAK1" 710718 T FCPAK1 (NIL) -7 NIL NIL) (-307 708801 709173 709314 "FCOMP" 709564 NIL FCOMP (NIL T) -8 NIL NIL) (-306 692437 695850 699411 "FC" 705260 T FC (NIL) -8 NIL NIL) (-305 685033 689079 689119 "FAXF" 690921 NIL FAXF (NIL T) -9 NIL 691612) (-304 682312 682967 683792 "FAXF-" 684257 NIL FAXF- (NIL T T) -8 NIL NIL) (-303 677412 681688 681864 "FARRAY" 682169 NIL FARRAY (NIL T) -8 NIL NIL) (-302 672803 674874 674926 "FAMR" 675938 NIL FAMR (NIL T T) -9 NIL 676398) (-301 671694 671996 672430 "FAMR-" 672435 NIL FAMR- (NIL T T T) -8 NIL NIL) (-300 670890 671616 671669 "FAMONOID" 671674 NIL FAMONOID (NIL T) -8 NIL NIL) (-299 668723 669407 669460 "FAMONC" 670401 NIL FAMONC (NIL T T) -9 NIL 670786) (-298 667415 668477 668614 "FAGROUP" 668619 NIL FAGROUP (NIL T) -8 NIL NIL) (-297 665218 665537 665939 "FACUTIL" 667096 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-296 664317 664502 664724 "FACTFUNC" 665028 NIL FACTFUNC (NIL T) -7 NIL NIL) (-295 656637 663568 663780 "EXPUPXS" 664173 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-294 654120 654660 655246 "EXPRTUBE" 656071 T EXPRTUBE (NIL) -7 NIL NIL) (-293 650314 650906 651643 "EXPRODE" 653459 NIL EXPRODE (NIL T T) -7 NIL NIL) (-292 635473 648973 649399 "EXPR" 649920 NIL EXPR (NIL T) -8 NIL NIL) (-291 629901 630488 631300 "EXPR2UPS" 634771 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-290 629537 629594 629701 "EXPR2" 629838 NIL EXPR2 (NIL T T) -7 NIL NIL) (-289 620891 628674 628969 "EXPEXPAN" 629375 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-288 620718 620848 620877 "EXIT" 620882 T EXIT (NIL) -8 NIL NIL) (-287 620345 620407 620520 "EVALCYC" 620650 NIL EVALCYC (NIL T) -7 NIL NIL) (-286 619886 620004 620045 "EVALAB" 620215 NIL EVALAB (NIL T) -9 NIL 620319) (-285 619367 619489 619710 "EVALAB-" 619715 NIL EVALAB- (NIL T T) -8 NIL NIL) (-284 616830 618142 618170 "EUCDOM" 618725 T EUCDOM (NIL) -9 NIL 619075) (-283 615235 615677 616267 "EUCDOM-" 616272 NIL EUCDOM- (NIL T) -8 NIL NIL) (-282 602813 605561 608301 "ESTOOLS" 612515 T ESTOOLS (NIL) -7 NIL NIL) (-281 602449 602506 602613 "ESTOOLS2" 602750 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-280 602200 602242 602322 "ESTOOLS1" 602401 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-279 596138 597862 597890 "ES" 600654 T ES (NIL) -9 NIL 602060) (-278 591086 592372 594189 "ES-" 594353 NIL ES- (NIL T) -8 NIL NIL) (-277 587461 588221 589001 "ESCONT" 590326 T ESCONT (NIL) -7 NIL NIL) (-276 587206 587238 587320 "ESCONT1" 587423 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-275 586881 586931 587031 "ES2" 587150 NIL ES2 (NIL T T) -7 NIL NIL) (-274 586511 586569 586678 "ES1" 586817 NIL ES1 (NIL T T) -7 NIL NIL) (-273 585727 585856 586032 "ERROR" 586355 T ERROR (NIL) -7 NIL NIL) (-272 579230 585586 585677 "EQTBL" 585682 NIL EQTBL (NIL T T) -8 NIL NIL) (-271 571667 574548 575995 "EQ" 577816 NIL -2608 (NIL T) -8 NIL NIL) (-270 571299 571356 571465 "EQ2" 571604 NIL EQ2 (NIL T T) -7 NIL NIL) (-269 566591 567637 568730 "EP" 570238 NIL EP (NIL T) -7 NIL NIL) (-268 565174 565474 565791 "ENV" 566294 T ENV (NIL) -8 NIL NIL) (-267 564334 564898 564926 "ENTIRER" 564931 T ENTIRER (NIL) -9 NIL 564976) (-266 560790 562289 562659 "EMR" 564133 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-265 559934 560119 560173 "ELTAGG" 560553 NIL ELTAGG (NIL T T) -9 NIL 560764) (-264 559653 559715 559856 "ELTAGG-" 559861 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-263 559442 559471 559525 "ELTAB" 559609 NIL ELTAB (NIL T T) -9 NIL NIL) (-262 558568 558714 558913 "ELFUTS" 559293 NIL ELFUTS (NIL T T) -7 NIL NIL) (-261 558310 558366 558394 "ELEMFUN" 558499 T ELEMFUN (NIL) -9 NIL NIL) (-260 558180 558201 558269 "ELEMFUN-" 558274 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-259 553072 556281 556322 "ELAGG" 557262 NIL ELAGG (NIL T) -9 NIL 557725) (-258 551357 551791 552454 "ELAGG-" 552459 NIL ELAGG- (NIL T T) -8 NIL NIL) (-257 550014 550294 550589 "ELABEXPR" 551082 T ELABEXPR (NIL) -8 NIL NIL) (-256 542882 544681 545508 "EFUPXS" 549290 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-255 536332 538133 538943 "EFULS" 542158 NIL EFULS (NIL T T T) -8 NIL NIL) (-254 533763 534121 534599 "EFSTRUC" 535964 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-253 522835 524400 525960 "EF" 532278 NIL EF (NIL T T) -7 NIL NIL) (-252 521936 522320 522469 "EAB" 522706 T EAB (NIL) -8 NIL NIL) (-251 521149 521895 521923 "E04UCFA" 521928 T E04UCFA (NIL) -8 NIL NIL) (-250 520362 521108 521136 "E04NAFA" 521141 T E04NAFA (NIL) -8 NIL NIL) (-249 519575 520321 520349 "E04MBFA" 520354 T E04MBFA (NIL) -8 NIL NIL) (-248 518788 519534 519562 "E04JAFA" 519567 T E04JAFA (NIL) -8 NIL NIL) (-247 518003 518747 518775 "E04GCFA" 518780 T E04GCFA (NIL) -8 NIL NIL) (-246 517218 517962 517990 "E04FDFA" 517995 T E04FDFA (NIL) -8 NIL NIL) (-245 516431 517177 517205 "E04DGFA" 517210 T E04DGFA (NIL) -8 NIL NIL) (-244 510616 511961 513323 "E04AGNT" 515089 T E04AGNT (NIL) -7 NIL NIL) (-243 509343 509823 509863 "DVARCAT" 510338 NIL DVARCAT (NIL T) -9 NIL 510536) (-242 508547 508759 509073 "DVARCAT-" 509078 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-241 501409 508349 508476 "DSMP" 508481 NIL DSMP (NIL T T T) -8 NIL NIL) (-240 496219 497354 498422 "DROPT" 500361 T DROPT (NIL) -8 NIL NIL) (-239 495884 495943 496041 "DROPT1" 496154 NIL DROPT1 (NIL T) -7 NIL NIL) (-238 490999 492125 493262 "DROPT0" 494767 T DROPT0 (NIL) -7 NIL NIL) (-237 489344 489669 490055 "DRAWPT" 490633 T DRAWPT (NIL) -7 NIL NIL) (-236 483931 484854 485933 "DRAW" 488318 NIL DRAW (NIL T) -7 NIL NIL) (-235 483564 483617 483735 "DRAWHACK" 483872 NIL DRAWHACK (NIL T) -7 NIL NIL) (-234 482295 482564 482855 "DRAWCX" 483293 T DRAWCX (NIL) -7 NIL NIL) (-233 481813 481881 482031 "DRAWCURV" 482221 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-232 472285 474243 476358 "DRAWCFUN" 479718 T DRAWCFUN (NIL) -7 NIL NIL) (-231 469099 470981 471022 "DQAGG" 471651 NIL DQAGG (NIL T) -9 NIL 471924) (-230 457606 464344 464426 "DPOLCAT" 466264 NIL DPOLCAT (NIL T T T T) -9 NIL 466808) (-229 452446 453792 455749 "DPOLCAT-" 455754 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-228 446530 452308 452405 "DPMO" 452410 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-227 440517 446311 446477 "DPMM" 446482 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-226 440030 440128 440248 "DOMAIN" 440417 T DOMAIN (NIL) -8 NIL NIL) (-225 433742 439667 439818 "DMP" 439931 NIL DMP (NIL NIL T) -8 NIL NIL) (-224 433342 433398 433542 "DLP" 433680 NIL DLP (NIL T) -7 NIL NIL) (-223 426986 432443 432670 "DLIST" 433147 NIL DLIST (NIL T) -8 NIL NIL) (-222 423833 425842 425883 "DLAGG" 426433 NIL DLAGG (NIL T) -9 NIL 426662) (-221 422543 423235 423263 "DIVRING" 423413 T DIVRING (NIL) -9 NIL 423521) (-220 421531 421784 422177 "DIVRING-" 422182 NIL DIVRING- (NIL T) -8 NIL NIL) (-219 419633 419990 420396 "DISPLAY" 421145 T DISPLAY (NIL) -7 NIL NIL) (-218 413522 419547 419610 "DIRPROD" 419615 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-217 412370 412573 412838 "DIRPROD2" 413315 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-216 402001 408006 408059 "DIRPCAT" 408467 NIL DIRPCAT (NIL NIL T) -9 NIL 409294) (-215 399327 399969 400850 "DIRPCAT-" 401187 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-214 398614 398774 398960 "DIOSP" 399161 T DIOSP (NIL) -7 NIL NIL) (-213 395317 397527 397568 "DIOPS" 398002 NIL DIOPS (NIL T) -9 NIL 398231) (-212 394866 394980 395171 "DIOPS-" 395176 NIL DIOPS- (NIL T T) -8 NIL NIL) (-211 393738 394376 394404 "DIFRING" 394591 T DIFRING (NIL) -9 NIL 394700) (-210 393384 393461 393613 "DIFRING-" 393618 NIL DIFRING- (NIL T) -8 NIL NIL) (-209 391174 392456 392496 "DIFEXT" 392855 NIL DIFEXT (NIL T) -9 NIL 393148) (-208 389460 389888 390553 "DIFEXT-" 390558 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-207 386783 388993 389034 "DIAGG" 389039 NIL DIAGG (NIL T) -9 NIL 389059) (-206 386167 386324 386576 "DIAGG-" 386581 NIL DIAGG- (NIL T T) -8 NIL NIL) (-205 381632 385126 385403 "DHMATRIX" 385936 NIL DHMATRIX (NIL T) -8 NIL NIL) (-204 377244 378153 379163 "DFSFUN" 380642 T DFSFUN (NIL) -7 NIL NIL) (-203 372030 375958 376323 "DFLOAT" 376899 T DFLOAT (NIL) -8 NIL NIL) (-202 370263 370544 370939 "DFINTTLS" 371738 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-201 367296 368298 368696 "DERHAM" 369930 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-200 365145 367071 367160 "DEQUEUE" 367240 NIL DEQUEUE (NIL T) -8 NIL NIL) (-199 364363 364496 364691 "DEGRED" 365007 NIL DEGRED (NIL T T) -7 NIL NIL) (-198 360763 361508 362360 "DEFINTRF" 363591 NIL DEFINTRF (NIL T) -7 NIL NIL) (-197 358294 358763 359361 "DEFINTEF" 360282 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-196 352125 357735 357901 "DECIMAL" 358148 T DECIMAL (NIL) -8 NIL NIL) (-195 349637 350095 350601 "DDFACT" 351669 NIL DDFACT (NIL T T) -7 NIL NIL) (-194 349233 349276 349427 "DBLRESP" 349588 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-193 346943 347277 347646 "DBASE" 348991 NIL DBASE (NIL T) -8 NIL NIL) (-192 346078 346902 346930 "D03FAFA" 346935 T D03FAFA (NIL) -8 NIL NIL) (-191 345214 346037 346065 "D03EEFA" 346070 T D03EEFA (NIL) -8 NIL NIL) (-190 343164 343630 344119 "D03AGNT" 344745 T D03AGNT (NIL) -7 NIL NIL) (-189 342482 343123 343151 "D02EJFA" 343156 T D02EJFA (NIL) -8 NIL NIL) (-188 341800 342441 342469 "D02CJFA" 342474 T D02CJFA (NIL) -8 NIL NIL) (-187 341118 341759 341787 "D02BHFA" 341792 T D02BHFA (NIL) -8 NIL NIL) (-186 340436 341077 341105 "D02BBFA" 341110 T D02BBFA (NIL) -8 NIL NIL) (-185 333634 335222 336828 "D02AGNT" 338850 T D02AGNT (NIL) -7 NIL NIL) (-184 331403 331925 332471 "D01WGTS" 333108 T D01WGTS (NIL) -7 NIL NIL) (-183 330506 331362 331390 "D01TRNS" 331395 T D01TRNS (NIL) -8 NIL NIL) (-182 329609 330465 330493 "D01GBFA" 330498 T D01GBFA (NIL) -8 NIL NIL) (-181 328712 329568 329596 "D01FCFA" 329601 T D01FCFA (NIL) -8 NIL NIL) (-180 327815 328671 328699 "D01ASFA" 328704 T D01ASFA (NIL) -8 NIL NIL) (-179 326918 327774 327802 "D01AQFA" 327807 T D01AQFA (NIL) -8 NIL NIL) (-178 326021 326877 326905 "D01APFA" 326910 T D01APFA (NIL) -8 NIL NIL) (-177 325124 325980 326008 "D01ANFA" 326013 T D01ANFA (NIL) -8 NIL NIL) (-176 324227 325083 325111 "D01AMFA" 325116 T D01AMFA (NIL) -8 NIL NIL) (-175 323330 324186 324214 "D01ALFA" 324219 T D01ALFA (NIL) -8 NIL NIL) (-174 322433 323289 323317 "D01AKFA" 323322 T D01AKFA (NIL) -8 NIL NIL) (-173 321536 322392 322420 "D01AJFA" 322425 T D01AJFA (NIL) -8 NIL NIL) (-172 314840 316389 317948 "D01AGNT" 319997 T D01AGNT (NIL) -7 NIL NIL) (-171 314177 314305 314457 "CYCLOTOM" 314708 T CYCLOTOM (NIL) -7 NIL NIL) (-170 310912 311625 312352 "CYCLES" 313470 T CYCLES (NIL) -7 NIL NIL) (-169 310224 310358 310529 "CVMP" 310773 NIL CVMP (NIL T) -7 NIL NIL) (-168 308006 308263 308638 "CTRIGMNP" 309952 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-167 307611 307694 307799 "CTORCALL" 307921 T CTORCALL (NIL) -8 NIL NIL) (-166 306985 307084 307237 "CSTTOOLS" 307508 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-165 302784 303441 304199 "CRFP" 306297 NIL CRFP (NIL T T) -7 NIL NIL) (-164 301831 302016 302244 "CRAPACK" 302588 NIL CRAPACK (NIL T) -7 NIL NIL) (-163 301215 301316 301520 "CPMATCH" 301707 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-162 300940 300968 301074 "CPIMA" 301181 NIL CPIMA (NIL T T T) -7 NIL NIL) (-161 297304 297976 298694 "COORDSYS" 300275 NIL COORDSYS (NIL T) -7 NIL NIL) (-160 296688 296817 296967 "CONTOUR" 297174 T CONTOUR (NIL) -8 NIL NIL) (-159 292549 294691 295183 "CONTFRAC" 296228 NIL CONTFRAC (NIL T) -8 NIL NIL) (-158 291703 292267 292295 "COMRING" 292300 T COMRING (NIL) -9 NIL 292351) (-157 290784 291061 291245 "COMPPROP" 291539 T COMPPROP (NIL) -8 NIL NIL) (-156 290445 290480 290608 "COMPLPAT" 290743 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-155 280426 290254 290363 "COMPLEX" 290368 NIL COMPLEX (NIL T) -8 NIL NIL) (-154 280062 280119 280226 "COMPLEX2" 280363 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-153 279780 279815 279913 "COMPFACT" 280021 NIL COMPFACT (NIL T T) -7 NIL NIL) (-152 264115 274409 274449 "COMPCAT" 275451 NIL COMPCAT (NIL T) -9 NIL 276844) (-151 253630 256554 260181 "COMPCAT-" 260537 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-150 253361 253389 253491 "COMMUPC" 253596 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-149 253156 253189 253248 "COMMONOP" 253322 T COMMONOP (NIL) -7 NIL NIL) (-148 252739 252907 252994 "COMM" 253089 T COMM (NIL) -8 NIL NIL) (-147 251988 252182 252210 "COMBOPC" 252548 T COMBOPC (NIL) -9 NIL 252723) (-146 250884 251094 251336 "COMBINAT" 251778 NIL COMBINAT (NIL T) -7 NIL NIL) (-145 247082 247655 248295 "COMBF" 250306 NIL COMBF (NIL T T) -7 NIL NIL) (-144 245868 246198 246433 "COLOR" 246867 T COLOR (NIL) -8 NIL NIL) (-143 245508 245555 245680 "CMPLXRT" 245815 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-142 241010 242038 243118 "CLIP" 244448 T CLIP (NIL) -7 NIL NIL) (-141 239348 240118 240356 "CLIF" 240838 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-140 235571 237495 237536 "CLAGG" 238465 NIL CLAGG (NIL T) -9 NIL 239001) (-139 233993 234450 235033 "CLAGG-" 235038 NIL CLAGG- (NIL T T) -8 NIL NIL) (-138 233537 233622 233762 "CINTSLPE" 233902 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-137 231038 231509 232057 "CHVAR" 233065 NIL CHVAR (NIL T T T) -7 NIL NIL) (-136 230261 230825 230853 "CHARZ" 230858 T CHARZ (NIL) -9 NIL 230872) (-135 230015 230055 230133 "CHARPOL" 230215 NIL CHARPOL (NIL T) -7 NIL NIL) (-134 229122 229719 229747 "CHARNZ" 229794 T CHARNZ (NIL) -9 NIL 229849) (-133 227147 227812 228147 "CHAR" 228807 T CHAR (NIL) -8 NIL NIL) (-132 226873 226934 226962 "CFCAT" 227073 T CFCAT (NIL) -9 NIL NIL) (-131 226118 226229 226411 "CDEN" 226757 NIL CDEN (NIL T T T) -7 NIL NIL) (-130 222110 225271 225551 "CCLASS" 225858 T CCLASS (NIL) -8 NIL NIL) (-129 222029 222055 222090 "CATEGORY" 222095 T -10 (NIL) -8 NIL NIL) (-128 217082 218058 218811 "CARTEN" 221332 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-127 216190 216338 216559 "CARTEN2" 216929 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-126 214487 215342 215598 "CARD" 215954 T CARD (NIL) -8 NIL NIL) (-125 213860 214188 214216 "CACHSET" 214348 T CACHSET (NIL) -9 NIL 214425) (-124 213357 213653 213681 "CABMON" 213731 T CABMON (NIL) -9 NIL 213787) (-123 210914 213049 213156 "BTREE" 213283 NIL BTREE (NIL T) -8 NIL NIL) (-122 208412 210562 210684 "BTOURN" 210824 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205831 207884 207925 "BTCAT" 207993 NIL BTCAT (NIL T) -9 NIL 208070) (-120 205498 205578 205727 "BTCAT-" 205732 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200719 204590 204618 "BTAGG" 204874 T BTAGG (NIL) -9 NIL 205053) (-118 200142 200286 200516 "BTAGG-" 200521 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 197186 199420 199635 "BSTREE" 199959 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196324 196450 196634 "BRILL" 197042 NIL BRILL (NIL T) -7 NIL NIL) (-115 193026 195053 195094 "BRAGG" 195743 NIL BRAGG (NIL T) -9 NIL 196000) (-114 191555 191961 192516 "BRAGG-" 192521 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184763 190901 191085 "BPADICRT" 191403 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 183067 184700 184745 "BPADIC" 184750 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182767 182797 182910 "BOUNDZRO" 183031 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 178282 179373 180240 "BOP" 181920 T BOP (NIL) -8 NIL NIL) (-109 175903 176347 176867 "BOP1" 177795 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174522 175233 175456 "BOOLEAN" 175700 T BOOLEAN (NIL) -8 NIL NIL) (-107 173889 174267 174319 "BMODULE" 174324 NIL BMODULE (NIL T T) -9 NIL 174388) (-106 169699 173687 173760 "BITS" 173836 T BITS (NIL) -8 NIL NIL) (-105 168796 169231 169383 "BINFILE" 169567 T BINFILE (NIL) -8 NIL NIL) (-104 168208 168330 168472 "BINDING" 168674 T BINDING (NIL) -8 NIL NIL) (-103 162043 167652 167817 "BINARY" 168063 T BINARY (NIL) -8 NIL NIL) (-102 159871 161299 161340 "BGAGG" 161600 NIL BGAGG (NIL T) -9 NIL 161737) (-101 159702 159734 159825 "BGAGG-" 159830 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158800 159086 159291 "BFUNCT" 159517 T BFUNCT (NIL) -8 NIL NIL) (-99 157501 157679 157964 "BEZOUT" 158624 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154026 156361 156689 "BBTREE" 157204 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153764 153817 153843 "BASTYPE" 153960 T BASTYPE (NIL) -9 NIL NIL) (-96 153619 153648 153718 "BASTYPE-" 153723 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153057 153133 153283 "BALFACT" 153530 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151879 152476 152661 "AUTOMOR" 152902 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151605 151610 151636 "ATTREG" 151641 T ATTREG (NIL) -9 NIL NIL) (-92 149884 150302 150654 "ATTRBUT" 151271 T ATTRBUT (NIL) -8 NIL NIL) (-91 149420 149533 149559 "ATRIG" 149760 T ATRIG (NIL) -9 NIL NIL) (-90 149229 149270 149357 "ATRIG-" 149362 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147426 149005 149093 "ASTACK" 149172 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145931 146228 146593 "ASSOCEQ" 147108 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144963 145590 145714 "ASP9" 145838 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144727 144911 144950 "ASP8" 144955 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143597 144332 144474 "ASP80" 144616 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142496 143232 143364 "ASP7" 143496 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141452 142173 142291 "ASP78" 142409 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140423 141132 141249 "ASP77" 141366 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139338 140061 140192 "ASP74" 140323 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138239 138973 139105 "ASP73" 139237 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137194 137916 138034 "ASP6" 138152 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136143 136871 136989 "ASP55" 137107 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135093 135817 135936 "ASP50" 136055 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134181 134794 134904 "ASP4" 135014 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133269 133882 133992 "ASP49" 134102 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132054 132808 132976 "ASP42" 133158 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130832 131587 131757 "ASP41" 131941 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129784 130509 130627 "ASP35" 130745 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129549 129732 129771 "ASP34" 129776 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129286 129353 129429 "ASP33" 129504 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128182 128921 129053 "ASP31" 129185 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127947 128130 128169 "ASP30" 128174 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127682 127751 127827 "ASP29" 127902 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127447 127630 127669 "ASP28" 127674 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127212 127395 127434 "ASP27" 127439 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126296 126910 127021 "ASP24" 127132 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125213 125937 126067 "ASP20" 126197 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124301 124914 125024 "ASP1" 125134 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123245 123975 124094 "ASP19" 124213 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122982 123049 123125 "ASP12" 123200 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121835 122581 122725 "ASP10" 122869 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119734 121679 121770 "ARRAY2" 121775 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115550 119382 119496 "ARRAY1" 119651 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114582 114755 114976 "ARRAY12" 115373 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108942 110813 110888 "ARR2CAT" 113518 NIL ARR2CAT (NIL T T T) -9 NIL 114276) (-54 106376 107120 108074 "ARR2CAT-" 108079 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105136 105286 105589 "APPRULE" 106214 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104789 104837 104955 "APPLYORE" 105082 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103763 104054 104249 "ANY" 104612 T ANY (NIL) -8 NIL NIL) (-50 103041 103164 103321 "ANY1" 103637 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100573 101491 101816 "ANTISYM" 102766 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100088 100277 100374 "ANON" 100494 T ANON (NIL) -8 NIL NIL) (-47 94165 98633 99084 "AN" 99655 T AN (NIL) -8 NIL NIL) (-46 90519 91917 91967 "AMR" 92706 NIL AMR (NIL T T) -9 NIL 93305) (-45 89632 89853 90215 "AMR-" 90220 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74182 89549 89610 "ALIST" 89615 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71019 73776 73945 "ALGSC" 74100 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67575 68129 68736 "ALGPKG" 70459 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66852 66953 67137 "ALGMFACT" 67461 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62602 63282 63936 "ALGMANIP" 66376 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53921 62228 62378 "ALGFF" 62535 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53117 53248 53427 "ALGFACT" 53779 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52108 52718 52756 "ALGEBRA" 52816 NIL ALGEBRA (NIL T) -9 NIL 52874) (-36 51826 51885 52017 "ALGEBRA-" 52022 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34087 49830 49882 "ALAGG" 50018 NIL ALAGG (NIL T T) -9 NIL 50179) (-34 33623 33736 33762 "AHYP" 33963 T AHYP (NIL) -9 NIL NIL) (-33 32554 32802 32828 "AGG" 33327 T AGG (NIL) -9 NIL 33606) (-32 31988 32150 32364 "AGG-" 32369 NIL AGG- (NIL T) -8 NIL NIL) (-31 29675 30093 30510 "AF" 31631 NIL AF (NIL T T) -7 NIL NIL) (-30 28944 29202 29358 "ACPLOT" 29537 T ACPLOT (NIL) -8 NIL NIL) (-29 18411 26357 26408 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358) (-28 16425 16915 17690 "ACFS-" 17695 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14649 14675 "ACF" 15554 T ACF (NIL) -9 NIL 15966) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +((-3 3139883 3139888 3139893 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3139868 3139873 3139878 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3139853 3139858 3139863 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3139838 3139843 3139848 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1195 3138968 3139713 3139790 "ZMOD" 3139795 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1194 3138078 3138242 3138451 "ZLINDEP" 3138800 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1193 3127482 3129227 3131179 "ZDSOLVE" 3136227 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1192 3126728 3126869 3127058 "YSTREAM" 3127328 NIL YSTREAM (NIL T) -7 NIL NIL) (-1191 3124497 3126033 3126236 "XRPOLY" 3126571 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1190 3120959 3122288 3122870 "XPR" 3123961 NIL XPR (NIL T T) -8 NIL NIL) (-1189 3118673 3120294 3120497 "XPOLY" 3120790 NIL XPOLY (NIL T) -8 NIL NIL) (-1188 3116487 3117865 3117919 "XPOLYC" 3118204 NIL XPOLYC (NIL T T) -9 NIL 3118317) (-1187 3112859 3115004 3115392 "XPBWPOLY" 3116145 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1186 3108787 3111100 3111142 "XF" 3111763 NIL XF (NIL T) -9 NIL 3112162) (-1185 3108408 3108496 3108665 "XF-" 3108670 NIL XF- (NIL T T) -8 NIL NIL) (-1184 3103788 3105087 3105141 "XFALG" 3107289 NIL XFALG (NIL T T) -9 NIL 3108076) (-1183 3102925 3103029 3103233 "XEXPPKG" 3103680 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1182 3101024 3102776 3102871 "XDPOLY" 3102876 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1181 3099903 3100513 3100555 "XALG" 3100617 NIL XALG (NIL T) -9 NIL 3100736) (-1180 3093379 3097887 3098380 "WUTSET" 3099495 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1179 3091191 3091998 3092349 "WP" 3093161 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1178 3090077 3090275 3090570 "WFFINTBS" 3090988 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1177 3087981 3088408 3088870 "WEIER" 3089649 NIL WEIER (NIL T) -7 NIL NIL) (-1176 3087130 3087554 3087596 "VSPACE" 3087732 NIL VSPACE (NIL T) -9 NIL 3087806) (-1175 3086968 3086995 3087086 "VSPACE-" 3087091 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1174 3086714 3086757 3086828 "VOID" 3086919 T VOID (NIL) -8 NIL NIL) (-1173 3084850 3085209 3085615 "VIEW" 3086330 T VIEW (NIL) -7 NIL NIL) (-1172 3081275 3081913 3082650 "VIEWDEF" 3084135 T VIEWDEF (NIL) -7 NIL NIL) (-1171 3070614 3072823 3074996 "VIEW3D" 3079124 T VIEW3D (NIL) -8 NIL NIL) (-1170 3062896 3064525 3066104 "VIEW2D" 3069057 T VIEW2D (NIL) -8 NIL NIL) (-1169 3058305 3062666 3062758 "VECTOR" 3062839 NIL VECTOR (NIL T) -8 NIL NIL) (-1168 3056882 3057141 3057459 "VECTOR2" 3058035 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1167 3050422 3054674 3054717 "VECTCAT" 3055705 NIL VECTCAT (NIL T) -9 NIL 3056289) (-1166 3049436 3049690 3050080 "VECTCAT-" 3050085 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1165 3048917 3049087 3049207 "VARIABLE" 3049351 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1164 3048850 3048855 3048885 "UTYPE" 3048890 T UTYPE (NIL) -9 NIL NIL) (-1163 3047685 3047839 3048100 "UTSODETL" 3048676 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1162 3045125 3045585 3046109 "UTSODE" 3047226 NIL UTSODE (NIL T T) -7 NIL NIL) (-1161 3036969 3042765 3043253 "UTS" 3044694 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1160 3028314 3033679 3033721 "UTSCAT" 3034822 NIL UTSCAT (NIL T) -9 NIL 3035579) (-1159 3025669 3026385 3027373 "UTSCAT-" 3027378 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1158 3025300 3025343 3025474 "UTS2" 3025620 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1157 3019576 3022141 3022184 "URAGG" 3024254 NIL URAGG (NIL T) -9 NIL 3024976) (-1156 3016515 3017378 3018501 "URAGG-" 3018506 NIL URAGG- (NIL T T) -8 NIL NIL) (-1155 3012201 3015132 3015603 "UPXSSING" 3016179 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1154 3004092 3011322 3011602 "UPXS" 3011978 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1153 2997121 3003997 3004068 "UPXSCONS" 3004073 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1152 2987410 2994240 2994301 "UPXSCCA" 2994950 NIL UPXSCCA (NIL T T) -9 NIL 2995191) (-1151 2987049 2987134 2987307 "UPXSCCA-" 2987312 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1150 2977260 2983863 2983905 "UPXSCAT" 2984548 NIL UPXSCAT (NIL T) -9 NIL 2985156) (-1149 2976694 2976773 2976950 "UPXS2" 2977175 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1148 2975348 2975601 2975952 "UPSQFREE" 2976437 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1147 2969239 2972294 2972348 "UPSCAT" 2973497 NIL UPSCAT (NIL T T) -9 NIL 2974271) (-1146 2968444 2968651 2968977 "UPSCAT-" 2968982 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1145 2954530 2962567 2962609 "UPOLYC" 2964687 NIL UPOLYC (NIL T) -9 NIL 2965908) (-1144 2945860 2948285 2951431 "UPOLYC-" 2951436 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1143 2945491 2945534 2945665 "UPOLYC2" 2945811 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1142 2936910 2945060 2945197 "UP" 2945401 NIL UP (NIL NIL T) -8 NIL NIL) (-1141 2936253 2936360 2936523 "UPMP" 2936799 NIL UPMP (NIL T T) -7 NIL NIL) (-1140 2935806 2935887 2936026 "UPDIVP" 2936166 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1139 2934374 2934623 2934939 "UPDECOMP" 2935555 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1138 2933609 2933721 2933906 "UPCDEN" 2934258 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1137 2933132 2933201 2933348 "UP2" 2933534 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1136 2931649 2932336 2932613 "UNISEG" 2932890 NIL UNISEG (NIL T) -8 NIL NIL) (-1135 2930864 2930991 2931196 "UNISEG2" 2931492 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1134 2929924 2930104 2930330 "UNIFACT" 2930680 NIL UNIFACT (NIL T) -7 NIL NIL) (-1133 2913820 2929105 2929355 "ULS" 2929731 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1132 2901785 2913725 2913796 "ULSCONS" 2913801 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1131 2884535 2896548 2896609 "ULSCCAT" 2897321 NIL ULSCCAT (NIL T T) -9 NIL 2897617) (-1130 2883586 2883831 2884218 "ULSCCAT-" 2884223 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1129 2873576 2880093 2880135 "ULSCAT" 2880991 NIL ULSCAT (NIL T) -9 NIL 2881721) (-1128 2873010 2873089 2873266 "ULS2" 2873491 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1127 2871408 2872375 2872405 "UFD" 2872617 T UFD (NIL) -9 NIL 2872731) (-1126 2871202 2871248 2871343 "UFD-" 2871348 NIL UFD- (NIL T) -8 NIL NIL) (-1125 2870284 2870467 2870683 "UDVO" 2871008 T UDVO (NIL) -7 NIL NIL) (-1124 2868100 2868509 2868980 "UDPO" 2869848 NIL UDPO (NIL T) -7 NIL NIL) (-1123 2868033 2868038 2868068 "TYPE" 2868073 T TYPE (NIL) -9 NIL NIL) (-1122 2867004 2867206 2867446 "TWOFACT" 2867827 NIL TWOFACT (NIL T) -7 NIL NIL) (-1121 2865942 2866279 2866542 "TUPLE" 2866776 NIL TUPLE (NIL T) -8 NIL NIL) (-1120 2863633 2864152 2864691 "TUBETOOL" 2865425 T TUBETOOL (NIL) -7 NIL NIL) (-1119 2862482 2862687 2862928 "TUBE" 2863426 NIL TUBE (NIL T) -8 NIL NIL) (-1118 2857206 2861460 2861742 "TS" 2862234 NIL TS (NIL T) -8 NIL NIL) (-1117 2845910 2850002 2850098 "TSETCAT" 2855332 NIL TSETCAT (NIL T T T T) -9 NIL 2856863) (-1116 2840645 2842243 2844133 "TSETCAT-" 2844138 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1115 2834908 2835754 2836696 "TRMANIP" 2839781 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1114 2834349 2834412 2834575 "TRIMAT" 2834840 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1113 2832155 2832392 2832755 "TRIGMNIP" 2834098 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1112 2831675 2831788 2831818 "TRIGCAT" 2832031 T TRIGCAT (NIL) -9 NIL NIL) (-1111 2831344 2831423 2831564 "TRIGCAT-" 2831569 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1110 2828243 2830204 2830484 "TREE" 2831099 NIL TREE (NIL T) -8 NIL NIL) (-1109 2827517 2828045 2828075 "TRANFUN" 2828110 T TRANFUN (NIL) -9 NIL 2828176) (-1108 2826796 2826987 2827267 "TRANFUN-" 2827272 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1107 2826600 2826632 2826693 "TOPSP" 2826757 T TOPSP (NIL) -7 NIL NIL) (-1106 2825952 2826067 2826220 "TOOLSIGN" 2826481 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1105 2824613 2825129 2825368 "TEXTFILE" 2825735 T TEXTFILE (NIL) -8 NIL NIL) (-1104 2822478 2822992 2823430 "TEX" 2824197 T TEX (NIL) -8 NIL NIL) (-1103 2822259 2822290 2822362 "TEX1" 2822441 NIL TEX1 (NIL T) -7 NIL NIL) (-1102 2821907 2821970 2822060 "TEMUTL" 2822191 T TEMUTL (NIL) -7 NIL NIL) (-1101 2820061 2820341 2820666 "TBCMPPK" 2821630 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1100 2811950 2818222 2818278 "TBAGG" 2818678 NIL TBAGG (NIL T T) -9 NIL 2818889) (-1099 2807020 2808508 2810262 "TBAGG-" 2810267 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1098 2806404 2806511 2806656 "TANEXP" 2806909 NIL TANEXP (NIL T) -7 NIL NIL) (-1097 2799905 2806261 2806354 "TABLE" 2806359 NIL TABLE (NIL T T) -8 NIL NIL) (-1096 2799318 2799416 2799554 "TABLEAU" 2799802 NIL TABLEAU (NIL T) -8 NIL NIL) (-1095 2793926 2795146 2796394 "TABLBUMP" 2798104 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1094 2793354 2793454 2793582 "SYSTEM" 2793820 T SYSTEM (NIL) -7 NIL NIL) (-1093 2789817 2790512 2791295 "SYSSOLP" 2792605 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1092 2786108 2786816 2787550 "SYNTAX" 2789105 T SYNTAX (NIL) -8 NIL NIL) (-1091 2783242 2783850 2784488 "SYMTAB" 2785492 T SYMTAB (NIL) -8 NIL NIL) (-1090 2778491 2779393 2780376 "SYMS" 2782281 T SYMS (NIL) -8 NIL NIL) (-1089 2775724 2777951 2778180 "SYMPOLY" 2778296 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1088 2775244 2775319 2775441 "SYMFUNC" 2775636 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1087 2771221 2772481 2773303 "SYMBOL" 2774444 T SYMBOL (NIL) -8 NIL NIL) (-1086 2764760 2766449 2768169 "SWITCH" 2769523 T SWITCH (NIL) -8 NIL NIL) (-1085 2757990 2763587 2763889 "SUTS" 2764515 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1084 2749880 2757111 2757391 "SUPXS" 2757767 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1083 2741372 2749501 2749626 "SUP" 2749789 NIL SUP (NIL T) -8 NIL NIL) (-1082 2740531 2740658 2740875 "SUPFRACF" 2741240 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1081 2740156 2740215 2740326 "SUP2" 2740466 NIL SUP2 (NIL T T) -7 NIL NIL) (-1080 2738574 2738848 2739210 "SUMRF" 2739855 NIL SUMRF (NIL T) -7 NIL NIL) (-1079 2737891 2737957 2738155 "SUMFS" 2738495 NIL SUMFS (NIL T T) -7 NIL NIL) (-1078 2721827 2737072 2737322 "SULS" 2737698 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1077 2721149 2721352 2721492 "SUCH" 2721735 NIL SUCH (NIL T T) -8 NIL NIL) (-1076 2715076 2716088 2717046 "SUBSPACE" 2720237 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1075 2714506 2714596 2714760 "SUBRESP" 2714964 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1074 2707875 2709171 2710482 "STTF" 2713242 NIL STTF (NIL T) -7 NIL NIL) (-1073 2702048 2703168 2704315 "STTFNC" 2706775 NIL STTFNC (NIL T) -7 NIL NIL) (-1072 2693399 2695266 2697059 "STTAYLOR" 2700289 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1071 2686643 2693263 2693346 "STRTBL" 2693351 NIL STRTBL (NIL T) -8 NIL NIL) (-1070 2682034 2686598 2686629 "STRING" 2686634 T STRING (NIL) -8 NIL NIL) (-1069 2676923 2681408 2681438 "STRICAT" 2681497 T STRICAT (NIL) -9 NIL 2681559) (-1068 2669639 2674446 2675066 "STREAM" 2676338 NIL STREAM (NIL T) -8 NIL NIL) (-1067 2669149 2669226 2669370 "STREAM3" 2669556 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1066 2668131 2668314 2668549 "STREAM2" 2668962 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1065 2667819 2667871 2667964 "STREAM1" 2668073 NIL STREAM1 (NIL T) -7 NIL NIL) (-1064 2666835 2667016 2667247 "STINPROD" 2667635 NIL STINPROD (NIL T) -7 NIL NIL) (-1063 2666414 2666598 2666628 "STEP" 2666708 T STEP (NIL) -9 NIL 2666786) (-1062 2659957 2666313 2666390 "STBL" 2666395 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1061 2655133 2659180 2659223 "STAGG" 2659376 NIL STAGG (NIL T) -9 NIL 2659465) (-1060 2652835 2653437 2654309 "STAGG-" 2654314 NIL STAGG- (NIL T T) -8 NIL NIL) (-1059 2651030 2652605 2652697 "STACK" 2652778 NIL STACK (NIL T) -8 NIL NIL) (-1058 2643761 2649177 2649632 "SREGSET" 2650660 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1057 2636201 2637569 2639081 "SRDCMPK" 2642367 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1056 2629169 2633642 2633672 "SRAGG" 2634975 T SRAGG (NIL) -9 NIL 2635583) (-1055 2628186 2628441 2628820 "SRAGG-" 2628825 NIL SRAGG- (NIL T) -8 NIL NIL) (-1054 2622635 2627105 2627532 "SQMATRIX" 2627805 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1053 2616387 2619355 2620081 "SPLTREE" 2621981 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1052 2612377 2613043 2613689 "SPLNODE" 2615813 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1051 2611424 2611657 2611687 "SPFCAT" 2612131 T SPFCAT (NIL) -9 NIL NIL) (-1050 2610161 2610371 2610635 "SPECOUT" 2611182 T SPECOUT (NIL) -7 NIL NIL) (-1049 2609922 2609962 2610031 "SPADPRSR" 2610114 T SPADPRSR (NIL) -7 NIL NIL) (-1048 2601945 2603692 2603734 "SPACEC" 2608057 NIL SPACEC (NIL T) -9 NIL 2609873) (-1047 2600117 2601878 2601926 "SPACE3" 2601931 NIL SPACE3 (NIL T) -8 NIL NIL) (-1046 2598869 2599040 2599331 "SORTPAK" 2599922 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1045 2596925 2597228 2597646 "SOLVETRA" 2598533 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1044 2595936 2596158 2596432 "SOLVESER" 2596698 NIL SOLVESER (NIL T) -7 NIL NIL) (-1043 2591156 2592037 2593039 "SOLVERAD" 2594988 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1042 2586971 2587580 2588309 "SOLVEFOR" 2590523 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1041 2581271 2586323 2586419 "SNTSCAT" 2586424 NIL SNTSCAT (NIL T T T T) -9 NIL 2586494) (-1040 2575375 2579602 2579992 "SMTS" 2580961 NIL SMTS (NIL T T T) -8 NIL NIL) (-1039 2569785 2575264 2575340 "SMP" 2575345 NIL SMP (NIL T T) -8 NIL NIL) (-1038 2567944 2568245 2568643 "SMITH" 2569482 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1037 2560909 2565105 2565207 "SMATCAT" 2566547 NIL SMATCAT (NIL NIL T T T) -9 NIL 2567096) (-1036 2557850 2558673 2559850 "SMATCAT-" 2559855 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1035 2555564 2557087 2557130 "SKAGG" 2557391 NIL SKAGG (NIL T) -9 NIL 2557526) (-1034 2551622 2554668 2554946 "SINT" 2555308 T SINT (NIL) -8 NIL NIL) (-1033 2551394 2551432 2551498 "SIMPAN" 2551578 T SIMPAN (NIL) -7 NIL NIL) (-1032 2550232 2550453 2550728 "SIGNRF" 2551153 NIL SIGNRF (NIL T) -7 NIL NIL) (-1031 2549041 2549192 2549482 "SIGNEF" 2550061 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1030 2546731 2547185 2547691 "SHP" 2548582 NIL SHP (NIL T NIL) -7 NIL NIL) (-1029 2540584 2546632 2546708 "SHDP" 2546713 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1028 2540074 2540266 2540296 "SGROUP" 2540448 T SGROUP (NIL) -9 NIL 2540535) (-1027 2539844 2539896 2540000 "SGROUP-" 2540005 NIL SGROUP- (NIL T) -8 NIL NIL) (-1026 2536680 2537377 2538100 "SGCF" 2539143 T SGCF (NIL) -7 NIL NIL) (-1025 2531079 2536131 2536227 "SFRTCAT" 2536232 NIL SFRTCAT (NIL T T T T) -9 NIL 2536270) (-1024 2524539 2525554 2526688 "SFRGCD" 2530062 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1023 2517705 2518776 2519960 "SFQCMPK" 2523472 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1022 2517327 2517416 2517526 "SFORT" 2517646 NIL SFORT (NIL T T) -8 NIL NIL) (-1021 2516472 2517167 2517288 "SEXOF" 2517293 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1020 2515606 2516353 2516421 "SEX" 2516426 T SEX (NIL) -8 NIL NIL) (-1019 2510383 2511072 2511167 "SEXCAT" 2514938 NIL SEXCAT (NIL T T T T T) -9 NIL 2515557) (-1018 2507563 2510317 2510365 "SET" 2510370 NIL SET (NIL T) -8 NIL NIL) (-1017 2505814 2506276 2506581 "SETMN" 2507304 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1016 2505422 2505548 2505578 "SETCAT" 2505695 T SETCAT (NIL) -9 NIL 2505779) (-1015 2505202 2505254 2505353 "SETCAT-" 2505358 NIL SETCAT- (NIL T) -8 NIL NIL) (-1014 2501590 2503664 2503707 "SETAGG" 2504577 NIL SETAGG (NIL T) -9 NIL 2504917) (-1013 2501048 2501164 2501401 "SETAGG-" 2501406 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1012 2500252 2500545 2500606 "SEGXCAT" 2500892 NIL SEGXCAT (NIL T T) -9 NIL 2501012) (-1011 2499308 2499918 2500100 "SEG" 2500105 NIL SEG (NIL T) -8 NIL NIL) (-1010 2498215 2498428 2498471 "SEGCAT" 2499053 NIL SEGCAT (NIL T) -9 NIL 2499291) (-1009 2497264 2497594 2497794 "SEGBIND" 2498050 NIL SEGBIND (NIL T) -8 NIL NIL) (-1008 2496885 2496944 2497057 "SEGBIND2" 2497199 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1007 2496104 2496230 2496434 "SEG2" 2496729 NIL SEG2 (NIL T T) -7 NIL NIL) (-1006 2495541 2496039 2496086 "SDVAR" 2496091 NIL SDVAR (NIL T) -8 NIL NIL) (-1005 2487793 2495314 2495442 "SDPOL" 2495447 NIL SDPOL (NIL T) -8 NIL NIL) (-1004 2486386 2486652 2486971 "SCPKG" 2487508 NIL SCPKG (NIL T) -7 NIL NIL) (-1003 2485523 2485702 2485902 "SCOPE" 2486208 T SCOPE (NIL) -8 NIL NIL) (-1002 2484744 2484877 2485056 "SCACHE" 2485378 NIL SCACHE (NIL T) -7 NIL NIL) (-1001 2484183 2484504 2484589 "SAOS" 2484681 T SAOS (NIL) -8 NIL NIL) (-1000 2483748 2483783 2483956 "SAERFFC" 2484142 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-999 2477644 2483647 2483725 "SAE" 2483730 NIL SAE (NIL T T NIL) -8 NIL NIL) (-998 2477240 2477275 2477432 "SAEFACT" 2477603 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-997 2475566 2475880 2476279 "RURPK" 2476906 NIL RURPK (NIL T NIL) -7 NIL NIL) (-996 2474219 2474496 2474803 "RULESET" 2475402 NIL RULESET (NIL T T T) -8 NIL NIL) (-995 2471427 2471930 2472391 "RULE" 2473901 NIL RULE (NIL T T T) -8 NIL NIL) (-994 2471069 2471224 2471305 "RULECOLD" 2471379 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-993 2465961 2466755 2467671 "RSETGCD" 2470268 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-992 2455276 2460328 2460422 "RSETCAT" 2464487 NIL RSETCAT (NIL T T T T) -9 NIL 2465584) (-991 2453207 2453746 2454566 "RSETCAT-" 2454571 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-990 2445637 2447012 2448528 "RSDCMPK" 2451806 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-989 2443655 2444096 2444168 "RRCC" 2445244 NIL RRCC (NIL T T) -9 NIL 2445588) (-988 2443009 2443183 2443459 "RRCC-" 2443464 NIL RRCC- (NIL T T T) -8 NIL NIL) (-987 2417376 2427001 2427065 "RPOLCAT" 2437567 NIL RPOLCAT (NIL T T T) -9 NIL 2440725) (-986 2408880 2411218 2414336 "RPOLCAT-" 2414341 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-985 2399946 2407110 2407590 "ROUTINE" 2408420 T ROUTINE (NIL) -8 NIL NIL) (-984 2396651 2399502 2399649 "ROMAN" 2399819 T ROMAN (NIL) -8 NIL NIL) (-983 2394937 2395522 2395779 "ROIRC" 2396457 NIL ROIRC (NIL T T) -8 NIL NIL) (-982 2391342 2393646 2393674 "RNS" 2393970 T RNS (NIL) -9 NIL 2394240) (-981 2389856 2390239 2390770 "RNS-" 2390843 NIL RNS- (NIL T) -8 NIL NIL) (-980 2389282 2389690 2389718 "RNG" 2389723 T RNG (NIL) -9 NIL 2389744) (-979 2388680 2389042 2389082 "RMODULE" 2389142 NIL RMODULE (NIL T) -9 NIL 2389184) (-978 2387532 2387626 2387956 "RMCAT2" 2388581 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-977 2384246 2386715 2387036 "RMATRIX" 2387267 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-976 2377243 2379477 2379589 "RMATCAT" 2382898 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2383880) (-975 2376622 2376769 2377072 "RMATCAT-" 2377077 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-974 2376192 2376267 2376393 "RINTERP" 2376541 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-973 2375243 2375807 2375835 "RING" 2375945 T RING (NIL) -9 NIL 2376039) (-972 2375038 2375082 2375176 "RING-" 2375181 NIL RING- (NIL T) -8 NIL NIL) (-971 2373886 2374123 2374379 "RIDIST" 2374802 T RIDIST (NIL) -7 NIL NIL) (-970 2365208 2373360 2373563 "RGCHAIN" 2373735 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-969 2362213 2362827 2363495 "RF" 2364572 NIL RF (NIL T) -7 NIL NIL) (-968 2361862 2361925 2362026 "RFFACTOR" 2362144 NIL RFFACTOR (NIL T) -7 NIL NIL) (-967 2361590 2361625 2361720 "RFFACT" 2361821 NIL RFFACT (NIL T) -7 NIL NIL) (-966 2359720 2360084 2360464 "RFDIST" 2361230 T RFDIST (NIL) -7 NIL NIL) (-965 2359178 2359270 2359430 "RETSOL" 2359622 NIL RETSOL (NIL T T) -7 NIL NIL) (-964 2358771 2358851 2358892 "RETRACT" 2359082 NIL RETRACT (NIL T) -9 NIL NIL) (-963 2358623 2358648 2358732 "RETRACT-" 2358737 NIL RETRACT- (NIL T T) -8 NIL NIL) (-962 2351481 2358280 2358405 "RESULT" 2358518 T RESULT (NIL) -8 NIL NIL) (-961 2350066 2350755 2350952 "RESRING" 2351384 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-960 2349706 2349755 2349851 "RESLATC" 2350003 NIL RESLATC (NIL T) -7 NIL NIL) (-959 2349415 2349449 2349554 "REPSQ" 2349665 NIL REPSQ (NIL T) -7 NIL NIL) (-958 2346846 2347426 2348026 "REP" 2348835 T REP (NIL) -7 NIL NIL) (-957 2346547 2346581 2346690 "REPDB" 2346805 NIL REPDB (NIL T) -7 NIL NIL) (-956 2340492 2341871 2343091 "REP2" 2345359 NIL REP2 (NIL T) -7 NIL NIL) (-955 2336898 2337579 2338384 "REP1" 2339719 NIL REP1 (NIL T) -7 NIL NIL) (-954 2329644 2335059 2335511 "REGSET" 2336529 NIL REGSET (NIL T T T T) -8 NIL NIL) (-953 2328465 2328800 2329048 "REF" 2329429 NIL REF (NIL T) -8 NIL NIL) (-952 2327846 2327949 2328114 "REDORDER" 2328349 NIL REDORDER (NIL T T) -7 NIL NIL) (-951 2323815 2327080 2327301 "RECLOS" 2327677 NIL RECLOS (NIL T) -8 NIL NIL) (-950 2322872 2323053 2323266 "REALSOLV" 2323622 T REALSOLV (NIL) -7 NIL NIL) (-949 2322720 2322761 2322789 "REAL" 2322794 T REAL (NIL) -9 NIL 2322829) (-948 2319211 2320013 2320895 "REAL0Q" 2321885 NIL REAL0Q (NIL T) -7 NIL NIL) (-947 2314822 2315810 2316869 "REAL0" 2318192 NIL REAL0 (NIL T) -7 NIL NIL) (-946 2314230 2314302 2314507 "RDIV" 2314744 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-945 2313303 2313477 2313688 "RDIST" 2314052 NIL RDIST (NIL T) -7 NIL NIL) (-944 2311907 2312194 2312563 "RDETRS" 2313011 NIL RDETRS (NIL T T) -7 NIL NIL) (-943 2309728 2310182 2310717 "RDETR" 2311449 NIL RDETR (NIL T T) -7 NIL NIL) (-942 2308344 2308622 2309023 "RDEEFS" 2309444 NIL RDEEFS (NIL T T) -7 NIL NIL) (-941 2306844 2307150 2307579 "RDEEF" 2308032 NIL RDEEF (NIL T T) -7 NIL NIL) (-940 2301129 2304061 2304089 "RCFIELD" 2305366 T RCFIELD (NIL) -9 NIL 2306096) (-939 2299198 2299702 2300395 "RCFIELD-" 2300468 NIL RCFIELD- (NIL T) -8 NIL NIL) (-938 2295530 2297315 2297356 "RCAGG" 2298427 NIL RCAGG (NIL T) -9 NIL 2298892) (-937 2295161 2295255 2295415 "RCAGG-" 2295420 NIL RCAGG- (NIL T T) -8 NIL NIL) (-936 2294506 2294617 2294779 "RATRET" 2295045 NIL RATRET (NIL T) -7 NIL NIL) (-935 2294063 2294130 2294249 "RATFACT" 2294434 NIL RATFACT (NIL T) -7 NIL NIL) (-934 2293378 2293498 2293648 "RANDSRC" 2293933 T RANDSRC (NIL) -7 NIL NIL) (-933 2293115 2293159 2293230 "RADUTIL" 2293327 T RADUTIL (NIL) -7 NIL NIL) (-932 2286122 2291858 2292175 "RADIX" 2292830 NIL RADIX (NIL NIL) -8 NIL NIL) (-931 2277692 2285966 2286094 "RADFF" 2286099 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-930 2277344 2277419 2277447 "RADCAT" 2277604 T RADCAT (NIL) -9 NIL NIL) (-929 2277129 2277177 2277274 "RADCAT-" 2277279 NIL RADCAT- (NIL T) -8 NIL NIL) (-928 2275280 2276904 2276993 "QUEUE" 2277073 NIL QUEUE (NIL T) -8 NIL NIL) (-927 2271777 2275217 2275262 "QUAT" 2275267 NIL QUAT (NIL T) -8 NIL NIL) (-926 2271415 2271458 2271585 "QUATCT2" 2271728 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-925 2265209 2268589 2268629 "QUATCAT" 2269408 NIL QUATCAT (NIL T) -9 NIL 2270173) (-924 2261353 2262390 2263777 "QUATCAT-" 2263871 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-923 2258874 2260438 2260479 "QUAGG" 2260854 NIL QUAGG (NIL T) -9 NIL 2261029) (-922 2257799 2258272 2258444 "QFORM" 2258746 NIL QFORM (NIL NIL T) -8 NIL NIL) (-921 2249096 2254354 2254394 "QFCAT" 2255052 NIL QFCAT (NIL T) -9 NIL 2256045) (-920 2244668 2245869 2247460 "QFCAT-" 2247554 NIL QFCAT- (NIL T T) -8 NIL NIL) (-919 2244306 2244349 2244476 "QFCAT2" 2244619 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-918 2243766 2243876 2244006 "QEQUAT" 2244196 T QEQUAT (NIL) -8 NIL NIL) (-917 2236952 2238023 2239205 "QCMPACK" 2242699 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-916 2234528 2234949 2235377 "QALGSET" 2236607 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-915 2233773 2233947 2234179 "QALGSET2" 2234348 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-914 2232464 2232687 2233004 "PWFFINTB" 2233546 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-913 2230652 2230820 2231173 "PUSHVAR" 2232278 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-912 2226570 2227624 2227665 "PTRANFN" 2229549 NIL PTRANFN (NIL T) -9 NIL NIL) (-911 2224982 2225273 2225594 "PTPACK" 2226281 NIL PTPACK (NIL T) -7 NIL NIL) (-910 2224618 2224675 2224782 "PTFUNC2" 2224919 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-909 2219095 2223436 2223476 "PTCAT" 2223844 NIL PTCAT (NIL T) -9 NIL 2224006) (-908 2218753 2218788 2218912 "PSQFR" 2219054 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-907 2217348 2217646 2217980 "PSEUDLIN" 2218451 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-906 2204156 2206520 2208843 "PSETPK" 2215108 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-905 2197243 2199957 2200051 "PSETCAT" 2203032 NIL PSETCAT (NIL T T T T) -9 NIL 2203846) (-904 2195081 2195715 2196534 "PSETCAT-" 2196539 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-903 2194430 2194595 2194623 "PSCURVE" 2194891 T PSCURVE (NIL) -9 NIL 2195058) (-902 2190882 2192408 2192472 "PSCAT" 2193308 NIL PSCAT (NIL T T T) -9 NIL 2193548) (-901 2189946 2190162 2190561 "PSCAT-" 2190566 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-900 2188599 2189231 2189445 "PRTITION" 2189752 T PRTITION (NIL) -8 NIL NIL) (-899 2177697 2179903 2182091 "PRS" 2186461 NIL PRS (NIL T T) -7 NIL NIL) (-898 2175556 2177048 2177088 "PRQAGG" 2177271 NIL PRQAGG (NIL T) -9 NIL 2177373) (-897 2175127 2175229 2175257 "PROPLOG" 2175442 T PROPLOG (NIL) -9 NIL NIL) (-896 2172250 2172815 2173342 "PROPFRML" 2174632 NIL PROPFRML (NIL T) -8 NIL NIL) (-895 2171710 2171820 2171950 "PROPERTY" 2172140 T PROPERTY (NIL) -8 NIL NIL) (-894 2165484 2169876 2170696 "PRODUCT" 2170936 NIL PRODUCT (NIL T T) -8 NIL NIL) (-893 2162760 2164944 2165177 "PR" 2165295 NIL PR (NIL T T) -8 NIL NIL) (-892 2162556 2162588 2162647 "PRINT" 2162721 T PRINT (NIL) -7 NIL NIL) (-891 2161896 2162013 2162165 "PRIMES" 2162436 NIL PRIMES (NIL T) -7 NIL NIL) (-890 2159961 2160362 2160828 "PRIMELT" 2161475 NIL PRIMELT (NIL T) -7 NIL NIL) (-889 2159690 2159739 2159767 "PRIMCAT" 2159891 T PRIMCAT (NIL) -9 NIL NIL) (-888 2155851 2159628 2159673 "PRIMARR" 2159678 NIL PRIMARR (NIL T) -8 NIL NIL) (-887 2154858 2155036 2155264 "PRIMARR2" 2155669 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-886 2154501 2154557 2154668 "PREASSOC" 2154796 NIL PREASSOC (NIL T T) -7 NIL NIL) (-885 2153976 2154109 2154137 "PPCURVE" 2154342 T PPCURVE (NIL) -9 NIL 2154478) (-884 2151335 2151734 2152326 "POLYROOT" 2153557 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-883 2145241 2150941 2151100 "POLY" 2151208 NIL POLY (NIL T) -8 NIL NIL) (-882 2144626 2144684 2144917 "POLYLIFT" 2145177 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-881 2140911 2141360 2141988 "POLYCATQ" 2144171 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-880 2127952 2133349 2133413 "POLYCAT" 2136898 NIL POLYCAT (NIL T T T) -9 NIL 2138825) (-879 2121403 2123264 2125647 "POLYCAT-" 2125652 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-878 2120992 2121060 2121179 "POLY2UP" 2121329 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-877 2120628 2120685 2120792 "POLY2" 2120929 NIL POLY2 (NIL T T) -7 NIL NIL) (-876 2119313 2119552 2119828 "POLUTIL" 2120402 NIL POLUTIL (NIL T T) -7 NIL NIL) (-875 2117675 2117952 2118282 "POLTOPOL" 2119035 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-874 2113198 2117612 2117657 "POINT" 2117662 NIL POINT (NIL T) -8 NIL NIL) (-873 2111385 2111742 2112117 "PNTHEORY" 2112843 T PNTHEORY (NIL) -7 NIL NIL) (-872 2109813 2110110 2110519 "PMTOOLS" 2111083 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-871 2109406 2109484 2109601 "PMSYM" 2109729 NIL PMSYM (NIL T) -7 NIL NIL) (-870 2108916 2108985 2109159 "PMQFCAT" 2109331 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-869 2108271 2108381 2108537 "PMPRED" 2108793 NIL PMPRED (NIL T) -7 NIL NIL) (-868 2107667 2107753 2107914 "PMPREDFS" 2108172 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-867 2106313 2106521 2106905 "PMPLCAT" 2107429 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-866 2105845 2105924 2106076 "PMLSAGG" 2106228 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-865 2105322 2105398 2105578 "PMKERNEL" 2105763 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-864 2104939 2105014 2105127 "PMINS" 2105241 NIL PMINS (NIL T) -7 NIL NIL) (-863 2104369 2104438 2104653 "PMFS" 2104864 NIL PMFS (NIL T T T) -7 NIL NIL) (-862 2103600 2103718 2103922 "PMDOWN" 2104246 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-861 2102763 2102922 2103104 "PMASS" 2103438 T PMASS (NIL) -7 NIL NIL) (-860 2102037 2102148 2102311 "PMASSFS" 2102649 NIL PMASSFS (NIL T T) -7 NIL NIL) (-859 2101692 2101760 2101854 "PLOTTOOL" 2101963 T PLOTTOOL (NIL) -7 NIL NIL) (-858 2096314 2097503 2098651 "PLOT" 2100564 T PLOT (NIL) -8 NIL NIL) (-857 2092128 2093162 2094083 "PLOT3D" 2095413 T PLOT3D (NIL) -8 NIL NIL) (-856 2091040 2091217 2091452 "PLOT1" 2091932 NIL PLOT1 (NIL T) -7 NIL NIL) (-855 2066435 2071106 2075957 "PLEQN" 2086306 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-854 2065753 2065875 2066055 "PINTERP" 2066300 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-853 2065446 2065493 2065596 "PINTERPA" 2065700 NIL PINTERPA (NIL T T) -7 NIL NIL) (-852 2064673 2065240 2065333 "PI" 2065373 T PI (NIL) -8 NIL NIL) (-851 2063065 2064050 2064078 "PID" 2064260 T PID (NIL) -9 NIL 2064394) (-850 2062790 2062827 2062915 "PICOERCE" 2063022 NIL PICOERCE (NIL T) -7 NIL NIL) (-849 2062111 2062249 2062425 "PGROEB" 2062646 NIL PGROEB (NIL T) -7 NIL NIL) (-848 2057698 2058512 2059417 "PGE" 2061226 T PGE (NIL) -7 NIL NIL) (-847 2055822 2056068 2056434 "PGCD" 2057415 NIL PGCD (NIL T T T T) -7 NIL NIL) (-846 2055160 2055263 2055424 "PFRPAC" 2055706 NIL PFRPAC (NIL T) -7 NIL NIL) (-845 2051775 2053708 2054061 "PFR" 2054839 NIL PFR (NIL T) -8 NIL NIL) (-844 2050164 2050408 2050733 "PFOTOOLS" 2051522 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-843 2048697 2048936 2049287 "PFOQ" 2049921 NIL PFOQ (NIL T T T) -7 NIL NIL) (-842 2047174 2047386 2047748 "PFO" 2048481 NIL PFO (NIL T T T T T) -7 NIL NIL) (-841 2043697 2047063 2047132 "PF" 2047137 NIL PF (NIL NIL) -8 NIL NIL) (-840 2041126 2042407 2042435 "PFECAT" 2043020 T PFECAT (NIL) -9 NIL 2043404) (-839 2040571 2040725 2040939 "PFECAT-" 2040944 NIL PFECAT- (NIL T) -8 NIL NIL) (-838 2039175 2039426 2039727 "PFBRU" 2040320 NIL PFBRU (NIL T T) -7 NIL NIL) (-837 2037042 2037393 2037825 "PFBR" 2038826 NIL PFBR (NIL T T T T) -7 NIL NIL) (-836 2032894 2034418 2035094 "PERM" 2036399 NIL PERM (NIL T) -8 NIL NIL) (-835 2028159 2029101 2029971 "PERMGRP" 2032057 NIL PERMGRP (NIL T) -8 NIL NIL) (-834 2026230 2027223 2027264 "PERMCAT" 2027710 NIL PERMCAT (NIL T) -9 NIL 2028015) (-833 2025885 2025926 2026049 "PERMAN" 2026183 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-832 2023325 2025454 2025585 "PENDTREE" 2025787 NIL PENDTREE (NIL T) -8 NIL NIL) (-831 2021398 2022176 2022217 "PDRING" 2022874 NIL PDRING (NIL T) -9 NIL 2023159) (-830 2020501 2020719 2021081 "PDRING-" 2021086 NIL PDRING- (NIL T T) -8 NIL NIL) (-829 2017643 2018393 2019084 "PDEPROB" 2019830 T PDEPROB (NIL) -8 NIL NIL) (-828 2015214 2015710 2016259 "PDEPACK" 2017114 T PDEPACK (NIL) -7 NIL NIL) (-827 2014126 2014316 2014567 "PDECOMP" 2015013 NIL PDECOMP (NIL T T) -7 NIL NIL) (-826 2011738 2012553 2012581 "PDECAT" 2013366 T PDECAT (NIL) -9 NIL 2014077) (-825 2011491 2011524 2011613 "PCOMP" 2011699 NIL PCOMP (NIL T T) -7 NIL NIL) (-824 2009698 2010294 2010590 "PBWLB" 2011221 NIL PBWLB (NIL T) -8 NIL NIL) (-823 2002206 2003775 2005111 "PATTERN" 2008383 NIL PATTERN (NIL T) -8 NIL NIL) (-822 2001838 2001895 2002004 "PATTERN2" 2002143 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-821 1999595 1999983 2000440 "PATTERN1" 2001427 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-820 1996990 1997544 1998025 "PATRES" 1999160 NIL PATRES (NIL T T) -8 NIL NIL) (-819 1996554 1996621 1996753 "PATRES2" 1996917 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-818 1994451 1994851 1995256 "PATMATCH" 1996223 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-817 1993988 1994171 1994212 "PATMAB" 1994319 NIL PATMAB (NIL T) -9 NIL 1994402) (-816 1992533 1992842 1993100 "PATLRES" 1993793 NIL PATLRES (NIL T T T) -8 NIL NIL) (-815 1992079 1992202 1992243 "PATAB" 1992248 NIL PATAB (NIL T) -9 NIL 1992420) (-814 1989560 1990092 1990665 "PARTPERM" 1991526 T PARTPERM (NIL) -7 NIL NIL) (-813 1989181 1989244 1989346 "PARSURF" 1989491 NIL PARSURF (NIL T) -8 NIL NIL) (-812 1988813 1988870 1988979 "PARSU2" 1989118 NIL PARSU2 (NIL T T) -7 NIL NIL) (-811 1988577 1988617 1988684 "PARSER" 1988766 T PARSER (NIL) -7 NIL NIL) (-810 1988198 1988261 1988363 "PARSCURV" 1988508 NIL PARSCURV (NIL T) -8 NIL NIL) (-809 1987830 1987887 1987996 "PARSC2" 1988135 NIL PARSC2 (NIL T T) -7 NIL NIL) (-808 1987469 1987527 1987624 "PARPCURV" 1987766 NIL PARPCURV (NIL T) -8 NIL NIL) (-807 1987101 1987158 1987267 "PARPC2" 1987406 NIL PARPC2 (NIL T T) -7 NIL NIL) (-806 1986621 1986707 1986826 "PAN2EXPR" 1987002 T PAN2EXPR (NIL) -7 NIL NIL) (-805 1985427 1985742 1985970 "PALETTE" 1986413 T PALETTE (NIL) -8 NIL NIL) (-804 1983895 1984432 1984792 "PAIR" 1985113 NIL PAIR (NIL T T) -8 NIL NIL) (-803 1977745 1983154 1983348 "PADICRC" 1983750 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-802 1970953 1977091 1977275 "PADICRAT" 1977593 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-801 1969257 1970890 1970935 "PADIC" 1970940 NIL PADIC (NIL NIL) -8 NIL NIL) (-800 1966462 1968036 1968076 "PADICCT" 1968657 NIL PADICCT (NIL NIL) -9 NIL 1968939) (-799 1965419 1965619 1965887 "PADEPAC" 1966249 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-798 1964631 1964764 1964970 "PADE" 1965281 NIL PADE (NIL T T T) -7 NIL NIL) (-797 1962642 1963474 1963789 "OWP" 1964399 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-796 1961751 1962247 1962419 "OVAR" 1962510 NIL OVAR (NIL NIL) -8 NIL NIL) (-795 1961015 1961136 1961297 "OUT" 1961610 T OUT (NIL) -7 NIL NIL) (-794 1950069 1952240 1954410 "OUTFORM" 1958865 T OUTFORM (NIL) -8 NIL NIL) (-793 1949477 1949798 1949887 "OSI" 1950000 T OSI (NIL) -8 NIL NIL) (-792 1948222 1948449 1948734 "ORTHPOL" 1949224 NIL ORTHPOL (NIL T) -7 NIL NIL) (-791 1945593 1947883 1948021 "OREUP" 1948165 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-790 1942989 1945286 1945412 "ORESUP" 1945535 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-789 1940524 1941024 1941584 "OREPCTO" 1942478 NIL OREPCTO (NIL T T) -7 NIL NIL) (-788 1934434 1936640 1936680 "OREPCAT" 1939001 NIL OREPCAT (NIL T) -9 NIL 1940104) (-787 1931582 1932364 1933421 "OREPCAT-" 1933426 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-786 1930760 1931032 1931060 "ORDSET" 1931369 T ORDSET (NIL) -9 NIL 1931533) (-785 1930279 1930401 1930594 "ORDSET-" 1930599 NIL ORDSET- (NIL T) -8 NIL NIL) (-784 1928893 1929694 1929722 "ORDRING" 1929924 T ORDRING (NIL) -9 NIL 1930048) (-783 1928538 1928632 1928776 "ORDRING-" 1928781 NIL ORDRING- (NIL T) -8 NIL NIL) (-782 1927914 1928395 1928423 "ORDMON" 1928428 T ORDMON (NIL) -9 NIL 1928449) (-781 1927076 1927223 1927418 "ORDFUNS" 1927763 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-780 1926588 1926947 1926975 "ORDFIN" 1926980 T ORDFIN (NIL) -9 NIL 1927001) (-779 1923100 1925174 1925583 "ORDCOMP" 1926212 NIL ORDCOMP (NIL T) -8 NIL NIL) (-778 1922366 1922493 1922679 "ORDCOMP2" 1922960 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-777 1918874 1919756 1920593 "OPTPROB" 1921549 T OPTPROB (NIL) -8 NIL NIL) (-776 1915716 1916345 1917039 "OPTPACK" 1918200 T OPTPACK (NIL) -7 NIL NIL) (-775 1913442 1914178 1914206 "OPTCAT" 1915021 T OPTCAT (NIL) -9 NIL 1915667) (-774 1913210 1913249 1913315 "OPQUERY" 1913396 T OPQUERY (NIL) -7 NIL NIL) (-773 1910346 1911537 1912037 "OP" 1912742 NIL OP (NIL T) -8 NIL NIL) (-772 1907111 1909143 1909512 "ONECOMP" 1910010 NIL ONECOMP (NIL T) -8 NIL NIL) (-771 1906416 1906531 1906705 "ONECOMP2" 1906983 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-770 1905835 1905941 1906071 "OMSERVER" 1906306 T OMSERVER (NIL) -7 NIL NIL) (-769 1902724 1905276 1905316 "OMSAGG" 1905377 NIL OMSAGG (NIL T) -9 NIL 1905441) (-768 1901347 1901610 1901892 "OMPKG" 1902462 T OMPKG (NIL) -7 NIL NIL) (-767 1900777 1900880 1900908 "OM" 1901207 T OM (NIL) -9 NIL NIL) (-766 1899316 1900329 1900497 "OMLO" 1900658 NIL OMLO (NIL T T) -8 NIL NIL) (-765 1898246 1898393 1898619 "OMEXPR" 1899142 NIL OMEXPR (NIL T) -7 NIL NIL) (-764 1897564 1897792 1897928 "OMERR" 1898130 T OMERR (NIL) -8 NIL NIL) (-763 1896742 1896985 1897145 "OMERRK" 1897424 T OMERRK (NIL) -8 NIL NIL) (-762 1896220 1896419 1896527 "OMENC" 1896654 T OMENC (NIL) -8 NIL NIL) (-761 1890115 1891300 1892471 "OMDEV" 1895069 T OMDEV (NIL) -8 NIL NIL) (-760 1889184 1889355 1889549 "OMCONN" 1889941 T OMCONN (NIL) -8 NIL NIL) (-759 1887800 1888786 1888814 "OINTDOM" 1888819 T OINTDOM (NIL) -9 NIL 1888840) (-758 1883562 1884792 1885507 "OFMONOID" 1887117 NIL OFMONOID (NIL T) -8 NIL NIL) (-757 1883000 1883499 1883544 "ODVAR" 1883549 NIL ODVAR (NIL T) -8 NIL NIL) (-756 1880125 1882497 1882682 "ODR" 1882875 NIL ODR (NIL T T NIL) -8 NIL NIL) (-755 1872431 1879904 1880028 "ODPOL" 1880033 NIL ODPOL (NIL T) -8 NIL NIL) (-754 1866254 1872303 1872408 "ODP" 1872413 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-753 1865020 1865235 1865510 "ODETOOLS" 1866028 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-752 1861989 1862645 1863361 "ODESYS" 1864353 NIL ODESYS (NIL T T) -7 NIL NIL) (-751 1856893 1857801 1858824 "ODERTRIC" 1861064 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-750 1856319 1856401 1856595 "ODERED" 1856805 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-749 1853221 1853769 1854444 "ODERAT" 1855742 NIL ODERAT (NIL T T) -7 NIL NIL) (-748 1850189 1850653 1851249 "ODEPRRIC" 1852750 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-747 1848060 1848627 1849136 "ODEPROB" 1849700 T ODEPROB (NIL) -8 NIL NIL) (-746 1844592 1845075 1845721 "ODEPRIM" 1847539 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-745 1843845 1843947 1844205 "ODEPAL" 1844484 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-744 1840047 1840828 1841682 "ODEPACK" 1843011 T ODEPACK (NIL) -7 NIL NIL) (-743 1839084 1839191 1839419 "ODEINT" 1839936 NIL ODEINT (NIL T T) -7 NIL NIL) (-742 1833185 1834610 1836057 "ODEIFTBL" 1837657 T ODEIFTBL (NIL) -8 NIL NIL) (-741 1828529 1829315 1830273 "ODEEF" 1832344 NIL ODEEF (NIL T T) -7 NIL NIL) (-740 1827866 1827955 1828184 "ODECONST" 1828434 NIL ODECONST (NIL T T T) -7 NIL NIL) (-739 1826024 1826657 1826685 "ODECAT" 1827288 T ODECAT (NIL) -9 NIL 1827817) (-738 1822896 1825736 1825855 "OCT" 1825937 NIL OCT (NIL T) -8 NIL NIL) (-737 1822534 1822577 1822704 "OCTCT2" 1822847 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-736 1817368 1819806 1819846 "OC" 1820942 NIL OC (NIL T) -9 NIL 1821799) (-735 1814595 1815343 1816333 "OC-" 1816427 NIL OC- (NIL T T) -8 NIL NIL) (-734 1813974 1814416 1814444 "OCAMON" 1814449 T OCAMON (NIL) -9 NIL 1814470) (-733 1813428 1813835 1813863 "OASGP" 1813868 T OASGP (NIL) -9 NIL 1813888) (-732 1812716 1813179 1813207 "OAMONS" 1813247 T OAMONS (NIL) -9 NIL 1813290) (-731 1812157 1812564 1812592 "OAMON" 1812597 T OAMON (NIL) -9 NIL 1812617) (-730 1811462 1811954 1811982 "OAGROUP" 1811987 T OAGROUP (NIL) -9 NIL 1812007) (-729 1811152 1811202 1811290 "NUMTUBE" 1811406 NIL NUMTUBE (NIL T) -7 NIL NIL) (-728 1804725 1806243 1807779 "NUMQUAD" 1809636 T NUMQUAD (NIL) -7 NIL NIL) (-727 1800481 1801469 1802494 "NUMODE" 1803720 T NUMODE (NIL) -7 NIL NIL) (-726 1797885 1798731 1798759 "NUMINT" 1799676 T NUMINT (NIL) -9 NIL 1800432) (-725 1796833 1797030 1797248 "NUMFMT" 1797687 T NUMFMT (NIL) -7 NIL NIL) (-724 1783215 1786149 1788679 "NUMERIC" 1794342 NIL NUMERIC (NIL T) -7 NIL NIL) (-723 1777616 1782668 1782762 "NTSCAT" 1782767 NIL NTSCAT (NIL T T T T) -9 NIL 1782805) (-722 1776810 1776975 1777168 "NTPOLFN" 1777455 NIL NTPOLFN (NIL T) -7 NIL NIL) (-721 1764626 1773652 1774462 "NSUP" 1776032 NIL NSUP (NIL T) -8 NIL NIL) (-720 1764262 1764319 1764426 "NSUP2" 1764563 NIL NSUP2 (NIL T T) -7 NIL NIL) (-719 1754224 1764041 1764171 "NSMP" 1764176 NIL NSMP (NIL T T) -8 NIL NIL) (-718 1752656 1752957 1753314 "NREP" 1753912 NIL NREP (NIL T) -7 NIL NIL) (-717 1751247 1751499 1751857 "NPCOEF" 1752399 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-716 1750313 1750428 1750644 "NORMRETR" 1751128 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-715 1748366 1748656 1749063 "NORMPK" 1750021 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-714 1748051 1748079 1748203 "NORMMA" 1748332 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-713 1747878 1748008 1748037 "NONE" 1748042 T NONE (NIL) -8 NIL NIL) (-712 1747667 1747696 1747765 "NONE1" 1747842 NIL NONE1 (NIL T) -7 NIL NIL) (-711 1747152 1747214 1747399 "NODE1" 1747599 NIL NODE1 (NIL T T) -7 NIL NIL) (-710 1745445 1746315 1746570 "NNI" 1746917 T NNI (NIL) -8 NIL NIL) (-709 1743865 1744178 1744542 "NLINSOL" 1745113 NIL NLINSOL (NIL T) -7 NIL NIL) (-708 1740033 1741000 1741922 "NIPROB" 1742963 T NIPROB (NIL) -8 NIL NIL) (-707 1738790 1739024 1739326 "NFINTBAS" 1739795 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-706 1737498 1737729 1738010 "NCODIV" 1738558 NIL NCODIV (NIL T T) -7 NIL NIL) (-705 1737260 1737297 1737372 "NCNTFRAC" 1737455 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-704 1735440 1735804 1736224 "NCEP" 1736885 NIL NCEP (NIL T) -7 NIL NIL) (-703 1734352 1735091 1735119 "NASRING" 1735229 T NASRING (NIL) -9 NIL 1735303) (-702 1734147 1734191 1734285 "NASRING-" 1734290 NIL NASRING- (NIL T) -8 NIL NIL) (-701 1733301 1733800 1733828 "NARNG" 1733945 T NARNG (NIL) -9 NIL 1734036) (-700 1732993 1733060 1733194 "NARNG-" 1733199 NIL NARNG- (NIL T) -8 NIL NIL) (-699 1731872 1732079 1732314 "NAGSP" 1732778 T NAGSP (NIL) -7 NIL NIL) (-698 1723296 1724942 1726577 "NAGS" 1730257 T NAGS (NIL) -7 NIL NIL) (-697 1721860 1722164 1722491 "NAGF07" 1722989 T NAGF07 (NIL) -7 NIL NIL) (-696 1716442 1717722 1719018 "NAGF04" 1720584 T NAGF04 (NIL) -7 NIL NIL) (-695 1709474 1711072 1712689 "NAGF02" 1714845 T NAGF02 (NIL) -7 NIL NIL) (-694 1704738 1705828 1706935 "NAGF01" 1708387 T NAGF01 (NIL) -7 NIL NIL) (-693 1698398 1699956 1701533 "NAGE04" 1703181 T NAGE04 (NIL) -7 NIL NIL) (-692 1689639 1691742 1693854 "NAGE02" 1696306 T NAGE02 (NIL) -7 NIL NIL) (-691 1685632 1686569 1687523 "NAGE01" 1688705 T NAGE01 (NIL) -7 NIL NIL) (-690 1683439 1683970 1684525 "NAGD03" 1685097 T NAGD03 (NIL) -7 NIL NIL) (-689 1675225 1677144 1679089 "NAGD02" 1681514 T NAGD02 (NIL) -7 NIL NIL) (-688 1669084 1670497 1671925 "NAGD01" 1673817 T NAGD01 (NIL) -7 NIL NIL) (-687 1665341 1666151 1666976 "NAGC06" 1668279 T NAGC06 (NIL) -7 NIL NIL) (-686 1663818 1664147 1664500 "NAGC05" 1665008 T NAGC05 (NIL) -7 NIL NIL) (-685 1663202 1663319 1663461 "NAGC02" 1663696 T NAGC02 (NIL) -7 NIL NIL) (-684 1662264 1662821 1662861 "NAALG" 1662940 NIL NAALG (NIL T) -9 NIL 1663001) (-683 1662099 1662128 1662218 "NAALG-" 1662223 NIL NAALG- (NIL T T) -8 NIL NIL) (-682 1656049 1657157 1658344 "MULTSQFR" 1660995 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-681 1655368 1655443 1655627 "MULTFACT" 1655961 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-680 1648562 1652473 1652525 "MTSCAT" 1653585 NIL MTSCAT (NIL T T) -9 NIL 1654099) (-679 1648274 1648328 1648420 "MTHING" 1648502 NIL MTHING (NIL T) -7 NIL NIL) (-678 1648066 1648099 1648159 "MSYSCMD" 1648234 T MSYSCMD (NIL) -7 NIL NIL) (-677 1644178 1646821 1647141 "MSET" 1647779 NIL MSET (NIL T) -8 NIL NIL) (-676 1641274 1643740 1643781 "MSETAGG" 1643786 NIL MSETAGG (NIL T) -9 NIL 1643820) (-675 1637130 1638672 1639413 "MRING" 1640577 NIL MRING (NIL T T) -8 NIL NIL) (-674 1636700 1636767 1636896 "MRF2" 1637057 NIL MRF2 (NIL T T T) -7 NIL NIL) (-673 1636318 1636353 1636497 "MRATFAC" 1636659 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-672 1633930 1634225 1634656 "MPRFF" 1636023 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-671 1627950 1633785 1633881 "MPOLY" 1633886 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-670 1627440 1627475 1627683 "MPCPF" 1627909 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-669 1626956 1626999 1627182 "MPC3" 1627391 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-668 1626157 1626238 1626457 "MPC2" 1626871 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-667 1624458 1624795 1625185 "MONOTOOL" 1625817 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-666 1623583 1623918 1623946 "MONOID" 1624223 T MONOID (NIL) -9 NIL 1624395) (-665 1622961 1623124 1623367 "MONOID-" 1623372 NIL MONOID- (NIL T) -8 NIL NIL) (-664 1613942 1619928 1619987 "MONOGEN" 1620661 NIL MONOGEN (NIL T T) -9 NIL 1621117) (-663 1611160 1611895 1612895 "MONOGEN-" 1613014 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-662 1610020 1610440 1610468 "MONADWU" 1610860 T MONADWU (NIL) -9 NIL 1611098) (-661 1609392 1609551 1609799 "MONADWU-" 1609804 NIL MONADWU- (NIL T) -8 NIL NIL) (-660 1608778 1608996 1609024 "MONAD" 1609231 T MONAD (NIL) -9 NIL 1609343) (-659 1608463 1608541 1608673 "MONAD-" 1608678 NIL MONAD- (NIL T) -8 NIL NIL) (-658 1606714 1607376 1607655 "MOEBIUS" 1608216 NIL MOEBIUS (NIL T) -8 NIL NIL) (-657 1606108 1606486 1606526 "MODULE" 1606531 NIL MODULE (NIL T) -9 NIL 1606557) (-656 1605676 1605772 1605962 "MODULE-" 1605967 NIL MODULE- (NIL T T) -8 NIL NIL) (-655 1603347 1604042 1604368 "MODRING" 1605501 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-654 1600303 1601468 1601985 "MODOP" 1602879 NIL MODOP (NIL T T) -8 NIL NIL) (-653 1598490 1598942 1599283 "MODMONOM" 1600102 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-652 1588169 1596694 1597116 "MODMON" 1598118 NIL MODMON (NIL T T) -8 NIL NIL) (-651 1585295 1587013 1587289 "MODFIELD" 1588044 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-650 1584299 1584576 1584766 "MMLFORM" 1585125 T MMLFORM (NIL) -8 NIL NIL) (-649 1583825 1583868 1584047 "MMAP" 1584250 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-648 1582062 1582839 1582879 "MLO" 1583296 NIL MLO (NIL T) -9 NIL 1583537) (-647 1579429 1579944 1580546 "MLIFT" 1581543 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-646 1578820 1578904 1579058 "MKUCFUNC" 1579340 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-645 1578419 1578489 1578612 "MKRECORD" 1578743 NIL MKRECORD (NIL T T) -7 NIL NIL) (-644 1577467 1577628 1577856 "MKFUNC" 1578230 NIL MKFUNC (NIL T) -7 NIL NIL) (-643 1576855 1576959 1577115 "MKFLCFN" 1577350 NIL MKFLCFN (NIL T) -7 NIL NIL) (-642 1576281 1576648 1576737 "MKCHSET" 1576799 NIL MKCHSET (NIL T) -8 NIL NIL) (-641 1575558 1575660 1575845 "MKBCFUNC" 1576174 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-640 1572242 1575112 1575248 "MINT" 1575442 T MINT (NIL) -8 NIL NIL) (-639 1571054 1571297 1571574 "MHROWRED" 1571997 NIL MHROWRED (NIL T) -7 NIL NIL) (-638 1566325 1569499 1569923 "MFLOAT" 1570650 T MFLOAT (NIL) -8 NIL NIL) (-637 1565682 1565758 1565929 "MFINFACT" 1566237 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-636 1561997 1562845 1563729 "MESH" 1564818 T MESH (NIL) -7 NIL NIL) (-635 1560387 1560699 1561052 "MDDFACT" 1561684 NIL MDDFACT (NIL T) -7 NIL NIL) (-634 1557230 1559547 1559588 "MDAGG" 1559843 NIL MDAGG (NIL T) -9 NIL 1559986) (-633 1546928 1556523 1556730 "MCMPLX" 1557043 T MCMPLX (NIL) -8 NIL NIL) (-632 1546069 1546215 1546415 "MCDEN" 1546777 NIL MCDEN (NIL T T) -7 NIL NIL) (-631 1543959 1544229 1544609 "MCALCFN" 1545799 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-630 1541581 1542104 1542665 "MATSTOR" 1543430 NIL MATSTOR (NIL T) -7 NIL NIL) (-629 1537590 1540956 1541203 "MATRIX" 1541366 NIL MATRIX (NIL T) -8 NIL NIL) (-628 1533360 1534063 1534799 "MATLIN" 1536947 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-627 1523558 1526696 1526772 "MATCAT" 1531610 NIL MATCAT (NIL T T T) -9 NIL 1533027) (-626 1519923 1520936 1522291 "MATCAT-" 1522296 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-625 1518525 1518678 1519009 "MATCAT2" 1519758 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-624 1516637 1516961 1517345 "MAPPKG3" 1518200 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-623 1515618 1515791 1516013 "MAPPKG2" 1516461 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-622 1514117 1514401 1514728 "MAPPKG1" 1515324 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-621 1513728 1513786 1513909 "MAPHACK3" 1514053 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-620 1513320 1513381 1513495 "MAPHACK2" 1513660 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-619 1512758 1512861 1513003 "MAPHACK1" 1513211 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-618 1510866 1511460 1511763 "MAGMA" 1512487 NIL MAGMA (NIL T) -8 NIL NIL) (-617 1507340 1509110 1509570 "M3D" 1510439 NIL M3D (NIL T) -8 NIL NIL) (-616 1501496 1505711 1505752 "LZSTAGG" 1506534 NIL LZSTAGG (NIL T) -9 NIL 1506829) (-615 1497469 1498627 1500084 "LZSTAGG-" 1500089 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-614 1494585 1495362 1495848 "LWORD" 1497015 NIL LWORD (NIL T) -8 NIL NIL) (-613 1487745 1494356 1494490 "LSQM" 1494495 NIL LSQM (NIL NIL T) -8 NIL NIL) (-612 1486969 1487108 1487336 "LSPP" 1487600 NIL LSPP (NIL T T T T) -7 NIL NIL) (-611 1484781 1485082 1485538 "LSMP" 1486658 NIL LSMP (NIL T T T T) -7 NIL NIL) (-610 1481560 1482234 1482964 "LSMP1" 1484083 NIL LSMP1 (NIL T) -7 NIL NIL) (-609 1475487 1480729 1480770 "LSAGG" 1480832 NIL LSAGG (NIL T) -9 NIL 1480910) (-608 1472182 1473106 1474319 "LSAGG-" 1474324 NIL LSAGG- (NIL T T) -8 NIL NIL) (-607 1469808 1471326 1471575 "LPOLY" 1471977 NIL LPOLY (NIL T T) -8 NIL NIL) (-606 1469390 1469475 1469598 "LPEFRAC" 1469717 NIL LPEFRAC (NIL T) -7 NIL NIL) (-605 1467737 1468484 1468737 "LO" 1469222 NIL LO (NIL T T T) -8 NIL NIL) (-604 1467391 1467503 1467531 "LOGIC" 1467642 T LOGIC (NIL) -9 NIL 1467722) (-603 1467253 1467276 1467347 "LOGIC-" 1467352 NIL LOGIC- (NIL T) -8 NIL NIL) (-602 1466446 1466586 1466779 "LODOOPS" 1467109 NIL LODOOPS (NIL T T) -7 NIL NIL) (-601 1463864 1466363 1466428 "LODO" 1466433 NIL LODO (NIL T NIL) -8 NIL NIL) (-600 1462410 1462645 1462996 "LODOF" 1463611 NIL LODOF (NIL T T) -7 NIL NIL) (-599 1458830 1461266 1461306 "LODOCAT" 1461738 NIL LODOCAT (NIL T) -9 NIL 1461949) (-598 1458564 1458622 1458748 "LODOCAT-" 1458753 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-597 1455878 1458405 1458523 "LODO2" 1458528 NIL LODO2 (NIL T T) -8 NIL NIL) (-596 1453307 1455815 1455860 "LODO1" 1455865 NIL LODO1 (NIL T) -8 NIL NIL) (-595 1452170 1452335 1452646 "LODEEF" 1453130 NIL LODEEF (NIL T T T) -7 NIL NIL) (-594 1447457 1450301 1450342 "LNAGG" 1451289 NIL LNAGG (NIL T) -9 NIL 1451733) (-593 1446604 1446818 1447160 "LNAGG-" 1447165 NIL LNAGG- (NIL T T) -8 NIL NIL) (-592 1442769 1443531 1444169 "LMOPS" 1446020 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-591 1442167 1442529 1442569 "LMODULE" 1442629 NIL LMODULE (NIL T) -9 NIL 1442671) (-590 1439413 1441812 1441935 "LMDICT" 1442077 NIL LMDICT (NIL T) -8 NIL NIL) (-589 1432640 1438359 1438657 "LIST" 1439148 NIL LIST (NIL T) -8 NIL NIL) (-588 1432165 1432239 1432378 "LIST3" 1432560 NIL LIST3 (NIL T T T) -7 NIL NIL) (-587 1431172 1431350 1431578 "LIST2" 1431983 NIL LIST2 (NIL T T) -7 NIL NIL) (-586 1429306 1429618 1430017 "LIST2MAP" 1430819 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-585 1428019 1428699 1428739 "LINEXP" 1428992 NIL LINEXP (NIL T) -9 NIL 1429140) (-584 1426666 1426926 1427223 "LINDEP" 1427771 NIL LINDEP (NIL T T) -7 NIL NIL) (-583 1423433 1424152 1424929 "LIMITRF" 1425921 NIL LIMITRF (NIL T) -7 NIL NIL) (-582 1421713 1422008 1422423 "LIMITPS" 1423128 NIL LIMITPS (NIL T T) -7 NIL NIL) (-581 1416168 1421224 1421452 "LIE" 1421534 NIL LIE (NIL T T) -8 NIL NIL) (-580 1415219 1415662 1415702 "LIECAT" 1415842 NIL LIECAT (NIL T) -9 NIL 1415993) (-579 1415060 1415087 1415175 "LIECAT-" 1415180 NIL LIECAT- (NIL T T) -8 NIL NIL) (-578 1407672 1414509 1414674 "LIB" 1414915 T LIB (NIL) -8 NIL NIL) (-577 1403309 1404190 1405125 "LGROBP" 1406789 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-576 1401175 1401449 1401811 "LF" 1403030 NIL LF (NIL T T) -7 NIL NIL) (-575 1400015 1400707 1400735 "LFCAT" 1400942 T LFCAT (NIL) -9 NIL 1401081) (-574 1396927 1397553 1398239 "LEXTRIPK" 1399381 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-573 1393633 1394497 1395000 "LEXP" 1396507 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-572 1392031 1392344 1392745 "LEADCDET" 1393315 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-571 1391227 1391301 1391528 "LAZM3PK" 1391952 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-570 1386144 1389306 1389843 "LAUPOL" 1390740 NIL LAUPOL (NIL T T) -8 NIL NIL) (-569 1385711 1385755 1385922 "LAPLACE" 1386094 NIL LAPLACE (NIL T T) -7 NIL NIL) (-568 1383639 1384812 1385063 "LA" 1385544 NIL LA (NIL T T T) -8 NIL NIL) (-567 1382702 1383296 1383336 "LALG" 1383397 NIL LALG (NIL T) -9 NIL 1383455) (-566 1382417 1382476 1382611 "LALG-" 1382616 NIL LALG- (NIL T T) -8 NIL NIL) (-565 1381327 1381514 1381811 "KOVACIC" 1382217 NIL KOVACIC (NIL T T) -7 NIL NIL) (-564 1381162 1381186 1381227 "KONVERT" 1381289 NIL KONVERT (NIL T) -9 NIL NIL) (-563 1380997 1381021 1381062 "KOERCE" 1381124 NIL KOERCE (NIL T) -9 NIL NIL) (-562 1378731 1379491 1379884 "KERNEL" 1380636 NIL KERNEL (NIL T) -8 NIL NIL) (-561 1378233 1378314 1378444 "KERNEL2" 1378645 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-560 1372085 1376773 1376827 "KDAGG" 1377204 NIL KDAGG (NIL T T) -9 NIL 1377410) (-559 1371614 1371738 1371943 "KDAGG-" 1371948 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-558 1364789 1371275 1371430 "KAFILE" 1371492 NIL KAFILE (NIL T) -8 NIL NIL) (-557 1359244 1364300 1364528 "JORDAN" 1364610 NIL JORDAN (NIL T T) -8 NIL NIL) (-556 1355544 1357450 1357504 "IXAGG" 1358433 NIL IXAGG (NIL T T) -9 NIL 1358892) (-555 1354463 1354769 1355188 "IXAGG-" 1355193 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-554 1350048 1354385 1354444 "IVECTOR" 1354449 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-553 1348814 1349051 1349317 "ITUPLE" 1349815 NIL ITUPLE (NIL T) -8 NIL NIL) (-552 1347250 1347427 1347733 "ITRIGMNP" 1348636 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-551 1345995 1346199 1346482 "ITFUN3" 1347026 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-550 1345627 1345684 1345793 "ITFUN2" 1345932 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-549 1343429 1344500 1344797 "ITAYLOR" 1345362 NIL ITAYLOR (NIL T) -8 NIL NIL) (-548 1332417 1337615 1338774 "ISUPS" 1342302 NIL ISUPS (NIL T) -8 NIL NIL) (-547 1331521 1331661 1331897 "ISUMP" 1332264 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-546 1326785 1331322 1331401 "ISTRING" 1331474 NIL ISTRING (NIL NIL) -8 NIL NIL) (-545 1325998 1326079 1326294 "IRURPK" 1326699 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-544 1324934 1325135 1325375 "IRSN" 1325778 T IRSN (NIL) -7 NIL NIL) (-543 1322969 1323324 1323759 "IRRF2F" 1324572 NIL IRRF2F (NIL T) -7 NIL NIL) (-542 1322716 1322754 1322830 "IRREDFFX" 1322925 NIL IRREDFFX (NIL T) -7 NIL NIL) (-541 1321331 1321590 1321889 "IROOT" 1322449 NIL IROOT (NIL T) -7 NIL NIL) (-540 1317969 1319020 1319710 "IR" 1320673 NIL IR (NIL T) -8 NIL NIL) (-539 1315582 1316077 1316643 "IR2" 1317447 NIL IR2 (NIL T T) -7 NIL NIL) (-538 1314658 1314771 1314991 "IR2F" 1315465 NIL IR2F (NIL T T) -7 NIL NIL) (-537 1314449 1314483 1314543 "IPRNTPK" 1314618 T IPRNTPK (NIL) -7 NIL NIL) (-536 1311003 1314338 1314407 "IPF" 1314412 NIL IPF (NIL NIL) -8 NIL NIL) (-535 1309320 1310928 1310985 "IPADIC" 1310990 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-534 1308819 1308877 1309066 "INVLAPLA" 1309256 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-533 1298468 1300821 1303207 "INTTR" 1306483 NIL INTTR (NIL T T) -7 NIL NIL) (-532 1294816 1295557 1296420 "INTTOOLS" 1297654 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-531 1294402 1294493 1294610 "INTSLPE" 1294719 T INTSLPE (NIL) -7 NIL NIL) (-530 1292352 1294325 1294384 "INTRVL" 1294389 NIL INTRVL (NIL T) -8 NIL NIL) (-529 1289959 1290471 1291045 "INTRF" 1291837 NIL INTRF (NIL T) -7 NIL NIL) (-528 1289374 1289471 1289612 "INTRET" 1289857 NIL INTRET (NIL T) -7 NIL NIL) (-527 1287376 1287765 1288234 "INTRAT" 1288982 NIL INTRAT (NIL T T) -7 NIL NIL) (-526 1284609 1285192 1285817 "INTPM" 1286861 NIL INTPM (NIL T T) -7 NIL NIL) (-525 1281318 1281917 1282661 "INTPAF" 1283995 NIL INTPAF (NIL T T T) -7 NIL NIL) (-524 1276561 1277507 1278542 "INTPACK" 1280303 T INTPACK (NIL) -7 NIL NIL) (-523 1273415 1276290 1276417 "INT" 1276454 T INT (NIL) -8 NIL NIL) (-522 1272667 1272819 1273027 "INTHERTR" 1273257 NIL INTHERTR (NIL T T) -7 NIL NIL) (-521 1272106 1272186 1272374 "INTHERAL" 1272581 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-520 1269952 1270395 1270852 "INTHEORY" 1271669 T INTHEORY (NIL) -7 NIL NIL) (-519 1261275 1262895 1264673 "INTG0" 1268304 NIL INTG0 (NIL T T T) -7 NIL NIL) (-518 1241848 1246638 1251448 "INTFTBL" 1256485 T INTFTBL (NIL) -8 NIL NIL) (-517 1241097 1241235 1241408 "INTFACT" 1241707 NIL INTFACT (NIL T) -7 NIL NIL) (-516 1238488 1238934 1239497 "INTEF" 1240651 NIL INTEF (NIL T T) -7 NIL NIL) (-515 1236950 1237699 1237727 "INTDOM" 1238028 T INTDOM (NIL) -9 NIL 1238235) (-514 1236319 1236493 1236735 "INTDOM-" 1236740 NIL INTDOM- (NIL T) -8 NIL NIL) (-513 1232812 1234744 1234798 "INTCAT" 1235597 NIL INTCAT (NIL T) -9 NIL 1235916) (-512 1232285 1232387 1232515 "INTBIT" 1232704 T INTBIT (NIL) -7 NIL NIL) (-511 1230960 1231114 1231427 "INTALG" 1232130 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-510 1230417 1230507 1230677 "INTAF" 1230864 NIL INTAF (NIL T T) -7 NIL NIL) (-509 1223871 1230227 1230367 "INTABL" 1230372 NIL INTABL (NIL T T T) -8 NIL NIL) (-508 1218822 1221551 1221579 "INS" 1222547 T INS (NIL) -9 NIL 1223228) (-507 1216062 1216833 1217807 "INS-" 1217880 NIL INS- (NIL T) -8 NIL NIL) (-506 1214841 1215068 1215365 "INPSIGN" 1215815 NIL INPSIGN (NIL T T) -7 NIL NIL) (-505 1213959 1214076 1214273 "INPRODPF" 1214721 NIL INPRODPF (NIL T T) -7 NIL NIL) (-504 1212853 1212970 1213207 "INPRODFF" 1213839 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-503 1211853 1212005 1212265 "INNMFACT" 1212689 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-502 1211050 1211147 1211335 "INMODGCD" 1211752 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-501 1209559 1209803 1210127 "INFSP" 1210795 NIL INFSP (NIL T T T) -7 NIL NIL) (-500 1208743 1208860 1209043 "INFPROD0" 1209439 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-499 1205753 1206912 1207403 "INFORM" 1208260 T INFORM (NIL) -8 NIL NIL) (-498 1205363 1205423 1205521 "INFORM1" 1205688 NIL INFORM1 (NIL T) -7 NIL NIL) (-497 1204886 1204975 1205089 "INFINITY" 1205269 T INFINITY (NIL) -7 NIL NIL) (-496 1203504 1203752 1204073 "INEP" 1204634 NIL INEP (NIL T T T) -7 NIL NIL) (-495 1202780 1203401 1203466 "INDE" 1203471 NIL INDE (NIL T) -8 NIL NIL) (-494 1202344 1202412 1202529 "INCRMAPS" 1202707 NIL INCRMAPS (NIL T) -7 NIL NIL) (-493 1197655 1198580 1199524 "INBFF" 1201432 NIL INBFF (NIL T) -7 NIL NIL) (-492 1194150 1197500 1197603 "IMATRIX" 1197608 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-491 1192862 1192985 1193300 "IMATQF" 1194006 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-490 1191082 1191309 1191646 "IMATLIN" 1192618 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-489 1185708 1191006 1191064 "ILIST" 1191069 NIL ILIST (NIL T NIL) -8 NIL NIL) (-488 1183661 1185568 1185681 "IIARRAY2" 1185686 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-487 1179029 1183572 1183636 "IFF" 1183641 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-486 1174072 1178321 1178509 "IFARRAY" 1178886 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-485 1173279 1173976 1174049 "IFAMON" 1174054 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-484 1172863 1172928 1172982 "IEVALAB" 1173189 NIL IEVALAB (NIL T T) -9 NIL NIL) (-483 1172538 1172606 1172766 "IEVALAB-" 1172771 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-482 1172196 1172452 1172515 "IDPO" 1172520 NIL IDPO (NIL T T) -8 NIL NIL) (-481 1171473 1172085 1172160 "IDPOAMS" 1172165 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-480 1170807 1171362 1171437 "IDPOAM" 1171442 NIL IDPOAM (NIL T T) -8 NIL NIL) (-479 1169893 1170143 1170196 "IDPC" 1170609 NIL IDPC (NIL T T) -9 NIL 1170758) (-478 1169389 1169785 1169858 "IDPAM" 1169863 NIL IDPAM (NIL T T) -8 NIL NIL) (-477 1168792 1169281 1169354 "IDPAG" 1169359 NIL IDPAG (NIL T T) -8 NIL NIL) (-476 1165047 1165895 1166790 "IDECOMP" 1167949 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-475 1157920 1158970 1160017 "IDEAL" 1164083 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-474 1157084 1157196 1157395 "ICDEN" 1157804 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-473 1156183 1156564 1156711 "ICARD" 1156957 T ICARD (NIL) -8 NIL NIL) (-472 1154255 1154568 1154971 "IBPTOOLS" 1155860 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-471 1149869 1153875 1153988 "IBITS" 1154174 NIL IBITS (NIL NIL) -8 NIL NIL) (-470 1146592 1147168 1147863 "IBATOOL" 1149286 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-469 1144372 1144833 1145366 "IBACHIN" 1146127 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-468 1142249 1144218 1144321 "IARRAY2" 1144326 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-467 1138402 1142175 1142232 "IARRAY1" 1142237 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-466 1132341 1136820 1137298 "IAN" 1137944 T IAN (NIL) -8 NIL NIL) (-465 1131852 1131909 1132082 "IALGFACT" 1132278 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-464 1131380 1131493 1131521 "HYPCAT" 1131728 T HYPCAT (NIL) -9 NIL NIL) (-463 1130918 1131035 1131221 "HYPCAT-" 1131226 NIL HYPCAT- (NIL T) -8 NIL NIL) (-462 1127598 1128929 1128970 "HOAGG" 1129951 NIL HOAGG (NIL T) -9 NIL 1130630) (-461 1126192 1126591 1127117 "HOAGG-" 1127122 NIL HOAGG- (NIL T T) -8 NIL NIL) (-460 1120023 1125633 1125799 "HEXADEC" 1126046 T HEXADEC (NIL) -8 NIL NIL) (-459 1118771 1118993 1119256 "HEUGCD" 1119800 NIL HEUGCD (NIL T) -7 NIL NIL) (-458 1117874 1118608 1118738 "HELLFDIV" 1118743 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-457 1116102 1117651 1117739 "HEAP" 1117818 NIL HEAP (NIL T) -8 NIL NIL) (-456 1109969 1116017 1116079 "HDP" 1116084 NIL HDP (NIL NIL T) -8 NIL NIL) (-455 1103681 1109606 1109757 "HDMP" 1109870 NIL HDMP (NIL NIL T) -8 NIL NIL) (-454 1103006 1103145 1103309 "HB" 1103537 T HB (NIL) -7 NIL NIL) (-453 1096503 1102852 1102956 "HASHTBL" 1102961 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-452 1094256 1096131 1096310 "HACKPI" 1096344 T HACKPI (NIL) -8 NIL NIL) (-451 1089952 1094110 1094222 "GTSET" 1094227 NIL GTSET (NIL T T T T) -8 NIL NIL) (-450 1083478 1089830 1089928 "GSTBL" 1089933 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-449 1075711 1082514 1082778 "GSERIES" 1083269 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-448 1074734 1075187 1075215 "GROUP" 1075476 T GROUP (NIL) -9 NIL 1075635) (-447 1073850 1074073 1074417 "GROUP-" 1074422 NIL GROUP- (NIL T) -8 NIL NIL) (-446 1072219 1072538 1072925 "GROEBSOL" 1073527 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-445 1071160 1071422 1071473 "GRMOD" 1072002 NIL GRMOD (NIL T T) -9 NIL 1072170) (-444 1070928 1070964 1071092 "GRMOD-" 1071097 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-443 1066254 1067282 1068282 "GRIMAGE" 1069948 T GRIMAGE (NIL) -8 NIL NIL) (-442 1064721 1064981 1065305 "GRDEF" 1065950 T GRDEF (NIL) -7 NIL NIL) (-441 1064165 1064281 1064422 "GRAY" 1064600 T GRAY (NIL) -7 NIL NIL) (-440 1063399 1063779 1063830 "GRALG" 1063983 NIL GRALG (NIL T T) -9 NIL 1064075) (-439 1063060 1063133 1063296 "GRALG-" 1063301 NIL GRALG- (NIL T T T) -8 NIL NIL) (-438 1059868 1062649 1062825 "GPOLSET" 1062967 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-437 1059224 1059281 1059538 "GOSPER" 1059805 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-436 1054983 1055662 1056188 "GMODPOL" 1058923 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-435 1053988 1054172 1054410 "GHENSEL" 1054795 NIL GHENSEL (NIL T T) -7 NIL NIL) (-434 1048054 1048897 1049923 "GENUPS" 1053072 NIL GENUPS (NIL T T) -7 NIL NIL) (-433 1047751 1047802 1047891 "GENUFACT" 1047997 NIL GENUFACT (NIL T) -7 NIL NIL) (-432 1047163 1047240 1047405 "GENPGCD" 1047669 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-431 1046637 1046672 1046885 "GENMFACT" 1047122 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-430 1045205 1045460 1045767 "GENEEZ" 1046380 NIL GENEEZ (NIL T T) -7 NIL NIL) (-429 1039079 1044818 1044979 "GDMP" 1045128 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-428 1028461 1032850 1033956 "GCNAALG" 1038062 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-427 1026883 1027755 1027783 "GCDDOM" 1028038 T GCDDOM (NIL) -9 NIL 1028195) (-426 1026353 1026480 1026695 "GCDDOM-" 1026700 NIL GCDDOM- (NIL T) -8 NIL NIL) (-425 1025025 1025210 1025514 "GB" 1026132 NIL GB (NIL T T T T) -7 NIL NIL) (-424 1013645 1015971 1018363 "GBINTERN" 1022716 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-423 1011482 1011774 1012195 "GBF" 1013320 NIL GBF (NIL T T T T) -7 NIL NIL) (-422 1010263 1010428 1010695 "GBEUCLID" 1011298 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-421 1009612 1009737 1009886 "GAUSSFAC" 1010134 T GAUSSFAC (NIL) -7 NIL NIL) (-420 1007989 1008291 1008604 "GALUTIL" 1009331 NIL GALUTIL (NIL T) -7 NIL NIL) (-419 1006306 1006580 1006903 "GALPOLYU" 1007716 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-418 1003695 1003985 1004390 "GALFACTU" 1006003 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-417 995501 997000 998608 "GALFACT" 1002127 NIL GALFACT (NIL T) -7 NIL NIL) (-416 992889 993547 993575 "FVFUN" 994731 T FVFUN (NIL) -9 NIL 995451) (-415 992155 992337 992365 "FVC" 992656 T FVC (NIL) -9 NIL 992839) (-414 991797 991952 992033 "FUNCTION" 992107 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-413 989467 990018 990507 "FT" 991328 T FT (NIL) -8 NIL NIL) (-412 988285 988768 988971 "FTEM" 989284 T FTEM (NIL) -8 NIL NIL) (-411 986550 986838 987240 "FSUPFACT" 987977 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-410 984947 985236 985568 "FST" 986238 T FST (NIL) -8 NIL NIL) (-409 984122 984228 984422 "FSRED" 984829 NIL FSRED (NIL T T) -7 NIL NIL) (-408 982801 983056 983410 "FSPRMELT" 983837 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-407 979886 980324 980823 "FSPECF" 982364 NIL FSPECF (NIL T T) -7 NIL NIL) (-406 962260 970817 970857 "FS" 974695 NIL FS (NIL T) -9 NIL 976977) (-405 950910 953900 957956 "FS-" 958253 NIL FS- (NIL T T) -8 NIL NIL) (-404 950426 950480 950656 "FSINT" 950851 NIL FSINT (NIL T T) -7 NIL NIL) (-403 948707 949419 949722 "FSERIES" 950205 NIL FSERIES (NIL T T) -8 NIL NIL) (-402 947725 947841 948071 "FSCINT" 948587 NIL FSCINT (NIL T T) -7 NIL NIL) (-401 943960 946670 946711 "FSAGG" 947081 NIL FSAGG (NIL T) -9 NIL 947340) (-400 941722 942323 943119 "FSAGG-" 943214 NIL FSAGG- (NIL T T) -8 NIL NIL) (-399 940764 940907 941134 "FSAGG2" 941575 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-398 938423 938702 939255 "FS2UPS" 940482 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-397 938009 938052 938205 "FS2" 938374 NIL FS2 (NIL T T T T) -7 NIL NIL) (-396 936869 937040 937348 "FS2EXPXP" 937834 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-395 936295 936410 936562 "FRUTIL" 936749 NIL FRUTIL (NIL T) -7 NIL NIL) (-394 927715 931794 933150 "FR" 934971 NIL FR (NIL T) -8 NIL NIL) (-393 922792 925435 925475 "FRNAALG" 926871 NIL FRNAALG (NIL T) -9 NIL 927478) (-392 918471 919541 920816 "FRNAALG-" 921566 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-391 918109 918152 918279 "FRNAAF2" 918422 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-390 916474 916966 917260 "FRMOD" 917922 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-389 914197 914865 915181 "FRIDEAL" 916265 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-388 913396 913483 913770 "FRIDEAL2" 914104 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-387 912654 913062 913103 "FRETRCT" 913108 NIL FRETRCT (NIL T) -9 NIL 913279) (-386 911766 911997 912348 "FRETRCT-" 912353 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-385 908976 910196 910255 "FRAMALG" 911137 NIL FRAMALG (NIL T T) -9 NIL 911429) (-384 907109 907565 908195 "FRAMALG-" 908418 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-383 901011 906584 906860 "FRAC" 906865 NIL FRAC (NIL T) -8 NIL NIL) (-382 900647 900704 900811 "FRAC2" 900948 NIL FRAC2 (NIL T T) -7 NIL NIL) (-381 900283 900340 900447 "FR2" 900584 NIL FR2 (NIL T T) -7 NIL NIL) (-380 894957 897870 897898 "FPS" 899017 T FPS (NIL) -9 NIL 899573) (-379 894406 894515 894679 "FPS-" 894825 NIL FPS- (NIL T) -8 NIL NIL) (-378 891855 893552 893580 "FPC" 893805 T FPC (NIL) -9 NIL 893947) (-377 891648 891688 891785 "FPC-" 891790 NIL FPC- (NIL T) -8 NIL NIL) (-376 890527 891137 891178 "FPATMAB" 891183 NIL FPATMAB (NIL T) -9 NIL 891335) (-375 888227 888703 889129 "FPARFRAC" 890164 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-374 883622 884119 884801 "FORTRAN" 887659 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-373 881338 881838 882377 "FORT" 883103 T FORT (NIL) -7 NIL NIL) (-372 879014 879576 879604 "FORTFN" 880664 T FORTFN (NIL) -9 NIL 881288) (-371 878778 878828 878856 "FORTCAT" 878915 T FORTCAT (NIL) -9 NIL 878977) (-370 876838 877321 877720 "FORMULA" 878399 T FORMULA (NIL) -8 NIL NIL) (-369 876626 876656 876725 "FORMULA1" 876802 NIL FORMULA1 (NIL T) -7 NIL NIL) (-368 876149 876201 876374 "FORDER" 876568 NIL FORDER (NIL T T T T) -7 NIL NIL) (-367 875245 875409 875602 "FOP" 875976 T FOP (NIL) -7 NIL NIL) (-366 873853 874525 874699 "FNLA" 875127 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-365 872522 872911 872939 "FNCAT" 873511 T FNCAT (NIL) -9 NIL 873804) (-364 872088 872481 872509 "FNAME" 872514 T FNAME (NIL) -8 NIL NIL) (-363 870748 871721 871749 "FMTC" 871754 T FMTC (NIL) -9 NIL 871789) (-362 867066 868273 868901 "FMONOID" 870153 NIL FMONOID (NIL T) -8 NIL NIL) (-361 866286 866809 866957 "FM" 866962 NIL FM (NIL T T) -8 NIL NIL) (-360 863710 864356 864384 "FMFUN" 865528 T FMFUN (NIL) -9 NIL 866236) (-359 862979 863160 863188 "FMC" 863478 T FMC (NIL) -9 NIL 863660) (-358 860209 861043 861096 "FMCAT" 862278 NIL FMCAT (NIL T T) -9 NIL 862772) (-357 859104 859977 860076 "FM1" 860154 NIL FM1 (NIL T T) -8 NIL NIL) (-356 856878 857294 857788 "FLOATRP" 858655 NIL FLOATRP (NIL T) -7 NIL NIL) (-355 850364 854534 855164 "FLOAT" 856268 T FLOAT (NIL) -8 NIL NIL) (-354 847802 848302 848880 "FLOATCP" 849831 NIL FLOATCP (NIL T) -7 NIL NIL) (-353 846591 847439 847479 "FLINEXP" 847484 NIL FLINEXP (NIL T) -9 NIL 847577) (-352 845746 845981 846308 "FLINEXP-" 846313 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-351 844822 844966 845190 "FLASORT" 845598 NIL FLASORT (NIL T T) -7 NIL NIL) (-350 842041 842883 842935 "FLALG" 844162 NIL FLALG (NIL T T) -9 NIL 844629) (-349 835826 839528 839569 "FLAGG" 840831 NIL FLAGG (NIL T) -9 NIL 841483) (-348 834552 834891 835381 "FLAGG-" 835386 NIL FLAGG- (NIL T T) -8 NIL NIL) (-347 833594 833737 833964 "FLAGG2" 834405 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-346 830567 831585 831644 "FINRALG" 832772 NIL FINRALG (NIL T T) -9 NIL 833280) (-345 829727 829956 830295 "FINRALG-" 830300 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-344 829134 829347 829375 "FINITE" 829571 T FINITE (NIL) -9 NIL 829678) (-343 821594 823755 823795 "FINAALG" 827462 NIL FINAALG (NIL T) -9 NIL 828915) (-342 816935 817976 819120 "FINAALG-" 820499 NIL FINAALG- (NIL T T) -8 NIL NIL) (-341 816330 816690 816793 "FILE" 816865 NIL FILE (NIL T) -8 NIL NIL) (-340 815015 815327 815381 "FILECAT" 816065 NIL FILECAT (NIL T T) -9 NIL 816281) (-339 812878 814434 814462 "FIELD" 814502 T FIELD (NIL) -9 NIL 814582) (-338 811498 811883 812394 "FIELD-" 812399 NIL FIELD- (NIL T) -8 NIL NIL) (-337 809313 810135 810481 "FGROUP" 811185 NIL FGROUP (NIL T) -8 NIL NIL) (-336 808403 808567 808787 "FGLMICPK" 809145 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-335 804205 808328 808385 "FFX" 808390 NIL FFX (NIL T NIL) -8 NIL NIL) (-334 803806 803867 804002 "FFSLPE" 804138 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-333 799799 800578 801374 "FFPOLY" 803042 NIL FFPOLY (NIL T) -7 NIL NIL) (-332 799303 799339 799548 "FFPOLY2" 799757 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-331 795125 799222 799285 "FFP" 799290 NIL FFP (NIL T NIL) -8 NIL NIL) (-330 790493 795036 795100 "FF" 795105 NIL FF (NIL NIL NIL) -8 NIL NIL) (-329 785589 789836 790026 "FFNBX" 790347 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-328 780499 784724 784982 "FFNBP" 785443 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-327 775102 779783 779994 "FFNB" 780332 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-326 773934 774132 774447 "FFINTBAS" 774899 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-325 770158 772398 772426 "FFIELDC" 773046 T FFIELDC (NIL) -9 NIL 773422) (-324 768821 769191 769688 "FFIELDC-" 769693 NIL FFIELDC- (NIL T) -8 NIL NIL) (-323 768391 768436 768560 "FFHOM" 768763 NIL FFHOM (NIL T T T) -7 NIL NIL) (-322 766089 766573 767090 "FFF" 767906 NIL FFF (NIL T) -7 NIL NIL) (-321 761677 765831 765932 "FFCGX" 766032 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-320 757279 761409 761516 "FFCGP" 761620 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-319 752432 757006 757114 "FFCG" 757215 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-318 734378 743501 743587 "FFCAT" 748752 NIL FFCAT (NIL T T T) -9 NIL 750239) (-317 729576 730623 731937 "FFCAT-" 733167 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-316 728987 729030 729265 "FFCAT2" 729527 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-315 718187 721977 723194 "FEXPR" 727842 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-314 717187 717622 717663 "FEVALAB" 717747 NIL FEVALAB (NIL T) -9 NIL 718008) (-313 716346 716556 716894 "FEVALAB-" 716899 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-312 714939 715729 715932 "FDIV" 716245 NIL FDIV (NIL T T T T) -8 NIL NIL) (-311 712006 712721 712836 "FDIVCAT" 714404 NIL FDIVCAT (NIL T T T T) -9 NIL 714841) (-310 711768 711795 711965 "FDIVCAT-" 711970 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-309 710988 711075 711352 "FDIV2" 711675 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-308 709674 709933 710222 "FCPAK1" 710719 T FCPAK1 (NIL) -7 NIL NIL) (-307 708802 709174 709315 "FCOMP" 709565 NIL FCOMP (NIL T) -8 NIL NIL) (-306 692438 695851 699412 "FC" 705261 T FC (NIL) -8 NIL NIL) (-305 685034 689080 689120 "FAXF" 690922 NIL FAXF (NIL T) -9 NIL 691613) (-304 682313 682968 683793 "FAXF-" 684258 NIL FAXF- (NIL T T) -8 NIL NIL) (-303 677413 681689 681865 "FARRAY" 682170 NIL FARRAY (NIL T) -8 NIL NIL) (-302 672804 674875 674927 "FAMR" 675939 NIL FAMR (NIL T T) -9 NIL 676399) (-301 671695 671997 672431 "FAMR-" 672436 NIL FAMR- (NIL T T T) -8 NIL NIL) (-300 670891 671617 671670 "FAMONOID" 671675 NIL FAMONOID (NIL T) -8 NIL NIL) (-299 668724 669408 669461 "FAMONC" 670402 NIL FAMONC (NIL T T) -9 NIL 670787) (-298 667416 668478 668615 "FAGROUP" 668620 NIL FAGROUP (NIL T) -8 NIL NIL) (-297 665219 665538 665940 "FACUTIL" 667097 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-296 664318 664503 664725 "FACTFUNC" 665029 NIL FACTFUNC (NIL T) -7 NIL NIL) (-295 656638 663569 663781 "EXPUPXS" 664174 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-294 654121 654661 655247 "EXPRTUBE" 656072 T EXPRTUBE (NIL) -7 NIL NIL) (-293 650315 650907 651644 "EXPRODE" 653460 NIL EXPRODE (NIL T T) -7 NIL NIL) (-292 635474 648974 649400 "EXPR" 649921 NIL EXPR (NIL T) -8 NIL NIL) (-291 629902 630489 631301 "EXPR2UPS" 634772 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-290 629538 629595 629702 "EXPR2" 629839 NIL EXPR2 (NIL T T) -7 NIL NIL) (-289 620892 628675 628970 "EXPEXPAN" 629376 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-288 620719 620849 620878 "EXIT" 620883 T EXIT (NIL) -8 NIL NIL) (-287 620346 620408 620521 "EVALCYC" 620651 NIL EVALCYC (NIL T) -7 NIL NIL) (-286 619887 620005 620046 "EVALAB" 620216 NIL EVALAB (NIL T) -9 NIL 620320) (-285 619368 619490 619711 "EVALAB-" 619716 NIL EVALAB- (NIL T T) -8 NIL NIL) (-284 616831 618143 618171 "EUCDOM" 618726 T EUCDOM (NIL) -9 NIL 619076) (-283 615236 615678 616268 "EUCDOM-" 616273 NIL EUCDOM- (NIL T) -8 NIL NIL) (-282 602814 605562 608302 "ESTOOLS" 612516 T ESTOOLS (NIL) -7 NIL NIL) (-281 602450 602507 602614 "ESTOOLS2" 602751 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-280 602201 602243 602323 "ESTOOLS1" 602402 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-279 596139 597863 597891 "ES" 600655 T ES (NIL) -9 NIL 602061) (-278 591087 592373 594190 "ES-" 594354 NIL ES- (NIL T) -8 NIL NIL) (-277 587462 588222 589002 "ESCONT" 590327 T ESCONT (NIL) -7 NIL NIL) (-276 587207 587239 587321 "ESCONT1" 587424 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-275 586882 586932 587032 "ES2" 587151 NIL ES2 (NIL T T) -7 NIL NIL) (-274 586512 586570 586679 "ES1" 586818 NIL ES1 (NIL T T) -7 NIL NIL) (-273 585728 585857 586033 "ERROR" 586356 T ERROR (NIL) -7 NIL NIL) (-272 579231 585587 585678 "EQTBL" 585683 NIL EQTBL (NIL T T) -8 NIL NIL) (-271 571668 574549 575996 "EQ" 577817 NIL -2531 (NIL T) -8 NIL NIL) (-270 571300 571357 571466 "EQ2" 571605 NIL EQ2 (NIL T T) -7 NIL NIL) (-269 566592 567638 568731 "EP" 570239 NIL EP (NIL T) -7 NIL NIL) (-268 565175 565475 565792 "ENV" 566295 T ENV (NIL) -8 NIL NIL) (-267 564335 564899 564927 "ENTIRER" 564932 T ENTIRER (NIL) -9 NIL 564977) (-266 560791 562290 562660 "EMR" 564134 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-265 559935 560120 560174 "ELTAGG" 560554 NIL ELTAGG (NIL T T) -9 NIL 560765) (-264 559654 559716 559857 "ELTAGG-" 559862 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-263 559443 559472 559526 "ELTAB" 559610 NIL ELTAB (NIL T T) -9 NIL NIL) (-262 558569 558715 558914 "ELFUTS" 559294 NIL ELFUTS (NIL T T) -7 NIL NIL) (-261 558311 558367 558395 "ELEMFUN" 558500 T ELEMFUN (NIL) -9 NIL NIL) (-260 558181 558202 558270 "ELEMFUN-" 558275 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-259 553073 556282 556323 "ELAGG" 557263 NIL ELAGG (NIL T) -9 NIL 557726) (-258 551358 551792 552455 "ELAGG-" 552460 NIL ELAGG- (NIL T T) -8 NIL NIL) (-257 550015 550295 550590 "ELABEXPR" 551083 T ELABEXPR (NIL) -8 NIL NIL) (-256 542883 544682 545509 "EFUPXS" 549291 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-255 536333 538134 538944 "EFULS" 542159 NIL EFULS (NIL T T T) -8 NIL NIL) (-254 533764 534122 534600 "EFSTRUC" 535965 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-253 522836 524401 525961 "EF" 532279 NIL EF (NIL T T) -7 NIL NIL) (-252 521937 522321 522470 "EAB" 522707 T EAB (NIL) -8 NIL NIL) (-251 521150 521896 521924 "E04UCFA" 521929 T E04UCFA (NIL) -8 NIL NIL) (-250 520363 521109 521137 "E04NAFA" 521142 T E04NAFA (NIL) -8 NIL NIL) (-249 519576 520322 520350 "E04MBFA" 520355 T E04MBFA (NIL) -8 NIL NIL) (-248 518789 519535 519563 "E04JAFA" 519568 T E04JAFA (NIL) -8 NIL NIL) (-247 518004 518748 518776 "E04GCFA" 518781 T E04GCFA (NIL) -8 NIL NIL) (-246 517219 517963 517991 "E04FDFA" 517996 T E04FDFA (NIL) -8 NIL NIL) (-245 516432 517178 517206 "E04DGFA" 517211 T E04DGFA (NIL) -8 NIL NIL) (-244 510617 511962 513324 "E04AGNT" 515090 T E04AGNT (NIL) -7 NIL NIL) (-243 509344 509824 509864 "DVARCAT" 510339 NIL DVARCAT (NIL T) -9 NIL 510537) (-242 508548 508760 509074 "DVARCAT-" 509079 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-241 501410 508350 508477 "DSMP" 508482 NIL DSMP (NIL T T T) -8 NIL NIL) (-240 496220 497355 498423 "DROPT" 500362 T DROPT (NIL) -8 NIL NIL) (-239 495885 495944 496042 "DROPT1" 496155 NIL DROPT1 (NIL T) -7 NIL NIL) (-238 491000 492126 493263 "DROPT0" 494768 T DROPT0 (NIL) -7 NIL NIL) (-237 489345 489670 490056 "DRAWPT" 490634 T DRAWPT (NIL) -7 NIL NIL) (-236 483932 484855 485934 "DRAW" 488319 NIL DRAW (NIL T) -7 NIL NIL) (-235 483565 483618 483736 "DRAWHACK" 483873 NIL DRAWHACK (NIL T) -7 NIL NIL) (-234 482296 482565 482856 "DRAWCX" 483294 T DRAWCX (NIL) -7 NIL NIL) (-233 481814 481882 482032 "DRAWCURV" 482222 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-232 472286 474244 476359 "DRAWCFUN" 479719 T DRAWCFUN (NIL) -7 NIL NIL) (-231 469100 470982 471023 "DQAGG" 471652 NIL DQAGG (NIL T) -9 NIL 471925) (-230 457607 464345 464427 "DPOLCAT" 466265 NIL DPOLCAT (NIL T T T T) -9 NIL 466809) (-229 452447 453793 455750 "DPOLCAT-" 455755 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-228 446531 452309 452406 "DPMO" 452411 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-227 440518 446312 446478 "DPMM" 446483 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-226 440031 440129 440249 "DOMAIN" 440418 T DOMAIN (NIL) -8 NIL NIL) (-225 433743 439668 439819 "DMP" 439932 NIL DMP (NIL NIL T) -8 NIL NIL) (-224 433343 433399 433543 "DLP" 433681 NIL DLP (NIL T) -7 NIL NIL) (-223 426987 432444 432671 "DLIST" 433148 NIL DLIST (NIL T) -8 NIL NIL) (-222 423834 425843 425884 "DLAGG" 426434 NIL DLAGG (NIL T) -9 NIL 426663) (-221 422544 423236 423264 "DIVRING" 423414 T DIVRING (NIL) -9 NIL 423522) (-220 421532 421785 422178 "DIVRING-" 422183 NIL DIVRING- (NIL T) -8 NIL NIL) (-219 419634 419991 420397 "DISPLAY" 421146 T DISPLAY (NIL) -7 NIL NIL) (-218 413523 419548 419611 "DIRPROD" 419616 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-217 412371 412574 412839 "DIRPROD2" 413316 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-216 402002 408007 408060 "DIRPCAT" 408468 NIL DIRPCAT (NIL NIL T) -9 NIL 409295) (-215 399328 399970 400851 "DIRPCAT-" 401188 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-214 398615 398775 398961 "DIOSP" 399162 T DIOSP (NIL) -7 NIL NIL) (-213 395318 397528 397569 "DIOPS" 398003 NIL DIOPS (NIL T) -9 NIL 398232) (-212 394867 394981 395172 "DIOPS-" 395177 NIL DIOPS- (NIL T T) -8 NIL NIL) (-211 393739 394377 394405 "DIFRING" 394592 T DIFRING (NIL) -9 NIL 394701) (-210 393385 393462 393614 "DIFRING-" 393619 NIL DIFRING- (NIL T) -8 NIL NIL) (-209 391175 392457 392497 "DIFEXT" 392856 NIL DIFEXT (NIL T) -9 NIL 393149) (-208 389461 389889 390554 "DIFEXT-" 390559 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-207 386784 388994 389035 "DIAGG" 389040 NIL DIAGG (NIL T) -9 NIL 389060) (-206 386168 386325 386577 "DIAGG-" 386582 NIL DIAGG- (NIL T T) -8 NIL NIL) (-205 381633 385127 385404 "DHMATRIX" 385937 NIL DHMATRIX (NIL T) -8 NIL NIL) (-204 377245 378154 379164 "DFSFUN" 380643 T DFSFUN (NIL) -7 NIL NIL) (-203 372031 375959 376324 "DFLOAT" 376900 T DFLOAT (NIL) -8 NIL NIL) (-202 370264 370545 370940 "DFINTTLS" 371739 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-201 367297 368299 368697 "DERHAM" 369931 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-200 365146 367072 367161 "DEQUEUE" 367241 NIL DEQUEUE (NIL T) -8 NIL NIL) (-199 364364 364497 364692 "DEGRED" 365008 NIL DEGRED (NIL T T) -7 NIL NIL) (-198 360764 361509 362361 "DEFINTRF" 363592 NIL DEFINTRF (NIL T) -7 NIL NIL) (-197 358295 358764 359362 "DEFINTEF" 360283 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-196 352126 357736 357902 "DECIMAL" 358149 T DECIMAL (NIL) -8 NIL NIL) (-195 349638 350096 350602 "DDFACT" 351670 NIL DDFACT (NIL T T) -7 NIL NIL) (-194 349234 349277 349428 "DBLRESP" 349589 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-193 346944 347278 347647 "DBASE" 348992 NIL DBASE (NIL T) -8 NIL NIL) (-192 346079 346903 346931 "D03FAFA" 346936 T D03FAFA (NIL) -8 NIL NIL) (-191 345215 346038 346066 "D03EEFA" 346071 T D03EEFA (NIL) -8 NIL NIL) (-190 343165 343631 344120 "D03AGNT" 344746 T D03AGNT (NIL) -7 NIL NIL) (-189 342483 343124 343152 "D02EJFA" 343157 T D02EJFA (NIL) -8 NIL NIL) (-188 341801 342442 342470 "D02CJFA" 342475 T D02CJFA (NIL) -8 NIL NIL) (-187 341119 341760 341788 "D02BHFA" 341793 T D02BHFA (NIL) -8 NIL NIL) (-186 340437 341078 341106 "D02BBFA" 341111 T D02BBFA (NIL) -8 NIL NIL) (-185 333635 335223 336829 "D02AGNT" 338851 T D02AGNT (NIL) -7 NIL NIL) (-184 331404 331926 332472 "D01WGTS" 333109 T D01WGTS (NIL) -7 NIL NIL) (-183 330507 331363 331391 "D01TRNS" 331396 T D01TRNS (NIL) -8 NIL NIL) (-182 329610 330466 330494 "D01GBFA" 330499 T D01GBFA (NIL) -8 NIL NIL) (-181 328713 329569 329597 "D01FCFA" 329602 T D01FCFA (NIL) -8 NIL NIL) (-180 327816 328672 328700 "D01ASFA" 328705 T D01ASFA (NIL) -8 NIL NIL) (-179 326919 327775 327803 "D01AQFA" 327808 T D01AQFA (NIL) -8 NIL NIL) (-178 326022 326878 326906 "D01APFA" 326911 T D01APFA (NIL) -8 NIL NIL) (-177 325125 325981 326009 "D01ANFA" 326014 T D01ANFA (NIL) -8 NIL NIL) (-176 324228 325084 325112 "D01AMFA" 325117 T D01AMFA (NIL) -8 NIL NIL) (-175 323331 324187 324215 "D01ALFA" 324220 T D01ALFA (NIL) -8 NIL NIL) (-174 322434 323290 323318 "D01AKFA" 323323 T D01AKFA (NIL) -8 NIL NIL) (-173 321537 322393 322421 "D01AJFA" 322426 T D01AJFA (NIL) -8 NIL NIL) (-172 314841 316390 317949 "D01AGNT" 319998 T D01AGNT (NIL) -7 NIL NIL) (-171 314178 314306 314458 "CYCLOTOM" 314709 T CYCLOTOM (NIL) -7 NIL NIL) (-170 310913 311626 312353 "CYCLES" 313471 T CYCLES (NIL) -7 NIL NIL) (-169 310225 310359 310530 "CVMP" 310774 NIL CVMP (NIL T) -7 NIL NIL) (-168 308007 308264 308639 "CTRIGMNP" 309953 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-167 307612 307695 307800 "CTORCALL" 307922 T CTORCALL (NIL) -8 NIL NIL) (-166 306986 307085 307238 "CSTTOOLS" 307509 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-165 302785 303442 304200 "CRFP" 306298 NIL CRFP (NIL T T) -7 NIL NIL) (-164 301832 302017 302245 "CRAPACK" 302589 NIL CRAPACK (NIL T) -7 NIL NIL) (-163 301216 301317 301521 "CPMATCH" 301708 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-162 300941 300969 301075 "CPIMA" 301182 NIL CPIMA (NIL T T T) -7 NIL NIL) (-161 297305 297977 298695 "COORDSYS" 300276 NIL COORDSYS (NIL T) -7 NIL NIL) (-160 296689 296818 296968 "CONTOUR" 297175 T CONTOUR (NIL) -8 NIL NIL) (-159 292550 294692 295184 "CONTFRAC" 296229 NIL CONTFRAC (NIL T) -8 NIL NIL) (-158 291704 292268 292296 "COMRING" 292301 T COMRING (NIL) -9 NIL 292352) (-157 290785 291062 291246 "COMPPROP" 291540 T COMPPROP (NIL) -8 NIL NIL) (-156 290446 290481 290609 "COMPLPAT" 290744 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-155 280427 290255 290364 "COMPLEX" 290369 NIL COMPLEX (NIL T) -8 NIL NIL) (-154 280063 280120 280227 "COMPLEX2" 280364 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-153 279781 279816 279914 "COMPFACT" 280022 NIL COMPFACT (NIL T T) -7 NIL NIL) (-152 264116 274410 274450 "COMPCAT" 275452 NIL COMPCAT (NIL T) -9 NIL 276845) (-151 253631 256555 260182 "COMPCAT-" 260538 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-150 253362 253390 253492 "COMMUPC" 253597 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-149 253157 253190 253249 "COMMONOP" 253323 T COMMONOP (NIL) -7 NIL NIL) (-148 252740 252908 252995 "COMM" 253090 T COMM (NIL) -8 NIL NIL) (-147 251989 252183 252211 "COMBOPC" 252549 T COMBOPC (NIL) -9 NIL 252724) (-146 250885 251095 251337 "COMBINAT" 251779 NIL COMBINAT (NIL T) -7 NIL NIL) (-145 247083 247656 248296 "COMBF" 250307 NIL COMBF (NIL T T) -7 NIL NIL) (-144 245869 246199 246434 "COLOR" 246868 T COLOR (NIL) -8 NIL NIL) (-143 245509 245556 245681 "CMPLXRT" 245816 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-142 241011 242039 243119 "CLIP" 244449 T CLIP (NIL) -7 NIL NIL) (-141 239349 240119 240357 "CLIF" 240839 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-140 235572 237496 237537 "CLAGG" 238466 NIL CLAGG (NIL T) -9 NIL 239002) (-139 233994 234451 235034 "CLAGG-" 235039 NIL CLAGG- (NIL T T) -8 NIL NIL) (-138 233538 233623 233763 "CINTSLPE" 233903 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-137 231039 231510 232058 "CHVAR" 233066 NIL CHVAR (NIL T T T) -7 NIL NIL) (-136 230262 230826 230854 "CHARZ" 230859 T CHARZ (NIL) -9 NIL 230873) (-135 230016 230056 230134 "CHARPOL" 230216 NIL CHARPOL (NIL T) -7 NIL NIL) (-134 229123 229720 229748 "CHARNZ" 229795 T CHARNZ (NIL) -9 NIL 229850) (-133 227148 227813 228148 "CHAR" 228808 T CHAR (NIL) -8 NIL NIL) (-132 226874 226935 226963 "CFCAT" 227074 T CFCAT (NIL) -9 NIL NIL) (-131 226119 226230 226412 "CDEN" 226758 NIL CDEN (NIL T T T) -7 NIL NIL) (-130 222111 225272 225552 "CCLASS" 225859 T CCLASS (NIL) -8 NIL NIL) (-129 222030 222056 222091 "CATEGORY" 222096 T -10 (NIL) -8 NIL NIL) (-128 217082 218059 218812 "CARTEN" 221333 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-127 216190 216338 216559 "CARTEN2" 216929 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-126 214488 215342 215598 "CARD" 215954 T CARD (NIL) -8 NIL NIL) (-125 213861 214189 214217 "CACHSET" 214349 T CACHSET (NIL) -9 NIL 214426) (-124 213358 213654 213682 "CABMON" 213732 T CABMON (NIL) -9 NIL 213788) (-123 210915 213050 213157 "BTREE" 213284 NIL BTREE (NIL T) -8 NIL NIL) (-122 208413 210563 210685 "BTOURN" 210825 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205832 207885 207926 "BTCAT" 207994 NIL BTCAT (NIL T) -9 NIL 208071) (-120 205499 205579 205728 "BTCAT-" 205733 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200720 204591 204619 "BTAGG" 204875 T BTAGG (NIL) -9 NIL 205054) (-118 200143 200287 200517 "BTAGG-" 200522 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 197187 199421 199636 "BSTREE" 199960 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196325 196451 196635 "BRILL" 197043 NIL BRILL (NIL T) -7 NIL NIL) (-115 193027 195054 195095 "BRAGG" 195744 NIL BRAGG (NIL T) -9 NIL 196001) (-114 191556 191962 192517 "BRAGG-" 192522 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184764 190902 191086 "BPADICRT" 191404 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 183068 184701 184746 "BPADIC" 184751 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182768 182798 182911 "BOUNDZRO" 183032 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 178283 179374 180241 "BOP" 181921 T BOP (NIL) -8 NIL NIL) (-109 175904 176348 176868 "BOP1" 177796 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174523 175234 175457 "BOOLEAN" 175701 T BOOLEAN (NIL) -8 NIL NIL) (-107 173890 174268 174320 "BMODULE" 174325 NIL BMODULE (NIL T T) -9 NIL 174389) (-106 169700 173688 173761 "BITS" 173837 T BITS (NIL) -8 NIL NIL) (-105 168797 169232 169384 "BINFILE" 169568 T BINFILE (NIL) -8 NIL NIL) (-104 168209 168331 168473 "BINDING" 168675 T BINDING (NIL) -8 NIL NIL) (-103 162044 167653 167818 "BINARY" 168064 T BINARY (NIL) -8 NIL NIL) (-102 159872 161300 161341 "BGAGG" 161601 NIL BGAGG (NIL T) -9 NIL 161738) (-101 159703 159735 159826 "BGAGG-" 159831 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158801 159087 159292 "BFUNCT" 159518 T BFUNCT (NIL) -8 NIL NIL) (-99 157502 157680 157965 "BEZOUT" 158625 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154027 156362 156690 "BBTREE" 157205 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153765 153818 153844 "BASTYPE" 153961 T BASTYPE (NIL) -9 NIL NIL) (-96 153620 153649 153719 "BASTYPE-" 153724 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153058 153134 153284 "BALFACT" 153531 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151880 152477 152662 "AUTOMOR" 152903 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151606 151611 151637 "ATTREG" 151642 T ATTREG (NIL) -9 NIL NIL) (-92 149885 150303 150655 "ATTRBUT" 151272 T ATTRBUT (NIL) -8 NIL NIL) (-91 149421 149534 149560 "ATRIG" 149761 T ATRIG (NIL) -9 NIL NIL) (-90 149230 149271 149358 "ATRIG-" 149363 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147427 149006 149094 "ASTACK" 149173 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145932 146229 146594 "ASSOCEQ" 147109 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144964 145591 145715 "ASP9" 145839 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144728 144912 144951 "ASP8" 144956 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143598 144333 144475 "ASP80" 144617 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142497 143233 143365 "ASP7" 143497 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141453 142174 142292 "ASP78" 142410 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140424 141133 141250 "ASP77" 141367 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139338 140062 140193 "ASP74" 140324 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138239 138973 139105 "ASP73" 139237 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137194 137916 138034 "ASP6" 138152 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136143 136871 136989 "ASP55" 137107 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135093 135817 135936 "ASP50" 136055 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134181 134794 134904 "ASP4" 135014 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133269 133882 133992 "ASP49" 134102 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132054 132808 132976 "ASP42" 133158 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130832 131587 131757 "ASP41" 131941 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129784 130509 130627 "ASP35" 130745 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129549 129732 129771 "ASP34" 129776 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129286 129353 129429 "ASP33" 129504 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128182 128921 129053 "ASP31" 129185 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127947 128130 128169 "ASP30" 128174 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127682 127751 127827 "ASP29" 127902 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127447 127630 127669 "ASP28" 127674 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127212 127395 127434 "ASP27" 127439 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126296 126910 127021 "ASP24" 127132 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125213 125937 126067 "ASP20" 126197 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124301 124914 125024 "ASP1" 125134 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123245 123975 124094 "ASP19" 124213 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122982 123049 123125 "ASP12" 123200 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121835 122581 122725 "ASP10" 122869 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119734 121679 121770 "ARRAY2" 121775 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115550 119382 119496 "ARRAY1" 119651 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114582 114755 114976 "ARRAY12" 115373 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108942 110813 110888 "ARR2CAT" 113518 NIL ARR2CAT (NIL T T T) -9 NIL 114276) (-54 106376 107120 108074 "ARR2CAT-" 108079 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105136 105286 105589 "APPRULE" 106214 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104789 104837 104955 "APPLYORE" 105082 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103763 104054 104249 "ANY" 104612 T ANY (NIL) -8 NIL NIL) (-50 103041 103164 103321 "ANY1" 103637 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100573 101491 101816 "ANTISYM" 102766 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100088 100277 100374 "ANON" 100494 T ANON (NIL) -8 NIL NIL) (-47 94165 98633 99084 "AN" 99655 T AN (NIL) -8 NIL NIL) (-46 90519 91917 91967 "AMR" 92706 NIL AMR (NIL T T) -9 NIL 93305) (-45 89632 89853 90215 "AMR-" 90220 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74182 89549 89610 "ALIST" 89615 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71019 73776 73945 "ALGSC" 74100 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67575 68129 68736 "ALGPKG" 70459 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66852 66953 67137 "ALGMFACT" 67461 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62602 63282 63936 "ALGMANIP" 66376 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53921 62228 62378 "ALGFF" 62535 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53117 53248 53427 "ALGFACT" 53779 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52108 52718 52756 "ALGEBRA" 52816 NIL ALGEBRA (NIL T) -9 NIL 52874) (-36 51826 51885 52017 "ALGEBRA-" 52022 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34087 49830 49882 "ALAGG" 50018 NIL ALAGG (NIL T T) -9 NIL 50179) (-34 33623 33736 33762 "AHYP" 33963 T AHYP (NIL) -9 NIL NIL) (-33 32554 32802 32828 "AGG" 33327 T AGG (NIL) -9 NIL 33606) (-32 31988 32150 32364 "AGG-" 32369 NIL AGG- (NIL T) -8 NIL NIL) (-31 29675 30093 30510 "AF" 31631 NIL AF (NIL T T) -7 NIL NIL) (-30 28944 29202 29358 "ACPLOT" 29537 T ACPLOT (NIL) -8 NIL NIL) (-29 18411 26357 26408 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358) (-28 16425 16915 17690 "ACFS-" 17695 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14649 14675 "ACF" 15554 T ACF (NIL) -9 NIL 15966) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 49405576..8f45d042 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,547 +1,671 @@ -(725939 . 3415311731) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) - (-5 *1 (-857)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) - (-5 *1 (-857)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) - (-5 *1 (-858)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) - (-5 *1 (-858))))) -(((*1 *1) (-5 *1 (-413)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) - (-4 *4 (-13 (-1016) (-33)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-222 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) - (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) - (-5 *1 (-688))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1016)) (-4 *6 (-1016)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-1016))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1068 (-203))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3499 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-518))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-562 *5))) (-4 *4 (-786)) (-5 *2 (-562 *5)) - (-5 *1 (-532 *4 *5)) (-4 *5 (-406 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158))))) +(726160 . 3416412000) (((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) + (-5 *2 (-383 (-523))) (-5 *1 (-947 *4)) (-4 *4 (-1145 (-523)))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-691))))) +(((*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508)))) + ((*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) - (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-880 *6 *4 *5))))) + (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-880 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) + (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 *7))) + (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-427)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-394 *1)) (-4 *1 (-880 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-427)) (-5 *2 (-394 *3)) + (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-427)) + (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 (-383 *7)))) + (-5 *1 (-1082 *4 *5 *6 *7)) (-5 *3 (-1083 (-383 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-394 *1)) (-4 *1 (-1127)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-1148 *4 *3)) + (-4 *3 (-13 (-1145 *4) (-515) (-10 -8 (-15 -3310 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-14 *5 (-589 (-1087))) + (-5 *2 + (-589 (-1058 *4 (-495 (-796 *6)) (-796 *6) (-719 *4 (-796 *6))))) + (-5 *1 (-1193 *4 *5 *6)) (-14 *6 (-589 (-1087)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-466))))) +(((*1 *2 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) + (|has| *2 (-6 (-4250 "*"))) (-4 *2 (-973)))) + ((*1 *2 *3) + (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-158)) + (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) + (-4 *5 (-216 *3 *2)) (|has| *2 (-6 (-4250 "*"))) (-4 *2 (-973))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-1059 *3))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731))))) +(((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1091))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1087)) (-5 *3 (-1020)) (-5 *1 (-268))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-157)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) - (-5 *2 (-383 (-523))) (-5 *1 (-947 *4)) (-4 *4 (-1144 (-523)))))) + (-12 (-4 *1 (-851)) (-5 *2 (-2 (|:| -3474 (-589 *1)) (|:| -1621 *1))) + (-5 *3 (-589 *1))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-560 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-589 (-710))) + (-5 *1 (-835 *4))))) (((*1 *1 *2 *3) (-12 (-5 *3 (-337 (-110))) (-4 *2 (-973)) (-5 *1 (-654 *2 *4)) (-4 *4 (-591 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-337 (-110))) (-5 *1 (-773 *2)) (-4 *2 (-973))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-732)) (-4 *5 (-973)) (-4 *6 (-880 *5 *4 *2)) + (-4 *2 (-786)) (-5 *1 (-881 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1691 ($ *6)) (-15 -3316 (*6 $)) + (-15 -3329 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) + (-5 *2 (-1087)) (-5 *1 (-969 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-852)) (-4 *1 (-380)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-380)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1016) (-964 *5))) + (-4 *5 (-817 *4)) (-4 *4 (-1016)) (-5 *2 (-1 (-108) *5)) + (-5 *1 (-862 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-589 *1)) (-4 *1 (-1048 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-4 *7 (-880 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-108)) (|:| |z0| (-589 *7)) (|:| |n0| (-589 *7)))) + (-5 *1 (-855 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-732)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) + (-5 *2 (-108)) (-5 *1 (-424 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) + (-4 *3 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-339)) + (-5 *2 + (-2 (|:| |ir| (-540 (-383 *6))) (|:| |specpart| (-383 *6)) + (|:| |polypart| *6))) + (-5 *1 (-533 *5 *6)) (-5 *3 (-383 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-394 *4)) (-4 *4 (-515))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *5)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) + (-14 *3 (-523)) (-14 *4 (-710))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-104)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-110)))) + ((*1 *2 *1) + (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-1016)))) + ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-414 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-895)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-994 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-5 *1 (-1087)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-589 (-2 (|:| |totdeg| (-710)) (|:| -1385 *3)))) + (-5 *4 (-710)) (-4 *3 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) + (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-562 *4)) (-5 *6 (-1083 *4)) + (-4 *4 (-13 (-406 *7) (-27) (-1109))) + (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) + (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-562 *4)) (-5 *6 (-383 (-1083 *4))) + (-4 *4 (-13 (-406 *7) (-27) (-1109))) + (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) + (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-589 (-562 *2))) (-5 *4 (-589 (-1087))) + (-4 *2 (-13 (-406 (-155 *5)) (-930) (-1109))) + (-4 *5 (-13 (-515) (-786))) (-5 *1 (-552 *5 *6 *2)) + (-4 *6 (-13 (-406 *5) (-930) (-1109)))))) +(((*1 *1 *1 *1) (-4 *1 (-508)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-1122)) (-5 *2 (-1173))))) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1123)) (-5 *2 (-1174))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))) + (-4 *2 (-13 (-786) (-21)))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) + ((*1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) + (-4 *4 (-158)))) + ((*1 *1) (-4 *1 (-666))) ((*1 *1) (-5 *1 (-1087)))) +(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) + (-4 *2 (-1145 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1145 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-133)))) + ((*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-133))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1123)) + (-4 *5 (-1123)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-218 *6 *7)) (-14 *6 (-710)) + (-4 *7 (-1123)) (-4 *5 (-1123)) (-5 *2 (-218 *6 *5)) + (-5 *1 (-217 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1123)) (-4 *5 (-1123)) + (-4 *2 (-349 *5)) (-5 *1 (-347 *6 *4 *5 *2)) (-4 *4 (-349 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1016)) (-4 *5 (-1016)) + (-4 *2 (-401 *5)) (-5 *1 (-399 *6 *4 *5 *2)) (-4 *4 (-401 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-589 *6)) (-4 *6 (-1123)) + (-4 *5 (-1123)) (-5 *2 (-589 *5)) (-5 *1 (-587 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-888 *6)) (-4 *6 (-1123)) + (-4 *5 (-1123)) (-5 *2 (-888 *5)) (-5 *1 (-887 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1123)) + (-4 *3 (-1123)) (-5 *2 (-1068 *3)) (-5 *1 (-1066 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1169 *6)) (-4 *6 (-1123)) + (-4 *5 (-1123)) (-5 *2 (-1169 *5)) (-5 *1 (-1168 *6 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) + (-5 *2 (-1083 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-836 (-523))) (-5 *4 (-523)) (-5 *2 (-629 *4)) + (-5 *1 (-955 *5)) (-4 *5 (-973)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-955 *4)) + (-4 *4 (-973)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-836 (-523)))) (-5 *4 (-523)) + (-5 *2 (-589 (-629 *4))) (-5 *1 (-955 *5)) (-4 *5 (-973)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-589 (-523)))) (-5 *2 (-589 (-629 (-523)))) + (-5 *1 (-955 *4)) (-4 *4 (-973))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3))))) +(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1) (-4 *1 (-897))) ((*1 *1 *1) (-5 *1 (-1034)))) (((*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-794))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 *5)) (-4 *5 (-585 *4)) (-4 *4 (-515)) + (-5 *2 (-108)) (-5 *1 (-584 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-508))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1825 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-339)) (-4 *7 (-1145 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-383 *7)) (|:| |a0| *6)) + (-2 (|:| -1825 (-383 *7)) (|:| |coeff| (-383 *7))) "failed")) + (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) +(((*1 *1) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-623 *4 *3)) (-4 *4 (-1016)) + (-4 *3 (-1016))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *2 *1) + (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) + (-4 *5 (-216 (-2810 *3) (-710))) + (-14 *6 + (-1 (-108) (-2 (|:| -4013 *2) (|:| -1475 *5)) + (-2 (|:| -4013 *2) (|:| -1475 *5)))) + (-4 *2 (-786)) (-5 *1 (-436 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-880 *4 *5 (-796 *3)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-852)) (-4 *5 (-284)) (-4 *3 (-1145 *5)) + (-5 *2 (-2 (|:| |plist| (-589 *3)) (|:| |modulo| *5))) + (-5 *1 (-435 *5 *3)) (-5 *4 (-589 *3))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-271 *6)) (-5 *4 (-110)) (-4 *6 (-406 *5)) + (-4 *5 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) + (-5 *1 (-293 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-271 *7)) (-5 *4 (-110)) (-5 *5 (-589 *7)) + (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) + (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-589 (-271 *7))) (-5 *4 (-589 (-110))) (-5 *5 (-271 *7)) + (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) + (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-589 (-271 *8))) (-5 *4 (-589 (-110))) (-5 *5 (-271 *8)) + (-5 *6 (-589 *8)) (-4 *8 (-406 *7)) + (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) + (-5 *1 (-293 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-589 *7)) (-5 *4 (-589 (-110))) (-5 *5 (-271 *7)) + (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) + (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-110))) (-5 *6 (-589 (-271 *8))) + (-4 *8 (-406 *7)) (-5 *5 (-271 *8)) + (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) + (-5 *1 (-293 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-271 *5)) (-5 *4 (-110)) (-4 *5 (-406 *6)) + (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) + (-5 *1 (-293 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-4 *3 (-406 *6)) + (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) + (-5 *1 (-293 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-4 *3 (-406 *6)) + (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) + (-5 *1 (-293 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-5 *6 (-589 *3)) + (-4 *3 (-406 *7)) (-4 *7 (-13 (-786) (-515) (-564 (-499)))) + (-5 *2 (-51)) (-5 *1 (-293 *7 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) - (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) - (-5 *2 (-589 (-2 (|:| -3059 *5) (|:| -1710 *3)))) + (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1145 *5)) + (-5 *2 (-589 (-2 (|:| -2501 *5) (|:| -2849 *3)))) (-5 *1 (-748 *5 *6 *3 *7)) (-4 *3 (-599 *6)) (-4 *7 (-599 (-383 *6)))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-523)) (|has| *1 (-6 -4249)) (-4 *1 (-349 *3)) + (-4 *3 (-1123))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1016)) (-4 *5 (-1016)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-623 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-589 *3)) (-5 *1 (-1002 *3)) (-4 *3 (-125))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-383 (-883 (-523))))) + (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958))))) +(((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1123)) (-4 *2 (-1016)))) + ((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 (-292 (-203)))) (-5 *2 (-1169 (-292 (-355)))) + (-5 *1 (-282))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-761))))) (((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-394 (-1083 (-383 (-523))))) - (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5))))) + (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1145 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-585 (-523))) + (-5 *2 (-1169 (-383 (-523)))) (-5 *1 (-1194 *4))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-687))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-51))))) +(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-794))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1083 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) + (-5 *1 (-31 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-589 (-589 (-203)))) (-5 *1 (-1120))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1104))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1083 *6)) (-4 *6 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-1083 *7)) (-5 *1 (-297 *4 *5 *6 *7)) + (-4 *7 (-880 *6 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-355)))) + ((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-355))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-677 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1016)))) + ((*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1016))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-349 *2)) + (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-556 *3 *2)) (-4 *3 (-1016)) - (-4 *2 (-1122))))) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-556 *3 *2)) (-4 *3 (-1016)) + (-4 *2 (-1123))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-515)) (-5 *1 (-899 *4 *2)) + (-4 *2 (-1145 *4))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-562 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) + (-4 *2 (-13 (-406 *5) (-27) (-1109))) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *1 (-525 *5 *2 *6)) (-4 *6 (-1016))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-523)) (-4 *3 (-158)) (-4 *5 (-349 *3)) + (-4 *6 (-349 *3)) (-5 *1 (-628 *3 *5 *6 *2)) + (-4 *2 (-627 *3 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-1034)) (-5 *2 (-108)) (-5 *1 (-760))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) + (-5 *5 (-1011 (-203))) (-5 *6 (-523)) (-5 *2 (-1119 (-857))) + (-5 *1 (-294)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) + (-5 *5 (-1011 (-203))) (-5 *6 (-523)) (-5 *7 (-1070)) + (-5 *2 (-1119 (-857))) (-5 *1 (-294)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) + (-5 *5 (-1011 (-203))) (-5 *6 (-203)) (-5 *7 (-523)) + (-5 *2 (-1119 (-857))) (-5 *1 (-294)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) + (-5 *5 (-1011 (-203))) (-5 *6 (-203)) (-5 *7 (-523)) (-5 *8 (-1070)) + (-5 *2 (-1119 (-857))) (-5 *1 (-294))))) +(((*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172)))) + ((*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-355)))) + ((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-355))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1145 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852))))) -(((*1 *2 *1) - (-12 (-5 *2 (-794)) (-5 *1 (-1068 *3)) (-4 *3 (-1016)) - (-4 *3 (-1122))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) - (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) -(((*1 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) - ((*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-900))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-226))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1034)) (-5 *2 (-108)) (-5 *1 (-760))))) -(((*1 *2 *2) - (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-424 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-383 (-1083 (-292 *3)))) (-4 *3 (-13 (-515) (-786))) - (-5 *1 (-1044 *3))))) -(((*1 *2) (-12 (-5 *2 (-1059 (-1070))) (-5 *1 (-367))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) - (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) - (-5 *1 (-1086))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-710)) (-4 *5 (-158)))) - ((*1 *1 *1) - (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) - (-4 *4 (-158)))) - ((*1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) - (-4 *4 (-349 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-973)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-349 *3)) - (-4 *4 (-349 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1054 *2 *3)) (-14 *2 (-710)) (-4 *3 (-973))))) -(((*1 *2) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) -(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) +(((*1 *2 *3) + (-12 (-5 *2 (-394 (-1083 *1))) (-5 *1 (-292 *4)) (-5 *3 (-1083 *1)) + (-4 *4 (-427)) (-4 *4 (-515)) (-4 *4 (-786)))) ((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-852)) (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) - ((*1 *2 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-339)))) - ((*1 *2 *1) - (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-158)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1168 *4)) (-5 *3 (-852)) (-4 *4 (-325)) - (-5 *1 (-493 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) - (-4 *5 (-216 *3 *2)) (-4 *2 (-973))))) -(((*1 *1) (-5 *1 (-413)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) -(((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-508)))) -(((*1 *2 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) - (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) - (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) - (-5 *1 (-1086))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-284)) (-4 *6 (-349 *5)) (-4 *4 (-349 *5)) + (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-971))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) - (-5 *1 (-1038 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-383 (-883 (-155 (-523)))))) - (-5 *2 (-589 (-589 (-271 (-883 (-155 *4)))))) (-5 *1 (-354 *4)) - (-4 *4 (-13 (-339) (-784))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-271 (-383 (-883 (-155 (-523))))))) - (-5 *2 (-589 (-589 (-271 (-883 (-155 *4)))))) (-5 *1 (-354 *4)) - (-4 *4 (-13 (-339) (-784))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-883 (-155 (-523))))) - (-5 *2 (-589 (-271 (-883 (-155 *4))))) (-5 *1 (-354 *4)) - (-4 *4 (-13 (-339) (-784))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-271 (-383 (-883 (-155 (-523)))))) - (-5 *2 (-589 (-271 (-883 (-155 *4))))) (-5 *1 (-354 *4)) - (-4 *4 (-13 (-339) (-784)))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *6 (-203)) - (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-692))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-499))) (-5 *1 (-499))))) -(((*1 *2) - (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) - (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) - (-5 *1 (-993 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) - (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) - (-5 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-589 (-1087))) (-4 *2 (-158)) - (-4 *4 (-216 (-2676 *5) (-710))) - (-14 *6 - (-1 (-108) (-2 (|:| -3878 *3) (|:| -2735 *4)) - (-2 (|:| -3878 *3) (|:| -2735 *4)))) - (-5 *1 (-436 *5 *2 *3 *4 *6 *7)) (-4 *3 (-786)) - (-4 *7 (-880 *2 *4 (-796 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) - (-5 *2 (-2 (|:| -2935 (-383 *5)) (|:| |poly| *3))) - (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1144 (-383 *5)))))) + (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) - (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-108)) (-5 *5 (-629 (-155 (-203)))) - (-5 *2 (-962)) (-5 *1 (-695))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) - (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) - (-5 *1 (-1086))))) + (-12 (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *2 (-710)) + (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-710))) (-5 *3 (-710)) (-5 *1 (-1076 *4 *5)) + (-14 *4 (-852)) (-4 *5 (-973)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-710))) (-5 *3 (-874 *5)) (-4 *5 (-973)) + (-5 *1 (-1076 *4 *5)) (-14 *4 (-852))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-743 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1108) (-889)))))) + (-12 (-5 *3 (-883 *5)) (-4 *5 (-973)) (-5 *2 (-225 *4 *5)) + (-5 *1 (-875 *4 *5)) (-14 *4 (-589 (-1087)))))) +(((*1 *2 *2) (-12 (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-307 *3)) (-4 *3 (-786))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-883 (-523))) (-5 *3 (-1087)) + (-5 *4 (-1011 (-383 (-523)))) (-5 *1 (-30))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-294)) (-5 *3 (-203))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-805)) (-5 *2 (-1173)) (-5 *1 (-1169)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1016))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-691))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-523)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-284)) - (-4 *9 (-880 *8 *6 *7)) - (-5 *2 (-2 (|:| -1480 (-1083 *9)) (|:| |polval| (-1083 *8)))) - (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1083 *9)) (-5 *4 (-1083 *8))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-710)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-710)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-303 *3)) (-4 *3 (-1122)))) - ((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1122)) - (-14 *4 (-523))))) -(((*1 *2) - (-12 (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) - (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) - (-4 *4 (-1144 *3)) - (-5 *2 - (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-629 *3)))) - (-5 *1 (-326 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1144 (-523))) - (-5 *2 - (-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) - (|:| |basisInv| (-629 (-523))))) - (-5 *1 (-707 *3 *4)) (-4 *4 (-385 (-523) *3)))) - ((*1 *2) - (-12 (-4 *3 (-325)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 *4)) - (-5 *2 - (-2 (|:| -4041 (-629 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-629 *4)))) - (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-664 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-325)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 *4)) - (-5 *2 - (-2 (|:| -4041 (-629 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-629 *4)))) - (-5 *1 (-1177 *3 *4 *5 *6)) (-4 *6 (-385 *4 *5))))) + (-12 (-5 *3 (-710)) (-5 *2 (-1 (-1068 (-883 *4)) (-1068 (-883 *4)))) + (-5 *1 (-1177 *4)) (-4 *4 (-339))))) +(((*1 *2 *1) + (-12 (-5 *2 (-794)) (-5 *1 (-1068 *3)) (-4 *3 (-1016)) + (-4 *3 (-1123))))) (((*1 *2 *3) - (-12 (-5 *3 (-596 (-383 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-749 *4 *2)) - (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))))) + (-12 (-5 *3 (-710)) (-5 *2 (-1083 *4)) (-5 *1 (-493 *4)) + (-4 *4 (-325))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1161 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) + (-14 *4 *2)))) +(((*1 *2 *2) + (-12 (-4 *3 (-515)) (-4 *4 (-921 *3)) (-5 *1 (-131 *3 *4 *2)) + (-4 *2 (-349 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-597 *2 (-383 *2))) (-4 *2 (-1144 *4)) - (-5 *1 (-749 *4 *2)) - (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1104))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) + (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-4 *2 (-349 *4)) + (-5 *1 (-474 *4 *5 *2 *3)) (-4 *3 (-349 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *5)) (-4 *5 (-921 *4)) (-4 *4 (-515)) + (-5 *2 (-629 *4)) (-5 *1 (-632 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-515)) (-4 *4 (-921 *3)) (-5 *1 (-1138 *3 *4 *2)) + (-4 *2 (-1145 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1169 *6)) (-5 *4 (-1169 (-523))) (-5 *5 (-523)) + (-4 *6 (-1016)) (-5 *2 (-1 *6)) (-5 *1 (-945 *6))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-617 (-203))) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-690))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1087))))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-973)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-1144 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1070)) (-5 *2 (-193 (-473))) (-5 *1 (-774))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-762)) (-5 *1 (-761))))) -(((*1 *2 *1) - (-12 (-4 *3 (-973)) (-5 *2 (-1168 *3)) (-5 *1 (-652 *3 *4)) - (-4 *4 (-1144 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-1170)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) - (-5 *2 (-962)) (-5 *1 (-693))))) -(((*1 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3078 *4))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-89 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1109 *3)) (-4 *3 (-1016))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-223 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-589 (-523))) (-5 *3 (-108)) (-5 *1 (-1026))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-695))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-117 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-257)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-158)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) + ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196)))) + ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460)))) + ((*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-284)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-523) (-203) (-1087) (-1070) (-1092))) - (-5 *1 (-1092))))) -(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-355)) (-5 *1 (-966))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971))))) -(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) - ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) - (-5 *2 (-108))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) + ((*1 *1 *1) (-4 *1 (-982)))) (((*1 *2 *3) - (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-5 *2 (-1173)) - (-5 *1 (-1123 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-5 *2 (-1173)) - (-5 *1 (-1123 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1083 *7)) (-5 *3 (-523)) (-4 *7 (-880 *6 *4 *5)) - (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) - (-5 *1 (-297 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) - (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) - (-5 *1 (-688))))) + (-12 (-5 *3 (-523)) (-4 *4 (-1145 (-383 *3))) (-5 *2 (-852)) + (-5 *1 (-844 *4 *5)) (-4 *5 (-1145 (-383 *4)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-299 *4 *2)) (-4 *4 (-1016)) - (-4 *2 (-124))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-523)) (-5 *5 (-108)) (-5 *6 (-629 (-203))) - (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) - (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693))))) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-113 *4)) (-14 *4 *3) + (-5 *3 (-523)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-802 *4)) (-14 *4 *3) + (-5 *3 (-523)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-383 (-523))) (-5 *1 (-803 *4 *5)) + (-5 *3 (-523)) (-4 *5 (-800 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-940)) (-5 *2 (-383 (-523))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-989 *2 *3)) (-4 *2 (-13 (-784) (-339))) + (-4 *3 (-1145 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1147 *2 *3)) (-4 *3 (-731)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1691 (*2 (-1087)))) + (-4 *2 (-973))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1129 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) + (-4 *2 (-13 (-380) (-964 *4) (-339) (-1109) (-261))) + (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1145 *4))))) (((*1 *2) - (-12 (-4 *4 (-339)) (-5 *2 (-852)) (-5 *1 (-304 *3 *4)) - (-4 *3 (-305 *4)))) - ((*1 *2) - (-12 (-4 *4 (-339)) (-5 *2 (-772 (-852))) (-5 *1 (-304 *3 *4)) - (-4 *3 (-305 *4)))) - ((*1 *2) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-852)))) - ((*1 *2) - (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-772 (-852)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133))))) -(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-710))))) -(((*1 *1 *1) (-5 *1 (-203))) ((*1 *1 *1) (-5 *1 (-355))) - ((*1 *1) (-5 *1 (-355)))) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-629 (-383 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-457 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1169 *5)) (-5 *3 (-710)) (-5 *4 (-1034)) (-4 *5 (-325)) + (-5 *1 (-493 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-515)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-515))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-515)) (-4 *2 (-427)) (-5 *1 (-899 *2 *3)) - (-4 *3 (-1144 *2))))) -(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) -(((*1 *2 *1) - (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) - (-4 *3 (-1144 *4)) (-5 *2 (-108))))) + (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) + (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -3316 ((-1039 *3 (-562 $)) $)) + (-15 -3329 ((-1039 *3 (-562 $)) $)) + (-15 -1691 ($ (-1039 *3 (-562 $)))))))))) +(((*1 *1) (-5 *1 (-133))) ((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) + ((*1 *1 *1) (|partial| -4 *1 (-662)))) +(((*1 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-900))))) (((*1 *2 *3) (-12 - (-5 *2 - (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) - (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) - (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))) - (-5 *4 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) - (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))) (-5 *4 (-383 (-523))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-383 (-523))) - (-5 *2 (-589 (-2 (|:| -3149 *5) (|:| -3159 *5)))) (-5 *1 (-947 *3)) - (-4 *3 (-1144 (-523))) (-5 *4 (-2 (|:| -3149 *5) (|:| -3159 *5))))) + (-5 *3 + (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) + (-225 *4 (-383 (-523))))) + (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) + (-5 *1 (-476 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-523))) (-5 *4 (-836 (-523))) + (-5 *2 (-629 (-523))) (-5 *1 (-544)))) ((*1 *2 *3) - (-12 - (-5 *2 - (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) - (-5 *1 (-948 *3)) (-4 *3 (-1144 (-383 (-523)))))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-589 (-629 (-523)))) + (-5 *1 (-544)))) ((*1 *2 *3 *4) - (-12 + (-12 (-5 *3 (-589 (-523))) (-5 *4 (-589 (-836 (-523)))) + (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-544))))) +(((*1 *2 *2) + (-12 (-4 *3 (-564 (-823 *3))) (-4 *3 (-817 *3)) + (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-564 (-823 *3))) (-4 *2 (-817 *3)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-589 (-562 *6))) (-5 *4 (-1087)) (-5 *2 (-562 *6)) + (-4 *6 (-406 *5)) (-4 *5 (-786)) (-5 *1 (-532 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) + (-4 *3 (-1145 *4)) + (-4 *5 (-13 (-380) (-964 *4) (-339) (-1109) (-261)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 - (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) - (-5 *1 (-948 *3)) (-4 *3 (-1144 (-383 (-523)))) - (-5 *4 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-383 (-523))) - (-5 *2 (-589 (-2 (|:| -3149 *4) (|:| -3159 *4)))) (-5 *1 (-948 *3)) - (-4 *3 (-1144 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-383 (-523))) - (-5 *2 (-589 (-2 (|:| -3149 *5) (|:| -3159 *5)))) (-5 *1 (-948 *3)) - (-4 *3 (-1144 *5)) (-5 *4 (-2 (|:| -3149 *5) (|:| -3159 *5)))))) + (-589 + (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) + (|:| |radvect| (-589 (-629 (-292 (-523)))))))) + (-5 *1 (-958))))) (((*1 *2 *3) - (-12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1144 *5)) - (-4 *7 (-1144 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) - (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-108)) - (-5 *1 (-842 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) - (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-1144 (-383 *4))) - (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-108)) - (-5 *1 (-843 *4 *5 *6))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1190 *3 *4)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) - (-4 *4 (-158)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-758 *3)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) - (-4 *4 (-973)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) - (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-167)) (-5 *1 (-226))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-292 (-203))) (-5 *1 (-244))))) -(((*1 *2 *1) - (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-982)) (-4 *3 (-1108)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-589 *3)) (-5 *5 (-852)) (-4 *3 (-1144 *4)) - (-4 *4 (-284)) (-5 *1 (-435 *4 *3))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *4 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1123))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-589 (-203))) - (-5 *1 (-443))))) -(((*1 *2 *1) (-12 (-4 *1 (-964 (-523))) (-4 *1 (-279)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) + (-12 (-5 *3 (-1169 (-1169 *4))) (-4 *4 (-973)) (-5 *2 (-629 *4)) + (-5 *1 (-956 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-383 (-523))) (-5 *1 (-282))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1123)) (-5 *1 (-1046 *4 *2)) + (-4 *2 (-13 (-556 (-523) *4) (-10 -7 (-6 -4248) (-6 -4249)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-786)) (-4 *3 (-1123)) (-5 *1 (-1046 *3 *2)) + (-4 *2 (-13 (-556 (-523) *3) (-10 -7 (-6 -4248) (-6 -4249))))))) (((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3287 (-523)) (|:| -1979 (-589 *3)))) - (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) - ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-973)) (-5 *1 (-825 *2 *3)) (-4 *2 (-1144 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *1 *1) (-4 *1 (-897)))) + (-12 (-5 *3 (-1011 (-779 (-355)))) (-5 *2 (-1011 (-779 (-203)))) + (-5 *1 (-282))))) +(((*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1172)))) + ((*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1172))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-709 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-709 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3760 (-589 *6))) + *7 *6)) + (-4 *6 (-339)) (-4 *7 (-599 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1169 *6) "failed")) + (|:| -3760 (-589 (-1169 *6))))) + (-5 *1 (-752 *6 *7)) (-5 *4 (-1169 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6))))) (((*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *2 (-339)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-203)))) ((*1 *1 *1 *1) - (-3262 (-12 (-5 *1 (-271 *2)) (-4 *2 (-339)) (-4 *2 (-1122))) - (-12 (-5 *1 (-271 *2)) (-4 *2 (-448)) (-4 *2 (-1122))))) + (-3172 (-12 (-5 *1 (-271 *2)) (-4 *2 (-339)) (-4 *2 (-1123))) + (-12 (-5 *1 (-271 *2)) (-4 *2 (-448)) (-4 *2 (-1123))))) ((*1 *1 *1 *1) (-4 *1 (-339))) ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) ((*1 *1 *2 *2) @@ -549,7 +673,7 @@ (-4 *1 (-406 *3)))) ((*1 *1 *1 *1) (-4 *1 (-448))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1168 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) ((*1 *1 *1 *1) (-5 *1 (-499))) ((*1 *1 *2 *3) (-12 (-4 *4 (-158)) (-5 *1 (-568 *2 *4 *3)) (-4 *2 (-37 *4)) @@ -579,88 +703,61 @@ (-4 *5 (-216 *4 *2)) (-4 *6 (-216 *3 *2)) (-4 *2 (-339)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-339)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-339)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-339)) (-4 *2 (-973)) (-4 *3 (-786)) (-4 *4 (-732)) (-14 *6 (-589 *3)) - (-5 *1 (-1178 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-880 *2 *4 *3)) + (-5 *1 (-1179 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-880 *2 *4 *3)) (-14 *7 (-589 (-710))) (-14 *8 (-710)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-339)) (-4 *2 (-973)) + (-12 (-5 *1 (-1190 *2 *3)) (-4 *2 (-339)) (-4 *2 (-973)) (-4 *3 (-782))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-616 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-680 *3 *4)) (-4 *3 (-973)) - (-4 *4 (-786)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *1 (-909 *3)) (-4 *3 (-973)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) - (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) - (-4 *1 (-992 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) - (-4 *1 (-992 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1034)) (-5 *1 (-105)))) - ((*1 *2 *1) (|partial| -12 (-5 *1 (-341 *2)) (-4 *2 (-1016)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-1104))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-1169 + (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) + (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3847 (-523)) + (|:| -2246 (-523)) (|:| |spline| (-523)) (|:| -2559 (-523)) + (|:| |axesColor| (-805)) (|:| -2061 (-523)) + (|:| |unitsColor| (-805)) (|:| |showing| (-523))))) + (-5 *1 (-1170))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1034)) (-5 *2 (-108)) (-5 *1 (-760))))) +(((*1 *2 *3) + (-12 (-5 *3 (-883 *4)) (-4 *4 (-13 (-284) (-136))) + (-4 *2 (-880 *4 *6 *5)) (-5 *1 (-855 *4 *5 *6 *2)) + (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732))))) +(((*1 *1) (-5 *1 (-762)))) +(((*1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1123))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-499))) (-5 *1 (-499))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-523)) (-4 *5 (-784)) (-4 *5 (-339)) + (-5 *2 (-710)) (-5 *1 (-876 *5 *6)) (-4 *6 (-1145 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-185)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-589 (-355))) (-5 *2 (-355)) (-5 *1 (-185))))) +(((*1 *2 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1 (-1068 (-883 *4)) (-1068 (-883 *4)))) + (-5 *1 (-1177 *4)) (-4 *4 (-339))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-589 (-883 *3))) (-4 *3 (-427)) - (-5 *1 (-336 *3 *4)) (-14 *4 (-589 (-1087))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-589 (-719 *3 (-796 *4)))) (-4 *3 (-427)) - (-14 *4 (-589 (-1087))) (-5 *1 (-574 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-761))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-124)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-337 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-362 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-592 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-852)) (-4 *1 (-380)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-380)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-4 *6 (-427)) - (-5 *2 (-589 (-589 *7))) (-5 *1 (-501 *6 *7 *5)) (-4 *7 (-339)) - (-4 *5 (-13 (-339) (-784)))))) -(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *1 *1) (-4 *1 (-897)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-589 *4)) (-4 *4 (-339)) (-4 *2 (-1144 *4)) - (-5 *1 (-853 *4 *2))))) -(((*1 *1) (-5 *1 (-413)))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-984)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-984))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-126))) ((*1 *1 *1 *1) (-12 (-5 *1 (-193 *2)) (-4 *2 (-13 (-786) - (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) - (-15 -2823 ((-1173) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122)))) + (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 ((-1174) $)) + (-15 -4048 ((-1174) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1123)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1123)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) @@ -675,69 +772,84 @@ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-21))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-1014 *3)))) - ((*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *1) - (-12 (-4 *1 (-556 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1016)) - (-4 *2 (-786))))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1120)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-21))))) +(((*1 *1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1 *1) (-5 *1 (-710))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-424 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-203))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-589 (-710))) + (-5 *1 (-835 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-394 *2)) (-4 *2 (-284)) (-5 *1 (-845 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) - (-4 *5 (-13 (-284) (-136))) (-5 *2 (-51)) (-5 *1 (-846 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-394 (-883 *6))) (-5 *5 (-1087)) (-5 *3 (-883 *6)) - (-4 *6 (-13 (-284) (-136))) (-5 *2 (-51)) (-5 *1 (-846 *6))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-562 *3)) - (-4 *3 (-13 (-406 *5) (-27) (-1108))) - (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) - (-5 *1 (-525 *5 *3 *6)) (-4 *6 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) - (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) - (-5 *2 (-629 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-339)) - (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-5 *1 (-425 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-339)) + (-12 (-5 *1 (-804 *2 *3)) (-4 *2 (-1123)) (-4 *3 (-1123))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1002 *3)) (-4 *3 (-125))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 - (-2 (|:| R (-629 *6)) (|:| A (-629 *6)) (|:| |Ainv| (-629 *6)))) - (-5 *1 (-907 *6)) (-5 *3 (-629 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) - (-5 *2 (-2 (|:| |num| (-1168 *4)) (|:| |den| *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) + (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1174)) (-5 *1 (-193 *4)) + (-4 *4 + (-13 (-786) + (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 (*2 $)) + (-15 -4048 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1174)) (-5 *1 (-193 *3)) + (-4 *3 + (-13 (-786) + (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 (*2 $)) + (-15 -4048 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-473))))) +(((*1 *2 *1) (-12 (-4 *1 (-302 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-710))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) + (-4 *3 (-786)) (-5 *2 (-710))))) +(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-219))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-144))) ((*1 *1 *1 *1) (-12 (-5 *1 (-193 *2)) (-4 *2 (-13 (-786) - (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) - (-15 -2823 ((-1173) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-25)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-25)) (-4 *2 (-1122)))) + (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 ((-1174) $)) + (-15 -4048 ((-1174) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-25)) (-4 *2 (-1123)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-25)) (-4 *2 (-1123)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-124)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *2)) - (-4 *2 (-1144 *3)))) + (-4 *2 (-1145 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) ((*1 *1 *1 *1) @@ -751,647 +863,777 @@ ((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-25))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1168 *4)) (-5 *3 (-523)) (-4 *4 (-325)) - (-5 *1 (-493 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 *2)) - (-5 *2 (-355)) (-5 *1 (-724 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) - (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) - (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) - (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) - (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) - (-4 *5 (-786)) (-4 *5 (-564 *2)) (-5 *2 (-355)) - (-5 *1 (-724 *5))))) -(((*1 *2) - (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) - (-5 *2 (-589 (-589 *4))) (-5 *1 (-317 *3 *4 *5 *6)) - (-4 *3 (-318 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-4 *3 (-344)) (-5 *2 (-589 (-589 *3)))))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1120)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-25))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-695))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-589 (-1083 *13))) (-5 *3 (-1083 *13)) + (-5 *4 (-589 *12)) (-5 *5 (-589 *10)) (-5 *6 (-589 *13)) + (-5 *7 (-589 (-589 (-2 (|:| -2981 (-710)) (|:| |pcoef| *13))))) + (-5 *8 (-589 (-710))) (-5 *9 (-1169 (-589 (-1083 *10)))) + (-4 *12 (-786)) (-4 *10 (-284)) (-4 *13 (-880 *10 *11 *12)) + (-4 *11 (-732)) (-5 *1 (-647 *11 *12 *10 *13))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-48))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-203)) (-5 *1 (-282))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-895))) (-5 *1 (-104))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-1129 *4)) (-4 *4 (-973)) (-4 *4 (-515)) + (-5 *2 (-383 (-883 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-1129 *4)) (-4 *4 (-973)) (-4 *4 (-515)) + (-5 *2 (-383 (-883 *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-589 (-995 *4 *5 *2))) (-4 *4 (-1016)) + (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) + (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))) + (-5 *1 (-53 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-589 (-995 *5 *6 *2))) (-5 *4 (-852)) (-4 *5 (-1016)) + (-4 *6 (-13 (-973) (-817 *5) (-786) (-564 (-823 *5)))) + (-4 *2 (-13 (-406 *6) (-817 *5) (-564 (-823 *5)))) + (-5 *1 (-53 *5 *6 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-648 *3)) (-5 *1 (-766 *2 *3)) (-4 *3 (-973))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1 *1) (-5 *1 (-710))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-383 (-1083 (-292 *3)))) (-4 *3 (-13 (-515) (-786))) + (-5 *1 (-1044 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1169 (-1087))) (-5 *3 (-1169 (-428 *4 *5 *6 *7))) + (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-158)) (-14 *5 (-852)) + (-14 *6 (-589 (-1087))) (-14 *7 (-1169 (-629 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-428 *4 *5 *6 *7))) + (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-158)) (-14 *5 (-852)) + (-14 *6 (-589 *2)) (-14 *7 (-1169 (-629 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1169 (-428 *3 *4 *5 *6))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) + (-14 *6 (-1169 (-629 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1169 (-1087))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) + (-14 *6 (-1169 (-629 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1087)) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) + (-14 *4 (-852)) (-14 *5 (-589 *2)) (-14 *6 (-1169 (-629 *3))))) + ((*1 *1) + (-12 (-5 *1 (-428 *2 *3 *4 *5)) (-4 *2 (-158)) (-14 *3 (-852)) + (-14 *4 (-589 (-1087))) (-14 *5 (-1169 (-629 *2)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-203)) (-5 *5 (-523)) (-5 *2 (-1119 *3)) + (-5 *1 (-729 *3)) (-4 *3 (-903)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-108)) + (-5 *1 (-1119 *2)) (-4 *2 (-903))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) + ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-508)))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) - (-5 *2 (-1173)) (-5 *1 (-1090)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1087)) - (-5 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *2 (-1173)) - (-5 *1 (-1090)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1087)) - (-5 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *2 (-1173)) - (-5 *1 (-1090))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-973)) (-4 *2 (-627 *4 *5 *6)) - (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1144 *4)) (-4 *5 (-349 *4)) - (-4 *6 (-349 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-589 (-589 (-874 (-203))))))) - ((*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-589 (-589 (-874 (-203)))))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-157))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) - (-5 *2 (-962)) (-5 *1 (-690))))) -(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-133)))) - ((*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-133))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-98 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) - (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) + (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-1072 *4)) (-4 *4 (-973)) + (-5 *3 (-523))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) + ((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *2) + (-12 (-4 *1 (-325)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-758 *3)) (|:| |rm| (-758 *3)))) + (-5 *1 (-758 *3)) (-4 *3 (-786)))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2) (-12 (-5 *2 (-1059 (-1070))) (-5 *1 (-367))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1109))))) + ((*1 *1 *1 *1) (-4 *1 (-732)))) (((*1 *2 *1) - (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) - (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-973)) - (-4 *4 (-782))))) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-155 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) - (-5 *1 (-698))))) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-786)) (-4 *5 (-840)) (-4 *6 (-732)) + (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-394 (-1083 *8))) + (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-1083 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-840)) (-4 *5 (-1145 *4)) (-5 *2 (-394 (-1083 *5))) + (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-344)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1169 *4)) (-5 *1 (-493 *4)) + (-4 *4 (-325)))) + ((*1 *2 *1) + (-12 (-4 *2 (-786)) (-5 *1 (-653 *2 *3 *4)) (-4 *3 (-1016)) + (-14 *4 + (-1 (-108) (-2 (|:| -4013 *2) (|:| -1475 *3)) + (-2 (|:| -4013 *2) (|:| -1475 *3))))))) +(((*1 *1 *1) (-4 *1 (-800 *2)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-383 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1144 *5)) - (-5 *1 (-667 *5 *2)) (-4 *5 (-339))))) -(((*1 *1 *1) (|partial| -4 *1 (-1063)))) + (-12 (-5 *4 (-523)) (-5 *2 (-589 (-2 (|:| -2424 *3) (|:| -2640 *4)))) + (-5 *1 (-635 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) - (-4 *4 (-13 (-786) (-515)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) - (-4 *3 (-591 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973))))) -(((*1 *2 *1) - (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -3392 (-629 (-383 (-883 *4)))) - (|:| |vec| (-589 (-383 (-883 *4)))) (|:| -1319 (-710)) - (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) - (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) - (-4 *6 (-732)) - (-5 *2 - (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) - (|:| -4041 (-589 (-1168 (-383 (-883 *4))))))) - (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-934))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *3 (-589 (-240))) - (-5 *1 (-238)))) - ((*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-443)))) - ((*1 *2 *1) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-443))))) -(((*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158))))) -(((*1 *2) - (-12 - (-5 *2 - (-1168 (-589 (-2 (|:| -1733 (-841 *3)) (|:| -3878 (-1034)))))) - (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) - ((*1 *2) - (-12 (-5 *2 (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034)))))) - (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) (-14 *4 (-3 (-1083 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034)))))) - (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-710)) (-4 *2 (-515)) (-5 *1 (-899 *2 *4)) - (-4 *4 (-1144 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-760))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-589 (-589 (-589 *4)))) (-5 *3 (-589 *4)) (-4 *4 (-786)) - (-5 *1 (-1094 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) - (-4 *3 (-897))))) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-515)) + (-5 *2 (-2 (|:| -2600 (-629 *5)) (|:| |vec| (-1169 (-589 (-852)))))) + (-5 *1 (-88 *5 *3)) (-5 *4 (-852)) (-4 *3 (-599 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-784) (-339))) (-5 *2 (-108)) (-5 *1 (-983 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) + (-4 *2 (-515)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-515))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) + (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-515)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-710))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) + ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-515)) + (-5 *1 (-899 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-976 *3 *4 *2 *5 *6)) (-4 *2 (-973)) + (-4 *5 (-216 *4 *2)) (-4 *6 (-216 *3 *2)) (-4 *2 (-515)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) ((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *1 *2) (-12 (-5 *2 (-364)) (-5 *1 (-578))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1168 *4)) (-4 *4 (-393 *3)) (-4 *3 (-284)) - (-4 *3 (-515)) (-5 *1 (-42 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-852)) (-4 *4 (-339)) (-5 *2 (-1168 *1)) - (-4 *1 (-305 *4)))) - ((*1 *2) (-12 (-4 *3 (-339)) (-5 *2 (-1168 *1)) (-4 *1 (-305 *3)))) - ((*1 *2) - (-12 (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-1168 *1)) - (-4 *1 (-385 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) - (-5 *2 (-1168 *6)) (-5 *1 (-389 *3 *4 *5 *6)) - (-4 *6 (-13 (-385 *4 *5) (-964 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) - (-5 *2 (-1168 *6)) (-5 *1 (-390 *3 *4 *5 *6 *7)) - (-4 *6 (-385 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-158)) (-5 *2 (-1168 *1)) (-4 *1 (-393 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1168 (-1168 *4))) (-5 *1 (-493 *4)) - (-4 *4 (-325))))) -(((*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-710)) (-4 *5 (-158)))) ((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)))) - ((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-104)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-110)))) - ((*1 *2 *1) - (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-1016)))) - ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-414 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-895)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-994 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-5 *1 (-1087)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1070)) - (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-108)) (-5 *1 (-202 *4 *5)) (-4 *5 (-13 (-1108) (-29 *4)))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) - (-5 *2 (-962)) (-5 *1 (-692))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-713)) (-5 *1 (-110))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-710)) (-5 *1 (-721 *3)) (-4 *3 (-973)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-893 *3 *2)) (-4 *2 (-124)) (-4 *3 (-515)) - (-4 *3 (-973)) (-4 *2 (-731)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-710)) (-5 *1 (-1083 *3)) (-4 *3 (-973)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-900)) (-4 *2 (-124)) (-5 *1 (-1089 *3)) (-4 *3 (-515)) - (-4 *3 (-973)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-710)) (-5 *1 (-1141 *4 *3)) (-14 *4 (-1087)) - (-4 *3 (-973))))) -(((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-51))))) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) + (-4 *4 (-158)))) + ((*1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-973)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-349 *3)) + (-4 *4 (-349 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1054 *2 *3)) (-14 *2 (-710)) (-4 *3 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523))))) +(((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-5 *2 (-108))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-985))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| -3474 *4) (|:| -3070 *3) (|:| -3969 *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-987 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| -3474 *3) (|:| -3070 *1) (|:| -3969 *1))) + (-4 *1 (-1145 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) + (-5 *1 (-308))))) (((*1 *2 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) - (-4 *4 (-325)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) - (-4 *4 (-325)))) - ((*1 *1) (-4 *1 (-344))) + (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *5 (-1145 *4)) (-5 *2 (-589 (-2 (|:| -3710 *5) (|:| -1948 *5)))) + (-5 *1 (-746 *4 *5 *3 *6)) (-4 *3 (-599 *5)) + (-4 *6 (-599 (-383 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *4 (-1145 *5)) (-5 *2 (-589 (-2 (|:| -3710 *4) (|:| -1948 *4)))) + (-5 *1 (-746 *5 *4 *3 *6)) (-4 *3 (-599 *4)) + (-4 *6 (-599 (-383 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1168 *4)) (-5 *1 (-493 *4)) - (-4 *4 (-325)))) - ((*1 *1 *1) (-4 *1 (-508))) ((*1 *1) (-4 *1 (-508))) - ((*1 *1 *1) (-5 *1 (-523))) ((*1 *1 *1) (-5 *1 (-710))) - ((*1 *2 *1) (-12 (-5 *2 (-836 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-5 *2 (-836 *4)) (-5 *1 (-835 *4)) - (-4 *4 (-1016)))) - ((*1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-508)) (-4 *2 (-515))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-108) *7 (-589 *7))) (-4 *1 (-1116 *4 *5 *6 *7)) - (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) - (-5 *2 (-108))))) + (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *5 (-1145 *4)) (-5 *2 (-589 (-2 (|:| -3710 *5) (|:| -1948 *5)))) + (-5 *1 (-746 *4 *5 *6 *3)) (-4 *6 (-599 *5)) + (-4 *3 (-599 (-383 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *4 (-1145 *5)) (-5 *2 (-589 (-2 (|:| -3710 *4) (|:| -1948 *4)))) + (-5 *1 (-746 *5 *4 *6 *3)) (-4 *6 (-599 *4)) + (-4 *3 (-599 (-383 *4)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-852)) (-5 *1 (-725))))) +(((*1 *2 *1) + (-12 (-4 *1 (-230 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-786)) + (-4 *5 (-732)) (-4 *2 (-243 *4))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) ((*1 *1 *1 *1) (-5 *1 (-794))) ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -3372 (-589 (-1087))) (|:| -3585 (-589 (-1087))))) + (-5 *1 (-1125))))) +(((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-710)) (-4 *4 (-13 (-515) (-136))) + (-5 *1 (-1139 *4 *2)) (-4 *2 (-1145 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) (-5 *3 (-203)) + (-5 *2 (-962)) (-5 *1 (-688))))) +(((*1 *2 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-852)) (-5 *1 (-1017 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) - (-4 *4 (-1144 *3)) - (-5 *2 - (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-629 *3)))) - (-5 *1 (-326 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-523)) (-4 *4 (-1144 *3)) - (-5 *2 - (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-629 *3)))) - (-5 *1 (-707 *4 *5)) (-4 *5 (-385 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-325)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 *3)) - (-5 *2 - (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-629 *3)))) - (-5 *1 (-914 *4 *3 *5 *6)) (-4 *6 (-664 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-325)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 *3)) - (-5 *2 - (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-629 *3)))) - (-5 *1 (-1177 *4 *3 *5 *6)) (-4 *6 (-385 *3 *5))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-108)) - (-5 *2 (-962)) (-5 *1 (-693))))) -(((*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-203))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-499) (-589 (-499)))) (-5 *1 (-110)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-499) (-589 (-499)))) (-5 *1 (-110))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-420 *3)) (-4 *3 (-973))))) -(((*1 *2 *1) - (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-108)) (-5 *3 (-883 *6)) (-5 *4 (-1087)) - (-5 *5 (-779 *7)) - (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-4 *7 (-13 (-1108) (-29 *6))) (-5 *1 (-202 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1083 *6)) (-5 *4 (-779 *6)) - (-4 *6 (-13 (-1108) (-29 *5))) - (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-202 *5 *6))))) + (-12 (-5 *3 (-779 (-355))) (-5 *2 (-779 (-203))) (-5 *1 (-282))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *1 (-209 *4)) + (-4 *4 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-209 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-211)) (-5 *2 (-710)))) + ((*1 *1 *1) (-4 *1 (-211))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-243 *3)) (-4 *3 (-786)))) + ((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) + (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)) + (-4 *4 (-1145 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-339) (-136))) (-5 *1 (-375 *2 *3)) + (-4 *3 (-1145 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-339)) (-4 *2 (-831 *3)) (-5 *1 (-540 *2)) + (-5 *3 (-1087)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-540 *2)) (-4 *2 (-339)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 (-710))) (-4 *1 (-831 *4)) + (-4 *4 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-831 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *1 (-831 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1133 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1145 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1154 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1161 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3)))) (((*1 *2 *3) - (-12 (-5 *3 (-1054 *4 *2)) (-14 *4 (-852)) - (-4 *2 (-13 (-973) (-10 -7 (-6 (-4246 "*"))))) (-5 *1 (-833 *4 *2))))) -(((*1 *2) (-12 (-5 *2 (-589 *3)) (-5 *1 (-1002 *3)) (-4 *3 (-125))))) + (|partial| -12 (-5 *3 (-1169 *5)) (-4 *5 (-585 *4)) (-4 *4 (-515)) + (-5 *2 (-1169 *4)) (-5 *1 (-584 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 *4)) (-4 *4 (-585 (-523))) (-5 *2 (-108)) + (-5 *1 (-1194 *4))))) +(((*1 *2 *3) + (-12 (-14 *4 (-589 (-1087))) (-14 *5 (-710)) + (-5 *2 + (-589 + (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) + (-225 *4 (-383 (-523)))))) + (-5 *1 (-476 *4 *5)) + (-5 *3 + (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) + (-225 *4 (-383 (-523)))))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) ((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) - (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-325)) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4248)) (-4 *1 (-462 *3)) (-4 *3 (-1123)) + (-4 *3 (-1016)) (-5 *2 (-710)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4248)) (-4 *1 (-462 *4)) + (-4 *4 (-1123)) (-5 *2 (-710))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-292 (-203))) (-5 *4 (-1087)) + (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-172)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-292 (-203))) (-5 *4 (-1087)) + (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-277))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1109) (-930)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-160))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |cont| *5) - (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) - (-5 *1 (-195 *5 *3)) (-4 *3 (-1144 *5))))) -(((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-523)) (-4 *3 (-158)) (-4 *5 (-349 *3)) - (-4 *6 (-349 *3)) (-5 *1 (-628 *3 *5 *6 *2)) - (-4 *2 (-627 *3 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-51))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 (-2 (|:| |val| (-589 *6)) (|:| -3072 *7)))) - (-4 *6 (-987 *3 *4 *5)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-917 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-589 (-2 (|:| |val| (-589 *6)) (|:| -3072 *7)))) - (-4 *6 (-987 *3 *4 *5)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-1023 *3 *4 *5 *6 *7))))) + (-589 + (-2 + (|:| -3772 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (|:| -2482 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1068 (-203))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2464 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-518)))) + ((*1 *2 *1) + (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1123)) + (-5 *2 (-589 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-520)) (-5 *3 (-523))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) + (-4 *4 (-13 (-786) (-515)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-880 *4 *6 *5)) (-4 *4 (-427)) + (-4 *5 (-786)) (-4 *6 (-732)) (-5 *1 (-916 *4 *5 *6 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-905 *4 *5 *6 *3)) (-4 *4 (-973)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -3585 (-589 *3)) (|:| -3372 (-589 *3)))) + (-5 *1 (-1124 *3)) (-4 *3 (-1016))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-1169 *3))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) ((*1 *1 *1 *1) (-5 *1 (-794))) ((*1 *2 *1 *1) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1016)) (-5 *2 (-108)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1016)) (-5 *2 (-108))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-786)) (-5 *2 (-589 *1)) - (-4 *1 (-406 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) - (-4 *3 (-1016)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) - (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *3)) - (-5 *1 (-881 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-339) - (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) - (-15 -2797 (*7 $)))))))) -(((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-234))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-523)) (-5 *1 (-219)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-523)) (-5 *1 (-219))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) - (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1)))) + (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *1) (-5 *1 (-413)))) +(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-692))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) + (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) + (-4 *2 (-13 (-27) (-1109) (-406 (-155 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) + (-5 *1 (-168 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 (-155 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1113 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1113 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971))))) +(((*1 *1 *2) (-12 (-5 *1 (-1110 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-1110 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-589 (-1110 *2))) (-5 *1 (-1110 *2)) (-4 *2 (-1016))))) (((*1 *2 *1) - (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-973))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-339))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3078 *3) (|:| |coef2| (-721 *3)))) - (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) + (-5 *2 (-589 (-589 (-589 (-874 *3)))))))) +(((*1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-116 *3)) (-4 *3 (-1145 (-523))))) + ((*1 *2 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-116 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-339)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-533 *5 *3))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1109)))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-784)) (-5 *1 (-280 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-203)))) + ((*1 *1 *1) (-4 *1 (-508))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-546 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-1034))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *8 (-987 *5 *6 *7)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-383 *5)) - (|:| |c2| (-383 *5)) (|:| |deg| (-710)))) - (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1144 (-383 *5)))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) - (-5 *2 (-962)) (-5 *1 (-688))))) -(((*1 *1 *1) (-5 *1 (-108)))) -(((*1 *1) (-5 *1 (-762)))) -(((*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1087))))) -(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-794))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1087)) - (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-534 *4 *2)) - (-4 *2 (-13 (-1108) (-889) (-1051) (-29 *4)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-973)) - (-4 *2 (-1159 *3))))) -(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-268))) - ((*1 *1) (-5 *1 (-794))) - ((*1 *1) - (-12 (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) - (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1003))) - ((*1 *1) - (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) - (-4 *3 (-13 (-1016) (-33))))) - ((*1 *1) (-5 *1 (-1090))) ((*1 *1) (-5 *1 (-1091)))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) - ((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) + (-2 (|:| |val| (-589 *8)) (|:| |towers| (-589 (-954 *5 *6 *7 *8))))) + (-5 *1 (-954 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *8 (-987 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-589 *8)) + (|:| |towers| (-589 (-1058 *5 *6 *7 *8))))) + (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) + ((*1 *2 *1) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858))))) +(((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-629 (-383 (-883 (-523))))) + (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958)) + (-5 *3 (-292 (-523)))))) (((*1 *2 *3) - (-12 (-5 *3 (-523)) (|has| *1 (-6 -4235)) (-4 *1 (-380)) - (-5 *2 (-852))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *1 *1) (-4 *1 (-982))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731))))) + (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1145 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1145 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *5)) (-4 *5 (-1145 *3)) (-4 *3 (-284)) + (-5 *2 (-108)) (-5 *1 (-430 *3 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1160 *4)) + (-4 *4 (-37 (-383 (-523)))) + (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1162 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-589 *7)) (-5 *5 (-589 (-589 *8))) (-4 *7 (-786)) + (-4 *8 (-284)) (-4 *6 (-732)) (-4 *9 (-880 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-589 (-2 (|:| -2424 (-1083 *9)) (|:| -1475 (-523))))))) + (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1083 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-455 *4 *5))) (-14 *4 (-589 (-1087))) + (-4 *5 (-427)) + (-5 *2 + (-2 (|:| |gblist| (-589 (-225 *4 *5))) + (|:| |gvlist| (-589 (-523))))) + (-5 *1 (-577 *4 *5))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1123)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) ((*1 *1 *1 *1) (-5 *1 (-794))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-953 *3)) (-4 *3 (-1122))))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-953 *3)) (-4 *3 (-1123))))) (((*1 *2 *1) - (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-629 (-203))) - (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) - (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-589 *11)) - (|:| |todo| (-589 (-2 (|:| |val| *3) (|:| -3072 *11)))))) - (-5 *6 (-710)) - (-5 *2 (-589 (-2 (|:| |val| (-589 *10)) (|:| -3072 *11)))) - (-5 *3 (-589 *10)) (-5 *4 (-589 *11)) (-4 *10 (-987 *7 *8 *9)) - (-4 *11 (-992 *7 *8 *9 *10)) (-4 *7 (-427)) (-4 *8 (-732)) - (-4 *9 (-786)) (-5 *1 (-990 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-589 *11)) - (|:| |todo| (-589 (-2 (|:| |val| *3) (|:| -3072 *11)))))) - (-5 *6 (-710)) - (-5 *2 (-589 (-2 (|:| |val| (-589 *10)) (|:| -3072 *11)))) - (-5 *3 (-589 *10)) (-5 *4 (-589 *11)) (-4 *10 (-987 *7 *8 *9)) - (-4 *11 (-1025 *7 *8 *9 *10)) (-4 *7 (-427)) (-4 *8 (-732)) - (-4 *9 (-786)) (-5 *1 (-1057 *7 *8 *9 *10 *11))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-687))))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-523))) (-4 *3 (-973)) (-5 *1 (-94 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-94 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-94 *3))))) +(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172))))) +(((*1 *2 *1) + (-12 (-5 *2 (-794)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 (-710)) + (-14 *4 (-710)) (-4 *5 (-158))))) +(((*1 *1) (-5 *1 (-762)))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 (-523))) - (-5 *2 (-1168 (-523))) (-5 *1 (-1193 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-284) (-136))) (-4 *4 (-13 (-786) (-564 (-1087)))) - (-4 *5 (-732)) (-5 *1 (-855 *3 *4 *5 *2)) (-4 *2 (-880 *3 *5 *4))))) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) + (-4 *4 (-13 (-786) (-515)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-564 (-823 (-523)))) + (-4 *5 (-817 (-523))) + (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-526 *5 *3)) (-4 *3 (-575)) + (-4 *3 (-13 (-27) (-1109) (-406 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-413))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-710)) (-4 *5 (-515)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-899 *5 *3)) (-4 *3 (-1145 *5))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-795)))) + ((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1174)) (-5 *1 (-795)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-794)) (-5 *2 (-1174)) (-5 *1 (-795)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-1068 *4)) + (-4 *4 (-1016)) (-4 *4 (-1123))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1122)) (-4 *2 (-786)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) - ((*1 *2 *2) - (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) - (-4 *6 (-987 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3722 *1) (|:| |upper| *1))) - (-4 *1 (-905 *4 *5 *3 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-794) (-794))) (-5 *1 (-110)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-794) (-589 (-794)))) (-5 *1 (-110)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-794) (-589 (-794)))) (-5 *1 (-110)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1173)) (-5 *1 (-193 *3)) - (-4 *3 - (-13 (-786) - (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 (*2 $)) - (-15 -2823 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-370)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-370)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-473)))) - ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-650)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1103)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-1103))))) -(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) - ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) -(((*1 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-421)) (-5 *3 (-523))))) -(((*1 *2 *2) - (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-412))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-508)))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-1083 (-883 *4))) (-5 *1 (-392 *3 *4)) + (-4 *3 (-393 *4)))) + ((*1 *2) + (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-4 *3 (-339)) + (-5 *2 (-1083 (-883 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-786)) + (-5 *2 (-2 (|:| -3474 (-523)) (|:| |var| (-562 *1)))) + (-4 *1 (-406 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-394 (-1083 *1))) (-5 *1 (-292 *4)) (-5 *3 (-1083 *1)) - (-4 *4 (-427)) (-4 *4 (-515)) (-4 *4 (-786)))) - ((*1 *2 *3) - (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1159 *3))))) + (-12 (-5 *3 (-1169 *4)) (-4 *4 (-973)) (-4 *2 (-1145 *4)) + (-5 *1 (-419 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-383 (-1083 (-292 *5)))) (-5 *3 (-1169 (-292 *5))) + (-5 *4 (-523)) (-4 *5 (-13 (-515) (-786))) (-5 *1 (-1044 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-383 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-973)) + (-4 *3 (-515)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-515))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-589 (-629 (-523)))) - (-5 *1 (-1026))))) -(((*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-373))))) -(((*1 *2 *2 *2) + (|partial| -12 (-5 *3 (-562 *4)) (-4 *4 (-786)) (-4 *2 (-786)) + (-5 *1 (-561 *2 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-629 *3)))) - (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) - (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122))))) + (-2 (|:| |partsol| (-1169 (-383 (-883 *4)))) + (|:| -3760 (-589 (-1169 (-383 (-883 *4))))))) + (-5 *3 (-589 *7)) (-4 *4 (-13 (-284) (-136))) + (-4 *7 (-880 *4 *6 *5)) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *1 (-855 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-523)) + (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *2 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) - (-4 *3 (-880 *7 *5 *6)) - (-5 *2 - (-2 (|:| -2735 (-710)) (|:| -2935 *3) (|:| |radicand| (-589 *3)))) - (-5 *1 (-884 *5 *6 *7 *3 *8)) (-5 *4 (-710)) - (-4 *8 - (-13 (-339) - (-10 -8 (-15 -2785 (*3 $)) (-15 -2797 (*3 $)) (-15 -1458 ($ *3)))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1016)) (-4 *5 (-1016)) + (-5 *2 (-1 *5)) (-5 *1 (-623 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-694))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-4 *4 (-515)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3549 *4))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-279))) ((*1 *1 *1) (-4 *1 (-279)))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-589 *6)) (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) - (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) - (-4 *3 (-515))))) + (|partial| -12 (-4 *4 (-13 (-515) (-136))) + (-5 *2 (-2 (|:| -3844 *3) (|:| -3855 *3))) (-5 *1 (-1139 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-443)) (-5 *4 (-852)) (-5 *2 (-1174)) (-5 *1 (-1170))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-710)) (-5 *1 (-541 *2)) (-4 *2 (-508)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3007 *3) (|:| -2735 (-710)))) (-5 *1 (-541 *3)) - (-4 *3 (-508))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-589 *7)) (-5 *3 (-523)) (-4 *7 (-880 *4 *5 *6)) - (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-5 *1 (-424 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-306)))) - ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-306))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1169)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1170))))) + (-12 (-5 *2 (-1 (-874 (-203)) (-203) (-203))) + (-5 *3 (-1 (-203) (-203) (-203) (-203))) (-5 *1 (-232))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-1145 *4)) + (-4 *5 (-1145 (-383 *3))) (-5 *2 (-108)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3310 (-721 *3)) (|:| |coef1| (-721 *3)) + (|:| |coef2| (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-2 (|:| -3310 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1087)) (-5 *6 (-589 (-562 *3))) + (-5 *5 (-562 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *7))) + (-4 *7 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-2 (|:| -1825 *3) (|:| |coeff| *3))) + (-5 *1 (-516 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1159 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-617 *3)) (-4 *3 (-973)) (-4 *3 (-1016))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1087)) (-5 *3 (-1020)) (-5 *1 (-268))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) - (-4 *4 (-349 *2))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-562 *4)) (-5 *6 (-1083 *4)) - (-4 *4 (-13 (-406 *7) (-27) (-1108))) + (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 *2))) + (-5 *2 (-823 *3)) (-5 *1 (-995 *3 *4 *5)) + (-4 *5 (-13 (-406 *4) (-817 *3) (-564 *2)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 (-883 *3))) (-4 *3 (-427)) (-5 *1 (-336 *3 *4)) + (-14 *4 (-589 (-1087))))) + ((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-425 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-425 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-425 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) + (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-589 (-719 *3 (-796 *4)))) (-4 *3 (-427)) + (-14 *4 (-589 (-1087))) (-5 *1 (-574 *3 *4))))) +(((*1 *1 *1) (-4 *1 (-982)))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-108)) + (-5 *6 (-203)) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD)))) + (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE)))) + (-5 *2 (-962)) (-5 *1 (-696))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-562 *4)) (-5 *6 (-1087)) + (-4 *4 (-13 (-406 *7) (-27) (-1109))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) - (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-562 *4)) (-5 *6 (-383 (-1083 *4))) - (-4 *4 (-13 (-406 *7) (-27) (-1108))) - (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) + (-5 *1 (-525 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1089 (-383 (-523)))) (-5 *2 (-383 (-523))) + (-5 *1 (-170))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-852)) (-5 *1 (-725))))) +(((*1 *1 *1) (-5 *1 (-108)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-284)) (-4 *6 (-349 *5)) (-4 *4 (-349 *5)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) - (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016))))) -(((*1 *2 *1) - (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) - (-5 *2 (-1083 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) -(((*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)) (-4 *2 (-1016)))) - ((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1016))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) + (-5 *1 (-1038 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-523)) (-5 *2 (-589 (-589 (-203)))) (-5 *1 (-1119))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) - (-5 *5 (-1011 (-203))) (-5 *6 (-523)) (-5 *2 (-1118 (-857))) - (-5 *1 (-294)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) - (-5 *5 (-1011 (-203))) (-5 *6 (-523)) (-5 *7 (-1070)) - (-5 *2 (-1118 (-857))) (-5 *1 (-294)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) - (-5 *5 (-1011 (-203))) (-5 *6 (-203)) (-5 *7 (-523)) - (-5 *2 (-1118 (-857))) (-5 *1 (-294)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) - (-5 *5 (-1011 (-203))) (-5 *6 (-203)) (-5 *7 (-523)) (-5 *8 (-1070)) - (-5 *2 (-1118 (-857))) (-5 *1 (-294))))) -(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158))))) + (-12 (-5 *3 (-523)) (|has| *1 (-6 -4239)) (-4 *1 (-380)) + (-5 *2 (-852))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-710)) (-4 *8 (-880 *5 *7 *6)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) + (-4 *7 (-732)) + (-5 *2 + (-589 + (-2 (|:| |det| *8) (|:| |rows| (-589 (-523))) + (|:| |cols| (-589 (-523)))))) + (-5 *1 (-855 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) +(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-110)) (-4 *4 (-973)) (-5 *1 (-654 *4 *2)) + (-4 *2 (-591 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-773 *2)) (-4 *2 (-973))))) +(((*1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) + (-5 *2 (-2 (|:| |radicand| (-383 *5)) (|:| |deg| (-710)))) + (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1145 (-383 *5)))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-455 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) + (-5 *2 (-883 *5)) (-5 *1 (-875 *4 *5))))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1168 *5)) (-5 *3 (-710)) (-5 *4 (-1034)) (-4 *5 (-325)) - (-5 *1 (-493 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) - ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1011 (-779 (-355)))) (-5 *2 (-1011 (-779 (-203)))) - (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) - (-5 *2 - (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) - (|:| |success| (-108)))) - (-5 *1 (-728)) (-5 *5 (-523))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-895))) (-5 *1 (-104))))) -(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) - ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-523)) (-5 *2 (-589 (-2 (|:| -1820 *3) (|:| -2299 *4)))) - (-5 *1 (-635 *3)) (-4 *3 (-1144 *4))))) + (-12 (-5 *4 (-589 (-589 *8))) (-5 *3 (-589 *8)) + (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-108)) (-5 *1 (-906 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) - (-5 *1 (-308))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-852)) (-5 *1 (-1017 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-5 *3 (-589 (-383 (-883 (-155 (-523)))))) + (-5 *2 (-589 (-589 (-271 (-883 (-155 *4)))))) (-5 *1 (-354 *4)) + (-4 *4 (-13 (-339) (-784))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-271 (-383 (-883 (-155 (-523))))))) + (-5 *2 (-589 (-589 (-271 (-883 (-155 *4)))))) (-5 *1 (-354 *4)) + (-4 *4 (-13 (-339) (-784))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 (-155 (-523))))) + (-5 *2 (-589 (-271 (-883 (-155 *4))))) (-5 *1 (-354 *4)) + (-4 *4 (-13 (-339) (-784))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-271 (-383 (-883 (-155 (-523)))))) + (-5 *2 (-589 (-271 (-883 (-155 *4))))) (-5 *1 (-354 *4)) + (-4 *4 (-13 (-339) (-784)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-710)) (-4 *5 (-973)) (-5 *2 (-523)) + (-5 *1 (-418 *5 *3 *6)) (-4 *3 (-1145 *5)) + (-4 *6 (-13 (-380) (-964 *5) (-339) (-1109) (-261))))) + ((*1 *2 *3) + (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) + (-4 *3 (-1145 *4)) + (-4 *5 (-13 (-380) (-964 *4) (-339) (-1109) (-261)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1087)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-883 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1087)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-786) (-515))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-786) (-515)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) - (-4 *4 (-13 (-786) (-515)))))) + (-12 + (-5 *3 + (-2 (|:| |pde| (-589 (-292 (-203)))) + (|:| |constraints| + (-589 + (-2 (|:| |start| (-203)) (|:| |finish| (-203)) + (|:| |grid| (-710)) (|:| |boundaryType| (-523)) + (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) + (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) + (|:| |tol| (-203)))) + (-5 *2 (-108)) (-5 *1 (-190))))) (((*1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523))))) - ((*1 *2 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-564 (-823 (-523)))) - (-4 *5 (-817 (-523))) - (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-526 *5 *3)) (-4 *3 (-575)) - (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-443)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169))))) -(((*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) - ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) - ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158))))) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1174)) + (-5 *1 (-993 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1174)) + (-5 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-880 *5 *3 *4)))) @@ -1402,21 +1644,358 @@ (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *6 *4 *5)) (-5 *1 (-847 *4 *5 *6 *2)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284))))) +(((*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172)))) + ((*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) + (-5 *2 (-1169 *6)) (-5 *1 (-312 *3 *4 *5 *6)) + (-4 *6 (-318 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *6 (-203)) + (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-589 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-710)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-732)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *5 (-786)) + (-5 *1 (-424 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-92))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1174)) + (-5 *1 (-917 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1174)) + (-5 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-230 *2 *3 *4 *5)) (-4 *2 (-973)) (-4 *3 (-786)) + (-4 *4 (-243 *3)) (-4 *5 (-732))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) + (-5 *7 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1145 *9)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-284)) + (-4 *10 (-880 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-589 (-1083 *10))) + (|:| |dterm| + (-589 (-589 (-2 (|:| -2981 (-710)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-589 *6)) (|:| |nlead| (-589 *10)))) + (-5 *1 (-717 *6 *7 *8 *9 *10)) (-5 *3 (-1083 *10)) (-5 *4 (-589 *6)) + (-5 *5 (-589 *10))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-732)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) + (-5 *2 (-108)) (-5 *1 (-424 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-964 (-523))) (-4 *1 (-279)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1083 *3)) (-4 *3 (-973)) (-4 *1 (-1145 *3))))) +(((*1 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1174)) + (-5 *1 (-993 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1174)) + (-5 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-548 *3)) (-4 *3 (-37 *2)) + (-4 *3 (-973))))) +(((*1 *2 *2) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) + (-5 *1 (-161 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) + (-4 *3 (-1145 *2))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *1) + (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1101 *4 *5)) + (-4 *4 (-1016)) (-4 *5 (-1016))))) (((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-874 (-203))) (-5 *4 (-805)) (-5 *5 (-852)) - (-5 *2 (-1173)) (-5 *1 (-443)))) + (-5 *2 (-1174)) (-5 *1 (-443)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-874 (-203))) (-5 *2 (-1173)) (-5 *1 (-443)))) + (-12 (-5 *3 (-874 (-203))) (-5 *2 (-1174)) (-5 *1 (-443)))) ((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *4 (-805)) (-5 *5 (-852)) - (-5 *2 (-1173)) (-5 *1 (-443))))) -(((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-48))))) + (-5 *2 (-1174)) (-5 *1 (-443))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-589 (-1087))) (-4 *2 (-158)) + (-4 *3 (-216 (-2810 *4) (-710))) + (-14 *6 + (-1 (-108) (-2 (|:| -4013 *5) (|:| -1475 *3)) + (-2 (|:| -4013 *5) (|:| -1475 *3)))) + (-5 *1 (-436 *4 *2 *5 *3 *6 *7)) (-4 *5 (-786)) + (-4 *7 (-880 *2 *3 (-796 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1611 *3) (|:| |coef1| (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-540 *3) *3 (-1087))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1087))) + (-4 *3 (-261)) (-4 *3 (-575)) (-4 *3 (-964 *4)) (-4 *3 (-406 *7)) + (-5 *4 (-1087)) (-4 *7 (-564 (-823 (-523)))) (-4 *7 (-427)) + (-4 *7 (-817 (-523))) (-4 *7 (-786)) (-5 *2 (-540 *3)) + (-5 *1 (-532 *7 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-852)) (-4 *1 (-216 *3 *4)) (-4 *4 (-973)) + (-4 *4 (-1123)))) + ((*1 *1 *2) + (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) + (-4 *5 (-216 (-2810 *3) (-710))) + (-14 *6 + (-1 (-108) (-2 (|:| -4013 *2) (|:| -1475 *5)) + (-2 (|:| -4013 *2) (|:| -1475 *5)))) + (-5 *1 (-436 *3 *4 *2 *5 *6 *7)) (-4 *2 (-786)) + (-4 *7 (-880 *4 *5 (-796 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1120))))) +(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) + (-4 *3 (-1145 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1070)) (-5 *2 (-589 (-1092))) (-5 *1 (-1049))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) + (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) + (-5 *1 (-636))))) +(((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-987 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-1144 (-523))) (-5 *1 (-459 *3))))) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1145 (-523))) (-5 *1 (-459 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1123)) (-4 *2 (-973)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) + ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-874 (-203))) (-5 *2 (-203)) (-5 *1 (-1120)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-973))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1611 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-710)) (-5 *5 (-589 *3)) (-4 *3 (-284)) (-4 *6 (-786)) + (-4 *7 (-732)) (-5 *2 (-108)) (-5 *1 (-572 *6 *7 *3 *8)) + (-4 *8 (-880 *3 *7 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-499))) (-5 *2 (-1087)) (-5 *1 (-499))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1 *1) + (-12 (-4 *2 (-284)) (-4 *3 (-921 *2)) (-4 *4 (-1145 *3)) + (-5 *1 (-389 *2 *3 *4 *5)) (-4 *5 (-13 (-385 *3 *4) (-964 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-383 (-523)))) + (-5 *2 + (-589 + (-2 (|:| |outval| *4) (|:| |outmult| (-523)) + (|:| |outvect| (-589 (-629 *4)))))) + (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784)))))) (((*1 *2 *1) (-12 (-5 *2 (-1068 (-383 *3))) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *1) (-5 *1 (-742)))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-60 *3)) (-14 *3 (-1087)))) + ((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-67 *3)) (-14 *3 (-1087)))) + ((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-70 *3)) (-14 *3 (-1087)))) + ((*1 *2 *1) (-12 (-4 *1 (-371)) (-5 *2 (-1174)))) + ((*1 *2 *3) (-12 (-5 *3 (-364)) (-5 *2 (-1174)) (-5 *1 (-373)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-794)) (-5 *2 (-1174)) (-5 *1 (-1050)))) + ((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1174)) (-5 *1 (-1050)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1174)) (-5 *1 (-1050))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-3 (|:| |%expansion| (-289 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) + (-5 *1 (-396 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1109) (-406 *5))) + (-14 *6 (-1087)) (-14 *7 *3)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-4 *8 (-880 *5 *7 *6)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) + (-4 *7 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) + (|:| |wcond| (-589 (-883 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1169 (-383 (-883 *5)))) + (|:| -3760 (-589 (-1169 (-383 (-883 *5)))))))))) + (-5 *1 (-855 *5 *6 *7 *8)) (-5 *4 (-589 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-589 (-1087))) (-4 *8 (-880 *5 *7 *6)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) + (-4 *7 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) + (|:| |wcond| (-589 (-883 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1169 (-383 (-883 *5)))) + (|:| -3760 (-589 (-1169 (-383 (-883 *5)))))))))) + (-5 *1 (-855 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-880 *4 *6 *5)) + (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *7)) (|:| |neqzro| (-589 *7)) + (|:| |wcond| (-589 (-883 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1169 (-383 (-883 *4)))) + (|:| -3760 (-589 (-1169 (-383 (-883 *4)))))))))) + (-5 *1 (-855 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *9)) (-5 *5 (-852)) (-4 *9 (-880 *6 *8 *7)) + (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) + (-4 *8 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *9)) (|:| |neqzro| (-589 *9)) + (|:| |wcond| (-589 (-883 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1169 (-383 (-883 *6)))) + (|:| -3760 (-589 (-1169 (-383 (-883 *6)))))))))) + (-5 *1 (-855 *6 *7 *8 *9)) (-5 *4 (-589 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 (-1087))) (-5 *5 (-852)) + (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) + (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *9)) (|:| |neqzro| (-589 *9)) + (|:| |wcond| (-589 (-883 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1169 (-383 (-883 *6)))) + (|:| -3760 (-589 (-1169 (-383 (-883 *6)))))))))) + (-5 *1 (-855 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-852)) (-4 *8 (-880 *5 *7 *6)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) + (-4 *7 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) + (|:| |wcond| (-589 (-883 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1169 (-383 (-883 *5)))) + (|:| -3760 (-589 (-1169 (-383 (-883 *5)))))))))) + (-5 *1 (-855 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 *9)) (-5 *5 (-1070)) + (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) + (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) + (-5 *1 (-855 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 (-1087))) (-5 *5 (-1070)) + (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) + (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) + (-5 *1 (-855 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-1070)) (-4 *8 (-880 *5 *7 *6)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) + (-4 *7 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-629 *10)) (-5 *4 (-589 *10)) (-5 *5 (-852)) + (-5 *6 (-1070)) (-4 *10 (-880 *7 *9 *8)) (-4 *7 (-13 (-284) (-136))) + (-4 *8 (-13 (-786) (-564 (-1087)))) (-4 *9 (-732)) (-5 *2 (-523)) + (-5 *1 (-855 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-629 *10)) (-5 *4 (-589 (-1087))) (-5 *5 (-852)) + (-5 *6 (-1070)) (-4 *10 (-880 *7 *9 *8)) (-4 *7 (-13 (-284) (-136))) + (-4 *8 (-13 (-786) (-564 (-1087)))) (-4 *9 (-732)) (-5 *2 (-523)) + (-5 *1 (-855 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *9)) (-5 *4 (-852)) (-5 *5 (-1070)) + (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) + (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) + (-5 *1 (-855 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) (-5 *6 (-1083 *3)) + (-4 *3 (-13 (-406 *7) (-27) (-1109))) + (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-519 *7 *3 *8)) (-4 *8 (-1016)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) + (-5 *6 (-383 (-1083 *3))) (-4 *3 (-13 (-406 *7) (-27) (-1109))) + (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-519 *7 *3 *8)) (-4 *8 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-5 *2 (-589 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) + (-5 *2 (-589 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-666)))) + ((*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-589 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1160 *3)) (-4 *3 (-973)) (-5 *2 (-1068 *3))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-5 *1 (-1141 *4 *2)) + (-4 *2 (-1145 *4))))) (((*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) @@ -1432,1207 +2011,438 @@ (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-695))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-804 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-687))))) -(((*1 *2 *3) - (-12 (-4 *4 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-195 *4 *3)) - (-4 *3 (-1144 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1016)) (-4 *6 (-817 *5)) (-5 *2 (-816 *5 *6 (-589 *6))) + (-5 *1 (-818 *5 *6 *4)) (-5 *3 (-589 *6)) (-4 *4 (-564 (-823 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) - (-4 *3 (-1144 (-523))))) + (-12 (-4 *5 (-1016)) (-5 *2 (-589 (-271 *3))) (-5 *1 (-818 *5 *3 *4)) + (-4 *3 (-964 (-1087))) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-589 (-710))) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) - (-4 *3 (-1144 (-523))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *2 (-394 *3)) - (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) - (-4 *3 (-1144 (-523))))) - ((*1 *2 *3) - (-12 (-5 *2 (-394 *3)) (-5 *1 (-935 *3)) - (-4 *3 (-1144 (-383 (-523)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-394 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (-5 *2 (-108)) (-5 *1 (-277))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) - (-5 *2 (-962)) (-5 *1 (-694))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-104))) (-5 *1 (-160))))) -(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) -(((*1 *1 *1) (|partial| -4 *1 (-134))) ((*1 *1 *1) (-4 *1 (-325))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-134)) (-4 *1 (-840))))) -(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *1) (-4 *1 (-897))) ((*1 *1 *1) (-5 *1 (-1034)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284))))) -(((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-393 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1173)) (-5 *1 (-1050))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 *2)) (-5 *1 (-459 *2)) (-4 *2 (-1144 (-523)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-710)))) - ((*1 *2 *1) - (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *2 (-710))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-562 (-47)))) (-5 *1 (-47)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562 (-47))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1083 (-47))) (-5 *3 (-589 (-562 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1083 (-47))) (-5 *3 (-562 (-47))) (-5 *1 (-47)))) - ((*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) - (-4 *3 (-1144 (-155 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-852)) (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) - ((*1 *2 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-339)))) - ((*1 *2 *1) - (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-158)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1144 *2)) (-4 *2 (-921 *3)) (-5 *1 (-389 *3 *2 *4 *5)) - (-4 *3 (-284)) (-4 *5 (-13 (-385 *2 *4) (-964 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1144 *2)) (-4 *2 (-921 *3)) - (-5 *1 (-390 *3 *2 *4 *5 *6)) (-4 *3 (-284)) (-4 *5 (-385 *2 *4)) - (-14 *6 (-1168 *5)))) + (-12 (-4 *5 (-1016)) (-5 *2 (-589 (-271 (-883 *3)))) + (-5 *1 (-818 *5 *3 *4)) (-4 *3 (-973)) + (-4179 (-4 *3 (-964 (-1087)))) (-4 *3 (-817 *5)) + (-4 *4 (-564 (-823 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-852)) (-4 *5 (-973)) - (-4 *2 (-13 (-380) (-964 *5) (-339) (-1108) (-261))) - (-5 *1 (-418 *5 *3 *2)) (-4 *3 (-1144 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-562 (-466)))) (-5 *1 (-466)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562 (-466))) (-5 *1 (-466)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1083 (-466))) (-5 *3 (-589 (-562 (-466)))) - (-5 *1 (-466)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1083 (-466))) (-5 *3 (-562 (-466))) (-5 *1 (-466)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1168 *4)) (-5 *3 (-852)) (-4 *4 (-325)) - (-5 *1 (-493 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-664 *4 *2)) (-4 *2 (-1144 *4)) - (-5 *1 (-714 *4 *2 *5 *3)) (-4 *3 (-1144 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) - ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) + (-12 (-4 *5 (-1016)) (-5 *2 (-820 *5 *3)) (-5 *1 (-818 *5 *3 *4)) + (-4179 (-4 *3 (-964 (-1087)))) (-4179 (-4 *3 (-973))) + (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1119 *3)) (-4 *3 (-903))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-367))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-589 *2) *2 *2 *2)) (-4 *2 (-1016)) + (-5 *1 (-98 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-98 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1145 *3)) (-4 *3 (-973))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-508)))) ((*1 *1 *1) (-4 *1 (-982)))) -(((*1 *2 *1) - (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) - (-14 *6 - (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *2)) - (-2 (|:| -3878 *5) (|:| -2735 *2)))) - (-4 *2 (-216 (-2676 *3) (-710))) (-5 *1 (-436 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-786)) (-4 *7 (-880 *4 *2 (-796 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-5 *1 (-306))))) -(((*1 *1) (-5 *1 (-518)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1026))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-124)) - (-4 *3 (-731))))) -(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-895))) (-5 *1 (-268))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-502 *4 *2 *5 *6)) - (-4 *4 (-284)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-710)))))) -(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-108)) - (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) - (-4 *4 (-13 (-1016) (-33)))))) -(((*1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))) - (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-383 (-523))) - (-5 *1 (-409 *4 *3)) (-4 *3 (-406 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-562 *3)) (-4 *3 (-406 *5)) - (-4 *5 (-13 (-786) (-515) (-964 (-523)))) - (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-409 *5 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| |k| (-1087)) (|:| |c| (-1188 *3))))) - (-5 *1 (-1188 *3)) (-4 *3 (-973)))) - ((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| |k| *3) (|:| |c| (-1190 *3 *4))))) - (-5 *1 (-1190 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973))))) -(((*1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-344)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1168 *4)) (-5 *1 (-493 *4)) - (-4 *4 (-325)))) - ((*1 *2 *1) - (-12 (-4 *2 (-786)) (-5 *1 (-653 *2 *3 *4)) (-4 *3 (-1016)) - (-14 *4 - (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *3)) - (-2 (|:| -3878 *2) (|:| -2735 *3))))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-383 (-523))) (-5 *1 (-951 *3)) - (-4 *3 (-13 (-784) (-339) (-949))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) - (-4 *3 (-1144 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-989 *2 *3)) (-4 *2 (-13 (-784) (-339))) - (-4 *3 (-1144 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-629 *4)) (-4 *4 (-339)) (-5 *2 (-1083 *4)) - (-5 *1 (-496 *4 *5 *6)) (-4 *5 (-339)) (-4 *6 (-13 (-339) (-784)))))) -(((*1 *2) - (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) - ((*1 *2 *2) - (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) -(((*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-761))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-852)) (-5 *1 (-417 *2)) - (-4 *2 (-1144 (-523))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-852)) (-5 *4 (-710)) (-5 *1 (-417 *2)) - (-4 *2 (-1144 (-523))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *1 (-417 *2)) - (-4 *2 (-1144 (-523))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *5 (-710)) - (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *5 (-710)) - (-5 *6 (-108)) (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-394 *2)) (-4 *2 (-1144 *5)) - (-5 *1 (-419 *5 *2)) (-4 *5 (-973))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *2 (-523)))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-515))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) - (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) - (-4 *8 (-786)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3125 (-589 *9)))) - (-5 *3 (-589 *9)) (-4 *1 (-1116 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-987 *5 *6 *7)) - (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3125 (-589 *8)))) - (-5 *3 (-589 *8)) (-4 *1 (-1116 *5 *6 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699))))) +(((*1 *1) (-5 *1 (-268)))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1083 *7)) - (-4 *5 (-973)) (-4 *7 (-973)) (-4 *2 (-1144 *5)) - (-5 *1 (-472 *5 *2 *6 *7)) (-4 *6 (-1144 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-427)) (-4 *3 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) - (-5 *1 (-424 *4 *3 *5 *6)) (-4 *6 (-880 *4 *3 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *1 (-305 *3)) - (-4 *3 (-339))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) - (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-589 *7) (-589 *7))) (-5 *2 (-589 *7)) - (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) - (-5 *1 (-906 *4 *5 *6 *7))))) + (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *4 (-710)) + (-5 *2 (-629 (-203))) (-5 *1 (-244))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1145 *3)) (-4 *3 (-973)) (-5 *2 (-1083 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-364)) (-5 *2 (-1174)) (-5 *1 (-367)))) + ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-367))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-761))))) (((*1 *2 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) - (-5 *2 (-589 (-883 *4))))) - ((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-589 (-883 *4))) (-5 *1 (-392 *3 *4)) - (-4 *3 (-393 *4)))) - ((*1 *2) - (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-589 (-883 *3))))) - ((*1 *2) - (-12 (-5 *2 (-589 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) + (-12 + (-5 *3 + (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *2 (-962)) (-5 *1 (-282)))) ((*1 *2 *3) - (-12 (-5 *3 (-1168 (-428 *4 *5 *6 *7))) (-5 *2 (-589 (-883 *4))) - (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-515)) (-4 *4 (-158)) - (-14 *5 (-852)) (-14 *6 (-589 (-1087))) (-14 *7 (-1168 (-629 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-1016)) - (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) - (-5 *1 (-995 *4 *5 *2)) - (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1016)) - (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) - (-5 *1 (-995 *3 *4 *2)) - (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) - (-4 *4 (-349 *2))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-523)) + (-12 (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-710)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-732)) (-4 *4 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-786)) - (-5 *1 (-424 *5 *6 *7 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-157)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-973))))) -(((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-393 *4))))) -(((*1 *1) (-5 *1 (-1173)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-339)) (-4 *3 (-973)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) - (-4 *1 (-788 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-108)) - (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-4 *3 (-13 (-27) (-1108) (-406 *6) (-10 -8 (-15 -1458 ($ *7))))) - (-4 *7 (-784)) - (-4 *8 - (-13 (-1146 *3 *7) (-339) (-1108) - (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) - (-5 *1 (-398 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1070)) (-4 *9 (-912 *8)) - (-14 *10 (-1087))))) -(((*1 *2 *1) - (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) - (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5))))) + (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) + (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) + (-5 *2 (-962)) (-5 *1 (-282))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-710)) (-4 *1 (-1145 *3)) (-4 *3 (-973))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-203))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *1 *1 *1) (-5 *1 (-355))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 *5)) (-4 *5 (-973)) (-5 *1 (-977 *3 *4 *5)) + (-14 *3 (-710)) (-14 *4 (-710))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) - (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 *10)) - (-5 *1 (-571 *5 *6 *7 *8 *9 *10)) (-4 *9 (-992 *5 *6 *7 *8)) - (-4 *10 (-1025 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) - (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) - (-5 *1 (-574 *5 *6)))) - ((*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-1058 *5 (-495 (-796 *6)) (-796 *6) (-719 *5 (-796 *6))))) - (-5 *1 (-574 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) - (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) - (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) - (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) - (-5 *1 (-970 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) - (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 *1)) - (-4 *1 (-992 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) - (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) - (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) - (-4 *1 (-1116 *4 *5 *6 *7))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1087)) (-4 *5 (-1126)) (-4 *6 (-1144 *5)) - (-4 *7 (-1144 (-383 *6))) (-5 *2 (-589 (-883 *5))) - (-5 *1 (-317 *4 *5 *6 *7)) (-4 *4 (-318 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1087)) (-4 *1 (-318 *4 *5 *6)) (-4 *4 (-1126)) - (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-4 *4 (-339)) - (-5 *2 (-589 (-883 *4)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) - (-4 *3 (-13 (-339) (-1108) (-930)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-762)) (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1016)) (-4 *4 (-1016)) - (-4 *6 (-1016)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *4 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) - (-14 *4 (-852))))) -(((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-303 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-486 *3 *4)) - (-14 *4 (-523))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-987 *4 *5 *6)) (-4 *4 (-515)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *2))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1144 *5)) - (-4 *5 (-13 (-27) (-406 *4))) - (-4 *4 (-13 (-786) (-515) (-964 (-523)))) - (-4 *7 (-1144 (-383 *6))) (-5 *1 (-511 *4 *5 *6 *7 *2)) - (-4 *2 (-318 *5 *6 *7))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-852)) - (-5 *2 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) - (-5 *1 (-322 *4)) (-4 *4 (-325))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4246 "*"))) (-4 *5 (-349 *2)) (-4 *6 (-349 *2)) - (-4 *2 (-973)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1144 *2)) - (-4 *4 (-627 *2 *5 *6))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) - (-5 *2 (-962)) (-5 *1 (-692))))) -(((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-292 *3)) (-4 *3 (-515)) (-4 *3 (-786))))) + (-5 *1 (-574 *5 *6))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) + (-5 *2 (-962)) (-5 *1 (-688))))) (((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) ((*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-339)) (-4 *3 (-973)) - (-5 *1 (-1072 *3))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) - (-4 *3 (-13 (-339) (-1108) (-930)))))) -(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1173)) (-5 *1 (-1050))))) -(((*1 *1 *1) (-4 *1 (-575))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930) (-1108)))))) -(((*1 *1) (-5 *1 (-985)))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *6)))) - (-5 *4 (-953 (-779 (-523)))) (-5 *5 (-1087)) (-5 *7 (-383 (-523))) - (-4 *6 (-973)) (-5 *2 (-794)) (-5 *1 (-548 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-279)))) - ((*1 *1 *1) (-4 *1 (-279))) ((*1 *1 *1) (-5 *1 (-794)))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-122 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-760))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) - (-5 *1 (-413))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-240)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158)))) - ((*1 *2 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1016) (-33))) - (-4 *2 (-13 (-1016) (-33)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-306))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3)))) - ((*1 *1 *1) (-4 *1 (-1111)))) -(((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1009 (-883 (-523)))) (-5 *3 (-883 (-523))) - (-5 *1 (-306)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1009 (-883 (-523)))) (-5 *1 (-306))))) -(((*1 *1) (-5 *1 (-985)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) - ((*1 *1 *1) - (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))))) - ((*1 *1 *1) - (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) - (-14 *3 (-589 (-1087))))) - ((*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1016)))) - ((*1 *1 *1) - (-12 (-14 *2 (-589 (-1087))) (-4 *3 (-158)) - (-4 *5 (-216 (-2676 *2) (-710))) - (-14 *6 - (-1 (-108) (-2 (|:| -3878 *4) (|:| -2735 *5)) - (-2 (|:| -3878 *4) (|:| -2735 *5)))) - (-5 *1 (-436 *2 *3 *4 *5 *6 *7)) (-4 *4 (-786)) - (-4 *7 (-880 *3 *5 (-796 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-786)))) - ((*1 *1 *1) - (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1144 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-973)))) - ((*1 *1 *1) - (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-786)) (-4 *2 (-973)) - (-4 *3 (-666)))) - ((*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)))) - ((*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-518))))) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) (((*1 *2 *3) - (-12 (-5 *3 (-629 (-292 (-203)))) + (-12 (-5 *3 (-271 (-883 (-523)))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355)))) - (-5 *1 (-185))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-318 *4 *5 *6)) (-4 *4 (-1126)) - (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) - (-5 *2 (-2 (|:| |num| (-629 *5)) (|:| |den| *5)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-589 (-523))) (-5 *1 (-225 *3 *4)) - (-14 *3 (-589 (-1087))) (-4 *4 (-973)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-589 (-523))) (-14 *3 (-589 (-1087))) - (-5 *1 (-429 *3 *4 *5)) (-4 *4 (-973)) - (-4 *5 (-216 (-2676 *3) (-710))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-589 (-523))) (-5 *1 (-455 *3 *4)) - (-14 *3 (-589 (-1087))) (-4 *4 (-973))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3)))) - ((*1 *1 *1) (-4 *1 (-1111)))) -(((*1 *2 *3) - (-12 (-5 *3 (-629 *2)) (-4 *4 (-1144 *2)) - (-4 *2 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) - (-5 *1 (-470 *2 *4 *5)) (-4 *5 (-385 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) - (-4 *5 (-216 *3 *2)) (-4 *2 (-973))))) -(((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) - (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-1 (-108) *8))) (-4 *8 (-987 *5 *6 *7)) - (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) - (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) -(((*1 *2 *1) - (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) - (-4 *1 (-880 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-930)) - (-4 *2 (-973))))) + (-2 (|:| |varOrder| (-589 (-1087))) + (|:| |inhom| (-3 (-589 (-1169 (-710))) "failed")) + (|:| |hom| (-589 (-1169 (-710)))))) + (-5 *1 (-214))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-1089 (-383 (-523)))) - (-5 *1 (-170))))) -(((*1 *1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1 *1) (-5 *1 (-710))) - ((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-383 (-883 *6)) (-1077 (-1087) (-883 *6)))) - (-5 *5 (-710)) (-4 *6 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *6))))) - (-5 *1 (-269 *6)) (-5 *4 (-629 (-383 (-883 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-383 (-883 *5)) (-1077 (-1087) (-883 *5)))) - (|:| |eigmult| (-710)) (|:| |eigvec| (-589 *4)))) - (-4 *5 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *5))))) - (-5 *1 (-269 *5)) (-5 *4 (-629 (-383 (-883 *5))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3)))) - ((*1 *1 *1) (-4 *1 (-1111)))) + (-12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-940))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *5 (-1145 *4)) (-5 *2 (-1083 (-383 *5))) (-5 *1 (-565 *4 *5)) + (-5 *3 (-383 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-1083 (-383 *6))) (-5 *1 (-565 *5 *6)) (-5 *3 (-383 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1170)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1170)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1171)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1171))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-645 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) -(((*1 *1 *1) (-5 *1 (-985)))) + (-12 (-4 *5 (-1016)) (-4 *2 (-831 *5)) (-5 *1 (-631 *5 *2 *3 *4)) + (-4 *3 (-349 *2)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4248))))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-589 (-589 (-589 *4)))) (-5 *3 (-589 *4)) (-4 *4 (-786)) + (-5 *1 (-1095 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-292 *4)) (-4 *4 (-13 (-767) (-786) (-973))) - (-5 *2 (-1070)) (-5 *1 (-765 *4)))) + (|partial| -12 (-5 *3 (-883 (-155 *4))) (-4 *4 (-158)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-292 *5)) (-5 *4 (-108)) - (-4 *5 (-13 (-767) (-786) (-973))) (-5 *2 (-1070)) - (-5 *1 (-765 *5)))) + (|partial| -12 (-5 *3 (-883 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-158)) + (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 (-355))) + (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-761)) (-5 *4 (-292 *5)) - (-4 *5 (-13 (-767) (-786) (-973))) (-5 *2 (-1173)) - (-5 *1 (-765 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-761)) (-5 *4 (-292 *6)) (-5 *5 (-108)) - (-4 *6 (-13 (-767) (-786) (-973))) (-5 *2 (-1173)) - (-5 *1 (-765 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-767)) (-5 *2 (-1070)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-767)) (-5 *3 (-108)) (-5 *2 (-1070)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-767)) (-5 *3 (-761)) (-5 *2 (-1173)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-767)) (-5 *3 (-761)) (-5 *4 (-108)) (-5 *2 (-1173))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-144)) (-5 *2 (-1173)) (-5 *1 (-1170))))) + (|partial| -12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) + (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-383 (-883 (-155 *4)))) (-4 *4 (-515)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-383 (-883 (-155 *5)))) (-5 *4 (-852)) + (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) + (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) + (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-292 (-155 *4))) (-4 *4 (-515)) (-4 *4 (-786)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-292 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) + (-5 *1 (-724 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1123))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1123)) (-4 *2 (-786)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1123)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) + (-14 *3 (-852)) (-4 *4 (-973)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-758 *3)) (-4 *3 (-786)) (-5 *1 (-614 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-523)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1122)) - (-4 *3 (-349 *4)) (-4 *5 (-349 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) - ((*1 *2 *1) - (-12 (-4 *2 (-973)) (-5 *1 (-49 *2 *3)) (-14 *3 (-589 (-1087))))) - ((*1 *2 *1) - (-12 (-5 *2 (-292 *3)) (-5 *1 (-201 *3 *4)) - (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) - ((*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-973)))) - ((*1 *2 *1) - (-12 (-14 *3 (-589 (-1087))) (-4 *5 (-216 (-2676 *3) (-710))) - (-14 *6 - (-1 (-108) (-2 (|:| -3878 *4) (|:| -2735 *5)) - (-2 (|:| -3878 *4) (|:| -2735 *5)))) - (-4 *2 (-158)) (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *4 (-786)) - (-4 *7 (-880 *2 *5 (-796 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1016)))) - ((*1 *2 *1) - (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1144 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-973)))) - ((*1 *2 *1) - (-12 (-4 *2 (-973)) (-5 *1 (-675 *2 *3)) (-4 *3 (-786)) - (-4 *3 (-666)))) - ((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) - ((*1 *2 *1) - (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *3 (-731)) (-4 *4 (-786)) - (-4 *2 (-973)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) - (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) - (-5 *2 (-2 (|:| -2462 (-383 *6)) (|:| |coeff| (-383 *6)))) - (-5 *1 (-533 *5 *6)) (-5 *3 (-383 *6))))) + (-12 (-5 *2 (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 (-413))))) + (-5 *1 (-1091))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) (((*1 *2 *3) - (-12 (-5 *3 (-852)) - (-5 *2 - (-3 (-1083 *4) - (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034))))))) - (-5 *1 (-322 *4)) (-4 *4 (-325))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) - (-4 *4 (-731))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 *2))) - (-5 *2 (-823 *3)) (-5 *1 (-995 *3 *4 *5)) - (-4 *5 (-13 (-406 *4) (-817 *3) (-564 *2)))))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3)))) - ((*1 *1 *1) (-4 *1 (-1111)))) -(((*1 *2 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-1070))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-562 *3)) (-5 *5 (-1 (-1083 *3) (-1083 *3))) - (-4 *3 (-13 (-27) (-406 *6))) (-4 *6 (-13 (-786) (-515))) - (-5 *2 (-540 *3)) (-5 *1 (-510 *6 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-284)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-422 *4 *5 *6 *2))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN)))) (-5 *2 (-962)) - (-5 *1 (-686))))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *1) (-5 *1 (-1001)))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-443)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1170)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1171))))) (((*1 *2 *1) - (-12 (-5 *2 (-589 (-271 *3))) (-5 *1 (-271 *3)) (-4 *3 (-515)) - (-4 *3 (-1122))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1016)))) - ((*1 *2 *1) - (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) - (-4 *6 (-216 (-2676 *3) (-710))) - (-14 *7 - (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *6)) - (-2 (|:| -3878 *5) (|:| -2735 *6)))) - (-5 *2 (-653 *5 *6 *7)) (-5 *1 (-436 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-786)) (-4 *8 (-880 *4 *6 (-796 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-666)) (-4 *2 (-786)) (-5 *1 (-675 *3 *2)) - (-4 *3 (-973)))) - ((*1 *1 *1) - (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-731)) - (-4 *4 (-786))))) -(((*1 *2 *1) (-12 (-5 *2 (-167)) (-5 *1 (-257))))) + (-12 (-5 *2 (-1169 (-710))) (-5 *1 (-617 *3)) (-4 *3 (-1016))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-515) (-136))) (-5 *2 (-589 *3)) - (-5 *1 (-1138 *4 *3)) (-4 *3 (-1144 *4))))) + (-12 (-4 *4 (-973)) (-4 *5 (-1145 *4)) (-5 *2 (-1 *6 (-589 *6))) + (-5 *1 (-1163 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-1160 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) + (-4 *3 (-897))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) + (-5 *2 + (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-271 (-383 (-883 *5)))) (-5 *4 (-1087)) - (-4 *5 (-13 (-284) (-786) (-136))) - (-5 *2 (-1077 (-589 (-292 *5)) (-589 (-271 (-292 *5))))) - (-5 *1 (-1043 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) - (-4 *5 (-13 (-284) (-786) (-136))) - (-5 *2 (-1077 (-589 (-292 *5)) (-589 (-271 (-292 *5))))) - (-5 *1 (-1043 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-4 *1 (-834 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1 *1) (-5 *1 (-710))) - ((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-710)) (-4 *5 (-515)) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-852)) (-4 *5 (-786)) + (-5 *2 (-57 (-589 (-614 *5)))) (-5 *1 (-614 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1123)) (-5 *2 (-523))))) +(((*1 *2 *3) (-12 (-5 *3 (-383 (-523))) (-5 *2 (-203)) (-5 *1 (-282))))) +(((*1 *2 *3) + (-12 (-4 *4 (-732)) + (-4 *5 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $))))) (-4 *6 (-515)) + (-5 *2 (-2 (|:| -4016 (-883 *6)) (|:| -1830 (-883 *6)))) + (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-880 (-383 (-883 *6)) *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427))))) +(((*1 *1 *1) (-4 *1 (-508)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5))))) + (-2 (|:| |polnum| (-721 *3)) (|:| |polden| *3) (|:| -2426 (-710)))) + (-5 *1 (-721 *3)) (-4 *3 (-973)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2426 (-710)))) + (-4 *1 (-987 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) - ((*1 *1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3)))) - ((*1 *1 *1) (-4 *1 (-1111)))) + (-12 (-5 *2 (-1169 *4)) (-4 *4 (-393 *3)) (-4 *3 (-284)) + (-4 *3 (-515)) (-5 *1 (-42 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-852)) (-4 *4 (-339)) (-5 *2 (-1169 *1)) + (-4 *1 (-305 *4)))) + ((*1 *2) (-12 (-4 *3 (-339)) (-5 *2 (-1169 *1)) (-4 *1 (-305 *3)))) + ((*1 *2) + (-12 (-4 *3 (-158)) (-4 *4 (-1145 *3)) (-5 *2 (-1169 *1)) + (-4 *1 (-385 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1145 *4)) + (-5 *2 (-1169 *6)) (-5 *1 (-389 *3 *4 *5 *6)) + (-4 *6 (-13 (-385 *4 *5) (-964 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1145 *4)) + (-5 *2 (-1169 *6)) (-5 *1 (-390 *3 *4 *5 *6 *7)) + (-4 *6 (-385 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-158)) (-5 *2 (-1169 *1)) (-4 *1 (-393 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1169 (-1169 *4))) (-5 *1 (-493 *4)) + (-4 *4 (-325))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3643 *4)))) + (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-726)) (-5 *2 (-962)) - (-5 *3 - (-2 (|:| |fn| (-292 (-203))) - (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-726)) (-5 *2 (-962)) - (-5 *3 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-523)) (-4 *1 (-1010 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) - ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786))))) -(((*1 *1 *2) - (-12 (-5 *2 (-389 *3 *4 *5 *6)) (-4 *6 (-964 *4)) (-4 *3 (-284)) - (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-4 *6 (-385 *4 *5)) - (-14 *7 (-1168 *6)) (-5 *1 (-390 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1168 *6)) (-4 *6 (-385 *4 *5)) (-4 *4 (-921 *3)) - (-4 *5 (-1144 *4)) (-4 *3 (-284)) (-5 *1 (-390 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) + (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) + (-4 *3 (-1016))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1068 (-383 *3))) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) +(((*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) + ((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1169 *4)) (-5 *1 (-493 *4)) + (-4 *4 (-325))))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-758 *3)) (|:| |rm| (-758 *3)))) - (-5 *1 (-758 *3)) (-4 *3 (-786)))) - ((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) - (-4 *2 (-627 *3 *4 *5))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *2 (-108))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-537))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-589 (-271 *4))) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) - (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-589 (-1168 *4))) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) - (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) - (-5 *2 (-589 (-1168 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) - (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) - ((*1 *2) - (-12 (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)) - (-5 *1 (-384 *3 *4 *5)) (-4 *3 (-385 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) - (-5 *2 (-629 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) - (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-786)) (-5 *2 (-108))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-1026))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-394 *4) *4)) (-4 *4 (-515)) (-5 *2 (-394 *4)) - (-5 *1 (-395 *4)))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) - (-5 *4 (-383 (-523))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) - (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) - (-5 *4 (-383 (-523))) (-5 *1 (-948 *3)) (-4 *3 (-1144 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) - (-5 *1 (-948 *3)) (-4 *3 (-1144 (-383 (-523)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) - (-4 *3 (-1144 *2))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) - (-4 *2 (-515)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-515))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) - (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-515)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-710))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) - ((*1 *1 *1 *1) (-5 *1 (-794))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-515)) - (-5 *1 (-899 *3 *4)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-976 *3 *4 *2 *5 *6)) (-4 *2 (-973)) - (-4 *5 (-216 *4 *2)) (-4 *6 (-216 *3 *2)) (-4 *2 (-515)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1168 (-523))) (-5 *3 (-523)) (-5 *1 (-1026)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1168 (-523))) (-5 *3 (-589 (-523))) (-5 *4 (-523)) - (-5 *1 (-1026))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-394 *3)) (-4 *3 (-515))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) - (-14 *4 *2)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 *1)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-973)) (-5 *1 (-629 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 *4)) (-4 *4 (-973)) (-4 *1 (-1037 *3 *4 *5 *6)) - (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *3 *4))))) -(((*1 *1 *1) (-4 *1 (-221))) - ((*1 *1 *1) - (-12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-3262 (-12 (-5 *1 (-271 *2)) (-4 *2 (-339)) (-4 *2 (-1122))) - (-12 (-5 *1 (-271 *2)) (-4 *2 (-448)) (-4 *2 (-1122))))) - ((*1 *1 *1) (-4 *1 (-448))) - ((*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)) (-4 *2 (-339))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-108)) (-5 *6 (-629 (-203))) + (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695))))) +(((*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123))))) (((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) - (-5 *2 (-2 (|:| -3952 (-589 *6)) (|:| -2625 (-589 *6))))))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108))))) +(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-367))))) (((*1 *1 *2) - (-12 + (-12 (-5 *2 (-383 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-13 (-339) (-136))) + (-5 *1 (-375 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-427)) (-5 *2 (-108)) + (-5 *1 (-336 *4 *5)) (-14 *5 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-719 *4 (-796 *5)))) (-4 *4 (-427)) + (-14 *5 (-589 (-1087))) (-5 *2 (-108)) (-5 *1 (-574 *4 *5))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-108)) (-5 *1 (-454))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-786))))) +(((*1 *2 *3) + (-12 (-5 *2 (-562 *4)) (-5 *1 (-561 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-786))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-5 *5 (-589 (-589 *8))) + (-4 *7 (-786)) (-4 *8 (-284)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-5 *2 - (-589 - (-2 - (|:| -1853 - (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) - (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) - (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (|:| -2433 - (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) - (|:| |expense| (-355)) (|:| |accuracy| (-355)) - (|:| |intermediateResults| (-355))))))) - (-5 *1 (-742))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-523))) (-4 *3 (-973)) (-5 *1 (-548 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-523))) (-4 *1 (-1128 *3)) (-4 *3 (-973)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-523))) (-4 *1 (-1159 *3)) (-4 *3 (-973))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170))))) + (-2 (|:| |upol| (-1083 *8)) (|:| |Lval| (-589 *8)) + (|:| |Lfact| + (-589 (-2 (|:| -2424 (-1083 *8)) (|:| -1475 (-523))))) + (|:| |ctpol| *8))) + (-5 *1 (-682 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3549 *4))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-383 (-883 *4))) (-5 *3 (-1087)) - (-4 *4 (-13 (-515) (-964 (-523)) (-136))) (-5 *1 (-529 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-5 *2 (-710)) (-5 *1 (-362 *4)) (-4 *4 (-1016)))) + (-12 (-5 *3 (-1070)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-108)) (-5 *1 (-202 *4 *5)) (-4 *5 (-13 (-1109) (-29 *4)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-108)) (-5 *1 (-110)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-1087)) (-5 *2 (-108)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-110)) (-5 *2 (-108)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) - (-4 *4 (-1016)) (-14 *5 *2))) + (-12 (-5 *3 (-1087)) (-5 *2 (-108)) (-5 *1 (-562 *4)) (-4 *4 (-786)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-5 *2 (-710)) (-5 *1 (-758 *4)) (-4 *4 (-786))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-679 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786))))) -(((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) - ((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2 *2) - (-12 (-4 *3 (-964 (-523))) (-4 *3 (-13 (-786) (-515))) - (-5 *1 (-31 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-1083 *4)) (-5 *1 (-151 *3 *4)) - (-4 *3 (-152 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-973)) (-4 *1 (-279)))) - ((*1 *2) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1083 *3)))) - ((*1 *2) (-12 (-4 *1 (-664 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1144 *3)))) + (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-562 *4)) (-4 *4 (-786)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1016)) (-5 *2 (-108)) (-5 *1 (-818 *5 *3 *4)) + (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *6)) (-4 *6 (-817 *5)) (-4 *5 (-1016)) + (-5 *2 (-108)) (-5 *1 (-818 *5 *6 *4)) (-4 *4 (-564 (-823 *5)))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-108)) + (-5 *2 (-962)) (-5 *1 (-685))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1109)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *2)) (-4 *3 (-13 (-784) (-339))) - (-4 *2 (-1144 *3))))) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) - (-5 *2 (-155 (-292 *4))) (-5 *1 (-168 *4 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-155 *3)) (-5 *1 (-1112 *4 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *4)))))) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-710)) (-4 *3 (-1123)) (-4 *1 (-55 *3 *4 *5)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1) (-5 *1 (-157))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365)))) + ((*1 *1) (-5 *1 (-370))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) + ((*1 *1) + (-12 (-4 *3 (-1016)) (-5 *1 (-816 *2 *3 *4)) (-4 *2 (-1016)) + (-4 *4 (-609 *3)))) + ((*1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) + ((*1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) + ((*1 *1 *1) (-5 *1 (-1087))) ((*1 *1) (-5 *1 (-1087))) + ((*1 *1) (-5 *1 (-1104)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1611 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-596 *4)) (-4 *4 (-318 *5 *6 *7)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) - (-5 *1 (-745 *5 *6 *7 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *3)) - (-4 *3 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1116 *4 *5 *3 *2)) (-4 *4 (-515)) - (-4 *5 (-732)) (-4 *3 (-786)) (-4 *2 (-987 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-5 *1 (-1120 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1070)) (-5 *2 (-589 (-1092))) (-5 *1 (-1049))))) -(((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-508)))) - ((*1 *1 *1) (-4 *1 (-982)))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-710)) (-5 *1 (-520))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) - (-4 *4 (-732)) (-4 *5 (-786)) (-4 *3 (-515))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-339) (-784))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1979 (-394 *3)))) - (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-110))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) - (-4 *5 (-13 (-27) (-1108) (-406 *4))))) + (|partial| -12 (-5 *4 (-852)) (-4 *5 (-515)) (-5 *2 (-629 *5)) + (-5 *1 (-886 *5 *3)) (-4 *3 (-599 *5))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-5 *2 (-167)) (-5 *1 (-257))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-710)) (-5 *3 (-874 *4)) (-4 *1 (-1048 *4)) + (-4 *4 (-973)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-710)) (-5 *4 (-874 (-203))) (-5 *2 (-1174)) + (-5 *1 (-1171))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-805)) + (-5 *5 (-852)) (-5 *6 (-589 (-240))) (-5 *2 (-443)) (-5 *1 (-1173)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-383 (-523))) - (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *5))))) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-443)) + (-5 *1 (-1173)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) - (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-271 *3)) (-5 *5 (-383 (-523))) - (-4 *3 (-13 (-27) (-1108) (-406 *6))) - (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-383 (-523)))) (-5 *4 (-271 *8)) - (-5 *5 (-1135 (-383 (-523)))) (-5 *6 (-383 (-523))) - (-4 *8 (-13 (-27) (-1108) (-406 *7))) - (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-383 (-523)))) - (-5 *7 (-383 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *8))) - (-4 *8 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-383 (-523))) (-4 *4 (-973)) (-4 *1 (-1151 *4 *3)) - (-4 *3 (-1128 *4))))) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-589 (-240))) + (-5 *2 (-443)) (-5 *1 (-1173))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-2 (|:| -3772 *3) (|:| -2482 *4)))) + (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *1 (-1100 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1100 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 *4)) (-4 *4 (-973)) (-5 *2 (-1168 *4)) - (-5 *1 (-1088 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-852)) (-5 *2 (-1168 *3)) (-5 *1 (-1088 *3)) - (-4 *3 (-973))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-523)) (-5 *4 (-394 *2)) (-4 *2 (-880 *7 *5 *6)) - (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-284))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 (-2 (|:| -2888 (-110)) (|:| |w| (-203)))) (-5 *1 (-184))))) +(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1168 (-638))) (-5 *1 (-282))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) - ((*1 *1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) + (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-797 *4 *5 *6 *7)) + (-4 *4 (-973)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) + (-14 *8 (-589 *5)) (-5 *2 (-1174)) + (-5 *1 (-1179 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-880 *4 *6 *5)) + (-14 *9 (-589 *3)) (-14 *10 *3)))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-713)) (-5 *1 (-110))))) +(((*1 *1 *1) + (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *1)))) + (-4 *1 (-992 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1127))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3)))) - ((*1 *1 *1) (-4 *1 (-1111)))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-1016) (-33))) - (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1053 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) -(((*1 *2 *2) - (-12 (-4 *3 (-284)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) - (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-355)) (-5 *2 (-1173)) (-5 *1 (-1169)))) + (-12 (-4 *3 (-515)) (-5 *1 (-1148 *3 *2)) + (-4 *2 (-13 (-1145 *3) (-515) (-10 -8 (-15 -3310 ($ $ $)))))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-692))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-888 *3)) (-5 *1 (-1075 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-3 *3 (-589 *1))) + (-4 *1 (-992 *4 *5 *6 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) + (-4 *5 (-786)) (-5 *2 (-883 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) + (-4 *5 (-786)) (-5 *2 (-883 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-523)) (-5 *2 (-108)) (-5 *1 (-454))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3))))) + (-12 (-5 *3 (-710)) (-4 *1 (-1160 *4)) (-4 *4 (-973)) + (-5 *2 (-883 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-1160 *4)) (-4 *4 (-973)) + (-5 *2 (-883 *4))))) (((*1 *2 *2) (|partial| -12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) @@ -2653,1683 +2463,909 @@ ((*1 *1 *1) (|partial| -12 (-4 *1 (-1037 *2 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-216 *2 *3)) (-4 *5 (-216 *2 *3)) (-4 *3 (-339)))) - ((*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-1094 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-1095 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1109))) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) + (-4 *3 (-1145 *4)) (-5 *2 (-108))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-219)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-589 (-1070))) (-5 *3 (-523)) (-5 *4 (-1070)) + (-5 *1 (-219)))) + ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) + ((*1 *2 *1) (-12 (-4 *1 (-1147 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 (-355)) (-5 *1 (-185))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-721 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-893 *3 *2)) (-4 *2 (-124)) (-4 *3 (-515)) + (-4 *3 (-973)) (-4 *2 (-731)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-1083 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-900)) (-4 *2 (-124)) (-5 *1 (-1089 *3)) (-4 *3 (-515)) + (-4 *3 (-973)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-1142 *4 *3)) (-14 *4 (-1087)) + (-4 *3 (-973))))) +(((*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1123))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1129 *3)) + (-5 *2 (-383 (-523)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-1010 *3)) (-4 *3 (-1123))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4248)) (-4 *1 (-213 *3)) + (-4 *3 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-259 *3)) (-4 *3 (-1123))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) + (|:| |lb| (-589 (-779 (-203)))) + (|:| |cf| (-589 (-292 (-203)))) + (|:| |ub| (-589 (-779 (-203)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-589 (-292 (-203)))) + (|:| -2773 (-589 (-203))))))) + (-5 *2 (-589 (-1070))) (-5 *1 (-244))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1123)))) + ((*1 *2 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1145 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-1092)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-1092))) (-5 *1 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) - (-5 *2 - (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) - (|:| |success| (-108)))) - (-5 *1 (-728)) (-5 *5 (-523))))) -(((*1 *1 *1) (-4 *1 (-575))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930) (-1108)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1020)) (-5 *1 (-257))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-895))) (-5 *1 (-104)))) - ((*1 *2 *1) (-12 (-5 *2 (-44 (-1070) (-713))) (-5 *1 (-110))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-710)) (-4 *6 (-1016)) (-4 *7 (-831 *6)) - (-5 *2 (-629 *7)) (-5 *1 (-631 *6 *7 *3 *4)) (-4 *3 (-349 *7)) - (-4 *4 (-13 (-349 *6) (-10 -7 (-6 -4244))))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-108)) (-5 *1 (-1092)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-108)) (-5 *1 (-1092)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-203))) (-5 *2 (-108)) (-5 *1 (-1092)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-108)) (-5 *1 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *2) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-252))))) (((*1 *2 *3) - (-12 (-5 *3 (-629 (-292 (-203)))) (-5 *2 (-355)) (-5 *1 (-185))))) -(((*1 *2 *1) (-12 (-5 *2 (-167)) (-5 *1 (-226))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-852)) (-4 *6 (-13 (-515) (-786))) - (-5 *2 (-589 (-292 *6))) (-5 *1 (-199 *5 *6)) (-5 *3 (-292 *6)) - (-4 *5 (-973)))) - ((*1 *2 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515)))) - ((*1 *2 *3) - (-12 (-5 *3 (-540 *5)) (-4 *5 (-13 (-29 *4) (-1108))) - (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) - (-5 *2 (-589 *5)) (-5 *1 (-538 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-540 (-383 (-883 *4)))) - (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) - (-5 *2 (-589 (-292 *4))) (-5 *1 (-543 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1012 *3 *2)) (-4 *3 (-784)) (-4 *2 (-1061 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 *1)) (-4 *1 (-1012 *4 *2)) (-4 *4 (-784)) - (-4 *2 (-1061 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1181 (-1087) *3)) (-5 *1 (-1188 *3)) (-4 *3 (-973)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-786)) - (-4 *4 (-973))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-768))))) + (-12 + (-5 *3 + (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) + (-5 *2 (-589 (-383 (-523)))) (-5 *1 (-947 *4)) + (-4 *4 (-1145 (-523)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-710)) (-5 *1 (-110))))) +(((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-51))))) (((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) - (-5 *2 (-779 *4)) (-5 *1 (-289 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1108) (-406 *3))) (-14 *5 (-1087)) - (-14 *6 *4))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-589 (-589 *3))))) ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) - (-5 *2 (-779 *4)) (-5 *1 (-1154 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1108) (-406 *3))) (-14 *5 (-1087)) - (-14 *6 *4)))) -(((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-874 (-203))) (-5 *2 (-1173)) (-5 *1 (-443))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365))))) -(((*1 *2 *1) - (-12 (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-589 *1)) - (-4 *1 (-358 *3 *4)))) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-589 (-589 *5))))) ((*1 *2 *1) - (-12 (-5 *2 (-589 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) - (-4 *4 (-666)))) + (-12 (-5 *2 (-589 (-589 *3))) (-5 *1 (-1096 *3)) (-4 *3 (-1016))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-836 *3))) (-4 *3 (-1016)) (-5 *1 (-835 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) + ((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-528 *3)) (-4 *3 (-964 (-523))))) ((*1 *2 *1) - (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) - (-4 *1 (-880 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-455 *4 *5))) (-14 *4 (-589 (-1087))) - (-4 *5 (-427)) (-5 *2 (-589 (-225 *4 *5))) (-5 *1 (-577 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-768))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1016)) (-5 *1 (-1100 *3 *2)) (-4 *3 (-1016))))) + (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1145 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1145 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-108) *7 (-589 *7))) (-4 *1 (-1117 *4 *5 *6 *7)) + (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) (((*1 *2 *1) - (-12 (-4 *3 (-1016)) - (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) - (-5 *2 (-589 (-1087))) (-5 *1 (-995 *3 *4 *5)) - (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-494 *3)) (-4 *3 (-13 (-666) (-25)))))) -(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) - ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) -(((*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-523)))) - ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) - (-4 *3 (-1144 *4)) (-5 *2 (-523)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) - (-5 *2 (-523)) (-5 *1 (-1031 *4 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-779 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *6))) - (-4 *6 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) - (-5 *2 (-523)) (-5 *1 (-1031 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-1070)) - (-4 *6 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) - (-5 *2 (-523)) (-5 *1 (-1031 *6 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-427)) (-5 *2 (-523)) - (-5 *1 (-1032 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-779 (-383 (-883 *6)))) - (-5 *3 (-383 (-883 *6))) (-4 *6 (-427)) (-5 *2 (-523)) - (-5 *1 (-1032 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-383 (-883 *6))) (-5 *4 (-1087)) - (-5 *5 (-1070)) (-4 *6 (-427)) (-5 *2 (-523)) (-5 *1 (-1032 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-523)) (-5 *1 (-1105 *3)) (-4 *3 (-973))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-589 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-710)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-732)) (-4 *6 (-880 *4 *3 *5)) (-4 *4 (-427)) (-4 *5 (-786)) - (-5 *1 (-424 *4 *3 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1070) (-713))) (-5 *1 (-110))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *2))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973))))) -(((*1 *2 *3) (-12 (-5 *3 (-760)) (-5 *2 (-51)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-2 (|:| |k| (-758 *3)) (|:| |c| *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-590 *3)) (-4 *3 (-1016))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) + (-4 *5 (-1145 *4)) + (-5 *2 (-2 (|:| -1825 (-383 *5)) (|:| |coeff| (-383 *5)))) + (-5 *1 (-527 *4 *5)) (-5 *3 (-383 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 - (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) + (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-938 *3)) (-4 *3 (-1123)) (-4 *3 (-1016)) + (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-564 *2) (-158))) (-5 *2 (-823 *4)) - (-5 *1 (-156 *4 *5 *3)) (-4 *4 (-1016)) (-4 *3 (-152 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-1011 (-779 (-355))))) - (-5 *2 (-589 (-1011 (-779 (-203))))) (-5 *1 (-282)))) - ((*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-355)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-370)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-385 *3 *4)) - (-4 *4 (-1144 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) - (-5 *2 (-1168 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-393 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1168 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-394 *1)) (-4 *1 (-406 *3)) (-4 *3 (-515)) - (-4 *3 (-786)))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-438 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-499)))) - ((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) - (-12 (-4 *3 (-158)) (-4 *1 (-664 *3 *2)) (-4 *2 (-1144 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) - ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-909 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-984)))) - ((*1 *1 *2) - (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) - (-4 *5 (-564 (-1087))) (-4 *4 (-732)) (-4 *5 (-786)))) - ((*1 *1 *2) - (-3262 - (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) - (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) - (-4 *5 (-564 (-1087)))) - (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) - (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) - (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) - ((*1 *1 *2) - (-12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) - (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) - (-4 *4 (-732)) (-4 *5 (-786)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) - (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1070)) - (-5 *1 (-990 *4 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1001)))) - ((*1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *2)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *2 (-1016)) (-4 *6 (-1016)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *2 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1019 *3 *2 *4 *5 *6)) (-4 *3 (-1016)) (-4 *2 (-1016)) - (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) - (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 *1)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) - (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) - (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-1025 *4 *5 *6 *7)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1070)) - (-5 *1 (-1057 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1092)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-1103)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-1103)))) - ((*1 *2 *3) - (-12 (-5 *3 (-719 *4 (-796 *5))) - (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) - (-5 *2 (-719 *4 (-796 *6))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *6 (-589 (-1087))))) - ((*1 *2 *3) - (-12 (-5 *3 (-883 *4)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 (-883 (-951 (-383 *4)))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) + (-12 (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) + (-4 *4 (-1145 *3)) + (-5 *2 + (-2 (|:| -3760 (-629 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-629 *3)))) + (-5 *1 (-326 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-719 *4 (-796 *6))) - (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *6 (-589 (-1087))) - (-5 *2 (-883 (-951 (-383 *4)))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *5 (-589 (-1087))))) + (-12 (-5 *3 (-523)) (-4 *4 (-1145 *3)) + (-5 *2 + (-2 (|:| -3760 (-629 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-629 *3)))) + (-5 *1 (-707 *4 *5)) (-4 *5 (-385 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1083 *4)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 (-1083 (-951 (-383 *4)))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) + (-12 (-4 *4 (-325)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 *3)) + (-5 *2 + (-2 (|:| -3760 (-629 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-629 *3)))) + (-5 *1 (-914 *4 *3 *5 *6)) (-4 *6 (-664 *3 *5)))) ((*1 *2 *3) - (-12 - (-5 *3 (-1058 *4 (-495 (-796 *6)) (-796 *6) (-719 *4 (-796 *6)))) - (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *6 (-589 (-1087))) - (-5 *2 (-589 (-719 *4 (-796 *6)))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *5 (-589 (-1087)))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-786)) (-5 *3 (-589 *6)) (-5 *5 (-589 *3)) + (-12 (-4 *4 (-325)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-589 *5)) (|:| |f3| *5) - (|:| |f4| (-589 *5)))) - (-5 *1 (-1094 *6)) (-5 *4 (-589 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-427))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-763)) (-5 *3 (-589 (-1087))) (-5 *1 (-764))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-696))))) -(((*1 *1 *2 *3 *4) + (-2 (|:| -3760 (-629 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-629 *3)))) + (-5 *1 (-1178 *4 *3 *5 *6)) (-4 *6 (-385 *3 *5))))) +(((*1 *2 *3) (-12 (-5 *3 - (-589 - (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 *2)) - (|:| |logand| (-1083 *2))))) - (-5 *4 (-589 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-339)) (-5 *1 (-540 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-710))))) -(((*1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1122))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-732)) (-4 *2 (-880 *4 *5 *6)) (-5 *1 (-424 *4 *5 *6 *2)) + (-4 *4 (-427)) (-4 *6 (-786))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-1168 (-589 (-523)))) (-5 *1 (-454)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-132))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) - (-5 *2 (-108))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-589 (-1083 *5))) (-5 *3 (-1083 *5)) - (-4 *5 (-152 *4)) (-4 *4 (-508)) (-5 *1 (-138 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-589 *3)) (-4 *3 (-1144 *5)) - (-4 *5 (-1144 *4)) (-4 *4 (-325)) (-5 *1 (-334 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-589 (-1083 (-523)))) (-5 *3 (-1083 (-523))) - (-5 *1 (-531)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-589 (-1083 *1))) (-5 *3 (-1083 *1)) - (-4 *1 (-840))))) -(((*1 *1 *1 *1) (-4 *1 (-604))) ((*1 *1 *1 *1) (-5 *1 (-1034)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-684 *3)) (-4 *3 (-158))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306))))) -(((*1 *1 *1) (-5 *1 (-985)))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-203) (-203) (-203))) - (-5 *4 (-3 (-1 (-203) (-203) (-203) (-203)) "undefined")) - (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) - (-5 *1 (-636))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-710)) (-5 *4 (-523)) (-5 *1 (-420 *2)) (-4 *2 (-973))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-339)) (-4 *3 (-973)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) - (-4 *1 (-788 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) - ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-695))))) + (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) - (-4 *6 (-732)) (-5 *2 (-383 (-883 *4))) (-5 *1 (-855 *4 *5 *6 *3)) - (-4 *3 (-880 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-629 *7)) (-4 *7 (-880 *4 *6 *5)) - (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) - (-4 *6 (-732)) (-5 *2 (-629 (-383 (-883 *4)))) - (-5 *1 (-855 *4 *5 *6 *7)))) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-542 *4)) + (-4 *4 (-325))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1104))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1020)) (-5 *1 (-257))))) +(((*1 *1) (-4 *1 (-325))) ((*1 *2 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) - (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) - (-4 *6 (-732)) (-5 *2 (-589 (-383 (-883 *4)))) - (-5 *1 (-855 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-271 (-772 *3))) - (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-772 *3)) (-5 *1 (-582 *5 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-271 (-772 (-883 *5)))) (-4 *5 (-427)) - (-5 *2 (-772 (-383 (-883 *5)))) (-5 *1 (-583 *5)) - (-5 *3 (-383 (-883 *5))))) + (-12 (-5 *3 (-589 *5)) (-4 *5 (-406 *4)) + (-4 *4 (-13 (-515) (-786) (-136))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-589 (-1083 *5))) + (|:| |prim| (-1083 *5)))) + (-5 *1 (-408 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-515) (-786) (-136))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1083 *3)) + (|:| |pol2| (-1083 *3)) (|:| |prim| (-1083 *3)))) + (-5 *1 (-408 *4 *3)) (-4 *3 (-27)) (-4 *3 (-406 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-883 *5)) (-5 *4 (-1087)) (-4 *5 (-13 (-339) (-136))) + (-5 *2 + (-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) + (|:| |prim| (-1083 *5)))) + (-5 *1 (-890 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-271 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) - (-4 *5 (-427)) (-5 *2 (-772 *3)) (-5 *1 (-583 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-604))) ((*1 *1 *1 *1) (-5 *1 (-1034)))) -(((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) - (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) - ((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) - (-14 *4 (-589 (-1087))) (-4 *5 (-363))))) -(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-133))) (-5 *1 (-130)))) - ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-130))))) -(((*1 *2 *3) - (-12 (-4 *4 (-325)) (-4 *5 (-305 *4)) (-4 *6 (-1144 *5)) - (-5 *2 (-589 *3)) (-5 *1 (-716 *4 *5 *6 *3 *7)) (-4 *3 (-1144 *6)) - (-14 *7 (-852))))) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) + (-4 *5 (-13 (-339) (-136))) + (-5 *2 + (-2 (|:| -3474 (-589 (-523))) (|:| |poly| (-589 (-1083 *5))) + (|:| |prim| (-1083 *5)))) + (-5 *1 (-890 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-5 *5 (-1087)) + (-4 *6 (-13 (-339) (-136))) + (-5 *2 + (-2 (|:| -3474 (-589 (-523))) (|:| |poly| (-589 (-1083 *6))) + (|:| |prim| (-1083 *6)))) + (-5 *1 (-890 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-108)) + (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-344)) (-4 *2 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-758 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-1190 *3 *2)) (-4 *3 (-973))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (-5 *2 (-589 (-203))) (-5 *1 (-184))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) -(((*1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1122)))) - ((*1 *2 *2) - (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1144 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3278 (-721 *3)) (|:| |coef2| (-721 *3)))) - (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2) (-12 (-5 *2 (-779 (-523))) (-5 *1 (-497)))) + ((*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1016))))) +(((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-629 (-383 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-157))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-339)) (-5 *1 (-952 *3 *2)) (-4 *2 (-599 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-339)) (-5 *2 (-2 (|:| -2849 *3) (|:| -2888 (-589 *5)))) + (-5 *1 (-952 *5 *3)) (-5 *4 (-589 *5)) (-4 *3 (-599 *5))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-710)) (-4 *6 (-1016)) (-4 *7 (-831 *6)) + (-5 *2 (-629 *7)) (-5 *1 (-631 *6 *7 *3 *4)) (-4 *3 (-349 *7)) + (-4 *4 (-13 (-349 *6) (-10 -7 (-6 -4248))))))) +(((*1 *1 *1 *1) (-4 *1 (-701)))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) + (-5 *2 (-2 (|:| -3474 *1) (|:| |gap| (-710)) (|:| -3969 *1))) + (-4 *1 (-987 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *2 (-2 (|:| -3278 *1) (|:| |coef2| *1))) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-2 (|:| -3474 *1) (|:| |gap| (-710)) (|:| -3969 *1))) (-4 *1 (-987 *3 *4 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) - (-5 *1 (-475 *4 *5 *6 *2)) (-4 *2 (-880 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-306)))) +(((*1 *1 *1) (-12 (-5 *1 (-558 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1) (-5 *1 (-578)))) +(((*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-203))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-622 *2)) (-4 *2 (-1016)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-589 *5) (-589 *5))) (-5 *4 (-523)) + (-5 *2 (-589 *5)) (-5 *1 (-622 *5)) (-4 *5 (-1016))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-589 (-455 *5 *6))) (-5 *4 (-796 *5)) + (-14 *5 (-589 (-1087))) (-5 *2 (-455 *5 *6)) (-5 *1 (-577 *5 *6)) + (-4 *6 (-427)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-455 *5 *6))) (-5 *4 (-796 *5)) + (-14 *5 (-589 (-1087))) (-5 *2 (-455 *5 *6)) (-5 *1 (-577 *5 *6)) + (-4 *6 (-427))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-794)))) (-5 *1 (-794)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1054 *3 *4)) (-5 *1 (-922 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-339)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 (-589 *5))) (-4 *5 (-973)) + (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *6 (-216 *4 *5)) + (-4 *7 (-216 *3 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-786)) (-4 *5 (-732)) + (-4 *6 (-515)) (-4 *7 (-880 *6 *5 *3)) + (-5 *1 (-437 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-964 (-383 (-523))) (-339) + (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) + (-15 -3329 (*7 $)))))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1016)) (-4 *3 (-831 *5)) (-5 *2 (-1169 *3)) + (-5 *1 (-631 *5 *3 *6 *4)) (-4 *6 (-349 *3)) + (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4248))))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-562 *1))) (-4 *1 (-279))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-355)) (-5 *1 (-985))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-699))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-678))))) +(((*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *2)) (-4 *2 (-158)))) + ((*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-392 *3 *2)) (-4 *3 (-393 *2)))) + ((*1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-158))))) +(((*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-254 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) + (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -3316 ((-1039 *3 (-562 $)) $)) + (-15 -3329 ((-1039 *3 (-562 $)) $)) + (-15 -1691 ($ (-1039 *3 (-562 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -3316 ((-1039 *3 (-562 $)) $)) + (-15 -3329 ((-1039 *3 (-562 $)) $)) + (-15 -1691 ($ (-1039 *3 (-562 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4)))))) -(((*1 *2) - (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-840)) - (-5 *1 (-432 *3 *4 *2 *5)) (-4 *5 (-880 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-840)) - (-5 *1 (-837 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-840)) (-5 *1 (-838 *2 *3)) (-4 *3 (-1144 *2))))) + (-12 (-5 *3 (-589 *2)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -3316 ((-1039 *4 (-562 $)) $)) + (-15 -3329 ((-1039 *4 (-562 $)) $)) + (-15 -1691 ($ (-1039 *4 (-562 $))))))) + (-4 *4 (-515)) (-5 *1 (-40 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-589 (-562 *2))) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -3316 ((-1039 *4 (-562 $)) $)) + (-15 -3329 ((-1039 *4 (-562 $)) $)) + (-15 -1691 ($ (-1039 *4 (-562 $))))))) + (-4 *4 (-515)) (-5 *1 (-40 *4 *2))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-629 *2)) (-5 *4 (-710)) + (-4 *2 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) + (-4 *5 (-1145 *2)) (-5 *1 (-470 *2 *5 *6)) (-4 *6 (-385 *2 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-292 (-203)))) (-5 *2 (-355)) (-5 *1 (-185))))) (((*1 *2 *1) - (-12 + (-12 (-4 *4 (-1016)) (-5 *2 (-820 *3 *5)) (-5 *1 (-816 *3 *4 *5)) + (-4 *3 (-1016)) (-4 *5 (-609 *4))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1123)) (-5 *1 (-166 *3 *2)) + (-4 *2 (-616 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1123))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-420 *3)) (-4 *3 (-973))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1160 *4)) + (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-1 (-1068 *4) (-1068 *4))) + (-5 *1 (-1162 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 (-589 (-589 (-523)))) + (-5 *1 (-855 *4 *5 *6 *7)) (-5 *3 (-523)) (-4 *7 (-880 *4 *6 *5))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) + (-5 *1 (-1072 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-523)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-973)) + (-14 *4 (-1087)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *2 *1) (-12 (-5 *2 (-167)) (-5 *1 (-226))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-589 (-710))) (-5 *1 (-899 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-225 *5 *6))) (-4 *6 (-427)) + (-5 *2 (-225 *5 *6)) (-14 *5 (-589 (-1087))) (-5 *1 (-577 *5 *6))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-494 *3)) (-4 *3 (-13 (-666) (-25)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-339)) (-4 *5 (-515)) (-5 *2 - (-589 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-523))))) - (-5 *1 (-394 *3)) (-4 *3 (-515)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-710)) (-4 *3 (-325)) (-4 *5 (-1144 *3)) - (-5 *2 (-589 (-1083 *3))) (-5 *1 (-469 *3 *5 *6)) - (-4 *6 (-1144 *5))))) + (-2 (|:| |minor| (-589 (-852))) (|:| -2849 *3) + (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 *3)))) + (-5 *1 (-88 *5 *3)) (-5 *4 (-852)) (-4 *3 (-599 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-108)) - (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-108)) (-5 *1 (-1112 *4 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *4)))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) + (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-13 (-284) (-136))) + (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) + (-5 *2 (-589 (-383 (-883 *4)))) (-5 *1 (-855 *4 *5 *6 *7)) + (-4 *7 (-880 *4 *6 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-768))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-589 (-108))) (-5 *7 (-629 (-203))) + (-5 *8 (-629 (-523))) (-5 *3 (-523)) (-5 *4 (-203)) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-694))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) - (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-906 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-158)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-629 (-383 (-883 *4)))) (-4 *4 (-427)) - (-5 *2 (-589 (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4))))) - (-5 *1 (-269 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-629 *5))) (-4 *5 (-284)) (-4 *5 (-973)) - (-5 *2 (-1168 (-1168 *5))) (-5 *1 (-956 *5)) (-5 *4 (-1168 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-523)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1122)) - (-4 *5 (-349 *4)) (-4 *3 (-349 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-710)))) + ((*1 *1 *1) (-4 *1 (-378)))) +(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) + ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-108)) (-5 *3 (-883 *6)) (-5 *4 (-1087)) + (-5 *5 (-779 *7)) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-4 *7 (-13 (-1109) (-29 *6))) (-5 *1 (-202 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1083 *6)) (-5 *4 (-779 *6)) + (-4 *6 (-13 (-1109) (-29 *5))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-202 *5 *6))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-691))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-541 *2)) (-4 *2 (-508))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-710)) (|:| -1385 *4))) (-5 *5 (-710)) + (-4 *4 (-880 *6 *7 *8)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-424 *6 *7 *8 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-131 *2 *4 *3)) - (-4 *3 (-349 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-474 *2 *4 *5 *3)) - (-4 *5 (-349 *2)) (-4 *3 (-349 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-629 *4)) (-4 *4 (-921 *2)) (-4 *2 (-515)) - (-5 *1 (-632 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-1137 *2 *4 *3)) - (-4 *3 (-1144 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158))))) -(((*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508)))) - ((*1 *2 *3) - (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) - (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-880 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) - (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 *7))) - (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-624 *4 *5 *6))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) + (-5 *2 (-779 *4)) (-5 *1 (-289 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1109) (-406 *3))) (-14 *5 (-1087)) + (-14 *6 *4))) ((*1 *2 *1) - (-12 (-4 *3 (-427)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *2 (-394 *1)) (-4 *1 (-880 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-427)) (-5 *2 (-394 *3)) - (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-427)) - (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 (-383 *7)))) - (-5 *1 (-1082 *4 *5 *6 *7)) (-5 *3 (-1083 (-383 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-394 *1)) (-4 *1 (-1126)))) - ((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-1147 *4 *3)) - (-4 *3 (-13 (-1144 *4) (-515) (-10 -8 (-15 -3278 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) - (-14 *5 (-589 (-1087))) + (|partial| -12 + (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) + (-5 *2 (-779 *4)) (-5 *1 (-1155 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1109) (-406 *3))) (-14 *5 (-1087)) + (-14 *6 *4)))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) + (-5 *2 (-962)) (-5 *1 (-696))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1054 *4 *2)) (-14 *4 (-852)) + (-4 *2 (-13 (-973) (-10 -7 (-6 (-4250 "*"))))) (-5 *1 (-833 *4 *2))))) +(((*1 *1 *1 *1) (-5 *1 (-148))) + ((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-148))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-589 *10)) (-5 *5 (-108)) (-4 *10 (-992 *6 *7 *8 *9)) + (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 - (-589 (-1058 *4 (-495 (-796 *6)) (-796 *6) (-719 *4 (-796 *6))))) - (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-973)) - (-4 *4 (-731)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-49 *3 *4)) - (-14 *4 (-589 (-1087))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-523)) - (-14 *6 (-710)) (-4 *7 (-158)) (-4 *8 (-158)) - (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-155 *5)) (-4 *5 (-158)) - (-4 *6 (-158)) (-5 *2 (-155 *6)) (-5 *1 (-154 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-292 *3) (-292 *3))) (-4 *3 (-13 (-973) (-786))) - (-5 *1 (-201 *3 *4)) (-14 *4 (-589 (-1087))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-218 *5 *6)) (-14 *5 (-710)) - (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-218 *5 *7)) - (-5 *1 (-217 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-271 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-271 *6)) (-5 *1 (-270 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-271 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1070)) (-5 *5 (-562 *6)) - (-4 *6 (-279)) (-4 *2 (-1122)) (-5 *1 (-274 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-562 *5)) (-4 *5 (-279)) - (-4 *2 (-279)) (-5 *1 (-275 *5 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-562 *1)) (-4 *1 (-279)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-629 *5)) (-4 *5 (-973)) - (-4 *6 (-973)) (-5 *2 (-629 *6)) (-5 *1 (-281 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-292 *5)) (-4 *5 (-786)) - (-4 *6 (-786)) (-5 *2 (-292 *6)) (-5 *1 (-290 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-312 *5 *6 *7 *8)) (-4 *5 (-339)) - (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) - (-4 *9 (-339)) (-4 *10 (-1144 *9)) (-4 *11 (-1144 (-383 *10))) - (-5 *2 (-312 *9 *10 *11 *12)) - (-5 *1 (-309 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-318 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-314 *3)) (-4 *3 (-1016)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1126)) (-4 *8 (-1126)) - (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *9 (-1144 *8)) - (-4 *2 (-318 *8 *9 *10)) (-5 *1 (-316 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-318 *5 *6 *7)) (-4 *10 (-1144 (-383 *9))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-4 *2 (-349 *6)) (-5 *1 (-347 *5 *4 *6 *2)) (-4 *4 (-349 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) - (-4 *4 (-1016)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-394 *5)) (-4 *5 (-515)) - (-4 *6 (-515)) (-5 *2 (-394 *6)) (-5 *1 (-381 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-383 *5)) (-4 *5 (-515)) - (-4 *6 (-515)) (-5 *2 (-383 *6)) (-5 *1 (-382 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-389 *5 *6 *7 *8)) (-4 *5 (-284)) - (-4 *6 (-921 *5)) (-4 *7 (-1144 *6)) - (-4 *8 (-13 (-385 *6 *7) (-964 *6))) (-4 *9 (-284)) - (-4 *10 (-921 *9)) (-4 *11 (-1144 *10)) - (-5 *2 (-389 *9 *10 *11 *12)) - (-5 *1 (-388 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-385 *10 *11) (-964 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) - (-4 *2 (-393 *6)) (-5 *1 (-391 *4 *5 *2 *6)) (-4 *4 (-393 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-515)) (-5 *1 (-394 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-973) (-786))) - (-4 *6 (-13 (-973) (-786))) (-4 *2 (-406 *6)) - (-5 *1 (-397 *5 *4 *6 *2)) (-4 *4 (-406 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) - (-4 *2 (-401 *6)) (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-401 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-462 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-479 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-786)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-540 *5)) (-4 *5 (-339)) - (-4 *6 (-339)) (-5 *2 (-540 *6)) (-5 *1 (-539 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2462 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-339)) (-4 *6 (-339)) - (-5 *2 (-2 (|:| -2462 *6) (|:| |coeff| *6))) - (-5 *1 (-539 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-339)) (-4 *2 (-339)) (-5 *1 (-539 *5 *2)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-589 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-339)) (-4 *6 (-339)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-589 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-539 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-553 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-553 *6)) (-5 *1 (-550 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-553 *6)) (-5 *5 (-553 *7)) - (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-553 *8)) - (-5 *1 (-551 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-553 *7)) - (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-1068 *8)) - (-5 *1 (-551 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-553 *6)) (-5 *5 (-1068 *7)) - (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-1068 *8)) - (-5 *1 (-551 *6 *7 *8)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-589 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-589 *6)) (-5 *1 (-587 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-589 *7)) - (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-589 *8)) - (-5 *1 (-588 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-973)) (-4 *8 (-973)) - (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *2 (-627 *8 *9 *10)) - (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) - (-4 *9 (-349 *8)) (-4 *10 (-349 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-973)) - (-4 *8 (-973)) (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) - (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-349 *8)) (-4 *10 (-349 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-515)) (-4 *7 (-515)) - (-4 *6 (-1144 *5)) (-4 *2 (-1144 (-383 *8))) - (-5 *1 (-649 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1144 (-383 *6))) - (-4 *8 (-1144 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-973)) (-4 *9 (-973)) (-4 *5 (-786)) - (-4 *6 (-732)) (-4 *2 (-880 *9 *7 *5)) - (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-732)) - (-4 *4 (-880 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-786)) (-4 *6 (-786)) (-4 *7 (-732)) - (-4 *9 (-973)) (-4 *2 (-880 *9 *8 *6)) - (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-732)) - (-4 *4 (-880 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-973)) - (-4 *6 (-973)) (-4 *7 (-666)) (-5 *2 (-675 *6 *7)) - (-5 *1 (-674 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-675 *3 *4)) - (-4 *4 (-666)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-721 *5)) (-4 *5 (-973)) - (-4 *6 (-973)) (-5 *2 (-721 *6)) (-5 *1 (-720 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) - (-4 *2 (-736 *6)) (-5 *1 (-737 *4 *5 *2 *6)) (-4 *4 (-736 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1016)) - (-4 *6 (-1016)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *1 (-771 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1016)) - (-4 *6 (-1016)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-779 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *1 (-778 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-808 *6)) (-5 *1 (-807 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-810 *6)) (-5 *1 (-809 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-820 *5 *6)) (-4 *5 (-1016)) - (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-820 *5 *7)) - (-5 *1 (-819 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) - (-4 *6 (-1016)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-973)) - (-4 *6 (-973)) (-5 *2 (-883 *6)) (-5 *1 (-877 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-786)) - (-4 *8 (-973)) (-4 *6 (-732)) - (-4 *2 - (-13 (-1016) - (-10 -8 (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710)))))) - (-5 *1 (-882 *6 *7 *8 *5 *2)) (-4 *5 (-880 *8 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-973)) - (-4 *6 (-973)) (-5 *2 (-874 *6)) (-5 *1 (-910 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-883 *4))) (-4 *4 (-973)) - (-4 *2 (-880 (-883 *4) *5 *6)) (-4 *5 (-732)) - (-4 *6 - (-13 (-786) - (-10 -8 (-15 -3663 ((-1087) $)) - (-15 -2700 ((-3 $ "failed") (-1087)))))) - (-5 *1 (-913 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-515)) (-4 *6 (-515)) - (-4 *2 (-921 *6)) (-5 *1 (-919 *5 *6 *4 *2)) (-4 *4 (-921 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) - (-4 *2 (-925 *6)) (-5 *1 (-926 *4 *5 *2 *6)) (-4 *4 (-925 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-976 *3 *4 *5 *6 *7)) - (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-973)) (-4 *10 (-973)) - (-14 *5 (-710)) (-14 *6 (-710)) (-4 *8 (-216 *6 *7)) - (-4 *9 (-216 *5 *7)) (-4 *2 (-976 *5 *6 *10 *11 *12)) - (-5 *1 (-978 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-976 *5 *6 *7 *8 *9)) (-4 *11 (-216 *6 *10)) - (-4 *12 (-216 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-1011 *6)) (-5 *1 (-1007 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-784)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-589 *6)) - (-5 *1 (-1007 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-1009 *6)) (-5 *1 (-1008 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1012 *4 *2)) (-4 *4 (-784)) - (-4 *2 (-1061 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-1068 *6)) (-5 *1 (-1066 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7)) - (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-1068 *8)) - (-5 *1 (-1067 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-973)) - (-4 *6 (-973)) (-5 *2 (-1083 *6)) (-5 *1 (-1081 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1099 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-1016)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5 *7 *9)) (-4 *5 (-973)) - (-4 *6 (-973)) (-14 *7 (-1087)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1132 *6 *8 *10)) (-5 *1 (-1127 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1087)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-1135 *6)) (-5 *1 (-1134 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-784)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1068 *6)) - (-5 *1 (-1134 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1141 *5 *6)) (-14 *5 (-1087)) - (-4 *6 (-973)) (-4 *8 (-973)) (-5 *2 (-1141 *7 *8)) - (-5 *1 (-1136 *5 *6 *7 *8)) (-14 *7 (-1087)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-973)) (-4 *6 (-973)) - (-4 *2 (-1144 *6)) (-5 *1 (-1142 *5 *4 *6 *2)) (-4 *4 (-1144 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5 *7 *9)) (-4 *5 (-973)) - (-4 *6 (-973)) (-14 *7 (-1087)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1153 *6 *8 *10)) (-5 *1 (-1148 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1087)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-973)) (-4 *6 (-973)) - (-4 *2 (-1159 *6)) (-5 *1 (-1157 *5 *6 *4 *2)) (-4 *4 (-1159 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-1168 *6)) (-5 *1 (-1167 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1168 *5)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1168 *6)) - (-5 *1 (-1167 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) - (-4 *4 (-973)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-1189 *3 *4)) - (-4 *4 (-782))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 *5)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) - (-14 *3 (-523)) (-14 *4 (-710))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2462 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-339)) (-4 *7 (-1144 *6)) + (-589 + (-2 (|:| -2849 (-589 *9)) (|:| -3643 *10) (|:| |ineq| (-589 *9))))) + (-5 *1 (-917 *6 *7 *8 *9 *10)) (-5 *3 (-589 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-589 *10)) (-5 *5 (-108)) (-4 *10 (-992 *6 *7 *8 *9)) + (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 - (-3 (-2 (|:| |answer| (-383 *7)) (|:| |a0| *6)) - (-2 (|:| -2462 (-383 *7)) (|:| |coeff| (-383 *7))) "failed")) - (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1016)) (-4 *5 (-1016)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-623 *4 *5))))) + (-589 + (-2 (|:| -2849 (-589 *9)) (|:| -3643 *10) (|:| |ineq| (-589 *9))))) + (-5 *1 (-1023 *6 *7 *8 *9 *10)) (-5 *3 (-589 *9))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 (-523))) - (-5 *2 (-1168 (-383 (-523)))) (-5 *1 (-1193 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-710)) (-4 *4 (-515)) (-5 *1 (-899 *4 *2)) - (-4 *2 (-1144 *4))))) + (-12 (-4 *6 (-515)) (-4 *2 (-880 *3 *5 *4)) + (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-383 (-883 *6))) (-4 *5 (-732)) + (-4 *4 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-234))))) +(((*1 *1) (-5 *1 (-1003)))) +(((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-1090))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-339) (-136))) + (-5 *2 (-589 (-2 (|:| -1475 (-710)) (|:| -3710 *4) (|:| |num| *4)))) + (-5 *1 (-375 *3 *4)) (-4 *4 (-1145 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1087)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *3 *5 *6 *7)) + (-4 *3 (-564 (-499))) (-4 *5 (-1123)) (-4 *6 (-1123)) + (-4 *7 (-1123)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *3 *5 *6)) + (-4 *3 (-564 (-499))) (-4 *5 (-1123)) (-4 *6 (-1123))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1145 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-852)) (-4 *1 (-1147 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-731)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-383 (-523))) (-4 *1 (-1150 *3)) (-4 *3 (-973))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-223 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-758 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-1190 *3 *2)) (-4 *3 (-973))))) +(((*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1123))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-589 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1117 *5 *6 *7 *8)) (-4 *5 (-515)) + (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) + (-4 *4 (-158)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) + (-4 *2 (-406 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1009 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) + (-5 *1 (-145 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-147)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-440 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-158))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 - (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) + (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523))))) -(((*1 *2 *2) - (-12 (-4 *3 (-515)) (-4 *4 (-921 *3)) (-5 *1 (-131 *3 *4 *2)) - (-4 *2 (-349 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-4 *2 (-349 *4)) - (-5 *1 (-474 *4 *5 *2 *3)) (-4 *3 (-349 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-629 *5)) (-4 *5 (-921 *4)) (-4 *4 (-515)) - (-5 *2 (-629 *4)) (-5 *1 (-632 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-515)) (-4 *4 (-921 *3)) (-5 *1 (-1137 *3 *4 *2)) - (-4 *2 (-1144 *4))))) -(((*1 *2) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-993 *5 *6 *7 *3 *4)) + (-4 *4 (-992 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3643 *4)))) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1168 (-1168 *4))) (-4 *4 (-973)) (-5 *2 (-629 *4)) - (-5 *1 (-956 *4))))) -(((*1 *1) (-5 *1 (-762)))) -(((*1 *1 *1 *1) (-5 *1 (-203))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) - ((*1 *1 *1 *1) (-4 *1 (-1051)))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) - (-4 *3 (-13 (-1016) (-33)))))) -(((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) - ((*1 *1 *1 *1) (-4 *1 (-732)))) -(((*1 *2 *1) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) + (-5 *2 (-589 (-710))) (-5 *1 (-717 *3 *4 *5 *6 *7)) + (-4 *3 (-1145 *6)) (-4 *7 (-880 *6 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1094))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-292 (-203))) (-5 *4 (-1087)) - (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-172)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-292 (-203))) (-5 *4 (-1087)) - (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-277))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-692))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *8 (-987 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-589 *8)) (|:| |towers| (-589 (-954 *5 *6 *7 *8))))) - (-5 *1 (-954 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *8 (-987 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-589 *8)) - (|:| |towers| (-589 (-1058 *5 *6 *7 *8))))) - (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) -(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) - ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171))))) -(((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-694))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1087)) (-5 *6 (-589 (-562 *3))) - (-5 *5 (-562 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *7))) - (-4 *7 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) - (-5 *1 (-516 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *8)) (-5 *4 (-710)) (-4 *8 (-880 *5 *7 *6)) - (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) - (-4 *7 (-732)) - (-5 *2 - (-589 - (-2 (|:| |det| *8) (|:| |rows| (-589 (-523))) - (|:| |cols| (-589 (-523)))))) - (-5 *1 (-855 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-710)) (-4 *5 (-973)) (-5 *2 (-523)) - (-5 *1 (-418 *5 *3 *6)) (-4 *3 (-1144 *5)) - (-4 *6 (-13 (-380) (-964 *5) (-339) (-1108) (-261))))) - ((*1 *2 *3) - (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) - (-4 *3 (-1144 *4)) - (-4 *5 (-13 (-380) (-964 *4) (-339) (-1108) (-261)))))) -(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-92))))) -(((*1 *2 *2) - (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) - (-5 *1 (-161 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) (-5 *6 (-1083 *3)) - (-4 *3 (-13 (-406 *7) (-27) (-1108))) - (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-519 *7 *3 *8)) (-4 *8 (-1016)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) - (-5 *6 (-383 (-1083 *3))) (-4 *3 (-13 (-406 *7) (-27) (-1108))) - (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-519 *7 *3 *8)) (-4 *8 (-1016))))) -(((*1 *1 *1) (-5 *1 (-985)))) -(((*1 *1 *2) - (-12 (-5 *2 (-629 *5)) (-4 *5 (-973)) (-5 *1 (-977 *3 *4 *5)) - (-14 *3 (-710)) (-14 *4 (-710))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-108)) (-5 *1 (-823 *4)) + (-4 *4 (-1016))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-589 (-383 *7))) - (-4 *7 (-1144 *6)) (-5 *3 (-383 *7)) (-4 *6 (-339)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-533 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-916 *3 *4 *5 *2)) - (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732))))) -(((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-589 (-1083 *7))) (-5 *3 (-1083 *7)) - (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-840)) (-4 *5 (-732)) - (-4 *6 (-786)) (-5 *1 (-837 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-589 (-1083 *5))) (-5 *3 (-1083 *5)) - (-4 *5 (-1144 *4)) (-4 *4 (-840)) (-5 *1 (-838 *4 *5))))) + (-12 (-4 *3 (-515)) (-4 *3 (-158)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) + (-4 *2 (-627 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-695))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 (-383 (-883 *6)))) - (-5 *3 (-383 (-883 *6))) - (-4 *6 (-13 (-515) (-964 (-523)) (-136))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-529 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) - (-5 *2 (-589 (-589 (-589 (-710)))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1059 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) - (-4 *5 (-786)) (-5 *2 (-883 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) - (-4 *5 (-786)) (-5 *2 (-883 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-710)) (-4 *1 (-1159 *4)) (-4 *4 (-973)) - (-5 *2 (-883 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-4 *1 (-1159 *4)) (-4 *4 (-973)) - (-5 *2 (-883 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-284)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) + (-12 (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) - (-4 *3 (-987 *6 *7 *8)) - (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) - (-5 *1 (-1024 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) - (-5 *5 (-108)) (-4 *8 (-987 *6 *7 *4)) (-4 *9 (-992 *6 *7 *4 *8)) - (-4 *6 (-427)) (-4 *7 (-732)) (-4 *4 (-786)) - (-5 *2 (-589 (-2 (|:| |val| *8) (|:| -3072 *9)))) - (-5 *1 (-1024 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3078 *4))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-383 *6)) (|:| |c| (-383 *6)) - (|:| -4081 *6))) - (-5 *1 (-943 *5 *6)) (-5 *3 (-383 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1095 (-589 *4))) (-4 *4 (-786)) - (-5 *2 (-589 (-589 *4))) (-5 *1 (-1094 *4))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-687))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-2 (|:| |lm| (-362 *3)) (|:| |mm| (-362 *3)) (|:| |rm| (-362 *3)))) + (-5 *1 (-362 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-589 (-523))) - (|:| |cols| (-589 (-523))))) - (-5 *4 (-629 *12)) (-5 *5 (-589 (-383 (-883 *9)))) - (-5 *6 (-589 (-589 *12))) (-5 *7 (-710)) (-5 *8 (-523)) - (-4 *9 (-13 (-284) (-136))) (-4 *12 (-880 *9 *11 *10)) - (-4 *10 (-13 (-786) (-564 (-1087)))) (-4 *11 (-732)) (-5 *2 - (-2 (|:| |eqzro| (-589 *12)) (|:| |neqzro| (-589 *12)) - (|:| |wcond| (-589 (-883 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1168 (-383 (-883 *9)))) - (|:| -4041 (-589 (-1168 (-383 (-883 *9))))))))) - (-5 *1 (-855 *9 *10 *11 *12))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-955 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-589 (-629 *3))) (-4 *3 (-973)) (-5 *1 (-955 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-955 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-589 (-629 *3))) (-4 *3 (-973)) (-5 *1 (-955 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-523))) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-515)) (-4 *8 (-880 *7 *5 *6)) - (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *9) (|:| |radicand| *9))) - (-5 *1 (-884 *5 *6 *7 *8 *9)) (-5 *4 (-710)) - (-4 *9 - (-13 (-339) - (-10 -8 (-15 -2785 (*8 $)) (-15 -2797 (*8 $)) (-15 -1458 ($ *8)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-973))))) + (-2 (|:| |lm| (-758 *3)) (|:| |mm| (-758 *3)) (|:| |rm| (-758 *3)))) + (-5 *1 (-758 *3)) (-4 *3 (-786))))) +(((*1 *1) (-5 *1 (-133)))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) + ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) + ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) + (-5 *2 (-962)) (-5 *1 (-696))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-874 (-203))) (-5 *2 (-1174)) (-5 *1 (-443))))) (((*1 *2 *1) - (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) - (-5 *2 (-710)))) - ((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) - (-5 *2 (-710)))) - ((*1 *2 *1) - (-12 (-5 *2 (-710)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) - (-4 *4 (-666))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-794) (-794) (-794))) (-5 *4 (-523)) (-5 *2 (-794)) - (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-794)) (-5 *1 (-790 *3 *4 *5)) (-4 *3 (-973)) - (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-794)))) - ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-794)))) - ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-794)))) - ((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-1083 *3)) (-4 *3 (-973))))) -(((*1 *2) - (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) - (-5 *2 (-710)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-710)))) - ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-710))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 *4)) (-4 *4 (-339)) (-5 *2 (-629 *4)) - (-5 *1 (-753 *4 *5)) (-4 *5 (-599 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *5)) (-5 *4 (-710)) (-4 *5 (-339)) - (-5 *2 (-629 *5)) (-5 *1 (-753 *5 *6)) (-4 *6 (-599 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-883 (-203))) (-5 *2 (-203)) (-5 *1 (-282))))) -(((*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-151 *3 *2)) (-4 *3 (-152 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *2 *4)) (-4 *4 (-1144 *2)) - (-4 *2 (-158)))) + (-12 (-5 *2 (-710)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) + (-14 *4 *2) (-4 *5 (-158)))) ((*1 *2) - (-12 (-4 *4 (-1144 *2)) (-4 *2 (-158)) (-5 *1 (-384 *3 *2 *4)) - (-4 *3 (-385 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-158)))) + (-12 (-4 *4 (-158)) (-5 *2 (-852)) (-5 *1 (-151 *3 *4)) + (-4 *3 (-152 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-852)))) ((*1 *2) - (-12 (-4 *3 (-1144 *2)) (-5 *2 (-523)) (-5 *1 (-707 *3 *4)) - (-4 *4 (-385 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)) (-4 *3 (-158)))) + (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1145 *3)) + (-5 *2 (-852)))) ((*1 *2 *3) - (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-158))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-823 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1016)) - (-4 *5 (-1122)) (-5 *1 (-821 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-823 *4)) (-5 *3 (-589 (-1 (-108) *5))) (-4 *4 (-1016)) - (-4 *5 (-1122)) (-5 *1 (-821 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-823 *5)) (-5 *3 (-589 (-1087))) - (-5 *4 (-1 (-108) (-589 *6))) (-4 *5 (-1016)) (-4 *6 (-1122)) - (-5 *1 (-821 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1122)) (-4 *4 (-786)) - (-5 *1 (-868 *4 *2 *5)) (-4 *2 (-406 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-589 (-1 (-108) *5))) (-4 *5 (-1122)) (-4 *4 (-786)) - (-5 *1 (-868 *4 *2 *5)) (-4 *2 (-406 *4)))) + (-12 (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) + (-5 *2 (-710)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1087)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1122)) - (-5 *2 (-292 (-523))) (-5 *1 (-869 *5)))) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-339)) + (-5 *2 (-710)) (-5 *1 (-610 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1087)) (-5 *4 (-589 (-1 (-108) *5))) (-4 *5 (-1122)) - (-5 *2 (-292 (-523))) (-5 *1 (-869 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-1 (-108) (-589 *6))) - (-4 *6 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))) (-4 *4 (-1016)) - (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) - (-5 *1 (-995 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-1070)) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-962)) - (-5 *1 (-690))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) - (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122))))) -(((*1 *2) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-100))))) -(((*1 *2 *1) - (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) - (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) - (-5 *2 (-108)) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6))))) + (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4249)))) + (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4249)))) (-5 *2 (-710)) + (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-710)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-628 *4 *5 *6 *3)) + (-4 *3 (-627 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) + (-5 *2 (-710))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) (-5 *2 (-962)) + (-5 *1 (-688))))) (((*1 *2 *3) - (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-292 (-523)))) - (-5 *1 (-958))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3278 *3))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-427)) (-4 *4 (-759)) - (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) - (-4 *3 (-13 (-1016) (-33)))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1122)) (-5 *2 (-523))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) - (-5 *7 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-692))))) + (-12 (-5 *3 (-858)) + (-5 *2 + (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) + (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) + (-5 *1 (-142)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-858)) (-5 *4 (-383 (-523))) + (-5 *2 + (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) + (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) + (-5 *1 (-142))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-412))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-564 (-823 (-523)))) - (-4 *5 (-817 (-523))) - (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-526 *5 *3)) (-4 *3 (-575)) - (-4 *3 (-13 (-27) (-1108) (-406 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1087)) (-5 *4 (-779 *2)) (-4 *2 (-1051)) - (-4 *2 (-13 (-27) (-1108) (-406 *5))) - (-4 *5 (-564 (-823 (-523)))) (-4 *5 (-817 (-523))) - (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) - (-5 *1 (-526 *5 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-284)) (-4 *3 (-158)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) - (-5 *1 (-628 *3 *4 *5 *6)) (-4 *6 (-627 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-639 *3)) - (-4 *3 (-284))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) + (-12 (-5 *4 (-108)) (-4 *5 (-325)) (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-172))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-973))))) -(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) - ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *1 (-209 *4)) - (-4 *4 (-973)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-209 *3)) (-4 *3 (-973)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-211)) (-5 *2 (-710)))) - ((*1 *1 *1) (-4 *1 (-211))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-243 *3)) (-4 *3 (-786)))) - ((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) - (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)) - (-4 *4 (-1144 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-339) (-136))) (-5 *1 (-375 *2 *3)) - (-4 *3 (-1144 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) - (-4 *3 (-973)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-339)) (-4 *2 (-831 *3)) (-5 *1 (-540 *2)) - (-5 *3 (-1087)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-540 *2)) (-4 *2 (-339)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 (-710))) (-4 *1 (-831 *4)) - (-4 *4 (-1016)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-710)) (-4 *1 (-831 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *1 (-831 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) - (-4 *3 (-973)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) - (-4 *3 (-973)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) - (-4 *3 (-973)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1132 *3 *4 *5)) - (-4 *3 (-973)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1153 *3 *4 *5)) - (-4 *3 (-973)) (-14 *5 *3))) + (-2 (|:| |cont| *5) + (|:| -3491 (-589 (-2 (|:| |irr| *3) (|:| -1787 (-523))))))) + (-5 *1 (-195 *5 *3)) (-4 *3 (-1145 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-1090)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1091))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-303 *3)) (-4 *3 (-1123)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1160 *3 *4 *5)) - (-4 *3 (-973)) (-14 *5 *3)))) -(((*1 *2) - (-12 (-5 *2 (-1168 (-1017 *3 *4))) (-5 *1 (-1017 *3 *4)) - (-14 *3 (-852)) (-14 *4 (-852))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)) - (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1) - (-12 (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) - (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3))))) + (-12 (-5 *2 (-523)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1123)) (-14 *4 *2)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *7)) (-4 *7 (-786)) + (-4 *8 (-880 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1169 (-383 *8)) "failed")) + (|:| -3760 (-589 (-1169 (-383 *8)))))) + (-5 *1 (-612 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-589 *1)) + (-4 *1 (-358 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-666)))) + ((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-880 *3 *4 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-883 (-355))) (-5 *1 (-315 *3 *4 *5)) - (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) - (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-383 (-883 (-355)))) (-5 *1 (-315 *3 *4 *5)) - (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) - (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-292 (-355))) (-5 *1 (-315 *3 *4 *5)) - (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) - (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-883 (-523))) (-5 *1 (-315 *3 *4 *5)) - (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) - (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-383 (-883 (-523)))) (-5 *1 (-315 *3 *4 *5)) - (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) - (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-292 (-523))) (-5 *1 (-315 *3 *4 *5)) - (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) - (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-315 *3 *4 *5)) - (-14 *3 (-589 *2)) (-14 *4 (-589 *2)) (-4 *5 (-363)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-292 *5)) (-4 *5 (-363)) - (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) - (-14 *4 (-589 (-1087))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-629 (-383 (-883 (-523))))) (-4 *1 (-360)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-629 (-383 (-883 (-355))))) (-4 *1 (-360)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-629 (-883 (-523)))) (-4 *1 (-360)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-629 (-883 (-355)))) (-4 *1 (-360)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-629 (-292 (-523)))) (-4 *1 (-360)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-629 (-292 (-355)))) (-4 *1 (-360)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-383 (-883 (-523)))) (-4 *1 (-372)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-383 (-883 (-355)))) (-4 *1 (-372)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-523))) (-4 *1 (-372)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-355))) (-4 *1 (-372)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-523))) (-4 *1 (-372)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-355))) (-4 *1 (-372)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1168 (-383 (-883 (-523))))) (-4 *1 (-416)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1168 (-383 (-883 (-355))))) (-4 *1 (-416)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1168 (-883 (-523)))) (-4 *1 (-416)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1168 (-883 (-355)))) (-4 *1 (-416)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1168 (-292 (-523)))) (-4 *1 (-416)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1168 (-292 (-355)))) (-4 *1 (-416)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-325)) (-4 *5 (-305 *4)) (-4 *6 (-1144 *5)) - (-5 *2 (-1083 (-1083 *4))) (-5 *1 (-716 *4 *5 *6 *3 *7)) - (-4 *3 (-1144 *6)) (-14 *7 (-852)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) - (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-4 *1 (-905 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) - (|partial| -3262 - (-12 (-5 *2 (-883 *3)) - (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) - (-3900 (-4 *3 (-37 (-523)))) (-4 *5 (-564 (-1087)))) - (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) - (-4 *5 (-786))) - (-12 (-5 *2 (-883 *3)) - (-12 (-3900 (-4 *3 (-508))) (-3900 (-4 *3 (-37 (-383 (-523))))) - (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) - (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) - (-4 *5 (-786))) - (-12 (-5 *2 (-883 *3)) - (-12 (-3900 (-4 *3 (-921 (-523)))) (-4 *3 (-37 (-383 (-523)))) - (-4 *5 (-564 (-1087)))) - (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) - (-4 *5 (-786))))) - ((*1 *1 *2) - (|partial| -3262 - (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) - (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) - (-4 *5 (-564 (-1087)))) - (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) - (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) - (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) - (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) - (-4 *4 (-732)) (-4 *5 (-786))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1087)) - (-4 *5 (-13 (-515) (-964 (-523)) (-136))) - (-5 *2 - (-2 (|:| -2462 (-383 (-883 *5))) (|:| |coeff| (-383 (-883 *5))))) - (-5 *1 (-529 *5)) (-5 *3 (-383 (-883 *5)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-589 (-589 (-589 *4)))) (-5 *2 (-589 (-589 *4))) - (-4 *4 (-786)) (-5 *1 (-1094 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-995 *3 *4 *5))) (-4 *3 (-1016)) - (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) - (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) - (-5 *1 (-996 *3 *4 *5))))) + (-12 (-5 *3 (-155 *5)) (-4 *5 (-13 (-406 *4) (-930) (-1109))) + (-4 *4 (-13 (-515) (-786))) + (-4 *2 (-13 (-406 (-155 *4)) (-930) (-1109))) + (-5 *1 (-552 *4 *5 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 (-155 (-523))))) (-5 *2 (-589 (-155 *4))) + (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 (-383 (-883 (-155 (-523)))))) + (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 (-155 *5)))) + (-5 *1 (-354 *5)) (-4 *5 (-13 (-339) (-784)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087)) (-5 *2 (-1 (-1083 (-883 *4)) (-883 *4))) - (-5 *1 (-1176 *4)) (-4 *4 (-339))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-973)) - (-5 *1 (-654 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-773 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) (-4 *4 (-515)) (-4 *4 (-786)) - (-5 *1 (-532 *4 *2)) (-4 *2 (-406 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1168 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))) - (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) + (-12 (-5 *3 (-710)) (-4 *4 (-339)) (-4 *5 (-1145 *4)) (-5 *2 (-1174)) + (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1145 (-383 *5))) (-14 *7 *6)))) (((*1 *2 *1) - (-12 (-4 *3 (-158)) (-4 *2 (-23)) (-5 *1 (-266 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1144 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-651 *3 *2 *4 *5 *6)) (-4 *3 (-158)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-652 *3 *2)) (-4 *3 (-973)))) + (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-987 *3 *4 *2)) (-4 *2 (-786)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-655 *3 *2 *4 *5 *6)) (-4 *3 (-158)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) - (-5 *2 (-962)) (-5 *1 (-691))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-710)) (-4 *6 (-1016)) (-4 *3 (-831 *6)) - (-5 *2 (-629 *3)) (-5 *1 (-631 *6 *3 *7 *4)) (-4 *7 (-349 *3)) - (-4 *4 (-13 (-349 *6) (-10 -7 (-6 -4244))))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) - (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-710)) (-4 *5 (-158)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-710)) (-4 *5 (-158)))) - ((*1 *2 *2 *3) - (-12 + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786))))) +(((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 - (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) - (-225 *4 (-383 (-523))))) - (-5 *3 (-589 (-796 *4))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) - (-5 *1 (-476 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-562 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))) - (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-254 *4 *2))))) + (-589 + (-2 (|:| |outval| (-155 *4)) (|:| |outmult| (-523)) + (|:| |outvect| (-589 (-629 (-155 *4))))))) + (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784)))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-731)) (-4 *3 (-158))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) (-5 *2 (-1 (-203) (-203))) (-5 *1 (-643 *3)) - (-4 *3 (-564 (-499))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1087)) (-5 *2 (-1 (-203) (-203) (-203))) - (-5 *1 (-643 *3)) (-4 *3 (-564 (-499)))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-710)) (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) - (-4 *2 (-1144 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-383 (-523))))) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240))))) + (-12 (-5 *3 (-1083 *5)) (-4 *5 (-427)) (-5 *2 (-589 *6)) + (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-883 *5)) (-4 *5 (-427)) (-5 *2 (-589 *6)) + (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784)))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1154 *4 *5 *6)) + (|:| |%expon| (-295 *4 *5 *6)) + (|:| |%expTerms| + (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| *4)))))) + (|:| |%type| (-1070)))) + (-5 *1 (-1155 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1109) (-406 *3))) + (-14 *5 (-1087)) (-14 *6 *4)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4245)) (-4 *4 (-339)) (-4 *5 (-349 *4)) - (-4 *6 (-349 *4)) (-5 *2 (-589 *6)) (-5 *1 (-490 *4 *5 *6 *3)) - (-4 *3 (-627 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4245)) (-4 *4 (-515)) (-4 *5 (-349 *4)) - (-4 *6 (-349 *4)) (-4 *7 (-921 *4)) (-4 *8 (-349 *7)) - (-4 *9 (-349 *7)) (-5 *2 (-589 *6)) - (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) - (-4 *10 (-627 *7 *8 *9)))) + (-12 (-5 *3 (-589 (-455 *4 *5))) (-14 *4 (-589 (-1087))) + (-4 *5 (-427)) (-5 *2 (-589 (-225 *4 *5))) (-5 *1 (-577 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-852)) (-5 *2 (-1083 *3)) (-5 *1 (-1098 *3)) + (-4 *3 (-339))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-629 *2)) (-5 *4 (-523)) + (-4 *2 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) + (-4 *5 (-1145 *2)) (-5 *1 (-470 *2 *5 *6)) (-4 *6 (-385 *2 *5))))) +(((*1 *1) (-5 *1 (-306)))) +(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1016)) (-4 *2 (-786)) + (-5 *1 (-109 *2))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1123)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-406 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-589 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) - (-4 *6 (-349 *4)) (-5 *2 (-589 *6)) (-5 *1 (-628 *4 *5 *6 *3)) - (-4 *3 (-627 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) + (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) - (-5 *2 (-589 *7))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) - ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442))))) -(((*1 *2) - (-12 (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) - (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) - ((*1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-355)) (-5 *2 (-1173)) (-5 *1 (-1169))))) -(((*1 *2) - (-12 (-5 *2 (-629 (-841 *3))) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) - (-14 *4 (-852)))) - ((*1 *2) - (-12 (-5 *2 (-629 *3)) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) - (-14 *4 - (-3 (-1083 *3) - (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034))))))))) - ((*1 *2) - (-12 (-5 *2 (-629 *3)) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) - (-14 *4 (-852))))) + (|partial| -12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) + (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *3)) + (-5 *1 (-881 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) + (-15 -3329 (*7 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-1087)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-108))))) +(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1094))))) (((*1 *2 *2) - (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) - (-5 *1 (-161 *3))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-852)) (-5 *1 (-638)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-629 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-339)) (-5 *1 (-907 *5))))) + (|partial| -12 (-5 *2 (-383 *4)) (-4 *4 (-1145 *3)) + (-4 *3 (-13 (-339) (-136) (-964 (-523)))) (-5 *1 (-527 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) - (-5 *2 (-394 *3)) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-520)) (-5 *3 (-523)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-351 *4 *2)) - (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245))))))) -(((*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-203) (-203) (-203))) - (-5 *4 (-1 (-203) (-203) (-203) (-203))) - (-5 *2 (-1 (-874 (-203)) (-203) (-203))) (-5 *1 (-636))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -4041 (-589 *1)))) - (-4 *1 (-343 *3)))) - ((*1 *2) (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 - (-2 (|:| |particular| (-428 *3 *4 *5 *6)) - (|:| -4041 (-589 (-428 *3 *4 *5 *6))))) - (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-589 (-589 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-589 (-3 (|:| |array| (-589 *3)) (|:| |scalar| (-1087))))) - (-5 *6 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1020)) - (-5 *1 (-373)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-589 (-589 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-589 (-3 (|:| |array| (-589 *3)) (|:| |scalar| (-1087))))) - (-5 *6 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1020)) - (-5 *1 (-373)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-589 (-1087))) (-5 *5 (-1090)) (-5 *3 (-1087)) - (-5 *2 (-1020)) (-5 *1 (-373))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) - (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-523))) (-5 *4 (-523)) (-5 *2 (-51)) - (-5 *1 (-933))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) - (-5 *2 (-962)) (-5 *1 (-691))))) -(((*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-203)) (-5 *1 (-1171)))) - ((*1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-1171))))) -(((*1 *2 *3) - (-12 (-4 *4 (-973)) - (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) - (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) + (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) + (|:| |expense| (-355)) (|:| |accuracy| (-355)) + (|:| |intermediateResults| (-355)))) + (-5 *1 (-742))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *1 (-1042 *3 *2)) (-4 *3 (-1145 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240))))) +(((*1 *2 *1) + (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) + (-5 *2 + (-2 (|:| -3697 (-389 *4 (-383 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-852)) (-4 *5 (-973)) - (-4 *2 (-13 (-380) (-964 *5) (-339) (-1108) (-261))) - (-5 *1 (-418 *5 *3 *2)) (-4 *3 (-1144 *5))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-339)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -3671 (-383 *6)) + (|:| |special| (-383 *6)))) + (-5 *1 (-667 *5 *6)) (-5 *3 (-383 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-827 *3 *4)) + (-4 *3 (-1145 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-710)) (-4 *5 (-339)) + (-5 *2 (-2 (|:| -3844 *3) (|:| -3855 *3))) (-5 *1 (-827 *3 *5)) + (-4 *3 (-1145 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) + (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) + (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) + (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) + (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3474 *3) (|:| |gap| (-710)) (|:| -3070 (-721 *3)) + (|:| -3969 (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-973)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) + (-5 *2 + (-2 (|:| -3474 *1) (|:| |gap| (-710)) (|:| -3070 *1) + (|:| -3969 *1))) + (-4 *1 (-987 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 + (-2 (|:| -3474 *1) (|:| |gap| (-710)) (|:| -3070 *1) + (|:| -3969 *1))) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1123)) (-5 *1 (-166 *3 *2)) (-4 *2 (-616 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-5 *2 (-108))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1016)) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-157))))))) +(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1094))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-427)) (-4 *4 (-515)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4117 *4))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1087)) - (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *1 (-1090))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-339) (-784))) (-5 *1 (-165 *3 *2)) - (-4 *2 (-1144 (-155 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) - (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) + (-12 (-5 *3 (-1142 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) + (-5 *2 (-589 *4)) (-5 *1 (-1030 *4 *5))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *2 (-962)) + (-5 *1 (-689))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) +(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-203)) (-5 *2 (-108)) (-5 *1 (-276 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) (-5 *2 (-858)) (-5 *1 (-856 *3)) - (-4 *3 (-564 (-499))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-858)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) - (-5 *1 (-858))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-515)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) - (-5 *1 (-1113 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1122)))) + (-12 (-5 *4 (-1011 (-779 (-203)))) (-5 *3 (-203)) (-5 *2 (-108)) + (-5 *1 (-282)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) + (-5 *1 (-1193 *4 *5 *6)) (-14 *6 (-589 (-1087))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1193 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1193 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-883 *4))) + (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1193 *4 *5 *6)) + (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) + (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) + (-5 *2 (-589 (-1087))) (-5 *1 (-995 *3 *4 *5)) + (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3))))))) +(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1094))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-523)) (-4 *3 (-158)) (-4 *5 (-349 *3)) + (-4 *6 (-349 *3)) (-5 *1 (-628 *3 *5 *6 *2)) + (-4 *2 (-627 *3 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-110))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1123)))) ((*1 *1 *2) (-12 (-5 *2 (-883 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) @@ -4372,30 +3408,30 @@ ((*1 *1 *2) (-12 (-5 *2 (-883 (-355))) (-4 *1 (-372)))) ((*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-4 *1 (-372)))) ((*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-4 *1 (-372)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168 (-383 (-883 (-523))))) (-4 *1 (-416)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168 (-383 (-883 (-355))))) (-4 *1 (-416)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168 (-883 (-523)))) (-4 *1 (-416)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168 (-883 (-355)))) (-4 *1 (-416)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168 (-292 (-523)))) (-4 *1 (-416)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168 (-292 (-355)))) (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 (-383 (-883 (-523))))) (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 (-383 (-883 (-355))))) (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 (-883 (-523)))) (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 (-883 (-355)))) (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 (-292 (-523)))) (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 (-292 (-355)))) (-4 *1 (-416)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) - (|:| -3499 (-589 (-1011 (-779 (-203))))) + (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) (-5 *1 (-708)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-747)))) @@ -4404,13 +3440,13 @@ (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) + (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) - (|:| -2262 (-589 (-203))))))) + (|:| -2773 (-589 (-203))))))) (-5 *1 (-777)))) ((*1 *2 *1) (-12 @@ -4427,28 +3463,28 @@ ((*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *1 (-905 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1123)))) ((*1 *1 *2) - (-3262 + (-3172 (-12 (-5 *2 (-883 *3)) - (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) - (-3900 (-4 *3 (-37 (-523)))) (-4 *5 (-564 (-1087)))) + (-12 (-4179 (-4 *3 (-37 (-383 (-523))))) + (-4179 (-4 *3 (-37 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) - (-12 (-3900 (-4 *3 (-508))) (-3900 (-4 *3 (-37 (-383 (-523))))) + (-12 (-4179 (-4 *3 (-508))) (-4179 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) - (-12 (-3900 (-4 *3 (-921 (-523)))) (-4 *3 (-37 (-383 (-523)))) + (-12 (-4179 (-4 *3 (-921 (-523)))) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))))) ((*1 *1 *2) - (-3262 + (-3172 (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) - (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) + (-12 (-4179 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) @@ -4458,584 +3494,1301 @@ (-12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-710)) (-4 *5 (-515)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-541 *3)) (-4 *3 (-508))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1016)) (-5 *2 (-108))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1034)) (-5 *2 (-1173)) (-5 *1 (-770))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1123)) (-5 *2 (-108))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) - ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-928 *3))))) + (-12 (-5 *2 (-523)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973))))) +(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) + ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-1089 (-383 (-523)))) - (-5 *1 (-170))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-517 *2)) (-4 *2 (-508))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-203)) - (-5 *2 (-962)) (-5 *1 (-689))))) -(((*1 *2 *1) (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-306))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-284)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-362 *3)) (|:| |rm| (-362 *3)))) - (-5 *1 (-362 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3445 (-710)) (|:| -3282 (-710)))) - (-5 *1 (-710)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) - (-5 *2 (-962)) (-5 *1 (-687))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51)))) - (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284)))) - ((*1 *2 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284)))) - ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-284)))) - ((*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-523))))) -(((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) - (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) - (-5 *1 (-688))))) + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 (-1068 (-203))) (-5 *1 (-172)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-292 (-203))) (-5 *4 (-589 (-1087))) + (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1169 (-292 (-203)))) (-5 *4 (-589 (-1087))) + (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277))))) +(((*1 *1 *1 *1) (-4 *1 (-508)))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) (((*1 *2 *2) - (-12 (-4 *3 (-325)) (-4 *4 (-305 *3)) (-4 *5 (-1144 *4)) - (-5 *1 (-716 *3 *4 *5 *2 *6)) (-4 *2 (-1144 *5)) (-14 *6 (-852)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) - ((*1 *1 *1) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-339)) (-4 *2 (-344))))) + (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) + (-4 *2 (-13 (-27) (-1109) (-406 (-155 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) + (-5 *1 (-168 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 (-155 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1113 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1113 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4)))))) (((*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-805)) (-5 *3 (-589 (-240))) (-5 *1 (-238))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-786)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-786)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-523)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-259 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -1853 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (|:| -2433 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1068 (-203))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3499 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-518)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-4 *1 (-634 *2)) (-4 *2 (-1016)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -1853 - (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) - (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) - (|:| |abserr| (-203)) (|:| |relerr| (-203)))) - (|:| -2433 - (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) - (|:| |expense| (-355)) (|:| |accuracy| (-355)) - (|:| |intermediateResults| (-355)))))) - (-5 *1 (-742)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-1016))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523))))) -(((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-710)) (-4 *4 (-284)) (-4 *6 (-1145 *4)) + (-5 *2 (-1169 (-589 *6))) (-5 *1 (-430 *4 *6)) (-5 *5 (-589 *6))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-589 *1)) (-4 *1 (-284))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-874 (-203)))) (-5 *1 (-1170))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1016) (-33))) + (-5 *2 (-108)) (-5 *1 (-1052 *4 *5)) (-4 *4 (-13 (-1016) (-33)))))) (((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) - (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-339)) (-4 *4 (-515)) (-4 *5 (-1144 *4)) - (-5 *2 (-2 (|:| -3062 (-570 *4 *5)) (|:| -2591 (-383 *5)))) - (-5 *1 (-570 *4 *5)) (-5 *3 (-383 *5)))) + (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-985))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -2922 (-523))))) + (-5 *1 (-337 *3)) (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) - (-14 *3 (-852)) (-4 *4 (-973)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-427)) (-4 *3 (-973)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1144 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1181 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) - (-5 *1 (-607 *3 *4)))) + (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -2922 (-710))))) + (-5 *1 (-362 *3)) (-4 *3 (-1016)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1186 *3 *4)) - (-4 *3 (-786)) (-4 *4 (-158))))) -(((*1 *1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) - (-14 *4 (-589 (-1087))))) - ((*1 *1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) - (-14 *4 (-589 (-1087))))) - ((*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) + (-12 (-5 *2 (-589 (-2 (|:| -2424 *3) (|:| -1475 (-523))))) + (-5 *1 (-394 *3)) (-4 *3 (-515)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-311 *3 *4 *5 *2)) (-4 *3 (-339)) - (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) - (-4 *2 (-318 *3 *4 *5)))) + (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -2922 (-710))))) + (-5 *1 (-758 *3)) (-4 *3 (-786))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-339)) (-5 *1 (-827 *2 *3)) + (-4 *2 (-1145 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3643 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 (-2 (|:| |val| (-589 *6)) (|:| -3643 *7)))) + (-4 *6 (-987 *3 *4 *5)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-917 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-589 (-2 (|:| |val| (-589 *6)) (|:| -3643 *7)))) + (-4 *6 (-987 *3 *4 *5)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-1023 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-695)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-364)) + (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695))))) +(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-339)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 (-383 *3))) + (-4 *1 (-311 *4 *3 *5 *2)) (-4 *2 (-318 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-339)) (-4 *4 (-1145 *2)) + (-4 *5 (-1145 (-383 *4))) (-4 *1 (-311 *2 *4 *5 *6)) + (-4 *6 (-318 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-339)) (-4 *3 (-1145 *2)) (-4 *4 (-1145 (-383 *3))) + (-4 *1 (-311 *2 *3 *4 *5)) (-4 *5 (-318 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-158)))) - ((*1 *1) (-12 (-4 *2 (-158)) (-4 *1 (-664 *2 *3)) (-4 *3 (-1144 *2))))) + (-12 (-4 *3 (-339)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) + (-4 *1 (-311 *3 *4 *5 *2)) (-4 *2 (-318 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-389 *4 (-383 *4) *5 *6)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-4 *3 (-339)) + (-4 *1 (-311 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-523)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) + (-4 *3 (-1145 *4)) (-5 *2 (-523)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) + (-5 *2 (-523)) (-5 *1 (-1031 *4 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-779 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *6))) + (-4 *6 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) + (-5 *2 (-523)) (-5 *1 (-1031 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-1070)) + (-4 *6 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) + (-5 *2 (-523)) (-5 *1 (-1031 *6 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-427)) (-5 *2 (-523)) + (-5 *1 (-1032 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-779 (-383 (-883 *6)))) + (-5 *3 (-383 (-883 *6))) (-4 *6 (-427)) (-5 *2 (-523)) + (-5 *1 (-1032 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-383 (-883 *6))) (-5 *4 (-1087)) + (-5 *5 (-1070)) (-4 *6 (-427)) (-5 *2 (-523)) (-5 *1 (-1032 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-523)) (-5 *1 (-1106 *3)) (-4 *3 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) (((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *1) - (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) - (-4 *4 (-158))))) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427))))) (((*1 *2 *3) - (-12 (-4 *4 (-37 (-383 (-523)))) - (-5 *2 (-2 (|:| -1744 (-1068 *4)) (|:| -1757 (-1068 *4)))) - (-5 *1 (-1074 *4)) (-5 *3 (-1068 *4))))) -(((*1 *2 *2) (-12 (-5 *1 (-541 *2)) (-4 *2 (-508))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-589 (-883 *4))) (-5 *3 (-589 (-1087))) (-4 *4 (-427)) - (-5 *1 (-849 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-821 *4 *3)) - (-4 *3 (-1122)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-213 *3)))) - ((*1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1016))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-339)) - (-5 *2 (-589 (-2 (|:| C (-629 *5)) (|:| |g| (-1168 *5))))) - (-5 *1 (-907 *5)) (-5 *3 (-629 *5)) (-5 *4 (-1168 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) - (-5 *4 (-710)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) - (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-1173)) - (-5 *1 (-990 *5 *6 *7 *8 *9)))) + (-12 (-4 *4 (-427)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *2 (-589 *3)) (-5 *1 (-906 *4 *5 *6 *3)) + (-4 *3 (-987 *4 *5 *6))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) + (-4 *3 (-1016)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) + (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *3)) + (-5 *1 (-881 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) + (-15 -3329 (*7 $)))))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-985)) (-5 *3 (-1070))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1191 *4 *2)) (-4 *1 (-350 *4 *2)) (-4 *4 (-786)) + (-4 *2 (-158)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-758 *4)) (-4 *1 (-1184 *4 *2)) (-4 *4 (-786)) + (-4 *2 (-973)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-973)) (-5 *1 (-1190 *2 *3)) (-4 *3 (-782))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-905 *4 *5 *6 *3)) (-4 *4 (-973)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-110)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1070)) (-4 *4 (-786)) (-5 *1 (-860 *4 *2)) + (-4 *2 (-406 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) - (-5 *4 (-710)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) - (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-1173)) - (-5 *1 (-1057 *5 *6 *7 *8 *9))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1168 (-589 *3))) (-4 *4 (-284)) - (-5 *2 (-589 *3)) (-5 *1 (-430 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-805)) (-5 *3 (-589 (-240))) (-5 *1 (-238))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1003))))) -(((*1 *1) (-4 *1 (-325)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-768))))) -(((*1 *1 *2) (-12 (-5 *2 (-292 (-155 (-355)))) (-5 *1 (-306)))) - ((*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-306)))) - ((*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-306)))) - ((*1 *1 *2) (-12 (-5 *2 (-292 (-633))) (-5 *1 (-306)))) - ((*1 *1 *2) (-12 (-5 *2 (-292 (-640))) (-5 *1 (-306)))) - ((*1 *1 *2) (-12 (-5 *2 (-292 (-638))) (-5 *1 (-306)))) - ((*1 *1) (-5 *1 (-306)))) + (-12 (-5 *3 (-1087)) (-5 *4 (-1070)) (-5 *2 (-292 (-523))) + (-5 *1 (-861))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1160 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-589 (-874 (-203))))) - (-5 *2 (-589 (-1011 (-203)))) (-5 *1 (-859))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) - (-5 *1 (-308))))) -(((*1 *2 *2) + (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) + (-5 *2 (-455 *4 *5)) (-5 *1 (-577 *4 *5))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-383 *6)) (|:| |h| *6) + (|:| |c1| (-383 *6)) (|:| |c2| (-383 *6)) (|:| -1219 *6))) + (-5 *1 (-944 *5 *6)) (-5 *3 (-383 *6))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-523)))) - (-4 *4 (-13 (-1144 *3) (-515) (-10 -8 (-15 -3278 ($ $ $))))) - (-4 *3 (-515)) (-5 *1 (-1147 *3 *4))))) + (-589 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-710)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-732)) (-4 *6 (-880 *4 *3 *5)) (-4 *4 (-427)) (-4 *5 (-786)) + (-5 *1 (-424 *4 *3 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) + (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) + (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-37 (-383 (-523)))) + (-4 *2 (-158))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) (-5 *3 (-523)) + (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-234))))) +(((*1 *1 *1) + (-12 (-4 *2 (-136)) (-4 *2 (-284)) (-4 *2 (-427)) (-4 *3 (-786)) + (-4 *4 (-732)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-292 (-523))) (-5 *1 (-1033)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158))))) (((*1 *2 *1) - (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) + (-5 *2 (-589 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-2 (|:| |k| (-824 *3)) (|:| |c| *4)))) + (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-614 *3))) (-5 *1 (-824 *3)) (-4 *3 (-786))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-288)) (-5 *1 (-273)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-1070))) (-5 *3 (-1070)) (-5 *2 (-288)) + (-5 *1 (-273))))) +(((*1 *1 *1) (-4 *1 (-132))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) +(((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) + (-4 *2 (-1145 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1009 (-779 *3))) (-4 *3 (-13 (-1108) (-889) (-29 *5))) - (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *2 - (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-197 *5 *3)))) + (-12 (-5 *3 (-1169 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) + (-4 *1 (-664 *5 *6)) (-4 *5 (-158)) (-4 *6 (-1145 *5)) + (-5 *2 (-629 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1123))))) +(((*1 *2 *3) + (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-1145 *4)) + (-4 *5 (-1145 (-383 *3))) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-523)) (-5 *1 (-219)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-523)) (-5 *1 (-219))))) +(((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-1090)))) + ((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1090))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) + (-5 *1 (-917 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) + (-5 *1 (-1023 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-105)))) + ((*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-710)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-349 *3)) (-4 *3 (-1123)) + (-4 *3 (-1016)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-349 *3)) (-4 *3 (-1123)) (-4 *3 (-1016)) + (-5 *2 (-523)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-349 *4)) (-4 *4 (-1123)) + (-5 *2 (-523)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-523)) (-5 *3 (-130)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-523))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1009 (-779 *3))) (-5 *5 (-1070)) - (-4 *3 (-13 (-1108) (-889) (-29 *6))) - (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *2 - (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-197 *6 *3)))) + (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1009 (-779 (-292 *5)))) - (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *2 - (-3 (|:| |f1| (-779 (-292 *5))) (|:| |f2| (-589 (-779 (-292 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-198 *5)))) + (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-383 (-883 *6))) (-5 *4 (-1009 (-779 (-292 *6)))) - (-5 *5 (-1070)) - (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *2 - (-3 (|:| |f1| (-779 (-292 *6))) (|:| |f2| (-589 (-779 (-292 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-198 *6)))) + (-12 (-5 *3 (-810 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) + (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) + (-5 *1 (-236 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1009 (-779 (-383 (-883 *5))))) (-5 *3 (-383 (-883 *5))) - (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-12 (-5 *3 (-810 *5)) (-5 *4 (-1009 (-355))) + (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) + (-5 *1 (-236 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) + (-5 *2 (-1047 (-203))) (-5 *1 (-236 *3)) + (-4 *3 (-13 (-564 (-499)) (-1016))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *3)) + (-4 *3 (-13 (-564 (-499)) (-1016))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-813 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) + (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) + (-5 *1 (-236 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-813 *5)) (-5 *4 (-1009 (-355))) + (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) + (-5 *1 (-236 *5))))) +(((*1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123)))) + ((*1 *1 *2) (-12 (-5 *1 (-1136 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-1072 *4)) (-4 *4 (-973)) + (-5 *3 (-523))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1070) (-713))) (-5 *1 (-110))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-172)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-277)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-282))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-589 *7) *7 (-1083 *7))) (-5 *5 (-1 (-394 *7) *7)) + (-4 *7 (-1145 *6)) (-4 *6 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-5 *2 (-589 (-2 (|:| |frac| (-383 *7)) (|:| -2849 *3)))) + (-5 *1 (-748 *6 *7 *3 *8)) (-4 *3 (-599 *7)) + (-4 *8 (-599 (-383 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 - (-3 (|:| |f1| (-779 (-292 *5))) (|:| |f2| (-589 (-779 (-292 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-198 *5)))) + (-589 (-2 (|:| |frac| (-383 *6)) (|:| -2849 (-597 *6 (-383 *6)))))) + (-5 *1 (-751 *5 *6)) (-5 *3 (-597 *6 (-383 *6)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-589 (-1087))) + (-5 *2 (-589 (-589 (-355)))) (-5 *1 (-950)) (-5 *5 (-355)))) + ((*1 *2 *3) + (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) + (-5 *1 (-1193 *4 *5 *6)) (-14 *6 (-589 (-1087))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1193 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1193 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1193 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-883 *4))) + (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1193 *4 *5 *6)) + (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-899 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *1) + (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) + (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-710)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) + (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-243 *3)) (-4 *3 (-786)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-852)))) + ((*1 *2 *3) + (-12 (-5 *3 (-312 *4 *5 *6 *7)) (-4 *4 (-13 (-344) (-339))) + (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) (-4 *7 (-318 *4 *5 *6)) + (-5 *2 (-710)) (-5 *1 (-368 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-772 (-852))))) + ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) + ((*1 *2 *1) + (-12 (-4 *3 (-515)) (-5 *2 (-523)) (-5 *1 (-570 *3 *4)) + (-4 *4 (-1145 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-680 *4 *3)) (-4 *4 (-973)) + (-4 *3 (-786)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-973)) (-4 *3 (-786)) + (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) + (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-383 *6))) + (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) + (-5 *2 (-710)) (-5 *1 (-842 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) + (-4 *4 (-1145 (-383 (-523)))) (-4 *5 (-1145 (-383 *4))) + (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-710)) + (-5 *1 (-843 *4 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1009 (-779 (-383 (-883 *6))))) (-5 *5 (-1070)) - (-5 *3 (-383 (-883 *6))) - (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-12 (-5 *3 (-312 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-339)) + (-4 *7 (-1145 *6)) (-4 *4 (-1145 (-383 *7))) (-4 *8 (-318 *6 *7 *4)) + (-4 *9 (-13 (-344) (-339))) (-5 *2 (-710)) + (-5 *1 (-946 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1145 *3)) (-4 *3 (-973)) (-4 *3 (-515)) (-5 *2 (-710)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1 *1 *1) (-4 *1 (-132))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) + ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971)) + (-5 *3 (-523))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *2))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-523)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-500 *4 *2)) + (-4 *2 (-1160 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-523)) (-4 *4 (-13 (-339) (-344) (-564 *3))) + (-4 *5 (-1145 *4)) (-4 *6 (-664 *4 *5)) (-5 *1 (-504 *4 *5 *6 *2)) + (-4 *2 (-1160 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-523)) (-4 *4 (-13 (-339) (-344) (-564 *3))) + (-5 *1 (-505 *4 *2)) (-4 *2 (-1160 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-13 (-515) (-136))) + (-5 *1 (-1064 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-394 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-1102))))) +(((*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-126))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-691))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-973))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1145 *3))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4248)) (-4 *1 (-462 *3)) (-4 *3 (-1123)) + (-4 *3 (-1016)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-108)) + (-5 *1 (-835 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-852)) (-5 *2 (-108)) (-5 *1 (-1017 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1070)) (-5 *1 (-51))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-5 *3 (-292 (-203))) (-5 *2 (-383 (-523))) (-5 *1 (-282))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-108)) (-5 *5 (-1018 (-710))) (-5 *6 (-710)) (-5 *2 - (-3 (|:| |f1| (-779 (-292 *6))) (|:| |f2| (-589 (-779 (-292 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-198 *6)))) + (-2 (|:| |contp| (-523)) + (|:| -3491 (-589 (-2 (|:| |irr| *3) (|:| -1787 (-523))))))) + (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-589 (-455 *4 *5))) (-5 *3 (-796 *4)) + (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-577 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-779 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-760)) (-5 *2 (-51)) (-5 *1 (-770))))) +(((*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-710))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1105)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1105))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-4 *2 (-1016)) + (-5 *1 (-820 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) - (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-3 *3 (-589 *3))) (-5 *1 (-404 *5 *3)) - (-4 *3 (-13 (-1108) (-889) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) - (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) - (-5 *5 (-355)) (-5 *6 (-985)) (-5 *2 (-962)) (-5 *1 (-524)))) - ((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-962)) (-5 *1 (-524)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) - (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) + (-12 (-5 *3 (-1 (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1170)) (-5 *1 (-232)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) - (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) + (-12 (-5 *3 (-808 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) - (-5 *2 (-962)) (-5 *1 (-524)))) + (-12 (-5 *3 (-808 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1170)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1171)) (-5 *1 (-232)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) - (-5 *2 (-962)) (-5 *1 (-524)))) + (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1171)) (-5 *1 (-232)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) - (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) - (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) - (-5 *5 (-355)) (-5 *6 (-985)) (-5 *2 (-962)) (-5 *1 (-524)))) + (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1171)) (-5 *1 (-232)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1171)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1171)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1171)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1171)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1171)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1171)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1171)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-271 *7)) (-5 *4 (-1087)) (-5 *5 (-589 (-240))) + (-4 *7 (-406 *6)) (-4 *6 (-13 (-515) (-786) (-964 (-523)))) + (-5 *2 (-1170)) (-5 *1 (-233 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-292 (-355))) (-5 *4 (-1009 (-779 (-355)))) - (-5 *5 (-1070)) (-5 *2 (-962)) (-5 *1 (-524)))) + (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) + (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1170)) (-5 *1 (-236 *3)) + (-4 *3 (-13 (-564 (-499)) (-1016))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-292 (-355))) (-5 *4 (-1009 (-779 (-355)))) - (-5 *5 (-1087)) (-5 *2 (-962)) (-5 *1 (-524)))) + (-12 (-5 *3 (-808 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) + (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) + (-5 *1 (-236 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-808 *5)) (-5 *4 (-1009 (-355))) + (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) + (-5 *1 (-236 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-810 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) + (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1171)) + (-5 *1 (-236 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-810 *5)) (-5 *4 (-1009 (-355))) + (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1171)) + (-5 *1 (-236 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1171)) + (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1171)) (-5 *1 (-236 *3)) + (-4 *3 (-13 (-564 (-499)) (-1016))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-813 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) + (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1171)) + (-5 *1 (-236 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-813 *5)) (-5 *4 (-1009 (-355))) + (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1171)) + (-5 *1 (-236 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1170)) (-5 *1 (-237)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-589 (-203))) (-5 *4 (-589 (-240))) (-5 *2 (-1170)) + (-5 *1 (-237)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1144 *4)) - (-5 *2 (-540 (-383 *5))) (-5 *1 (-527 *4 *5)) (-5 *3 (-383 *5)))) + (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *2 (-1170)) (-5 *1 (-237)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-136)) - (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) - (-5 *2 (-3 (-292 *5) (-589 (-292 *5)))) (-5 *1 (-543 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-973)) (-4 *2 (-786)) - (-4 *3 (-37 (-383 (-523)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1087)) (-5 *1 (-883 *3)) (-4 *3 (-37 (-383 (-523)))) - (-4 *3 (-973)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-4 *2 (-786)) - (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-880 *3 (-495 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) - (-5 *1 (-1072 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) - (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) - (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) - (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *1 (-1117 *3)) (-4 *3 (-37 (-383 (-523)))) - (-4 *3 (-973)))) - ((*1 *1 *1 *2) - (-3262 - (-12 (-5 *2 (-1087)) (-4 *1 (-1128 *3)) (-4 *3 (-973)) - (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1108)) - (-4 *3 (-37 (-383 (-523)))))) - (-12 (-5 *2 (-1087)) (-4 *1 (-1128 *3)) (-4 *3 (-973)) - (-12 (|has| *3 (-15 -1957 ((-589 *2) *3))) - (|has| *3 (-15 -3417 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1128 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1132 *3 *4 *5)) - (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) - ((*1 *1 *1 *2) - (-3262 - (-12 (-5 *2 (-1087)) (-4 *1 (-1149 *3)) (-4 *3 (-973)) - (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1108)) - (-4 *3 (-37 (-383 (-523)))))) - (-12 (-5 *2 (-1087)) (-4 *1 (-1149 *3)) (-4 *3 (-973)) - (-12 (|has| *3 (-15 -1957 ((-589 *2) *3))) - (|has| *3 (-15 -3417 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1149 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1153 *3 *4 *5)) - (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *4 (-589 (-240))) + (-5 *2 (-1170)) (-5 *1 (-237)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1171)) (-5 *1 (-237)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-589 (-203))) (-5 *4 (-589 (-240))) (-5 *2 (-1171)) + (-5 *1 (-237))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-124)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) + (-5 *2 + (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-339)) + (-5 *2 (-2 (|:| -3671 (-394 *3)) (|:| |special| (-394 *3)))) + (-5 *1 (-667 *5 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-108)) (-5 *1 (-106)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4239)) (-4 *1 (-380)))) + ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-962))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-339))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-710)) (-5 *1 (-617 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -3491 (-589 (-2 (|:| |irr| *10) (|:| -1787 (-523))))))) + (-5 *6 (-589 *3)) (-5 *7 (-589 *8)) (-4 *8 (-786)) (-4 *3 (-284)) + (-4 *10 (-880 *3 *9 *8)) (-4 *9 (-732)) + (-5 *2 + (-2 (|:| |polfac| (-589 *10)) (|:| |correct| *3) + (|:| |corrfact| (-589 (-1083 *3))))) + (-5 *1 (-572 *8 *9 *3 *10)) (-5 *4 (-589 (-1083 *3)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 *1)) (-4 *1 (-279)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-110)) (-5 *3 (-589 *5)) (-5 *4 (-710)) (-4 *5 (-786)) + (-5 *1 (-562 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1160 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-894 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-786)) (-5 *3 (-589 *6)) (-5 *5 (-589 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-589 *5)) (|:| |f3| *5) + (|:| |f4| (-589 *5)))) + (-5 *1 (-1095 *6)) (-5 *4 (-589 *5))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) + ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934))))) +(((*1 *2) + (-12 (-5 *2 (-1174)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *7)) (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) + (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *1 (-855 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1611 *3) (|:| |coef2| (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) + (-225 *4 (-383 (-523))))) + (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) + (-5 *1 (-476 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786))))) +(((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) + (-5 *2 (-1169 *6)) (-5 *1 (-312 *3 *4 *5 *6)) + (-4 *6 (-318 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-589 (-2 (|:| -1214 *1) (|:| -2647 (-589 *7))))) + (-5 *3 (-589 *7)) (-4 *1 (-1117 *4 *5 *6 *7))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-443)) (-5 *4 (-852)) (-5 *2 (-1174)) (-5 *1 (-1170))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) + (-5 *2 + (-3 (|:| |overq| (-1083 (-383 (-523)))) + (|:| |overan| (-1083 (-47))) (|:| -2453 (-108)))) + (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1145 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427))))) +(((*1 *2 *3) + (-12 (-5 *3 (-883 (-203))) (-5 *2 (-292 (-355))) (-5 *1 (-282))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-516 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4248)) (-4 *1 (-462 *4)) + (-4 *4 (-1123)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1142 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) + (-5 *2 (-523)) (-5 *1 (-1030 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-383 *5)) + (|:| |c2| (-383 *5)) (|:| |deg| (-710)))) + (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1145 (-383 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) + (-5 *2 (-355)) (-5 *1 (-244)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1169 (-292 (-203)))) (-5 *2 (-355)) (-5 *1 (-282))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) + ((*1 *2 *2) + (-12 (-4 *3 (-284)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-763)) (-5 *3 (-589 (-1087))) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-793)))) + ((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-895)))) + ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-918)))) + ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-1123)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1016) (-33))) (-5 *1 (-1052 *2 *3)) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) + (-5 *1 (-688))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1104))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) + (-5 *2 (-962)) (-5 *1 (-688))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-515)) + (-4 *7 (-880 *3 *5 *6)) + (-5 *2 (-2 (|:| -1475 (-710)) (|:| -3474 *8) (|:| |radicand| *8))) + (-5 *1 (-884 *5 *6 *3 *7 *8)) (-5 *4 (-710)) + (-4 *8 + (-13 (-339) + (-10 -8 (-15 -3316 (*7 $)) (-15 -3329 (*7 $)) (-15 -1691 ($ *7)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) + (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-772 (-523))) (-5 *1 (-497)))) + ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1016))))) +(((*1 *1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) + ((*1 *1 *1 *1) (-4 *1 (-448))) + ((*1 *1 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *2 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-814)))) + ((*1 *1 *1) (-5 *1 (-900))) + ((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-696))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-1083 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-2 (|:| -2424 *4) (|:| -2640 (-523))))) + (-4 *4 (-1145 (-523))) (-5 *2 (-677 (-710))) (-5 *1 (-417 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-394 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-973)) + (-5 *2 (-677 (-710))) (-5 *1 (-419 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *1) (-5 *1 (-762)))) +(((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1124 *2)) + (-4 *2 (-1016)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-786)) + (-5 *1 (-1124 *2))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1123)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1123)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) ((*1 *1 *1 *2) - (-3262 - (-12 (-5 *2 (-1087)) (-4 *1 (-1159 *3)) (-4 *3 (-973)) - (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1108)) - (-4 *3 (-37 (-383 (-523)))))) - (-12 (-5 *2 (-1087)) (-4 *1 (-1159 *3)) (-4 *3 (-973)) - (-12 (|has| *3 (-15 -1957 ((-589 *2) *3))) - (|has| *3 (-15 -3417 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1159 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1160 *3 *4 *5)) - (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) + (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) + (-4 *3 (-13 (-786) (-515))))) + ((*1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1) (-5 *1 (-452))) ((*1 *1) (-4 *1 (-1109)))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) + (-5 *1 (-696))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-589 + (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 *2)) + (|:| |logand| (-1083 *2))))) + (-5 *4 (-589 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-339)) (-5 *1 (-540 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-230 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-786)) - (-4 *5 (-732)) (-4 *2 (-243 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-515)))) - ((*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) + (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) + (-4 *3 (-1145 *4)) + (-4 *5 (-13 (-380) (-964 *4) (-339) (-1109) (-261)))))) +(((*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-108)) (-5 *1 (-244))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-629 (-203))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) + (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) + (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1087)) + (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-534 *4 *2)) + (-4 *2 (-13 (-1109) (-889) (-1051) (-29 *4)))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-339)) (-4 *1 (-305 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1144 *4)) (-4 *4 (-1126)) - (-4 *1 (-318 *4 *3 *5)) (-4 *5 (-1144 (-383 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1168 *1)) (-4 *4 (-158)) - (-4 *1 (-343 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1168 *1)) (-4 *4 (-158)) - (-4 *1 (-346 *4 *5)) (-4 *5 (-1144 *4)))) + (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) + (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -3316 ((-1039 *3 (-562 $)) $)) + (-15 -3329 ((-1039 *3 (-562 $)) $)) + (-15 -1691 ($ (-1039 *3 (-562 $)))))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-427)) + (-5 *2 + (-589 + (-2 (|:| |eigval| (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4)))) + (|:| |geneigvec| (-589 (-629 (-383 (-883 *4)))))))) + (-5 *1 (-269 *4)) (-5 *3 (-629 (-383 (-883 *4))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-710)) (-5 *4 (-1169 *2)) (-4 *5 (-284)) + (-4 *6 (-921 *5)) (-4 *2 (-13 (-385 *6 *7) (-964 *6))) + (-5 *1 (-389 *5 *6 *7 *2)) (-4 *7 (-1145 *6))))) +(((*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172)))) + ((*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172))))) +(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-710))))) +(((*1 *2 *1) + (-12 (-4 *1 (-349 *3)) (-4 *3 (-1123)) (-4 *3 (-786)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-349 *4)) (-4 *4 (-1123)) + (-5 *2 (-108))))) +(((*1 *2) + (-12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) + (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108))))) +(((*1 *1) (-5 *1 (-108)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1131 *3 *2)) (-4 *3 (-973)) + (-4 *2 (-1160 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-394 (-1083 *7))) + (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-840)) (-4 *5 (-1145 *4)) (-5 *2 (-394 (-1083 *5))) + (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-410)) + (-5 *2 + (-589 + (-3 (|:| -4198 (-1087)) + (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) + (-5 *1 (-1091))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-339)) (-5 *1 (-827 *2 *4)) + (-4 *2 (-1145 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *1) + (-12 (-4 *3 (-921 *2)) (-4 *4 (-1145 *3)) (-4 *2 (-284)) + (-5 *1 (-389 *2 *3 *4 *5)) (-4 *5 (-13 (-385 *3 *4) (-964 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-786)) (-5 *2 (-1039 *3 (-562 *1))) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) + ((*1 *2 *1) + (-12 (-4 *4 (-158)) (-4 *2 (|SubsetCategory| (-666) *4)) + (-5 *1 (-568 *3 *4 *2)) (-4 *3 (-37 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-158)) (-4 *2 (|SubsetCategory| (-666) *4)) + (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-657 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-589 *9)) (-5 *3 (-1 (-108) *9)) + (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) (-4 *8 (-786)) + (-5 *1 (-906 *6 *7 *8 *9))))) +(((*1 *2) + (-12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) + (-5 *2 (-710)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-710))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) + (-4 *2 (-216 *3 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-132))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *1 *1) (-5 *1 (-794))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-385 *3 *4)) - (-4 *4 (-1144 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-393 *3))))) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-1014 *3)))) + ((*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-222 *2)) (-4 *2 (-1123))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) - (-5 *2 (-523)) (-5 *1 (-1030 *4 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-108)) (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) - (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) - (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4)))))) -(((*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) - ((*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171))))) -(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-764))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-629 (-523))) (-5 *3 (-589 (-523))) (-5 *1 (-1026))))) -(((*1 *1) (-5 *1 (-413)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-1026))))) -(((*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-1016)) (-5 *2 (-710))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-692))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) - (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-60 *3)) (-14 *3 (-1087)))) - ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-67 *3)) (-14 *3 (-1087)))) - ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-70 *3)) (-14 *3 (-1087)))) - ((*1 *2 *1) (-12 (-4 *1 (-371)) (-5 *2 (-1173)))) - ((*1 *2 *3) (-12 (-5 *3 (-364)) (-5 *2 (-1173)) (-5 *1 (-373)))) + (-12 (-5 *3 (-589 (-2 (|:| -2424 (-1083 *6)) (|:| -1475 (-523))))) + (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-589 (-562 *4))) (-4 *4 (-406 *3)) (-4 *3 (-786)) + (-5 *1 (-532 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-268))) + ((*1 *1) (-5 *1 (-794))) + ((*1 *1) + (-12 (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) + (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1003))) + ((*1 *1) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33))))) + ((*1 *1) (-5 *1 (-1090))) ((*1 *1) (-5 *1 (-1091)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-108)) (-4 *7 (-987 *4 *5 *6)) + (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-906 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-14 *5 (-589 (-1087))) + (-5 *2 + (-589 (-2 (|:| -3558 (-1083 *4)) (|:| -2906 (-589 (-883 *4)))))) + (-5 *1 (-1193 *4 *5 *6)) (-14 *6 (-589 (-1087))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 + (-589 (-2 (|:| -3558 (-1083 *5)) (|:| -2906 (-589 (-883 *5)))))) + (-5 *1 (-1193 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 + (-589 (-2 (|:| -3558 (-1083 *5)) (|:| -2906 (-589 (-883 *5)))))) + (-5 *1 (-1193 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1070)) (-5 *4 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) - ((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 + (-589 (-2 (|:| -3558 (-1083 *5)) (|:| -2906 (-589 (-883 *5)))))) + (-5 *1 (-1193 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) ((*1 *2 *3) - (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1173)) (-5 *1 (-1050))))) + (-12 (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 + (-589 (-2 (|:| -3558 (-1083 *4)) (|:| -2906 (-589 (-883 *4)))))) + (-5 *1 (-1193 *4 *5 *6)) (-5 *3 (-589 (-883 *4))) + (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087)))))) (((*1 *2 *1) - (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (|partial| -12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) + (-5 *2 (-383 (-523))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-394 *3)) (-4 *3 (-508)) + (-4 *3 (-515)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-508)) (-5 *2 (-383 (-523))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) + (-5 *2 (-383 (-523))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-772 *3)) (-4 *3 (-508)) + (-4 *3 (-1016)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-779 *3)) (-4 *3 (-508)) + (-4 *3 (-1016)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) + (-5 *2 (-383 (-523))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-936 *3)) + (-4 *3 (-964 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *1) + (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1145 *4)) + (-5 *2 (-1169 *6)) (-5 *1 (-389 *3 *4 *5 *6)) + (-4 *6 (-13 (-385 *4 *5) (-964 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *3 (-786)) (-5 *2 (-1039 *3 (-562 *1))) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) + ((*1 *2 *1) + (-12 (-4 *3 (-158)) (-4 *2 (-37 *3)) (-5 *1 (-568 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-666) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-158)) (-4 *2 (-657 *3)) (-5 *1 (-605 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-666) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-171)) (-5 *3 (-523)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-158)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *2) + (-12 (-14 *4 (-710)) (-4 *5 (-1123)) (-5 *2 (-126)) + (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-339)) (-5 *2 (-126)) (-5 *1 (-304 *3 *4)) + (-4 *3 (-305 *4)))) + ((*1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-158)))) + ((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-523)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) + (-5 *2 (-523)) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-973)) (-5 *2 (-852)))) + ((*1 *2) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-339)) (-5 *2 (-126))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-938 *3)) (-4 *3 (-1123)) (-4 *3 (-1016)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-203))) (-5 *4 (-710)) (-5 *2 (-629 (-203))) - (-5 *1 (-282))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-325)) (-5 *2 (-1168 *1)))) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-784)) (-4 *4 (-339)) (-5 *2 (-710)) + (-5 *1 (-876 *4 *5)) (-4 *5 (-1145 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 (-355)) (-5 *1 (-185))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-427)))) + ((*1 *1 *1 *1) (-4 *1 (-427))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-134)) (-4 *1 (-840)) - (-5 *2 (-1168 *1))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-779 (-203)))) (-5 *4 (-203)) (-5 *2 (-589 *4)) - (-5 *1 (-244))))) + (-12 (-5 *3 (-589 *2)) (-5 *1 (-459 *2)) (-4 *2 (-1145 (-523))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1145 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-710))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) + (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-880 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *6 *4 *5)) + (-5 *1 (-847 *4 *5 *6 *2)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-284)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-1083 *7))) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-284)) (-5 *2 (-1083 *7)) (-5 *1 (-847 *4 *5 *6 *7)) + (-4 *7 (-880 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-852))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-427)) (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) + (-4 *2 (-1145 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427))))) +(((*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1104))))) +(((*1 *2 *1) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-295 *3 *4 *5)) + (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3)))) +(((*1 *1 *1) (-4 *1 (-515)))) +(((*1 *2 *2) (-12 (-5 *2 (-292 (-203))) (-5 *1 (-244))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 (-1083 *5))) (-5 *3 (-1083 *5)) + (-4 *5 (-152 *4)) (-4 *4 (-508)) (-5 *1 (-138 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 *3)) (-4 *3 (-1145 *5)) + (-4 *5 (-1145 *4)) (-4 *4 (-325)) (-5 *1 (-334 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 (-1083 (-523)))) (-5 *3 (-1083 (-523))) + (-5 *1 (-531)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 (-1083 *1))) (-5 *3 (-1083 *1)) + (-4 *1 (-840))))) (((*1 *2 *3) - (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)) - (-4 *4 (-973))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-692))))) + (-12 (-4 *4 (-973)) + (-4 *2 (-13 (-380) (-964 *4) (-339) (-1109) (-261))) + (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1145 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 (-1142 *5 *4))) + (-5 *1 (-1030 *4 *5)) (-5 *3 (-1142 *5 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) + (-4 *3 (-897))))) +(((*1 *2 *3) + (-12 (-5 *3 (-523)) (|has| *1 (-6 -4239)) (-4 *1 (-380)) + (-5 *2 (-852))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-852)) (-4 *5 (-786)) + (-5 *2 (-589 (-614 *5))) (-5 *1 (-614 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-427) (-136))) (-5 *2 (-394 *3)) + (-5 *1 (-95 *4 *3)) (-4 *3 (-1145 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-13 (-427) (-136))) + (-5 *2 (-394 *3)) (-5 *1 (-95 *5 *3))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) + (-5 *1 (-688))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-684 *3)) (-4 *3 (-158))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) + (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) + (-5 *1 (-574 *5 *6))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-213 *3)) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4248)) (-4 *1 (-213 *3)) (-4 *3 (-1016)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-259 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-836 *3))) (-4 *3 (-1016)) (-5 *1 (-835 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) - (-5 *2 (-2 (|:| |k| (-758 *3)) (|:| |c| *4)))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-367))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) + (-12 (|has| *1 (-6 -4248)) (-4 *1 (-213 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-259 *2)) (-4 *2 (-1123)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-259 *3)) (-4 *3 (-1123)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-560 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-523)) (-4 *4 (-1016)) + (-5 *1 (-677 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-5 *1 (-677 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2)))) + (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-172)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-725))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1123)) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966))))) +(((*1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) + ((*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1069)))) + ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1087))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-427)))) + ((*1 *1 *1 *1) (-4 *1 (-427)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-589 (-455 *5 *6))) (-5 *4 (-796 *5)) - (-14 *5 (-589 (-1087))) (-5 *2 (-455 *5 *6)) (-5 *1 (-577 *5 *6)) - (-4 *6 (-427)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-455 *5 *6))) (-5 *4 (-796 *5)) - (-14 *5 (-589 (-1087))) (-5 *2 (-455 *5 *6)) (-5 *1 (-577 *5 *6)) - (-4 *6 (-427))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) - ((*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) - (-4 *6 (-732)) (-5 *2 (-589 (-589 (-523)))) - (-5 *1 (-855 *4 *5 *6 *7)) (-5 *3 (-523)) (-4 *7 (-880 *4 *6 *5))))) + (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) + ((*1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973))))) +(((*1 *1 *1) (-4 *1 (-982))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-687))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-589 (-895))) (-5 *1 (-268))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-92))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-494 *3)) (-4 *3 (-13 (-666) (-25)))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-541 *2)) (-4 *2 (-508))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-515)) (-4 *2 (-880 *3 *5 *4)) - (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-383 (-883 *6))) (-4 *5 (-732)) - (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)))))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-589 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1116 *5 *6 *7 *8)) (-4 *5 (-515)) - (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-515)) (-4 *3 (-158)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) - (-4 *2 (-627 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1091))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-155 (-383 (-523))))) - (-5 *2 - (-589 - (-2 (|:| |outval| (-155 *4)) (|:| |outmult| (-523)) - (|:| |outvect| (-589 (-629 (-155 *4))))))) - (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784)))))) -(((*1 *2 *3) (-12 (-5 *3 (-364)) (-5 *2 (-1173)) (-5 *1 (-367)))) - ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-367))))) -(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2935 *3) (|:| |gap| (-710)) (|:| -3445 (-721 *3)) - (|:| -3282 (-721 *3)))) - (-5 *1 (-721 *3)) (-4 *3 (-973)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) - (-5 *2 - (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3445 *1) - (|:| -3282 *1))) - (-4 *1 (-987 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *2 - (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3445 *1) - (|:| -3282 *1))) - (-4 *1 (-987 *3 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) + (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-151 *3 *4)) + (-4 *3 (-152 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1123)) (-5 *2 (-710)) + (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-786)) (-5 *2 (-710)) (-5 *1 (-405 *3 *4)) + (-4 *3 (-406 *4)))) + ((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-507 *3)) (-4 *3 (-508)))) + ((*1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-710)))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-735 *3 *4)) + (-4 *3 (-736 *4)))) + ((*1 *2) + (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-920 *3 *4)) + (-4 *3 (-921 *4)))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-924 *3 *4)) + (-4 *3 (-925 *4)))) + ((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) + ((*1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-710)))) + ((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-981 *3)) (-4 *3 (-982))))) (((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-523)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-710)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-852)))) @@ -5045,16 +4798,16 @@ ((*1 *1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-144)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-144)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108))) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109))) (-5 *1 (-205 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) + (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1123)) (-4 *2 (-666)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) + (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1123)) (-4 *2 (-666)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-271 *2)) (-4 *2 (-1028)) (-4 *2 (-1122)))) + (-12 (-5 *1 (-271 *2)) (-4 *2 (-1028)) (-4 *2 (-1123)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-271 *2)) (-4 *2 (-1028)) (-4 *2 (-1122)))) + (-12 (-5 *1 (-271 *2)) (-4 *2 (-1028)) (-4 *2 (-1123)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-124)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-1016)))) @@ -5067,10 +4820,10 @@ ((*1 *1 *2 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) - (-4 *6 (-216 (-2676 *3) (-710))) + (-4 *6 (-216 (-2810 *3) (-710))) (-14 *7 - (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *6)) - (-2 (|:| -3878 *5) (|:| -2735 *6)))) + (-1 (-108) (-2 (|:| -4013 *5) (|:| -1475 *6)) + (-2 (|:| -4013 *5) (|:| -1475 *6)))) (-5 *1 (-436 *3 *4 *5 *6 *7 *2)) (-4 *5 (-786)) (-4 *2 (-880 *4 *6 (-796 *3))))) ((*1 *1 *1 *2) @@ -5081,7 +4834,7 @@ (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1168 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) ((*1 *1 *1 *1) (-5 *1 (-499))) ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-549 *2)) (-4 *2 (-973)))) @@ -5116,7 +4869,7 @@ ((*1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-515)) + (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-515)) (-5 *1 (-899 *3 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-979 *2)) (-4 *2 (-980)))) ((*1 *1 *1 *1) (-4 *1 (-1028))) @@ -5136,125 +4889,114 @@ ((*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-874 (-203))) (-5 *3 (-203)) (-5 *1 (-1119)))) + (-12 (-5 *2 (-874 (-203))) (-5 *3 (-203)) (-5 *1 (-1120)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) + (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-666)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) + (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-666)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-523)) (-4 *1 (-1166 *3)) (-4 *3 (-1122)) (-4 *3 (-21)))) + (-12 (-5 *2 (-523)) (-4 *1 (-1167 *3)) (-4 *3 (-1123)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) + (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) + (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-710)) (-4 *4 (-284)) (-4 *6 (-1144 *4)) - (-5 *2 (-1168 (-589 *6))) (-5 *1 (-430 *4 *6)) (-5 *5 (-589 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) - (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-899 *4 *3)) - (-4 *3 (-1144 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-1101))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-4 *2 (-1016)) - (-5 *1 (-820 *4 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-523)) (-5 *1 (-528 *3)) (-4 *3 (-964 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1002 *3)) (-4 *3 (-125))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-710)) (-5 *1 (-617 *2)) (-4 *2 (-1016))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-413))))) - (-5 *1 (-1091))))) -(((*1 *2 *1) - (-12 (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) - (-5 *2 (-1168 *6)) (-5 *1 (-312 *3 *4 *5 *6)) - (-4 *6 (-318 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973))))) -(((*1 *2 *2) - (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) - (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) - (-4 *2 - (-13 (-339) (-279) - (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) - (-15 -2797 ((-1039 *3 (-562 $)) $)) - (-15 -1458 ($ (-1039 *3 (-562 $)))))))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-410)) - (-5 *2 - (-589 - (-3 (|:| -4038 (-1087)) - (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) - (-5 *1 (-1091))))) + (-12 (-5 *1 (-1190 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))) + (-4 *2 (-13 (-786) (-21)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) + (-5 *4 (-3 (-1 (-203) (-203) (-203) (-203)) "undefined")) + (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) + (-5 *1 (-636))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -1825 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-339)) (-5 *1 (-533 *4 *2)) (-4 *2 (-1145 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-105))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) - (-5 *2 (-383 (-523))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-394 *3)) (-4 *3 (-508)) - (-4 *3 (-515)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-508)) (-5 *2 (-383 (-523))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) - (-5 *2 (-383 (-523))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-772 *3)) (-4 *3 (-508)) - (-4 *3 (-1016)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-779 *3)) (-4 *3 (-508)) - (-4 *3 (-1016)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) - (-5 *2 (-383 (-523))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-936 *3)) - (-4 *3 (-964 *2))))) -(((*1 *1 *1) (-4 *1 (-515)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *5)) (-5 *4 (-852)) (-4 *5 (-786)) - (-5 *2 (-589 (-614 *5))) (-5 *1 (-614 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) - (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2)))) - (-5 *2 (-962)) (-5 *1 (-693))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-589 (-895))) (-5 *1 (-268))))) + (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-155 (-203)) (-155 (-203)))) (-5 *4 (-1011 (-203))) + (-5 *2 (-1171)) (-5 *1 (-234))))) (((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-589 *3)) (|:| |image| (-589 *3)))) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-697))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-124))))) +(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-710)) (-5 *4 (-523)) (-5 *1 (-420 *2)) (-4 *2 (-973))))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325))))) +(((*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-973))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-585 *5)) (-4 *5 (-339)) + (-4 *5 (-515)) (-5 *2 (-1169 *5)) (-5 *1 (-584 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-585 *5)) + (-4179 (-4 *5 (-339))) (-4 *5 (-515)) (-5 *2 (-1169 (-383 *5))) + (-5 *1 (-584 *5 *4))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-629 (-203))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) + (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) + (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-523)) (-4 *2 (-406 *3)) (-5 *1 (-31 *3 *2)) + (-4 *3 (-964 *4)) (-4 *3 (-13 (-786) (-515)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-499))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-339)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1621 *1))) + (-4 *1 (-788 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) + (-5 *2 (-1083 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1070)) (-5 *1 (-725))))) +(((*1 *2 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-589 *11)) + (|:| |todo| (-589 (-2 (|:| |val| *3) (|:| -3643 *11)))))) + (-5 *6 (-710)) + (-5 *2 (-589 (-2 (|:| |val| (-589 *10)) (|:| -3643 *11)))) + (-5 *3 (-589 *10)) (-5 *4 (-589 *11)) (-4 *10 (-987 *7 *8 *9)) + (-4 *11 (-992 *7 *8 *9 *10)) (-4 *7 (-427)) (-4 *8 (-732)) + (-4 *9 (-786)) (-5 *1 (-990 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-589 *11)) + (|:| |todo| (-589 (-2 (|:| |val| *3) (|:| -3643 *11)))))) + (-5 *6 (-710)) + (-5 *2 (-589 (-2 (|:| |val| (-589 *10)) (|:| -3643 *11)))) + (-5 *3 (-589 *10)) (-5 *4 (-589 *11)) (-4 *10 (-987 *7 *8 *9)) + (-4 *11 (-1025 *7 *8 *9 *10)) (-4 *7 (-427)) (-4 *8 (-732)) + (-4 *9 (-786)) (-5 *1 (-1057 *7 *8 *9 *10 *11))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-823 *6))) + (-5 *5 (-1 (-820 *6 *8) *8 (-823 *6) (-820 *6 *8))) (-4 *6 (-1016)) + (-4 *8 (-13 (-973) (-564 (-823 *6)) (-964 *7))) (-5 *2 (-820 *6 *8)) + (-4 *7 (-13 (-973) (-786))) (-5 *1 (-872 *6 *7 *8))))) (((*1 *2 *1) (-12 (-5 *2 (-589 (-883 (-523)))) (-5 *1 (-413)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-629 (-203))) (-5 *2 (-1020)) @@ -5262,1227 +5004,533 @@ ((*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-629 (-523))) (-5 *2 (-1020)) (-5 *1 (-699))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1016)) (-4 *2 (-831 *4)) (-5 *1 (-631 *4 *2 *5 *3)) + (-4 *5 (-349 *2)) (-4 *3 (-13 (-349 *4) (-10 -7 (-6 -4248))))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-203)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-203)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-355)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-355))))) +(((*1 *1) + (-12 (-4 *1 (-380)) (-4179 (|has| *1 (-6 -4239))) + (-4179 (|has| *1 (-6 -4231))))) + ((*1 *2 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-786)))) + ((*1 *2 *1) (-12 (-4 *1 (-769 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) (-4 *1 (-786))) ((*1 *1) (-5 *1 (-1034)))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *2 *3) + (-12 (-5 *3 (-758 *4)) (-4 *4 (-786)) (-5 *2 (-108)) + (-5 *1 (-614 *4))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-562 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) (-5 *5 (-1083 *2)) + (-4 *2 (-13 (-406 *6) (-27) (-1109))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *1 (-519 *6 *2 *7)) (-4 *7 (-1016)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-562 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) + (-5 *5 (-383 (-1083 *2))) (-4 *2 (-13 (-406 *6) (-27) (-1109))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *1 (-519 *6 *2 *7)) (-4 *7 (-1016))))) +(((*1 *2 *3) + (-12 (-4 *4 (-37 (-383 (-523)))) + (-5 *2 (-2 (|:| -1260 (-1068 *4)) (|:| -1274 (-1068 *4)))) + (-5 *1 (-1074 *4)) (-5 *3 (-1068 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-498 *2)) (-4 *2 (-1123)))) + ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-499))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) + (-5 *2 + (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) ((*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-742))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-515)) - (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-1139 *4 *3)) - (-4 *3 (-1144 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *2 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016))))) -(((*1 *1 *1) (-4 *1 (-575))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930) (-1108)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1018 (-1018 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-339)) (-5 *1 (-602 *4 *2)) - (-4 *2 (-599 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168 (-292 (-203)))) - (-5 *2 - (-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) - (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523)))) - (-5 *1 (-282))))) -(((*1 *2 *1) - (-12 (-4 *3 (-973)) (-5 *2 (-1168 *3)) (-5 *1 (-652 *3 *4)) - (-4 *4 (-1144 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-589 (-562 *5))) (-5 *3 (-1087)) (-4 *5 (-406 *4)) - (-4 *4 (-786)) (-5 *1 (-532 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-110)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1070)) (-4 *4 (-786)) (-5 *1 (-860 *4 *2)) - (-4 *2 (-406 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1087)) (-5 *4 (-1070)) (-5 *2 (-292 (-523))) - (-5 *1 (-861))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-51)) (-5 *1 (-823 *4)) - (-4 *4 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-795)))) - ((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-795)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1070)) (-5 *4 (-794)) (-5 *2 (-1173)) (-5 *1 (-795)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-1068 *4)) - (-4 *4 (-1016)) (-4 *4 (-1122))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) - (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-589 (-562 *3))) - (|:| |vals| (-589 *3)))) - (-5 *1 (-254 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523))))) -(((*1 *2 *3) - (-12 (-5 *3 (-292 (-203))) (-5 *2 (-292 (-355))) (-5 *1 (-282))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-3 (-108) (-589 *1))) - (-4 *1 (-992 *4 *5 *6 *3))))) -(((*1 *1) (-5 *1 (-268)))) -(((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-638)) (-5 *1 (-282))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-1046 *4 *2)) - (-4 *2 (-13 (-556 (-523) *4) (-10 -7 (-6 -4244) (-6 -4245)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-786)) (-4 *3 (-1122)) (-5 *1 (-1046 *3 *2)) - (-4 *2 (-13 (-556 (-523) *3) (-10 -7 (-6 -4244) (-6 -4245))))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1016))))) +(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-379 *3)) (-4 *3 (-380)))) + ((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-379 *3)) (-4 *3 (-380)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4239)) (-4 *1 (-380)))) + ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) + ((*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-1068 (-523)))))) (((*1 *2 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-710)) - (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-288)) (-5 *1 (-273)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-589 (-1070))) (-5 *3 (-1070)) (-5 *2 (-288)) - (-5 *1 (-273))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1087)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-883 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1087)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-786) (-515))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-786) (-515))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *2)) (-5 *4 (-1087)) (-4 *2 (-406 *5)) - (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-786) (-515))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-852)) (-4 *1 (-940)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-852)) (-5 *4 (-794)) - (-4 *1 (-940)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-852)) (-4 *4 (-13 (-784) (-339))) - (-4 *1 (-989 *4 *2)) (-4 *2 (-1144 *4))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-589 *1)) (-4 *1 (-851))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-1 *5 (-589 *5))) (-4 *5 (-1160 *4)) + (-4 *4 (-37 (-383 (-523)))) + (-5 *2 (-1 (-1068 *4) (-589 (-1068 *4)))) (-5 *1 (-1162 *4 *5))))) +(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-692))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-203)) - (-5 *2 - (-2 (|:| |brans| (-589 (-589 (-874 *4)))) - (|:| |xValues| (-1011 *4)) (|:| |yValues| (-1011 *4)))) - (-5 *1 (-142)) (-5 *3 (-589 (-589 (-874 *4))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) - (-4 *3 (-13 (-339) (-1108) (-930))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1126)) (-4 *5 (-1144 (-383 *2))) - (-4 *2 (-1144 *4)) (-5 *1 (-317 *3 *4 *2 *5)) - (-4 *3 (-318 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-318 *3 *2 *4)) (-4 *3 (-1126)) - (-4 *4 (-1144 (-383 *2))) (-4 *2 (-1144 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-732)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) - (-5 *2 (-108)) (-5 *1 (-424 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-4 *1 (-508)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-836 (-523))) (-5 *4 (-523)) (-5 *2 (-629 *4)) - (-5 *1 (-955 *5)) (-4 *5 (-973)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-955 *4)) - (-4 *4 (-973)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-836 (-523)))) (-5 *4 (-523)) - (-5 *2 (-589 (-629 *4))) (-5 *1 (-955 *5)) (-4 *5 (-973)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-589 (-523)))) (-5 *2 (-589 (-629 (-523)))) - (-5 *1 (-955 *4)) (-4 *4 (-973))))) + (-5 *1 (-695))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-499))) (-5 *2 (-1087)) (-5 *1 (-499))))) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) + (-4 *2 + (-13 (-378) + (-10 -7 (-15 -1691 (*2 *4)) (-15 -2060 ((-852) *2)) + (-15 -3760 ((-1169 *2) (-852))) (-15 -2009 (*2 *2))))) + (-5 *1 (-332 *2 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-479 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-786))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-852)) (-4 *5 (-284)) (-4 *3 (-1144 *5)) - (-5 *2 (-2 (|:| |plist| (-589 *3)) (|:| |modulo| *5))) - (-5 *1 (-435 *5 *3)) (-5 *4 (-589 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1083 *6)) (-4 *6 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *2 (-1083 *7)) (-5 *1 (-297 *4 *5 *6 *7)) - (-4 *7 (-880 *6 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) - ((*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171))))) -(((*1 *1) (-5 *1 (-108)))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-883 (-523))) (-5 *3 (-1087)) - (-5 *4 (-1011 (-383 (-523)))) (-5 *1 (-30))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) - (-4 *4 (-158)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-786)) - (-4 *4 (-973))))) -(((*1 *1) (-5 *1 (-133))) ((*1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *3) - (-12 (-5 *3 (-629 (-383 (-883 (-523))))) + (-12 (-5 *5 (-710)) (-5 *6 (-108)) (-4 *7 (-427)) (-4 *8 (-732)) + (-4 *9 (-786)) (-4 *3 (-987 *7 *8 *9)) (-5 *2 - (-589 - (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) - (|:| |radvect| (-589 (-629 (-292 (-523)))))))) - (-5 *1 (-958))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) - (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-709 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-515)) - (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-709 *4)))) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) + (-5 *1 (-990 *7 *8 *9 *3 *4)) (-4 *4 (-992 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4041 (-589 *6))) - *7 *6)) - (-4 *6 (-339)) (-4 *7 (-599 *6)) + (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) (-5 *2 - (-2 (|:| |particular| (-3 (-1168 *6) "failed")) - (|:| -4041 (-589 (-1168 *6))))) - (-5 *1 (-752 *6 *7)) (-5 *4 (-1168 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-48))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-219))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-1128 *4)) (-4 *4 (-973)) (-4 *4 (-515)) - (-5 *2 (-383 (-883 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-1128 *4)) (-4 *4 (-973)) (-4 *4 (-515)) - (-5 *2 (-383 (-883 *4)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-589 (-562 *4))) (-4 *4 (-406 *3)) (-4 *3 (-786)) - (-5 *1 (-532 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) - ((*1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) - (-4 *5 (-1144 *4)) (-5 *2 (-589 (-2 (|:| -1288 *5) (|:| -1915 *5)))) - (-5 *1 (-746 *4 *5 *3 *6)) (-4 *3 (-599 *5)) - (-4 *6 (-599 (-383 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) - (-4 *4 (-1144 *5)) (-5 *2 (-589 (-2 (|:| -1288 *4) (|:| -1915 *4)))) - (-5 *1 (-746 *5 *4 *3 *6)) (-4 *3 (-599 *4)) - (-4 *6 (-599 (-383 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) - (-4 *5 (-1144 *4)) (-5 *2 (-589 (-2 (|:| -1288 *5) (|:| -1915 *5)))) - (-5 *1 (-746 *4 *5 *6 *3)) (-4 *6 (-599 *5)) - (-4 *3 (-599 (-383 *5))))) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) + (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) - (-4 *4 (-1144 *5)) (-5 *2 (-589 (-2 (|:| -1288 *4) (|:| -1915 *4)))) - (-5 *1 (-746 *5 *4 *6 *3)) (-4 *6 (-599 *4)) - (-4 *3 (-599 (-383 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1168 *5)) (-4 *5 (-585 *4)) (-4 *4 (-515)) - (-5 *2 (-1168 *4)) (-5 *1 (-584 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *1 (-1109 *2)) (-4 *2 (-1016)))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-1109 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-589 (-1109 *2))) (-5 *1 (-1109 *2)) (-4 *2 (-1016))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-905 *4 *5 *6 *3)) (-4 *4 (-973)) (-4 *5 (-732)) - (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-339)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-533 *5 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1159 *4)) - (-4 *4 (-37 (-383 (-523)))) - (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1161 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-427)))) - ((*1 *1 *1 *1) (-4 *1 (-427))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 *2)) (-5 *1 (-459 *2)) (-4 *2 (-1144 (-523))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1144 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-710))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) - (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-880 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *6 *4 *5)) - (-5 *1 (-847 *4 *5 *6 *2)) (-4 *4 (-732)) (-4 *5 (-786)) - (-4 *6 (-284)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-1083 *7))) (-4 *4 (-732)) (-4 *5 (-786)) - (-4 *6 (-284)) (-5 *2 (-1083 *7)) (-5 *1 (-847 *4 *5 *6 *7)) - (-4 *7 (-880 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-852))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-427)) (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) - (-4 *2 (-1144 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-427))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) - (|:| -4041 (-589 (-1168 (-383 (-883 *4))))))) - (-5 *3 (-589 *7)) (-4 *4 (-13 (-284) (-136))) - (-4 *7 (-880 *4 *6 *5)) (-4 *5 (-13 (-786) (-564 (-1087)))) - (-4 *6 (-732)) (-5 *1 (-855 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-562 *4)) (-5 *6 (-1087)) - (-4 *4 (-13 (-406 *7) (-27) (-1108))) - (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) - (-5 *1 (-525 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1171))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *1 *2 *2) - (-12 + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) + (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-710)) (-5 *6 (-108)) (-4 *7 (-427)) (-4 *8 (-732)) + (-4 *9 (-786)) (-4 *3 (-987 *7 *8 *9)) (-5 *2 - (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) - (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) - (-5 *1 (-1086))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1144 *9)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-284)) - (-4 *10 (-880 *9 *7 *8)) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) + (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1025 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-589 (-1083 *10))) - (|:| |dterm| - (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-589 *6)) (|:| |nlead| (-589 *10)))) - (-5 *1 (-717 *6 *7 *8 *9 *10)) (-5 *3 (-1083 *10)) (-5 *4 (-589 *6)) - (-5 *5 (-589 *10))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-589 (-1087))) (-4 *2 (-158)) - (-4 *3 (-216 (-2676 *4) (-710))) - (-14 *6 - (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *3)) - (-2 (|:| -3878 *5) (|:| -2735 *3)))) - (-5 *1 (-436 *4 *2 *5 *3 *6 *7)) (-4 *5 (-786)) - (-4 *7 (-880 *2 *3 (-796 *4)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1122)) (-4 *2 (-973)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) - ((*1 *1 *1) (-5 *1 (-794))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-874 (-203))) (-5 *2 (-203)) (-5 *1 (-1119)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-973))))) -(((*1 *1) (-5 *1 (-742)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1016)) (-4 *6 (-817 *5)) (-5 *2 (-816 *5 *6 (-589 *6))) - (-5 *1 (-818 *5 *6 *4)) (-5 *3 (-589 *6)) (-4 *4 (-564 (-823 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1016)) (-5 *2 (-589 (-271 *3))) (-5 *1 (-818 *5 *3 *4)) - (-4 *3 (-964 (-1087))) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1016)) (-5 *2 (-589 (-271 (-883 *3)))) - (-5 *1 (-818 *5 *3 *4)) (-4 *3 (-973)) - (-3900 (-4 *3 (-964 (-1087)))) (-4 *3 (-817 *5)) - (-4 *4 (-564 (-823 *5))))) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) + (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1025 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1016)) (-5 *2 (-820 *5 *3)) (-5 *1 (-818 *5 *3 *4)) - (-3900 (-4 *3 (-964 (-1087)))) (-3900 (-4 *3 (-973))) - (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5)))))) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) + (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) - (|:| |explanations| (-589 (-1070))))) - (-5 *2 (-962)) (-5 *1 (-282)))) + (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-585 (-523))) + (-5 *2 (-1169 (-523))) (-5 *1 (-1194 *4))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-1174)) + (-5 *1 (-409 *3 *4)) (-4 *4 (-406 *3))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-742))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) + (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) + (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) + (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) - (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) - (-5 *2 (-962)) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) + (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) + (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) + (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *5)) (-5 *4 (-852)) (-4 *5 (-786)) - (-5 *2 (-57 (-589 (-614 *5)))) (-5 *1 (-614 *5))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-5 *4 (-108)) (-5 *2 - (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) - (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) - (-5 *1 (-1086))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) - (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-367))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-108)) (-5 *1 (-110)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-1087)) (-5 *2 (-108)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-110)) (-5 *2 (-108)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1087)) (-5 *2 (-108)) (-5 *1 (-562 *4)) (-4 *4 (-786)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-562 *4)) (-4 *4 (-786)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1016)) (-5 *2 (-108)) (-5 *1 (-818 *5 *3 *4)) - (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) + (-2 (|:| |contp| (-523)) + (|:| -3491 (-589 (-2 (|:| |irr| *3) (|:| -1787 (-523))))))) + (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *6)) (-4 *6 (-817 *5)) (-4 *5 (-1016)) - (-5 *2 (-108)) (-5 *1 (-818 *5 *6 *4)) (-4 *4 (-564 (-823 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-589 *2) *2 *2 *2)) (-4 *2 (-1016)) - (-5 *1 (-98 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-98 *2))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) - ((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *1 *1) (-5 *1 (-1086))) - ((*1 *1 *2) - (-12 + (-12 (-5 *4 (-108)) (-5 *2 - (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) - (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) - (-5 *1 (-1086))))) -(((*1 *2 *3) (-12 (-5 *3 (-383 (-523))) (-5 *2 (-203)) (-5 *1 (-282))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1068 (-383 *3))) (-5 *1 (-159 *3)) (-4 *3 (-284))))) + (-2 (|:| |contp| (-523)) + (|:| -3491 (-589 (-2 (|:| |irr| *3) (|:| -1787 (-523))))))) + (-5 *1 (-1134 *3)) (-4 *3 (-1145 (-523)))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-427)) (-5 *2 (-108)) - (-5 *1 (-336 *4 *5)) (-14 *5 (-589 (-1087))))) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 (-383 (-883 *4))) (-5 *1 (-855 *4 *5 *6 *3)) + (-4 *3 (-880 *4 *6 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-589 (-719 *4 (-796 *5)))) (-4 *4 (-427)) - (-14 *5 (-589 (-1087))) (-5 *2 (-108)) (-5 *1 (-574 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-710)) (-5 *3 (-874 *4)) (-4 *1 (-1048 *4)) - (-4 *4 (-973)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-710)) (-5 *4 (-874 (-203))) (-5 *2 (-1173)) - (-5 *1 (-1170))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-3 *3 (-589 *1))) - (-4 *1 (-992 *4 *5 *6 *3))))) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-880 *4 *6 *5)) + (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 (-629 (-383 (-883 *4)))) + (-5 *1 (-855 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) + (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 (-589 (-383 (-883 *4)))) + (-5 *1 (-855 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) + (-4 *5 (-1145 *4)) (-5 *2 (-589 (-383 *5))) (-5 *1 (-944 *4 *5)) + (-5 *3 (-383 *5))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-427)))) - ((*1 *1 *1 *1) (-4 *1 (-427)))) + (-12 (-4 *3 (-13 (-284) (-136))) (-4 *4 (-13 (-786) (-564 (-1087)))) + (-4 *5 (-732)) (-5 *1 (-855 *3 *4 *5 *2)) (-4 *2 (-880 *3 *5 *4))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-1140 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-271 (-772 *3))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-772 *3)) (-5 *1 (-582 *5 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-271 (-772 (-883 *5)))) (-4 *5 (-427)) + (-5 *2 (-772 (-383 (-883 *5)))) (-5 *1 (-583 *5)) + (-5 *3 (-383 (-883 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-271 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) + (-4 *5 (-427)) (-5 *2 (-772 *3)) (-5 *1 (-583 *5))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-475 (-383 (-523)) (-218 *4 (-710)) (-796 *3) - (-225 *3 (-383 (-523))))) - (-14 *3 (-589 (-1087))) (-14 *4 (-710)) (-5 *1 (-476 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-768))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) - (-4 *5 (-1144 *4)) - (-5 *2 (-2 (|:| -2462 (-383 *5)) (|:| |coeff| (-383 *5)))) - (-5 *1 (-527 *4 *5)) (-5 *3 (-383 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3)))))) -(((*1 *2) - (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-393 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-157))))) -(((*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158))))) + (-12 (-4 *4 (-427)) (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2086 *4))) (-5 *1 (-899 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-355))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-973)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1120)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-973))))) +(((*1 *1 *1) (-4 *1 (-575))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930) (-1109)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) (((*1 *2 *2) - (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-339) (-279) - (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) - (-15 -2797 ((-1039 *3 (-562 $)) $)) - (-15 -1458 ($ (-1039 *3 (-562 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-339) (-279) - (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) - (-15 -2797 ((-1039 *3 (-562 $)) $)) - (-15 -1458 ($ (-1039 *3 (-562 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-589 *2)) - (-4 *2 - (-13 (-339) (-279) - (-10 -8 (-15 -2785 ((-1039 *4 (-562 $)) $)) - (-15 -2797 ((-1039 *4 (-562 $)) $)) - (-15 -1458 ($ (-1039 *4 (-562 $))))))) - (-4 *4 (-515)) (-5 *1 (-40 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-589 (-562 *2))) - (-4 *2 - (-13 (-339) (-279) - (-10 -8 (-15 -2785 ((-1039 *4 (-562 $)) $)) - (-15 -2797 ((-1039 *4 (-562 $)) $)) - (-15 -1458 ($ (-1039 *4 (-562 $))))))) - (-4 *4 (-515)) (-5 *1 (-40 *4 *2))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) - (-5 *1 (-1072 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-523)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) - (-14 *4 (-1087)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-13 (-284) (-136))) - (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) - (-5 *2 (-589 (-383 (-883 *4)))) (-5 *1 (-855 *4 *5 *6 *7)) - (-4 *7 (-880 *4 *6 *5))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1161 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) + (-14 *4 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)) - (-4 *6 (-1016)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-624 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-355)) (-5 *1 (-724 *3)) (-4 *3 (-564 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-852)) (-5 *2 (-355)) (-5 *1 (-724 *3)) - (-4 *3 (-564 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 *2)) - (-5 *2 (-355)) (-5 *1 (-724 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) - (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) + (-4 *5 (-13 (-27) (-1109) (-406 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 *2)) - (-5 *2 (-355)) (-5 *1 (-724 *4)))) + (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) - (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) - (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) + (-12 (-5 *4 (-383 (-523))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) - (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5))))) -(((*1 *1) (-5 *1 (-1003)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) - (-5 *2 - (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) - (|:| |success| (-108)))) - (-5 *1 (-728)) (-5 *5 (-523))))) -(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) - ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) - ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1153 *4 *5 *6)) - (|:| |%expon| (-295 *4 *5 *6)) - (|:| |%expTerms| - (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| *4)))))) - (|:| |%type| (-1070)))) - (-5 *1 (-1154 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1108) (-406 *3))) - (-14 *5 (-1087)) (-14 *6 *4)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-786)) (-5 *2 (-589 *1)) - (-4 *1 (-406 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) - (-4 *3 (-1016)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) - (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *3)) - (-5 *1 (-881 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-339) - (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) - (-15 -2797 (*7 $)))))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) - (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-203)) (-5 *2 (-108)) (-5 *1 (-276 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) + (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-271 *3)) (-5 *5 (-383 (-523))) + (-4 *3 (-13 (-27) (-1109) (-406 *6))) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1011 (-779 (-203)))) (-5 *3 (-203)) (-5 *2 (-108)) - (-5 *1 (-282)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) - (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1122)) - (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-349 *2)) - (-4 *5 (-349 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-589 (-523))) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) - (-14 *4 (-523)) (-14 *5 (-710)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-710)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-710)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-710)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-710)))) - ((*1 *2 *1) - (-12 (-4 *2 (-158)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-523)) - (-14 *4 (-710)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1087)) (-5 *2 (-223 (-1070))) (-5 *1 (-193 *4)) - (-4 *4 - (-13 (-786) - (-10 -8 (-15 -3223 ((-1070) $ *3)) (-15 -3973 ((-1173) $)) - (-15 -2823 ((-1173) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-918)) (-5 *1 (-193 *3)) - (-4 *3 - (-13 (-786) - (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) - (-15 -2823 ((-1173) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-710)) (-5 *1 (-223 *4)) (-4 *4 (-786)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-223 *3)) (-4 *3 (-786)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-223 *3)) (-4 *3 (-786)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-158)) (-5 *1 (-266 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1144 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 *1)) (-4 *1 (-279)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-318 *2 *3 *4)) (-4 *2 (-1126)) (-4 *3 (-1144 *2)) - (-4 *4 (-1144 (-383 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-393 *2)) (-4 *2 (-158)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1070)) (-5 *1 (-473)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-51)) (-5 *1 (-578)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1135 (-523))) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-710)) (-5 *1 (-617 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-589 (-523))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + (-12 (-5 *3 (-1 *6 (-523))) (-5 *4 (-271 *6)) + (-4 *6 (-13 (-27) (-1109) (-406 *5))) + (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *6))) + (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1136 (-523))) + (-4 *7 (-13 (-27) (-1109) (-406 *6))) + (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1136 (-523))) + (-4 *3 (-13 (-27) (-1109) (-406 *7))) + (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-383 (-523)))) (-5 *4 (-271 *8)) + (-5 *5 (-1136 (-383 (-523)))) (-5 *6 (-383 (-523))) + (-4 *8 (-13 (-27) (-1109) (-406 *7))) + (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1136 (-383 (-523)))) + (-5 *7 (-383 (-523))) (-4 *3 (-13 (-27) (-1109) (-406 *8))) + (-4 *8 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) + (-4 *3 (-973)) (-5 *1 (-548 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-549 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) + (-4 *3 (-973)) (-4 *1 (-1129 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-589 (-823 *4))) (-5 *1 (-823 *4)) - (-4 *4 (-1016)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1016)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-836 *4)) (-5 *1 (-835 *4)) - (-4 *4 (-1016)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-218 *4 *2)) (-14 *4 (-852)) (-4 *2 (-339)) - (-5 *1 (-922 *4 *2)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-938 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) (-4 *2 (-973)) - (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) - (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)) (-4 *2 (-973)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-852)) (-4 *4 (-1016)) - (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) - (-5 *1 (-995 *4 *5 *2)) - (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-852)) (-4 *4 (-1016)) - (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) - (-5 *1 (-996 *4 *5 *2)) - (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-589 (-523))) (-4 *1 (-1019 *3 *4 *5 *6 *7)) - (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) - (-4 *7 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-523)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) - (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)))) - ((*1 *1 *1 *1) (-4 *1 (-1056))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-383 *1)) (-4 *1 (-1144 *2)) (-4 *2 (-973)) - (-4 *2 (-339)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-383 *1)) (-4 *1 (-1144 *3)) (-4 *3 (-973)) - (-4 *3 (-515)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1146 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3) - (-12 (-5 *2 (-523)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973))))) -(((*1 *1) (-5 *1 (-268)))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1016) (-33))) - (-5 *2 (-108)) (-5 *1 (-1052 *4 *5)) (-4 *4 (-13 (-1016) (-33)))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-339)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-383 *3))) - (-4 *1 (-311 *4 *3 *5 *2)) (-4 *2 (-318 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-523)) (-4 *2 (-339)) (-4 *4 (-1144 *2)) - (-4 *5 (-1144 (-383 *4))) (-4 *1 (-311 *2 *4 *5 *6)) - (-4 *6 (-318 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-339)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-383 *3))) - (-4 *1 (-311 *2 *3 *4 *5)) (-4 *5 (-318 *2 *3 *4)))) + (-12 (-5 *2 (-710)) + (-5 *3 (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| *4)))) + (-4 *4 (-973)) (-4 *1 (-1150 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) - (-4 *1 (-311 *3 *4 *5 *2)) (-4 *2 (-318 *3 *4 *5)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-4 *1 (-1160 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-389 *4 (-383 *4) *5 *6)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-4 *3 (-339)) - (-4 *1 (-311 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) - (-5 *2 (-455 *4 *5)) (-5 *1 (-577 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-132))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-589 (-455 *4 *5))) (-5 *3 (-796 *4)) - (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-577 *4 *5))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-124)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-894 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) + (-12 (-5 *2 (-1068 (-2 (|:| |k| (-710)) (|:| |c| *3)))) + (-4 *3 (-973)) (-4 *1 (-1160 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) - (-5 *2 - (-3 (|:| |overq| (-1083 (-383 (-523)))) - (|:| |overan| (-1083 (-47))) (|:| -2494 (-108)))) - (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) - ((*1 *1 *1 *1) (-4 *1 (-448))) - ((*1 *1 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) - ((*1 *2 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-814)))) - ((*1 *1 *1) (-5 *1 (-900))) - ((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) -(((*1 *1 *1) (-5 *1 (-794))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) - ((*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1069)))) - ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1087))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-710)) (-5 *4 (-1168 *2)) (-4 *5 (-284)) - (-4 *6 (-921 *5)) (-4 *2 (-13 (-385 *6 *7) (-964 *6))) - (-5 *1 (-389 *5 *6 *7 *2)) (-4 *7 (-1144 *6))))) -(((*1 *2) - (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) - (-5 *2 (-710)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-710))))) -(((*1 *2) - (-12 (-14 *4 (-710)) (-4 *5 (-1122)) (-5 *2 (-126)) - (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-339)) (-5 *2 (-126)) (-5 *1 (-304 *3 *4)) - (-4 *3 (-305 *4)))) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) + (-5 *1 (-31 *4 *5)) (-4 *5 (-406 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) + (-5 *1 (-145 *4 *5)) (-4 *5 (-406 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) + (-5 *1 (-253 *4 *5)) (-4 *5 (-13 (-406 *4) (-930))))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-278 *4)) (-4 *4 (-279)))) + ((*1 *2 *3) (-12 (-4 *1 (-279)) (-5 *3 (-110)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-405 *4 *5)) (-4 *4 (-406 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) + (-5 *1 (-407 *4 *5)) (-4 *5 (-406 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) + (-5 *1 (-576 *4 *5)) (-4 *5 (-13 (-406 *4) (-930) (-1109)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) ((*1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-158)))) - ((*1 *2 *1) - (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-523)) - (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) - (-5 *2 (-523)) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-973)) (-5 *2 (-852)))) - ((*1 *2) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-339)) (-5 *2 (-126))))) + (-12 (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-475 *3 *4 *5 *6))) (-4 *3 (-339)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) + (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) (((*1 *2) - (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-393 *3))))) -(((*1 *1 *1) (-4 *1 (-508)))) -(((*1 *1 *1) - (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) - (-4 *3 (-13 (-1016) (-33)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-725))))) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1018 (-1018 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))) - (-4 *2 (-13 (-786) (-21)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-230 *2 *3 *4 *5)) (-4 *2 (-973)) (-4 *3 (-786)) - (-4 *4 (-243 *3)) (-4 *5 (-732))))) -(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325))))) -(((*1 *2 *3) - (-12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-1 (-108) *5)) - (-5 *1 (-821 *4 *5)) (-4 *5 (-1122))))) + (-12 (-5 *2 (-953 (-779 (-523)))) + (-5 *3 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *4)))) (-4 *4 (-973)) + (-5 *1 (-548 *4))))) (((*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-203)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-203)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-355)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-355))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-589 *5))) (-4 *5 (-1159 *4)) - (-4 *4 (-37 (-383 (-523)))) - (-5 *2 (-1 (-1068 *4) (-589 (-1068 *4)))) (-5 *1 (-1161 *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-940)) (-5 *2 (-794))))) -(((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1087)) - (|:| |arrayIndex| (-589 (-883 (-523)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) - (|:| |ints2Floats?| (-108)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1086)) (|:| |thenClause| (-306)) - (|:| |elseClause| (-306)))) - (|:| |returnBranch| - (-2 (|:| -3883 (-108)) - (|:| -1733 - (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) - (|:| |blockBranch| (-589 (-306))) - (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) - (|:| |forBranch| - (-2 (|:| -3499 (-1009 (-883 (-523)))) - (|:| |span| (-883 (-523))) (|:| -3913 (-306)))) - (|:| |labelBranch| (-1034)) - (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -3913 (-306)))) - (|:| |commonBranch| - (-2 (|:| -4038 (-1087)) (|:| |contents| (-589 (-1087))))) - (|:| |printBranch| (-589 (-794))))) - (-5 *1 (-306))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-629 (-203))) (-5 *6 (-108)) (-5 *7 (-629 (-523))) - (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS)))) - (-5 *3 (-523)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) - (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) - (-5 *1 (-686))))) -(((*1 *1) (-5 *1 (-1169)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *1) - (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-688))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) (((*1 *2 *3) - (-12 (-5 *2 (-394 (-1083 (-523)))) (-5 *1 (-171)) (-5 *3 (-523))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-339)) (-5 *2 (-589 (-1068 *4))) (-5 *1 (-262 *4 *5)) - (-5 *3 (-1068 *4)) (-4 *5 (-1159 *4))))) + (-12 (-5 *3 (-1087)) (-5 *2 (-499)) (-5 *1 (-498 *4)) + (-4 *4 (-1123))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *4)) (-5 *3 (-852)) (|has| *4 (-6 (-4250 "*"))) + (-4 *4 (-973)) (-5 *1 (-955 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-589 (-629 *4))) (-5 *3 (-852)) + (|has| *4 (-6 (-4250 "*"))) (-4 *4 (-973)) (-5 *1 (-955 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-211)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) - (-4 *6 (-732)) (-5 *2 (-1 *1 (-710))) (-4 *1 (-230 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) - (-5 *2 (-1 *1 (-710))) (-4 *1 (-230 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-243 *2)) (-4 *2 (-786))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) (((*1 *2 *1) - (-12 (-5 *2 (-589 (-874 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-973))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) - (-5 *2 (-962)) (-5 *1 (-687))))) -(((*1 *1 *1 *1) (-5 *1 (-794)))) + (|partial| -12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) + (-5 *2 (-108)) (-5 *1 (-916 *3 *4 *5 *6)) + (-4 *6 (-880 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33)))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *2 (-108)) (-5 *1 (-244))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) - (-4 *2 (-1159 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1144 *3)) - (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1159 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) - (-4 *2 (-1159 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) - (-5 *1 (-1064 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) + (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-284) (-136))) + (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 - (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) - (|:| |success| (-108)))) - (-5 *1 (-728)) (-5 *5 (-523))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-515) (-786))) - (-4 *2 (-13 (-406 (-155 *4)) (-930) (-1108))) - (-5 *1 (-552 *4 *3 *2)) (-4 *3 (-13 (-406 *4) (-930) (-1108)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-589 *2)) (-5 *1 (-164 *2)) (-4 *2 (-284)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-589 (-589 *4))) (-5 *2 (-589 *4)) (-4 *4 (-284)) - (-5 *1 (-164 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-589 *8)) - (-5 *4 (-589 - (-2 (|:| -4041 (-629 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-629 *7))))) - (-5 *5 (-710)) (-4 *8 (-1144 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-325)) + (-2 (|:| |eqzro| (-589 *7)) (|:| |neqzro| (-589 *7)) + (|:| |wcond| (-589 (-883 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1169 (-383 (-883 *4)))) + (|:| -3760 (-589 (-1169 (-383 (-883 *4)))))))))) + (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-339)) (-5 *1 (-602 *4 *2)) + (-4 *2 (-599 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-160))) (-5 *1 (-1003))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-2 (|:| -4041 (-629 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-629 *7)))) - (-5 *1 (-469 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) - (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-697))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1144 *6)) - (-4 *6 (-13 (-27) (-406 *5))) - (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-4 *8 (-1144 (-383 *7))) - (-5 *2 (-540 *3)) (-5 *1 (-511 *5 *6 *7 *8 *3)) - (-4 *3 (-318 *6 *7 *8))))) + (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-133))) (-5 *1 (-130)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-130))))) +(((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1145 (-523))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1145 (-523)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070)) (-5 *2 (-523)) (-5 *1 (-1105 *4)) + (-12 (-5 *3 (-710)) (-5 *2 (-629 (-883 *4))) (-5 *1 (-955 *4)) (-4 *4 (-973))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) +(((*1 *2 *3) + (-12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1145 *5)) + (-4 *7 (-1145 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) + (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-108)) + (-5 *1 (-842 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) + (-4 *4 (-1145 (-383 (-523)))) (-4 *5 (-1145 (-383 *4))) + (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-108)) + (-5 *1 (-843 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-691))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-589 (-710))) - (-5 *1 (-835 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) - (-5 *2 - (-2 (|:| |ir| (-540 (-383 *6))) (|:| |specpart| (-383 *6)) - (|:| |polypart| *6))) - (-5 *1 (-533 *5 *6)) (-5 *3 (-383 *6))))) + (-5 *1 (-687))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))) - (-4 *2 (-13 (-786) (-21)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168 *5)) (-4 *5 (-585 *4)) (-4 *4 (-515)) - (-5 *2 (-108)) (-5 *1 (-584 *4 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-523)) (|has| *1 (-6 -4245)) (-4 *1 (-349 *3)) - (-4 *3 (-1122))))) -(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-786)))) - ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) - ((*1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) - (-4 *3 (-1144 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-761))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-677 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1016)))) - ((*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1016))))) + (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-589 (-240))) (-5 *1 (-1171)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-1070)) (-5 *1 (-1171)))) + ((*1 *1 *1) (-5 *1 (-1171)))) +(((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-108))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-515)) (-4 *2 (-973)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1145 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *1)))) + (-4 *1 (-992 *4 *5 *6 *3))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-874 (-203))) (-5 *4 (-805)) (-5 *2 (-1174)) + (-5 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-909 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-874 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-874 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1120)) (-5 *3 (-203))))) (((*1 *2 *3) - (-12 (-5 *2 (-394 (-1083 *1))) (-5 *1 (-292 *4)) (-5 *3 (-1083 *1)) - (-4 *4 (-427)) (-4 *4 (-515)) (-4 *4 (-786)))) - ((*1 *2 *3) - (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1))))) + (-12 (-4 *4 (-325)) (-4 *5 (-305 *4)) (-4 *6 (-1145 *5)) + (-5 *2 (-589 *3)) (-5 *1 (-716 *4 *5 *6 *3 *7)) (-4 *3 (-1145 *6)) + (-14 *7 (-852))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123))))) (((*1 *2 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-1083 *4)) (-5 *1 (-493 *4)) - (-4 *4 (-325))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) + (-12 (-4 *4 (-515)) (-5 *2 (-1083 *3)) (-5 *1 (-40 *4 *3)) + (-4 *3 + (-13 (-339) (-279) + (-10 -8 (-15 -3316 ((-1039 *4 (-562 $)) $)) + (-15 -3329 ((-1039 *4 (-562 $)) $)) + (-15 -1691 ($ (-1039 *4 (-562 $)))))))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1191 *3 *4)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-158)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758 *3)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-973)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) - (-225 *4 (-383 (-523))))) - (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) - (-5 *1 (-476 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *3 (-1169 (-292 (-203)))) (-5 *2 - (-1168 - (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) - (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3582 (-523)) - (|:| -4134 (-523)) (|:| |spline| (-523)) (|:| -4166 (-523)) - (|:| |axesColor| (-805)) (|:| -3142 (-523)) - (|:| |unitsColor| (-805)) (|:| |showing| (-523))))) - (-5 *1 (-1169))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) - (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-786)))) - ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) - ((*1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) - (-4 *3 (-1144 *2))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) - (-5 *2 (-962)) (-5 *1 (-695))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1168 (-1087))) (-5 *3 (-1168 (-428 *4 *5 *6 *7))) - (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-158)) (-14 *5 (-852)) - (-14 *6 (-589 (-1087))) (-14 *7 (-1168 (-629 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-428 *4 *5 *6 *7))) - (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-158)) (-14 *5 (-852)) - (-14 *6 (-589 *2)) (-14 *7 (-1168 (-629 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-428 *3 *4 *5 *6))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) - (-14 *6 (-1168 (-629 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-1087))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) - (-14 *6 (-1168 (-629 *3))))) + (-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) + (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523)))) + (-5 *1 (-282))))) +(((*1 *1 *1) + (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) + (-14 *3 (-589 (-1087)))))) +(((*1 *1 *1) (-5 *1 (-1086))) ((*1 *1 *2) - (-12 (-5 *2 (-1087)) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) - (-14 *4 (-852)) (-14 *5 (-589 *2)) (-14 *6 (-1168 (-629 *3))))) - ((*1 *1) - (-12 (-5 *1 (-428 *2 *3 *4 *5)) (-4 *2 (-158)) (-14 *3 (-852)) - (-14 *4 (-589 (-1087))) (-14 *5 (-1168 (-629 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) -(((*1 *2) (-12 - (-5 *2 (-2 (|:| -2566 (-589 (-1087))) (|:| -2279 (-589 (-1087))))) - (-5 *1 (-1124))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-589 (-355))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-443)))) - ((*1 *2 *1) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-443)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-805)) (-5 *2 (-1173)) (-5 *1 (-1169)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) - (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1)))) - (-5 *2 (-962)) (-5 *1 (-693))))) -(((*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-784)) (-5 *1 (-280 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-523))) (-4 *3 (-973)) (-5 *1 (-94 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-94 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-94 *3))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-1083 (-883 *4))) (-5 *1 (-392 *3 *4)) - (-4 *3 (-393 *4)))) - ((*1 *2) - (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-4 *3 (-339)) - (-5 *2 (-1083 (-883 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1016)) (-4 *5 (-1016)) - (-5 *2 (-1 *5)) (-5 *1 (-623 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306))))) -(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934))))) -(((*1 *2 *3) - (-12 (-5 *3 (-523)) (|has| *1 (-6 -4235)) (-4 *1 (-380)) - (-5 *2 (-852))))) + (-5 *2 + (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1162 *3 *2)) + (-4 *2 (-1160 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *1) + (-12 (-4 *1 (-380)) (-4179 (|has| *1 (-6 -4239))) + (-4179 (|has| *1 (-6 -4231))))) + ((*1 *2 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) (-4 *1 (-786))) + ((*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786)))) + ((*1 *1) (-5 *1 (-1034)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-589 (-589 *8))) (-5 *3 (-589 *8)) - (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-108)) (-5 *1 (-906 *5 *6 *7 *8))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-973)) (-4 *1 (-1144 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-1016) (-33))) (-5 *1 (-1052 *3 *2)) - (-4 *3 (-13 (-1016) (-33)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-541 *2)) (-4 *2 (-508))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3078 *4))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1106))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) - (-5 *4 (-292 (-155 (-355)))) (-5 *1 (-306)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) - (-5 *4 (-292 (-355))) (-5 *1 (-306)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) - (-5 *4 (-292 (-523))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-155 (-355))))) - (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-355)))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-523)))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-155 (-355))))) - (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-355)))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-523)))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-155 (-355)))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-355))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-523))) (-5 *1 (-306)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) - (-5 *4 (-292 (-633))) (-5 *1 (-306)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) - (-5 *4 (-292 (-638))) (-5 *1 (-306)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) - (-5 *4 (-292 (-640))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-633)))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-638)))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-640)))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-633)))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-638)))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-640)))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-633))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-638))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-640))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-633))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-638))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-640))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-633))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-638))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-640))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1070)) (-5 *1 (-306)))) - ((*1 *1 *1 *1) (-5 *1 (-794)))) + (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) + (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-880 *6 *5 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1145 (-383 (-523)))) (-5 *1 (-844 *3 *2)) + (-4 *2 (-1145 (-383 *3)))))) (((*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-1087)) (-5 *1 (-499)))) ((*1 *2 *3 *2) @@ -6494,590 +5542,398 @@ ((*1 *2 *3 *2 *4) (-12 (-5 *4 (-589 (-1087))) (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499)))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) - (-5 *4 (-589 (-852))) (-5 *5 (-589 (-240))) (-5 *1 (-443)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) - (-5 *4 (-589 (-852))) (-5 *1 (-443)))) - ((*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) - ((*1 *1 *1) (-5 *1 (-443)))) -(((*1 *2 *3) - (-12 (-4 *4 (-427)) - (-5 *2 - (-589 - (-2 (|:| |eigval| (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4)))) - (|:| |eigmult| (-710)) - (|:| |eigvec| (-589 (-629 (-383 (-883 *4)))))))) - (-5 *1 (-269 *4)) (-5 *3 (-629 (-383 (-883 *4))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) - (-5 *2 (-1168 (-629 *4))))) - ((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-1168 (-629 *4))) (-5 *1 (-392 *3 *4)) - (-4 *3 (-393 *4)))) - ((*1 *2) - (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1168 (-629 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-1087))) (-4 *5 (-339)) - (-5 *2 (-1168 (-629 (-383 (-883 *5))))) (-5 *1 (-1004 *5)) - (-5 *4 (-629 (-383 (-883 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-1087))) (-4 *5 (-339)) - (-5 *2 (-1168 (-629 (-883 *5)))) (-5 *1 (-1004 *5)) - (-5 *4 (-629 (-883 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-629 *4))) (-4 *4 (-339)) - (-5 *2 (-1168 (-629 *4))) (-5 *1 (-1004 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *3 (-589 (-523))) + (-5 *1 (-814))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1169 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) + (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4)))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) + (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-1180 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1180 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) + (-12 (-4 *3 (-973)) (-5 *2 (-1169 *3)) (-5 *1 (-652 *3 *4)) + (-4 *4 (-1145 *3))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) - (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1016)) (-4 *3 (-831 *5)) (-5 *2 (-629 *3)) - (-5 *1 (-631 *5 *3 *6 *4)) (-4 *6 (-349 *3)) - (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1181 (-1087) *3)) (-4 *3 (-973)) (-5 *1 (-1188 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1181 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) - (-5 *1 (-1190 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-234))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-940))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1070)) (-5 *2 (-713)) (-5 *1 (-110)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1020)) (-5 *1 (-895))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-973))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1083 *7)) (-4 *5 (-973)) - (-4 *7 (-973)) (-4 *2 (-1144 *5)) (-5 *1 (-472 *5 *2 *6 *7)) - (-4 *6 (-1144 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-973)) (-4 *7 (-973)) - (-4 *4 (-1144 *5)) (-5 *2 (-1083 *7)) (-5 *1 (-472 *5 *4 *6 *7)) - (-4 *6 (-1144 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1138 *3 *2)) - (-4 *2 (-1144 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-589 (-796 *5))) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) - (-5 *2 - (-2 (|:| |dpolys| (-589 (-225 *5 *6))) - (|:| |coords| (-589 (-523))))) - (-5 *1 (-446 *5 *6 *7)) (-5 *3 (-589 (-225 *5 *6))) (-4 *7 (-427))))) -(((*1 *2) - (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-393 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-589 *1)) (|has| *1 (-6 -4245)) (-4 *1 (-938 *3)) - (-4 *3 (-1122))))) -(((*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108)))))) -(((*1 *2 *3) - (-12 (-4 *1 (-739)) - (-5 *3 - (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) - (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) - (|:| |abserr| (-203)) (|:| |relerr| (-203)))) - (-5 *2 (-962))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-1076 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1170)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1170))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (-5 *2 (-523)) (-5 *1 (-184))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-678))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-339) (-784))) (-5 *1 (-165 *3 *2)) - (-4 *2 (-1144 (-155 *3)))))) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) - (-4 *3 (-897))))) + (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1174)) + (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1174)) + (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *1) (-4 *1 (-897)))) +(((*1 *1) (-5 *1 (-133))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-240))))) +(((*1 *1 *2) (-12 (-5 *2 (-167)) (-5 *1 (-226))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-515)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-589 (-562 *5))) (-5 *3 (-1087)) (-4 *5 (-406 *4)) + (-4 *4 (-786)) (-5 *1 (-532 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-339)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) - (-5 *1 (-706 *3 *4)) (-4 *3 (-648 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-339)) (-4 *3 (-973)) - (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-339)) (-4 *5 (-973)) - (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) - (-4 *3 (-788 *5))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) - (-4 *4 (-732)) (-4 *5 (-786)) (-4 *3 (-515))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) - (-4 *3 (-13 (-406 *6) (-27) (-1108))) - (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-12 (-5 *2 (-589 *3)) (-5 *1 (-891 *3)) (-4 *3 (-508))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1011 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1123)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123)))) + ((*1 *1 *2) (-12 (-5 *1 (-1136 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN)))) (-5 *2 (-962)) + (-5 *1 (-686))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -1825 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-589 (-383 *8))) (-4 *7 (-339)) (-4 *8 (-1145 *7)) + (-5 *3 (-383 *8)) (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-525 *6 *3 *7)) (-4 *7 (-1016))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) - (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) - (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) - (-5 *3 (-589 (-240))) (-5 *1 (-238)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) - (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) - (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) - (-5 *1 (-240)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-523)) (-5 *4 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) - (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) - (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) - (-5 *2 (-1173)) (-5 *1 (-1170)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) - (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) - (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) - (-5 *1 (-1170)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) - (|:| |expense| (-355)) (|:| |accuracy| (-355)) - (|:| |intermediateResults| (-355)))) - (-5 *2 (-962)) (-5 *1 (-282))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) - (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) - (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8))))) -(((*1 *1 *1) (-4 *1 (-575))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930) (-1108)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-383 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-515)) - (-4 *4 (-973)) (-4 *2 (-1159 *4)) (-5 *1 (-1162 *4 *5 *6 *2)) - (-4 *6 (-599 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) -(((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) - (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-1168 *5))) (-5 *4 (-523)) (-5 *2 (-1168 *5)) - (-5 *1 (-956 *5)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)) (-4 *3 (-158)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-515)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-158))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-523)) (-4 *5 (-325)) (-5 *2 (-394 (-1083 (-1083 *5)))) - (-5 *1 (-1121 *5)) (-5 *3 (-1083 (-1083 *5)))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-687))))) -(((*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-562 *1))) (-4 *1 (-279))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857))))) -(((*1 *2) + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-533 *7 *8))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1034)) (-4 *4 (-325)) + (-5 *1 (-493 *4))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *1 *1) (-5 *1 (-133))) + ((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *2 *2) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814))))) +(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *1) (-4 *1 (-897)))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-292 (-203))) (-5 *1 (-244))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-1096 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-284)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-794)))) (-5 *1 (-794)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1054 *3 *4)) (-5 *1 (-922 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-339)))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 (-589 *5))) (-4 *5 (-973)) - (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *6 (-216 *4 *5)) - (-4 *7 (-216 *3 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-629 (-523))) (-5 *5 (-108)) (-5 *7 (-629 (-203))) - (-5 *3 (-523)) (-5 *6 (-203)) (-5 *2 (-962)) (-5 *1 (-694))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-710)) (-4 *5 (-973)) (-4 *2 (-1144 *5)) - (-5 *1 (-1162 *5 *2 *6 *3)) (-4 *6 (-599 *2)) (-4 *3 (-1159 *5))))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) + (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -3316 ((-1039 *3 (-562 $)) $)) + (-15 -3329 ((-1039 *3 (-562 $)) $)) + (-15 -1691 ($ (-1039 *3 (-562 $)))))))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-271 *3))) (-5 *1 (-271 *3)) (-4 *3 (-515)) + (-4 *3 (-1123))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) - (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) - (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) - (-5 *2 (-2 (|:| -1640 (-710)) (|:| -3121 *8))) - (-5 *1 (-842 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) - (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-1144 (-383 *4))) - (-4 *6 (-318 (-383 (-523)) *4 *5)) - (-5 *2 (-2 (|:| -1640 (-710)) (|:| -3121 *6))) - (-5 *1 (-843 *4 *5 *6))))) + (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1101 *4 *5)) + (-4 *4 (-1016)) (-4 *5 (-1016))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-761))))) + (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-1171))))) (((*1 *2 *1) - (-12 (-4 *2 (-1144 *3)) (-5 *1 (-375 *3 *2)) - (-4 *3 (-13 (-339) (-136)))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-589 (-2 (|:| |func| *2) (|:| |pole| (-108))))) - (-4 *2 (-13 (-406 *4) (-930))) (-4 *4 (-13 (-786) (-515))) - (-5 *1 (-253 *4 *2))))) + (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-982)) (-4 *3 (-1109)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-51)) (-5 *1 (-823 *4)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 (-1142 *5 *4))) + (-5 *1 (-1030 *4 *5)) (-5 *3 (-1142 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1016)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-623 *4 *5)) (-4 *4 (-1016)))) - ((*1 *2 *2) - (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861)))) - ((*1 *2 *1) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) - ((*1 *2 *1) (-12 (-4 *2 (-973)) (-5 *1 (-1189 *2 *3)) (-4 *3 (-782))))) -(((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-515))))) -(((*1 *1 *2) (-12 (-5 *2 (-758 *3)) (-4 *3 (-786)) (-5 *1 (-614 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-556 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1016)) - (-4 *2 (-786))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-983 (-951 *3) (-1083 (-951 *3)))) - (-5 *1 (-951 *3)) (-4 *3 (-13 (-784) (-339) (-949)))))) + (-12 (-4 *4 (-13 (-515) (-136))) (-5 *2 (-589 *3)) + (-5 *1 (-1139 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-427)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *5 (-840)) (-5 *1 (-432 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-840))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-37 (-383 (-523)))) + (-4 *2 (-158))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-589 *3)) (-5 *5 (-852)) (-4 *3 (-1145 *4)) + (-4 *4 (-284)) (-5 *1 (-435 *4 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1070)) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-1087))) (-4 *6 (-339)) - (-5 *2 (-589 (-271 (-883 *6)))) (-5 *1 (-501 *5 *6 *7)) - (-4 *5 (-427)) (-4 *7 (-13 (-339) (-784)))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-710)) (-4 *3 (-1122)) (-4 *1 (-55 *3 *4 *5)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *1) (-5 *1 (-157))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365)))) - ((*1 *1) (-5 *1 (-370))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) - ((*1 *1) - (-12 (-4 *3 (-1016)) (-5 *1 (-816 *2 *3 *4)) (-4 *2 (-1016)) - (-4 *4 (-609 *3)))) - ((*1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) - ((*1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) - ((*1 *1 *1) (-5 *1 (-1087))) ((*1 *1) (-5 *1 (-1087))) - ((*1 *1) (-5 *1 (-1103)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *2 (-987 *4 *5 *6)) (-5 *1 (-715 *4 *5 *6 *2 *3)) - (-4 *3 (-992 *4 *5 *6 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) - (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-906 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-200 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-4 *1 (-231 *3)))) - ((*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) + (-12 (-5 *3 (-271 (-383 (-883 *5)))) (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136))) + (-5 *2 (-1077 (-589 (-292 *5)) (-589 (-271 (-292 *5))))) + (-5 *1 (-1043 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136))) + (-5 *2 (-1077 (-589 (-292 *5)) (-589 (-271 (-292 *5))))) + (-5 *1 (-1043 *5))))) (((*1 *2 *3) - (-12 (-4 *3 (-1144 (-383 (-523)))) - (-5 *2 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523)))) - (-5 *1 (-844 *3 *4)) (-4 *4 (-1144 (-383 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1144 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *3)) - (-4 *3 (-1144 (-383 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-325)) - (-5 *2 (-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523)))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-2 (|:| -1853 *3) (|:| -2433 *4)))) - (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *1 (-1099 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-697))))) -(((*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1171))))) + (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *5 (-1145 *4)) + (-5 *2 (-589 (-2 (|:| |deg| (-710)) (|:| -2849 *5)))) + (-5 *1 (-748 *4 *5 *3 *6)) (-4 *3 (-599 *5)) + (-4 *6 (-599 (-383 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-1 (-589 *5) *6)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-4 *6 (-1144 *5)) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-596 (-383 *7))) (-5 *4 (-1 (-589 *6) *7)) - (-5 *5 (-1 (-394 *7) *7)) - (-4 *6 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-4 *7 (-1144 *6)) (-5 *2 (-589 (-383 *7))) (-5 *1 (-751 *6 *7)))) + (-12 (-5 *3 (-589 (-383 (-883 (-523))))) + (-5 *2 (-589 (-589 (-271 (-883 *4))))) (-5 *1 (-356 *4)) + (-4 *4 (-13 (-784) (-339))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-1 (-589 *5) *6)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-4 *6 (-1144 *5)) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) + (-12 (-5 *3 (-589 (-271 (-383 (-883 (-523)))))) + (-5 *2 (-589 (-589 (-271 (-883 *4))))) (-5 *1 (-356 *4)) + (-4 *4 (-13 (-784) (-339))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 (-523)))) (-5 *2 (-589 (-271 (-883 *4)))) + (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-271 (-383 (-883 (-523))))) + (-5 *2 (-589 (-271 (-883 *4)))) (-5 *1 (-356 *4)) + (-4 *4 (-13 (-784) (-339))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-597 *7 (-383 *7))) (-5 *4 (-1 (-589 *6) *7)) - (-5 *5 (-1 (-394 *7) *7)) - (-4 *6 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-4 *7 (-1144 *6)) (-5 *2 (-589 (-383 *7))) (-5 *1 (-751 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-596 (-383 *5))) (-4 *5 (-1144 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-5 *2 (-589 (-383 *5))) (-5 *1 (-751 *4 *5)))) + (|partial| -12 (-5 *5 (-1087)) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-4 *4 (-13 (-29 *6) (-1109) (-889))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3760 (-589 *4)))) + (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-599 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 *2)) + (-4 *2 (-13 (-29 *6) (-1109) (-889))) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-599 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-1 (-394 *6) *6)) - (-4 *6 (-1144 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-597 *5 (-383 *5))) (-4 *5 (-1144 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-5 *2 (-589 (-383 *5))) (-5 *1 (-751 *4 *5)))) + (-12 (-5 *3 (-629 *5)) (-4 *5 (-339)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1169 *5) "failed")) + (|:| -3760 (-589 (-1169 *5))))) + (-5 *1 (-610 *5)) (-5 *4 (-1169 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-1 (-394 *6) *6)) - (-4 *6 (-1144 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-5 *3 (-589 (-589 *5))) (-4 *5 (-339)) (-5 *2 - (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) - (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) - (-5 *1 (-1086))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-808 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-810 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-813 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-964 (-47))) - (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) - (-5 *2 (-394 (-1083 (-47)))) (-5 *1 (-411 *4 *5 *3)) - (-4 *3 (-1144 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-167))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-443)) (-5 *3 (-589 (-240))) (-5 *1 (-1169)))) - ((*1 *1 *1) (-5 *1 (-1169)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-589 *2))) (-5 *4 (-589 *5)) - (-4 *5 (-37 (-383 (-523)))) (-4 *2 (-1159 *5)) - (-5 *1 (-1161 *5 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-515) (-786))) - (-4 *2 (-13 (-406 *4) (-930) (-1108))) (-5 *1 (-552 *4 *2 *3)) - (-4 *3 (-13 (-406 (-155 *4)) (-930) (-1108)))))) -(((*1 *1 *1 *2) - (-12 + (-2 (|:| |particular| (-3 (-1169 *5) "failed")) + (|:| -3760 (-589 (-1169 *5))))) + (-5 *1 (-610 *5)) (-5 *4 (-1169 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *5)) (-4 *5 (-339)) (-5 *2 - (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) - (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) - (|:| |args| (-589 (-794))))) - (-5 *1 (-1087)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 (-794)))) (-5 *1 (-1087))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) - (-4 *3 (-13 (-339) (-1108) (-930)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-1070)) (-5 *1 (-92)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-1070)) (-5 *1 (-92))))) -(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-355)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) - ((*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240))))) -(((*1 *2 *3) - (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) - (-5 *2 (-883 *5)) (-5 *1 (-875 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1016))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-710)) (-4 *4 (-515)) (-5 *1 (-899 *4 *2)) - (-4 *2 (-1144 *4))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *6 (-203)) - (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-691))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) - (-4 *3 (-987 *6 *7 *8)) - (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) - (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) + (-589 + (-2 (|:| |particular| (-3 (-1169 *5) "failed")) + (|:| -3760 (-589 (-1169 *5)))))) + (-5 *1 (-610 *5)) (-5 *4 (-589 (-1169 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-589 *5))) (-4 *5 (-339)) + (-5 *2 + (-589 + (-2 (|:| |particular| (-3 (-1169 *5) "failed")) + (|:| -3760 (-589 (-1169 *5)))))) + (-5 *1 (-610 *5)) (-5 *4 (-589 (-1169 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4249)))) + (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4249)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) + (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4249)))) + (-4 *7 (-13 (-349 *5) (-10 -7 (-6 -4249)))) + (-5 *2 + (-589 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3760 (-589 *7))))) + (-5 *1 (-611 *5 *6 *7 *3)) (-5 *4 (-589 *7)) + (-4 *3 (-627 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-709 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-709 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1087)) + (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *1 (-711 *5 *2)) (-4 *2 (-13 (-29 *5) (-1109) (-889))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) - (-5 *5 (-108)) (-4 *8 (-987 *6 *7 *4)) (-4 *9 (-992 *6 *7 *4 *8)) - (-4 *6 (-427)) (-4 *7 (-732)) (-4 *4 (-786)) - (-5 *2 (-589 (-2 (|:| |val| *8) (|:| -3072 *9)))) - (-5 *1 (-993 *6 *7 *4 *8 *9))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-874 *5)) (-5 *3 (-710)) (-4 *5 (-973)) - (-5 *1 (-1076 *4 *5)) (-14 *4 (-852))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1091))))) -(((*1 *2 *1) - (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) - (-4 *3 (-897))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-284)) (-5 *1 (-164 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-903))))) -(((*1 *1 *2) - (-12 (-4 *3 (-973)) (-5 *1 (-766 *2 *3)) (-4 *2 (-648 *3))))) -(((*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1090))))) -(((*1 *2) (-12 (-5 *2 (-1059 (-1070))) (-5 *1 (-367))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-1108) (-889) (-29 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) - (-4 *5 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-540 *3)) (-5 *1 (-516 *5 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) - (-5 *1 (-161 *3))))) -(((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) ((*1 *1) (-4 *1 (-508))) - ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) - ((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) - ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-523))) (-4 *4 (-973)) - (-5 *1 (-1072 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) - ((*1 *2 *1) - (-12 + (|partial| -12 (-5 *3 (-629 *7)) (-5 *5 (-1087)) + (-4 *7 (-13 (-29 *6) (-1109) (-889))) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 + (-2 (|:| |particular| (-1169 *7)) (|:| -3760 (-589 (-1169 *7))))) + (-5 *1 (-741 *6 *7)) (-5 *4 (-1169 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-629 *6)) (-5 *4 (-1087)) + (-4 *6 (-13 (-29 *5) (-1109) (-889))) + (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-589 (-1169 *6))) (-5 *1 (-741 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-589 (-271 *7))) (-5 *4 (-589 (-110))) + (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1109) (-889))) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 + (-2 (|:| |particular| (-1169 *7)) (|:| -3760 (-589 (-1169 *7))))) + (-5 *1 (-741 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-589 *7)) (-5 *4 (-589 (-110))) + (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1109) (-889))) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 + (-2 (|:| |particular| (-1169 *7)) (|:| -3760 (-589 (-1169 *7))))) + (-5 *1 (-741 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-271 *7)) (-5 *4 (-110)) (-5 *5 (-1087)) + (-4 *7 (-13 (-29 *6) (-1109) (-889))) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 - (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) - (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) - (|:| |args| (-589 (-794))))) - (-5 *1 (-1087))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) -(((*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *2)) (-4 *2 (-158)))) - ((*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-392 *3 *2)) (-4 *3 (-393 *2)))) - ((*1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-158))))) -(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1173)) (-5 *1 (-1124)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1173)) (-5 *1 (-1124))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) - (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-917 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) - (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-1023 *4 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) + (-3 (-2 (|:| |particular| *7) (|:| -3760 (-589 *7))) *7 "failed")) + (-5 *1 (-741 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-110)) (-5 *5 (-1087)) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 - (-2 (|:| -3582 (-710)) (|:| |curves| (-710)) - (|:| |polygons| (-710)) (|:| |constructs| (-710))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-973)) - (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) - (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) - ((*1 *1 *1) (-4 *1 (-508))) - ((*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) - ((*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) - ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) - ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) - ((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-710)))) - ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1120 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-930)) - (-4 *2 (-973))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-687))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *3 (-589 (-523))) - (-5 *1 (-814))))) -(((*1 *1) (-5 *1 (-133))) + (-3 (-2 (|:| |particular| *3) (|:| -3760 (-589 *3))) *3 "failed")) + (-5 *1 (-741 *6 *3)) (-4 *3 (-13 (-29 *6) (-1109) (-889))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-271 *2)) (-5 *4 (-110)) (-5 *5 (-589 *2)) + (-4 *2 (-13 (-29 *6) (-1109) (-889))) (-5 *1 (-741 *6 *2)) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-110)) (-5 *4 (-271 *2)) (-5 *5 (-589 *2)) + (-4 *2 (-13 (-29 *6) (-1109) (-889))) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *1 (-741 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-962)) (-5 *1 (-744)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-747)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-744)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1169 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) + (-5 *2 (-962)) (-5 *1 (-744)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1169 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) + (-5 *2 (-962)) (-5 *1 (-744)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1169 (-292 *4))) (-5 *5 (-589 (-355))) + (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1169 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) + (-5 *2 (-962)) (-5 *1 (-744)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1169 (-292 *4))) (-5 *5 (-589 (-355))) + (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1169 (-292 *4))) (-5 *5 (-589 (-355))) + (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -3760 (-589 *6))) "failed") + *7 *6)) + (-4 *6 (-339)) (-4 *7 (-599 *6)) + (-5 *2 (-2 (|:| |particular| (-1169 *6)) (|:| -3760 (-629 *6)))) + (-5 *1 (-752 *6 *7)) (-5 *3 (-629 *6)) (-5 *4 (-1169 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-962)) (-5 *1 (-828)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-829)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-828)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-710)) (-5 *6 (-589 (-589 (-292 *3)))) (-5 *7 (-1070)) + (-5 *8 (-203)) (-5 *5 (-589 (-292 (-355)))) (-5 *3 (-355)) + (-5 *2 (-962)) (-5 *1 (-828)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-710)) (-5 *6 (-589 (-589 (-292 *3)))) (-5 *7 (-1070)) + (-5 *5 (-589 (-292 (-355)))) (-5 *3 (-355)) (-5 *2 (-962)) + (-5 *1 (-828)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *2 (-589 (-355))) + (-5 *1 (-950)) (-5 *4 (-355)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-883 (-523))) (-5 *2 (-589 (-355))) (-5 *1 (-950)) + (-5 *4 (-355)))) ((*1 *2 *3) - (-12 (-5 *3 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-238)))) - ((*1 *1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-240))))) -(((*1 *2 *2) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-1169)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1070)) (-5 *1 (-282))))) + (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1145 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1045 *4)) + (-5 *3 (-292 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1045 *4)) + (-5 *3 (-271 (-292 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1045 *5)) + (-5 *3 (-271 (-292 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1045 *5)) + (-5 *3 (-292 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-1087))) + (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1045 *5)) + (-5 *3 (-589 (-271 (-292 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) + (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) + (-5 *1 (-1093 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-1087))) (-4 *5 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-1093 *5)) + (-5 *3 (-589 (-271 (-383 (-883 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-383 (-883 *4)))) (-4 *4 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-1093 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) + (-5 *1 (-1093 *4)) (-5 *3 (-589 (-271 (-383 (-883 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-4 *5 (-515)) + (-5 *2 (-589 (-271 (-383 (-883 *5))))) (-5 *1 (-1093 *5)) + (-5 *3 (-383 (-883 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-4 *5 (-515)) + (-5 *2 (-589 (-271 (-383 (-883 *5))))) (-5 *1 (-1093 *5)) + (-5 *3 (-271 (-383 (-883 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *4))))) + (-5 *1 (-1093 *4)) (-5 *3 (-383 (-883 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *4))))) + (-5 *1 (-1093 *4)) (-5 *3 (-271 (-383 (-883 *4))))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-427)) (-4 *3 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-424 *4 *3 *5 *6)) (-4 *6 (-880 *4 *3 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-589 (-203))) + (-5 *1 (-443))))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) @@ -7086,21 +5942,249 @@ (-4 *2 (-406 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) ((*1 *1 *1) (-4 *1 (-147)))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1123)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-786)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-259 *3)) (-4 *3 (-1123)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-259 *2)) (-4 *2 (-1123)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -3772 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (|:| -2482 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1068 (-203))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2464 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-518)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-634 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -3772 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (|:| -2482 + (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) + (|:| |expense| (-355)) (|:| |accuracy| (-355)) + (|:| |intermediateResults| (-355)))))) + (-5 *1 (-742)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1174)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-5 *5 (-589 *8)) + (-4 *7 (-786)) (-4 *8 (-973)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) + (-5 *2 (-1083 *8)) (-5 *1 (-297 *6 *7 *8 *9))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-4 *1 (-834 *3))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-710)) (-4 *5 (-339)) (-5 *2 (-383 *6)) + (-5 *1 (-798 *5 *4 *6)) (-4 *4 (-1160 *5)) (-4 *6 (-1145 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-710)) (-5 *4 (-1161 *5 *6 *7)) (-4 *5 (-339)) + (-14 *6 (-1087)) (-14 *7 *5) (-5 *2 (-383 (-1142 *6 *5))) + (-5 *1 (-799 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-710)) (-5 *4 (-1161 *5 *6 *7)) (-4 *5 (-339)) + (-14 *6 (-1087)) (-14 *7 *5) (-5 *2 (-383 (-1142 *6 *5))) + (-5 *1 (-799 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-732)) + (-4 *3 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $))))) (-4 *5 (-515)) + (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-880 (-383 (-883 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-973)) (-4 *5 (-732)) + (-4 *3 + (-13 (-786) + (-10 -8 (-15 -1400 ((-1087) $)) + (-15 -2724 ((-3 $ "failed") (-1087)))))) + (-5 *1 (-913 *4 *5 *3 *2)) (-4 *2 (-880 (-883 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *6)) + (-4 *6 + (-13 (-786) + (-10 -8 (-15 -1400 ((-1087) $)) + (-15 -2724 ((-3 $ "failed") (-1087)))))) + (-4 *4 (-973)) (-4 *5 (-732)) (-5 *1 (-913 *4 *5 *6 *2)) + (-4 *2 (-880 (-883 *4) *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) + (-5 *1 (-161 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-964 (-523))) (-4 *1 (-279)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-2 (|:| |deg| (-710)) (|:| -1992 *5)))) - (-4 *5 (-1144 *4)) (-4 *4 (-325)) (-5 *2 (-589 *5)) + (-12 (-5 *3 (-589 (-2 (|:| |deg| (-710)) (|:| -3620 *5)))) + (-4 *5 (-1145 *4)) (-4 *4 (-325)) (-5 *2 (-589 *5)) (-5 *1 (-195 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-2 (|:| -1820 *5) (|:| -2299 (-523))))) - (-5 *4 (-523)) (-4 *5 (-1144 *4)) (-5 *2 (-589 *5)) + (-12 (-5 *3 (-589 (-2 (|:| -2424 *5) (|:| -2640 (-523))))) + (-5 *4 (-523)) (-4 *5 (-1145 *4)) (-5 *2 (-589 *5)) (-5 *1 (-635 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-339) (-784))) + (-5 *2 (-589 (-2 (|:| -3491 (-589 *3)) (|:| -3460 *5)))) + (-5 *1 (-165 *5 *3)) (-4 *3 (-1145 (-155 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-339) (-784))) + (-5 *2 (-589 (-2 (|:| -3491 (-589 *3)) (|:| -3460 *4)))) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-710)) (-4 *5 (-515)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-899 *5 *3)) (-4 *3 (-1145 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) (((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-962)) (-5 *1 (-776)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-589 (-292 (-355)))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) (-5 *1 (-776))))) -(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) - ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -4022 (-523)) (|:| -3491 (-589 *3)))) + (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) + (-5 *1 (-1072 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-523)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-973)) + (-14 *4 (-1087)) (-14 *5 *3)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1117 *5 *6 *7 *3)) + (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) + ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-515))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-167))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-726)) (-5 *2 (-962)) + (-5 *3 + (-2 (|:| |fn| (-292 (-203))) + (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-726)) (-5 *2 (-962)) + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203))))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1068 *3)) (-4 *3 (-1016)) + (-4 *3 (-1123))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 (-589 (-155 *4))) + (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784)))))) (((*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) + ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-834 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) + (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1016))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-973)) (-4 *3 (-786)) + (-5 *2 (-2 (|:| |val| *1) (|:| -1475 (-523)))) (-4 *1 (-406 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-823 *3)) (|:| -1475 (-823 *3)))) + (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) + (-4 *7 (-880 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -1475 (-523)))) + (-5 *1 (-881 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) + (-15 -3329 (*7 $)))))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-825 *2 *3)) (-4 *2 (-1145 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) (((*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) @@ -7109,17 +6193,235 @@ (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-1023 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070))))) +(((*1 *2 *3) + (-12 (-4 *4 (-339)) (-4 *4 (-515)) (-4 *5 (-1145 *4)) + (-5 *2 (-2 (|:| -2604 (-570 *4 *5)) (|:| -3592 (-383 *5)))) + (-5 *1 (-570 *4 *5)) (-5 *3 (-383 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) + (-14 *3 (-852)) (-4 *4 (-973)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-427)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1145 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-523)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1123)) (-5 *2 (-108))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-629 *3)) (|:| |invmval| (-629 *3)) + (|:| |genIdeal| (-475 *3 *4 *5 *6)))) + (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-616 *3)) (-4 *3 (-1123)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-680 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-786)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *1 (-909 *3)) (-4 *3 (-973)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731))))) (((*1 *2 *1 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) - (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-880 *4 *5 *3)))) + (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-880 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) - (-4 *1 (-1144 *3))))) + (-12 (-4 *3 (-973)) (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) + (-4 *1 (-1145 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-786)) + (-4 *3 (-1016))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3) (-12 (-5 *3 (-155 (-523))) (-5 *2 (-108)) (-5 *1 (-421)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) + (-225 *4 (-383 (-523))))) + (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) + (-5 *1 (-476 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-508)))) + ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1123))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-710)) (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *2 *1) + (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-394 *3)) (-4 *3 (-508)) (-4 *3 (-515)))) + ((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-936 *3)) (-4 *3 (-964 (-383 (-523))))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1034)) (-5 *1 (-105)))) + ((*1 *2 *1) (|partial| -12 (-5 *1 (-341 *2)) (-4 *2 (-1016)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-1105))))) (((*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-413)) (-5 *1 (-1091))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1182 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) + (-5 *1 (-607 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1187 *3 *4)) + (-4 *3 (-786)) (-4 *4 (-158))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) + (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) + (|:| |ub| (-589 (-779 (-203)))))) + (-5 *1 (-244))))) +(((*1 *1 *2) + (-12 (-5 *2 (-389 *3 *4 *5 *6)) (-4 *6 (-964 *4)) (-4 *3 (-284)) + (-4 *4 (-921 *3)) (-4 *5 (-1145 *4)) (-4 *6 (-385 *4 *5)) + (-14 *7 (-1169 *6)) (-5 *1 (-390 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1169 *6)) (-4 *6 (-385 *4 *5)) (-4 *4 (-921 *3)) + (-4 *5 (-1145 *4)) (-4 *3 (-284)) (-5 *1 (-390 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-110)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) + (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) + ((*1 *2 *1) + (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) + (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-243 *3)) (-4 *3 (-786)) (-5 *2 (-710))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1142 *5 *4)) (-5 *1 (-1085 *4 *5 *6)) + (-4 *4 (-973)) (-14 *5 (-1087)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1142 *5 *4)) (-5 *1 (-1161 *4 *5 *6)) + (-4 *4 (-973)) (-14 *5 (-1087)) (-14 *6 *4)))) +(((*1 *2 *3) + (-12 (-4 *4 (-325)) + (-5 *2 (-589 (-2 (|:| |deg| (-710)) (|:| -3620 *3)))) + (-5 *1 (-195 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-823 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1016)) + (-4 *5 (-1123)) (-5 *1 (-821 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-823 *4)) (-5 *3 (-589 (-1 (-108) *5))) (-4 *4 (-1016)) + (-4 *5 (-1123)) (-5 *1 (-821 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-823 *5)) (-5 *3 (-589 (-1087))) + (-5 *4 (-1 (-108) (-589 *6))) (-4 *5 (-1016)) (-4 *6 (-1123)) + (-5 *1 (-821 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1123)) (-4 *4 (-786)) + (-5 *1 (-868 *4 *2 *5)) (-4 *2 (-406 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-589 (-1 (-108) *5))) (-4 *5 (-1123)) (-4 *4 (-786)) + (-5 *1 (-868 *4 *2 *5)) (-4 *2 (-406 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1087)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1123)) + (-5 *2 (-292 (-523))) (-5 *1 (-869 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1087)) (-5 *4 (-589 (-1 (-108) *5))) (-4 *5 (-1123)) + (-5 *2 (-292 (-523))) (-5 *1 (-869 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-1 (-108) (-589 *6))) + (-4 *6 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))) (-4 *4 (-1016)) + (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) + (-5 *1 (-995 *4 *5 *6))))) (((*1 *2 *2 *3) (-12 (-5 *2 (-1083 *6)) (-5 *3 (-523)) (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-760))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-589 (-883 *3))) (-4 *3 (-427)) + (-5 *1 (-336 *3 *4)) (-14 *4 (-589 (-1087))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-589 (-719 *3 (-796 *4)))) (-4 *3 (-427)) + (-14 *4 (-589 (-1087))) (-5 *1 (-574 *3 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 (-1083 *4))) (-5 *3 (-1083 *4)) + (-4 *4 (-840)) (-5 *1 (-606 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-1193 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-1193 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-883 *4))) + (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-970 *4 *5))) (-5 *1 (-1193 *4 *5 *6)) + (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 (-355)) (-5 *1 (-185))))) +(((*1 *2 *1) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-5 *2 (-108))))) (((*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1087)) (-5 *6 @@ -7131,31 +6433,256 @@ "failed") *4 (-589 *4))) (-5 *7 - (-1 (-3 (-2 (|:| -2462 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1108) (-27) (-406 *8))) + (-1 (-3 (-2 (|:| -1825 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1109) (-27) (-406 *8))) (-4 *8 (-13 (-427) (-786) (-136) (-964 *3) (-585 *3))) (-5 *3 (-523)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3159 *4) (|:| |sol?| (-108)))) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3855 *4) (|:| |sol?| (-108)))) (-5 *1 (-941 *8 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-761))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-284)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-422 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) + (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-422 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) + (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-422 *4 *5 *6 *7))))) +(((*1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) + (-4 *4 (-158))))) +(((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-172)))) + ((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-277)))) + ((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-282))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-413)) (-5 *3 (-589 (-1087))) (-5 *4 (-1087)) + (-5 *1 (-1090)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1091)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-413)) (-5 *3 (-589 (-1087))) (-5 *1 (-1091))))) (((*1 *2) - (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) + (-12 (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-304 *3 *4)) + (-4 *3 (-305 *4)))) + ((*1 *2) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-5 *2 (-710))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 (-355)) (-5 *1 (-185))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-124)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-337 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-362 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-592 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) + (-12 (-4 *4 (-37 (-383 (-523)))) + (-5 *2 (-2 (|:| -1441 (-1068 *4)) (|:| -1453 (-1068 *4)))) + (-5 *1 (-1074 *4)) (-5 *3 (-1068 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1087)) (-4 *1 (-27)) + (-5 *2 (-589 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-589 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-292 (-203))) (-5 *4 (-589 (-1087))) + (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) + (-4 *2 (-13 (-27) (-1109) (-406 (-155 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1113 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3)))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) + (-4 *2 (-627 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-883 (-523))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) + ((*1 *2 *3) + (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) + ((*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-940)) (-5 *2 (-589 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1083 (-523))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1083 (-383 (-523)))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) + ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-940)) (-5 *2 (-589 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1145 *4)) (-5 *2 (-589 *1)) + (-4 *1 (-989 *4 *3))))) +(((*1 *2) + (-12 (-5 *2 (-1174)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-995 *3 *4 *5))) (-4 *3 (-1016)) + (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) + (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) + (-5 *1 (-996 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *4 *5 *6)) + (-4 *4 (-564 (-499))) (-4 *5 (-1123)) (-4 *6 (-1123))))) +(((*1 *2 *2) (-12 (-5 *1 (-541 *2)) (-4 *2 (-508))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-4 *6 (-427)) + (-5 *2 (-589 (-589 *7))) (-5 *1 (-501 *6 *7 *5)) (-4 *7 (-339)) + (-4 *5 (-13 (-339) (-784)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 (-629 *4))) (-4 *4 (-158)) + (-5 *2 (-1169 (-629 (-883 *4)))) (-5 *1 (-169 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-786)) (-5 *1 (-1095 *3))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-794)))) + ((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1174)) (-5 *1 (-892))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1018 *3)) (-5 *1 (-836 *3)) (-4 *3 (-344)) + (-4 *3 (-1016))))) +(((*1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-508))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 - (-2 (|:| -1319 (-710)) + (-2 (|:| -3569 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| *8) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 *8))))) (-5 *1 (-855 *5 *6 *7 *8)) (-5 *4 (-710))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-339)) (-4 *2 (-1145 *4)) + (-5 *1 (-853 *4 *2))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1040 *4 *3 *5))) (-4 *4 (-37 (-383 (-523)))) + (-4 *4 (-973)) (-4 *3 (-786)) (-5 *1 (-1040 *4 *3 *5)) + (-4 *5 (-880 *4 (-495 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1118 *4))) (-5 *3 (-1087)) (-5 *1 (-1118 *4)) + (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-589 (-883 *4))) (-5 *3 (-589 (-1087))) (-4 *4 (-427)) + (-5 *1 (-849 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) + (-5 *2 (-1083 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-51))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1011 *3)) (-4 *3 (-880 *7 *6 *4)) (-4 *6 (-732)) + (-4 *4 (-786)) (-4 *7 (-515)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-523)))) + (-5 *1 (-547 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-515)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-523)))) + (-5 *1 (-547 *5 *4 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1079 *4 *2)) (-4 *2 (-13 (-406 *4) (-147) (-27) (-1109))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1009 *2)) (-4 *2 (-13 (-406 *4) (-147) (-27) (-1109))) + (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1079 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) + (-5 *2 (-383 (-883 *5))) (-5 *1 (-1080 *5)) (-5 *3 (-883 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) + (-5 *2 (-3 (-383 (-883 *5)) (-292 *5))) (-5 *1 (-1080 *5)) + (-5 *3 (-383 (-883 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1009 (-883 *5))) (-5 *3 (-883 *5)) + (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-383 *3)) + (-5 *1 (-1080 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1009 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) + (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-3 *3 (-292 *5))) + (-5 *1 (-1080 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-339)) + (-5 *2 (-108)) (-5 *1 (-610 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4249)))) + (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4249)))) (-5 *2 (-108)) + (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-537))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-570 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3855 *4) (|:| |sol?| (-108))) + (-523) *4)) + (-4 *4 (-339)) (-4 *5 (-1145 *4)) (-5 *1 (-533 *4 *5))))) +(((*1 *1) (-5 *1 (-413)))) (((*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-710)))) ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-378)) (-5 *2 (-710))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-108)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-695))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-852)) (-5 *1 (-959 *2)) + (-4 *2 (-13 (-1016) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-589 (-271 *4))) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852))))) +(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-144))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-451 *4 *5 *6 *7)) (|:| -3781 (-589 *7)))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) + (-14 *4 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1123)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) + (-14 *4 (-589 (-1087))))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-824 *3)) (-4 *3 (-786))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) (((*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *6)) (-5 *5 (-1 (-394 (-1083 *6)) (-1083 *6))) (-4 *6 (-339)) @@ -7164,22 +6691,178 @@ (-2 (|:| |outval| *7) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 *7)))))) (-5 *1 (-496 *6 *7 *4)) (-4 *7 (-339)) (-4 *4 (-13 (-339) (-784)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-821 *4 *3)) + (-4 *3 (-1123)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-760))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 *1)) (-4 *1 (-406 *4)) + (-4 *4 (-786)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-589 (-1169 *4))) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) + (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) + (-5 *2 (-589 (-1169 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1070)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *4 (-987 *6 *7 *8)) (-5 *2 (-1174)) + (-5 *1 (-715 *6 *7 *8 *4 *5)) (-4 *5 (-992 *6 *7 *8 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861))))) +(((*1 *2 *1) + (-12 (-4 *1 (-556 *2 *3)) (-4 *3 (-1123)) (-4 *2 (-1016)) + (-4 *2 (-786))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-37 (-383 (-523)))) + (-4 *2 (-158))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-213 *3)))) + ((*1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-155 (-203))) (-5 *6 (-1070)) + (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) (((*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3))))) (((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-115 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-903))))) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) + (-4 *5 (-1145 *4)) (-5 *2 (-629 *4)))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-4 *5 (-1145 *4)) (-5 *2 (-629 *4)) + (-5 *1 (-384 *3 *4 *5)) (-4 *3 (-385 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1145 *3)) + (-5 *2 (-629 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-589 (-292 (-203)))) (-5 *1 (-244))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-427)) (-4 *4 (-786)) + (-4 *5 (-732)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-394 *2)) (-4 *2 (-284)) (-5 *1 (-845 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-136))) (-5 *2 (-51)) (-5 *1 (-846 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-394 (-883 *6))) (-5 *5 (-1087)) (-5 *3 (-883 *6)) + (-4 *6 (-13 (-284) (-136))) (-5 *2 (-51)) (-5 *1 (-846 *6))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-115 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-339)) + (-5 *2 (-589 (-2 (|:| C (-629 *5)) (|:| |g| (-1169 *5))))) + (-5 *1 (-907 *5)) (-5 *3 (-629 *5)) (-5 *4 (-1169 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-4 *7 (-786)) + (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-4 *8 (-284)) + (-5 *2 (-589 (-710))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-710))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-852)) (-5 *1 (-957 *2)) + (-4 *2 (-13 (-1016) (-10 -8 (-15 -4045 ($ $ $)))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-1026))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1070)) (-4 *1 (-340 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-31 *3 *4)) + (-4 *4 (-406 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *1 (-110)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-110)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *4)) + (-4 *4 (-406 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-110)) (-5 *1 (-149)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *4)) + (-4 *4 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-278 *3)) (-4 *3 (-279)))) + ((*1 *2 *2) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *4 (-786)) (-5 *1 (-405 *3 *4)) + (-4 *3 (-406 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *4)) + (-4 *4 (-406 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *4)) + (-4 *4 (-13 (-406 *3) (-930) (-1109)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1119 *3)) (-4 *3 (-903))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-562 *3)) + (-4 *3 (-13 (-406 *5) (-27) (-1109))) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-2 (|:| -1825 *3) (|:| |coeff| *3))) + (-5 *1 (-525 *5 *3 *6)) (-4 *6 (-1016))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *2) (-12 (-5 *2 (-589 (-292 (-203)))) (-5 *1 (-244))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-394 *4) *4)) (-4 *4 (-515)) (-5 *2 (-394 *4)) + (-5 *1 (-395 *4)))) + ((*1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) + (-5 *4 (-383 (-523))) (-5 *1 (-947 *3)) (-4 *3 (-1145 (-523))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) + (-5 *1 (-947 *3)) (-4 *3 (-1145 (-523))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) + (-5 *4 (-383 (-523))) (-5 *1 (-948 *3)) (-4 *3 (-1145 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))) + (-5 *1 (-948 *3)) (-4 *3 (-1145 (-383 (-523)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) + (-4 *3 (-1145 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460))))) +(((*1 *1) (-5 *1 (-413)))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) (((*1 *1 *2) (-12 (-5 *2 (-589 (-2 - (|:| -1853 + (|:| -3772 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) - (|:| -2433 + (|:| -2482 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -7195,7 +6878,7 @@ (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3499 + (|:| -2464 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -7204,671 +6887,128 @@ "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-518))))) -(((*1 *2 *3 *4) +(((*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-1144 (-523))) (-5 *1 (-459 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *1 (-240)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-305 *4)) (-4 *4 (-339)) - (-5 *2 (-629 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1168 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) - (-5 *2 (-629 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) - (-5 *2 (-1168 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) + (-4 *3 (-992 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) - (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) - (-4 *5 (-1144 *4)) (-5 *2 (-1168 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-158)) - (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) - (-5 *2 (-1168 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-393 *4)) (-4 *4 (-158)) - (-5 *2 (-629 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1168 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-589 (-629 *5))) (-5 *3 (-629 *5)) (-4 *5 (-339)) - (-5 *2 (-1168 *5)) (-5 *1 (-1004 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-203) (-203) (-203))) - (-5 *4 (-3 (-1 (-203) (-203) (-203) (-203)) "undefined")) - (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) - (-5 *1 (-636)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-203))) - (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-1 (-874 (-203)) (-203) (-203))) - (-5 *4 (-1011 (-203))) (-5 *5 (-589 (-240))) (-5 *1 (-636))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-758 *3)) (-4 *3 (-786))))) -(((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-973))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1144 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-523)) (|has| *1 (-6 -4245)) (-4 *1 (-1156 *3)) - (-4 *3 (-1122))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-351 *4 *2)) - (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245))))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-271 *2)) (-4 *2 (-666)) (-4 *2 (-1122))))) -(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650))))) -(((*1 *2) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-279)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 (-562 *1))) (-5 *3 (-589 *1)) (-4 *1 (-279)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *1))) (-4 *1 (-279)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-271 *1)) (-4 *1 (-279))))) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *3 (-1123)) (-5 *2 (-589 *1)) (-4 *1 (-938 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-51))))) (((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3078 *3) (|:| |coef1| (-721 *3)) (|:| |coef2| (-721 *3)))) - (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 (-883 *6))) (-4 *6 (-515)) - (-4 *2 (-880 (-383 (-883 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) - (-4 *5 (-732)) - (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)))))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1159 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1168 (-3 (-443) "undefined"))) (-5 *1 (-1169))))) + (-12 (-4 *3 (-339)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-788 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-339)) (-4 *5 (-973)) + (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-789 *5 *3)) + (-4 *3 (-788 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-383 *6)) (-4 *5 (-1126)) (-4 *6 (-1144 *5)) - (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *3) (|:| |radicand| *6))) - (-5 *1 (-137 *5 *6 *7)) (-5 *4 (-710)) (-4 *7 (-1144 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-876 *4 *3)) - (-4 *3 (-1144 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-794)))) - ((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-892))))) -(((*1 *2 *1) - (-12 (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-113 *3)) (-14 *3 (-523)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1068 *2)) (-4 *2 (-284)) (-5 *1 (-159 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-383 *3)) (-4 *3 (-284)) (-5 *1 (-159 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-159 (-523))) (-5 *1 (-705 *3)) (-4 *3 (-380)))) - ((*1 *2 *1) - (-12 (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-802 *3)) (-14 *3 (-523)))) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) + (-4 *5 (-1145 *4)) (-5 *2 (-629 *4)))) ((*1 *2 *1) - (-12 (-14 *3 (-523)) (-5 *2 (-159 (-383 (-523)))) - (-5 *1 (-803 *3 *4)) (-4 *4 (-800 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) - (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-292 *3)) (-4 *3 (-13 (-973) (-786))) - (-5 *1 (-201 *3 *4)) (-14 *4 (-589 (-1087)))))) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1145 *3)) + (-5 *2 (-629 *3))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-108)) + (-5 *2 (-962)) (-5 *1 (-685))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) - (-4 *3 (-987 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-589 *4)) - (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) - (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-589 *4)) - (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) - (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) - (-4 *3 (-987 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-589 *4)) - (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) - (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1025 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-589 *4)) - (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) - (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3))))) -(((*1 *1) (-5 *1 (-306)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-820 *4 *5)) (-5 *3 (-820 *4 *6)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-609 *5)) (-5 *1 (-816 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-1179 *4 *5 *6 *7))) - (-5 *1 (-1179 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-589 *9)) (-5 *4 (-1 (-108) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) - (-4 *7 (-732)) (-4 *8 (-786)) (-5 *2 (-589 (-1179 *6 *7 *8 *9))) - (-5 *1 (-1179 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) - (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) - (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) - (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-133))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-257))) (-5 *1 (-257)))) - ((*1 *2 *1) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-1092))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1190 *4 *2)) (-4 *1 (-350 *4 *2)) (-4 *4 (-786)) - (-4 *2 (-158)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-758 *4)) (-4 *1 (-1183 *4 *2)) (-4 *4 (-786)) - (-4 *2 (-973)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-973)) (-5 *1 (-1189 *2 *3)) (-4 *3 (-782))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-883 (-155 *4))) (-4 *4 (-158)) - (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-883 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-158)) - (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 (-355))) - (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) - (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) - (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) - (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-383 (-883 (-155 *4)))) (-4 *4 (-515)) - (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-383 (-883 (-155 *5)))) (-5 *4 (-852)) - (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) - (-5 *1 (-724 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) - (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) - (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) - (-5 *1 (-724 *5)))) + (|partial| -12 (-5 *5 (-1169 (-589 *3))) (-4 *4 (-284)) + (-5 *2 (-589 *3)) (-5 *1 (-430 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1087)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-589 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1825 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1109) (-27) (-406 *8))) + (-4 *8 (-13 (-427) (-786) (-136) (-964 *3) (-585 *3))) + (-5 *3 (-523)) (-5 *2 (-589 *4)) (-5 *1 (-942 *8 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-292 (-155 *4))) (-4 *4 (-515)) (-4 *4 (-786)) - (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-292 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-515)) - (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) - (-5 *1 (-724 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-973)) (-4 *5 (-1144 *4)) (-5 *2 (-1 *6 (-589 *6))) - (-5 *1 (-1162 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-1159 *4))))) + (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861))))) (((*1 *1 *2) - (-12 (-5 *2 (-852)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-339)) (-14 *5 (-922 *3 *4))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-721 *3)) (|:| |polden| *3) (|:| -3829 (-710)))) - (-5 *1 (-721 *3)) (-4 *3 (-973)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3829 (-710)))) - (-4 *1 (-987 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-523)) (-5 *5 (-108)) (-5 *6 (-629 (-203))) - (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-5 *5 (-589 (-589 *8))) - (-4 *7 (-786)) (-4 *8 (-284)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) - (-5 *2 - (-2 (|:| |upol| (-1083 *8)) (|:| |Lval| (-589 *8)) - (|:| |Lfact| - (-589 (-2 (|:| -1820 (-1083 *8)) (|:| -2735 (-523))))) - (|:| |ctpol| *8))) - (-5 *1 (-682 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-852)) (-4 *5 (-515)) (-5 *2 (-629 *5)) - (-5 *1 (-886 *5 *3)) (-4 *3 (-599 *5))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1087)) (-5 *3 (-410)) (-4 *5 (-786)) - (-5 *1 (-1022 *5 *4)) (-4 *4 (-406 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-797 *4 *5 *6 *7)) - (-4 *4 (-973)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) - (-14 *8 (-589 *5)) (-5 *2 (-1173)) - (-5 *1 (-1178 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-880 *4 *6 *5)) - (-14 *9 (-589 *3)) (-14 *10 *3)))) -(((*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-710)) (-5 *1 (-110))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-732)) (-4 *2 (-880 *4 *5 *6)) (-5 *1 (-424 *4 *5 *6 *2)) - (-4 *4 (-427)) (-4 *6 (-786))))) -(((*1 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-344)) (-4 *2 (-1016))))) -(((*1 *1 *1) (-12 (-5 *1 (-558 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1) (-5 *1 (-578)))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) - (-5 *2 (-962)) (-5 *1 (-692))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) - (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) - (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) - (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) - (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) - (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) - (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) - (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) - (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) - (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) - (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-810 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) - (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) - (-5 *1 (-236 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-810 *5)) (-5 *4 (-1009 (-355))) - (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) - (-5 *1 (-236 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) - (-5 *2 (-1047 (-203))) (-5 *1 (-236 *3)) - (-4 *3 (-13 (-564 (-499)) (-1016))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *3)) - (-4 *3 (-13 (-564 (-499)) (-1016))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-813 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) - (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) - (-5 *1 (-236 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-813 *5)) (-5 *4 (-1009 (-355))) - (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) - (-5 *1 (-236 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *1 *1) (-4 *1 (-34))) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) + (-14 *4 (-589 (-1087))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) (-4 *1 (-261))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-5 *1 (-573 *3 *4 *5)) + (-14 *5 (-852)))) ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-589 (-710))) (-5 *1 (-899 *4 *3)) - (-4 *3 (-1144 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) - ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170))))) -(((*1 *1 *1 *1) (-5 *1 (-148))) - ((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-148))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) - (-5 *2 (-758 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-1189 *3 *2)) (-4 *3 (-973))))) -(((*1 *1) (-5 *1 (-133)))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-412))))) -(((*1 *2 *1) - (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-987 *3 *4 *2)) (-4 *2 (-786)))) - ((*1 *2 *1) - (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-629 *2)) (-5 *4 (-523)) - (-4 *2 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) - (-4 *5 (-1144 *2)) (-5 *1 (-470 *2 *5 *6)) (-4 *6 (-385 *2 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240))))) -(((*1 *1) (-5 *1 (-144)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-110))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) - (-4 *2 (-13 (-27) (-1108) (-406 (-155 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) - (-5 *1 (-168 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) + (-5 *1 (-1074 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-1112 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) - (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) (-5 *3 (-523)) - (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692))))) -(((*1 *2 *3) - (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) - (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-589 (-1087))) - (-5 *2 (-589 (-589 (-355)))) (-5 *1 (-950)) (-5 *5 (-355)))) - ((*1 *2 *3) - (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) - (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) - (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) - (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) - (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) - (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-883 *4))) - (-4 *4 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087)))))) -(((*1 *2 *1) (-12 (-5 *2 (-394 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-695))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-962))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) - (-225 *4 (-383 (-523))))) - (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) - (-5 *1 (-476 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) - (-5 *2 (-523)) (-5 *1 (-1030 *4 *5))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) - (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) - ((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087))))) + (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) + (-4 *5 (-786)) (-5 *1 (-1183 *4 *5 *2)) (-4 *2 (-1188 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-1187 *3 *4)) + (-4 *4 (-657 (-383 (-523)))) (-4 *3 (-786)) (-4 *4 (-158))))) (((*1 *2 *3) - (-12 (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-394 (-1083 *7))) - (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-840)) (-4 *5 (-1144 *4)) (-5 *2 (-394 (-1083 *5))) - (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-589 *7)) (-5 *3 (-108)) (-4 *7 (-987 *4 *5 *6)) - (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) - (-5 *1 (-906 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-383 (-523))) (-5 *1 (-295 *3 *4 *5)) - (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) - (-4 *3 (-897))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) - (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) - (-5 *1 (-574 *5 *6))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) - (-5 *2 (-962)) (-5 *1 (-687))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-155 (-203)) (-155 (-203)))) (-5 *4 (-1011 (-203))) - (-5 *2 (-1170)) (-5 *1 (-234))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-203) (-203))) (-5 *4 (-1011 (-355))) - (-5 *5 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-232)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-203) (-203))) (-5 *4 (-1011 (-355))) - (-5 *2 (-1169)) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-808 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) - (-5 *5 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-232)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-808 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) - (-5 *2 (-1169)) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) - (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) - (-5 *2 (-1170)) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) - (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) - (-5 *2 (-1170)) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) - (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) - (-5 *2 (-1170)) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) - (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) - (-5 *2 (-1170)) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) - (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) - (-5 *2 (-1170)) (-5 *1 (-232)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-271 *7)) (-5 *4 (-1087)) (-5 *5 (-589 (-240))) - (-4 *7 (-406 *6)) (-4 *6 (-13 (-515) (-786) (-964 (-523)))) - (-5 *2 (-1169)) (-5 *1 (-233 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1169)) - (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1169)) (-5 *1 (-236 *3)) - (-4 *3 (-13 (-564 (-499)) (-1016))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-808 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) - (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1169)) - (-5 *1 (-236 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-808 *5)) (-5 *4 (-1009 (-355))) - (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1169)) - (-5 *1 (-236 *5)))) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-786)) (-5 *2 (-589 (-607 *4 *5))) + (-5 *1 (-573 *4 *5 *6)) (-4 *5 (-13 (-158) (-657 (-383 (-523))))) + (-14 *6 (-852))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-589 (-292 (-203)))) (-5 *3 (-203)) (-5 *2 (-108)) + (-5 *1 (-190))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-339)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-425 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-810 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) - (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) - (-5 *1 (-236 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-810 *5)) (-5 *4 (-1009 (-355))) - (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) - (-5 *1 (-236 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) - (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1170)) (-5 *1 (-236 *3)) - (-4 *3 (-13 (-564 (-499)) (-1016))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-813 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) - (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) - (-5 *1 (-236 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-813 *5)) (-5 *4 (-1009 (-355))) - (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) - (-5 *1 (-236 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1169)) (-5 *1 (-237)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-589 (-203))) (-5 *4 (-589 (-240))) (-5 *2 (-1169)) - (-5 *1 (-237)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *2 (-1169)) (-5 *1 (-237)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *4 (-589 (-240))) - (-5 *2 (-1169)) (-5 *1 (-237)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1170)) (-5 *1 (-237)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-589 (-203))) (-5 *4 (-589 (-240))) (-5 *2 (-1170)) - (-5 *1 (-237))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-523)) (-4 *2 (-406 *3)) (-5 *1 (-31 *3 *2)) - (-4 *3 (-964 *4)) (-4 *3 (-13 (-786) (-515)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-973))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) - (-5 *2 - (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) - (|:| |success| (-108)))) - (-5 *1 (-728)) (-5 *5 (-523))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-1173)) - (-5 *1 (-409 *3 *4)) (-4 *4 (-406 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133))))) -(((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-51))))) -(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) - (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *3 (-987 *4 *5 *6)) - (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *1)))) - (-4 *1 (-992 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1016)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1016))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 *1)) (-4 *1 (-279)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) - ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-110)) (-5 *3 (-589 *5)) (-5 *4 (-710)) (-4 *5 (-786)) - (-5 *1 (-562 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-349 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-1016)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1016)) (-5 *2 (-108)) - (-5 *1 (-1123 *3))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-339)) (-5 *2 - (-589 - (-589 - (-3 (|:| -4038 (-1087)) - (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))))) - (-5 *1 (-1091))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1018 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1018 *3)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1122)) - (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) - (-4 *2 (-1122))))) + (-2 (|:| R (-629 *6)) (|:| A (-629 *6)) (|:| |Ainv| (-629 *6)))) + (-5 *1 (-907 *6)) (-5 *3 (-629 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1145 (-523))) (-5 *1 (-459 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-805)) (-5 *3 (-589 (-240))) (-5 *1 (-238))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-594 *2)) (-4 *2 (-1123))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1169 (-523))) (-5 *3 (-523)) (-5 *1 (-1026)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1169 (-523))) (-5 *3 (-589 (-523))) (-5 *4 (-523)) + (-5 *1 (-1026))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) (((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *1 (-209 *4)) (-4 *4 (-973)))) @@ -7878,10 +7018,10 @@ ((*1 *1 *1) (-4 *1 (-211))) ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)) - (-4 *4 (-1144 *3)))) + (-4 *4 (-1145 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-339) (-136))) (-5 *1 (-375 *2 *3)) - (-4 *3 (-1144 *2)))) + (-4 *3 (-1145 *2)))) ((*1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 (-710))) (-4 *1 (-831 *4)) @@ -7892,595 +7032,270 @@ (-12 (-5 *2 (-589 *3)) (-4 *1 (-831 *3)) (-4 *3 (-1016)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-786)) (-4 *3 (-1016))))) -(((*1 *2) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-1168 (-629 *4))) (-5 *1 (-88 *4 *5)) - (-5 *3 (-629 *4)) (-4 *5 (-599 *4))))) -(((*1 *1 *1) (-4 *1 (-1056)))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN)))) (-5 *2 (-962)) - (-5 *1 (-686))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) - ((*1 *1 *1 *1) (-5 *1 (-1034)))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-4 *1 (-1144 *4)) (-4 *4 (-973)) - (-5 *2 (-1168 *4))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-927 *3)) (-4 *3 (-158)) (-5 *1 (-738 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4245)) (-4 *1 (-462 *3)) - (-4 *3 (-1122))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) - (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1168 *5)) (-4 *5 (-731)) (-5 *2 (-108)) - (-5 *1 (-781 *4 *5)) (-14 *4 (-710))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-2 (|:| -1820 (-1083 *6)) (|:| -2735 (-523))))) - (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-523)) - (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-523)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-594 *2)) (-4 *2 (-1122))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-589 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-710)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-732)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *5 (-786)) - (-5 *1 (-424 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) - ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) - ((*1 *1 *1 *1) (-5 *1 (-1034)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-1161 *4 *2)) - (-4 *4 (-37 (-383 (-523))))))) -(((*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1091))))) -(((*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-589 *1)) (-4 *1 (-1048 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1122)) - (-4 *5 (-1122)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-218 *6 *7)) (-14 *6 (-710)) - (-4 *7 (-1122)) (-4 *5 (-1122)) (-5 *2 (-218 *6 *5)) - (-5 *1 (-217 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1122)) (-4 *5 (-1122)) - (-4 *2 (-349 *5)) (-5 *1 (-347 *6 *4 *5 *2)) (-4 *4 (-349 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1016)) (-4 *5 (-1016)) - (-4 *2 (-401 *5)) (-5 *1 (-399 *6 *4 *5 *2)) (-4 *4 (-401 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-589 *6)) (-4 *6 (-1122)) - (-4 *5 (-1122)) (-5 *2 (-589 *5)) (-5 *1 (-587 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-888 *6)) (-4 *6 (-1122)) - (-4 *5 (-1122)) (-5 *2 (-888 *5)) (-5 *1 (-887 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1122)) - (-4 *3 (-1122)) (-5 *2 (-1068 *3)) (-5 *1 (-1066 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1168 *6)) (-4 *6 (-1122)) - (-4 *5 (-1122)) (-5 *2 (-1168 *5)) (-5 *1 (-1167 *6 *5))))) -(((*1 *2 *1) - (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) - (-4 *5 (-216 (-2676 *3) (-710))) - (-14 *6 - (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *5)) - (-2 (|:| -3878 *2) (|:| -2735 *5)))) - (-4 *2 (-786)) (-5 *1 (-436 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-880 *4 *5 (-796 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *2 (-1168 (-292 (-355)))) - (-5 *1 (-282))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) -(((*1 *2) (-12 (-5 *2 (-772 (-523))) (-5 *1 (-497)))) - ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1016))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1070)) (-5 *4 (-1034)) (-5 *2 (-108)) (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-1011 (-203))))) - ((*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203)))))) -(((*1 *2 *2) (-12 (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1087))))) -(((*1 *2 *2) - (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) - (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) - (-4 *2 - (-13 (-339) (-279) - (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) - (-15 -2797 ((-1039 *3 (-562 $)) $)) - (-15 -1458 ($ (-1039 *3 (-562 $)))))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) - (-4 *3 (-1144 *4)) - (-4 *5 (-13 (-380) (-964 *4) (-339) (-1108) (-261)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-1046 *4 *2)) - (-4 *2 (-13 (-556 (-523) *4) (-10 -7 (-6 -4244) (-6 -4245)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-786)) (-4 *3 (-1122)) (-5 *1 (-1046 *3 *2)) - (-4 *2 (-13 (-556 (-523) *3) (-10 -7 (-6 -4244) (-6 -4245))))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1016)))) - ((*1 *1 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1016))))) -(((*1 *2 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-1 (-1068 (-883 *4)) (-1068 (-883 *4)))) - (-5 *1 (-1176 *4)) (-4 *4 (-339))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1173)) (-5 *1 (-193 *4)) - (-4 *4 - (-13 (-786) - (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 (*2 $)) - (-15 -2823 (*2 $))))))) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1109) (-930)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1068 *2)) (-4 *2 (-284)) (-5 *1 (-159 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *1 (-240)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-305 *4)) (-4 *4 (-339)) + (-5 *2 (-629 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1169 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-629 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-1169 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) + (-4 *5 (-1145 *4)) (-5 *2 (-629 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) + (-4 *5 (-1145 *4)) (-5 *2 (-1169 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-158)) + (-4 *5 (-1145 *4)) (-5 *2 (-629 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1173)) (-5 *1 (-193 *3)) - (-4 *3 - (-13 (-786) - (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 (*2 $)) - (-15 -2823 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-473))))) -(((*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-203)) (-5 *1 (-282))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-710)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-1166 *3)) (-4 *3 (-23)) (-4 *3 (-1122))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) - (-4 *3 (-13 (-786) (-515))))) - ((*1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *1) (-5 *1 (-452))) ((*1 *1) (-4 *1 (-1108)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-508)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1020)) (-5 *3 (-713)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-1011 (-203))))) - ((*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203)))))) -(((*1 *1 *1) (-4 *1 (-800 *2)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) - (-5 *2 (-2 (|:| -2935 *4) (|:| -3445 *3) (|:| -3282 *3))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-987 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-515)) (-4 *3 (-973)) - (-5 *2 (-2 (|:| -2935 *3) (|:| -3445 *1) (|:| -3282 *1))) - (-4 *1 (-1144 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-779 (-355))) (-5 *2 (-779 (-203))) (-5 *1 (-282))))) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1145 *3)) + (-5 *2 (-1169 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-393 *4)) (-4 *4 (-158)) + (-5 *2 (-629 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1169 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-629 *5))) (-5 *3 (-629 *5)) (-4 *5 (-339)) + (-5 *2 (-1169 *5)) (-5 *1 (-1004 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *2 (-710)))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-710))))) -(((*1 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-520)) (-5 *3 (-523))))) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) + (-5 *2 (-2 (|:| |num| (-1169 *4)) (|:| |den| *4)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1003))))) +(((*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523))))) +(((*1 *2 *2) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) + (-5 *1 (-161 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) - (-5 *2 (-589 (-589 (-589 (-874 *3)))))))) + (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-394 *3)) (-4 *3 (-515))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-57 *3)) (-4 *3 (-1123)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-57 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-589 *5)) (-4 *5 (-1144 *3)) (-4 *3 (-284)) - (-5 *2 (-108)) (-5 *1 (-430 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-413))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-562 *4)) (-4 *4 (-786)) (-4 *2 (-786)) - (-5 *1 (-561 *2 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-108)) - (-5 *6 (-203)) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD)))) - (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE)))) - (-5 *2 (-962)) (-5 *1 (-696))))) + (|partial| -12 (-5 *3 (-110)) (-5 *4 (-589 *2)) (-5 *1 (-109 *2)) + (-4 *2 (-1016)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-589 *4))) (-4 *4 (-1016)) + (-5 *1 (-109 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1016)) + (-5 *1 (-109 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-589 *4))) + (-5 *1 (-109 *4)) (-4 *4 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-973)) + (-5 *1 (-654 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-773 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) + (-5 *4 (-3 (-1 (-203) (-203) (-203) (-203)) "undefined")) + (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) + (-5 *1 (-636)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-203))) + (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-1 (-874 (-203)) (-203) (-203))) + (-5 *4 (-1011 (-203))) (-5 *5 (-589 (-240))) (-5 *1 (-636))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) - (-5 *2 (-2 (|:| |radicand| (-383 *5)) (|:| |deg| (-710)))) - (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1144 (-383 *5)))))) -(((*1 *2) - (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) - (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) - (-5 *1 (-993 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) - (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) - (-5 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *2 (-710)))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-710))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) - (-5 *7 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-692))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1100 *4 *5)) - (-4 *4 (-1016)) (-4 *5 (-1016))))) -(((*1 *2 *1) - (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) - (-4 *1 (-987 *3 *4 *5))))) + (-12 (-5 *2 (-523)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973))))) +(((*1 *1) (-4 *1 (-325)))) +(((*1 *1 *1 *1) (-4 *1 (-448))) ((*1 *1 *1 *1) (-4 *1 (-701)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1161 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) + (-14 *4 *2)))) +(((*1 *1 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-383 (-523)))) + (-12 (-4 *5 (-339)) (-5 *2 - (-589 - (-2 (|:| |outval| *4) (|:| |outmult| (-523)) - (|:| |outvect| (-589 (-629 *4)))))) - (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784)))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-5 *1 (-1140 *4 *2)) - (-4 *2 (-1144 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *1) - (-12 (-4 *3 (-921 *2)) (-4 *4 (-1144 *3)) (-4 *2 (-284)) - (-5 *1 (-389 *2 *3 *4 *5)) (-4 *5 (-13 (-385 *3 *4) (-964 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-515)) (-4 *3 (-786)) (-5 *2 (-1039 *3 (-562 *1))) - (-4 *1 (-406 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) - ((*1 *2 *1) - (-12 (-4 *4 (-158)) (-4 *2 (|SubsetCategory| (-666) *4)) - (-5 *1 (-568 *3 *4 *2)) (-4 *3 (-37 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-158)) (-4 *2 (|SubsetCategory| (-666) *4)) - (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-657 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-973)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-1144 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-349 *2)) - (-4 *5 (-349 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) - (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)) (-4 *2 (-973))))) -(((*1 *2 *1) - (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-1118 *3)) - (-4 *3 (-903))))) + (-2 (|:| A (-629 *5)) + (|:| |eqs| + (-589 + (-2 (|:| C (-629 *5)) (|:| |g| (-1169 *5)) (|:| -2849 *6) + (|:| |rh| *5)))))) + (-5 *1 (-752 *5 *6)) (-5 *3 (-629 *5)) (-5 *4 (-1169 *5)) + (-4 *6 (-599 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-339)) (-4 *6 (-599 *5)) + (-5 *2 (-2 (|:| -2600 (-629 *6)) (|:| |vec| (-1169 *5)))) + (-5 *1 (-752 *5 *6)) (-5 *3 (-629 *6)) (-5 *4 (-1169 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) - (-4 *3 (-1016)) (-5 *2 (-710)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4244)) (-4 *1 (-462 *4)) - (-4 *4 (-1122)) (-5 *2 (-710))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-589 (-455 *4 *5))) (-5 *3 (-589 (-796 *4))) - (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-446 *4 *5 *6)) - (-4 *6 (-427))))) -(((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-292 (-355))) (-5 *1 (-282))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-203)) (-5 *3 (-710)) (-5 *1 (-204)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-155 (-203))) (-5 *3 (-710)) (-5 *1 (-204)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1051)))) + (-12 (-4 *3 (-973)) (-5 *1 (-766 *2 *3)) (-4 *2 (-648 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) - (-5 *2 (-629 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-589 - (-2 (|:| -1319 (-710)) - (|:| |eqns| - (-589 - (-2 (|:| |det| *7) (|:| |rows| (-589 (-523))) - (|:| |cols| (-589 (-523)))))) - (|:| |fgb| (-589 *7))))) - (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) - (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-710)) - (-5 *1 (-855 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-427)) (-4 *4 (-759)) - (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *1) - (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) - (-5 *2 (-1168 *6)) (-5 *1 (-389 *3 *4 *5 *6)) - (-4 *6 (-13 (-385 *4 *5) (-964 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-973)) (-4 *3 (-786)) (-5 *2 (-1039 *3 (-562 *1))) - (-4 *1 (-406 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) - ((*1 *2 *1) - (-12 (-4 *3 (-158)) (-4 *2 (-37 *3)) (-5 *1 (-568 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-666) *3)))) + (-12 (-5 *3 (-852)) (-4 *4 (-344)) (-4 *4 (-339)) (-5 *2 (-1083 *1)) + (-4 *1 (-305 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1083 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-158)) (-4 *2 (-657 *3)) (-5 *1 (-605 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-666) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1090)))) - ((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090))))) -(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-203)))) - ((*1 *1 *1) (-4 *1 (-508))) - ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-546 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-1034))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-355)) (-5 *1 (-985))))) + (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-158)) (-4 *3 (-339)) + (-4 *2 (-1145 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1169 *4)) (-4 *4 (-325)) (-5 *2 (-1083 *4)) + (-5 *1 (-493 *4))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-758 *3)) (-4 *3 (-786))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-523)) (-4 *4 (-325)) + (-5 *1 (-493 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-768))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *2)) (-4 *2 (-880 (-383 (-883 *6)) *5 *4)) - (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-732)) - (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) - (-4 *6 (-515))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1126)) (-4 *5 (-1144 (-383 *2))) - (-4 *2 (-1144 *4)) (-5 *1 (-317 *3 *4 *2 *5)) - (-4 *3 (-318 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-318 *3 *2 *4)) (-4 *3 (-1126)) - (-4 *4 (-1144 (-383 *2))) (-4 *2 (-1144 *3))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-629 *11)) (-5 *4 (-589 (-383 (-883 *8)))) - (-5 *5 (-710)) (-5 *6 (-1070)) (-4 *8 (-13 (-284) (-136))) - (-4 *11 (-880 *8 *10 *9)) (-4 *9 (-13 (-786) (-564 (-1087)))) - (-4 *10 (-732)) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-710)) (-4 *5 (-325)) (-4 *6 (-1145 *5)) (-5 *2 - (-2 - (|:| |rgl| - (-589 - (-2 (|:| |eqzro| (-589 *11)) (|:| |neqzro| (-589 *11)) - (|:| |wcond| (-589 (-883 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1168 (-383 (-883 *8)))) - (|:| -4041 (-589 (-1168 (-383 (-883 *8)))))))))) - (|:| |rgsz| (-523)))) - (-5 *1 (-855 *8 *9 *10 *11)) (-5 *7 (-523))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-560 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-5 *2 (-108))))) -(((*1 *2 *3) + (-589 + (-2 (|:| -3760 (-629 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-629 *6))))) + (-5 *1 (-469 *5 *6 *7)) + (-5 *3 + (-2 (|:| -3760 (-629 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-629 *6)))) + (-4 *7 (-1145 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) (-5 *2 (-962)) + (-5 *1 (-688))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-589 - (-2 (|:| -1319 (-710)) - (|:| |eqns| - (-589 - (-2 (|:| |det| *7) (|:| |rows| (-589 (-523))) - (|:| |cols| (-589 (-523)))))) - (|:| |fgb| (-589 *7))))) - (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) - (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-710)) - (-5 *1 (-855 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204))))) -(((*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108)))))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-523))))) + (-4 *2 (-515)) (-5 *1 (-394 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-523)) + (|:| -3491 (-589 (-2 (|:| |irr| *4) (|:| -1787 (-523))))))) + (-4 *4 (-1145 (-523))) (-5 *2 (-394 *4)) (-5 *1 (-417 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *6)) - (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) (((*1 *2 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1173)) - (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-589 *6)) (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) - (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) - (-4 *3 (-515))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) - (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) - (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) + (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 *2)) + (-5 *2 (-355)) (-5 *1 (-724 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) - (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) - (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-523) "failed") *5)) (-4 *5 (-973)) - (-5 *2 (-523)) (-5 *1 (-506 *5 *3)) (-4 *3 (-1144 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-523) "failed") *4)) (-4 *4 (-973)) - (-5 *2 (-523)) (-5 *1 (-506 *4 *3)) (-4 *3 (-1144 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-523) "failed") *4)) (-4 *4 (-973)) - (-5 *2 (-523)) (-5 *1 (-506 *4 *3)) (-4 *3 (-1144 *4))))) + (|partial| -12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) + (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) + (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) + (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-786)) (-4 *5 (-564 *2)) (-5 *2 (-355)) + (-5 *1 (-724 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-195 *4 *3)) - (-4 *3 (-1144 *4))))) -(((*1 *1) (-12 (-4 *1 (-440 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-499))) ((*1 *1) (-4 *1 (-662))) - ((*1 *1) (-4 *1 (-666))) - ((*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) - ((*1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786))))) + (-12 (-5 *2 (-589 (-589 (-523)))) (-5 *1 (-900)) + (-5 *3 (-589 (-523)))))) +(((*1 *1 *2) (-12 (-5 *2 (-292 (-155 (-355)))) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-292 (-633))) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-292 (-640))) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-292 (-638))) (-5 *1 (-306)))) + ((*1 *1) (-5 *1 (-306)))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1109))))) + ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *1)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-973)) (-5 *1 (-629 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *4)) (-4 *4 (-973)) (-4 *1 (-1037 *3 *4 *5 *6)) + (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) (((*1 *2 *1) - (-12 (-4 *1 (-634 *3)) (-4 *3 (-1016)) - (-5 *2 (-589 (-2 (|:| -2433 *3) (|:| -2792 (-710)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-502 *4 *2 *5 *6)) - (-4 *4 (-284)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-710)))))) + (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *5 (-344)) + (-5 *2 (-710))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1144 *4)) (-4 *4 (-1126)) - (-4 *1 (-318 *4 *3 *5)) (-4 *5 (-1144 (-383 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-786)) (-5 *4 (-589 *6)) - (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-589 *4)))) - (-5 *1 (-1094 *6)) (-5 *5 (-589 *4))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-696))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1068 (-203))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3499 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-962)) (-5 *1 (-282))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) - (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-499))) - ((*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-710) *2)) (-5 *4 (-710)) (-4 *2 (-1016)) - (-5 *1 (-619 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-710) *3)) (-4 *3 (-1016)) (-5 *1 (-622 *3))))) + (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1087)) (-5 *1 (-306))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1168 (-1168 (-523)))) (-5 *3 (-852)) (-5 *1 (-441))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1135 (-523))) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-259 *3)) (-4 *3 (-1122))))) -(((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786))))) + (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1145 *3))))) (((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-1003))) (-5 *1 (-268))))) -(((*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339))))) -(((*1 *2 *1) - (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) - (-4 *1 (-987 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-962)) (-5 *3 (-1087)) (-5 *1 (-244))))) + (-12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) + (-5 *2 (-589 (-589 *4))) (-5 *1 (-317 *3 *4 *5 *6)) + (-4 *3 (-318 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-4 *3 (-344)) (-5 *2 (-589 (-589 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) - (-4 *4 (-13 (-786) (-515)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) - (-5 *1 (-993 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) - (-5 *1 (-1024 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) + (-5 *2 (-589 (-1011 (-203)))) (-5 *1 (-859))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) + (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-710)) (-4 *2 (-1016)) + (-5 *1 (-619 *2))))) (((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -3013 (-110)) (|:| |arg| (-589 (-823 *3))))) - (-5 *1 (-823 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-110)) (-5 *2 (-589 (-823 *4))) - (-5 *1 (-823 *4)) (-4 *4 (-1016))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-1083 *3)) - (-4 *3 (-13 (-406 *6) (-27) (-1108))) - (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) - (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-383 (-1083 *3))) - (-4 *3 (-13 (-406 *6) (-27) (-1108))) - (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) - (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-589 (-721 *3))) (-5 *1 (-721 *3)) (-4 *3 (-515)) - (-4 *3 (-973))))) + (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) + (-5 *2 (-2 (|:| -1214 (-589 *6)) (|:| -2647 (-589 *6))))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1109) (-930)))))) (((*1 *2 *3) - (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) - (-5 *2 (-455 *4 *5)) (-5 *1 (-875 *4 *5))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) - (-5 *2 (-962)) (-5 *1 (-697))))) -(((*1 *2) (-12 (-4 *3 (-158)) (-5 *2 (-1168 *1)) (-4 *1 (-343 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) - (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-540 *3)) (-5 *1 (-402 *5 *3)) - (-4 *3 (-13 (-1108) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-964 (-523)) (-136))) - (-5 *2 (-540 (-383 (-883 *5)))) (-5 *1 (-529 *5)) - (-5 *3 (-383 (-883 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1104))))) + (-12 (-4 *4 (-786)) (-5 *2 (-589 (-589 *4))) (-5 *1 (-1095 *4)) + (-5 *3 (-589 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-523)) (|has| *1 (-6 -4249)) (-4 *1 (-1157 *3)) + (-4 *3 (-1123))))) (((*1 *2 *1) - (-12 (-5 *2 (-1153 *3 *4 *5)) (-5 *1 (-295 *3 *4 *5)) - (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) - ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) - ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1016)) (-5 *1 (-653 *3 *2 *4)) (-4 *3 (-786)) - (-14 *4 - (-1 (-108) (-2 (|:| -3878 *3) (|:| -2735 *2)) - (-2 (|:| -3878 *3) (|:| -2735 *2))))))) -(((*1 *1 *1) (-5 *1 (-985)))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) - (-4 *3 (-1144 (-155 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) - (-4 *3 (-1144 (-155 *2)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-339)) (-5 *1 (-602 *4 *2)) - (-4 *2 (-599 *4))))) -(((*1 *1) (-5 *1 (-1170)))) -(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-640)))) - ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-640))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-172)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-277)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) -(((*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-589 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-351 *4 *2)) - (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245))))))) + (-12 (-4 *2 (-648 *3)) (-5 *1 (-766 *2 *3)) (-4 *3 (-973))))) (((*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) @@ -8489,265 +7304,331 @@ (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) -(((*1 *2 *3) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-499))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-279)))) + ((*1 *1 *1) (-4 *1 (-279))) ((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) +(((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) - (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) - (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355)))) - (-5 *1 (-185))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1070)) (|:| -4038 (-1070)))) - (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-760)) (-5 *4 (-51)) (-5 *2 (-1173)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-4 *4 (-786)) (-5 *2 (-589 (-589 (-589 *4)))) - (-5 *1 (-1094 *4)) (-5 *3 (-589 (-589 *4)))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1090)) (-5 *3 (-1087))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-589 (-629 *6))) (-5 *4 (-108)) (-5 *5 (-523)) - (-5 *2 (-629 *6)) (-5 *1 (-956 *6)) (-4 *6 (-339)) (-4 *6 (-973)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-589 (-629 *4))) (-5 *2 (-629 *4)) (-5 *1 (-956 *4)) - (-4 *4 (-339)) (-4 *4 (-973)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-523)) (-5 *2 (-629 *5)) - (-5 *1 (-956 *5)) (-4 *5 (-339)) (-4 *5 (-973))))) -(((*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-499))) (-5 *1 (-499))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *2 (-108)) (-5 *1 (-244)))) - ((*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-108)) (-5 *1 (-244)))) - ((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-155 (-203)))) (-5 *2 (-962)) - (-5 *1 (-694))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1144 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *3)) - (-4 *3 (-1144 (-383 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1144 *6)) - (-4 *6 (-13 (-27) (-406 *5))) - (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-4 *8 (-1144 (-383 *7))) - (-5 *2 (-540 *3)) (-5 *1 (-511 *5 *6 *7 *8 *3)) - (-4 *3 (-318 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-498 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-499))))) -(((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + (-589 + (-2 + (|:| -3772 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1169 (-292 (-203)))) + (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) + (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (|:| -2482 + (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) + (|:| |expense| (-355)) (|:| |accuracy| (-355)) + (|:| |intermediateResults| (-355))))))) + (-5 *1 (-742))))) +(((*1 *1 *1) (-5 *1 (-203))) + ((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) ((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) - (-4 *3 (-992 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)))) - ((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) - (-4 *6 (-349 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) - (-4 *3 (-591 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) - (-4 *3 (-591 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973)))) - ((*1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-710)) - (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) - (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 (-589 *6))) (-4 *6 (-880 *3 *5 *4)) - (-4 *3 (-13 (-284) (-136))) (-4 *4 (-13 (-786) (-564 (-1087)))) - (-4 *5 (-732)) (-5 *1 (-855 *3 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-973))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1) (-4 *1 (-1051))) ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-845 *3)) (-4 *3 (-284))))) (((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-777)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-776)))) - ((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-962)) (-5 *1 (-776)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-589 (-355))) (-5 *5 (-589 (-779 (-355)))) - (-5 *6 (-589 (-292 (-355)))) (-5 *3 (-292 (-355))) (-5 *2 (-962)) - (-5 *1 (-776)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-355))) - (-5 *5 (-589 (-779 (-355)))) (-5 *2 (-962)) (-5 *1 (-776)))) + (-12 (-5 *3 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) + (-5 *2 (-1174)) (-5 *1 (-1090)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) - (-5 *1 (-776)))) + (-12 (-5 *3 (-1087)) + (-5 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-5 *2 (-1174)) + (-5 *1 (-1090)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1087)) + (-5 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-5 *2 (-1174)) + (-5 *1 (-1090))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1123)) (-5 *1 (-351 *4 *2)) + (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4249))))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) + (-5 *1 (-308))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1154 *3 *4 *5)) (-4 *3 (-13 (-339) (-786))) + (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-295 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-523))) (-4 *3 (-973)) (-5 *1 (-548 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-523))) (-4 *1 (-1129 *3)) (-4 *3 (-973)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-523))) (-4 *1 (-1160 *3)) (-4 *3 (-973))))) +(((*1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1083 (-523))) (-5 *3 (-523)) (-4 *1 (-800 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-1110 *3))) (-5 *1 (-1110 *3)) (-4 *3 (-1016))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1016)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-292 (-355)))) (-5 *4 (-589 (-355))) - (-5 *2 (-962)) (-5 *1 (-776))))) -(((*1 *1) (-5 *1 (-443)))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1190 *3 *4)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) - (-4 *4 (-158)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-758 *3)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) - (-4 *4 (-973)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973))))) -(((*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-796 *3)) (-14 *3 (-589 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-918)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1009 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) - (-5 *2 (-1087)))) - ((*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1164 *3)) (-14 *3 *2)))) + (-12 (-5 *4 (-523)) (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) + (-4 *3 (-973)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-758 *4)) (-4 *4 (-786)) (-4 *1 (-1184 *4 *3)) + (-4 *3 (-973))))) (((*1 *2 *3) - (-12 (-4 *1 (-775)) - (-5 *3 - (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) - (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) - (|:| |ub| (-589 (-779 (-203)))))) - (-5 *2 (-962)))) - ((*1 *2 *3) - (-12 (-4 *1 (-775)) + (-12 (-5 *3 - (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) - (-5 *2 (-962))))) + (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) + (-5 *2 (-589 (-203))) (-5 *1 (-282))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-271 *2)) (-4 *2 (-666)) (-4 *2 (-1123))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-973)) (-4 *2 (-627 *4 *5 *6)) + (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1145 *4)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-523)))) + (-4 *4 (-13 (-1145 *3) (-515) (-10 -8 (-15 -3310 ($ $ $))))) + (-4 *3 (-515)) (-5 *1 (-1148 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-292 (-203))) (-5 *2 (-292 (-383 (-523)))) + (-5 *1 (-282))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1123)) + (-4 *5 (-349 *4)) (-4 *2 (-349 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *6 *2 *7)) (-4 *6 (-973)) + (-4 *7 (-216 *4 *6)) (-4 *2 (-216 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1070)) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-589 (-589 (-874 (-203))))))) + ((*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-589 (-589 (-874 (-203)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650))))) +(((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *1) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-973)) (-5 *1 (-652 *3 *4)) + (-4 *4 (-1145 *3))))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-108)) (|:| -1600 (-710)) (|:| |period| (-710)))) + (-5 *1 (-1068 *4)) (-4 *4 (-1123)) (-5 *3 (-710))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1744 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-1098 *2)) (-4 *2 (-339))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-383 *6)) (-4 *6 (-1144 *5)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 (-1 *6 (-589 *6)))) + (-4 *5 (-37 (-383 (-523)))) (-4 *6 (-1160 *5)) (-5 *2 (-589 *6)) + (-5 *1 (-1162 *5 *6))))) +(((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-157))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1009 (-779 *3))) (-4 *3 (-13 (-1109) (-889) (-29 *5))) + (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) - (-5 *1 (-749 *5 *6)))) + (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-197 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1009 (-779 *3))) (-5 *5 (-1070)) + (-4 *3 (-13 (-1109) (-889) (-29 *6))) + (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-197 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-596 (-383 *6))) (-4 *6 (-1144 *5)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-5 *2 (-2 (|:| -4041 (-589 (-383 *6))) (|:| -3392 (-629 *5)))) - (-5 *1 (-749 *5 *6)) (-5 *4 (-589 (-383 *6))))) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1009 (-779 (-292 *5)))) + (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-3 (|:| |f1| (-779 (-292 *5))) (|:| |f2| (-589 (-779 (-292 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-198 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-383 (-883 *6))) (-5 *4 (-1009 (-779 (-292 *6)))) + (-5 *5 (-1070)) + (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-3 (|:| |f1| (-779 (-292 *6))) (|:| |f2| (-589 (-779 (-292 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-198 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-383 *6)) (-4 *6 (-1144 *5)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-12 (-5 *4 (-1009 (-779 (-383 (-883 *5))))) (-5 *3 (-383 (-883 *5))) + (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) - (-5 *1 (-749 *5 *6)))) + (-3 (|:| |f1| (-779 (-292 *5))) (|:| |f2| (-589 (-779 (-292 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-198 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1009 (-779 (-383 (-883 *6))))) (-5 *5 (-1070)) + (-5 *3 (-383 (-883 *6))) + (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-3 (|:| |f1| (-779 (-292 *6))) (|:| |f2| (-589 (-779 (-292 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-198 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-597 *6 (-383 *6))) (-4 *6 (-1144 *5)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-5 *2 (-2 (|:| -4041 (-589 (-383 *6))) (|:| -3392 (-629 *5)))) - (-5 *1 (-749 *5 *6)) (-5 *4 (-589 (-383 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-393 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) - (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3278 *3))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973))))) -(((*1 *2 *3) - (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) - (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) - (-4 *3 (-1144 *4)) (-5 *1 (-748 *4 *3 *2 *5)) (-4 *2 (-599 *3)) - (-4 *5 (-599 (-383 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-383 *5)) - (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) - (-5 *1 (-748 *4 *5 *2 *6)) (-4 *2 (-599 *5)) (-4 *6 (-599 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-691))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) - (-5 *2 (-108)) (-5 *1 (-916 *3 *4 *5 *6)) - (-4 *6 (-880 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) - (-4 *4 (-13 (-1016) (-33)))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) - (-5 *2 (-962)) (-5 *1 (-691))))) -(((*1 *2 *2) - (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1144 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4235)) (-4 *1 (-380)))) - ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) - ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) - ((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) - (-4 *3 (-992 *4 *5 *6 *7)))) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-3 *3 (-589 *3))) (-5 *1 (-404 *5 *3)) + (-4 *3 (-13 (-1109) (-889) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) + (-5 *5 (-355)) (-5 *6 (-985)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) + (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) + (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-589 *3)) (-4 *3 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) - (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) - (-5 *1 (-917 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) + (-5 *2 (-962)) (-5 *1 (-524)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-589 *3)) (-4 *3 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) - (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) - (-5 *1 (-1023 *5 *6 *7 *8 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-523) (-523))) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-710) (-710))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) + (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) + (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) + (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) + (-5 *5 (-355)) (-5 *6 (-985)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-292 (-355))) (-5 *4 (-1009 (-779 (-355)))) + (-5 *5 (-1070)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-292 (-355))) (-5 *4 (-1009 (-779 (-355)))) + (-5 *5 (-1087)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1145 *4)) + (-5 *2 (-540 (-383 *5))) (-5 *1 (-527 *4 *5)) (-5 *3 (-383 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-136)) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *2 (-3 (-292 *5) (-589 (-292 *5)))) (-5 *1 (-543 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-973)) (-4 *2 (-786)) + (-4 *3 (-37 (-383 (-523)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1087)) (-5 *1 (-883 *3)) (-4 *3 (-37 (-383 (-523)))) + (-4 *3 (-973)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-4 *2 (-786)) + (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-880 *3 (-495 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) + (-5 *1 (-1072 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *1 (-1118 *3)) (-4 *3 (-37 (-383 (-523)))) + (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-3172 + (-12 (-5 *2 (-1087)) (-4 *1 (-1129 *3)) (-4 *3 (-973)) + (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1109)) + (-4 *3 (-37 (-383 (-523)))))) + (-12 (-5 *2 (-1087)) (-4 *1 (-1129 *3)) (-4 *3 (-973)) + (-12 (|has| *3 (-15 -1292 ((-589 *2) *3))) + (|has| *3 (-15 -2814 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1129 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1133 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) + ((*1 *1 *1 *2) + (-3172 + (-12 (-5 *2 (-1087)) (-4 *1 (-1150 *3)) (-4 *3 (-973)) + (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1109)) + (-4 *3 (-37 (-383 (-523)))))) + (-12 (-5 *2 (-1087)) (-4 *1 (-1150 *3)) (-4 *3 (-973)) + (-12 (|has| *3 (-15 -1292 ((-589 *2) *3))) + (|has| *3 (-15 -2814 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1150 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1154 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3172 + (-12 (-5 *2 (-1087)) (-4 *1 (-1160 *3)) (-4 *3 (-973)) + (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1109)) + (-4 *3 (-37 (-383 (-523)))))) + (-12 (-5 *2 (-1087)) (-4 *1 (-1160 *3)) (-4 *3 (-973)) + (-12 (|has| *3 (-15 -1292 ((-589 *2) *3))) + (|has| *3 (-15 -2814 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1160 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1161 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) + ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-383 *5)) (-4 *4 (-1126)) (-4 *5 (-1144 *4)) - (-5 *1 (-137 *4 *5 *2)) (-4 *2 (-1144 *3)))) + (-12 (-5 *3 (-383 *5)) (-4 *4 (-1127)) (-4 *5 (-1145 *4)) + (-5 *1 (-137 *4 *5 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1089 (-383 (-523)))) (-5 *2 (-383 (-523))) (-5 *1 (-170)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-629 (-292 (-203)))) (-5 *3 (-589 (-1087))) - (-5 *4 (-1168 (-292 (-203)))) (-5 *1 (-185)))) + (-5 *4 (-1169 (-292 (-203)))) (-5 *1 (-185)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *3))) (-4 *3 (-286 *3)) (-4 *3 (-1016)) - (-4 *3 (-1122)) (-5 *1 (-271 *3)))) + (-4 *3 (-1123)) (-5 *1 (-271 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-286 *2)) (-4 *2 (-1016)) (-4 *2 (-1122)) + (-12 (-4 *2 (-286 *2)) (-4 *2 (-1016)) (-4 *2 (-1123)) (-5 *1 (-271 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-279)))) @@ -8808,10 +7689,10 @@ (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-564 (-499))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1122)))) + (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1123)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 *5)) (-4 *1 (-484 *4 *5)) - (-4 *4 (-1016)) (-4 *5 (-1122)))) + (-4 *4 (-1016)) (-4 *5 (-1123)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-772 *3)) (-4 *3 (-339)) (-5 *1 (-658 *3)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) @@ -8831,240 +7712,245 @@ ((*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-589 *3)) (-4 *3 (-880 *5 *6 *7)) (-4 *5 (-427)) - (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-424 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-33)) (-5 *2 (-710)))) +(((*1 *2 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-571 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-992 *3 *4 *5 *6)) (-4 *2 (-1025 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4248)) (-4 *1 (-33)) (-5 *2 (-710)))) ((*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-523)))) ((*1 *2 *1) - (-12 (-5 *2 (-710)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-973)) + (-12 (-5 *2 (-710)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-973)) (-4 *4 (-782))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-589 *4)) (-4 *4 (-339)) (-5 *2 (-1169 *4)) + (-5 *1 (-753 *4 *3)) (-4 *3 (-599 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-383 (-883 *4))) (-5 *3 (-1087)) + (-4 *4 (-13 (-515) (-964 (-523)) (-136))) (-5 *1 (-529 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *1 *1) (-5 *1 (-133))) - ((*1 *1 *1) (-4 *1 (-1056)))) -(((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-903))))) -(((*1 *2 *3) - (-12 (-5 *2 (-155 *4)) (-5 *1 (-165 *4 *3)) - (-4 *4 (-13 (-339) (-784))) (-4 *3 (-1144 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-761))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -2462 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-589 (-383 *8))) (-4 *7 (-339)) (-4 *8 (-1144 *7)) - (-5 *3 (-383 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-533 *7 *8))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) - (-4 *1 (-992 *4 *5 *6 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-427)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *5 (-840)) (-5 *1 (-432 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-840))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) - (-4 *5 (-1144 *4)) - (-5 *2 (-589 (-2 (|:| |deg| (-710)) (|:| -1710 *5)))) - (-5 *1 (-748 *4 *5 *3 *6)) (-4 *3 (-599 *5)) - (-4 *6 (-599 (-383 *5)))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-710)) (-4 *5 (-339)) (-5 *2 (-383 *6)) - (-5 *1 (-798 *5 *4 *6)) (-4 *4 (-1159 *5)) (-4 *6 (-1144 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-710)) (-5 *4 (-1160 *5 *6 *7)) (-4 *5 (-339)) - (-14 *6 (-1087)) (-14 *7 *5) (-5 *2 (-383 (-1141 *6 *5))) - (-5 *1 (-799 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-710)) (-5 *4 (-1160 *5 *6 *7)) (-4 *5 (-339)) - (-14 *6 (-1087)) (-14 *7 *5) (-5 *2 (-383 (-1141 *6 *5))) - (-5 *1 (-799 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *2 (-108)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1116 *5 *6 *7 *3)) - (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-108))))) -(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-499))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *2)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-155 (-523))) (-5 *2 (-108)) (-5 *1 (-421)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) - (-225 *4 (-383 (-523))))) - (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) - (-5 *1 (-476 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-508)))) - ((*1 *2 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-108))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-110)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) - (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) - ((*1 *2 *1) - (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) - (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-710)))) - ((*1 *2 *1) (-12 (-4 *1 (-243 *3)) (-4 *3 (-786)) (-5 *2 (-710))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-1192 *5 *6 *7)) - (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-1192 *5 *6 *7)) - (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-883 *4))) - (-4 *4 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 (-589 (-970 *4 *5))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087)))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-690))))) (((*1 *2) - (-12 (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-304 *3 *4)) - (-4 *3 (-305 *4)))) - ((*1 *2) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-710))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) - (-4 *2 (-13 (-27) (-1108) (-406 (-155 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-786)) (-5 *1 (-1094 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108))))) -(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-144))))) -(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1070)) (-4 *1 (-340 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-1016))))) -(((*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460))))) -(((*1 *2 *1) (-12 (-4 *3 (-1122)) (-5 *2 (-589 *1)) (-4 *1 (-938 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1011 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1122))))) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 *4)) (-4 *4 (-786)) (-5 *2 (-589 (-607 *4 *5))) - (-5 *1 (-573 *4 *5 *6)) (-4 *5 (-13 (-158) (-657 (-383 (-523))))) - (-14 *6 (-852))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-57 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-57 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-710)) (-4 *5 (-325)) (-4 *6 (-1144 *5)) - (-5 *2 - (-589 - (-2 (|:| -4041 (-629 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-629 *6))))) - (-5 *1 (-469 *5 *6 *7)) - (-5 *3 - (-2 (|:| -4041 (-629 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-629 *6)))) - (-4 *7 (-1144 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) - (-4 *3 (-13 (-1016) (-33)))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1083 (-523))) (-5 *3 (-523)) (-4 *1 (-800 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-108)) (|:| -3977 (-710)) (|:| |period| (-710)))) - (-5 *1 (-1068 *4)) (-4 *4 (-1122)) (-5 *3 (-710))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-589 *4)) (-4 *4 (-339)) (-5 *2 (-1168 *4)) - (-5 *1 (-753 *4 *3)) (-4 *3 (-599 *4))))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-108))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-710)) (-5 *1 (-362 *4)) (-4 *4 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) + (-4 *4 (-1016)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-710)) (-5 *1 (-758 *4)) (-4 *4 (-786))))) (((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-764))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-973)) + (-5 *1 (-789 *5 *2)) (-4 *2 (-788 *5))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -1611 *3) (|:| |coef1| (-721 *3)) (|:| |coef2| (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-515)))) + ((*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515))))) +(((*1 *2) + (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) + ((*1 *2 *2) + (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *4)) (-5 *3 (-852)) (-4 *4 (-973)) + (-5 *1 (-955 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-589 (-629 *4))) (-5 *3 (-852)) (-4 *4 (-973)) + (-5 *1 (-955 *4))))) (((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1087)) (-4 *4 (-973)) (-4 *4 (-786)) - (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -2735 (-523)))) + (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -1475 (-523)))) (-4 *1 (-406 *4)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-973)) (-4 *4 (-786)) - (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -2735 (-523)))) + (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -1475 (-523)))) (-4 *1 (-406 *4)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-786)) - (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -2735 (-523)))) + (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -1475 (-523)))) (-4 *1 (-406 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-823 *3)) (|:| -2735 (-710)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-823 *3)) (|:| -1475 (-710)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *2 (-2 (|:| |var| *5) (|:| -2735 (-710)))))) + (-4 *5 (-786)) (-5 *2 (-2 (|:| |var| *5) (|:| -1475 (-710)))))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -2735 (-523)))) + (-5 *2 (-2 (|:| |var| *5) (|:| -1475 (-523)))) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) - (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) - (-15 -2797 (*7 $)))))))) + (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) + (-15 -3329 (*7 $)))))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-679 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) + (-4 *2 (-406 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 (-883 *6))) (-4 *6 (-515)) + (-4 *2 (-880 (-383 (-883 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) + (-4 *5 (-732)) + (-4 *4 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $)))))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-98 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-1123)) (-5 *2 (-710))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-155 (-203)))) + (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) (((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-355)) (-5 *1 (-985))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-788 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-515)) (-4 *5 (-973)) + (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-789 *5 *3)) + (-4 *3 (-788 *5))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1169 (-3 (-443) "undefined"))) (-5 *1 (-1170))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)))) + ((*1 *1) (-4 *1 (-1063)))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-962))))) +(((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-662)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-666)) (-5 *2 (-108))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1087))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-782))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-383 *6)) (-4 *5 (-1127)) (-4 *6 (-1145 *5)) + (-5 *2 (-2 (|:| -1475 (-710)) (|:| -3474 *3) (|:| |radicand| *6))) + (-5 *1 (-137 *5 *6 *7)) (-5 *4 (-710)) (-4 *7 (-1145 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1174)) (-5 *1 (-355)))) + ((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-355))))) +(((*1 *2 *2) + (-12 (-4 *3 (-964 (-523))) (-4 *3 (-13 (-786) (-515))) + (-5 *1 (-31 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-1083 *4)) (-5 *1 (-151 *3 *4)) + (-4 *3 (-152 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-973)) (-4 *1 (-279)))) + ((*1 *2) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1083 *3)))) + ((*1 *2) (-12 (-4 *1 (-664 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1145 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-989 *3 *2)) (-4 *3 (-13 (-784) (-339))) + (-4 *2 (-1145 *3))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4246 "*"))) (-4 *5 (-349 *2)) (-4 *6 (-349 *2)) - (-4 *2 (-973)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1144 *2)) + (-12 (|has| *2 (-6 (-4250 "*"))) (-4 *5 (-349 *2)) (-4 *6 (-349 *2)) + (-4 *2 (-973)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1145 *2)) (-4 *4 (-627 *2 *5 *6))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-701)))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) + (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 (-108)) (-5 *1 (-855 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-284) (-136))) + (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-108)) + (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-973)) (-4 *2 (-1016))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-876 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-155 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) + (-5 *1 (-698))))) +(((*1 *1 *1 *1) (-4 *1 (-508)))) +(((*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-339)) (-4 *1 (-305 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1145 *4)) (-4 *4 (-1127)) + (-4 *1 (-318 *4 *3 *5)) (-4 *5 (-1145 (-383 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1169 *1)) (-4 *4 (-158)) + (-4 *1 (-343 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1169 *1)) (-4 *4 (-158)) + (-4 *1 (-346 *4 *5)) (-4 *5 (-1145 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-158)) (-4 *1 (-385 *3 *4)) + (-4 *4 (-1145 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-158)) (-4 *1 (-393 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-691))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) + (-5 *2 (-155 (-292 *4))) (-5 *1 (-168 *4 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 (-155 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-155 *3)) (-5 *1 (-1113 *4 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *4)))))) (((*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-383 (-883 (-523))))) (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 *5))) (-5 *1 (-356 *5)) @@ -9072,1702 +7958,490 @@ ((*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-523)))) (-5 *2 (-589 *4)) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1070)) (-4 *1 (-340 *2 *4)) (-4 *2 (-1016)) - (-4 *4 (-1016)))) - ((*1 *1 *2) - (-12 (-4 *1 (-340 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *1) (-5 *1 (-144)))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-779 *4)) (-5 *3 (-562 *4)) (-5 *5 (-108)) + (-4 *4 (-13 (-1109) (-29 *6))) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-202 *6 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) - (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) - (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-973)))) - ((*1 *2 *1) - (-12 (-4 *3 (-515)) (-5 *2 (-108)) (-5 *1 (-570 *3 *4)) - (-4 *4 (-1144 *3)))) + (-12 (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-113 *3)) (-14 *3 (-523)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1068 *2)) (-4 *2 (-284)) (-5 *1 (-159 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-383 *3)) (-4 *3 (-284)) (-5 *1 (-159 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-159 (-523))) (-5 *1 (-705 *3)) (-4 *3 (-380)))) ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) - (-4 *4 (-666)))) + (-12 (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-802 *3)) (-14 *3 (-523)))) ((*1 *2 *1) - (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) - (-5 *2 (-108))))) -(((*1 *1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) - ((*1 *1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) - ((*1 *1 *1) (-4 *1 (-784))) - ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) - ((*1 *1 *1) (-4 *1 (-982))) ((*1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) - (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) - (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD)))) (-5 *4 (-203)) - (-5 *2 (-962)) (-5 *1 (-696))))) -(((*1 *2 *1) - (-12 (-5 *2 (-589 (-1109 *3))) (-5 *1 (-1109 *3)) (-4 *3 (-1016))))) + (-12 (-14 *3 (-523)) (-5 *2 (-159 (-383 (-523)))) + (-5 *1 (-803 *3 *4)) (-4 *4 (-800 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) - (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-852)) (-5 *4 (-203)) (-5 *5 (-523)) (-5 *6 (-805)) - (-5 *2 (-1173)) (-5 *1 (-1169))))) + (-12 (-5 *3 (-383 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1145 *5)) + (-5 *1 (-667 *5 *2)) (-4 *5 (-339))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1076 3 *3)) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) + ((*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1142 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) + (-5 *2 (-523)) (-5 *1 (-1030 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-589 *4)) (-5 *1 (-718 *4)) - (-4 *4 (-13 (-339) (-784)))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) - ((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-515))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-1002 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-523) *2 *2)) (-4 *2 (-125)) (-5 *1 (-1002 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) - (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) - (-5 *1 (-1086))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) -(((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-805)) - (-5 *5 (-852)) (-5 *6 (-589 (-240))) (-5 *2 (-443)) (-5 *1 (-1172)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-443)) - (-5 *1 (-1172)))) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-1087)) (-4 *6 (-406 *5)) + (-4 *5 (-786)) (-5 *2 (-589 (-562 *6))) (-5 *1 (-532 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-777)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-776)))) + ((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-962)) (-5 *1 (-776)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-589 (-355))) (-5 *5 (-589 (-779 (-355)))) + (-5 *6 (-589 (-292 (-355)))) (-5 *3 (-292 (-355))) (-5 *2 (-962)) + (-5 *1 (-776)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-355))) + (-5 *5 (-589 (-779 (-355)))) (-5 *2 (-962)) (-5 *1 (-776)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-589 (-240))) - (-5 *2 (-443)) (-5 *1 (-1172))))) -(((*1 *2 *1) - (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) - (-4 *3 (-1144 *4)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) - ((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-133)) (-5 *2 (-108))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-339)) (-5 *1 (-952 *3 *2)) (-4 *2 (-599 *3)))) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) + (-5 *1 (-776)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-339)) (-5 *2 (-2 (|:| -1710 *3) (|:| -3013 (-589 *5)))) - (-5 *1 (-952 *5 *3)) (-5 *4 (-589 *5)) (-4 *3 (-599 *5))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-786)) (-4 *5 (-732)) - (-4 *6 (-515)) (-4 *7 (-880 *6 *5 *3)) - (-5 *1 (-437 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-964 (-383 (-523))) (-339) - (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) - (-15 -2797 (*7 $)))))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-629 *2)) (-5 *4 (-710)) - (-4 *2 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) - (-4 *5 (-1144 *2)) (-5 *1 (-470 *2 *5 *6)) (-4 *6 (-385 *2 *5))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) - (-5 *1 (-695))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-710)) (-5 *1 (-1017 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-589 (-108))) (-5 *7 (-629 (-203))) - (-5 *8 (-629 (-523))) (-5 *3 (-523)) (-5 *4 (-203)) (-5 *5 (-108)) - (-5 *2 (-962)) (-5 *1 (-694))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-339) (-136))) - (-5 *2 (-589 (-2 (|:| -2735 (-710)) (|:| -1288 *4) (|:| |num| *4)))) - (-5 *1 (-375 *3 *4)) (-4 *4 (-1144 *3))))) + (-12 (-5 *3 (-589 (-292 (-355)))) (-5 *4 (-589 (-355))) + (-5 *2 (-962)) (-5 *1 (-776))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-993 *5 *6 *7 *3 *4)) - (-4 *4 (-992 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) - (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-5 *2 (-2 (|:| -1853 *3) (|:| -2433 *4)))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) - (-5 *2 (-962)) (-5 *1 (-696))))) + (-12 (-5 *3 (-596 *4)) (-4 *4 (-318 *5 *6 *7)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-383 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) + (-5 *1 (-745 *5 *6 *7 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-796 *5))) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) + (-5 *2 (-589 (-589 (-225 *5 *6)))) (-5 *1 (-446 *5 *6 *7)) + (-5 *3 (-589 (-225 *5 *6))) (-4 *7 (-427))))) (((*1 *2 *3) - (-12 (-5 *3 (-155 *5)) (-4 *5 (-13 (-406 *4) (-930) (-1108))) - (-4 *4 (-13 (-515) (-786))) - (-4 *2 (-13 (-406 (-155 *4)) (-930) (-1108))) - (-5 *1 (-552 *4 *5 *2))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-1087)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-108))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-157))))))) + (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) +(((*1 *1 *1) (|partial| -4 *1 (-1063)))) +(((*1 *1 *1) + (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) + (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) - (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) - (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) - (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) - (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-339)) + (-5 *1 (-490 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) + (|has| *2 (-6 (-4250 "*"))) (-4 *2 (-973)))) ((*1 *2 *3) - (-12 (-5 *3 (-589 (-883 *4))) - (-4 *4 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (-5 *2 (-1068 (-203))) (-5 *1 (-172)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-292 (-203))) (-5 *4 (-589 (-1087))) - (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *4 (-589 (-1087))) - (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-383 (-523))) (-4 *4 (-964 (-523))) - (-4 *4 (-13 (-786) (-515))) (-5 *1 (-31 *4 *2)) (-4 *2 (-406 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-126))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-203))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-523)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-383 (-523))) (-4 *4 (-339)) (-4 *4 (-37 *3)) - (-4 *5 (-1159 *4)) (-5 *1 (-255 *4 *5 *2)) (-4 *2 (-1130 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-383 (-523))) (-4 *4 (-339)) (-4 *4 (-37 *3)) - (-4 *5 (-1128 *4)) (-5 *1 (-256 *4 *5 *2 *6)) (-4 *2 (-1151 *4 *5)) - (-4 *6 (-912 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-261))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-337 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *1) (-5 *1 (-355))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-362 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-448)) (-5 *2 (-523)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1168 *4)) (-5 *3 (-523)) (-4 *4 (-325)) - (-5 *1 (-493 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-499)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-499)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *4 (-1016)) - (-5 *1 (-622 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-339)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-629 *4)) (-5 *3 (-710)) (-4 *4 (-973)) - (-5 *1 (-630 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-523)) (-4 *3 (-973)) (-5 *1 (-654 *3 *4)) - (-4 *4 (-591 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-523)) (-4 *4 (-973)) - (-5 *1 (-654 *4 *5)) (-4 *5 (-591 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-666)) (-5 *2 (-710)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-758 *2)) (-4 *2 (-786)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-773 *3)) (-4 *3 (-973)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-523)) (-5 *1 (-773 *4)) (-4 *4 (-973)))) - ((*1 *1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-383 (-523))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-852)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-523)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *4 (-973)) - (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *3 *4)) (-4 *4 (-339)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-985))))) -(((*1 *2 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) + (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-158)) + (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) - (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-383 *6)) (|:| |h| *6) - (|:| |c1| (-383 *6)) (|:| |c2| (-383 *6)) (|:| -4081 *6))) - (-5 *1 (-944 *5 *6)) (-5 *3 (-383 *6))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) - (-4 *2 (-1144 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-1072 *4)) (-4 *4 (-973)) - (-5 *3 (-523))))) -(((*1 *1 *1 *1) (-4 *1 (-132))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) - ((*1 *1 *1 *1) (-5 *1 (-794))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971)) - (-5 *3 (-523))))) -(((*1 *1 *1) (-4 *1 (-604))) ((*1 *1 *1) (-5 *1 (-1034)))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1144 *3))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158))))) -(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-779 *3)) (-4 *3 (-1016))))) + (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) + (-4 *5 (-216 *3 *2)) (|has| *2 (-6 (-4250 "*"))) (-4 *2 (-973))))) +(((*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-339)) - (-5 *2 (-2 (|:| -3127 (-394 *3)) (|:| |special| (-394 *3)))) - (-5 *1 (-667 *5 *3))))) -(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) - ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934))))) -(((*1 *2 *3) - (-12 (-5 *3 (-883 (-203))) (-5 *2 (-292 (-355))) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-1083 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) - (-4 *3 (-1144 *4)) - (-4 *5 (-13 (-380) (-964 *4) (-339) (-1108) (-261)))))) -(((*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) - ((*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-383 (-523))) (-5 *1 (-113 *4)) (-14 *4 *3) - (-5 *3 (-523)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-383 (-523))) (-5 *1 (-802 *4)) (-14 *4 *3) - (-5 *3 (-523)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-383 (-523))) (-5 *1 (-803 *4 *5)) - (-5 *3 (-523)) (-4 *5 (-800 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-940)) (-5 *2 (-383 (-523))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-989 *2 *3)) (-4 *2 (-13 (-784) (-339))) - (-4 *3 (-1144 *2)))) + (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1087)) (-4 *1 (-27)) + (-5 *2 (-589 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1146 *2 *3)) (-4 *3 (-731)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1458 (*2 (-1087)))) - (-4 *2 (-973))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) - (-4 *2 (-216 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 *4)) (-4 *4 (-784)) (-4 *4 (-339)) (-5 *2 (-710)) - (-5 *1 (-876 *4 *5)) (-4 *5 (-1144 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-973)) - (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) - (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4))))) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-589 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-508)))) + ((*1 *1 *1) (-4 *1 (-982)))) (((*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)) - (-4 *2 (-1016)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *3)) - (-4 *3 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-523)) (-4 *4 (-1016)) - (-5 *1 (-677 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-5 *1 (-677 *2)) (-4 *2 (-1016)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) - (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-108))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) - ((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) - (-4 *4 (-325))))) -(((*1 *2 *1) - (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) - (-5 *2 (-1083 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-758 *4)) (-4 *4 (-786)) (-5 *2 (-108)) - (-5 *1 (-614 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) - (-4 *2 - (-13 (-378) - (-10 -7 (-15 -1458 (*2 *4)) (-15 -2072 ((-852) *2)) - (-15 -4041 ((-1168 *2) (-852))) (-15 -3454 (*2 *2))))) - (-5 *1 (-332 *2 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) - (-5 *2 - (-2 (|:| |contp| (-523)) - (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) - (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) - (-5 *2 - (-2 (|:| |contp| (-523)) - (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) - (-5 *1 (-1133 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) - (-14 *4 *2)))) -(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-306))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087)) (-5 *2 (-499)) (-5 *1 (-498 *4)) - (-4 *4 (-1122))))) -(((*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1161 *3 *2)) - (-4 *2 (-1159 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-115 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-692))))) -(((*1 *2 *3) - (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) - (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) (((*1 *2 *3) - (-12 (-4 *4 (-786)) (-5 *2 (-1095 (-589 *4))) (-5 *1 (-1094 *4)) - (-5 *3 (-589 *4))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-699))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1087)) (-4 *5 (-339)) (-5 *2 (-589 (-1117 *5))) - (-5 *1 (-1176 *5)) (-5 *4 (-1117 *5))))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-292 *3)) (-4 *3 (-13 (-973) (-786))) + (-5 *1 (-201 *3 *4)) (-14 *4 (-589 (-1087)))))) (((*1 *2 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) - (-4 *4 (-325))))) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) + (-4 *4 (-13 (-786) (-515)))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-589 (-1083 *7))) (-5 *3 (-1083 *7)) + (-4 *7 (-880 *5 *6 *4)) (-4 *5 (-840)) (-4 *6 (-732)) + (-4 *4 (-786)) (-5 *1 (-837 *5 *6 *4 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-796 *3)) (-14 *3 (-589 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-918)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1009 *3)) (-4 *3 (-1123)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-5 *2 (-1087)))) + ((*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1165 *3)) (-14 *3 *2)))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-710)) (-5 *1 (-520))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) - ((*1 *1 *1) (|partial| -4 *1 (-662)))) -(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-973)))) - ((*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1144 *4)) (-5 *1 (-746 *4 *2 *3 *5)) - (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) - (-4 *5 (-599 (-383 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1144 *4)) (-5 *1 (-746 *4 *2 *5 *3)) - (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-599 *2)) - (-4 *3 (-599 (-383 *2)))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-1169)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1169)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1169)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-1170)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1170)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1170))))) -(((*1 *1 *1) - (-12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) - (-4 *2 (-427)))) - ((*1 *1 *1) - (-12 (-4 *1 (-318 *2 *3 *4)) (-4 *2 (-1126)) (-4 *3 (-1144 *2)) - (-4 *4 (-1144 (-383 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-427)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)) (-4 *3 (-427)))) - ((*1 *1 *1) - (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-427)))) + (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3))))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-284)) (-4 *3 (-515)) (-5 *1 (-1075 *3 *2)) - (-4 *2 (-1144 *3))))) -(((*1 *1) (-5 *1 (-762)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-852)) (-5 *2 (-443)) (-5 *1 (-1169))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-1083 (-883 *4))) (-5 *1 (-392 *3 *4)) - (-4 *3 (-393 *4)))) - ((*1 *2) - (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-4 *3 (-339)) - (-5 *2 (-1083 (-883 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1109 *3)) (-4 *3 (-1016))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-589 *1)) (-4 *1 (-406 *4)) - (-4 *4 (-786)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) - (-4 *5 (-13 (-1016) (-33))) (-4 *6 (-13 (-1016) (-33))) - (-5 *2 (-108)) (-5 *1 (-1052 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-466))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-732)) (-4 *5 (-973)) (-4 *6 (-880 *5 *4 *2)) - (-4 *2 (-786)) (-5 *1 (-881 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-339) - (-10 -8 (-15 -1458 ($ *6)) (-15 -2785 (*6 $)) - (-15 -2797 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) - (-5 *2 (-1087)) (-5 *1 (-969 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-394 *4)) (-4 *4 (-515))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) - ((*1 *1) - (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) - (-4 *4 (-158)))) - ((*1 *1) (-4 *1 (-666))) ((*1 *1) (-5 *1 (-1087)))) -(((*1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-508))))) -(((*1 *2 *3 *4) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4))))) + ((*1 *1 *1) (-5 *1 (-355))) + ((*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) - (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) - (-5 *2 (-962)) (-5 *1 (-687))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-562 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) - (-4 *2 (-13 (-406 *5) (-27) (-1108))) - (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *1 (-525 *5 *2 *6)) (-4 *6 (-1016))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-971))))) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) + (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *1) (-5 *1 (-144)))) (((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-4 *1 (-231 *3)) (-4 *3 (-1122)) (-5 *2 (-710)))) - ((*1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-710)))) - ((*1 *2 *3) - (-12 (-4 *4 (-973)) - (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) - (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) - ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) - ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-413)) (-5 *3 (-589 (-1087))) (-5 *4 (-1087)) - (-5 *1 (-1090)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1091)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-413)) (-5 *3 (-589 (-1087))) (-5 *1 (-1091))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1128 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-523))) (-5 *4 (-836 (-523))) - (-5 *2 (-629 (-523))) (-5 *1 (-544)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-589 (-629 (-523)))) - (-5 *1 (-544)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-523))) (-5 *4 (-589 (-836 (-523)))) - (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-544))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1169)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523))))) -(((*1 *2 *3) - (-12 (-5 *3 (-883 *4)) (-4 *4 (-13 (-284) (-136))) - (-4 *2 (-880 *4 *6 *5)) (-5 *1 (-855 *4 *5 *6 *2)) - (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-589 (-1083 *13))) (-5 *3 (-1083 *13)) - (-5 *4 (-589 *12)) (-5 *5 (-589 *10)) (-5 *6 (-589 *13)) - (-5 *7 (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| *13))))) - (-5 *8 (-589 (-710))) (-5 *9 (-1168 (-589 (-1083 *10)))) - (-4 *12 (-786)) (-4 *10 (-284)) (-4 *13 (-880 *10 *11 *12)) - (-4 *11 (-732)) (-5 *1 (-647 *11 *12 *10 *13))))) + (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) + (-4 *2 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1145 *3)) + (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1160 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) + (-4 *2 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) + (-5 *1 (-1064 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-203)) (-5 *5 (-523)) (-5 *2 (-1118 *3)) - (-5 *1 (-729 *3)) (-4 *3 (-903)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-108)) - (-5 *1 (-1118 *2)) (-4 *2 (-903))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-710)) (-4 *4 (-13 (-515) (-136))) - (-5 *1 (-1138 *4 *2)) (-4 *2 (-1144 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) - (-4 *3 (-13 (-339) (-1108) (-930)))))) -(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) - ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171))))) -(((*1 *2 *1) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) - ((*1 *2 *1) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858))))) -(((*1 *1) - (-12 (-4 *3 (-1016)) (-5 *1 (-816 *2 *3 *4)) (-4 *2 (-1016)) - (-4 *4 (-609 *3)))) - ((*1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) -(((*1 *2 *1) - (-12 (-5 *2 (-794)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 (-710)) - (-14 *4 (-710)) (-4 *5 (-158))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-786)) - (-5 *2 (-2 (|:| -2935 (-523)) (|:| |var| (-562 *1)))) - (-4 *1 (-406 *3))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3278 (-721 *3)) (|:| |coef1| (-721 *3)) - (|:| |coef2| (-721 *3)))) - (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *2 (-2 (|:| -3278 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-987 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1087)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-883 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1087)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-786) (-515))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-786) (-515)))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-589 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-710)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-732)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *5 (-786)) - (-5 *1 (-424 *3 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-383 (-523))) (-5 *1 (-548 *3)) (-4 *3 (-37 *2)) - (-4 *3 (-973))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-540 *3) *3 (-1087))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1087))) - (-4 *3 (-261)) (-4 *3 (-575)) (-4 *3 (-964 *4)) (-4 *3 (-406 *7)) - (-5 *4 (-1087)) (-4 *7 (-564 (-823 (-523)))) (-4 *7 (-427)) - (-4 *7 (-817 (-523))) (-4 *7 (-786)) (-5 *2 (-540 *3)) - (-5 *1 (-532 *7 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-284)) (-4 *3 (-921 *2)) (-4 *4 (-1144 *3)) - (-5 *1 (-389 *2 *3 *4 *5)) (-4 *5 (-13 (-385 *3 *4) (-964 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *8)) (-4 *8 (-880 *5 *7 *6)) - (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) - (-4 *7 (-732)) + (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) (-5 *2 - (-589 - (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) - (|:| |wcond| (-589 (-883 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) - (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) - (-5 *1 (-855 *5 *6 *7 *8)) (-5 *4 (-589 *8)))) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) + (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *8)) (-5 *4 (-589 (-1087))) (-4 *8 (-880 *5 *7 *6)) - (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) - (-4 *7 (-732)) - (-5 *2 - (-589 - (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) - (|:| |wcond| (-589 (-883 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) - (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) - (-5 *1 (-855 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-629 *7)) (-4 *7 (-880 *4 *6 *5)) - (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) - (-4 *6 (-732)) - (-5 *2 - (-589 - (-2 (|:| |eqzro| (-589 *7)) (|:| |neqzro| (-589 *7)) - (|:| |wcond| (-589 (-883 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) - (|:| -4041 (-589 (-1168 (-383 (-883 *4)))))))))) - (-5 *1 (-855 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *9)) (-5 *5 (-852)) (-4 *9 (-880 *6 *8 *7)) - (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) - (-4 *8 (-732)) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 - (-589 - (-2 (|:| |eqzro| (-589 *9)) (|:| |neqzro| (-589 *9)) - (|:| |wcond| (-589 (-883 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1168 (-383 (-883 *6)))) - (|:| -4041 (-589 (-1168 (-383 (-883 *6)))))))))) - (-5 *1 (-855 *6 *7 *8 *9)) (-5 *4 (-589 *9)))) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) + (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 (-1087))) (-5 *5 (-852)) - (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) - (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) - (-5 *2 - (-589 - (-2 (|:| |eqzro| (-589 *9)) (|:| |neqzro| (-589 *9)) - (|:| |wcond| (-589 (-883 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1168 (-383 (-883 *6)))) - (|:| -4041 (-589 (-1168 (-383 (-883 *6)))))))))) - (-5 *1 (-855 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *8)) (-5 *4 (-852)) (-4 *8 (-880 *5 *7 *6)) - (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) - (-4 *7 (-732)) + (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) (-5 *2 - (-589 - (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) - (|:| |wcond| (-589 (-883 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) - (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) - (-5 *1 (-855 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 *9)) (-5 *5 (-1070)) - (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) - (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) - (-5 *1 (-855 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 (-1087))) (-5 *5 (-1070)) - (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) - (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) - (-5 *1 (-855 *6 *7 *8 *9)))) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) + (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1025 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *8)) (-5 *4 (-1070)) (-4 *8 (-880 *5 *7 *6)) - (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) - (-4 *7 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-629 *10)) (-5 *4 (-589 *10)) (-5 *5 (-852)) - (-5 *6 (-1070)) (-4 *10 (-880 *7 *9 *8)) (-4 *7 (-13 (-284) (-136))) - (-4 *8 (-13 (-786) (-564 (-1087)))) (-4 *9 (-732)) (-5 *2 (-523)) - (-5 *1 (-855 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-629 *10)) (-5 *4 (-589 (-1087))) (-5 *5 (-852)) - (-5 *6 (-1070)) (-4 *10 (-880 *7 *9 *8)) (-4 *7 (-13 (-284) (-136))) - (-4 *8 (-13 (-786) (-564 (-1087)))) (-4 *9 (-732)) (-5 *2 (-523)) - (-5 *1 (-855 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *9)) (-5 *4 (-852)) (-5 *5 (-1070)) - (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) - (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) - (-5 *1 (-855 *6 *7 *8 *9))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-940))))) -(((*1 *2) - (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-393 *3))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1144 *4)) (-5 *1 (-748 *4 *2 *3 *5)) - (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) - (-4 *5 (-599 (-383 *2)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-515)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-515))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 - (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) - (|:| |success| (-108)))) - (-5 *1 (-728)) (-5 *5 (-523))))) -(((*1 *2 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) - (-4 *4 (-325))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) -(((*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1090))))) -(((*1 *1 *1 *1) (-4 *1 (-897)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3278 *3))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) - (-5 *1 (-308))))) -(((*1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) - ((*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) - (-5 *2 (-962)) (-5 *1 (-689)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) - (-5 *8 (-364)) (-5 *2 (-962)) (-5 *1 (-689))))) -(((*1 *2 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1168 (-1168 (-523)))) (-5 *1 (-441))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-900))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-292 (-203))) (-5 *1 (-282)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-823 *3)) (|:| |den| (-823 *3)))) - (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-339))))) -(((*1 *2 *3) - (-12 (-5 *2 (-589 (-1083 (-523)))) (-5 *1 (-171)) (-5 *3 (-523))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-1 (-108) *8))) (-4 *8 (-987 *5 *6 *7)) - (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) - (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *2 (-710))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) - (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) - (-5 *1 (-688))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-167))))) -(((*1 *1) - (-12 (-4 *1 (-380)) (-3900 (|has| *1 (-6 -4235))) - (-3900 (|has| *1 (-6 -4227))))) - ((*1 *2 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-786)))) - ((*1 *2 *1) (-12 (-4 *1 (-769 *2)) (-4 *2 (-786)))) - ((*1 *1 *1 *1) (-4 *1 (-786))) ((*1 *1) (-5 *1 (-1034)))) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) + (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-393 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-284)) (-5 *1 (-164 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-589 *6)) - (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) - (-5 *3 (-589 (-523))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) - (-5 *3 (-589 (-523)))))) -(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) + (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) + (-4 *3 (-591 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3159 *6) (|:| |sol?| (-108))) (-523) - *6)) - (-4 *6 (-339)) (-4 *7 (-1144 *6)) - (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) - (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-589 (-883 *4))) (-5 *3 (-589 (-1087))) (-4 *4 (-427)) - (-5 *1 (-849 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) - (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) - (-4 *7 (-921 *4)) (-4 *2 (-627 *7 *8 *9)) - (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) - (-4 *8 (-349 *7)) (-4 *9 (-349 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) - (-4 *4 (-349 *2)) (-4 *2 (-284)))) - ((*1 *2 *2) - (-12 (-4 *3 (-284)) (-4 *3 (-158)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) - (-4 *2 (-627 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4 *5 *6)) (-4 *4 (-973)) - (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *2 *4)) (-4 *4 (-284))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-852)) (-5 *1 (-957 *2)) - (-4 *2 (-13 (-1016) (-10 -8 (-15 -4075 ($ $ $)))))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-4 *5 (-1144 *4)) (-5 *2 (-589 (-596 (-383 *5)))) - (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-383 *5)))))) -(((*1 *1 *1) (-4 *1 (-575))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930) (-1108)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *6 (-564 (-1087))) - (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) - (-5 *2 (-1077 (-589 (-883 *4)) (-589 (-271 (-883 *4))))) - (-5 *1 (-475 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-302 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)) - (-4 *2 (-427)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 *4)) (-4 *4 (-1144 (-523))) (-5 *2 (-589 (-523))) - (-5 *1 (-459 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-427)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)) (-4 *3 (-427))))) -(((*1 *1 *1) (-5 *1 (-47))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1122)) - (-4 *2 (-1122)) (-5 *1 (-56 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1016)) (|has| *1 (-6 -4244)) - (-4 *1 (-140 *2)) (-4 *2 (-1122)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) - (-4 *2 (-1122)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) - (-4 *2 (-1122)))) - ((*1 *2 *3) - (-12 (-4 *4 (-973)) - (-5 *2 (-2 (|:| -1480 (-1083 *4)) (|:| |deg| (-852)))) - (-5 *1 (-199 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-13 (-515) (-786))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-218 *5 *6)) (-14 *5 (-710)) - (-4 *6 (-1122)) (-4 *2 (-1122)) (-5 *1 (-217 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-158)) (-5 *1 (-266 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1144 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-515)) (-4 *2 (-786)))) - ((*1 *1 *1) - (-12 (-4 *1 (-311 *2 *3 *4 *5)) (-4 *2 (-339)) (-4 *3 (-1144 *2)) - (-4 *4 (-1144 (-383 *3))) (-4 *5 (-318 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1122)) (-4 *2 (-1122)) - (-5 *1 (-347 *5 *4 *2 *6)) (-4 *4 (-349 *5)) (-4 *6 (-349 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) - (-5 *1 (-399 *5 *4 *2 *6)) (-4 *4 (-401 *5)) (-4 *6 (-401 *2)))) - ((*1 *1 *1) (-5 *1 (-466))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-589 *5)) (-4 *5 (-1122)) - (-4 *2 (-1122)) (-5 *1 (-587 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-973)) (-4 *2 (-973)) - (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *8 (-349 *2)) - (-4 *9 (-349 *2)) (-5 *1 (-625 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-627 *5 *6 *7)) (-4 *10 (-627 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1144 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-383 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-339)) - (-4 *3 (-158)) (-4 *1 (-664 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-158)) (-4 *1 (-664 *3 *2)) (-4 *2 (-1144 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-888 *5)) (-4 *5 (-1122)) - (-4 *2 (-1122)) (-5 *1 (-887 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *2 (-880 *3 *4 *5)) - (-14 *6 (-589 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-973)) (-4 *2 (-973)) - (-14 *5 (-710)) (-14 *6 (-710)) (-4 *8 (-216 *6 *7)) - (-4 *9 (-216 *5 *7)) (-4 *10 (-216 *6 *2)) (-4 *11 (-216 *5 *2)) - (-5 *1 (-978 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-976 *5 *6 *7 *8 *9)) (-4 *12 (-976 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1122)) - (-4 *2 (-1122)) (-5 *1 (-1066 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) - (-4 *1 (-1116 *5 *6 *7 *2)) (-4 *5 (-515)) (-4 *6 (-732)) - (-4 *7 (-786)) (-4 *2 (-987 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1168 *5)) (-4 *5 (-1122)) - (-4 *2 (-1122)) (-5 *1 (-1167 *5 *2))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-696))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) - (-4 *4 (-973)) (-4 *4 (-158)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)) - (-4 *3 (-158))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) + (-12 (-5 *5 (-108)) (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-589 (-51))) (-5 *2 (-1174)) (-5 *1 (-795))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1068 (-203))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3499 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-518))))) + (-5 *2 (-355)) (-5 *1 (-172))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *3 (-515))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) (((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-973))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1168 *5)) (-4 *5 (-731)) (-5 *2 (-108)) - (-5 *1 (-781 *4 *5)) (-14 *4 (-710))))) -(((*1 *2 *3) - (-12 (-4 *1 (-325)) (-5 *3 (-523)) (-5 *2 (-1096 (-852) (-710)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-523)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-394 *2)) (-4 *2 (-515))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-562 *6)) (-4 *6 (-13 (-406 *5) (-27) (-1108))) - (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *2 (-1083 (-383 (-1083 *6)))) (-5 *1 (-519 *5 *6 *7)) - (-5 *3 (-1083 *6)) (-4 *7 (-1016)))) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172)))) + ((*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1172))))) +(((*1 *2 *1) + (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-108)) + (-5 *1 (-333 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1169 *4)) (-4 *4 (-325)) (-5 *2 (-108)) + (-5 *1 (-493 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-4 *4 (-1123)) (-5 *2 (-108)) + (-5 *1 (-1068 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-4 *2 (-1144 *3)) (-5 *1 (-652 *3 *2)) (-4 *3 (-973)))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) + (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-973)))) ((*1 *2 *1) - (-12 (-4 *1 (-664 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1144 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1083 *11)) (-5 *6 (-589 *10)) - (-5 *7 (-589 (-710))) (-5 *8 (-589 *11)) (-4 *10 (-786)) - (-4 *11 (-284)) (-4 *9 (-732)) (-4 *5 (-880 *11 *9 *10)) - (-5 *2 (-589 (-1083 *5))) (-5 *1 (-682 *9 *10 *11 *5)) - (-5 *3 (-1083 *5)))) + (-12 (-4 *3 (-515)) (-5 *2 (-108)) (-5 *1 (-570 *3 *4)) + (-4 *4 (-1145 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-880 *3 *4 *5)) (-5 *1 (-961 *3 *4 *5 *2 *6)) - (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-14 *6 (-589 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-523))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-339)) - (-4 *4 (-973)) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-768))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 *4)))) - (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) + (-12 (-5 *2 (-108)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-666)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-393 *4))))) + (-12 (-4 *4 (-13 (-339) (-784))) + (-5 *2 (-2 (|:| |start| *3) (|:| -3491 (-394 *3)))) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-710)) (-5 *2 (-108)) (-5 *1 (-541 *3)) (-4 *3 (-508))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *4 (-1087)) - (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-277))))) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) - (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-589 *3)) - (-5 *1 (-545 *5 *6 *7 *8 *3)) (-4 *3 (-1025 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) - (-5 *2 - (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) - (-5 *1 (-997 *5 *6)) (-5 *3 (-589 (-883 *5))) - (-14 *6 (-589 (-1087))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-284) (-136))) - (-5 *2 - (-589 (-2 (|:| -1986 (-1083 *4)) (|:| -2966 (-589 (-883 *4)))))) - (-5 *1 (-997 *4 *5)) (-5 *3 (-589 (-883 *4))) - (-14 *5 (-589 (-1087))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) - (-5 *2 - (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) - (-5 *1 (-997 *5 *6)) (-5 *3 (-589 (-883 *5))) - (-14 *6 (-589 (-1087)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))))) - ((*1 *1 *1) - (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) - (-14 *3 (-589 (-1087)))))) + (-12 (-4 *5 (-339)) (-4 *7 (-1145 *5)) (-4 *4 (-664 *5 *7)) + (-5 *2 (-2 (|:| -2600 (-629 *6)) (|:| |vec| (-1169 *5)))) + (-5 *1 (-750 *5 *6 *7 *4 *3)) (-4 *6 (-599 *5)) (-4 *3 (-599 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) - (-4 *5 (-13 (-27) (-1108) (-406 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-383 (-523))) - (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) - (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-271 *3)) (-5 *5 (-383 (-523))) - (-4 *3 (-13 (-27) (-1108) (-406 *6))) - (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-523))) (-5 *4 (-271 *6)) - (-4 *6 (-13 (-27) (-1108) (-406 *5))) - (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *6))) - (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1135 (-523))) - (-4 *7 (-13 (-27) (-1108) (-406 *6))) - (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-523))) - (-4 *3 (-13 (-27) (-1108) (-406 *7))) - (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-383 (-523)))) (-5 *4 (-271 *8)) - (-5 *5 (-1135 (-383 (-523)))) (-5 *6 (-383 (-523))) - (-4 *8 (-13 (-27) (-1108) (-406 *7))) - (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-383 (-523)))) - (-5 *7 (-383 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *8))) - (-4 *8 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) - (-4 *3 (-973)) (-5 *1 (-548 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-549 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) - (-4 *3 (-973)) (-4 *1 (-1128 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-710)) - (-5 *3 (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| *4)))) - (-4 *4 (-973)) (-4 *1 (-1149 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-4 *1 (-1159 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1068 (-2 (|:| |k| (-710)) (|:| |c| *3)))) - (-4 *3 (-973)) (-4 *1 (-1159 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-768))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1168 *4)) (-5 *3 (-710)) (-4 *4 (-325)) - (-5 *1 (-493 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-144)))) - ((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) -(((*1 *2 *1) - (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) - (-5 *2 (-589 *3))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-710)) (-4 *5 (-339)) (-5 *2 (-159 *6)) - (-5 *1 (-798 *5 *4 *6)) (-4 *4 (-1159 *5)) (-4 *6 (-1144 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-515)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-515))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1068 *4)) (-4 *4 (-37 *3)) (-4 *4 (-973)) - (-5 *3 (-383 (-523))) (-5 *1 (-1072 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *6))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-589 (-562 *2))) (-5 *4 (-1087)) - (-4 *2 (-13 (-27) (-1108) (-406 *5))) - (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-254 *5 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1122)) (-5 *2 (-108))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-4 *1 (-102 *3))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-155 (-203)) (-155 (-203)))) (-5 *4 (-1011 (-203))) - (-5 *5 (-108)) (-5 *2 (-1170)) (-5 *1 (-234))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) -(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-805)))) - ((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) -(((*1 *2 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1168 *5)) (-4 *5 (-731)) (-5 *2 (-108)) - (-5 *1 (-781 *4 *5)) (-14 *4 (-710))))) -(((*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) + (-12 + (-5 *3 + (-2 (|:| -2600 (-629 (-383 (-883 *4)))) + (|:| |vec| (-589 (-383 (-883 *4)))) (|:| -3569 (-710)) + (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) + (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) + (-5 *2 + (-2 (|:| |partsol| (-1169 (-383 (-883 *4)))) + (|:| -3760 (-589 (-1169 (-383 (-883 *4))))))) + (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-820 *4 *5)) (-5 *3 (-820 *4 *6)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-609 *5)) (-5 *1 (-816 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) (((*1 *2 *3) - (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) - (-5 *2 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) - (-5 *1 (-322 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *2 (-108)))) + (-12 (-5 *3 (-1018 *4)) (-4 *4 (-1016)) (-5 *2 (-1 *4)) + (-5 *1 (-945 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108))))) -(((*1 *2 *1) - (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-973))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-874 (-203))) (-5 *4 (-805)) (-5 *2 (-1173)) - (-5 *1 (-443)))) - ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-909 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-874 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-874 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)) (-5 *3 (-203))))) -(((*1 *1) (-5 *1 (-1003)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) - ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240)))) - ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) - ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) - (-5 *1 (-239 *2)) (-4 *2 (-1122)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *2 (-51)) - (-5 *1 (-240))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *1) (-4 *1 (-261))) + (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355)))) ((*1 *2 *3) - (-12 (-5 *3 (-394 *4)) (-4 *4 (-515)) - (-5 *2 (-589 (-2 (|:| -2935 (-710)) (|:| |logand| *4)))) - (-5 *1 (-296 *4)))) + (-12 (-5 *3 (-1011 (-523))) (-5 *2 (-1 (-523))) (-5 *1 (-971))))) +(((*1 *1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) ((*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *2 *1) - (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) - (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) - (-4 *5 (-786)) (-5 *1 (-1182 *4 *5 *2)) (-4 *2 (-1187 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-1186 *3 *4)) - (-4 *4 (-657 (-383 (-523)))) (-4 *3 (-786)) (-4 *4 (-158))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-589 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-284)) - (-5 *2 (-710)) (-5 *1 (-430 *5 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *1)) (-5 *4 (-1168 *1)) (-4 *1 (-585 *5)) - (-4 *5 (-973)) - (-5 *2 (-2 (|:| -3392 (-629 *5)) (|:| |vec| (-1168 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-629 *1)) (-4 *1 (-585 *4)) (-4 *4 (-973)) - (-5 *2 (-629 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-589 (-383 *6))) (-5 *3 (-383 *6)) - (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-527 *5 *6))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) - (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) - (-5 *1 (-727))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-299 *2 *4)) (-4 *4 (-124)) - (-4 *2 (-1016)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-337 *2)) (-4 *2 (-1016)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-362 *2)) (-4 *2 (-1016)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *2 (-1016)) (-5 *1 (-592 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-758 *2)) (-4 *2 (-786))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-710)) (-5 *3 (-874 *5)) (-4 *5 (-973)) - (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 (-710))) (-5 *3 (-710)) (-5 *1 (-1076 *4 *5)) - (-14 *4 (-852)) (-4 *5 (-973)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 (-710))) (-5 *3 (-874 *5)) (-4 *5 (-973)) - (-5 *1 (-1076 *4 *5)) (-14 *4 (-852))))) -(((*1 *2 *1) - (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) - (-5 *2 (-108))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) + ((*1 *1 *1) (-4 *1 (-784))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) + ((*1 *1 *1) (-4 *1 (-982))) ((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-110))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *1 (-743 *4 *2)) (-4 *2 (-13 (-29 *4) (-1108) (-889)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158))))) + (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-1016)) + (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) + (-5 *1 (-53 *4 *5 *2)) + (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4))))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-108)) (-5 *6 (-203)) + (-5 *7 (-629 (-523))) + (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) + (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-934))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-629 (-523))) (-5 *3 (-589 (-523))) (-5 *1 (-1026))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-512))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) (((*1 *2 *3) - (-12 (-5 *3 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) - (-4 *4 (-325)) (-5 *2 (-629 *4)) (-5 *1 (-322 *4))))) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-973)) (-5 *2 (-1169 *4)) + (-5 *1 (-1088 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-852)) (-5 *2 (-1169 *3)) (-5 *1 (-1088 *3)) + (-4 *3 (-973))))) (((*1 *2 *1) - (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1016)) - (-4 *6 (-1016)) (-4 *2 (-1016)) (-5 *1 (-621 *5 *6 *2))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-589 (-1083 *11))) (-5 *3 (-1083 *11)) - (-5 *4 (-589 *10)) (-5 *5 (-589 *8)) (-5 *6 (-589 (-710))) - (-5 *7 (-1168 (-589 (-1083 *8)))) (-4 *10 (-786)) - (-4 *8 (-284)) (-4 *11 (-880 *8 *9 *10)) (-4 *9 (-732)) - (-5 *1 (-647 *9 *10 *8 *11))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-973)) (-4 *7 (-973)) - (-4 *6 (-1144 *5)) (-5 *2 (-1083 (-1083 *7))) - (-5 *1 (-472 *5 *6 *4 *7)) (-4 *4 (-1144 *6))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1144 *6)) - (-4 *6 (-13 (-339) (-136) (-964 *4))) (-5 *4 (-523)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) - (|:| -1710 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-943 *6 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-692))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-973)) (-5 *1 (-49 *2 *3)) (-14 *3 (-589 (-1087))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-589 (-852))) (-4 *2 (-339)) (-5 *1 (-141 *4 *2 *5)) - (-14 *4 (-852)) (-14 *5 (-922 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-292 *3)) (-5 *1 (-201 *3 *4)) - (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-124)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-973)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *2 (-515)) (-5 *1 (-570 *2 *4)) - (-4 *4 (-1144 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-648 *2)) (-4 *2 (-973)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-973)) (-5 *1 (-675 *2 *3)) (-4 *3 (-666)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 *5)) (-5 *3 (-589 (-710))) (-4 *1 (-680 *4 *5)) - (-4 *4 (-973)) (-4 *5 (-786)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *2)) (-4 *4 (-973)) - (-4 *2 (-786)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-788 *2)) (-4 *2 (-973)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 (-710))) (-4 *1 (-880 *4 *5 *6)) - (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-710)) (-4 *1 (-880 *4 *5 *2)) (-4 *4 (-973)) - (-4 *5 (-732)) (-4 *2 (-786)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-4 *2 (-880 *4 (-495 *5) *5)) - (-5 *1 (-1040 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-786)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-883 *4)) (-5 *1 (-1117 *4)) - (-4 *4 (-973))))) -(((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-523)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-448)) (-5 *2 (-523)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-666)) (-5 *2 (-710)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-852))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -4041 (-589 *1)))) - (-4 *1 (-343 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-428 *3 *4 *5 *6)) - (|:| -4041 (-589 (-428 *3 *4 *5 *6))))) - (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-279)))) - ((*1 *1 *1) (-4 *1 (-279))) - ((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) - ((*1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *2) (-12 (-5 *2 (-1011 (-779 (-203)))) (-5 *1 (-282))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) - (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-906 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) - (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *2) - (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) - (-5 *1 (-161 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-786) (-515))) - (-5 *2 (-794)) (-5 *1 (-31 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) - (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) - (-5 *2 - (-2 (|:| -1710 (-589 *9)) (|:| -3072 *4) (|:| |ineq| (-589 *9)))) - (-5 *1 (-917 *6 *7 *8 *9 *4)) (-5 *3 (-589 *9)) - (-4 *4 (-992 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) - (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) - (-5 *2 - (-2 (|:| -1710 (-589 *9)) (|:| -3072 *4) (|:| |ineq| (-589 *9)))) - (-5 *1 (-1023 *6 *7 *8 *9 *4)) (-5 *3 (-589 *9)) - (-4 *4 (-992 *6 *7 *8 *9))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) -(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-515))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-834 *3))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *2)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *3 (-589 (-240))) + (-5 *1 (-238)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *1 (-240)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-455 *5 *6))) (-5 *3 (-455 *5 *6)) + (-14 *5 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-1169 *6)) + (-5 *1 (-577 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *2 (-523)))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-786)) - (-4 *3 (-1016))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-760))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-284)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-422 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) - (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) - (-5 *1 (-422 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) - (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) - (-5 *1 (-422 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) + (-12 (-5 *2 (-589 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) + (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *4 *5 *6)) - (-4 *4 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1040 *4 *3 *5))) (-4 *4 (-37 (-383 (-523)))) - (-4 *4 (-973)) (-4 *3 (-786)) (-5 *1 (-1040 *4 *3 *5)) - (-4 *5 (-880 *4 (-495 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1117 *4))) (-5 *3 (-1087)) (-5 *1 (-1117 *4)) - (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-108)) (-5 *5 (-629 (-203))) - (-5 *2 (-962)) (-5 *1 (-695))))) -(((*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-760))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1087)) (-5 *1 (-306))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-37 (-383 (-523)))) - (-4 *2 (-158))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) -(((*1 *2 *2) (-12 (-5 *2 (-589 (-292 (-203)))) (-5 *1 (-244))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-108)) - (-5 *2 (-962)) (-5 *1 (-685))))) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-1180 *4 *5 *6 *7))) + (-5 *1 (-1180 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 *9)) (-5 *4 (-1 (-108) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) + (-4 *7 (-732)) (-4 *8 (-786)) (-5 *2 (-589 (-1180 *6 *7 *8 *9))) + (-5 *1 (-1180 *6 *7 *8 *9))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1070)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) - ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-240)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092))))) -(((*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523))))) -(((*1 *2 *3) - (-12 (-5 *2 (-523)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-962)) (-5 *1 (-282)))) - ((*1 *2 *3) (-12 (-5 *3 (-589 (-962))) (-5 *2 (-962)) (-5 *1 (-282)))) - ((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *1) (-5 *1 (-985))) - ((*1 *2 *3) - (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1065 *4)) - (-4 *4 (-1122)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3) - (-12 (-5 *2 (-589 (-589 (-523)))) (-5 *1 (-900)) - (-5 *3 (-589 (-523)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) + (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *3 (-589 (-240))) + (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-443)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-443))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1087)) (-5 *1 (-617 *3)) (-4 *3 (-1016))))) +(((*1 *1) (-5 *1 (-413)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) + (-5 *2 + (-2 (|:| |mval| (-629 *4)) (|:| |invmval| (-629 *4)) + (|:| |genIdeal| (-475 *4 *5 *6 *7)))) + (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-133)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD)))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-696))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-292 *5))) + (-5 *1 (-1043 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) + (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-292 *5)))) + (-5 *1 (-1043 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + (-12 (-4 *3 (-1127)) (-4 *5 (-1145 *3)) (-4 *6 (-1145 (-383 *5))) + (-5 *2 (-108)) (-5 *1 (-317 *4 *3 *5 *6)) (-4 *4 (-318 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2 *3) - (-12 (-5 *3 (-292 (-203))) (-5 *2 (-292 (-383 (-523)))) - (-5 *1 (-282))))) -(((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) - ((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) - ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442))))) -(((*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-108))))) -(((*1 *2) - (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) - ((*1 *2 *2) - (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1122)) (-5 *2 (-710))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *1 *1 *1) (-4 *1 (-508)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1076 3 *3)) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) - ((*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973))))) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-339)) - (-5 *1 (-490 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) - (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973)))) - ((*1 *2 *3) - (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-158)) - (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) - (-4 *5 (-216 *3 *2)) (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-589 (-1083 *7))) (-5 *3 (-1083 *7)) - (-4 *7 (-880 *5 *6 *4)) (-4 *5 (-840)) (-4 *6 (-732)) - (-4 *4 (-786)) (-5 *1 (-837 *5 *6 *4 *7))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-108)) - (-5 *1 (-333 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-108)) - (-5 *1 (-493 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-512))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1087)) (-5 *1 (-617 *3)) (-4 *3 (-1016))))) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) + (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) + (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) + (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1 *1) + (-12 (-4 *1 (-340 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-1110 *3))) (-5 *1 (-1110 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-523)) (-5 *4 (-394 *2)) (-4 *2 (-880 *7 *5 *6)) + (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-284))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-339)) (-4 *6 (-1145 (-383 *2))) + (-4 *2 (-1145 *5)) (-5 *1 (-194 *5 *2 *6 *3)) + (-4 *3 (-318 *5 *2 *6))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1016)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-523)) (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) - (-4 *3 (-973)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-758 *4)) (-4 *4 (-786)) (-4 *1 (-1183 *4 *3)) - (-4 *3 (-973))))) + (-12 (-5 *3 (-1087)) (-5 *1 (-540 *2)) (-4 *2 (-964 *3)) + (-4 *2 (-339)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-339)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-576 *4 *2)) + (-4 *2 (-13 (-406 *4) (-930) (-1109))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1009 *2)) (-4 *2 (-13 (-406 *4) (-930) (-1109))) + (-4 *4 (-13 (-786) (-515))) (-5 *1 (-576 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-889)) (-5 *2 (-1087)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-889))))) +(((*1 *2) + (-12 + (-5 *2 + (-1169 (-589 (-2 (|:| -3370 (-841 *3)) (|:| -4013 (-1034)))))) + (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) + ((*1 *2) + (-12 (-5 *2 (-1169 (-589 (-2 (|:| -3370 *3) (|:| -4013 (-1034)))))) + (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) (-14 *4 (-3 (-1083 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1169 (-589 (-2 (|:| -3370 *3) (|:| -4013 (-1034)))))) + (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852))))) +(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-133))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-1026))))) (((*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-710)))) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-412))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) + (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33)))))) +(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1169 (-638))) (-5 *1 (-282))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-257))) (-5 *1 (-257)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-1092))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *2 (-515)) (-5 *1 (-899 *2 *4)) + (-4 *4 (-1145 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-412))))) +(((*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-1016)) (-5 *2 (-710))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-1052 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) + (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) + (-5 *1 (-1053 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-589 (-1052 *3 *4))) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1070)) (-4 *1 (-340 *2 *4)) (-4 *2 (-1016)) + (-4 *4 (-1016)))) + ((*1 *1 *2) + (-12 (-4 *1 (-340 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-852)) (-5 *4 (-203)) (-5 *5 (-523)) (-5 *6 (-805)) + (-5 *2 (-1174)) (-5 *1 (-1170))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-1016) (-33))) + (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1053 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1054 *3 *4)) (-14 *3 (-852)) (-4 *4 (-339)) + (-5 *1 (-922 *3 *4))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) @@ -10790,7 +8464,7 @@ ((*1 *2 *1) (-12 (-4 *1 (-445 *3 *2)) (-4 *3 (-158)) (-4 *2 (-23)))) ((*1 *2 *1) (-12 (-4 *3 (-515)) (-5 *2 (-523)) (-5 *1 (-570 *3 *4)) - (-4 *4 (-1144 *3)))) + (-4 *4 (-1145 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) ((*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) @@ -10805,1126 +8479,33 @@ (-12 (-4 *1 (-902 *3 *2 *4)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *2 (-731)))) ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-710)))) ((*1 *2 *1) - (-12 (-4 *1 (-1130 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1159 *3)) + (-12 (-4 *1 (-1131 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1160 *3)) (-5 *2 (-523)))) ((*1 *2 *1) - (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1128 *3)) + (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1129 *3)) (-5 *2 (-383 (-523))))) ((*1 *2 *1) - (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-772 (-852))))) + (-12 (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-5 *2 (-772 (-852))))) ((*1 *2 *1) - (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-710))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-523)) (-5 *1 (-355))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-589 (-523))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) - (-14 *4 (-710)) (-4 *5 (-158))))) -(((*1 *2 *1) (-12 (-4 *3 (-1122)) (-5 *2 (-589 *1)) (-4 *1 (-938 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) - (-14 *3 (-852)) (-4 *4 (-973))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) - (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) - (-4 *3 (-1144 *4)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-203)))) (-5 *1 (-857))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-339) (-964 (-383 *2)))) (-5 *2 (-523)) - (-5 *1 (-111 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1) - (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-427)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *3 (-987 *4 *5 *6)) - (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *1)))) - (-4 *1 (-992 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1126))) - ((*1 *2 *2) - (-12 (-4 *3 (-515)) (-5 *1 (-1147 *3 *2)) - (-4 *2 (-13 (-1144 *3) (-515) (-10 -8 (-15 -3278 ($ $ $)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1128 *3)) - (-5 *2 (-383 (-523)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *2 (-589 (-589 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-589 (-589 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-589 (-589 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-590 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-542 *4)) - (-4 *4 (-325))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) - (-5 *2 (-758 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-1189 *3 *2)) (-4 *3 (-973))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-622 *2)) (-4 *2 (-1016)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-589 *5) (-589 *5))) (-5 *4 (-523)) - (-5 *2 (-589 *5)) (-5 *1 (-622 *5)) (-4 *5 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *2)) (-4 *2 (-158)))) - ((*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-392 *3 *2)) (-4 *3 (-393 *2)))) - ((*1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-158))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1159 *4)) - (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-1 (-1068 *4) (-1068 *4))) - (-5 *1 (-1161 *4 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-225 *5 *6))) (-4 *6 (-427)) - (-5 *2 (-225 *5 *6)) (-14 *5 (-589 (-1087))) (-5 *1 (-577 *5 *6))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-691))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-589 *10)) (-5 *5 (-108)) (-4 *10 (-992 *6 *7 *8 *9)) - (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) - (-5 *2 - (-589 - (-2 (|:| -1710 (-589 *9)) (|:| -3072 *10) (|:| |ineq| (-589 *9))))) - (-5 *1 (-917 *6 *7 *8 *9 *10)) (-5 *3 (-589 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-589 *10)) (-5 *5 (-108)) (-4 *10 (-992 *6 *7 *8 *9)) - (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) - (-5 *2 - (-589 - (-2 (|:| -1710 (-589 *9)) (|:| -3072 *10) (|:| |ineq| (-589 *9))))) - (-5 *1 (-1023 *6 *7 *8 *9 *10)) (-5 *3 (-589 *9))))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-108)) (-5 *1 (-823 *4)) - (-4 *4 (-1016))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-303 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-523)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1122)) (-14 *4 *2)))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) - (-4 *4 (-731)) (-4 *3 (-158))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1016)) (-4 *2 (-786)) - (-5 *1 (-109 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) - (-5 *2 - (-2 (|:| -3024 (-389 *4 (-383 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -3127 (-383 *6)) - (|:| |special| (-383 *6)))) - (-5 *1 (-667 *5 *6)) (-5 *3 (-383 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-827 *3 *4)) - (-4 *3 (-1144 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-710)) (-4 *5 (-339)) - (-5 *2 (-2 (|:| -3149 *3) (|:| -3159 *3))) (-5 *1 (-827 *3 *5)) - (-4 *3 (-1144 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) - (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) - (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) - (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) - (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) - (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) - (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) - (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) - (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) -(((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) -(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-108))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-589 *1)) (-4 *1 (-284))))) -(((*1 *2) - (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-393 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-985)) (-5 *3 (-1070))))) -(((*1 *1 *1) - (-12 (-4 *2 (-136)) (-4 *2 (-284)) (-4 *2 (-427)) (-4 *3 (-786)) - (-4 *4 (-732)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-292 (-523))) (-5 *1 (-1033)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) - ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1090))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-126))))) -(((*1 *2 *3) - (-12 (-5 *3 (-292 (-203))) (-5 *2 (-383 (-523))) (-5 *1 (-282))))) -(((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)))) - ((*1 *1) (-4 *1 (-1063)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -1979 (-589 (-2 (|:| |irr| *10) (|:| -1227 (-523))))))) - (-5 *6 (-589 *3)) (-5 *7 (-589 *8)) (-4 *8 (-786)) (-4 *3 (-284)) - (-4 *10 (-880 *3 *9 *8)) (-4 *9 (-732)) - (-5 *2 - (-2 (|:| |polfac| (-589 *10)) (|:| |correct| *3) - (|:| |corrfact| (-589 (-1083 *3))))) - (-5 *1 (-572 *8 *9 *3 *10)) (-5 *4 (-589 (-1083 *3)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) - (-5 *2 (-355)) (-5 *1 (-244)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *2 (-355)) (-5 *1 (-282))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-515)) - (-4 *7 (-880 *3 *5 *6)) - (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *8) (|:| |radicand| *8))) - (-5 *1 (-884 *5 *6 *3 *7 *8)) (-5 *4 (-710)) - (-4 *8 - (-13 (-339) - (-10 -8 (-15 -2785 (*7 $)) (-15 -2797 (*7 $)) (-15 -1458 ($ *7)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1123 *2)) - (-4 *2 (-1016)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-786)) - (-5 *1 (-1123 *2))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-973)) - (-5 *1 (-789 *5 *2)) (-4 *2 (-788 *5))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-1016))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-710)) (-4 *4 (-339)) (-5 *1 (-827 *2 *4)) - (-4 *2 (-1144 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) - (-14 *5 (-589 (-1087))) - (-5 *2 - (-589 (-2 (|:| -1986 (-1083 *4)) (|:| -2966 (-589 (-883 *4)))))) - (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 - (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) - (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) - (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 - (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) - (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) - (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 - (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) - (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) - (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-784) (-284) (-136) (-949))) - (-5 *2 - (-589 (-2 (|:| -1986 (-1083 *4)) (|:| -2966 (-589 (-883 *4)))))) - (-5 *1 (-1192 *4 *5 *6)) (-5 *3 (-589 (-883 *4))) - (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087)))))) -(((*1 *2 *2) (-12 (-5 *2 (-292 (-203))) (-5 *1 (-244))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-427) (-136))) (-5 *2 (-394 *3)) - (-5 *1 (-95 *4 *3)) (-4 *3 (-1144 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-589 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-13 (-427) (-136))) - (-5 *2 (-394 *3)) (-5 *1 (-95 *5 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-213 *3)) - (-4 *3 (-1016)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4244)) (-4 *1 (-213 *2)) (-4 *2 (-1016)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)) (-4 *2 (-1016)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-560 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-523)) (-4 *4 (-1016)) - (-5 *1 (-677 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-5 *1 (-677 *2)) (-4 *2 (-1016)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) - (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-92))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) - (-5 *2 (-962)) (-5 *1 (-697))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-499))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-823 *6))) - (-5 *5 (-1 (-820 *6 *8) *8 (-823 *6) (-820 *6 *8))) (-4 *6 (-1016)) - (-4 *8 (-13 (-973) (-564 (-823 *6)) (-964 *7))) (-5 *2 (-820 *6 *8)) - (-4 *7 (-13 (-973) (-786))) (-5 *1 (-872 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-560 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) - (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) - (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) - (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) - (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) - (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) - (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1016))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-973)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-973))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-953 (-779 (-523)))) - (-5 *3 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *4)))) (-4 *4 (-973)) - (-5 *1 (-548 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-284) (-136))) - (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) - (-5 *2 - (-589 - (-2 (|:| |eqzro| (-589 *7)) (|:| |neqzro| (-589 *7)) - (|:| |wcond| (-589 (-883 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) - (|:| -4041 (-589 (-1168 (-383 (-883 *4)))))))))) - (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-589 (-240))) (-5 *1 (-1170)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-1070)) (-5 *1 (-1170)))) - ((*1 *1 *1) (-5 *1 (-1170)))) -(((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-427))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) - (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-1179 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) - (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1179 *5 *6 *7 *8))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-515)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) - (-5 *1 (-1113 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-1095 *3))))) -(((*1 *1 *1) (-5 *1 (-985)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1135 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *6))) - (-4 *6 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-516 *6 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) - (-5 *2 (-962)) (-5 *1 (-692))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-284)) (-5 *1 (-430 *3 *2)) (-4 *2 (-1144 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-284)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1144 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-284)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-710))) - (-5 *1 (-502 *3 *2 *4 *5)) (-4 *2 (-1144 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-852))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-515)) (-4 *3 (-973)) - (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-515)) (-4 *5 (-973)) - (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) - (-4 *3 (-788 *5))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1052 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) - (-4 *5 (-13 (-1016) (-33))) (-4 *6 (-13 (-1016) (-33))) - (-5 *2 (-108)) (-5 *1 (-1053 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257))))) -(((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) - (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-599 *3)) (-4 *3 (-973)) (-4 *3 (-339)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-710)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) - (-5 *1 (-602 *5 *2)) (-4 *2 (-599 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-906 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-396 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1108) (-406 *3))) - (-14 *4 (-1087)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-4 *2 (-13 (-27) (-1108) (-406 *3) (-10 -8 (-15 -1458 ($ *4))))) - (-4 *4 (-784)) - (-4 *5 - (-13 (-1146 *2 *4) (-339) (-1108) - (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $))))) - (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *6 (-912 *5)) (-14 *7 (-1087))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-394 *3)) (-4 *3 (-515)) (-5 *1 (-395 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-157)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) - (-4 *6 (-732)) (-4 *7 (-880 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-108)) (|:| |z0| (-589 *7)) (|:| |n0| (-589 *7)))) - (-5 *1 (-855 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-589 (-562 *2))) (-5 *4 (-589 (-1087))) - (-4 *2 (-13 (-406 (-155 *5)) (-930) (-1108))) - (-4 *5 (-13 (-515) (-786))) (-5 *1 (-552 *5 *6 *2)) - (-4 *6 (-13 (-406 *5) (-930) (-1108)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-695))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-973)) (-4 *2 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355)))) - ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-355))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-307 *3)) (-4 *3 (-786))))) -(((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) - ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196)))) - ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460)))) - ((*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-284)))) - ((*1 *2 *1) - (-12 (-5 *2 (-383 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) - ((*1 *1 *1) (-4 *1 (-982)))) -(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *4 (-1016))))) -(((*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1171)))) - ((*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1171))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) - (-5 *2 (-962)) (-5 *1 (-692))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-589 (-995 *4 *5 *2))) (-4 *4 (-1016)) - (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) - (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))) - (-5 *1 (-53 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-589 (-995 *5 *6 *2))) (-5 *4 (-852)) (-4 *5 (-1016)) - (-4 *6 (-13 (-973) (-817 *5) (-786) (-564 (-823 *5)))) - (-4 *2 (-13 (-406 *6) (-817 *5) (-564 (-823 *5)))) - (-5 *1 (-53 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-1072 *4)) (-4 *4 (-973)) - (-5 *3 (-523))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-515)) - (-5 *2 (-2 (|:| -3392 (-629 *5)) (|:| |vec| (-1168 (-589 (-852)))))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-852)) (-4 *3 (-599 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *3) - (-12 (-14 *4 (-589 (-1087))) (-14 *5 (-710)) - (-5 *2 - (-589 - (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) - (-225 *4 (-383 (-523)))))) - (-5 *1 (-476 *4 *5)) - (-5 *3 - (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) - (-225 *4 (-383 (-523)))))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-880 *4 *6 *5)) (-4 *4 (-427)) - (-4 *5 (-786)) (-4 *6 (-732)) (-5 *1 (-916 *4 *5 *6 *3))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-589 *7)) (-5 *5 (-589 (-589 *8))) (-4 *7 (-786)) - (-4 *8 (-284)) (-4 *6 (-732)) (-4 *9 (-880 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-589 (-2 (|:| -1820 (-1083 *9)) (|:| -2735 (-523))))))) - (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1083 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-589 (-51))) (-5 *2 (-1173)) (-5 *1 (-795))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-710)) (-4 *5 (-515)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-523)) - (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-874 (-203)) (-203) (-203))) - (-5 *3 (-1 (-203) (-203) (-203) (-203))) (-5 *1 (-232))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1089 (-383 (-523)))) (-5 *2 (-383 (-523))) - (-5 *1 (-170))))) -(((*1 *2 *3) - (-12 (-5 *3 (-455 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) - (-5 *2 (-883 *5)) (-5 *1 (-875 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) - ((*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-732)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) - (-5 *2 (-108)) (-5 *1 (-424 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3078 *4))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1144 *3)) (-4 *3 (-973)) (-5 *2 (-1083 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-271 (-883 (-523)))) - (-5 *2 - (-2 (|:| |varOrder| (-589 (-1087))) - (|:| |inhom| (-3 (-589 (-1168 (-710))) "failed")) - (|:| |hom| (-589 (-1168 (-710)))))) - (-5 *1 (-214))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1122)) (-4 *2 (-786)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) - ((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) - (-14 *3 (-852)) (-4 *4 (-973)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) - (-5 *2 - (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) - (|:| |success| (-108)))) - (-5 *1 (-728)) (-5 *5 (-523))))) -(((*1 *2) - (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-393 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-108)) - (-5 *2 (-962)) (-5 *1 (-685))))) -(((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-523)) (-5 *1 (-1105 *3)) (-4 *3 (-973))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1070)) (-5 *1 (-725))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-523)) (-4 *5 (-339)) - (-4 *5 (-973)) (-5 *2 (-108)) (-5 *1 (-956 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-629 *4))) (-4 *4 (-339)) (-4 *4 (-973)) - (-5 *2 (-108)) (-5 *1 (-956 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-983 (-951 *4) (-1083 (-951 *4)))) (-5 *3 (-794)) - (-5 *1 (-951 *4)) (-4 *4 (-13 (-784) (-339) (-949)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1144 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-219))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-271 (-779 *3))) (-4 *3 (-13 (-27) (-1108) (-406 *5))) - (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 - (-3 (-779 *3) - (-2 (|:| |leftHandLimit| (-3 (-779 *3) "failed")) - (|:| |rightHandLimit| (-3 (-779 *3) "failed"))) - "failed")) - (-5 *1 (-582 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-271 *3)) (-5 *5 (-1070)) - (-4 *3 (-13 (-27) (-1108) (-406 *6))) - (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-779 *3)) (-5 *1 (-582 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-271 (-779 (-883 *5)))) (-4 *5 (-427)) - (-5 *2 - (-3 (-779 (-383 (-883 *5))) - (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-779 (-383 (-883 *5))) "failed"))) - "failed")) - (-5 *1 (-583 *5)) (-5 *3 (-383 (-883 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-271 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) - (-4 *5 (-427)) - (-5 *2 - (-3 (-779 *3) - (-2 (|:| |leftHandLimit| (-3 (-779 *3) "failed")) - (|:| |rightHandLimit| (-3 (-779 *3) "failed"))) - "failed")) - (-5 *1 (-583 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-271 (-383 (-883 *6)))) (-5 *5 (-1070)) - (-5 *3 (-383 (-883 *6))) (-4 *6 (-427)) (-5 *2 (-779 *3)) - (-5 *1 (-583 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)) - (-4 *6 (-1016)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1016)) (-5 *2 (-820 *3 *4)) (-5 *1 (-816 *3 *4 *5)) - (-4 *3 (-1016)) (-4 *5 (-609 *4))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 (-710))) (-5 *3 (-108)) (-5 *1 (-1076 *4 *5)) - (-14 *4 (-852)) (-4 *5 (-973))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-962)) (-5 *3 (-1087)) (-5 *1 (-172))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3159 *7) (|:| |sol?| (-108))) - (-523) *7)) - (-5 *6 (-589 (-383 *8))) (-4 *7 (-339)) (-4 *8 (-1144 *7)) - (-5 *3 (-383 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-533 *7 *8))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)) (-4 *2 (-786)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-523)) (-5 *1 (-528 *3)) (-4 *3 (-964 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-108)) - (-5 *1 (-333 *4))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786))))) + (-5 *1 (-692))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1116 *4 *5 *3 *6)) (-4 *4 (-515)) (-4 *5 (-732)) - (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1083 (-523))) (-5 *2 (-523)) (-5 *1 (-873))))) -(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-4 *4 (-973)) - (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-1144 *4))))) -(((*1 *2) - (-12 (-4 *3 (-973)) (-5 *2 (-888 (-652 *3 *4))) (-5 *1 (-652 *3 *4)) - (-4 *4 (-1144 *3))))) + (-12 (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1087)) (-4 *5 (-339)) (-5 *2 (-1068 (-1068 (-883 *5)))) - (-5 *1 (-1176 *5)) (-5 *4 (-1068 (-883 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) - (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1016) (-33))) - (-4 *4 (-13 (-1016) (-33)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) - (-5 *2 (-383 (-523))))) - ((*1 *2 *1) - (-12 (-5 *2 (-383 (-523))) (-5 *1 (-394 *3)) (-4 *3 (-508)) - (-4 *3 (-515)))) - ((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-383 (-523))))) - ((*1 *2 *1) - (-12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) - (-5 *2 (-383 (-523))))) - ((*1 *2 *1) - (-12 (-5 *2 (-383 (-523))) (-5 *1 (-772 *3)) (-4 *3 (-508)) - (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-5 *2 (-383 (-523))) (-5 *1 (-779 *3)) (-4 *3 (-508)) - (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) - (-5 *2 (-383 (-523))))) - ((*1 *2 *3) - (-12 (-5 *2 (-383 (-523))) (-5 *1 (-936 *3)) (-4 *3 (-964 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *3) - (-12 (-5 *3 (-523)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-973)) - (-5 *1 (-297 *4 *5 *2 *6)) (-4 *6 (-880 *2 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) - (-5 *1 (-161 *3))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-710)) - (-4 *3 (-13 (-666) (-344) (-10 -7 (-15 ** (*3 *3 (-523)))))) - (-5 *1 (-224 *3))))) + (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-589 *4)) (-5 *1 (-718 *4)) + (-4 *4 (-13 (-339) (-784)))))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *4 (-589 (-1087))) - (-5 *2 (-629 (-292 (-203)))) (-5 *1 (-185)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1016)) (-4 *6 (-831 *5)) (-5 *2 (-629 *6)) - (-5 *1 (-631 *5 *6 *3 *4)) (-4 *3 (-349 *6)) - (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) - (-5 *2 (-629 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-589 (-155 *4))) (-5 *1 (-143 *3 *4)) - (-4 *3 (-1144 (-155 (-523)))) (-4 *4 (-13 (-339) (-784))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-155 *4))) - (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-155 *4))) - (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-589 (-1 *4 (-589 *4)))) (-4 *4 (-1016)) - (-5 *1 (-109 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1016)) - (-5 *1 (-109 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-110)) (-5 *2 (-589 (-1 *4 (-589 *4)))) - (-5 *1 (-109 *4)) (-4 *4 (-1016))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) - (-5 *2 (-589 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-1108)))) - ((*1 *2 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) - ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-562 *3)) (-4 *3 (-786))))) -(((*1 *2 *3) - (-12 (-5 *3 (-540 *2)) (-4 *2 (-13 (-29 *4) (-1108))) - (-5 *1 (-538 *4 *2)) - (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-540 (-383 (-883 *4)))) - (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) - (-5 *2 (-292 *4)) (-5 *1 (-543 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)) - (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| -2935 *3) (|:| -2302 *4)))) - (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) - (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-973)) (-5 *2 (-108)) (-5 *1 (-419 *4 *3)) - (-4 *3 (-1144 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *2 (-108))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1083 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-820 *5 *3)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) - (-4 *3 (-152 *6)) (-4 (-883 *6) (-817 *5)) - (-4 *6 (-13 (-817 *5) (-158))) (-5 *1 (-163 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-820 *4 *1)) (-5 *3 (-823 *4)) (-4 *1 (-817 *4)) - (-4 *4 (-1016)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-820 *5 *6)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) - (-4 *6 (-13 (-1016) (-964 *3))) (-4 *3 (-817 *5)) - (-5 *1 (-862 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) - (-4 *3 (-13 (-406 *6) (-564 *4) (-817 *5) (-964 (-562 $)))) - (-5 *4 (-823 *5)) (-4 *6 (-13 (-515) (-786) (-817 *5))) - (-5 *1 (-863 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-820 (-523) *3)) (-5 *4 (-823 (-523))) (-4 *3 (-508)) - (-5 *1 (-864 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-820 *5 *6)) (-5 *3 (-562 *6)) (-4 *5 (-1016)) - (-4 *6 (-13 (-786) (-964 (-562 $)) (-564 *4) (-817 *5))) - (-5 *4 (-823 *5)) (-5 *1 (-865 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-816 *5 *6 *3)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) - (-4 *6 (-817 *5)) (-4 *3 (-609 *6)) (-5 *1 (-866 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-820 *6 *3) *8 (-823 *6) (-820 *6 *3))) - (-4 *8 (-786)) (-5 *2 (-820 *6 *3)) (-5 *4 (-823 *6)) - (-4 *6 (-1016)) (-4 *3 (-13 (-880 *9 *7 *8) (-564 *4))) - (-4 *7 (-732)) (-4 *9 (-13 (-973) (-786) (-817 *6))) - (-5 *1 (-867 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) - (-4 *3 (-13 (-880 *8 *6 *7) (-564 *4))) (-5 *4 (-823 *5)) - (-4 *7 (-817 *5)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *8 (-13 (-973) (-786) (-817 *5))) (-5 *1 (-867 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) (-4 *3 (-921 *6)) - (-4 *6 (-13 (-515) (-817 *5) (-564 *4))) (-5 *4 (-823 *5)) - (-5 *1 (-870 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-820 *5 (-1087))) (-5 *3 (-1087)) (-5 *4 (-823 *5)) - (-4 *5 (-1016)) (-5 *1 (-871 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-589 (-823 *7))) (-5 *5 (-1 *9 (-589 *9))) - (-5 *6 (-1 (-820 *7 *9) *9 (-823 *7) (-820 *7 *9))) (-4 *7 (-1016)) - (-4 *9 (-13 (-973) (-564 (-823 *7)) (-964 *8))) (-5 *2 (-820 *7 *9)) - (-5 *3 (-589 *9)) (-4 *8 (-13 (-973) (-786))) - (-5 *1 (-872 *7 *8 *9))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-1135 (-523)))))) -(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-303 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) - (-12 (-5 *2 (-710)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1122)) - (-14 *4 (-523))))) -(((*1 *2) - (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-393 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-589 - (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 *3)) - (|:| |logand| (-1083 *3))))) - (-5 *1 (-540 *3)) (-4 *3 (-339))))) -(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) - ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) - (-5 *2 (-1083 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) - (-5 *2 (-1083 *3))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-852)) (-4 *3 (-339)) - (-14 *4 (-922 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) - ((*1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) - ((*1 *1 *1) (|partial| -4 *1 (-662))) - ((*1 *1 *1) (|partial| -4 *1 (-666))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-989 *3 *2)) (-4 *3 (-13 (-784) (-339))) - (-4 *2 (-1144 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-629 (-1083 *8))) (-4 *5 (-973)) (-4 *8 (-973)) - (-4 *6 (-1144 *5)) (-5 *2 (-629 *6)) (-5 *1 (-472 *5 *6 *7 *8)) - (-4 *7 (-1144 *6))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-710)) (-5 *2 (-1173))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) - (-4 *3 (-13 (-786) (-515)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-140 *2)) - (-4 *2 (-1122))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 (-710))) (-5 *3 (-157)) (-5 *1 (-1076 *4 *5)) - (-14 *4 (-852)) (-4 *5 (-973))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) - (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-687))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-523)) (-5 *1 (-1068 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1) (-4 *1 (-1056)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-508)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-2 (|:| -1733 *4) (|:| -2656 (-523))))) - (-4 *4 (-1016)) (-5 *2 (-1 *4)) (-5 *1 (-945 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2462 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-339)) (-4 *7 (-1144 *6)) - (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) - (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) - (-5 *3 (-589 (-523)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1144 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1173)) - (-5 *1 (-424 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1171)))) - ((*1 *2 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1171))))) -(((*1 *2 *1) - (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-710)) (-4 *4 (-13 (-515) (-136))) - (-5 *1 (-1138 *4 *2)) (-4 *2 (-1144 *4))))) -(((*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-1161 *4 *2)) - (-4 *4 (-37 (-383 (-523))))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4244)) (-4 *1 (-462 *4)) - (-4 *4 (-1122)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108))))) -(((*1 *1) (-5 *1 (-203))) ((*1 *1) (-5 *1 (-355)))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) - (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-1179 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) - (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1179 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3159 *6) (|:| |sol?| (-108))) (-523) - *6)) - (-4 *6 (-339)) (-4 *7 (-1144 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-383 *7)) (|:| |a0| *6)) - (-2 (|:| -2462 (-383 *7)) (|:| |coeff| (-383 *7))) "failed")) - (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-629 *3)) - (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) - (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-629 *3)) - (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) - (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *2 (-108))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))))) - (-4 *4 (-1144 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *5)) - (-4 *5 (-1144 (-383 *4)))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-110)) (-5 *4 (-710)) (-4 *5 (-427)) (-4 *5 (-786)) - (-4 *5 (-964 (-523))) (-4 *5 (-515)) (-5 *1 (-40 *5 *2)) - (-4 *2 (-406 *5)) - (-4 *2 - (-13 (-339) (-279) - (-10 -8 (-15 -2785 ((-1039 *5 (-562 $)) $)) - (-15 -2797 ((-1039 *5 (-562 $)) $)) - (-15 -1458 ($ (-1039 *5 (-562 $)))))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-508)) (-5 *1 (-146 *2))))) -(((*1 *2 *3) - (-12 (-14 *4 (-589 (-1087))) (-4 *5 (-427)) - (-5 *2 - (-2 (|:| |glbase| (-589 (-225 *4 *5))) (|:| |glval| (-589 (-523))))) - (-5 *1 (-577 *4 *5)) (-5 *3 (-589 (-225 *4 *5)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-383 (-523))) (-4 *1 (-513 *3)) - (-4 *3 (-13 (-380) (-1108))))) - ((*1 *1 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108)))))) -(((*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-203)) (-5 *1 (-282))))) -(((*1 *1 *2) - (-12 (-5 *2 (-629 *4)) (-4 *4 (-973)) (-5 *1 (-1054 *3 *4)) - (-14 *3 (-710))))) -(((*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786))))) -(((*1 *2 *2) (-12 (-5 *2 (-629 (-292 (-523)))) (-5 *1 (-958))))) -(((*1 *1 *1) (-5 *1 (-985)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-172)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-277)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-282))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-916 (-383 (-523)) (-796 *3) (-218 *4 (-710)) - (-225 *3 (-383 (-523))))) - (-14 *3 (-589 (-1087))) (-14 *4 (-710)) (-5 *1 (-915 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-852)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-852)) - (-5 *1 (-493 *4))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) -(((*1 *2 *1) - (-12 (-5 *2 (-953 (-779 (-523)))) (-5 *1 (-548 *3)) (-4 *3 (-973))))) -(((*1 *2 *3) - (-12 (-4 *4 (-973)) (-4 *3 (-1144 *4)) (-4 *2 (-1159 *4)) - (-5 *1 (-1162 *4 *3 *5 *2)) (-4 *5 (-599 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1087)) - (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-4 *4 (-13 (-29 *6) (-1108) (-889))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -4041 (-589 *4)))) - (-5 *1 (-740 *6 *4 *3)) (-4 *3 (-599 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-835 *4)) - (-4 *4 (-1016)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-339) (-279) - (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) - (-15 -2797 ((-1039 *3 (-562 $)) $)) - (-15 -1458 ($ (-1039 *3 (-562 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) - (-5 *1 (-117 *3)) (-4 *3 (-786)))) - ((*1 *2 *2) - (-12 (-5 *2 (-540 *4)) (-4 *4 (-13 (-29 *3) (-1108))) - (-4 *3 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) - (-5 *1 (-538 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-540 (-383 (-883 *3)))) - (-4 *3 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) - (-5 *1 (-543 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-339)) - (-5 *2 (-2 (|:| -3127 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168 *5)) (-4 *5 (-339)) (-4 *5 (-973)) - (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) - (-5 *3 (-589 (-629 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168 (-1168 *5))) (-4 *5 (-339)) (-4 *5 (-973)) - (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) - (-5 *3 (-589 (-629 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-130)) (-5 *2 (-589 *1)) (-4 *1 (-1056)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-133)) (-5 *2 (-589 *1)) (-4 *1 (-1056))))) -(((*1 *1) - (-12 (-4 *1 (-380)) (-3900 (|has| *1 (-6 -4235))) - (-3900 (|has| *1 (-6 -4227))))) - ((*1 *2 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-786)))) - ((*1 *1 *1 *1) (-4 *1 (-786))) - ((*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786)))) - ((*1 *1) (-5 *1 (-1034)))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-589 (-1087))) (-5 *1 (-190)) (-5 *3 (-1087)))) ((*1 *2 *3 *4) @@ -11941,311 +8522,23 @@ ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) ((*1 *2 *1) - (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-589 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650))))) -(((*1 *1 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-344))))) -(((*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1101))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1068 *3)) (-4 *3 (-1016)) - (-4 *3 (-1122))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-710)) (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-1141 *5 *4)) (-5 *1 (-1085 *4 *5 *6)) - (-4 *4 (-973)) (-14 *5 (-1087)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-1141 *5 *4)) (-5 *1 (-1160 *4 *5 *6)) - (-4 *4 (-973)) (-14 *5 (-1087)) (-14 *6 *4)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) - (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) - (|:| |abserr| (-203)) (|:| |relerr| (-203)))) - (-5 *2 (-355)) (-5 *1 (-185))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) - (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) - (|:| |abserr| (-203)) (|:| |relerr| (-203)))) - (-5 *2 (-355)) (-5 *1 (-185))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1018 *3)) (-5 *1 (-836 *3)) (-4 *3 (-344)) - (-4 *3 (-1016))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-339)) - (-5 *2 (-108)) (-5 *1 (-610 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) - (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 (-108)) - (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-451 *4 *5 *6 *7)) (|:| -3125 (-589 *7)))) - (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) - (-4 *4 (-325))))) -(((*1 *2 *2) (-12 (-5 *2 (-589 (-292 (-203)))) (-5 *1 (-244))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *1) (-5 *1 (-413)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-339)) (-4 *3 (-973)) - (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-339)) (-4 *5 (-973)) - (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) - (-4 *3 (-788 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) - ((*1 *1 *1 *1) (-4 *1 (-508))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) - ((*1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-710))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-589 (-292 (-203)))) (-5 *3 (-203)) (-5 *2 (-108)) - (-5 *1 (-190))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) - (-4 *3 (-13 (-339) (-1108) (-930)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-110)) (-5 *4 (-589 *2)) (-5 *1 (-109 *2)) - (-4 *2 (-1016)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-589 *4))) (-4 *4 (-1016)) - (-5 *1 (-109 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1016)) - (-5 *1 (-109 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-589 *4))) - (-5 *1 (-109 *4)) (-4 *4 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-973)) - (-5 *1 (-654 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-773 *3))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4248)) (-4 *1 (-556 *4 *3)) (-4 *4 (-1016)) + (-4 *3 (-1123)) (-4 *3 (-1016)) (-5 *2 (-108))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-339)) - (-5 *2 - (-2 (|:| A (-629 *5)) - (|:| |eqs| - (-589 - (-2 (|:| C (-629 *5)) (|:| |g| (-1168 *5)) (|:| -1710 *6) - (|:| |rh| *5)))))) - (-5 *1 (-752 *5 *6)) (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)) - (-4 *6 (-599 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-339)) (-4 *6 (-599 *5)) - (-5 *2 (-2 (|:| -3392 (-629 *6)) (|:| |vec| (-1168 *5)))) - (-5 *1 (-752 *5 *6)) (-5 *3 (-629 *6)) (-5 *4 (-1168 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) - (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) - (-5 *1 (-688))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) - (-4 *3 (-13 (-339) (-1108) (-930)))))) -(((*1 *1 *1) (-5 *1 (-203))) - ((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) - ((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *1 *1) (-4 *1 (-1051))) ((*1 *1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2 *1) - (-12 (-5 *2 (-589 (-1109 *3))) (-5 *1 (-1109 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1122)) - (-4 *5 (-349 *4)) (-4 *2 (-349 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *6 *2 *7)) (-4 *6 (-973)) - (-4 *7 (-216 *4 *6)) (-4 *2 (-216 *5 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-1097 *2)) (-4 *2 (-339))))) -(((*1 *1 *1) (-4 *1 (-508)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) - (-4 *5 (-13 (-27) (-1108) (-406 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-523)) (-4 *5 (-13 (-427) (-786) (-964 *4) (-585 *4))) - (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) - (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) - (-4 *6 (-13 (-427) (-786) (-964 *5) (-585 *5))) (-5 *5 (-523)) - (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1135 (-523))) - (-4 *7 (-13 (-27) (-1108) (-406 *6))) - (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-523))) - (-4 *3 (-13 (-27) (-1108) (-406 *7))) - (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-523)) (-4 *4 (-973)) (-4 *1 (-1130 *4 *3)) - (-4 *3 (-1159 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1128 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) - ((*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-764))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) - (-4 *2 (-406 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-515)) (-4 *3 (-973)) - (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-515)) (-4 *5 (-973)) - (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) - (-4 *3 (-788 *5))))) + (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-523)) (-5 *1 (-355))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) + (-4 *5 (-786)) (-5 *1 (-1183 *4 *5 *2)) (-4 *2 (-1188 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) - (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-662)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-666)) (-5 *2 (-108))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-701)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) - (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-589 (-796 *5))) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) - (-5 *2 (-589 (-589 (-225 *5 *6)))) (-5 *1 (-446 *5 *6 *7)) - (-5 *3 (-589 (-225 *5 *6))) (-4 *7 (-427))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) - ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-254 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) - ((*1 *1 *1) (-5 *1 (-355))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) - (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) - (-4 *5 (-13 (-27) (-1108) (-406 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-710)) - (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) - (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-271 *3)) (-5 *5 (-710)) - (-4 *3 (-13 (-27) (-1108) (-406 *6))) - (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-523))) (-5 *4 (-271 *6)) - (-4 *6 (-13 (-27) (-1108) (-406 *5))) - (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *6))) - (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1135 (-710))) - (-4 *7 (-13 (-27) (-1108) (-406 *6))) - (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-710))) - (-4 *3 (-13 (-27) (-1108) (-406 *7))) - (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1159 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-1016)) - (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) - (-5 *1 (-53 *4 *5 *2)) - (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4))))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *3 (-589 (-240))) - (-5 *1 (-238)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *1 (-240)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-589 (-455 *5 *6))) (-5 *3 (-455 *5 *6)) - (-14 *5 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-1168 *6)) - (-5 *1 (-577 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) - (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-292 *5))) - (-5 *1 (-1043 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) - (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-292 *5)))) - (-5 *1 (-1043 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-339)) (-4 *6 (-1144 (-383 *2))) - (-4 *2 (-1144 *5)) (-5 *1 (-194 *5 *2 *6 *3)) - (-4 *3 (-318 *5 *2 *6))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) - (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1054 *3 *4)) (-14 *3 (-852)) (-4 *4 (-339)) - (-5 *1 (-922 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) @@ -12278,18 +8571,299 @@ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 (-589 *3)) (-5 *1 (-855 *4 *5 *6 *3)) + (-4 *3 (-880 *4 *6 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -4094 (-589 (-794))) (|:| -4016 (-589 (-794))) + (|:| |presup| (-589 (-794))) (|:| -3854 (-589 (-794))) + (|:| |args| (-589 (-794))))) + (-5 *1 (-1087))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) + (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-383 *6))) + (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) + (-5 *2 (-2 (|:| -3437 (-710)) (|:| -3155 *8))) + (-5 *1 (-842 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) + (-4 *4 (-1145 (-383 (-523)))) (-4 *5 (-1145 (-383 *4))) + (-4 *6 (-318 (-383 (-523)) *4 *5)) + (-5 *2 (-2 (|:| -3437 (-710)) (|:| -3155 *6))) + (-5 *1 (-843 *4 *5 *6))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-589 (-1087))) (-4 *2 (-158)) + (-4 *4 (-216 (-2810 *5) (-710))) + (-14 *6 + (-1 (-108) (-2 (|:| -4013 *3) (|:| -1475 *4)) + (-2 (|:| -4013 *3) (|:| -1475 *4)))) + (-5 *1 (-436 *5 *2 *3 *4 *6 *7)) (-4 *3 (-786)) + (-4 *7 (-880 *2 *4 (-796 *5)))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) + (-14 *4 (-710)) (-4 *5 (-158))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-284)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515))))) (((*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) + (-4 *2 (-13 (-380) (-964 *4) (-339) (-1109) (-261))) + (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1145 *4)))) + ((*1 *1 *1) (-4 *1 (-508))) + ((*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1123)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1121 *3)) (-4 *3 (-1123)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-930)) + (-4 *2 (-973))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 (-589 (-2 (|:| -3370 *4) (|:| -4013 (-1034)))))) + (-4 *4 (-325)) (-5 *2 (-710)) (-5 *1 (-322 *4)))) + ((*1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) + (-14 *4 (-852)))) + ((*1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) + (-14 *4 + (-3 (-1083 *3) + (-1169 (-589 (-2 (|:| -3370 *3) (|:| -4013 (-1034))))))))) + ((*1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) + (-14 *4 (-852))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) + (-5 *2 (-2 (|:| -3474 (-383 *5)) (|:| |poly| *3))) + (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1145 (-383 *5)))))) +(((*1 *2 *1) (-12 (-4 *3 (-1123)) (-5 *2 (-589 *1)) (-4 *1 (-938 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) + (-14 *3 (-852)) (-4 *4 (-973))))) +(((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-5 *2 (-108))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-523)) (-4 *4 (-158)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-5 *1 (-628 *4 *5 *6 *2)) + (-4 *2 (-627 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-1002 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-523) *2 *2)) (-4 *2 (-125)) (-5 *1 (-1002 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) (((*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1087)) + (-4 *5 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-2 (|:| -1825 *3) (|:| |coeff| *3))) (-5 *1 (-516 *5 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *5)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1117 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1145 *3)) (-5 *1 (-375 *3 *2)) + (-4 *3 (-13 (-339) (-136)))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) + (-4 *3 (-1145 *4)) (-5 *2 (-108))))) +(((*1 *1 *1) (-4 *1 (-604))) ((*1 *1 *1) (-5 *1 (-1034)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3643 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-203))) (-5 *4 (-710)) (-5 *2 (-629 (-203))) + (-5 *1 (-282))))) +(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-306))))) (((*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-319 *3 *4)) (-14 *3 (-852)) + (-14 *4 (-852)))) + ((*1 *2) + (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-320 *3 *4)) (-4 *3 (-325)) + (-14 *4 (-1083 *3)))) + ((*1 *2) + (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-321 *3 *4)) (-4 *3 (-325)) + (-14 *4 (-852))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-589 (-2 (|:| |func| *2) (|:| |pole| (-108))))) + (-4 *2 (-13 (-406 *4) (-930))) (-4 *4 (-13 (-786) (-515))) + (-5 *1 (-253 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-203)))) (-5 *1 (-857))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-325)) (-5 *2 (-1169 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-134)) (-4 *1 (-840)) + (-5 *2 (-1169 *1))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-108)) (-5 *5 (-523)) (-4 *6 (-339)) (-4 *6 (-344)) + (-4 *6 (-973)) (-5 *2 (-589 (-589 (-629 *6)))) (-5 *1 (-956 *6)) + (-5 *3 (-589 (-629 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-339)) (-4 *4 (-344)) (-4 *4 (-973)) + (-5 *2 (-589 (-589 (-629 *4)))) (-5 *1 (-956 *4)) + (-5 *3 (-589 (-629 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)) + (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) + (-5 *3 (-589 (-629 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-852)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)) + (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) + (-5 *3 (-589 (-629 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 *10)) + (-5 *1 (-571 *5 *6 *7 *8 *9 *10)) (-4 *9 (-992 *5 *6 *7 *8)) + (-4 *10 (-1025 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) + (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) + (-5 *1 (-574 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) + (-14 *6 (-589 (-1087))) + (-5 *2 + (-589 (-1058 *5 (-495 (-796 *6)) (-796 *6) (-719 *5 (-796 *6))))) + (-5 *1 (-574 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) + (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) + (-5 *1 (-970 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-1117 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) + (-4 *3 (-1145 (-155 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) + (-4 *3 (-1145 (-155 *2)))))) (((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) ((*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-731)) (-4 *5 (-786)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-108)) (-5 *5 (-629 (-155 (-203)))) + (-5 *2 (-962)) (-5 *1 (-695))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-779 (-203)))) (-5 *4 (-203)) (-5 *2 (-589 *4)) + (-5 *1 (-244))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-964 (-383 *2)))) (-5 *2 (-523)) + (-5 *1 (-111 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-1170)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1170)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1170)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-1171)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1171)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1171))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-1016) (-33))) (-5 *1 (-1052 *3 *2)) + (-4 *3 (-13 (-1016) (-33)))))) (((*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-520)) (-5 *3 (-523))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-562 *1)) (-4 *1 (-279))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-743 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1109) (-889)))))) +(((*1 *1 *2) (-12 (-5 *2 (-758 *3)) (-4 *3 (-786)) (-5 *1 (-614 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)) + (-4 *4 (-973))))) +(((*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-339)) (-5 *1 (-602 *4 *2)) + (-4 *2 (-599 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *5 (-1127)) (-4 *6 (-1145 *5)) + (-4 *7 (-1145 (-383 *6))) (-5 *2 (-589 (-883 *5))) + (-5 *1 (-317 *4 *5 *6 *7)) (-4 *4 (-318 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *1 (-318 *4 *5 *6)) (-4 *4 (-1127)) + (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) (-4 *4 (-339)) + (-5 *2 (-589 (-883 *4)))))) (((*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) @@ -12297,12 +8871,54 @@ (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) + (-12 (-4 *1 (-1117 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) + (-4 *3 (-1145 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-556 *2 *3)) (-4 *3 (-1123)) (-4 *2 (-1016)) + (-4 *2 (-786))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-294)) (-5 *3 (-203))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) +(((*1 *1) (-5 *1 (-1171)))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1170)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1109) (-930)))))) (((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-805)) (-5 *2 (-1174)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-973))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-762)) (-5 *1 (-761))))) +(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-640)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-640))))) (((*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *3 @@ -12310,1080 +8926,592 @@ (|:| |polj| *4))) (-4 *6 (-732)) (-4 *4 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-5 *2 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-1016))))) -(((*1 *1) (-4 *1 (-325))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 *5)) (-4 *5 (-406 *4)) - (-4 *4 (-13 (-515) (-786) (-136))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-589 (-1083 *5))) - (|:| |prim| (-1083 *5)))) - (-5 *1 (-408 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-515) (-786) (-136))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1083 *3)) - (|:| |pol2| (-1083 *3)) (|:| |prim| (-1083 *3)))) - (-5 *1 (-408 *4 *3)) (-4 *3 (-27)) (-4 *3 (-406 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-883 *5)) (-5 *4 (-1087)) (-4 *5 (-13 (-339) (-136))) - (-5 *2 - (-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) - (|:| |prim| (-1083 *5)))) - (-5 *1 (-890 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) - (-4 *5 (-13 (-339) (-136))) - (-5 *2 - (-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 *5))) - (|:| |prim| (-1083 *5)))) - (-5 *1 (-890 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-5 *5 (-1087)) - (-4 *6 (-13 (-339) (-136))) - (-5 *2 - (-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 *6))) - (|:| |prim| (-1083 *6)))) - (-5 *1 (-890 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-701)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1016)) (-4 *3 (-831 *5)) (-5 *2 (-1168 *3)) - (-5 *1 (-631 *5 *3 *6 *4)) (-4 *6 (-349 *3)) - (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244))))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1122)) (-5 *1 (-166 *3 *2)) - (-4 *2 (-616 *3))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *1) (-5 *1 (-794)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-710)))) - ((*1 *1 *1) (-4 *1 (-378)))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) - (-5 *2 (-962)) (-5 *1 (-696))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1087)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *3 *5 *6 *7)) - (-4 *3 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-4 *7 (-1122)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *3 *5 *6)) - (-4 *3 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122))))) (((*1 *2 *3) - (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) - (-5 *2 (-589 (-710))) (-5 *1 (-717 *3 *4 *5 *6 *7)) - (-4 *3 (-1144 *6)) (-4 *7 (-880 *6 *4 *5))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) - (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) - (-5 *1 (-688))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-883 (-155 (-523))))) (-5 *2 (-589 (-155 *4))) - (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-589 (-383 (-883 (-155 (-523)))))) - (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 (-155 *5)))) - (-5 *1 (-354 *5)) (-4 *5 (-13 (-339) (-784)))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-1016))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-383 *4)) (-4 *4 (-1144 *3)) - (-4 *3 (-13 (-339) (-136) (-964 (-523)))) (-5 *1 (-527 *3 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))) - ((*1 *1 *1 *1) (-5 *1 (-1034)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) - (-5 *2 (-589 *4)) (-5 *1 (-1030 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108))))) -(((*1 *1 *1 *1) (-4 *1 (-508)))) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-888 (-1034))) + (-5 *1 (-322 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 (-523))))) - (-5 *1 (-337 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 (-710))))) - (-5 *1 (-362 *3)) (-4 *3 (-1016)))) + (|partial| -12 (-5 *2 (-983 (-951 *3) (-1083 (-951 *3)))) + (-5 *1 (-951 *3)) (-4 *3 (-13 (-784) (-339) (-949)))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-691))))) +(((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-144)))) + ((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *2 *1) + (-12 (-4 *3 (-158)) (-4 *2 (-23)) (-5 *1 (-266 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1145 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| -1820 *3) (|:| -2735 (-523))))) - (-5 *1 (-394 *3)) (-4 *3 (-515)))) + (-12 (-4 *2 (-23)) (-5 *1 (-651 *3 *2 *4 *5 *6)) (-4 *3 (-158)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *2 (-1145 *3)) (-5 *1 (-652 *3 *2)) (-4 *3 (-973)))) ((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 (-710))))) - (-5 *1 (-758 *3)) (-4 *3 (-786))))) -(((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-427))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) - (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) - (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8))))) + (-12 (-4 *2 (-23)) (-5 *1 (-655 *3 *2 *4 *5 *6)) (-4 *3 (-158)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-5 *2 (-2 (|:| -3772 *3) (|:| -2482 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -2345 *1) (|:| -4235 *1) (|:| |associate| *1))) + (-4 *1 (-515))))) +(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))) + ((*1 *1 *1 *1) (-5 *1 (-1034)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1168 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) - (-4 *1 (-664 *5 *6)) (-4 *5 (-158)) (-4 *6 (-1144 *5)) - (-5 *2 (-629 *5))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1016)) (-4 *4 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-172)))) + (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-172)))) ((*1 *2 *3) - (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-277)))) + (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-277)))) ((*1 *2 *3) - (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-282))))) + (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-282))))) +(((*1 *2 *1) + (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-5 *2 (-1070))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-629 *4)) (-5 *3 (-710)) (-4 *4 (-973)) + (-5 *1 (-630 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-523)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-284)) + (-4 *9 (-880 *8 *6 *7)) + (-5 *2 (-2 (|:| -1385 (-1083 *9)) (|:| |polval| (-1083 *8)))) + (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1083 *9)) (-5 *4 (-1083 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-1087))) (-4 *6 (-339)) + (-5 *2 (-589 (-271 (-883 *6)))) (-5 *1 (-501 *5 *6 *7)) + (-4 *5 (-427)) (-4 *7 (-13 (-339) (-784)))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *2 (-962)) (-5 *1 (-691))))) +(((*1 *2 *1) + (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1123)) + (-5 *2 (-589 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1123)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-1157 *3)) (-4 *3 (-1123)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-874 *4)) (-4 *4 (-973)) (-5 *1 (-1076 *3 *4)) + (-14 *3 (-852))))) +(((*1 *1 *1) (-4 *1 (-575))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930) (-1109)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) + (-14 *4 (-852))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-292 (-523))) (|:| -3539 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *1 *1 *1) (-4 *1 (-897)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-905 *4 *5 *3 *6)) (-4 *4 (-973)) (-4 *5 (-732)) + (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-710)) (-4 *5 (-339)) (-5 *2 (-159 *6)) + (-5 *1 (-798 *5 *4 *6)) (-4 *4 (-1160 *5)) (-4 *6 (-1145 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-710)) (-4 *6 (-1016)) (-4 *3 (-831 *6)) + (-5 *2 (-629 *3)) (-5 *1 (-631 *6 *3 *7 *4)) (-4 *7 (-349 *3)) + (-4 *4 (-13 (-349 *6) (-10 -7 (-6 -4248))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) + (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-108)) (-4 *7 (-987 *4 *5 *6)) + (-4 *4 (-427)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-906 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1123)) (-5 *1 (-351 *4 *2)) + (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4249))))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-383 (-523))) + (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4)))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-710)) (-5 *4 (-852)) (-5 *2 (-1174)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-710)) (-5 *4 (-852)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *2 (-987 *4 *5 *6)) (-5 *1 (-715 *4 *5 *6 *2 *3)) + (-4 *3 (-992 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (|has| *1 (-6 -4248)) (-4 *1 (-140 *2)) (-4 *2 (-1123)) + (-4 *2 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4248)) (-4 *1 (-140 *3)) + (-4 *3 (-1123)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1123)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-523)) (-4 *4 (-1016)) + (-5 *1 (-677 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-5 *1 (-677 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1092))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-303 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-486 *3 *4)) + (-14 *4 (-523))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) - (-4 *3 (-1016)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-108)) - (-5 *1 (-835 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-852)) (-5 *2 (-108)) (-5 *1 (-1017 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-710))))) -(((*1 *1 *1 *1) (-4 *1 (-897)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710))))) -(((*1 *2) - (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-1016))))) + (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-140 *2)) + (-4 *2 (-1123))))) +(((*1 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1172)))) + ((*1 *2 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1172))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) + (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-303 *3)) (-4 *3 (-1123)))) + ((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1123)) + (-14 *4 (-523))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1087)) - (-4 *4 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-516 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4)))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) - (-5 *1 (-688))))) + (-12 (-5 *3 (-383 (-523))) (-4 *4 (-964 (-523))) + (-4 *4 (-13 (-786) (-515))) (-5 *1 (-31 *4 *2)) (-4 *2 (-406 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-126))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-203))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-523)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-383 (-523))) (-4 *4 (-339)) (-4 *4 (-37 *3)) + (-4 *5 (-1160 *4)) (-5 *1 (-255 *4 *5 *2)) (-4 *2 (-1131 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-383 (-523))) (-4 *4 (-339)) (-4 *4 (-37 *3)) + (-4 *5 (-1129 *4)) (-5 *1 (-256 *4 *5 *2 *6)) (-4 *2 (-1152 *4 *5)) + (-4 *6 (-912 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-261))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-337 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-5 *1 (-355))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-448)) (-5 *2 (-523)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-523)) (-4 *4 (-325)) + (-5 *1 (-493 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-499)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-499)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *4 (-1016)) + (-5 *1 (-622 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-339)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *4)) (-5 *3 (-710)) (-4 *4 (-973)) + (-5 *1 (-630 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-4 *3 (-973)) (-5 *1 (-654 *3 *4)) + (-4 *4 (-591 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-523)) (-4 *4 (-973)) + (-5 *1 (-654 *4 *5)) (-4 *5 (-591 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-666)) (-5 *2 (-710)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-773 *3)) (-4 *3 (-973)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-523)) (-5 *1 (-773 *4)) (-4 *4 (-973)))) + ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-383 (-523))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-852)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *3 *4)) (-4 *4 (-339)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-710)) (-4 *5 (-158)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-710)) (-4 *5 (-158)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) + (-225 *4 (-383 (-523))))) + (-5 *3 (-589 (-796 *4))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) + (-5 *1 (-476 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-845 *3)) (-4 *3 (-284))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-2 (|:| -1820 *4) (|:| -2299 (-523))))) - (-4 *4 (-1144 (-523))) (-5 *2 (-677 (-710))) (-5 *1 (-417 *4)))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1016)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-623 *4 *5)) (-4 *4 (-1016)))) + ((*1 *2 *2) + (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-394 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-973)) - (-5 *2 (-677 (-710))) (-5 *1 (-419 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-108)) (-5 *1 (-244))))) -(((*1 *2 *1) - (-12 (-4 *1 (-349 *3)) (-4 *3 (-1122)) (-4 *3 (-786)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-349 *4)) (-4 *4 (-1122)) - (-5 *2 (-108))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-222 *2)) (-4 *2 (-1122))))) + (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861)))) + ((*1 *2 *1) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) + ((*1 *2 *1) (-12 (-4 *2 (-973)) (-5 *1 (-1190 *2 *3)) (-4 *3 (-782))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *2))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) - (-5 *2 (-355)) (-5 *1 (-185))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -2462 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-339)) (-5 *1 (-533 *4 *2)) (-4 *2 (-1144 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) - (-5 *2 (-589 (-1087))) (-5 *1 (-244)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1083 *7)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-973)) (-5 *2 (-589 *5)) - (-5 *1 (-297 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-315 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-363)))) - ((*1 *2 *1) - (-12 (-4 *1 (-406 *3)) (-4 *3 (-786)) (-5 *2 (-589 (-1087))))) - ((*1 *2 *1) - (-12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *2 (-589 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) - (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *5)) - (-5 *1 (-881 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-339) - (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1018 (-1087))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) - ((*1 *2 *1) - (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-731)) - (-4 *5 (-786)) (-5 *2 (-589 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-589 (-1087))) - (-5 *1 (-969 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-973))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-562 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) (-5 *5 (-1083 *2)) - (-4 *2 (-13 (-406 *6) (-27) (-1108))) - (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *1 (-519 *6 *2 *7)) (-4 *7 (-1016)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-562 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) - (-5 *5 (-383 (-1083 *2))) (-4 *2 (-13 (-406 *6) (-27) (-1108))) - (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *1 (-519 *6 *2 *7)) (-4 *7 (-1016))))) -(((*1 *2 *1) (-12 (-4 *1 (-479 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-786))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) - (-4 *5 (-1144 *4)) (-5 *2 (-589 (-383 *5))) (-5 *1 (-944 *4 *5)) - (-5 *3 (-383 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443))))) -(((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) - (-5 *1 (-31 *4 *5)) (-4 *5 (-406 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) - (-5 *1 (-145 *4 *5)) (-4 *5 (-406 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) - (-5 *1 (-253 *4 *5)) (-4 *5 (-13 (-406 *4) (-930))))) - ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-278 *4)) (-4 *4 (-279)))) - ((*1 *2 *3) (-12 (-4 *1 (-279)) (-5 *3 (-110)) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *5 (-786)) (-5 *2 (-108)) - (-5 *1 (-405 *4 *5)) (-4 *4 (-406 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) - (-5 *1 (-407 *4 *5)) (-4 *5 (-406 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) - (-5 *1 (-576 *4 *5)) (-4 *5 (-13 (-406 *4) (-930) (-1108)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-629 *4)) (-5 *3 (-852)) (|has| *4 (-6 (-4246 "*"))) - (-4 *4 (-973)) (-5 *1 (-955 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-589 (-629 *4))) (-5 *3 (-852)) - (|has| *4 (-6 (-4246 "*"))) (-4 *4 (-973)) (-5 *1 (-955 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) - (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-880 *6 *5 *4))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1083 (-383 (-1083 *2)))) (-5 *4 (-562 *2)) - (-4 *2 (-13 (-406 *5) (-27) (-1108))) - (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1016)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1083 *1)) (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) - (-4 *5 (-732)) (-4 *3 (-786)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1083 *4)) (-4 *4 (-973)) (-4 *1 (-880 *4 *5 *3)) - (-4 *5 (-732)) (-4 *3 (-786)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-1083 *2))) (-4 *5 (-732)) (-4 *4 (-786)) - (-4 *6 (-973)) - (-4 *2 - (-13 (-339) - (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))) - (-5 *1 (-881 *5 *4 *6 *7 *2)) (-4 *7 (-880 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-1083 (-383 (-883 *5))))) (-5 *4 (-1087)) - (-5 *2 (-383 (-883 *5))) (-5 *1 (-969 *5)) (-4 *5 (-515))))) -(((*1 *2 *1) - (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) - (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1034)) (-4 *4 (-325)) - (-5 *1 (-493 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1100 *4 *5)) - (-4 *4 (-1016)) (-4 *5 (-1016))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-37 (-383 (-523)))) - (-4 *2 (-158))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-383 (-883 (-523))))) - (-5 *2 (-589 (-589 (-271 (-883 *4))))) (-5 *1 (-356 *4)) - (-4 *4 (-13 (-784) (-339))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-271 (-383 (-883 (-523)))))) - (-5 *2 (-589 (-589 (-271 (-883 *4))))) (-5 *1 (-356 *4)) - (-4 *4 (-13 (-784) (-339))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-883 (-523)))) (-5 *2 (-589 (-271 (-883 *4)))) - (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-271 (-383 (-883 (-523))))) - (-5 *2 (-589 (-271 (-883 *4)))) (-5 *1 (-356 *4)) - (-4 *4 (-13 (-784) (-339))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1087)) - (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-4 *4 (-13 (-29 *6) (-1108) (-889))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -4041 (-589 *4)))) - (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-599 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 *2)) - (-4 *2 (-13 (-29 *6) (-1108) (-889))) - (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-599 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *5)) (-4 *5 (-339)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1168 *5) "failed")) - (|:| -4041 (-589 (-1168 *5))))) - (-5 *1 (-610 *5)) (-5 *4 (-1168 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-589 *5))) (-4 *5 (-339)) (-5 *2 - (-2 (|:| |particular| (-3 (-1168 *5) "failed")) - (|:| -4041 (-589 (-1168 *5))))) - (-5 *1 (-610 *5)) (-5 *4 (-1168 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *5)) (-4 *5 (-339)) - (-5 *2 - (-589 - (-2 (|:| |particular| (-3 (-1168 *5) "failed")) - (|:| -4041 (-589 (-1168 *5)))))) - (-5 *1 (-610 *5)) (-5 *4 (-589 (-1168 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-589 *5))) (-4 *5 (-339)) - (-5 *2 - (-589 - (-2 (|:| |particular| (-3 (-1168 *5) "failed")) - (|:| -4041 (-589 (-1168 *5)))))) - (-5 *1 (-610 *5)) (-5 *4 (-589 (-1168 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) - (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4245)))) + (-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355)))) + (-5 *1 (-185))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-710))) (-5 *3 (-157)) (-5 *1 (-1076 *4 *5)) + (-14 *4 (-852)) (-4 *5 (-973))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *2) + (-12 (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) + (-5 *2 (-1169 *1)) (-4 *1 (-318 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) + (-4 *4 (-1145 *3)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) - (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) - (-4 *7 (-13 (-349 *5) (-10 -7 (-6 -4245)))) + (-2 (|:| -3760 (-629 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-629 *3)))) + (-5 *1 (-326 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1145 (-523))) (-5 *2 - (-589 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4041 (-589 *7))))) - (-5 *1 (-611 *5 *6 *7 *3)) (-5 *4 (-589 *7)) - (-4 *3 (-627 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) - (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-709 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-515)) - (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-709 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1087)) - (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *1 (-711 *5 *2)) (-4 *2 (-13 (-29 *5) (-1108) (-889))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-629 *7)) (-5 *5 (-1087)) - (-4 *7 (-13 (-29 *6) (-1108) (-889))) - (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *2 - (-2 (|:| |particular| (-1168 *7)) (|:| -4041 (-589 (-1168 *7))))) - (-5 *1 (-741 *6 *7)) (-5 *4 (-1168 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-629 *6)) (-5 *4 (-1087)) - (-4 *6 (-13 (-29 *5) (-1108) (-889))) - (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *2 (-589 (-1168 *6))) (-5 *1 (-741 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-589 (-271 *7))) (-5 *4 (-589 (-110))) - (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1108) (-889))) - (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *2 - (-2 (|:| |particular| (-1168 *7)) (|:| -4041 (-589 (-1168 *7))))) - (-5 *1 (-741 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-589 *7)) (-5 *4 (-589 (-110))) - (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1108) (-889))) - (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *2 - (-2 (|:| |particular| (-1168 *7)) (|:| -4041 (-589 (-1168 *7))))) - (-5 *1 (-741 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-271 *7)) (-5 *4 (-110)) (-5 *5 (-1087)) - (-4 *7 (-13 (-29 *6) (-1108) (-889))) - (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-2 (|:| -3760 (-629 (-523))) (|:| |basisDen| (-523)) + (|:| |basisInv| (-629 (-523))))) + (-5 *1 (-707 *3 *4)) (-4 *4 (-385 (-523) *3)))) + ((*1 *2) + (-12 (-4 *3 (-325)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 *4)) (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -4041 (-589 *7))) *7 "failed")) - (-5 *1 (-741 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-110)) (-5 *5 (-1087)) - (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-2 (|:| -3760 (-629 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-629 *4)))) + (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-664 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-325)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 *4)) (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -4041 (-589 *3))) *3 "failed")) - (-5 *1 (-741 *6 *3)) (-4 *3 (-13 (-29 *6) (-1108) (-889))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-271 *2)) (-5 *4 (-110)) (-5 *5 (-589 *2)) - (-4 *2 (-13 (-29 *6) (-1108) (-889))) (-5 *1 (-741 *6 *2)) - (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-110)) (-5 *4 (-271 *2)) (-5 *5 (-589 *2)) - (-4 *2 (-13 (-29 *6) (-1108) (-889))) - (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *1 (-741 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-962)) (-5 *1 (-744)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-747)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-744)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1168 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) - (-5 *2 (-962)) (-5 *1 (-744)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1168 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) - (-5 *2 (-962)) (-5 *1 (-744)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1168 (-292 *4))) (-5 *5 (-589 (-355))) - (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1168 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) - (-5 *2 (-962)) (-5 *1 (-744)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1168 (-292 *4))) (-5 *5 (-589 (-355))) - (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1168 (-292 *4))) (-5 *5 (-589 (-355))) - (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -4041 (-589 *6))) "failed") - *7 *6)) - (-4 *6 (-339)) (-4 *7 (-599 *6)) - (-5 *2 (-2 (|:| |particular| (-1168 *6)) (|:| -4041 (-629 *6)))) - (-5 *1 (-752 *6 *7)) (-5 *3 (-629 *6)) (-5 *4 (-1168 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-962)) (-5 *1 (-828)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-828)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-710)) (-5 *6 (-589 (-589 (-292 *3)))) (-5 *7 (-1070)) - (-5 *8 (-203)) (-5 *5 (-589 (-292 (-355)))) (-5 *3 (-355)) - (-5 *2 (-962)) (-5 *1 (-828)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-710)) (-5 *6 (-589 (-589 (-292 *3)))) (-5 *7 (-1070)) - (-5 *5 (-589 (-292 (-355)))) (-5 *3 (-355)) (-5 *2 (-962)) - (-5 *1 (-828)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *2 (-589 (-355))) - (-5 *1 (-950)) (-5 *4 (-355)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-883 (-523))) (-5 *2 (-589 (-355))) (-5 *1 (-950)) - (-5 *4 (-355)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1045 *4)) - (-5 *3 (-292 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1045 *4)) - (-5 *3 (-271 (-292 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) - (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1045 *5)) - (-5 *3 (-271 (-292 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) - (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1045 *5)) - (-5 *3 (-292 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-589 (-1087))) - (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1045 *5)) - (-5 *3 (-589 (-271 (-292 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) - (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) - (-5 *1 (-1093 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-589 (-1087))) (-4 *5 (-515)) - (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-1093 *5)) - (-5 *3 (-589 (-271 (-383 (-883 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-383 (-883 *4)))) (-4 *4 (-515)) - (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-1093 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) - (-5 *1 (-1093 *4)) (-5 *3 (-589 (-271 (-383 (-883 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) (-4 *5 (-515)) - (-5 *2 (-589 (-271 (-383 (-883 *5))))) (-5 *1 (-1093 *5)) - (-5 *3 (-383 (-883 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) (-4 *5 (-515)) - (-5 *2 (-589 (-271 (-383 (-883 *5))))) (-5 *1 (-1093 *5)) - (-5 *3 (-271 (-383 (-883 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *4))))) - (-5 *1 (-1093 *4)) (-5 *3 (-383 (-883 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *4))))) - (-5 *1 (-1093 *4)) (-5 *3 (-271 (-383 (-883 *4))))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-732)) - (-4 *3 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *5 (-515)) - (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-880 (-383 (-883 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-973)) (-4 *5 (-732)) - (-4 *3 - (-13 (-786) - (-10 -8 (-15 -3663 ((-1087) $)) - (-15 -2700 ((-3 $ "failed") (-1087)))))) - (-5 *1 (-913 *4 *5 *3 *2)) (-4 *2 (-880 (-883 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-589 *6)) - (-4 *6 - (-13 (-786) - (-10 -8 (-15 -3663 ((-1087) $)) - (-15 -2700 ((-3 $ "failed") (-1087)))))) - (-4 *4 (-973)) (-4 *5 (-732)) (-5 *1 (-913 *4 *5 *6 *2)) - (-4 *2 (-880 (-883 *4) *5 *6))))) -(((*1 *1) (-5 *1 (-144)))) -(((*1 *2 *3) - (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-284)) - (-5 *2 (-383 (-394 (-883 *4)))) (-5 *1 (-968 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) -(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1122))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-589 (-852))) (-5 *1 (-141 *4 *2 *5)) (-14 *4 (-852)) - (-4 *2 (-339)) (-14 *5 (-922 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-653 *5 *6 *7)) (-4 *5 (-786)) - (-4 *6 (-216 (-2676 *4) (-710))) - (-14 *7 - (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *6)) - (-2 (|:| -3878 *5) (|:| -2735 *6)))) - (-14 *4 (-589 (-1087))) (-4 *2 (-158)) - (-5 *1 (-436 *4 *2 *5 *6 *7 *8)) (-4 *8 (-880 *2 *6 (-796 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-786)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-523)) (-4 *2 (-515)) (-5 *1 (-570 *2 *4)) - (-4 *4 (-1144 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-648 *2)) (-4 *2 (-973)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-973)) (-4 *3 (-666)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 *5)) (-5 *3 (-589 (-710))) (-4 *1 (-680 *4 *5)) - (-4 *4 (-973)) (-4 *5 (-786)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *2)) (-4 *4 (-973)) - (-4 *2 (-786)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-788 *2)) (-4 *2 (-973)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 (-710))) (-4 *1 (-880 *4 *5 *6)) - (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-710)) (-4 *1 (-880 *4 *5 *2)) (-4 *4 (-973)) - (-4 *5 (-732)) (-4 *2 (-786)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 *5)) (-4 *1 (-902 *4 *5 *6)) - (-4 *4 (-973)) (-4 *5 (-731)) (-4 *6 (-786)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-902 *4 *3 *2)) (-4 *4 (-973)) (-4 *3 (-731)) - (-4 *2 (-786))))) -(((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 *4)))) - (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1124))))) -(((*1 *2 *3) - (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-768)) (-5 *3 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) - (-4 *3 (-13 (-339) (-1108) (-930)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-794))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-253 *4 *3)) - (-4 *3 (-13 (-406 *4) (-930)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-339)) (-4 *3 (-973)) - (-5 *1 (-1072 *3))))) + (-2 (|:| -3760 (-629 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-629 *4)))) + (-5 *1 (-1178 *3 *4 *5 *6)) (-4 *6 (-385 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) - (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973)))) - ((*1 *2 *3) - (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-158)) - (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) - (-4 *5 (-216 *3 *2)) (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-695))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1011 *3)) (-4 *3 (-880 *7 *6 *4)) (-4 *6 (-732)) - (-4 *4 (-786)) (-4 *7 (-515)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-523)))) - (-5 *1 (-547 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-515)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-523)))) - (-5 *1 (-547 *5 *4 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *1) (-5 *1 (-794))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-1079 *4 *2)) (-4 *2 (-13 (-406 *4) (-147) (-27) (-1108))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1009 *2)) (-4 *2 (-13 (-406 *4) (-147) (-27) (-1108))) + (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-562 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4))) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-1079 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) - (-5 *2 (-383 (-883 *5))) (-5 *1 (-1080 *5)) (-5 *3 (-883 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) - (-5 *2 (-3 (-383 (-883 *5)) (-292 *5))) (-5 *1 (-1080 *5)) - (-5 *3 (-383 (-883 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1009 (-883 *5))) (-5 *3 (-883 *5)) - (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-383 *3)) - (-5 *1 (-1080 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1009 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) - (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-3 *3 (-292 *5))) - (-5 *1 (-1080 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-629 (-383 (-883 (-523))))) - (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-523)) (-4 *3 (-158)) (-4 *5 (-349 *3)) - (-4 *6 (-349 *3)) (-5 *1 (-628 *3 *5 *6 *2)) - (-4 *2 (-627 *3 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *2 (-710)) - (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 (-710))) (-5 *3 (-710)) (-5 *1 (-1076 *4 *5)) - (-14 *4 (-852)) (-4 *5 (-973)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 (-710))) (-5 *3 (-874 *5)) (-4 *5 (-973)) - (-5 *1 (-1076 *4 *5)) (-14 *4 (-852))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1070)) (-5 *1 (-918)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1087)) (-5 *3 (-1011 *4)) (-4 *4 (-1122)) - (-5 *1 (-1009 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1168 *6)) (-5 *4 (-1168 (-523))) (-5 *5 (-523)) - (-4 *6 (-1016)) (-5 *2 (-1 *6)) (-5 *1 (-945 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-973)) - (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) - (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-564 (-823 *3))) (-4 *3 (-817 *3)) - (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-564 (-823 *3))) (-4 *2 (-817 *3)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) - (-4 *4 (-349 *2))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-185)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-589 (-355))) (-5 *2 (-355)) (-5 *1 (-185))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) + (-5 *1 (-254 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) (((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1070)) (|:| -4198 (-1070)))) + (-5 *1 (-761))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-27) (-406 *4))) + (-4 *4 (-13 (-786) (-515) (-964 (-523)))) + (-4 *7 (-1145 (-383 *6))) (-5 *1 (-511 *4 *5 *6 *7 *2)) + (-4 *2 (-318 *5 *6 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *2 (-108))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-985))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *3 (-203)) - (-5 *2 (-962)) (-5 *1 (-688))))) -(((*1 *2) (-12 (-5 *2 (-779 (-523))) (-5 *1 (-497)))) - ((*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1016))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-160))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) - (-4 *2 (-13 (-27) (-1108) (-406 (-155 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) - (-5 *1 (-168 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-1112 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284))))) -(((*1 *1) (-5 *1 (-762)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168 *4)) (-4 *4 (-973)) (-4 *2 (-1144 *4)) - (-5 *1 (-419 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-383 (-1083 (-292 *5)))) (-5 *3 (-1168 (-292 *5))) - (-5 *4 (-523)) (-4 *5 (-13 (-515) (-786))) (-5 *1 (-1044 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-515) (-136))) - (-5 *2 (-2 (|:| -3149 *3) (|:| -3159 *3))) (-5 *1 (-1138 *4 *3)) - (-4 *3 (-1144 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 (-883 *3))) (-4 *3 (-427)) (-5 *1 (-336 *3 *4)) - (-14 *4 (-589 (-1087))))) - ((*1 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-425 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) - (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-5 *1 (-425 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) - (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-5 *1 (-425 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) - (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-589 (-719 *3 (-796 *4)))) (-4 *3 (-427)) - (-14 *4 (-589 (-1087))) (-5 *1 (-574 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) -(((*1 *2 *1) - (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-5 *2 (-108))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *2) (-12 (-5 *2 (-779 (-523))) (-5 *1 (-497)))) - ((*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1016))))) -(((*1 *1 *2) - (-12 (-5 *2 (-852)) (-4 *1 (-216 *3 *4)) (-4 *4 (-973)) - (-4 *4 (-1122)))) - ((*1 *1 *2) - (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) - (-4 *5 (-216 (-2676 *3) (-710))) - (-14 *6 - (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *5)) - (-2 (|:| -3878 *2) (|:| -2735 *5)))) - (-5 *1 (-436 *3 *4 *2 *5 *6 *7)) (-4 *2 (-786)) - (-4 *7 (-880 *4 *5 (-796 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) - ((*1 *1 *1) (-5 *1 (-794)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) + (-4 *5 (-786)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1117 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) (((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 *4)))) + (-12 (-5 *2 (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 *4)))) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) ((*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-589 *1)) (-4 *1 (-1019 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-508)))) - ((*1 *1 *1) (-4 *1 (-982)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) - (-14 *6 (-589 (-1087))) - (-5 *2 - (-589 (-1058 *5 (-495 (-796 *6)) (-796 *6) (-719 *5 (-796 *6))))) - (-5 *1 (-574 *5 *6))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523))))) - (-4 *5 (-1144 *4)) (-5 *2 (-1083 (-383 *5))) (-5 *1 (-565 *4 *5)) - (-5 *3 (-383 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) - (-4 *5 (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523))))) - (-5 *2 (-1083 (-383 *6))) (-5 *1 (-565 *5 *6)) (-5 *3 (-383 *6))))) -(((*1 *1) (-5 *1 (-1001)))) +(((*1 *1 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) + ((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1) (-4 *1 (-800 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-731)) + (-4 *4 (-786))))) (((*1 *2 *3) - (-12 (-4 *4 (-732)) - (-4 *5 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *6 (-515)) - (-5 *2 (-2 (|:| -3596 (-883 *6)) (|:| -2774 (-883 *6)))) - (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-880 (-383 (-883 *6)) *4 *5))))) -(((*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) + (-12 (-5 *3 (-596 (-383 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-749 *4 *2)) + (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))))) ((*1 *2 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1168 *4)) (-5 *1 (-493 *4)) - (-4 *4 (-325))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-786))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3078 *4))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) + (-12 (-5 *3 (-597 *2 (-383 *2))) (-4 *2 (-1145 *4)) + (-5 *1 (-749 *4 *2)) + (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-200 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-4 *1 (-231 *3)))) + ((*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1145 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-515))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-5 *2 (-1 (-203) (-203))) (-5 *1 (-643 *3)) + (-4 *3 (-564 (-499))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1087)) (-5 *2 (-1 (-203) (-203) (-203))) + (-5 *1 (-643 *3)) (-4 *3 (-564 (-499)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (-5 *2 (-2 (|:| -3013 (-110)) (|:| |w| (-203)))) (-5 *1 (-184))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1068 (-203))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2464 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-518))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-252))))) + (-12 (-5 *3 (-760)) (-5 *4 (-51)) (-5 *2 (-1174)) (-5 *1 (-770))))) (((*1 *2 *3) - (-12 (-4 *4 (-325)) (-5 *2 (-394 (-1083 (-1083 *4)))) - (-5 *1 (-1121 *4)) (-5 *3 (-1083 (-1083 *4)))))) + (|partial| -12 (-5 *3 (-852)) + (-5 *2 (-1169 (-589 (-2 (|:| -3370 *4) (|:| -4013 (-1034)))))) + (-5 *1 (-322 *4)) (-4 *4 (-325))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1105))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-710)) (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) + (-4 *2 (-1145 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-144)))) + ((*1 *2 *1) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) + ((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1173)) (-5 *1 (-1090)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1173)) - (-5 *1 (-1090)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1173)) - (-5 *1 (-1090))))) + (-12 (-4 *4 (-786)) (-5 *2 (-589 (-589 (-589 *4)))) + (-5 *1 (-1095 *4)) (-5 *3 (-589 (-589 *4)))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4250 "*"))) (-4 *5 (-349 *2)) (-4 *6 (-349 *2)) + (-4 *2 (-973)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1145 *2)) + (-4 *4 (-627 *2 *5 *6))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-523)) (-5 *1 (-1068 *3)) (-4 *3 (-1123)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1123)) (-4 *1 (-216 *3 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1104))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1145 (-383 (-523)))) + (-5 *2 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523)))) + (-5 *1 (-844 *3 *4)) (-4 *4 (-1145 (-383 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1145 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *3)) + (-4 *3 (-1145 (-383 *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1068 *4)) (-4 *4 (-37 *3)) (-4 *4 (-973)) + (-5 *3 (-383 (-523))) (-5 *1 (-1072 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-383 (-523))))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240))))) +(((*1 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) + ((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4248)) (-4 *1 (-140 *2)) (-4 *2 (-1123)) + (-4 *2 (-1016))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1090)) (-5 *3 (-1087))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-292 *4)) + (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 (-155 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1113 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3)))))) +(((*1 *1 *1) (-4 *1 (-1056)))) (((*1 *2) - (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-306))))) + (-12 (-4 *1 (-325)) + (-5 *2 (-589 (-2 (|:| -2424 (-523)) (|:| -1475 (-523)))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) (((*1 *2 *1) - (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) - (-4 *1 (-987 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-413)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) - (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-973)) - (-4 *4 (-782))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1122)) (-4 *1 (-216 *3 *4))))) + (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) - (-5 *2 (-710)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) + (-12 (|has| *6 (-6 -4249)) (-4 *4 (-339)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-5 *2 (-589 *6)) (-5 *1 (-490 *4 *5 *6 *3)) + (-4 *3 (-627 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4249)) (-4 *4 (-515)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-4 *7 (-921 *4)) (-4 *8 (-349 *7)) + (-4 *9 (-349 *7)) (-5 *2 (-589 *6)) + (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) + (-4 *10 (-627 *7 *8 *9)))) ((*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-710)))) + (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-589 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) - (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-628 *4 *5 *6 *3)) + (-4 *6 (-349 *4)) (-5 *2 (-589 *6)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) - (-5 *2 (-710))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1169)))) - ((*1 *2 *1) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1169)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1170)))) - ((*1 *2 *1) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1170))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *2 *3) - (-12 (-4 *1 (-826)) - (-5 *3 - (-2 (|:| |pde| (-589 (-292 (-203)))) - (|:| |constraints| - (-589 - (-2 (|:| |start| (-203)) (|:| |finish| (-203)) - (|:| |grid| (-710)) (|:| |boundaryType| (-523)) - (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) - (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) - (|:| |tol| (-203)))) - (-5 *2 (-962))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-172)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-277)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-282))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) - (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) - (-5 *2 (-2 (|:| -1280 *3) (|:| |nconst| *3))) (-5 *1 (-526 *5 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) (-4 *4 (-427)) (-4 *4 (-786)) - (-5 *1 (-532 *4 *2)) (-4 *2 (-261)) (-4 *2 (-406 *4))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1070)) (-5 *4 (-155 (-203))) (-5 *5 (-523)) - (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-562 *3)) (-5 *5 (-1083 *3)) - (-4 *3 (-13 (-406 *6) (-27) (-1108))) - (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *2 (-540 *3)) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-562 *3)) (-5 *5 (-383 (-1083 *3))) - (-4 *3 (-13 (-406 *6) (-27) (-1108))) - (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *2 (-540 *3)) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016))))) + (-5 *2 (-589 *7))))) (((*1 *1) - (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) - (-4 *4 (-158))))) -(((*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-292 *4)) - (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3)))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) - (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-589 (-710))))) - ((*1 *2 *1) - (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) - (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-589 (-710)))))) -(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-443)))) - ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1169)))) - ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1170))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-1168 *5)) (-4 *5 (-284)) - (-4 *5 (-973)) (-5 *2 (-629 *5)) (-5 *1 (-956 *5))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) - (-5 *2 (-962)) (-5 *1 (-696))))) -(((*1 *2) - (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-1016))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1168 *4)) (-5 *3 (-629 *4)) (-4 *4 (-339)) - (-5 *1 (-610 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-339)) - (-4 *5 (-13 (-349 *4) (-10 -7 (-6 -4245)))) - (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245)))) - (-5 *1 (-611 *4 *5 *2 *3)) (-4 *3 (-627 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-589 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-339)) - (-5 *1 (-753 *2 *3)) (-4 *3 (-599 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) - (-4 *3 (-1016))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-108)) (-5 *1 (-512))))) -(((*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-1097 *2)) (-4 *2 (-339))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-155 (-203)))) (-5 *2 (-962)) - (-5 *1 (-696))))) + (-12 (-4 *3 (-1016)) (-5 *1 (-816 *2 *3 *4)) (-4 *2 (-1016)) + (-4 *4 (-609 *3)))) + ((*1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-292 (-355))) (-5 *2 (-292 (-203))) (-5 *1 (-282))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) (((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) - (-5 *2 (-589 (-589 (-874 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-589 (-589 (-874 *4)))) (-5 *3 (-108)) (-4 *4 (-973)) - (-4 *1 (-1048 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 (-589 (-874 *3)))) (-4 *3 (-973)) - (-4 *1 (-1048 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-589 (-589 (-589 *4)))) (-5 *3 (-108)) - (-4 *1 (-1048 *4)) (-4 *4 (-973)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-589 (-589 (-874 *4)))) (-5 *3 (-108)) - (-4 *1 (-1048 *4)) (-4 *4 (-973)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-589 (-589 (-589 *5)))) (-5 *3 (-589 (-157))) - (-5 *4 (-157)) (-4 *1 (-1048 *5)) (-4 *5 (-973)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-589 (-589 (-874 *5)))) (-5 *3 (-589 (-157))) - (-5 *4 (-157)) (-4 *1 (-1048 *5)) (-4 *5 (-973))))) + (-12 (-5 *2 (-108)) (-5 *1 (-292 *3)) (-4 *3 (-515)) (-4 *3 (-786))))) (((*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-292 *4)) - (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) + (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 (-155 *4)))))) ((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-515) (-786))) (-5 *2 (-155 *5)) - (-5 *1 (-552 *4 *5 *3)) (-4 *5 (-13 (-406 *4) (-930) (-1108))) - (-4 *3 (-13 (-406 (-155 *4)) (-930) (-1108)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) - (-5 *1 (-1072 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-523)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) - (-14 *4 (-1087)) (-14 *5 *3)))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-257))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-252))))) -(((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-393 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) -(((*1 *2 *3) (-12 (-5 *3 (-761)) (-5 *2 (-51)) (-5 *1 (-768))))) + (-5 *1 (-1113 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-508)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-589 *5) *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1145 *5)) + (-5 *2 (-589 (-2 (|:| |poly| *6) (|:| -2849 *3)))) + (-5 *1 (-748 *5 *6 *3 *7)) (-4 *3 (-599 *6)) + (-4 *7 (-599 (-383 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-589 *5) *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *6 (-1145 *5)) + (-5 *2 (-589 (-2 (|:| |poly| *6) (|:| -2849 (-597 *6 (-383 *6)))))) + (-5 *1 (-751 *5 *6)) (-5 *3 (-597 *6 (-383 *6)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-1141 *3 *2)) (-4 *2 (-1145 *3))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-697))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) + ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-589 (-562 *2))) (-5 *4 (-1087)) + (-4 *2 (-13 (-27) (-1109) (-406 *5))) + (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *5 *2))))) +(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *2 (-515)) + (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-987 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-1157 *3)) (-4 *3 (-1123)))) + ((*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-454))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-589 (-629 *6))) (-5 *4 (-108)) (-5 *5 (-523)) + (-5 *2 (-629 *6)) (-5 *1 (-956 *6)) (-4 *6 (-339)) (-4 *6 (-973)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 (-629 *4))) (-5 *2 (-629 *4)) (-5 *1 (-956 *4)) + (-4 *4 (-339)) (-4 *4 (-973)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-523)) (-5 *2 (-629 *5)) + (-5 *1 (-956 *5)) (-4 *5 (-339)) (-4 *5 (-973))))) +(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) (((*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) @@ -13393,67 +9521,47 @@ ((*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-4 *1 (-940)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-710)))) ((*1 *1 *1) (-4 *1 (-940)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1144 *4)) - (-5 *2 (-2 (|:| |ans| (-383 *5)) (|:| |nosol| (-108)))) - (-5 *1 (-943 *4 *5)) (-5 *3 (-383 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-973)) (-4 *4 (-1144 *3)) (-5 *1 (-150 *3 *4 *2)) - (-4 *2 (-1144 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) - (-4 *3 (-987 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-589 *4)) - (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) - (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-589 *4)) - (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) - (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *2 (-108)) - (-5 *1 (-240))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) - (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *2 (-515)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *5 (-987 *2 *3 *4))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-938 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-687))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-589 (-523))) (-5 *3 (-629 (-523))) (-5 *1 (-1026))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *2 *3) (-12 (-5 *2 (-523)) (-5 *1 (-528 *3)) (-4 *3 (-964 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1020)) (-5 *3 (-713)) (-5 *1 (-51))))) +(((*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1070)) (-5 *2 (-193 (-473))) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1123)) (-5 *2 (-108))))) +(((*1 *2) + (-12 (-4 *3 (-1127)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) + (-5 *2 (-1169 *1)) (-4 *1 (-318 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-556 *3 *2)) (-4 *3 (-1016)) (-4 *3 (-786)) + (-4 *2 (-1123)))) + ((*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) + ((*1 *2 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1123)) (-5 *1 (-804 *2 *3)) (-4 *3 (-1123)))) + ((*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-1157 *3)) (-4 *3 (-1123)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-589 (-589 (-203)))) (-5 *4 (-203)) + (-5 *2 (-589 (-874 *4))) (-5 *1 (-1120)) (-5 *3 (-874 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-339)) (-4 *3 (-973)) + (-5 *1 (-1072 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-499))) (-5 *1 (-499))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-589 (-47))) (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) - (-4 *3 (-1144 (-47))))) + (-4 *3 (-1145 (-47))))) ((*1 *2 *3) - (-12 (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47))))) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1145 (-47))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-589 (-47))) (-4 *5 (-786)) (-4 *6 (-732)) (-5 *2 (-394 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-880 (-47) *6 *5)))) @@ -13463,33 +9571,33 @@ (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1083 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-153 *4 *3)) - (-4 *3 (-1144 (-155 *4))))) + (-4 *3 (-1145 (-155 *4))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) - (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) - (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) - (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-195 *4 *3)) - (-4 *3 (-1144 *4)))) + (-4 *3 (-1145 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) - (-4 *3 (-1144 (-523))))) + (-4 *3 (-1145 (-523))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-589 (-710))) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) - (-4 *3 (-1144 (-523))))) + (-4 *3 (-1145 (-523))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *2 (-394 *3)) - (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) + (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) - (-4 *3 (-1144 (-523))))) + (-4 *3 (-1145 (-523))))) ((*1 *2 *3) (-12 (-5 *2 (-394 (-155 (-523)))) (-5 *1 (-421)) (-5 *3 (-155 (-523))))) @@ -13497,8 +9605,8 @@ (-12 (-4 *4 (-13 (-786) - (-10 -8 (-15 -3663 ((-1087) $)) - (-15 -2700 ((-3 $ "failed") (-1087)))))) + (-10 -8 (-15 -1400 ((-1087) $)) + (-15 -2724 ((-3 $ "failed") (-1087)))))) (-4 *5 (-732)) (-4 *7 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-431 *4 *5 *6 *7 *3)) (-4 *6 (-515)) (-4 *3 (-880 *7 *5 *4)))) @@ -13506,9 +9614,9 @@ (-12 (-4 *4 (-284)) (-5 *2 (-394 (-1083 *4))) (-5 *1 (-433 *4)) (-5 *3 (-1083 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) + (-12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1145 *5)) (-4 *5 (-339)) (-4 *7 (-13 (-339) (-136) (-664 *5 *6))) (-5 *2 (-394 *3)) - (-5 *1 (-465 *5 *6 *7 *3)) (-4 *3 (-1144 *7)))) + (-5 *1 (-465 *5 *6 *7 *3)) (-4 *3 (-1145 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-284) (-136))) (-4 *5 (-786)) (-4 *6 (-732)) @@ -13523,19 +9631,19 @@ ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-4 *6 (-1144 *5)) (-5 *2 (-589 (-596 (-383 *6)))) + (-4 *6 (-1145 *5)) (-5 *2 (-589 (-596 (-383 *6)))) (-5 *1 (-600 *5 *6)) (-5 *3 (-596 (-383 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-4 *5 (-1144 *4)) (-5 *2 (-589 (-596 (-383 *5)))) + (-4 *5 (-1145 *4)) (-5 *2 (-589 (-596 (-383 *5)))) (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-383 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-758 *4)) (-4 *4 (-786)) (-5 *2 (-589 (-614 *4))) (-5 *1 (-614 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-5 *2 (-589 *3)) (-5 *1 (-635 *3)) - (-4 *3 (-1144 *4)))) + (-4 *3 (-1145 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) @@ -13547,13 +9655,13 @@ (-12 (-4 *4 (-732)) (-4 *5 (-13 (-786) - (-10 -8 (-15 -3663 ((-1087) $)) - (-15 -2700 ((-3 $ "failed") (-1087)))))) + (-10 -8 (-15 -1400 ((-1087) $)) + (-15 -2724 ((-3 $ "failed") (-1087)))))) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-880 (-883 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-732)) - (-4 *5 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *6 (-515)) + (-4 *5 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $))))) (-4 *6 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-880 (-383 (-883 *6)) *4 *5)))) ((*1 *2 *3) @@ -13570,256 +9678,227 @@ (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) ((*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-935 *3)) - (-4 *3 (-1144 (-383 (-523)))))) + (-4 *3 (-1145 (-383 (-523)))))) ((*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-967 *3)) - (-4 *3 (-1144 (-383 (-883 (-523))))))) + (-4 *3 (-1145 (-383 (-883 (-523))))))) ((*1 *2 *3) - (-12 (-4 *4 (-1144 (-383 (-523)))) + (-12 (-4 *4 (-1145 (-383 (-523)))) (-4 *5 (-13 (-339) (-136) (-664 (-383 (-523)) *4))) - (-5 *2 (-394 *3)) (-5 *1 (-998 *4 *5 *3)) (-4 *3 (-1144 *5)))) + (-5 *2 (-394 *3)) (-5 *1 (-998 *4 *5 *3)) (-4 *3 (-1145 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1144 (-383 (-883 (-523))))) + (-12 (-4 *4 (-1145 (-383 (-883 (-523))))) (-4 *5 (-13 (-339) (-136) (-664 (-383 (-883 (-523))) *4))) - (-5 *2 (-394 *3)) (-5 *1 (-1000 *4 *5 *3)) (-4 *3 (-1144 *5)))) + (-5 *2 (-394 *3)) (-5 *1 (-1000 *4 *5 *3)) (-4 *3 (-1145 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-427)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 (-383 *7)))) (-5 *1 (-1082 *4 *5 *6 *7)) (-5 *3 (-1083 (-383 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-394 *1)) (-4 *1 (-1126)))) + ((*1 *2 *1) (-12 (-5 *2 (-394 *1)) (-4 *1 (-1127)))) ((*1 *2 *3) - (-12 (-5 *2 (-394 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-113 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-523)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-802 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-14 *2 (-523)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-523)) (-14 *3 *2) (-5 *1 (-803 *3 *4)) - (-4 *4 (-800 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-523)) (-5 *1 (-803 *2 *3)) (-4 *3 (-800 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-523)) (-4 *1 (-1130 *3 *4)) (-4 *3 (-973)) - (-4 *4 (-1159 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1130 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1159 *2))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) - (-4 *2 (-406 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1009 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) - (-5 *1 (-145 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-147)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-710)) (-4 *6 (-339)) (-5 *4 (-1117 *6)) - (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1176 *6)) - (-5 *5 (-1068 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-523))) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) - (-14 *4 (-589 (-1087))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *1) (-4 *1 (-261))) - ((*1 *1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *1 *2) - (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-786)) - (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-5 *1 (-573 *3 *4 *5)) - (-14 *5 (-852)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) - (-4 *5 (-786)) (-5 *1 (-1182 *4 *5 *2)) (-4 *2 (-1187 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-1186 *3 *4)) - (-4 *4 (-657 (-383 (-523)))) (-4 *3 (-786)) (-4 *4 (-158))))) -(((*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-508)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-629 *2)) (-4 *2 (-158)) (-5 *1 (-135 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-158)) (-4 *2 (-1144 *4)) (-5 *1 (-162 *4 *2 *3)) - (-4 *3 (-664 *4 *2)))) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-1134 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-523)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-448)) (-5 *2 (-523)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-666)) (-5 *2 (-710)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-852))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-2 (|:| -3370 *4) (|:| -3038 (-523))))) + (-4 *4 (-1016)) (-5 *2 (-1 *4)) (-5 *1 (-945 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-1025 *5 *6 *7 *8)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-545 *5 *6 *7 *8 *3))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-762)) (-5 *1 (-761))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-1 (-589 *5) *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *6 (-1145 *5)) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-596 (-383 *7))) (-5 *4 (-1 (-589 *6) *7)) + (-5 *5 (-1 (-394 *7) *7)) + (-4 *6 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *7 (-1145 *6)) (-5 *2 (-589 (-383 *7))) (-5 *1 (-751 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-383 (-883 *5)))) (-5 *4 (-1087)) - (-5 *2 (-883 *5)) (-5 *1 (-269 *5)) (-4 *5 (-427)))) - ((*1 *2 *3) - (-12 (-5 *3 (-629 (-383 (-883 *4)))) (-5 *2 (-883 *4)) - (-5 *1 (-269 *4)) (-4 *4 (-427)))) - ((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1144 *3)))) + (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-1 (-589 *5) *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *6 (-1145 *5)) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-597 *7 (-383 *7))) (-5 *4 (-1 (-589 *6) *7)) + (-5 *5 (-1 (-394 *7) *7)) + (-4 *6 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *7 (-1145 *6)) (-5 *2 (-589 (-383 *7))) (-5 *1 (-751 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-629 (-155 (-383 (-523))))) - (-5 *2 (-883 (-155 (-383 (-523))))) (-5 *1 (-704 *4)) - (-4 *4 (-13 (-339) (-784))))) + (-12 (-5 *3 (-596 (-383 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-589 (-383 *5))) (-5 *1 (-751 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *4 (-1087)) - (-5 *2 (-883 (-155 (-383 (-523))))) (-5 *1 (-704 *5)) - (-4 *5 (-13 (-339) (-784))))) + (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-1 (-394 *6) *6)) + (-4 *6 (-1145 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-883 (-383 (-523)))) - (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784))))) + (-12 (-5 *3 (-597 *5 (-383 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-589 (-383 *5))) (-5 *1 (-751 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *4 (-1087)) - (-5 *2 (-883 (-383 (-523)))) (-5 *1 (-718 *5)) - (-4 *5 (-13 (-339) (-784)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *1) (-4 *1 (-464))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-144)))) - ((*1 *2 *1) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) - ((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) -(((*1 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) - ((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973))))) -(((*1 *2 *3) - (-12 (-5 *3 (-292 (-355))) (-5 *2 (-292 (-203))) (-5 *1 (-282))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-454))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-589 (-589 (-203)))) (-5 *4 (-203)) - (-5 *2 (-589 (-874 *4))) (-5 *1 (-1119)) (-5 *3 (-874 *4))))) + (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-1 (-394 *6) *6)) + (-4 *6 (-1145 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1109))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-355)) (-5 *2 (-1174)) (-5 *1 (-1170))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-4 *1 (-102 *3))))) (((*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5))))) + (-5 *1 (-899 *5 *3)) (-4 *3 (-1145 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *2 (-108)) (-5 *1 (-244)))) + ((*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-108)) (-5 *1 (-244)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *2 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1825 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-339)) (-4 *7 (-1145 *6)) + (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) + (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1109) (-930)))))) +(((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-629 (-383 *4)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-808 *2)) (-4 *2 (-1123)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-810 *2)) (-4 *2 (-1123)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-813 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1) + (-12 (-4 *3 (-973)) (-5 *2 (-1169 *3)) (-5 *1 (-652 *3 *4)) + (-4 *4 (-1145 *3))))) +(((*1 *2) + (-12 (-5 *2 (-629 (-841 *3))) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) + (-14 *4 (-852)))) + ((*1 *2) + (-12 (-5 *2 (-629 *3)) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) + (-14 *4 + (-3 (-1083 *3) + (-1169 (-589 (-2 (|:| -3370 *3) (|:| -4013 (-1034))))))))) + ((*1 *2) + (-12 (-5 *2 (-629 *3)) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) + (-14 *4 (-852))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-155 (-203)) (-155 (-203)))) (-5 *4 (-1011 (-203))) + (-5 *5 (-108)) (-5 *2 (-1171)) (-5 *1 (-234))))) (((*1 *2 *2) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) - (-4 *3 (-1144 (-155 *2)))))) -(((*1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) + (-4 *3 (-1145 (-155 *2)))))) +(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1174)) (-5 *1 (-1050)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1174)) (-5 *1 (-1050))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-155 (-203)))) (-5 *2 (-962)) + (-5 *1 (-694))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) + (-5 *3 (-589 (-523)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1070)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-240)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-4 *2 (-1016)) (-5 *1 (-621 *5 *6 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3643 *9)))) + (-5 *4 (-710)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-1174)) + (-5 *1 (-990 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3643 *9)))) + (-5 *4 (-710)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-1174)) + (-5 *1 (-1057 *5 *6 *7 *8 *9))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1123)) (-5 *2 (-710)) + (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *3 (-1016)) - (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) - (-5 *1 (-995 *3 *4 *2)) - (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))))) + (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)) + (-5 *2 (-710)))) + ((*1 *2) + (-12 (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-304 *3 *4)) + (-4 *3 (-305 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) + ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) + ((*1 *2) + (-12 (-4 *4 (-1016)) (-5 *2 (-710)) (-5 *1 (-400 *3 *4)) + (-4 *3 (-401 *4)))) ((*1 *2 *1) - (-12 (-4 *2 (-1016)) (-5 *1 (-1077 *3 *2)) (-4 *3 (-1016))))) + (-12 (-5 *2 (-710)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-4 *5 (-1145 *4)) (-5 *2 (-710)) + (-5 *1 (-663 *3 *4 *5)) (-4 *3 (-664 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) + ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) + (-4 *3 (-1145 *2))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-962)) (-5 *1 (-282)))) + ((*1 *2 *3) (-12 (-5 *3 (-589 (-962))) (-5 *2 (-962)) (-5 *1 (-282)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1123)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1 *1) (-5 *1 (-985))) + ((*1 *2 *3) + (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1065 *4)) + (-4 *4 (-1123)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) (((*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203) (-203) (-203))) (-5 *1 (-240)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203) (-203))) (-5 *1 (-240)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-240))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *5)) (-4 *5 (-339)) (-5 *2 (-589 *6)) - (-5 *1 (-496 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-325)) (-5 *2 (-394 (-1083 (-1083 *4)))) - (-5 *1 (-1121 *4)) (-5 *3 (-1083 (-1083 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *1) (-4 *1 (-464))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-732)) - (-4 *3 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *5 (-515)) - (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-880 (-383 (-883 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-973)) (-4 *5 (-732)) - (-4 *3 - (-13 (-786) - (-10 -8 (-15 -3663 ((-1087) $)) - (-15 -2700 ((-3 $ "failed") (-1087)))))) - (-5 *1 (-913 *4 *5 *3 *2)) (-4 *2 (-880 (-883 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-589 *6)) - (-4 *6 - (-13 (-786) - (-10 -8 (-15 -3663 ((-1087) $)) - (-15 -2700 ((-3 $ "failed") (-1087)))))) - (-4 *4 (-973)) (-4 *5 (-732)) (-5 *1 (-913 *4 *5 *6 *2)) - (-4 *2 (-880 (-883 *4) *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) - ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) - ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) -(((*1 *2 *1) - (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) -(((*1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1016)) - (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) - (-5 *1 (-995 *3 *4 *2)) - (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1016)) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1016))))) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) + (-5 *1 (-161 *3))))) +(((*1 *1) (-5 *1 (-985)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1145 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *3)) + (-4 *3 (-1145 (-383 *4)))))) (((*1 *2 *1 *3) (-12 (-5 *3 (-562 *1)) (-4 *1 (-406 *4)) (-4 *4 (-786)) (-4 *4 (-515)) (-5 *2 (-383 (-1083 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1108))) + (-12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1109))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-1083 (-383 (-1083 *3)))) (-5 *1 (-519 *6 *3 *7)) (-5 *5 (-1083 *3)) (-4 *7 (-1016)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1164 *5)) (-14 *5 (-1087)) (-4 *6 (-973)) - (-5 *2 (-1141 *5 (-883 *6))) (-5 *1 (-878 *5 *6)) (-5 *3 (-883 *6)))) + (-12 (-5 *4 (-1165 *5)) (-14 *5 (-1087)) (-4 *6 (-973)) + (-5 *2 (-1142 *5 (-883 *6))) (-5 *1 (-878 *5 *6)) (-5 *3 (-883 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-1083 *3)))) @@ -13832,219 +9911,147 @@ (-5 *1 (-881 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-339) - (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) + (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $))))))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-339) - (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))) + (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $))))) (-4 *7 (-880 *6 *5 *4)) (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-973)) (-5 *1 (-881 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-515)) (-5 *2 (-383 (-1083 (-383 (-883 *5))))) (-5 *1 (-969 *5)) (-5 *3 (-383 (-883 *5)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) - (-5 *1 (-308)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1087)) (-5 *4 (-1009 (-883 (-523)))) (-5 *2 (-306)) - (-5 *1 (-308)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-617 *3)) (-4 *3 (-973)) (-4 *3 (-1016))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *1) (-4 *1 (-464))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) - (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) - (-5 *1 (-727))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-155 (-203)))) - (-5 *2 (-962)) (-5 *1 (-694))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-1083 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1122)) (-4 *3 (-973)) - (-5 *2 (-629 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-394 (-1083 *7))) - (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-840)) (-4 *5 (-1144 *4)) (-5 *2 (-394 (-1083 *5))) - (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1070)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) - ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-240))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)) - (-4 *2 (-1016))))) -(((*1 *2 *1) - (-12 (-5 *2 (-874 *4)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-973))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-562 *1))) (-4 *1 (-279))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-589 (-954 *5 *6 *7 *3))) (-5 *1 (-954 *5 *6 *7 *3)) - (-4 *3 (-987 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-589 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) - (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-992 *3 *4 *5 *2)) (-4 *3 (-427)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-5 *2 (-589 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) - (-4 *3 (-987 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *1 *1) (-4 *1 (-464))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1073 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) - (-5 *1 (-1074 *3))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-523)) - (-5 *6 - (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355)))) - (-5 *7 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) - (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) - (-5 *1 (-727)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-523)) - (-5 *6 - (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355)))) - (-5 *7 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) - (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) - (-5 *1 (-727))))) -(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1145 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *1 (-743 *4 *2)) (-4 *2 (-13 (-29 *4) (-1109) (-889))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1) (-5 *1 (-794))) ((*1 *2 *3) - (-12 (-5 *3 (-589 (-2 (|:| -1820 *4) (|:| -2299 (-523))))) - (-4 *4 (-1144 (-523))) (-5 *2 (-710)) (-5 *1 (-417 *4))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-268))))) + (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-693))))) (((*1 *2 *3) - (-12 (-4 *4 (-1122)) (-5 *2 (-710)) (-5 *1 (-166 *4 *3)) - (-4 *3 (-616 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-523)) (-5 *1 (-292 *3)) (-4 *3 (-515)) (-4 *3 (-786))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1016))))) + (|partial| -12 (-4 *5 (-964 (-47))) + (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) + (-5 *2 (-394 (-1083 (-47)))) (-5 *1 (-411 *4 *5 *3)) + (-4 *3 (-1145 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-805)))) + ((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-852)) (-5 *1 (-638)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-629 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-339)) (-5 *1 (-907 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) - (-4 *7 (-1144 (-383 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -2124 *3))) - (-5 *1 (-521 *5 *6 *7 *3)) (-4 *3 (-318 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) - (-5 *2 - (-2 (|:| |answer| (-383 *6)) (|:| -2124 (-383 *6)) - (|:| |specpart| (-383 *6)) (|:| |polypart| *6))) - (-5 *1 (-522 *5 *6)) (-5 *3 (-383 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-284)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) - (-4 *1 (-284))))) + (-12 (-5 *3 (-1083 *5)) (-4 *5 (-339)) (-5 *2 (-589 *6)) + (-5 *1 (-496 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784)))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *6)))) + (-5 *4 (-953 (-779 (-523)))) (-5 *5 (-1087)) (-5 *7 (-383 (-523))) + (-4 *6 (-973)) (-5 *2 (-794)) (-5 *1 (-548 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *2 - (-2 (|:| |solns| (-589 *5)) - (|:| |maps| (-589 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1042 *3 *5)) (-4 *3 (-1144 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *2 (-523)))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1145 *6)) + (-4 *6 (-13 (-27) (-406 *5))) + (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-4 *8 (-1145 (-383 *7))) + (-5 *2 (-540 *3)) (-5 *1 (-511 *5 *6 *7 *8 *3)) + (-4 *3 (-318 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1174)) + (-5 *1 (-424 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-562 *1))) (-4 *1 (-279))))) (((*1 *2 *2) + (-12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-443)) (-5 *3 (-589 (-240))) (-5 *1 (-1170)))) + ((*1 *1 *1) (-5 *1 (-1170)))) +(((*1 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) + (-5 *2 (-394 *3)) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1145 *5))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-973)) + (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-788 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-629 *3)) (-4 *1 (-393 *3)) (-4 *3 (-158)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-973)) + (-5 *1 (-789 *2 *3)) (-4 *3 (-788 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-325)) (-5 *2 (-394 (-1083 (-1083 *4)))) + (-5 *1 (-1122 *4)) (-5 *3 (-1083 (-1083 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-122 *3))))) +(((*1 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1172)))) + ((*1 *2 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1172))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *1 *1) (-4 *1 (-464))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) - (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-906 *5 *6 *7 *8))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-852)) (-5 *1 (-1017 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1070)) (-5 *4 (-155 (-203))) (-5 *5 (-523)) - (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-1016))))) -(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) - ((*1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) - ((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *2 (-515)) - (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-987 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1070)) (-5 *2 (-589 (-1092))) (-5 *1 (-811))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-589 *2))) (-5 *4 (-589 *5)) + (-4 *5 (-37 (-383 (-523)))) (-4 *2 (-1160 *5)) + (-5 *1 (-1162 *5 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1611 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-520)) (-5 *3 (-523)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1169 *5)) (-4 *5 (-731)) (-5 *2 (-108)) + (-5 *1 (-781 *4 *5)) (-14 *4 (-710))))) +(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1123))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1123)) (-4 *3 (-973)) + (-5 *2 (-629 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) + (-4 *3 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) + (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) + (-5 *1 (-413))))) (((*1 *2 *1) - (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) - (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-589 *4))))) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108))))) (((*1 *2 *3) (-12 (-5 *2 (-155 (-355))) (-5 *1 (-724 *3)) (-4 *3 (-564 (-355))))) ((*1 *2 *3 *4) @@ -14093,1063 +10100,3099 @@ (-12 (-5 *3 (-292 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-172))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-515) (-786))) + (-4 *2 (-13 (-406 *4) (-930) (-1109))) (-5 *1 (-552 *4 *2 *3)) + (-4 *3 (-13 (-406 (-155 *4)) (-930) (-1109)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-89 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1123)) (-5 *1 (-351 *4 *2)) + (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4249))))))) +(((*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-732)) + (-4 *3 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $))))) (-4 *5 (-515)) + (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-880 (-383 (-883 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-973)) (-4 *5 (-732)) + (-4 *3 + (-13 (-786) + (-10 -8 (-15 -1400 ((-1087) $)) + (-15 -2724 ((-3 $ "failed") (-1087)))))) + (-5 *1 (-913 *4 *5 *3 *2)) (-4 *2 (-880 (-883 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *6)) + (-4 *6 + (-13 (-786) + (-10 -8 (-15 -1400 ((-1087) $)) + (-15 -2724 ((-3 $ "failed") (-1087)))))) + (-4 *4 (-973)) (-4 *5 (-732)) (-5 *1 (-913 *4 *5 *6 *2)) + (-4 *2 (-880 (-883 *4) *5 *6))))) (((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-222 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) + (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1123))))) +(((*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-973)) - (-4 *2 (-1128 *3))))) -(((*1 *2 *2) + (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) + (-4 *3 (-591 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) + (-4 *3 (-591 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973)))) + ((*1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-240)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158)))) + ((*1 *2 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-710)) (-4 *4 (-13 (-515) (-136))) + (-5 *1 (-1139 *4 *2)) (-4 *2 (-1145 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) + (-4 *2 (-1145 *4))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *1 *1) (-4 *1 (-464))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-710)) (-5 *1 (-544))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3278 (-721 *3)) (|:| |coef1| (-721 *3)))) - (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *2 (-2 (|:| -3278 *1) (|:| |coef1| *1))) - (-4 *1 (-987 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) - (-12 (-4 *1 (-556 *3 *2)) (-4 *3 (-1016)) (-4 *3 (-786)) - (-4 *2 (-1122)))) - ((*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) - ((*1 *2 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1122)) (-5 *1 (-804 *2 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) - (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-973)) (-4 *2 (-627 *4 *5 *6)) - (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1144 *4)) (-4 *5 (-349 *4)) - (-4 *6 (-349 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1091))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) - (-4 *8 (-880 *7 *5 *6)) - (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *3) (|:| |radicand| *3))) - (-5 *1 (-884 *5 *6 *7 *8 *3)) (-5 *4 (-710)) - (-4 *3 - (-13 (-339) - (-10 -8 (-15 -2785 (*8 $)) (-15 -2797 (*8 $)) (-15 -1458 ($ *8)))))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1110 *3)) (-4 *3 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-455 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) - (-5 *2 (-225 *4 *5)) (-5 *1 (-875 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-793)))) - ((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-895)))) - ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-918)))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1016) (-33))) (-5 *1 (-1052 *2 *3)) - (-4 *3 (-13 (-1016) (-33)))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) - (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) - (|:| |ub| (-589 (-779 (-203)))))) - (-5 *1 (-244))))) -(((*1 *1 *1) (-4 *1 (-91))) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1109) (-930)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) + (-5 *2 (-1169 (-589 (-2 (|:| -3370 *4) (|:| -4013 (-1034)))))) + (-5 *1 (-322 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) + ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) + ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1123))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1016) (-33))) + (-4 *2 (-13 (-1016) (-33)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-710)) + (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) + (-4 *4 (-1145 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-589 (-1083 *4))) (-5 *3 (-1083 *4)) - (-4 *4 (-840)) (-5 *1 (-606 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-172)))) - ((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-277)))) - ((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-282))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-589 (-523))) (-5 *3 (-108)) (-5 *1 (-1026))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1087)) (-4 *1 (-27)) - (-5 *2 (-589 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-589 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-292 (-203))) (-5 *4 (-589 (-1087))) - (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168 (-629 *4))) (-4 *4 (-158)) - (-5 *2 (-1168 (-629 (-883 *4)))) (-5 *1 (-169 *4))))) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) + (-5 *4 (-1 (-203) (-203) (-203) (-203))) + (-5 *2 (-1 (-874 (-203)) (-203) (-203))) (-5 *1 (-636))))) +(((*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) + (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016))))) (((*1 *2 *1) - (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) - (-5 *2 (-1083 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-852)) (-5 *1 (-959 *2)) - (-4 *2 (-13 (-1016) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-523)) (-5 *5 (-155 (-203))) (-5 *6 (-1070)) - (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-4 *7 (-786)) - (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-4 *8 (-284)) - (-5 *2 (-589 (-710))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-710))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-710)) (-4 *2 (-1016)) - (-5 *1 (-619 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) -(((*1 *1 *1) (-4 *1 (-91))) + (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 (-589 *6))) (-4 *6 (-880 *3 *5 *4)) + (-4 *3 (-13 (-284) (-136))) (-4 *4 (-13 (-786) (-564 (-1087)))) + (-4 *5 (-732)) (-5 *1 (-855 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-306))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-1162 *4 *2)) + (-4 *4 (-37 (-383 (-523))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) + (-4 *5 (-515)) (-5 *2 (-589 (-589 (-883 *5)))) (-5 *1 (-1093 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) + (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) + (-5 *2 (-589 (-995 *3 *4 *5))) (-5 *1 (-996 *3 *4 *5)) + (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3))))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) - (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) - (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-1070)) (-5 *1 (-92)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-1070)) (-5 *1 (-92))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3760 (-589 *1)))) + (-4 *1 (-343 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-428 *3 *4 *5 *6)) + (|:| -3760 (-589 (-428 *3 *4 *5 *6))))) + (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) (-4 *1 (-261))) + ((*1 *2 *3) + (-12 (-5 *3 (-394 *4)) (-4 *4 (-515)) + (-5 *2 (-589 (-2 (|:| -3474 (-710)) (|:| |logand| *4)))) + (-5 *1 (-296 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *1) + (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) + (-4 *5 (-786)) (-5 *1 (-1183 *4 *5 *2)) (-4 *2 (-1188 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-1187 *3 *4)) + (-4 *4 (-657 (-383 (-523)))) (-4 *3 (-786)) (-4 *4 (-158))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) + (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4248)) (-4 *1 (-462 *4)) + (-4 *4 (-1123)) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-383 *2)) (-4 *2 (-1145 *5)) + (-5 *1 (-746 *5 *2 *3 *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *3 (-599 *2)) (-4 *6 (-599 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-383 *2))) (-4 *2 (-1145 *5)) + (-5 *1 (-746 *5 *2 *3 *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) + (-4 *6 (-599 (-383 *2)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-117 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) - (-4 *3 (-992 *4 *5 *6 *7)))) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1087)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-589 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-589 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2462 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1108) (-27) (-406 *8))) - (-4 *8 (-13 (-427) (-786) (-136) (-964 *3) (-585 *3))) - (-5 *3 (-523)) (-5 *2 (-589 *4)) (-5 *1 (-942 *8 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-589 (-589 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-589 (-3 (|:| |array| (-589 *3)) (|:| |scalar| (-1087))))) + (-5 *6 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1020)) + (-5 *1 (-373)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-589 (-589 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-589 (-3 (|:| |array| (-589 *3)) (|:| |scalar| (-1087))))) + (-5 *6 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1020)) + (-5 *1 (-373)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-589 (-1087))) (-5 *5 (-1090)) (-5 *3 (-1087)) + (-5 *2 (-1020)) (-5 *1 (-373))))) +(((*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1123)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1087))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) + (-5 *1 (-308)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1087)) (-5 *4 (-1009 (-883 (-523)))) (-5 *2 (-306)) + (-5 *1 (-308)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-617 *3)) (-4 *3 (-973)) (-4 *3 (-1016))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370))))) +(((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1145 (-47)))))) +(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP)))) + (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-257)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-523) (-203) (-1087) (-1070) (-1092))) + (-5 *1 (-1092))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-355)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) (((*1 *2 *2) - (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) - (-5 *1 (-161 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-448))) ((*1 *1 *1 *1) (-4 *1 (-701)))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370))))) +(((*1 *1) (-5 *1 (-443)))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1009 (-883 (-523)))) (-5 *3 (-883 (-523))) + (-5 *1 (-306)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1009 (-883 (-523)))) (-5 *1 (-306))))) +(((*1 *1) (-5 *1 (-203))) ((*1 *1) (-5 *1 (-355)))) +(((*1 *2 *1) + (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) + (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-108))))) +(((*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4239)) (-4 *1 (-380)))) + ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) + ((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-355)) (-5 *1 (-966))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) - ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) + (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) + (-5 *2 (-883 *5)) (-5 *1 (-875 *4 *5))))) +(((*1 *1) (-5 *1 (-1003)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-523))) (-5 *4 (-523)) (-5 *2 (-51)) + (-5 *1 (-933))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087))))) +(((*1 *1 *1) (-5 *1 (-499)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1191 *3 *4)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-158)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758 *3)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-973)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973))))) +(((*1 *1) (-5 *1 (-985)))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) + (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-1180 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1180 *5 *6 *7 *8))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-629 (-383 (-883 (-523))))) + (-5 *2 (-629 (-292 (-523)))) (-5 *1 (-958))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-515)) (-5 *1 (-899 *4 *2)) + (-4 *2 (-1145 *4))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *2 (-962)) (-5 *1 (-691))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240)))) + ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) + ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1174) (-1169 *5) (-1169 *5) (-355))) + (-5 *3 (-1169 (-355))) (-5 *5 (-355)) (-5 *2 (-1174)) + (-5 *1 (-727))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-219)))) ((*1 *2 *3) - (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523))))) + (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1174)) (-5 *1 (-219))))) +(((*1 *2 *3) + (-12 (-4 *1 (-775)) + (-5 *3 + (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) + (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) + (|:| |ub| (-589 (-779 (-203)))))) + (-5 *2 (-962)))) + ((*1 *2 *3) + (-12 (-4 *1 (-775)) + (-5 *3 + (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) + (-5 *2 (-962))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3855 *6) (|:| |sol?| (-108))) (-523) + *6)) + (-4 *6 (-339)) (-4 *7 (-1145 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-383 *7)) (|:| |a0| *6)) + (-2 (|:| -1825 (-383 *7)) (|:| |coeff| (-383 *7))) "failed")) + (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-1127)) + (-4 *6 (-1145 (-383 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-318 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *6 (-203)) + (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-691))))) +(((*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-203)) (-5 *1 (-1172)))) + ((*1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-1172))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-155 (-203)))) + (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-383 *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) + (-5 *1 (-749 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-596 (-383 *6))) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-2 (|:| -3760 (-589 (-383 *6))) (|:| -2600 (-629 *5)))) + (-5 *1 (-749 *5 *6)) (-5 *4 (-589 (-383 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-383 *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3760 (-589 *4)))) + (-5 *1 (-749 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-597 *6 (-383 *6))) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-2 (|:| -3760 (-589 (-383 *6))) (|:| -2600 (-629 *5)))) + (-5 *1 (-749 *5 *6)) (-5 *4 (-589 (-383 *6)))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-518))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) + (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) + (-4 *4 (-1145 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-629 *3)) + (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) + (-4 *4 (-1145 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) + (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1123)) + (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-284)) + (-5 *2 (-710)) (-5 *1 (-430 *5 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) + (-4 *2 (-13 (-380) (-964 *4) (-339) (-1109) (-261))) + (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1145 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-852)) (-4 *5 (-973)) + (-4 *2 (-13 (-380) (-964 *5) (-339) (-1109) (-261))) + (-5 *1 (-418 *5 *3 *2)) (-4 *3 (-1145 *5))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-292 (-203)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355)))) + (-5 *1 (-185))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *4 *5 *6 *7)) + (-4 *4 (-564 (-499))) (-4 *5 (-1123)) (-4 *6 (-1123)) + (-4 *7 (-1123))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) + (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3643 *9)))) + (-5 *5 (-108)) (-4 *8 (-987 *6 *7 *4)) (-4 *9 (-992 *6 *7 *4 *8)) + (-4 *6 (-427)) (-4 *7 (-732)) (-4 *4 (-786)) + (-5 *2 (-589 (-2 (|:| |val| *8) (|:| -3643 *9)))) + (-5 *1 (-993 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2086 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *1)) (-5 *4 (-1169 *1)) (-4 *1 (-585 *5)) + (-4 *5 (-973)) + (-5 *2 (-2 (|:| -2600 (-629 *5)) (|:| |vec| (-1169 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *1)) (-4 *1 (-585 *4)) (-4 *4 (-973)) + (-5 *2 (-629 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-1083 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-48))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-318 *4 *5 *6)) (-4 *4 (-1127)) + (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) + (-5 *2 (-2 (|:| |num| (-629 *5)) (|:| |den| *5)))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710))))) +(((*1 *1 *1) (-4 *1 (-508)))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-874 *5)) (-5 *3 (-710)) (-4 *5 (-973)) + (-5 *1 (-1076 *4 *5)) (-14 *4 (-852))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1087)) + (-5 *2 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-5 *1 (-1090))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-589 (-383 *6))) (-5 *3 (-383 *6)) + (-4 *6 (-1145 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-527 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-394 (-1083 *7))) + (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-840)) (-4 *5 (-1145 *4)) (-5 *2 (-394 (-1083 *5))) + (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-225 *3 *4)) + (-14 *3 (-589 (-1087))) (-4 *4 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-523))) (-14 *3 (-589 (-1087))) + (-5 *1 (-429 *3 *4 *5)) (-4 *4 (-973)) + (-4 *5 (-216 (-2810 *3) (-710))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-455 *3 *4)) + (-14 *3 (-589 (-1087))) (-4 *4 (-973))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))))) + (-4 *4 (-1145 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *5)) + (-4 *5 (-1145 (-383 *4)))))) +(((*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)))) + ((*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) (((*1 *1 *2 *3 *1) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) -(((*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1153 *3 *4 *5)) (-4 *3 (-13 (-339) (-786))) - (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-295 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1168 *3)) (-4 *3 (-973)) (-5 *1 (-652 *3 *4)) - (-4 *4 (-1144 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-794))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1091))))) +(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1174) (-1169 *5) (-1169 *5) (-355))) + (-5 *3 (-1169 (-355))) (-5 *5 (-355)) (-5 *2 (-1174)) + (-5 *1 (-727))))) (((*1 *2 *2) - (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) - (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-571 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-992 *3 *4 *5 *6)) (-4 *2 (-1025 *3 *4 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-108))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1122)) (-5 *2 (-710)) - (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)) - (-5 *2 (-710)))) - ((*1 *2) - (-12 (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-304 *3 *4)) - (-4 *3 (-305 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) - ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-710)))) - ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) - ((*1 *2) - (-12 (-4 *4 (-1016)) (-5 *2 (-710)) (-5 *1 (-400 *3 *4)) - (-4 *3 (-401 *4)))) + (-12 (-4 *3 (-13 (-339) (-784))) (-5 *1 (-165 *3 *2)) + (-4 *2 (-1145 (-155 *3)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1070)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-240))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1117 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *4 (-1145 *2)) + (-4 *2 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) + (-5 *1 (-470 *2 *4 *5)) (-4 *5 (-385 *2 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-710)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) + (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) + (-4 *5 (-216 *3 *2)) (-4 *2 (-973))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-110)) (-5 *4 (-710)) (-4 *5 (-427)) (-4 *5 (-786)) + (-4 *5 (-964 (-523))) (-4 *5 (-515)) (-5 *1 (-40 *5 *2)) + (-4 *2 (-406 *5)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -3316 ((-1039 *5 (-562 $)) $)) + (-15 -3329 ((-1039 *5 (-562 $)) $)) + (-15 -1691 ($ (-1039 *5 (-562 $)))))))))) +(((*1 *2 *2) (-12 (-5 *2 (-364)) (-5 *1 (-412)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-364)) (-5 *1 (-412))))) +(((*1 *2 *1) + (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) + (-4 *3 (-897))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) + (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-5 *2 (-858)) (-5 *1 (-856 *3)) + (-4 *3 (-564 (-499))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-858)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-858))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-299 *2 *4)) (-4 *4 (-124)) + (-4 *2 (-1016)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-337 *2)) (-4 *2 (-1016)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-1016)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-710)) - (-5 *1 (-663 *3 *4 *5)) (-4 *3 (-664 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) - ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) - (-4 *3 (-1144 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1092))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-758 *2)) (-4 *2 (-786))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-475 (-383 (-523)) (-218 *4 (-710)) (-796 *3) + (-225 *3 (-383 (-523))))) + (-14 *3 (-589 (-1087))) (-14 *4 (-710)) (-5 *1 (-476 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3310 *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-5 *2 (-1174)) + (-5 *1 (-1124 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-5 *2 (-1174)) + (-5 *1 (-1124 *4))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-629 *4)) (-5 *3 (-852)) (-4 *4 (-973)) - (-5 *1 (-955 *4)))) + (-12 (-4 *3 (-515)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-710)) (-5 *3 (-874 *5)) (-4 *5 (-973)) + (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-710))) (-5 *3 (-710)) (-5 *1 (-1076 *4 *5)) + (-14 *4 (-852)) (-4 *5 (-973)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-710))) (-5 *3 (-874 *5)) (-4 *5 (-973)) + (-5 *1 (-1076 *4 *5)) (-14 *4 (-852))))) +(((*1 *2 *1) + (-12 (-5 *2 (-874 *4)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *3) (-12 (-5 *2 (-355)) (-5 *1 (-724 *3)) (-4 *3 (-564 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-852)) (-5 *2 (-355)) (-5 *1 (-724 *3)) + (-4 *3 (-564 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 *2)) + (-5 *2 (-355)) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) + (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 *2)) + (-5 *2 (-355)) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) + (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) + (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1145 *3)) (-4 *3 (-973))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-1 (-108) *8))) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) + (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-589 (-110)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1083 *7)) (-5 *3 (-523)) (-4 *7 (-880 *6 *4 *5)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) + (-5 *1 (-297 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-284)) (-5 *1 (-164 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1104))))) +(((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-5 *2 (-108))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-710)) (-4 *5 (-515)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-899 *5 *3)) (-4 *3 (-1145 *5))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-954 *5 *6 *7 *3))) (-5 *1 (-954 *5 *6 *7 *3)) + (-4 *3 (-987 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-589 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-992 *3 *4 *5 *2)) (-4 *3 (-427)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) + (-4 *3 (-987 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *2 *3) + (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-1145 *4)) + (-4 *5 (-1145 (-383 *3))) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-794))))) +(((*1 *2 *1) (-12 (-5 *1 (-1119 *2)) (-4 *2 (-903))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) + (-5 *1 (-688))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *1 (-743 *4 *2)) (-4 *2 (-13 (-29 *4) (-1109) (-889)))))) +(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-541 *3)) (-4 *3 (-508))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-523)) + (-5 *6 + (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1832 (-355)))) + (-5 *7 (-1 (-1174) (-1169 *5) (-1169 *5) (-355))) + (-5 *3 (-1169 (-355))) (-5 *5 (-355)) (-5 *2 (-1174)) + (-5 *1 (-727)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-523)) + (-5 *6 + (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1832 (-355)))) + (-5 *7 (-1 (-1174) (-1169 *5) (-1169 *5) (-355))) + (-5 *3 (-1169 (-355))) (-5 *5 (-355)) (-5 *2 (-1174)) + (-5 *1 (-727))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *3 (-1145 *4)) (-5 *1 (-748 *4 *3 *2 *5)) (-4 *2 (-599 *3)) + (-4 *5 (-599 (-383 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-589 (-629 *4))) (-5 *3 (-852)) (-4 *4 (-973)) - (-5 *1 (-955 *4))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-155 (-203)))) - (-5 *2 (-962)) (-5 *1 (-694))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355)))) - ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-355))))) + (-12 (-5 *3 (-383 *5)) + (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1145 *4)) + (-5 *1 (-748 *4 *5 *2 *6)) (-4 *2 (-599 *5)) (-4 *6 (-599 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *6)) (-4 *5 (-1016)) + (-4 *6 (-1123)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-4 *5 (-1016)) + (-4 *2 (-1123)) (-5 *1 (-586 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 *5)) (-4 *6 (-1016)) + (-4 *5 (-1123)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-4 *5 (-1016)) + (-4 *2 (-1123)) (-5 *1 (-586 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-589 *5)) (-5 *4 (-589 *6)) + (-4 *5 (-1016)) (-4 *6 (-1123)) (-5 *1 (-586 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1016)) (-4 *2 (-1123)) (-5 *1 (-586 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-133)) (-5 *2 (-710))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-508)) (-5 *1 (-146 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) + (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) + (-4 *4 (-1145 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1090))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-299 *4 *2)) (-4 *4 (-1016)) + (-4 *2 (-124))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158))))) +(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-2 (|:| -2424 *4) (|:| -2640 (-523))))) + (-4 *4 (-1145 (-523))) (-5 *2 (-710)) (-5 *1 (-417 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-1016)) - (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) - (-5 *2 (-589 (-995 *3 *4 *5))) (-5 *1 (-996 *3 *4 *5)) - (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3))))))) + (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1123)) (-4 *2 (-930)) + (-4 *2 (-973))))) (((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 *4)) (-5 *1 (-1053 *3 *4)) + (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33)))))) +(((*1 *2 *3) + (-12 (-14 *4 (-589 (-1087))) (-4 *5 (-427)) + (-5 *2 + (-2 (|:| |glbase| (-589 (-225 *4 *5))) (|:| |glval| (-589 (-523))))) + (-5 *1 (-577 *4 *5)) (-5 *3 (-589 (-225 *4 *5)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1123)) (-5 *1 (-804 *3 *2)) (-4 *3 (-1123)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-108))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *6)) (-5 *4 (-1087)) (-4 *6 (-406 *5)) - (-4 *5 (-786)) (-5 *2 (-589 (-562 *6))) (-5 *1 (-532 *5 *6))))) + (-12 (-5 *3 (-3 (-383 (-883 *5)) (-1077 (-1087) (-883 *5)))) + (-4 *5 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *5))))) + (-5 *1 (-269 *5)) (-5 *4 (-629 (-383 (-883 *5))))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-523)) (-5 *5 (-108)) (-5 *6 (-629 (-203))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) + (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *2) (-12 (-5 *2 (-1059 (-1070))) (-5 *1 (-367))))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -4094 (-589 (-794))) (|:| -4016 (-589 (-794))) + (|:| |presup| (-589 (-794))) (|:| -3854 (-589 (-794))) + (|:| |args| (-589 (-794))))) + (-5 *1 (-1087)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 (-794)))) (-5 *1 (-1087))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1034)) (-5 *2 (-1174)) (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 (-589 (-2 (|:| -3370 *4) (|:| -4013 (-1034)))))) + (-4 *4 (-325)) (-5 *2 (-629 *4)) (-5 *1 (-322 *4))))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-268))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) + ((*1 *1 *1 *1) (-4 *1 (-508))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-710))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *2 (-962)) (-5 *1 (-691))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-1089 (-383 (-523)))) + (-5 *1 (-170))))) +(((*1 *1 *2) + (-12 (-5 *2 (-383 (-523))) (-4 *1 (-513 *3)) + (-4 *3 (-13 (-380) (-1109))))) + ((*1 *1 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1109))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1109)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1087)) (-4 *1 (-27)) - (-5 *2 (-589 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-589 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) + (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) + (-4 *6 (-13 (-515) (-964 *5))) (-4 *5 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *6)))))) (-5 *1 (-965 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-339)) (-5 *2 (-852)) (-5 *1 (-304 *3 *4)) + (-4 *3 (-305 *4)))) + ((*1 *2) + (-12 (-4 *4 (-339)) (-5 *2 (-772 (-852))) (-5 *1 (-304 *3 *4)) + (-4 *3 (-305 *4)))) + ((*1 *2) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-852)))) + ((*1 *2) + (-12 (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-5 *2 (-772 (-852)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-1 (-108) *5)) + (-5 *1 (-821 *4 *5)) (-4 *5 (-1123))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-1109) (-889) (-29 *4)))))) (((*1 *2 *3) + (-12 (-4 *4 (-1123)) (-5 *2 (-710)) (-5 *1 (-166 *4 *3)) + (-4 *3 (-616 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1145 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-203)) (-5 *1 (-282))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-108))))) +(((*1 *1) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1109)))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1123)) (-5 *2 (-710))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-540 *3)) (-5 *1 (-516 *5 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-928 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-5 *1 (-292 *3)) (-4 *3 (-515)) (-4 *3 (-786))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-167))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-383 (-883 *6)) (-1077 (-1087) (-883 *6)))) + (-5 *5 (-710)) (-4 *6 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *6))))) + (-5 *1 (-269 *6)) (-5 *4 (-629 (-383 (-883 *6)))))) + ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (-5 *2 (-355)) (-5 *1 (-172))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-4 *4 (-1122)) (-5 *2 (-108)) - (-5 *1 (-1068 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-794)))) -(((*1 *1 *1) (-5 *1 (-499)))) + (-2 (|:| |eigval| (-3 (-383 (-883 *5)) (-1077 (-1087) (-883 *5)))) + (|:| |eigmult| (-710)) (|:| |eigvec| (-589 *4)))) + (-4 *5 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *5))))) + (-5 *1 (-269 *5)) (-5 *4 (-629 (-383 (-883 *5))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 *4)) (-4 *4 (-973)) (-5 *1 (-1054 *3 *4)) + (-14 *3 (-710))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-1018 *4)) (-4 *4 (-1016)) (-5 *2 (-1 *4)) - (-5 *1 (-945 *4)))) + (-12 (-5 *3 (-883 *5)) (-4 *5 (-973)) (-5 *2 (-455 *4 *5)) + (-5 *1 (-875 *4 *5)) (-14 *4 (-589 (-1087)))))) +(((*1 *1 *1) (-5 *1 (-203))) ((*1 *1 *1) (-5 *1 (-355))) + ((*1 *1) (-5 *1 (-355)))) +(((*1 *2 *2) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) + (-5 *1 (-161 *3))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-589 (-1083 *11))) (-5 *3 (-1083 *11)) + (-5 *4 (-589 *10)) (-5 *5 (-589 *8)) (-5 *6 (-589 (-710))) + (-5 *7 (-1169 (-589 (-1083 *8)))) (-4 *10 (-786)) + (-4 *8 (-284)) (-4 *11 (-880 *8 *9 *10)) (-4 *9 (-732)) + (-5 *1 (-647 *9 *10 *8 *11))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-1089 (-383 (-523)))) + (-5 *1 (-170))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-339)) + (-4 *7 (-1145 (-383 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -1474 *3))) + (-5 *1 (-521 *5 *6 *7 *3)) (-4 *3 (-318 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-339)) + (-5 *2 + (-2 (|:| |answer| (-383 *6)) (|:| -1474 (-383 *6)) + (|:| |specpart| (-383 *6)) (|:| |polypart| *6))) + (-5 *1 (-522 *5 *6)) (-5 *3 (-383 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) + (-4 *3 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-917 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355)))) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-1023 *5 *6 *7 *8 *3))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1109)))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-805)) + (-5 *5 (-852)) (-5 *6 (-589 (-240))) (-5 *2 (-1170)) + (-5 *1 (-1173)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-589 (-240))) + (-5 *2 (-1170)) (-5 *1 (-1173))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-523)) (-5 *2 (-108))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-523))) (-4 *4 (-973)) + (-5 *1 (-1072 *4))))) +(((*1 *1 *1) (-5 *1 (-47))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1123)) + (-4 *2 (-1123)) (-5 *1 (-56 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1016)) (|has| *1 (-6 -4248)) + (-4 *1 (-140 *2)) (-4 *2 (-1123)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4248)) (-4 *1 (-140 *2)) + (-4 *2 (-1123)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4248)) (-4 *1 (-140 *2)) + (-4 *2 (-1123)))) ((*1 *2 *3) - (-12 (-5 *3 (-1011 (-523))) (-5 *2 (-1 (-523))) (-5 *1 (-971))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) + (-12 (-4 *4 (-973)) + (-5 *2 (-2 (|:| -1385 (-1083 *4)) (|:| |deg| (-852)))) + (-5 *1 (-199 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-13 (-515) (-786))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-218 *5 *6)) (-14 *5 (-710)) + (-4 *6 (-1123)) (-4 *2 (-1123)) (-5 *1 (-217 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-158)) (-5 *1 (-266 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1145 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-515)) (-4 *2 (-786)))) + ((*1 *1 *1) + (-12 (-4 *1 (-311 *2 *3 *4 *5)) (-4 *2 (-339)) (-4 *3 (-1145 *2)) + (-4 *4 (-1145 (-383 *3))) (-4 *5 (-318 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1123)) (-4 *2 (-1123)) + (-5 *1 (-347 *5 *4 *2 *6)) (-4 *4 (-349 *5)) (-4 *6 (-349 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) + (-5 *1 (-399 *5 *4 *2 *6)) (-4 *4 (-401 *5)) (-4 *6 (-401 *2)))) + ((*1 *1 *1) (-5 *1 (-466))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-589 *5)) (-4 *5 (-1123)) + (-4 *2 (-1123)) (-5 *1 (-587 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-973)) (-4 *2 (-973)) + (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *8 (-349 *2)) + (-4 *9 (-349 *2)) (-5 *1 (-625 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-627 *5 *6 *7)) (-4 *10 (-627 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1145 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-383 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-339)) + (-4 *3 (-158)) (-4 *1 (-664 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-158)) (-4 *1 (-664 *3 *2)) (-4 *2 (-1145 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-888 *5)) (-4 *5 (-1123)) + (-4 *2 (-1123)) (-5 *1 (-887 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *2 (-880 *3 *4 *5)) + (-14 *6 (-589 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-973)) (-4 *2 (-973)) + (-14 *5 (-710)) (-14 *6 (-710)) (-4 *8 (-216 *6 *7)) + (-4 *9 (-216 *5 *7)) (-4 *10 (-216 *6 *2)) (-4 *11 (-216 *5 *2)) + (-5 *1 (-978 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-976 *5 *6 *7 *8 *9)) (-4 *12 (-976 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1123)) + (-4 *2 (-1123)) (-5 *1 (-1066 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) + (-4 *1 (-1117 *5 *6 *7 *2)) (-4 *5 (-515)) (-4 *6 (-732)) + (-4 *7 (-786)) (-4 *2 (-987 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1169 *5)) (-4 *5 (-1123)) + (-4 *2 (-1123)) (-5 *1 (-1168 *5 *2))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-517 *2)) (-4 *2 (-508))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-973)) (-4 *7 (-973)) + (-4 *6 (-1145 *5)) (-5 *2 (-1083 (-1083 *7))) + (-5 *1 (-472 *5 *6 *4 *7)) (-4 *4 (-1145 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-5 *3 (-292 *4)) (-4 *4 (-13 (-767) (-786) (-973))) + (-5 *2 (-1070)) (-5 *1 (-765 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-292 *5)) (-5 *4 (-108)) + (-4 *5 (-13 (-767) (-786) (-973))) (-5 *2 (-1070)) + (-5 *1 (-765 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-761)) (-5 *4 (-292 *5)) + (-4 *5 (-13 (-767) (-786) (-973))) (-5 *2 (-1174)) + (-5 *1 (-765 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-761)) (-5 *4 (-292 *6)) (-5 *5 (-108)) + (-4 *6 (-13 (-767) (-786) (-973))) (-5 *2 (-1174)) + (-5 *1 (-765 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-767)) (-5 *2 (-1070)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-767)) (-5 *3 (-108)) (-5 *2 (-1070)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-767)) (-5 *3 (-761)) (-5 *2 (-1174)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-767)) (-5 *3 (-761)) (-5 *4 (-108)) (-5 *2 (-1174))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-523) (-523))) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-710) (-710))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1087)) + (|:| |arrayIndex| (-589 (-883 (-523)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-108)) (|:| -2685 (-794)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) + (|:| |ints2Floats?| (-108)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1086)) (|:| |thenClause| (-306)) + (|:| |elseClause| (-306)))) + (|:| |returnBranch| + (-2 (|:| -1777 (-108)) + (|:| -3370 + (-2 (|:| |ints2Floats?| (-108)) (|:| -2685 (-794)))))) + (|:| |blockBranch| (-589 (-306))) + (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) + (|:| |forBranch| + (-2 (|:| -2464 (-1009 (-883 (-523)))) + (|:| |span| (-883 (-523))) (|:| -4039 (-306)))) + (|:| |labelBranch| (-1034)) + (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -4039 (-306)))) + (|:| |commonBranch| + (-2 (|:| -4198 (-1087)) (|:| |contents| (-589 (-1087))))) + (|:| |printBranch| (-589 (-794))))) + (-5 *1 (-306))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-562 *6)) (-4 *6 (-13 (-406 *5) (-27) (-1109))) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-1083 (-383 (-1083 *6)))) (-5 *1 (-519 *5 *6 *7)) + (-5 *3 (-1083 *6)) (-4 *7 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1145 *3)) (-5 *1 (-652 *3 *2)) (-4 *3 (-973)))) + ((*1 *2 *1) + (-12 (-4 *1 (-664 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1145 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1083 *11)) (-5 *6 (-589 *10)) + (-5 *7 (-589 (-710))) (-5 *8 (-589 *11)) (-4 *10 (-786)) + (-4 *11 (-284)) (-4 *9 (-732)) (-4 *5 (-880 *11 *9 *10)) + (-5 *2 (-589 (-1083 *5))) (-5 *1 (-682 *9 *10 *11 *5)) + (-5 *3 (-1083 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-880 *3 *4 *5)) (-5 *1 (-961 *3 *4 *5 *2 *6)) + (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-14 *6 (-589 *2))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1145 *6)) + (-4 *6 (-13 (-339) (-136) (-964 *4))) (-5 *4 (-523)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) + (|:| -2849 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-943 *6 *3))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-203)) + (-5 *2 (-962)) (-5 *1 (-689))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-284)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1621 *1))) + (-4 *1 (-284))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-144)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *2) (-12 (-5 *2 (-629 (-292 (-523)))) (-5 *1 (-958))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-692))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 + (-2 (|:| |solns| (-589 *5)) + (|:| |maps| (-589 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1042 *3 *5)) (-4 *3 (-1145 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-758 *3)) (-4 *3 (-786)) (-5 *1 (-614 *3))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-515)) (-4 *2 (-427)) (-5 *1 (-899 *2 *3)) + (-4 *3 (-1145 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *2)) (-4 *2 (-158)))) + ((*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-392 *3 *2)) (-4 *3 (-393 *2)))) + ((*1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-158))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) + (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-973)) (-5 *1 (-49 *2 *3)) (-14 *3 (-589 (-1087))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-589 (-852))) (-4 *2 (-339)) (-5 *1 (-141 *4 *2 *5)) + (-14 *4 (-852)) (-14 *5 (-922 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-292 *3)) (-5 *1 (-201 *3 *4)) + (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-124)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-973)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-515)) (-5 *1 (-570 *2 *4)) + (-4 *4 (-1145 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-648 *2)) (-4 *2 (-973)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-973)) (-5 *1 (-675 *2 *3)) (-4 *3 (-666)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *5)) (-5 *3 (-589 (-710))) (-4 *1 (-680 *4 *5)) + (-4 *4 (-973)) (-4 *5 (-786)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *2)) (-4 *4 (-973)) + (-4 *2 (-786)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-788 *2)) (-4 *2 (-973)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 (-710))) (-4 *1 (-880 *4 *5 *6)) + (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-880 *4 *5 *2)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *2 (-786)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-4 *2 (-880 *4 (-495 *5) *5)) + (-5 *1 (-1040 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-786)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-883 *4)) (-5 *1 (-1118 *4)) + (-4 *4 (-973))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-284)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-362 *3)) (|:| |rm| (-362 *3)))) + (-5 *1 (-362 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3070 (-710)) (|:| -3969 (-710)))) + (-5 *1 (-710)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-523)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-523)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1123)) + (-4 *3 (-349 *4)) (-4 *5 (-349 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-172)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-277)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-282))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-5 *2 - (-2 (|:| |mval| (-629 *4)) (|:| |invmval| (-629 *4)) - (|:| |genIdeal| (-475 *4 *5 *6 *7)))) - (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6))))) + (-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) + (|:| |singularities| (-1068 (-203))))) + (-5 *1 (-100))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) +(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108))))) (((*1 *1 *1) - (-12 (-4 *1 (-340 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) - ((*1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-1014 *3)))) - ((*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) -(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-589 (-1052 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) - (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) - (-5 *1 (-1053 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-589 (-1052 *3 *4))) (-4 *3 (-13 (-1016) (-33))) - (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-475 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) - (-4 *5 (-786)) (-5 *1 (-1182 *4 *5 *2)) (-4 *2 (-1187 *5 *4))))) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-906 *5 *6 *7 *8))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-475 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-523)) (-4 *4 (-158)) (-4 *5 (-349 *4)) - (-4 *6 (-349 *4)) (-5 *1 (-628 *4 *5 *6 *2)) - (-4 *2 (-627 *4 *5 *6))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-973)) - (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-788 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-629 *3)) (-4 *1 (-393 *3)) (-4 *3 (-158)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-973)) - (-5 *1 (-789 *2 *3)) (-4 *3 (-788 *2))))) + (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)) - (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) - (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-108)) (-5 *5 (-523)) (-4 *6 (-339)) (-4 *6 (-344)) - (-4 *6 (-973)) (-5 *2 (-589 (-589 (-629 *6)))) (-5 *1 (-956 *6)) - (-5 *3 (-589 (-629 *6))))) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-880 *5 *6 *7)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-424 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-916 (-383 (-523)) (-796 *3) (-218 *4 (-710)) + (-225 *3 (-383 (-523))))) + (-14 *3 (-589 (-1087))) (-14 *4 (-710)) (-5 *1 (-915 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-540 *3)) (-5 *1 (-402 *5 *3)) + (-4 *3 (-13 (-1109) (-29 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1174)) (-5 *1 (-1125)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1174)) (-5 *1 (-1125))))) +(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-687))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3760 (-589 *1)))) + (-4 *1 (-343 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-428 *3 *4 *5 *6)) + (|:| -3760 (-589 (-428 *3 *4 *5 *6))))) + (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-852)) (-5 *1 (-1017 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-339)) + (-5 *2 (-2 (|:| -1825 (-383 *6)) (|:| |coeff| (-383 *6)))) + (-5 *1 (-533 *5 *6)) (-5 *3 (-383 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-589 (-355))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-443)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-443)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-805)) (-5 *2 (-1174)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170))))) +(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-852)))) ((*1 *2 *3) - (-12 (-4 *4 (-339)) (-4 *4 (-344)) (-4 *4 (-973)) - (-5 *2 (-589 (-589 (-629 *4)))) (-5 *1 (-956 *4)) - (-5 *3 (-589 (-629 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)) - (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) - (-5 *3 (-589 (-629 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-852)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)) - (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) - (-5 *3 (-589 (-629 *5)))))) -(((*1 *1 *1 *1) (-5 *1 (-794)))) + (-12 (-5 *3 (-1169 *4)) (-4 *4 (-325)) (-5 *2 (-852)) + (-5 *1 (-493 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-629 *4)))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-629 *4)) (-5 *1 (-392 *3 *4)) + (-4 *3 (-393 *4)))) + ((*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523))))) +(((*1 *2 *1) + (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1109))) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) + (-4 *3 (-1145 *4)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51)))) + (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-279)))) + ((*1 *1 *1) (-4 *1 (-279))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1123)) + (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) + (-4 *2 (-1123))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *1 *1) (-5 *1 (-133))) + ((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) + (-5 *2 + (-3 (-1083 *4) + (-1169 (-589 (-2 (|:| -3370 *4) (|:| -4013 (-1034))))))) + (-5 *1 (-322 *4)) (-4 *4 (-325))))) (((*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-219)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1173)) (-5 *1 (-219))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3643 *8))) + (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-917 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3643 *8))) + (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-973))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3819 *1) (|:| -4231 *1) (|:| |associate| *1))) - (-4 *1 (-515))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-874 *4)) (-4 *4 (-973)) (-5 *1 (-1076 *3 *4)) - (-14 *3 (-852))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) - (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-906 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-589 *7)) (-5 *3 (-108)) (-4 *7 (-987 *4 *5 *6)) - (-4 *4 (-427)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) - (-5 *1 (-906 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-5 *2 (-589 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) - (-5 *2 (-589 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) - ((*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240))))) -(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110))) - ((*1 *1 *1) (-5 *1 (-157))) ((*1 *1 *1) (-4 *1 (-508))) - ((*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) - (-4 *3 (-13 (-1016) (-33)))))) -(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-845 *3)) (-4 *3 (-284))))) -(((*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1122))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-695))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-339)) (-4 *5 (-515)) + (-12 (-5 *2 - (-2 (|:| |minor| (-589 (-852))) (|:| -1710 *3) - (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 *3)))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-852)) (-4 *3 (-599 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-710)) (|:| -1480 *4))) (-5 *5 (-710)) - (-4 *4 (-880 *6 *7 *8)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) + (-5 *1 (-947 *3)) (-4 *3 (-1145 (-523))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-424 *6 *7 *8 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-234))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) - (-4 *4 (-158)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) - (-4 *2 (-406 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1009 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) - (-5 *1 (-145 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-147)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-440 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) - (-4 *4 (-158))))) -(((*1 *2 *1 *1) + (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) + (-5 *1 (-947 *3)) (-4 *3 (-1145 (-523))) + (-5 *4 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))))) + ((*1 *2 *3 *4) (-12 (-5 *2 - (-2 (|:| |lm| (-362 *3)) (|:| |mm| (-362 *3)) (|:| |rm| (-362 *3)))) - (-5 *1 (-362 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1 *1) + (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) + (-5 *1 (-947 *3)) (-4 *3 (-1145 (-523))) (-5 *4 (-383 (-523))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-383 (-523))) + (-5 *2 (-589 (-2 (|:| -3844 *5) (|:| -3855 *5)))) (-5 *1 (-947 *3)) + (-4 *3 (-1145 (-523))) (-5 *4 (-2 (|:| -3844 *5) (|:| -3855 *5))))) + ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |lm| (-758 *3)) (|:| |mm| (-758 *3)) (|:| |rm| (-758 *3)))) - (-5 *1 (-758 *3)) (-4 *3 (-786))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *7)) (-4 *7 (-786)) - (-4 *8 (-880 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) + (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) + (-5 *1 (-948 *3)) (-4 *3 (-1145 (-383 (-523)))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 (-1168 (-383 *8)) "failed")) - (|:| -4041 (-589 (-1168 (-383 *8)))))) - (-5 *1 (-612 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1122))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *5)) (-4 *5 (-427)) (-5 *2 (-589 *6)) - (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784))))) + (-589 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523)))))) + (-5 *1 (-948 *3)) (-4 *3 (-1145 (-383 (-523)))) + (-5 *4 (-2 (|:| -3844 (-383 (-523))) (|:| -3855 (-383 (-523))))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-883 *5)) (-4 *5 (-427)) (-5 *2 (-589 *6)) - (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1122)) (-5 *1 (-166 *3 *2)) (-4 *2 (-616 *3))))) + (-12 (-5 *4 (-383 (-523))) + (-5 *2 (-589 (-2 (|:| -3844 *4) (|:| -3855 *4)))) (-5 *1 (-948 *3)) + (-4 *3 (-1145 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-383 (-523))) + (-5 *2 (-589 (-2 (|:| -3844 *5) (|:| -3855 *5)))) (-5 *1 (-948 *3)) + (-4 *3 (-1145 *5)) (-5 *4 (-2 (|:| -3844 *5) (|:| -3855 *5)))))) +(((*1 *2 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284)))) + ((*1 *2 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284)))) + ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-284)))) + ((*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-523))))) +(((*1 *2 *2) (-12 (-5 *2 (-1011 (-779 (-203)))) (-5 *1 (-282))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1070)) (-5 *4 (-155 (-203))) (-5 *5 (-523)) + (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4249)) (-4 *1 (-462 *3)) + (-4 *3 (-1123))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1161 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) + (-14 *4 *2)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-731))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *1 *1) + (-12 (-4 *2 (-325)) (-4 *2 (-973)) (-5 *1 (-652 *2 *3)) + (-4 *3 (-1145 *2))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-410)) (-4 *5 (-786)) + (-5 *1 (-1022 *5 *4)) (-4 *4 (-406 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) + (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6))))) (((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *1 *1) (-4 *1 (-508)))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-874 (-203)))) (-5 *1 (-1169))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-203)) - (-5 *2 (-962)) (-5 *1 (-695)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-364)) - (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-905 *4 *5 *6 *3)) (-4 *4 (-973)) (-4 *5 (-732)) - (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203)))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1119 *3)) (-4 *3 (-903))))) +(((*1 *2 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-1070))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1070)) (-5 *2 (-713)) (-5 *1 (-110)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1020)) (-5 *1 (-895))))) (((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) - (-5 *2 (-589 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| |k| (-824 *3)) (|:| |c| *4)))) - (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) - (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) + (-12 (-5 *2 (-953 (-779 (-523)))) (-5 *1 (-548 *3)) (-4 *3 (-973))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-589 *8))) (-5 *3 (-589 *8)) + (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) + (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-108)) + (-5 *1 (-855 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-5 *2 (-589 (-614 *3))) (-5 *1 (-824 *3)) (-4 *3 (-786))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-1011 (-203))))) + ((*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1070)) (-5 *2 (-589 (-1092))) (-5 *1 (-811))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-562 *3)) (-5 *5 (-1 (-1083 *3) (-1083 *3))) + (-4 *3 (-13 (-27) (-406 *6))) (-4 *6 (-13 (-786) (-515))) + (-5 *2 (-540 *3)) (-5 *1 (-510 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-155 *4)) (-5 *1 (-165 *4 *3)) + (-4 *4 (-13 (-339) (-784))) (-4 *3 (-1145 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) (-4 *3 (-1145 *4)) (-4 *2 (-1160 *4)) + (-5 *1 (-1163 *4 *3 *5 *2)) (-4 *5 (-599 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1)))) + (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-541 *2)) (-4 *2 (-508))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) (-5 *2 (-962)) + (-5 *1 (-688))))) (((*1 *2 *2) - (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) - (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) - (-5 *1 (-917 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) + (-5 *1 (-161 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-1011 (-203))))) + ((*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-761))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-284)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-422 *4 *5 *6 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1087)) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-4 *4 (-13 (-29 *6) (-1109) (-889))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3760 (-589 *4)))) + (-5 *1 (-740 *6 *4 *3)) (-4 *3 (-599 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) + (-4 *2 (-1160 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) - (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) - (-5 *1 (-1023 *3 *4 *5 *6 *7))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1122)) - (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4245)) (-4 *1 (-115 *3)) - (-4 *3 (-1122)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4245)) (-4 *1 (-115 *3)) - (-4 *3 (-1122)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) - (-4 *2 (-1122)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1087)) (-5 *1 (-578)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1135 (-523))) (|has| *1 (-6 -4245)) (-4 *1 (-594 *2)) - (-4 *2 (-1122)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-589 (-523))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4245)) (-4 *1 (-938 *2)) - (-4 *2 (-1122)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) - (-4 *2 (-1122)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4245)) (-4 *1 (-1156 *3)) - (-4 *3 (-1122)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) - (-4 *2 (-1122))))) + (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1145 *3)) + (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1160 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) + (-4 *2 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) + (-5 *1 (-1064 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1611 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-325)) (-4 *4 (-305 *3)) (-4 *5 (-1145 *4)) + (-5 *1 (-716 *3 *4 *5 *2 *6)) (-4 *2 (-1145 *5)) (-14 *6 (-852)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) + ((*1 *1 *1) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-339)) (-4 *2 (-344))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-786) (-515))) + (-5 *2 (-794)) (-5 *1 (-31 *4 *5))))) (((*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) - (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-710)))) + (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-589 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-835 *4)) + (-4 *4 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) + (-4 *3 (-13 (-786) (-515)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-222 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-349 *2)) + (-4 *5 (-349 *2)) (-4 *2 (-1123)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) - (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) - ((*1 *2 *1) (-12 (-4 *1 (-243 *3)) (-4 *3 (-786)) (-5 *2 (-710)))) - ((*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-852)))) + (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1123)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) + (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)) (-4 *2 (-973))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-1141 *3 *2)) (-4 *2 (-1145 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-725))))) +(((*1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1107))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-973)) + (-4 *2 (-1129 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-1119 *3)) + (-4 *3 (-903))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *2 *2) + (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -3316 ((-1039 *3 (-562 $)) $)) + (-15 -3329 ((-1039 *3 (-562 $)) $)) + (-15 -1691 ($ (-1039 *3 (-562 $)))))))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-104)) (-5 *1 (-160)))) + ((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-104)) (-5 *1 (-1003))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) + (-5 *4 (-292 (-155 (-355)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) + (-5 *4 (-292 (-355))) (-5 *1 (-306)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) + (-5 *4 (-292 (-523))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-292 (-155 (-355))))) + (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-292 (-355)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-292 (-523)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-155 (-355))))) + (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-355)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-523)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-155 (-355)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-355))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-523))) (-5 *1 (-306)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) + (-5 *4 (-292 (-633))) (-5 *1 (-306)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) + (-5 *4 (-292 (-638))) (-5 *1 (-306)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) + (-5 *4 (-292 (-640))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-292 (-633)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-292 (-638)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-292 (-640)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-633)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-638)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-640)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-633))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-638))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1169 (-640))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-633))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-638))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-640))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-633))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-638))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-640))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1070)) (-5 *1 (-306)))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) + (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) + (-5 *2 + (-2 (|:| -2849 (-589 *9)) (|:| -3643 *4) (|:| |ineq| (-589 *9)))) + (-5 *1 (-917 *6 *7 *8 *9 *4)) (-5 *3 (-589 *9)) + (-4 *4 (-992 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) + (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) + (-5 *2 + (-2 (|:| -2849 (-589 *9)) (|:| -3643 *4) (|:| |ineq| (-589 *9)))) + (-5 *1 (-1023 *6 *7 *8 *9 *4)) (-5 *3 (-589 *9)) + (-4 *4 (-992 *6 *7 *8 *9))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-805)) (-5 *3 (-589 (-240))) (-5 *1 (-238))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) +(((*1 *2 *3) + (-12 (-4 *4 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-195 *4 *3)) + (-4 *3 (-1145 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-312 *4 *5 *6 *7)) (-4 *4 (-13 (-344) (-339))) - (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-4 *7 (-318 *4 *5 *6)) - (-5 *2 (-710)) (-5 *1 (-368 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-772 (-852))))) - ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) - ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) - ((*1 *2 *1) - (-12 (-4 *3 (-515)) (-5 *2 (-523)) (-5 *1 (-570 *3 *4)) - (-4 *4 (-1144 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-710)) (-4 *1 (-680 *4 *3)) (-4 *4 (-973)) - (-4 *3 (-786)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-973)) (-4 *3 (-786)) - (-5 *2 (-710)))) - ((*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-710)))) - ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) + (-4 *3 (-1145 (-523))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-710))) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) + (-4 *3 (-1145 (-523))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *2 (-394 *3)) + (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) + (-4 *3 (-1145 (-523))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) - (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) - (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) - (-5 *2 (-710)) (-5 *1 (-842 *4 *5 *6 *7 *8)))) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-935 *3)) + (-4 *3 (-1145 (-383 (-523)))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) - (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-1144 (-383 *4))) - (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-710)) - (-5 *1 (-843 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-312 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-339)) - (-4 *7 (-1144 *6)) (-4 *4 (-1144 (-383 *7))) (-4 *8 (-318 *6 *7 *4)) - (-4 *9 (-13 (-344) (-339))) (-5 *2 (-710)) - (-5 *1 (-946 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1144 *3)) (-4 *3 (-973)) (-4 *3 (-515)) (-5 *2 (-710)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-691))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1122))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-108)) (-5 *5 (-1018 (-710))) (-5 *6 (-710)) - (-5 *2 - (-2 (|:| |contp| (-523)) - (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) - (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238))))) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-1134 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-1068 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1145 (-47))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) + (-5 *1 (-117 *3)) (-4 *3 (-786)))) + ((*1 *2 *2) + (-12 (-5 *2 (-540 *4)) (-4 *4 (-13 (-29 *3) (-1109))) + (-4 *3 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *1 (-538 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-540 (-383 (-883 *3)))) + (-4 *3 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *1 (-543 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-339)) + (-5 *2 (-2 (|:| -3671 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169 *5)) (-4 *5 (-339)) (-4 *5 (-973)) + (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) + (-5 *3 (-589 (-629 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169 (-1169 *5))) (-4 *5 (-339)) (-4 *5 (-973)) + (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) + (-5 *3 (-589 (-629 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-130)) (-5 *2 (-589 *1)) (-4 *1 (-1056)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-133)) (-5 *2 (-589 *1)) (-4 *1 (-1056))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-710)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-973)) (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) + (-4 *5 (-216 *3 *2))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1159 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-794))))) + (|partial| -12 (-5 *2 (-589 (-455 *4 *5))) (-5 *3 (-589 (-796 *4))) + (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-446 *4 *5 *6)) + (-4 *6 (-427))))) (((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) - (-5 *2 (-589 (-2 (|:| -3952 *1) (|:| -2625 (-589 *7))))) - (-5 *3 (-589 *7)) (-4 *1 (-1116 *4 *5 *6 *7))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 (-108)) (-5 *1 (-277))))) +(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-394 *5)) (-4 *5 (-515)) + (-5 *2 + (-2 (|:| -1475 (-710)) (|:| -3474 *5) (|:| |radicand| (-589 *5)))) + (-5 *1 (-296 *5)) (-5 *4 (-710)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-523))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) + (-5 *4 (-589 (-852))) (-5 *5 (-589 (-240))) (-5 *1 (-443)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) + (-5 *4 (-589 (-852))) (-5 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) + ((*1 *1 *1) (-5 *1 (-443)))) (((*1 *2 *3) - (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) - ((*1 *2 *2) - (-12 (-4 *3 (-284)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) - (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) - (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-906 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) - (-5 *1 (-696))))) + (-12 (-4 *2 (-1145 *4)) (-5 *1 (-748 *4 *2 *3 *5)) + (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) + (-4 *5 (-599 (-383 *2)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-589 (-383 *7))) + (-4 *7 (-1145 *6)) (-5 *3 (-383 *7)) (-4 *6 (-339)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-533 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-710)) (-5 *1 (-544))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-292 (-355))) (-5 *1 (-282))))) +(((*1 *1 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-344))))) +(((*1 *1 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) + ((*1 *1 *1) + (-12 (-5 *1 (-573 *2 *3 *4)) (-4 *2 (-786)) + (-4 *3 (-13 (-158) (-657 (-383 (-523))))) (-14 *4 (-852)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973))))) (((*1 *2 *3) (-12 (-4 *4 (-427)) (-5 *2 (-589 (-2 (|:| |eigval| (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4)))) - (|:| |geneigvec| (-589 (-629 (-383 (-883 *4)))))))) + (|:| |eigmult| (-710)) + (|:| |eigvec| (-589 (-629 (-383 (-883 *4)))))))) (-5 *1 (-269 *4)) (-5 *3 (-629 (-383 (-883 *4))))))) -(((*1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) - ((*1 *1 *1) (-5 *1 (-1034)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) - (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-589 *9)) (-5 *3 (-1 (-108) *9)) - (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) (-4 *8 (-786)) - (-5 *1 (-906 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-171)) (-5 *3 (-523)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-158)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) - (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) - (-5 *1 (-688))))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-172)))) - ((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-151 *3 *4)) - (-4 *3 (-152 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1122)) (-5 *2 (-710)) - (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-786)) (-5 *2 (-710)) (-5 *1 (-405 *3 *4)) - (-4 *3 (-406 *4)))) - ((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-507 *3)) (-4 *3 (-508)))) - ((*1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-710)))) - ((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-735 *3 *4)) - (-4 *3 (-736 *4)))) - ((*1 *2) - (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-920 *3 *4)) - (-4 *3 (-921 *4)))) - ((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-924 *3 *4)) - (-4 *3 (-925 *4)))) - ((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) - ((*1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-710)))) - ((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-981 *3)) (-4 *3 (-982))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-124))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1016)) (-4 *2 (-831 *4)) (-5 *1 (-631 *4 *2 *5 *3)) - (-4 *5 (-349 *2)) (-4 *3 (-13 (-349 *4) (-10 -7 (-6 -4244))))))) -(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-379 *3)) (-4 *3 (-380)))) - ((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-379 *3)) (-4 *3 (-380)))) - ((*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4235)) (-4 *1 (-380)))) - ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) - ((*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-1068 (-523)))))) -(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) - (-5 *2 (-962)) (-5 *1 (-692))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *1) (-12 (-5 *2 (-589 (-160))) (-5 *1 (-1003))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-515)) (-4 *2 (-973)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) - ((*1 *1 *1 *1) +(((*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *3 (-987 *4 *5 *6)) - (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *1)))) - (-4 *1 (-992 *4 *5 *6 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) - (-14 *3 (-589 (-1087)))))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515))))) +(((*1 *2 *1) + (-12 (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-916 *3 *4 *5 *2)) + (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3310 (-721 *3)) (|:| |coef1| (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-2 (|:| -3310 *1) (|:| |coef1| *1))) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-203)) (-5 *3 (-710)) (-5 *1 (-204)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-155 (-203))) (-5 *3 (-710)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-104))) (-5 *1 (-160))))) +(((*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1102))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92))))) +(((*1 *2 *1) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) - (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-589 *3)) (-5 *1 (-891 *3)) (-4 *3 (-508))))) -(((*1 *2 *2) - (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) - (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) - (-4 *2 - (-13 (-339) (-279) - (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) - (-15 -2797 ((-1039 *3 (-562 $)) $)) - (-15 -1458 ($ (-1039 *3 (-562 $)))))))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-645 *3 *4)) (-4 *3 (-1123)) (-4 *4 (-1123))))) +(((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) + (-5 *2 + (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 (-1141 *5 *4))) - (-5 *1 (-1030 *4 *5)) (-5 *3 (-1141 *5 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) - ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-5 *5 (-589 *8)) - (-4 *7 (-786)) (-4 *8 (-973)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) - (-5 *2 (-1083 *8)) (-5 *1 (-297 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-339) (-784))) - (-5 *2 (-589 (-2 (|:| -1979 (-589 *3)) (|:| -3314 *5)))) - (-5 *1 (-165 *5 *3)) (-4 *3 (-1144 (-155 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-339) (-784))) - (-5 *2 (-589 (-2 (|:| -1979 (-589 *3)) (|:| -3314 *4)))) - (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4)))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) - (-5 *1 (-1072 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-523)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) - (-14 *4 (-1087)) (-14 *5 *3)))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) - (-5 *1 (-695))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1016)))) - ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1016))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) - (-5 *1 (-548 *3)) (-4 *3 (-973))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) - (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) - (-5 *1 (-727)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) - (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) - (-5 *1 (-727))))) + (-12 (-4 *4 (-973)) (-4 *2 (-627 *4 *5 *6)) + (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1145 *4)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1122)) - (-4 *5 (-349 *4)) (-4 *2 (-349 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *6 *7 *2)) (-4 *6 (-973)) - (-4 *7 (-216 *5 *6)) (-4 *2 (-216 *4 *6))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-589 *11)) (-5 *5 (-589 (-1083 *9))) - (-5 *6 (-589 *9)) (-5 *7 (-589 *12)) (-5 *8 (-589 (-710))) - (-4 *11 (-786)) (-4 *9 (-284)) (-4 *12 (-880 *9 *10 *11)) - (-4 *10 (-732)) (-5 *2 (-589 (-1083 *12))) - (-5 *1 (-647 *10 *11 *9 *12)) (-5 *3 (-1083 *12))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-629 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) + (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) + (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) + (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) + (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1123)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1070)) (-5 *1 (-918)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1011 *4)) (-4 *4 (-1123)) + (-5 *1 (-1009 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 (-1083 *7))) (-5 *3 (-1083 *7)) + (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-840)) (-4 *5 (-732)) + (-4 *6 (-786)) (-5 *1 (-837 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 (-1083 *5))) (-5 *3 (-1083 *5)) + (-4 *5 (-1145 *4)) (-4 *4 (-840)) (-5 *1 (-838 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *1 (-851)) (-5 *2 (-2 (|:| -2935 (-589 *1)) (|:| -3441 *1))) - (-5 *3 (-589 *1))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) - (-4 *3 (-992 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-271 *6)) (-5 *4 (-110)) (-4 *6 (-406 *5)) - (-4 *5 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) - (-5 *1 (-293 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-271 *7)) (-5 *4 (-110)) (-5 *5 (-589 *7)) - (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) - (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-589 (-271 *7))) (-5 *4 (-589 (-110))) (-5 *5 (-271 *7)) - (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) - (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-589 (-271 *8))) (-5 *4 (-589 (-110))) (-5 *5 (-271 *8)) - (-5 *6 (-589 *8)) (-4 *8 (-406 *7)) - (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) - (-5 *1 (-293 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-589 *7)) (-5 *4 (-589 (-110))) (-5 *5 (-271 *7)) - (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) - (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-110))) (-5 *6 (-589 (-271 *8))) - (-4 *8 (-406 *7)) (-5 *5 (-271 *8)) - (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) - (-5 *1 (-293 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-271 *5)) (-5 *4 (-110)) (-4 *5 (-406 *6)) - (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) - (-5 *1 (-293 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-4 *3 (-406 *6)) - (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) - (-5 *1 (-293 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-4 *3 (-406 *6)) - (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) - (-5 *1 (-293 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-5 *6 (-589 *3)) - (-4 *3 (-406 *7)) (-4 *7 (-13 (-786) (-515) (-564 (-499)))) - (-5 *2 (-51)) (-5 *1 (-293 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355)))) - ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-355))))) -(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1122)) (-5 *2 (-710))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3))))) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1091))))) (((*1 *2 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-1 (-1068 (-883 *4)) (-1068 (-883 *4)))) - (-5 *1 (-1176 *4)) (-4 *4 (-339))))) + (-12 + (-5 *3 + (-589 + (-2 (|:| -3569 (-710)) + (|:| |eqns| + (-589 + (-2 (|:| |det| *7) (|:| |rows| (-589 (-523))) + (|:| |cols| (-589 (-523)))))) + (|:| |fgb| (-589 *7))))) + (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) + (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-710)) + (-5 *1 (-855 *4 *5 *6 *7))))) +(((*1 *1 *1) (|partial| -4 *1 (-134))) ((*1 *1 *1) (-4 *1 (-325))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-134)) (-4 *1 (-840))))) (((*1 *2 *3) - (-12 (-5 *3 (-523)) (-4 *4 (-1144 (-383 *3))) (-5 *2 (-852)) - (-5 *1 (-844 *4 *5)) (-4 *5 (-1144 (-383 *4)))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) - ((*1 *1 *1) (|partial| -4 *1 (-662)))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-984)))) - ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-984))))) -(((*1 *2 *1) (-12 (-4 *1 (-302 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) - ((*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) + (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1169 (-589 (-2 (|:| -3370 *4) (|:| -4013 (-1034)))))) + (-4 *4 (-325)) (-5 *2 (-1174)) (-5 *1 (-493 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-1169 (-629 *4))))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-1169 (-629 *4))) (-5 *1 (-392 *3 *4)) + (-4 *3 (-393 *4)))) + ((*1 *2) + (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1169 (-629 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-1087))) (-4 *5 (-339)) + (-5 *2 (-1169 (-629 (-383 (-883 *5))))) (-5 *1 (-1004 *5)) + (-5 *4 (-629 (-383 (-883 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-1087))) (-4 *5 (-339)) + (-5 *2 (-1169 (-629 (-883 *5)))) (-5 *1 (-1004 *5)) + (-5 *4 (-629 (-883 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-629 *4))) (-4 *4 (-339)) + (-5 *2 (-1169 (-629 *4))) (-5 *1 (-1004 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1123)) + (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-349 *2)) + (-4 *5 (-349 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1123)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1123)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-710))))) + (-12 (-5 *3 (-589 (-523))) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 (-523)) (-14 *5 (-710)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-710)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-710)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-710)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) - (-4 *3 (-786)) (-5 *2 (-710))))) -(((*1 *1 *1) (-5 *1 (-203))) - ((*1 *1 *1) - (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) - (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) - ((*1 *1 *1) (-5 *1 (-355))) ((*1 *1) (-5 *1 (-355)))) + (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-710)))) + ((*1 *2 *1) + (-12 (-4 *2 (-158)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-523)) + (-14 *4 (-710)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-223 (-1070))) (-5 *1 (-193 *4)) + (-4 *4 + (-13 (-786) + (-10 -8 (-15 -1937 ((-1070) $ *3)) (-15 -1239 ((-1174) $)) + (-15 -4048 ((-1174) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-918)) (-5 *1 (-193 *3)) + (-4 *3 + (-13 (-786) + (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 ((-1174) $)) + (-15 -4048 ((-1174) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-710)) (-5 *1 (-223 *4)) (-4 *4 (-786)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-223 *3)) (-4 *3 (-786)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "unique") (-5 *1 (-223 *3)) (-4 *3 (-786)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1123)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1123)))) + ((*1 *2 *1 *2) + (-12 (-4 *3 (-158)) (-5 *1 (-266 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1145 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 *1)) (-4 *1 (-279)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-318 *2 *3 *4)) (-4 *2 (-1127)) (-4 *3 (-1145 *2)) + (-4 *4 (-1145 (-383 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-393 *2)) (-4 *2 (-158)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1070)) (-5 *1 (-473)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-51)) (-5 *1 (-578)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1136 (-523))) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-710)) (-5 *1 (-617 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-589 (-523))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-589 (-823 *4))) (-5 *1 (-823 *4)) + (-4 *4 (-1016)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-836 *4)) (-5 *1 (-835 *4)) + (-4 *4 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-218 *4 *2)) (-14 *4 (-852)) (-4 *2 (-339)) + (-5 *1 (-922 *4 *2)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-938 *2)) (-4 *2 (-1123)))) + ((*1 *2 *1) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1123)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) (-4 *2 (-973)) + (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) + (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)) (-4 *2 (-973)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-852)) (-4 *4 (-1016)) + (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) + (-5 *1 (-995 *4 *5 *2)) + (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-852)) (-4 *4 (-1016)) + (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) + (-5 *1 (-996 *4 *5 *2)) + (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-523))) (-4 *1 (-1019 *3 *4 *5 *6 *7)) + (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) + (-4 *7 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) + (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)))) + ((*1 *1 *1 *1) (-4 *1 (-1056))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-383 *1)) (-4 *1 (-1145 *2)) (-4 *2 (-973)) + (-4 *2 (-339)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-383 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-973)) + (-4 *3 (-515)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1147 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1157 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "rest") (-4 *1 (-1157 *3)) (-4 *3 (-1123)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) + (-4 *8 (-880 *7 *5 *6)) + (-5 *2 (-2 (|:| -1475 (-710)) (|:| -3474 *3) (|:| |radicand| *3))) + (-5 *1 (-884 *5 *6 *7 *8 *3)) (-5 *4 (-710)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -3316 (*8 $)) (-15 -3329 (*8 $)) (-15 -1691 ($ *8)))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-852)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-339)) (-14 *5 (-922 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-231 *3)) (-4 *3 (-1123)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-710)))) + ((*1 *2 *3) + (-12 (-4 *4 (-973)) + (-4 *2 (-13 (-380) (-964 *4) (-339) (-1109) (-261))) + (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1145 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) + ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1142 *5 *4)) (-4 *4 (-427)) (-4 *4 (-759)) + (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-523)) (-5 *1 (-1106 *3)) (-4 *3 (-973))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *3 (-203)) + (-5 *2 (-962)) (-5 *1 (-689))))) (((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) - (-4 *4 (-973))))) -(((*1 *2) - (-12 (-4 *1 (-325)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-784) (-339))) (-5 *2 (-108)) (-5 *1 (-983 *4 *3)) - (-4 *3 (-1144 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-852)) (-5 *1 (-725))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-108))))) + (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) (((*1 *2 *3) - (-12 (-5 *3 (-1168 *4)) (-4 *4 (-585 (-523))) (-5 *2 (-108)) - (-5 *1 (-1193 *4))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -2279 (-589 *3)) (|:| -2566 (-589 *3)))) - (-5 *1 (-1123 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-455 *4 *5))) (-14 *4 (-589 (-1087))) - (-4 *5 (-427)) - (-5 *2 - (-2 (|:| |gblist| (-589 (-225 *4 *5))) - (|:| |gvlist| (-589 (-523))))) - (-5 *1 (-577 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *1) (-5 *1 (-108)))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) -(((*1 *1 *1) (-5 *1 (-985)))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-852)) (-5 *1 (-725))))) + (-12 (-5 *3 (-455 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) + (-5 *2 (-225 *4 *5)) (-5 *1 (-875 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1090)))) + ((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-1090)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-1174)) (-5 *1 (-1090))))) +(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1123))))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) - (-5 *2 (-1168 *6)) (-5 *1 (-312 *3 *4 *5 *6)) - (-4 *6 (-318 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-964 (-523))) (-4 *1 (-279)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3078 *3) (|:| |coef1| (-721 *3)))) - (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 (-455 *3 *4))) (-14 *3 (-589 (-1087))) + (-4 *4 (-427)) (-5 *1 (-577 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1090))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-710)) (-5 *5 (-589 *3)) (-4 *3 (-284)) (-4 *6 (-786)) - (-4 *7 (-732)) (-5 *2 (-108)) (-5 *1 (-572 *6 *7 *3 *8)) - (-4 *8 (-880 *3 *7 *6))))) + (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 (-383 (-883 *6)))) + (-5 *3 (-383 (-883 *6))) + (-4 *6 (-13 (-515) (-964 (-523)) (-136))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-529 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-355)) (-5 *1 (-985))))) +(((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284))))) +(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1070)) (-5 *1 (-725))))) +(((*1 *1 *1) + (-12 (-4 *1 (-230 *2 *3 *4 *5)) (-4 *2 (-973)) (-4 *3 (-786)) + (-4 *4 (-243 *3)) (-4 *5 (-732))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) - (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *2 - (-3 (|:| |%expansion| (-289 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) - (-5 *1 (-396 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) - (-14 *6 (-1087)) (-14 *7 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-903))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-523))))) + (-12 (-4 *5 (-1016)) (-4 *3 (-831 *5)) (-5 *2 (-629 *3)) + (-5 *1 (-631 *5 *3 *6 *4)) (-4 *6 (-349 *3)) + (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4248))))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) - (-4 *3 (-1016))))) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) + (-5 *2 (-589 (-589 (-589 (-710)))))))) +(((*1 *1 *1 *1) (-4 *1 (-897)))) +(((*1 *2 *3) + (-12 (-4 *4 (-325)) (-5 *2 (-394 (-1083 (-1083 *4)))) + (-5 *1 (-1122 *4)) (-5 *3 (-1083 (-1083 *4)))))) +(((*1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1123)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1016)) + (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) + (-5 *1 (-995 *3 *4 *2)) + (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1016)) (-5 *1 (-1077 *3 *2)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1145 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1145 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *6)) (-4 *5 (-1016)) - (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-4 *5 (-1016)) - (-4 *2 (-1122)) (-5 *1 (-586 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 *5)) (-4 *6 (-1016)) - (-4 *5 (-1122)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-4 *5 (-1016)) - (-4 *2 (-1122)) (-5 *1 (-586 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-589 *5)) (-5 *4 (-589 *6)) - (-4 *5 (-1016)) (-4 *6 (-1122)) (-5 *1 (-586 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1016)) (-4 *2 (-1122)) (-5 *1 (-586 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-133)) (-5 *2 (-710))))) -(((*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-589 *3)) (-4 *3 (-1122))))) + (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-523)) (-4 *5 (-339)) + (-4 *5 (-973)) (-5 *2 (-108)) (-5 *1 (-956 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-629 *4))) (-4 *4 (-339)) (-4 *4 (-973)) + (-5 *2 (-108)) (-5 *1 (-956 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) + (-5 *1 (-443))))) (((*1 *1 *2) - (-12 (-5 *2 (-383 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-13 (-339) (-136))) - (-5 *1 (-375 *3 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-306))))) + (-12 (-5 *2 (-1182 (-1087) *3)) (-4 *3 (-973)) (-5 *1 (-1189 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1182 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *1 (-1191 *3 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4248)) (-4 *1 (-140 *3)) + (-4 *3 (-1123)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1123)) (-5 *1 (-553 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1123)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1117 *4 *5 *3 *2)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *3 (-786)) (-4 *2 (-987 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *1 (-1121 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3) + (-12 (-4 *4 (-284)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-888 *3)) (-5 *1 (-1075 *4 *3)) - (-4 *3 (-1144 *4))))) + (-12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3310 *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) - (|:| |lb| (-589 (-779 (-203)))) - (|:| |cf| (-589 (-292 (-203)))) - (|:| |ub| (-589 (-779 (-203)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-589 (-292 (-203)))) - (|:| -2262 (-589 (-203))))))) - (-5 *2 (-589 (-1070))) (-5 *1 (-244))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) + (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1174)) (-5 *1 (-1090)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1174)) + (-5 *1 (-1090)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1174)) + (-5 *1 (-1090))))) +(((*1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1123)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1016)) + (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) + (-5 *1 (-995 *3 *4 *2)) + (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1016)) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1174)) (-5 *1 (-1050)))) ((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-528 *3)) (-4 *3 (-964 (-523))))) + (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1174)) (-5 *1 (-1050))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 *2)) (-4 *2 (-880 (-383 (-883 *6)) *5 *4)) + (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-732)) + (-4 *4 (-13 (-786) (-10 -8 (-15 -1400 ((-1087) $))))) + (-4 *6 (-515))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-983 (-951 *4) (-1083 (-951 *4)))) (-5 *3 (-794)) + (-5 *1 (-951 *4)) (-4 *4 (-13 (-784) (-339) (-949)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-589 (-874 *4))) (-4 *1 (-1048 *4)) (-4 *4 (-973)) + (-5 *2 (-710))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1123)) (-5 *1 (-553 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1123)) (-5 *1 (-1068 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-234))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) + (-5 *1 (-1024 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3643 *9)))) + (-5 *5 (-108)) (-4 *8 (-987 *6 *7 *4)) (-4 *9 (-992 *6 *7 *4 *8)) + (-4 *6 (-427)) (-4 *7 (-732)) (-4 *4 (-786)) + (-5 *2 (-589 (-2 (|:| |val| *8) (|:| -3643 *9)))) + (-5 *1 (-1024 *6 *7 *4 *8 *9))))) +(((*1 *1) (-12 (-4 *1 (-440 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-499))) ((*1 *1) (-4 *1 (-662))) + ((*1 *1) (-4 *1 (-666))) + ((*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786))))) +(((*1 *1 *1) (-4 *1 (-508)))) +(((*1 *2) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) + (-5 *1 (-308))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-292 (-203))) (-5 *1 (-282)))) ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1122))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-823 *3)) (|:| |den| (-823 *3)))) + (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *2)) (-5 *1 (-459 *2)) (-4 *2 (-1145 (-523)))))) (((*1 *2) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4)))))) + (|partial| -12 (-4 *4 (-1127)) (-4 *5 (-1145 (-383 *2))) + (-4 *2 (-1145 *4)) (-5 *1 (-317 *3 *4 *2 *5)) + (-4 *3 (-318 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-318 *3 *2 *4)) (-4 *3 (-1127)) + (-4 *4 (-1145 (-383 *2))) (-4 *2 (-1145 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-589 *4)) (-5 *1 (-1053 *3 *4)) - (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33)))))) + (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1145 *2))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1123)) (-5 *1 (-553 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1123)) (-5 *1 (-1068 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-940))))) +(((*1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) + ((*1 *1 *1) (-12 (-5 *1 (-1190 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1611 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-499))) + ((*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-306))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-710)))) + ((*1 *2 *1) + (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-710))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-629 *11)) (-5 *4 (-589 (-383 (-883 *8)))) + (-5 *5 (-710)) (-5 *6 (-1070)) (-4 *8 (-13 (-284) (-136))) + (-4 *11 (-880 *8 *10 *9)) (-4 *9 (-13 (-786) (-564 (-1087)))) + (-4 *10 (-732)) + (-5 *2 + (-2 + (|:| |rgl| + (-589 + (-2 (|:| |eqzro| (-589 *11)) (|:| |neqzro| (-589 *11)) + (|:| |wcond| (-589 (-883 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1169 (-383 (-883 *8)))) + (|:| -3760 (-589 (-1169 (-383 (-883 *8)))))))))) + (|:| |rgsz| (-523)))) + (-5 *1 (-855 *8 *9 *10 *11)) (-5 *7 (-523))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-219))))) +(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110))) + ((*1 *1 *1) (-5 *1 (-157))) ((*1 *1 *1) (-4 *1 (-508))) + ((*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *2) (-12 (-5 *2 (-779 (-523))) (-5 *1 (-497)))) + ((*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1016))))) (((*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-402 *4 *2)) (-4 *2 (-13 (-1108) (-29 *4))))) + (-5 *1 (-402 *4 *2)) (-4 *2 (-13 (-1109) (-29 *4))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-136)) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-292 *5)) (-5 *1 (-543 *5))))) (((*1 *2 *1) - (-12 (-4 *2 (-1122)) (-5 *1 (-804 *3 *2)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-589 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4248)) (-4 *1 (-462 *3)) (-4 *3 (-1123)) + (-5 *2 (-589 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-852)) (-4 *6 (-13 (-515) (-786))) + (-5 *2 (-589 (-292 *6))) (-5 *1 (-199 *5 *6)) (-5 *3 (-292 *6)) + (-4 *5 (-973)))) + ((*1 *2 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515)))) + ((*1 *2 *3) + (-12 (-5 *3 (-540 *5)) (-4 *5 (-13 (-29 *4) (-1109))) + (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *2 (-589 *5)) (-5 *1 (-538 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-540 (-383 (-883 *4)))) + (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *2 (-589 (-292 *4))) (-5 *1 (-543 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1012 *3 *2)) (-4 *3 (-784)) (-4 *2 (-1061 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 *1)) (-4 *1 (-1012 *4 *2)) (-4 *4 (-784)) + (-4 *2 (-1061 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1182 (-1087) *3)) (-5 *1 (-1189 *3)) (-4 *3 (-973)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1182 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-973))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-973))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-108)) (-5 *1 (-1092)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-108)) (-5 *1 (-1092)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-203))) (-5 *2 (-108)) (-5 *1 (-1092)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-108)) (-5 *1 (-1092))))) +(((*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) + (-5 *2 (-962)) (-5 *1 (-689)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) + (-5 *8 (-364)) (-5 *2 (-962)) (-5 *1 (-689))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1016))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-562 (-47)))) (-5 *1 (-47)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562 (-47))) (-5 *1 (-47)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1083 (-47))) (-5 *3 (-589 (-562 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1083 (-47))) (-5 *3 (-562 (-47))) (-5 *1 (-47)))) + ((*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) + (-4 *3 (-1145 (-155 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-852)) (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) + ((*1 *2 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-339)))) + ((*1 *2 *1) + (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1145 *2)) (-4 *2 (-158)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1145 *2)) (-4 *2 (-921 *3)) (-5 *1 (-389 *3 *2 *4 *5)) + (-4 *3 (-284)) (-4 *5 (-13 (-385 *2 *4) (-964 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1145 *2)) (-4 *2 (-921 *3)) + (-5 *1 (-390 *3 *2 *4 *5 *6)) (-4 *3 (-284)) (-4 *5 (-385 *2 *4)) + (-14 *6 (-1169 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-852)) (-4 *5 (-973)) + (-4 *2 (-13 (-380) (-964 *5) (-339) (-1109) (-261))) + (-5 *1 (-418 *5 *3 *2)) (-4 *3 (-1145 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-562 (-466)))) (-5 *1 (-466)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562 (-466))) (-5 *1 (-466)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1083 (-466))) (-5 *3 (-589 (-562 (-466)))) + (-5 *1 (-466)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1083 (-466))) (-5 *3 (-562 (-466))) (-5 *1 (-466)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-852)) (-4 *4 (-325)) + (-5 *1 (-493 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-664 *4 *2)) (-4 *2 (-1145 *4)) + (-5 *1 (-714 *4 *2 *5 *3)) (-4 *3 (-1145 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) + ((*1 *1 *1) (-4 *1 (-982)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-560 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-271 (-779 *3))) (-4 *3 (-13 (-27) (-1109) (-406 *5))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-3 (-779 *3) + (-2 (|:| |leftHandLimit| (-3 (-779 *3) "failed")) + (|:| |rightHandLimit| (-3 (-779 *3) "failed"))) + "failed")) + (-5 *1 (-582 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-271 *3)) (-5 *5 (-1070)) + (-4 *3 (-13 (-27) (-1109) (-406 *6))) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-779 *3)) (-5 *1 (-582 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-271 (-779 (-883 *5)))) (-4 *5 (-427)) + (-5 *2 + (-3 (-779 (-383 (-883 *5))) + (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-779 (-383 (-883 *5))) "failed"))) + "failed")) + (-5 *1 (-583 *5)) (-5 *3 (-383 (-883 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-271 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) + (-4 *5 (-427)) + (-5 *2 + (-3 (-779 *3) + (-2 (|:| |leftHandLimit| (-3 (-779 *3) "failed")) + (|:| |rightHandLimit| (-3 (-779 *3) "failed"))) + "failed")) + (-5 *1 (-583 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-271 (-383 (-883 *6)))) (-5 *5 (-1070)) + (-5 *3 (-383 (-883 *6))) (-4 *6 (-427)) (-5 *2 (-779 *3)) + (-5 *1 (-583 *6))))) (((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) (((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-494 *3)) (-4 *3 (-13 (-666) (-25)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1083 *7)) (-4 *5 (-973)) + (-4 *7 (-973)) (-4 *2 (-1145 *5)) (-5 *1 (-472 *5 *2 *6 *7)) + (-4 *6 (-1145 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-973)) (-4 *7 (-973)) + (-4 *4 (-1145 *5)) (-5 *2 (-1083 *7)) (-5 *1 (-472 *5 *4 *6 *7)) + (-4 *6 (-1145 *4))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-383 *6)) (|:| |c| (-383 *6)) + (|:| -1219 *6))) + (-5 *1 (-943 *5 *6)) (-5 *3 (-383 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-589 *3)) (-4 *3 (-1123))))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1169 (-1169 (-523)))) (-5 *1 (-441))))) +(((*1 *1) (-5 *1 (-413)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-589 + (-2 (|:| -3569 (-710)) + (|:| |eqns| + (-589 + (-2 (|:| |det| *7) (|:| |rows| (-589 (-523))) + (|:| |cols| (-589 (-523)))))) + (|:| |fgb| (-589 *7))))) + (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) + (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-710)) + (-5 *1 (-855 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) + (-14 *6 + (-1 (-108) (-2 (|:| -4013 *5) (|:| -1475 *2)) + (-2 (|:| -4013 *5) (|:| -1475 *2)))) + (-4 *2 (-216 (-2810 *3) (-710))) (-5 *1 (-436 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-786)) (-4 *7 (-880 *4 *2 (-796 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *4 *5 *6))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1123)) + (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4249)) (-4 *1 (-115 *3)) + (-4 *3 (-1123)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4249)) (-4 *1 (-115 *3)) + (-4 *3 (-1123)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) + (-4 *2 (-1123)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1087)) (-5 *1 (-578)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1136 (-523))) (|has| *1 (-6 -4249)) (-4 *1 (-594 *2)) + (-4 *2 (-1123)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-589 (-523))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4249)) (-4 *1 (-938 *2)) + (-4 *2 (-1123)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1123)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1100 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) + (-4 *2 (-1123)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4249)) (-4 *1 (-1157 *3)) + (-4 *3 (-1123)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4249)) (-4 *1 (-1157 *2)) + (-4 *2 (-1123))))) +(((*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1096 (-589 *4))) (-4 *4 (-786)) + (-5 *2 (-589 (-589 *4))) (-5 *1 (-1095 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-782))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-5 *1 (-306))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1016)) (-5 *2 (-820 *3 *4)) (-5 *1 (-816 *3 *4 *5)) + (-4 *3 (-1016)) (-4 *5 (-609 *4))))) (((*1 *2 *3 *2) (-12 (-5 *3 (-589 (-629 *4))) (-5 *2 (-629 *4)) (-4 *4 (-973)) (-5 *1 (-956 *4))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1139 *3 *2)) + (-4 *2 (-1145 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1169 (-589 (-523)))) (-5 *1 (-454)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1123)) (-5 *1 (-553 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1123)) (-5 *1 (-1068 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1123)) (-5 *1 (-1068 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-900))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *2 *3) + (-12 (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) + (-5 *2 (-710)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-710)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-628 *4 *5 *6 *3)) + (-4 *3 (-627 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) + (-5 *2 (-710))))) +(((*1 *1) (-5 *1 (-306)))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1123)) (-5 *2 (-108))))) +(((*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1123))))) +(((*1 *1) (-5 *1 (-518)))) +(((*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1109)))))) +(((*1 *1) (-5 *1 (-130)))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-589 *6) "failed") (-523) *6 *6)) (-4 *6 (-339)) - (-4 *7 (-1144 *6)) + (-4 *7 (-1145 *6)) (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-796 *5))) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) + (-5 *2 + (-2 (|:| |dpolys| (-589 (-225 *5 *6))) + (|:| |coords| (-589 (-523))))) + (-5 *1 (-446 *5 *6 *7)) (-5 *3 (-589 (-225 *5 *6))) (-4 *7 (-427))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-589 (-523))) + (|:| |cols| (-589 (-523))))) + (-5 *4 (-629 *12)) (-5 *5 (-589 (-383 (-883 *9)))) + (-5 *6 (-589 (-589 *12))) (-5 *7 (-710)) (-5 *8 (-523)) + (-4 *9 (-13 (-284) (-136))) (-4 *12 (-880 *9 *11 *10)) + (-4 *10 (-13 (-786) (-564 (-1087)))) (-4 *11 (-732)) + (-5 *2 + (-2 (|:| |eqzro| (-589 *12)) (|:| |neqzro| (-589 *12)) + (|:| |wcond| (-589 (-883 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1169 (-383 (-883 *9)))) + (|:| -3760 (-589 (-1169 (-383 (-883 *9))))))))) + (-5 *1 (-855 *9 *10 *11 *12))))) +(((*1 *2 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-339))))) +(((*1 *2 *3) + (-12 (-4 *1 (-826)) + (-5 *3 + (-2 (|:| |pde| (-589 (-292 (-203)))) + (|:| |constraints| + (-589 + (-2 (|:| |start| (-203)) (|:| |finish| (-203)) + (|:| |grid| (-710)) (|:| |boundaryType| (-523)) + (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) + (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) + (|:| |tol| (-203)))) + (-5 *2 (-962))))) +(((*1 *2 *1) + (-12 (-5 *2 (-794)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 (-710)) + (-14 *4 (-710)) (-4 *5 (-158))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1026))))) +(((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *6)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-710))) (-5 *3 (-108)) (-5 *1 (-1076 *4 *5)) + (-14 *4 (-852)) (-4 *5 (-973))))) (((*1 *1 *1) (-4 *1 (-575))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930) (-1108)))))) + (-4 *2 (-13 (-406 *3) (-930) (-1109)))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-955 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-589 (-629 *3))) (-4 *3 (-973)) (-5 *1 (-955 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-955 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-589 (-629 *3))) (-4 *3 (-973)) (-5 *1 (-955 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-589 (-1083 (-523)))) (-5 *1 (-171)) (-5 *3 (-523))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-172)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-277)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-282))))) +(((*1 *1) (-5 *1 (-1090)))) +(((*1 *2 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1174)) + (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-124)) + (-4 *3 (-731))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-962)) (-5 *3 (-1087)) (-5 *1 (-172))))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 *1)) (|has| *1 (-6 -4249)) (-4 *1 (-938 *3)) + (-4 *3 (-1123))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-523))) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-515)) (-4 *8 (-880 *7 *5 *6)) + (-5 *2 (-2 (|:| -1475 (-710)) (|:| -3474 *9) (|:| |radicand| *9))) + (-5 *1 (-884 *5 *6 *7 *8 *9)) (-5 *4 (-710)) + (-4 *9 + (-13 (-339) + (-10 -8 (-15 -3316 (*8 $)) (-15 -3329 (*8 $)) (-15 -1691 ($ *8)))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) + (-5 *2 (-962)) (-5 *1 (-696))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-589 *6)) (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) + (-4 *3 (-515))))) +(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3855 *7) (|:| |sol?| (-108))) + (-523) *7)) + (-5 *6 (-589 (-383 *8))) (-4 *7 (-339)) (-4 *8 (-1145 *7)) + (-5 *3 (-383 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-533 *7 *8))))) (((*1 *2 *3 *4 *2) (-12 (-5 *2 (-589 (-589 (-589 *5)))) (-5 *3 (-1 (-108) *5 *5)) - (-5 *4 (-589 *5)) (-4 *5 (-786)) (-5 *1 (-1094 *5))))) + (-5 *4 (-589 *5)) (-4 *5 (-786)) (-5 *1 (-1095 *5))))) +(((*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1109)))))) +(((*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1123)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) + (-5 *2 (-2 (|:| -4173 *3) (|:| |nconst| *3))) (-5 *1 (-526 *5 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *5)))))) (((*1 *2 *3) - (-12 (-4 *3 (-1144 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-914 *4 *2 *3 *5)) + (-12 (-5 *3 (-708)) + (-5 *2 + (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) + (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) + (-5 *1 (-524)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-708)) (-5 *4 (-985)) + (-5 *2 + (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) + (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) + (-5 *1 (-524)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-726)) (-5 *3 (-985)) + (-5 *4 + (-2 (|:| |fn| (-292 (-203))) + (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 + (-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) + (|:| |extra| (-962)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-726)) (-5 *3 (-985)) + (-5 *4 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 + (-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)) + (|:| |extra| (-962)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-739)) (-5 *3 (-985)) + (-5 *4 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 (-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-747)) + (-5 *2 + (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *1 (-744)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-747)) (-5 *4 (-985)) + (-5 *2 + (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *1 (-744)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-775)) (-5 *3 (-985)) + (-5 *4 + (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) + (-5 *2 (-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-775)) (-5 *3 (-985)) + (-5 *4 + (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) + (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) + (|:| |ub| (-589 (-779 (-203)))))) + (-5 *2 (-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-777)) + (-5 *2 + (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *1 (-776)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-777)) (-5 *4 (-985)) + (-5 *2 + (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *1 (-776)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-826)) (-5 *3 (-985)) + (-5 *4 + (-2 (|:| |pde| (-589 (-292 (-203)))) + (|:| |constraints| + (-589 + (-2 (|:| |start| (-203)) (|:| |finish| (-203)) + (|:| |grid| (-710)) (|:| |boundaryType| (-523)) + (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) + (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) + (|:| |tol| (-203)))) + (-5 *2 (-2 (|:| -1796 (-355)) (|:| |explanations| (-1070)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-829)) + (-5 *2 + (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *1 (-828)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-829)) (-5 *4 (-985)) + (-5 *2 + (-2 (|:| -1796 (-355)) (|:| -4198 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *1 (-828))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) + (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) + (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) + (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) + (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-895))) (-5 *1 (-268))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1123)) (-4 *2 (-786)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1123)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1145 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-914 *4 *2 *3 *5)) (-4 *4 (-325)) (-4 *5 (-664 *2 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-739)) + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 (-962))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-1 (-108) *8))) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) + (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8))))) +(((*1 *2 *1) + (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-5 *2 (-710)))) + ((*1 *2 *1) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) + (-5 *2 (-710)))) + ((*1 *2 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-666))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-427)) (-4 *4 (-786)) + (-5 *1 (-532 *4 *2)) (-4 *2 (-261)) (-4 *2 (-406 *4))))) +(((*1 *2) + (-12 (-4 *3 (-973)) (-5 *2 (-888 (-652 *3 *4))) (-5 *1 (-652 *3 *4)) + (-4 *4 (-1145 *3))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-523) "failed") *5)) (-4 *5 (-973)) + (-5 *2 (-523)) (-5 *1 (-506 *5 *3)) (-4 *3 (-1145 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-523) "failed") *4)) (-4 *4 (-973)) + (-5 *2 (-523)) (-5 *1 (-506 *4 *3)) (-4 *3 (-1145 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-523) "failed") *4)) (-4 *4 (-973)) + (-5 *2 (-523)) (-5 *1 (-506 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-502 *4 *2 *5 *6)) + (-4 *4 (-284)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-710)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-1076 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1171))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-794) (-794) (-794))) (-5 *4 (-523)) (-5 *2 (-794)) + (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-794)) (-5 *1 (-790 *3 *4 *5)) (-4 *3 (-973)) + (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-794)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-794)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-794)))) + ((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-1083 *3)) (-4 *3 (-973))))) +(((*1 *2 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-710))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1070)) (-5 *4 (-155 (-203))) (-5 *5 (-523)) + (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-589 (-589 *4)))) (-5 *2 (-589 (-589 *4))) + (-5 *1 (-1095 *4)) (-4 *4 (-786))))) +(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-108)) + (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-195 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-523)) (-5 *1 (-528 *3)) (-4 *3 (-964 *2))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-523)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 (-523)) (-5 *1 (-184))))) +(((*1 *2) + (-12 (-4 *4 (-1127)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-383 *5))) + (-5 *2 (-710)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-710))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) + (-5 *1 (-688))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-562 *3)) (-5 *5 (-1083 *3)) + (-4 *3 (-13 (-406 *6) (-27) (-1109))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-540 *3)) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-562 *3)) (-5 *5 (-383 (-1083 *3))) + (-4 *3 (-13 (-406 *6) (-27) (-1109))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-540 *3)) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-540 *3)) (-4 *3 (-339))))) +(((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *1) + (-12 (-4 *1 (-634 *3)) (-4 *3 (-1016)) + (-5 *2 (-589 (-2 (|:| -2482 *3) (|:| -3977 (-710)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-108)) + (-5 *1 (-333 *4))))) (((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 @@ -15176,12 +13219,72 @@ (-5 *1 (-142)) (-5 *3 (-589 (-589 (-874 (-203))))))) ((*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-339)) (-5 *2 (-629 *4)) + (-5 *1 (-753 *4 *5)) (-4 *5 (-599 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-710)) (-4 *5 (-339)) + (-5 *2 (-629 *5)) (-5 *1 (-753 *5 *6)) (-4 *6 (-599 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) + (-4 *4 (-158))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-502 *4 *2 *5 *6)) + (-4 *4 (-284)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-710)))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786))))) (((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-339) (-784))) (-5 *1 (-165 *3 *2)) + (-4 *2 (-1145 (-155 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-883 (-203))) (-5 *2 (-203)) (-5 *1 (-282))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) + ((*1 *1 *1) (-5 *1 (-1034)))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-589 + (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) + (|:| |wcond| (-589 (-883 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1169 (-383 (-883 *5)))) + (|:| -3760 (-589 (-1169 (-383 (-883 *5)))))))))) + (-5 *4 (-1070)) (-4 *5 (-13 (-284) (-136))) (-4 *8 (-880 *5 *7 *6)) + (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-523)) + (-5 *1 (-855 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-383 (-523))) + (-5 *1 (-409 *4 *3)) (-4 *3 (-406 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-562 *3)) (-4 *3 (-406 *5)) + (-4 *5 (-13 (-786) (-515) (-964 (-523)))) + (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-409 *5 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1145 *4)) (-4 *4 (-1127)) + (-4 *1 (-318 *4 *3 *5)) (-4 *5 (-1145 (-383 *3)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1117 *4 *5 *3 *6)) (-4 *4 (-515)) (-4 *5 (-732)) + (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-339)) (-5 *2 (-108))))) (((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) ((*1 *1 *2) @@ -15190,224 +13293,196 @@ (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973))))) +(((*1 *2 *1) + (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) + (-4 *3 (-897))))) +(((*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-151 *3 *2)) (-4 *3 (-152 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-346 *2 *4)) (-4 *4 (-1145 *2)) + (-4 *2 (-158)))) + ((*1 *2) + (-12 (-4 *4 (-1145 *2)) (-4 *2 (-158)) (-5 *1 (-384 *3 *2 *4)) + (-4 *3 (-385 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *3 (-1145 *2)) (-4 *2 (-158)))) + ((*1 *2) + (-12 (-4 *3 (-1145 *2)) (-5 *2 (-523)) (-5 *1 (-707 *3 *4)) + (-4 *4 (-385 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *3 (-158)))) + ((*1 *2 *3) + (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1145 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-158))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-284)) (-5 *1 (-164 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) + ((*1 *1 *1 *1) (-5 *1 (-1034)))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) + (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-589 (-710))))) + ((*1 *2 *1) + (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) + (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-589 (-710)))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-589 (-108))) (-5 *5 (-629 (-203))) + (-5 *6 (-629 (-523))) (-5 *7 (-203)) (-5 *3 (-523)) (-5 *2 (-962)) + (-5 *1 (-694))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-2 (|:| |k| (-1087)) (|:| |c| (-1189 *3))))) + (-5 *1 (-1189 *3)) (-4 *3 (-973)))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-2 (|:| |k| *3) (|:| |c| (-1191 *3 *4))))) + (-5 *1 (-1191 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-786)) (-5 *4 (-589 *6)) + (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-589 *4)))) + (-5 *1 (-1095 *6)) (-5 *5 (-589 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1083 (-523))) (-5 *2 (-523)) (-5 *1 (-873))))) (((*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-339)) (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) + (-5 *1 (-706 *3 *4)) (-4 *3 (-648 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-339)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-788 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-339)) (-4 *5 (-973)) + (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-789 *5 *3)) + (-4 *3 (-788 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-589 *6)) + (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-1169 *5)) (-4 *5 (-284)) + (-4 *5 (-973)) (-5 *2 (-629 *5)) (-5 *1 (-956 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) + ((*1 *1 *1 *1) (-5 *1 (-1034)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1083 *7)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-973)) (-5 *2 (-1083 *6)) + (-5 *1 (-297 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-951 *3)) + (-4 *3 (-13 (-784) (-339) (-949))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) + (-4 *3 (-1145 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-989 *2 *3)) (-4 *2 (-13 (-784) (-339))) + (-4 *3 (-1145 *2))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-696))))) +(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-512))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *3 (-515))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) + (-5 *3 (-589 (-523))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) + (-5 *3 (-589 (-523)))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-696))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *1) (-5 *1 (-108)))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-339)) (-5 *2 (-1083 *4)) + (-5 *1 (-496 *4 *5 *6)) (-4 *5 (-339)) (-4 *6 (-13 (-339) (-784)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1068 (-203))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2464 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-962)) (-5 *1 (-282))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-973)) + (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-1145 *4))))) (((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-993 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1174)) (-5 *1 (-1024 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) - (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1123)) (-5 *2 (-523))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) + (-4 *3 (-13 (-406 *6) (-27) (-1109))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-525 *6 *3 *7)) (-4 *7 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) (((*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-834 *3)) (-4 *3 (-1016)) (-5 *2 (-1018 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1016)) (-5 *2 (-1018 (-589 *4))) (-5 *1 (-835 *4)) - (-5 *3 (-589 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1016)) (-5 *2 (-1018 (-1018 *4))) (-5 *1 (-835 *4)) - (-5 *3 (-1018 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1018 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) (((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-589 (-225 *4 *5))) (-5 *2 (-225 *4 *5)) - (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-577 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-876 *4 *3)) - (-4 *3 (-1144 *4))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4245)) (-4 *1 (-349 *2)) (-4 *2 (-1122)) - (-4 *2 (-786)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4245)) - (-4 *1 (-349 *3)) (-4 *3 (-1122))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) - (-5 *2 (-629 *4)))) - ((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-629 *4)) (-5 *1 (-392 *3 *4)) - (-4 *3 (-393 *4)))) - ((*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-589 *1)) (-4 *1 (-1048 *3))))) -(((*1 *1 *1) (-5 *1 (-985)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) - (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) - (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) - (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) - (-5 *1 (-1043 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-13 (-284) (-786) (-136))) - (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1043 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-271 (-383 (-883 *5)))) (-5 *4 (-1087)) - (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) - (-5 *1 (-1043 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-271 (-383 (-883 *4)))) - (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) - (-5 *1 (-1043 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) - (-4 *5 (-13 (-284) (-786) (-136))) - (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-383 (-883 *4)))) - (-4 *4 (-13 (-284) (-786) (-136))) - (-5 *2 (-589 (-589 (-271 (-292 *4))))) (-5 *1 (-1043 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-271 (-383 (-883 *5))))) (-5 *4 (-589 (-1087))) - (-4 *5 (-13 (-284) (-786) (-136))) - (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-589 (-271 (-383 (-883 *4))))) - (-4 *4 (-13 (-284) (-786) (-136))) - (-5 *2 (-589 (-589 (-271 (-292 *4))))) (-5 *1 (-1043 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) -(((*1 *1 *1) (-12 (-5 *1 (-1109 *2)) (-4 *2 (-1016))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-271 *2)) (-4 *2 (-666)) (-4 *2 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-836 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-589 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-732)) (-4 *3 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) - (-5 *1 (-424 *4 *5 *6 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-523)) (-5 *1 (-459 *4)) - (-4 *4 (-1144 *2))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1016)) (-5 *1 (-894 *3 *2)) (-4 *3 (-1016))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1016)) (-5 *2 (-108)) (-5 *1 (-816 *3 *4 *5)) - (-4 *3 (-1016)) (-4 *5 (-609 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)) + (-12 (-5 *2 (-1174)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016))))) -(((*1 *2 *3) - (-12 (-5 *3 (-523)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-5 *2 (-1173)) (-5 *1 (-424 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6))))) -(((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) - (-5 *2 (-389 *4 (-383 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1168 *6)) (-4 *6 (-13 (-385 *4 *5) (-964 *4))) - (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-4 *3 (-284)) - (-5 *1 (-389 *3 *4 *5 *6)))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-710)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) - (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-4 *1 (-350 *3 *4)) - (-4 *4 (-158))))) -(((*1 *2 *3) - (-12 (-5 *3 (-562 *5)) (-4 *5 (-406 *4)) (-4 *4 (-964 (-523))) - (-4 *4 (-13 (-786) (-515))) (-5 *2 (-1083 *5)) (-5 *1 (-31 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-562 *1)) (-4 *1 (-973)) (-4 *1 (-279)) - (-5 *2 (-1083 *1))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) - (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-1083 *4)) - (-5 *1 (-493 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-105)))) - ((*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-710)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-523)) (-4 *1 (-349 *3)) (-4 *3 (-1122)) - (-4 *3 (-1016)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-349 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) - (-5 *2 (-523)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-349 *4)) (-4 *4 (-1122)) - (-5 *2 (-523)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-523)) (-5 *3 (-130)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-523))))) -(((*1 *2 *3) - (-12 (-4 *2 (-339)) (-4 *2 (-784)) (-5 *1 (-876 *2 *3)) - (-4 *3 (-1144 *2))))) + (-12 (-5 *2 (-710)) (-4 *1 (-1167 *3)) (-4 *3 (-23)) (-4 *3 (-1123))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) - (-4 *4 (-13 (-786) (-515)))))) + (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) (((*1 *2) - (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-393 *3))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-852)) (-5 *4 (-394 *6)) (-4 *6 (-1144 *5)) - (-4 *5 (-973)) (-5 *2 (-589 *6)) (-5 *1 (-419 *5 *6))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-108)) - (-5 *1 (-820 *4 *5)) (-4 *5 (-1016)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-5 *2 (-108)) - (-5 *1 (-821 *5 *3)) (-4 *3 (-1122)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *6)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) - (-4 *6 (-1122)) (-5 *2 (-108)) (-5 *1 (-821 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-4 *1 (-140 *3)))) + (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523))))) + ((*1 *2 *2) + (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523)))))) +(((*1 *2) + (-12 (-4 *3 (-973)) (-5 *2 (-888 (-652 *3 *4))) (-5 *1 (-652 *3 *4)) + (-4 *4 (-1145 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-4 *1 (-140 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-589 (-2 (|:| -2735 (-710)) (|:| -1288 *4) (|:| |num| *4)))) - (-4 *4 (-1144 *3)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)))) + (-5 *2 (-589 (-2 (|:| -1475 (-710)) (|:| -3710 *4) (|:| |num| *4)))) + (-4 *4 (-1145 *3)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-108)) (-5 *1 (-413)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-5 *3 (-589 (-1087))) (-5 *4 (-108)) (-5 *1 (-413)))) ((*1 *2 *1) - (-12 (-5 *2 (-1068 *3)) (-5 *1 (-553 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-1068 *3)) (-5 *1 (-553 *3)) (-4 *3 (-1123)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-580 *2)) (-4 *2 (-158)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) @@ -15424,23 +13499,23 @@ ((*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4)) (-4 *2 (-786)) (-4 *3 (-1016)) (-14 *4 - (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *3)) - (-2 (|:| -3878 *2) (|:| -2735 *3)))))) + (-1 (-108) (-2 (|:| -4013 *2) (|:| -1475 *3)) + (-2 (|:| -4013 *2) (|:| -1475 *3)))))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-804 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) + (-12 (-5 *1 (-804 *2 *3)) (-4 *2 (-1123)) (-4 *3 (-1123)))) ((*1 *1 *2) - (-12 (-5 *2 (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 *4)))) + (-12 (-5 *2 (-589 (-2 (|:| -3772 (-1087)) (|:| -2482 *4)))) (-4 *4 (-1016)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-589 *5)) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-589 (-1052 *3 *5))) (-5 *1 (-1052 *3 *5)) (-4 *3 (-13 (-1016) (-33))))) ((*1 *2 *3) - (-12 (-5 *3 (-589 (-2 (|:| |val| *4) (|:| -3072 *5)))) + (-12 (-5 *3 (-589 (-2 (|:| |val| *4) (|:| -3643 *5)))) (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-589 (-1052 *4 *5))) (-5 *1 (-1052 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3072 *4))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3643 *4))) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1052 *3 *4)))) ((*1 *1 *2 *3) @@ -15463,142 +13538,121 @@ (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1077 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-589 *5) *6)) - (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) - (-5 *2 (-589 (-2 (|:| |poly| *6) (|:| -1710 *3)))) - (-5 *1 (-748 *5 *6 *3 *7)) (-4 *3 (-599 *6)) - (-4 *7 (-599 (-383 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-589 *5) *6)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-4 *6 (-1144 *5)) - (-5 *2 (-589 (-2 (|:| |poly| *6) (|:| -1710 (-597 *6 (-383 *6)))))) - (-5 *1 (-751 *5 *6)) (-5 *3 (-597 *6 (-383 *6)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1135 (-523))) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-594 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-589 *3)) (-4 *3 (-1025 *5 *6 *7 *8)) - (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) - (-5 *1 (-545 *5 *6 *7 *8 *3))))) -(((*1 *2) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-786)) - (-5 *2 - (-2 (|:| |f1| (-589 *4)) (|:| |f2| (-589 (-589 (-589 *4)))) - (|:| |f3| (-589 (-589 *4))) (|:| |f4| (-589 (-589 (-589 *4)))))) - (-5 *1 (-1094 *4)) (-5 *3 (-589 (-589 (-589 *4))))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) - (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) - (-5 *1 (-743 *4 *2)) (-4 *2 (-13 (-29 *4) (-1108) (-889))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *1) (-5 *1 (-794))) - ((*1 *2 *3) - (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973))))) (((*1 *2 *2) - (-12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) - (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) + (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) + (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1123)) (-5 *2 (-589 *3))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *1 (-1042 *3 *2)) (-4 *3 (-1145 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3855 *6) (|:| |sol?| (-108))) (-523) + *6)) + (-4 *6 (-339)) (-4 *7 (-1145 *6)) + (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) + (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1169 *4)) (-5 *3 (-629 *4)) (-4 *4 (-339)) + (-5 *1 (-610 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-339)) + (-4 *5 (-13 (-349 *4) (-10 -7 (-6 -4249)))) + (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4249)))) + (-5 *1 (-611 *4 *5 *2 *3)) (-4 *3 (-627 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-589 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-339)) + (-5 *1 (-753 *2 *3)) (-4 *3 (-599 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *1 (-1042 *3 *2)) (-4 *3 (-1145 *2))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-172))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) - (-4 *2 (-1144 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1145 *2)) (-4 *2 (-1127)) (-5 *1 (-137 *2 *4 *3)) + (-4 *3 (-1145 (-383 *4)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-1136 (-523)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1087)) (-4 *5 (-339)) (-5 *2 (-1068 (-1068 (-883 *5)))) + (-5 *1 (-1177 *5)) (-5 *4 (-1068 (-883 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) (((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-158)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 *3)) (-4 *3 (-339)) (-14 *6 (-1168 (-629 *3))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-339)) (-14 *6 (-1169 (-629 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))))) ((*1 *1 *2) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1122)))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1123)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-315 (-1472 'JINT 'X 'ELAM) (-1472) (-638)))) + (-12 (-5 *2 (-1169 (-315 (-1704 'JINT 'X 'ELAM) (-1704) (-638)))) (-5 *1 (-59 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 'XC) (-638)))) + (-12 (-5 *2 (-1169 (-315 (-1704) (-1704 'XC) (-638)))) (-5 *1 (-61 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-315 (-1472 'X) (-1472) (-638))) (-5 *1 (-62 *3)) + (-12 (-5 *2 (-315 (-1704 'X) (-1704) (-638))) (-5 *1 (-62 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-629 (-315 (-1472) (-1472 'X 'HESS) (-638)))) + (-12 (-5 *2 (-629 (-315 (-1704) (-1704 'X 'HESS) (-638)))) (-5 *1 (-63 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-315 (-1472) (-1472 'XC) (-638))) (-5 *1 (-64 *3)) + (-12 (-5 *2 (-315 (-1704) (-1704 'XC) (-638))) (-5 *1 (-64 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-315 (-1472 'X) (-1472 '-1294) (-638)))) + (-12 (-5 *2 (-1169 (-315 (-1704 'X) (-1704 '-1343) (-638)))) (-5 *1 (-69 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 'X) (-638)))) + (-12 (-5 *2 (-1169 (-315 (-1704) (-1704 'X) (-638)))) (-5 *1 (-72 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-315 (-1472 'X 'EPS) (-1472 '-1294) (-638)))) + (-12 (-5 *2 (-1169 (-315 (-1704 'X 'EPS) (-1704 '-1343) (-638)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1087)) (-14 *4 (-1087)) (-14 *5 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-315 (-1472 'EPS) (-1472 'YA 'YB) (-638)))) + (-12 (-5 *2 (-1169 (-315 (-1704 'EPS) (-1704 'YA 'YB) (-638)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1087)) (-14 *4 (-1087)) (-14 *5 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-315 (-1472) (-1472 'X) (-638))) (-5 *1 (-75 *3)) + (-12 (-5 *2 (-315 (-1704) (-1704 'X) (-638))) (-5 *1 (-75 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-315 (-1472) (-1472 'X) (-638))) (-5 *1 (-76 *3)) + (-12 (-5 *2 (-315 (-1704) (-1704 'X) (-638))) (-5 *1 (-76 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 'XC) (-638)))) + (-12 (-5 *2 (-1169 (-315 (-1704) (-1704 'XC) (-638)))) (-5 *1 (-77 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 'X) (-638)))) + (-12 (-5 *2 (-1169 (-315 (-1704) (-1704 'X) (-638)))) (-5 *1 (-78 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 'X) (-638)))) + (-12 (-5 *2 (-1169 (-315 (-1704) (-1704 'X) (-638)))) (-5 *1 (-79 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-315 (-1472 'X '-1294) (-1472) (-638)))) + (-12 (-5 *2 (-1169 (-315 (-1704 'X '-1343) (-1704) (-638)))) (-5 *1 (-80 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-629 (-315 (-1472 'X '-1294) (-1472) (-638)))) + (-12 (-5 *2 (-629 (-315 (-1704 'X '-1343) (-1704) (-638)))) (-5 *1 (-81 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-629 (-315 (-1472 'X) (-1472) (-638)))) (-5 *1 (-82 *3)) + (-12 (-5 *2 (-629 (-315 (-1704 'X) (-1704) (-638)))) (-5 *1 (-82 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-315 (-1472 'X) (-1472) (-638)))) + (-12 (-5 *2 (-1169 (-315 (-1704 'X) (-1704) (-638)))) (-5 *1 (-83 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-315 (-1472 'X) (-1472 '-1294) (-638)))) + (-12 (-5 *2 (-1169 (-315 (-1704 'X) (-1704 '-1343) (-638)))) (-5 *1 (-84 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-629 (-315 (-1472 'XL 'XR 'ELAM) (-1472) (-638)))) + (-12 (-5 *2 (-629 (-315 (-1704 'XL 'XR 'ELAM) (-1704) (-638)))) (-5 *1 (-85 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-315 (-1472 'X) (-1472 '-1294) (-638))) (-5 *1 (-87 *3)) + (-12 (-5 *2 (-315 (-1704 'X) (-1704 '-1343) (-638))) (-5 *1 (-87 *3)) (-14 *3 (-1087)))) ((*1 *2 *1) (-12 (-5 *2 (-932 2)) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) @@ -15615,14 +13669,14 @@ (-12 (-5 *2 (-218 *4 *5)) (-14 *4 (-710)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)))) ((*1 *2 *3) - (-12 (-5 *3 (-1168 (-629 *4))) (-4 *4 (-158)) - (-5 *2 (-1168 (-629 (-383 (-883 *4))))) (-5 *1 (-169 *4)))) + (-12 (-5 *3 (-1169 (-629 *4))) (-4 *4 (-158)) + (-5 *2 (-1169 (-629 (-383 (-883 *4))))) (-5 *1 (-169 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-13 (-786) - (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) - (-15 -2823 ((-1173) $))))) + (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 ((-1174) $)) + (-15 -4048 ((-1174) $))))) (-5 *1 (-193 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-932 10)) (-5 *1 (-196)))) ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196)))) @@ -15635,12 +13689,12 @@ ((*1 *1 *2) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) ((*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-252)))) ((*1 *2 *1) - (-12 (-4 *2 (-1144 *3)) (-5 *1 (-266 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *2 (-1145 *3)) (-5 *1 (-266 *3 *2 *4 *5 *6 *7)) (-4 *3 (-158)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1153 *4 *5 *6)) (-4 *4 (-13 (-27) (-1108) (-406 *3))) + (-12 (-5 *2 (-1154 *4 *5 *6)) (-4 *4 (-13 (-27) (-1109) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4) (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *1 (-289 *3 *4 *5 *6)))) @@ -15656,21 +13710,21 @@ (-4 *3 (-305 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) - (-5 *2 (-1190 *3 *4)))) + (-5 *2 (-1191 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) - (-5 *2 (-1181 *3 *4)))) + (-5 *2 (-1182 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) + (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) (-4 *1 (-359)))) ((*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-359)))) ((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-359)))) ((*1 *1 *2) (-12 (-5 *2 (-629 (-638))) (-4 *1 (-359)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) + (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) (-4 *1 (-360)))) ((*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-360)))) ((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-360)))) @@ -15680,71 +13734,71 @@ ((*1 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-370)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) + (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) (-4 *1 (-372)))) ((*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-372)))) ((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-372)))) ((*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-155 (-355))))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-355)))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-523)))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-292 (-155 (-355)))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-633)))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-638)))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-640)))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-292 (-633))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-292 (-638))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-292 (-640))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) + (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) - (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-5 *1 (-374 *3 *4 *5 *6)) - (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-306)) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) - (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *4 (-3 (|:| |fst| (-410)) (|:| -1495 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 (-5 *2 (-307 *4)) (-4 *4 (-13 (-786) (-21))) @@ -15772,28 +13826,28 @@ ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-413)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) + (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) (-4 *1 (-415)))) ((*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-415)))) ((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-415)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168 (-638))) (-4 *1 (-415)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 (-638))) (-4 *1 (-415)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) + (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -2108 (-589 (-306))))) (-4 *1 (-416)))) ((*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-416)))) ((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-416)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168 (-383 (-883 *3)))) (-4 *3 (-158)) - (-14 *6 (-1168 (-629 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-12 (-5 *2 (-1169 (-383 (-883 *3)))) (-4 *3 (-158)) + (-14 *6 (-1169 (-629 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))))) ((*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-443)))) ((*1 *1 *2) - (-12 (-5 *2 (-1153 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) + (-12 (-5 *2 (-1154 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-449 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-5 *2 (-932 16)) (-5 *1 (-460)))) ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460)))) @@ -15804,13 +13858,13 @@ (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-4 *3 (-158)) (-5 *1 (-557 *3 *2)) (-4 *2 (-684 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-1123)))) ((*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-973)))) ((*1 *2 *1) - (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) ((*1 *2 *1) - (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-12 (-5 *2 (-1182 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) ((*1 *1 *2) (-12 (-4 *3 (-158)) (-5 *1 (-581 *3 *2)) (-4 *2 (-684 *3)))) @@ -15843,20 +13897,20 @@ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1144 *3)))) + (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3878 *3) (|:| -2735 *4))) + (-12 (-5 *2 (-2 (|:| -4013 *3) (|:| -1475 *4))) (-5 *1 (-653 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-1016)) (-14 *5 (-1 (-108) *2 *2)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -3878 *3) (|:| -2735 *4))) (-4 *3 (-786)) + (-12 (-5 *2 (-2 (|:| -4013 *3) (|:| -1475 *4))) (-4 *3 (-786)) (-4 *4 (-1016)) (-5 *1 (-653 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-158)) (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-589 (-2 (|:| -2935 *3) (|:| -2302 *4)))) (-4 *3 (-973)) + (-12 (-5 *2 (-589 (-2 (|:| -3474 *3) (|:| -2836 *4)))) (-4 *3 (-973)) (-4 *4 (-666)) (-5 *1 (-675 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-703)))) ((*1 *1 *2) @@ -15865,34 +13919,34 @@ (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) - (|:| -3499 (-589 (-1011 (-779 (-203))))) + (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) (-5 *1 (-708)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-292 (-203))) - (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) + (|:| -2464 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-708)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-708)))) ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-708)))) - ((*1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-712 *3)) (-4 *3 (-1122)))) + ((*1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-712 *3)) (-4 *3 (-1123)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-747)))) @@ -15909,29 +13963,29 @@ (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) + (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) - (|:| -2262 (-589 (-203))))))) + (|:| -2773 (-589 (-203))))))) (-5 *1 (-777)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) + (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) (-5 *1 (-777)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) + (-2 (|:| |fn| (-292 (-203))) (|:| -2773 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *1 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-777)))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *3)) (-14 *3 (-1087)) (-5 *1 (-791 *3 *4 *5 *6)) + (-12 (-5 *2 (-1165 *3)) (-14 *3 (-1087)) (-5 *1 (-791 *3 *4 *5 *6)) (-4 *4 (-973)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-793)))) ((*1 *1 *2) @@ -15962,7 +14016,7 @@ (-5 *1 (-829)))) ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-829)))) ((*1 *2 *1) - (-12 (-5 *2 (-1109 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1016)))) + (-12 (-5 *2 (-1110 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1016)))) ((*1 *1 *2) (-12 (-5 *2 (-589 (-836 *3))) (-4 *3 (-1016)) (-5 *1 (-835 *3)))) ((*1 *2 *1) @@ -15981,13 +14035,13 @@ ((*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-900)))) ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) - ((*1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *1 (-960 *3)) (-4 *3 (-1122)))) - ((*1 *2 *3) (-12 (-5 *3 (-288)) (-5 *1 (-960 *2)) (-4 *2 (-1122)))) + ((*1 *2 *3) (-12 (-5 *2 (-1174)) (-5 *1 (-960 *3)) (-4 *3 (-1123)))) + ((*1 *2 *3) (-12 (-5 *3 (-288)) (-5 *1 (-960 *2)) (-4 *2 (-1123)))) ((*1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *2 (-880 *3 *4 *5)) (-14 *6 (-589 *2)))) - ((*1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1123)))) ((*1 *2 *3) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-969 *3)) (-4 *3 (-515)))) ((*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-973)))) @@ -16006,24 +14060,24 @@ (-4 *4 (-973)))) ((*1 *1 *2) (-12 (-5 *2 (-133)) (-4 *1 (-1056)))) ((*1 *1 *2) - (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1123)) (-5 *1 (-1068 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973)))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1141 *4 *3)) (-4 *3 (-973)) (-14 *4 (-1087)) + (-12 (-5 *2 (-1142 *4 *3)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-1085 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1086)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1087)))) - ((*1 *2 *1) (-12 (-5 *2 (-1096 (-1087) (-413))) (-5 *1 (-1091)))) + ((*1 *2 *1) (-12 (-5 *2 (-1097 (-1087) (-413))) (-5 *1 (-1091)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) @@ -16032,490 +14086,587 @@ ((*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) ((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1095 *3)) (-4 *3 (-1016)))) - ((*1 *2 *3) (-12 (-5 *2 (-1103)) (-5 *1 (-1102 *3)) (-4 *3 (-1016)))) - ((*1 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-1103)))) - ((*1 *1 *2) (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-5 *1 (-1117 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1117 *3)) (-4 *3 (-973)))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3) (-12 (-5 *2 (-1104)) (-5 *1 (-1103 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-1104)))) + ((*1 *1 *2) (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-5 *1 (-1118 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1118 *3)) (-4 *3 (-973)))) ((*1 *1 *2) - (-12 (-5 *2 (-888 *3)) (-4 *3 (-1122)) (-5 *1 (-1120 *3)))) + (-12 (-5 *2 (-888 *3)) (-4 *3 (-1123)) (-5 *1 (-1121 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-973)) (-4 *1 (-1130 *3 *2)) (-4 *2 (-1159 *3)))) + (-12 (-4 *3 (-973)) (-4 *1 (-1131 *3 *2)) (-4 *2 (-1160 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1132 *3 *4 *5)) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1011 *3)) (-4 *3 (-1122)) (-5 *1 (-1135 *3)))) + (-12 (-5 *2 (-1011 *3)) (-4 *3 (-1123)) (-5 *1 (-1136 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *3)) (-14 *3 (-1087)) (-5 *1 (-1141 *3 *4)) + (-12 (-5 *2 (-1165 *3)) (-14 *3 (-1087)) (-5 *1 (-1142 *3 *4)) (-4 *4 (-973)))) ((*1 *1 *2) - (-12 (-4 *3 (-973)) (-4 *1 (-1151 *3 *2)) (-4 *2 (-1128 *3)))) + (-12 (-4 *3 (-973)) (-4 *1 (-1152 *3 *2)) (-4 *2 (-1129 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1153 *3 *4 *5)) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1160 *3 *4 *5)) + (-12 (-5 *2 (-1165 *4)) (-14 *4 (-1087)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1141 *4 *3)) (-4 *3 (-973)) (-14 *4 (-1087)) - (-14 *5 *3) (-5 *1 (-1160 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1164 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1169)))) - ((*1 *2 *3) (-12 (-5 *3 (-443)) (-5 *2 (-1169)) (-5 *1 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1173)))) + (-12 (-5 *2 (-1142 *4 *3)) (-4 *3 (-973)) (-14 *4 (-1087)) + (-14 *5 *3) (-5 *1 (-1161 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1165 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1170)))) + ((*1 *2 *3) (-12 (-5 *3 (-443)) (-5 *2 (-1170)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1174)))) ((*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-14 *6 (-589 *4)) - (-5 *1 (-1178 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-880 *3 *5 *4)) + (-5 *1 (-1179 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-880 *3 *5 *4)) (-14 *7 (-589 (-710))) (-14 *8 (-710)))) ((*1 *2 *1) - (-12 (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-1178 *3 *4 *5 *2 *6 *7 *8)) + (-12 (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-1179 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-14 *6 (-589 *4)) (-14 *7 (-589 (-710))) (-14 *8 (-710)))) - ((*1 *1 *2) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-973)))) - ((*1 *1 *2) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) + ((*1 *1 *2) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-973)))) + ((*1 *1 *2) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) ((*1 *2 *1) - (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) + (-12 (-5 *2 (-1191 *3 *4)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) ((*1 *2 *1) - (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) + (-12 (-5 *2 (-1182 *3 *4)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) ((*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) - (-5 *1 (-1186 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-1189 *3 *2)) (-4 *3 (-973)) (-4 *2 (-782))))) + (-5 *1 (-1187 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-1190 *3 *2)) (-4 *3 (-973)) (-4 *2 (-782))))) (((*1 *2 *3) - (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) - (-4 *4 (-325))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) - (-4 *5 (-515)) (-5 *2 (-589 (-589 (-883 *5)))) (-5 *1 (-1093 *5))))) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) + (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) + (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) + (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) + (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) + (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) + (-5 *1 (-240)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-523)) (-5 *4 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) + (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) + (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) + (-5 *2 (-1174)) (-5 *1 (-1171)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -2418 (-203)) + (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) + (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) + (-5 *1 (-1171)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-589 (-883 *4))) (-5 *3 (-589 (-1087))) (-4 *4 (-427)) + (-5 *1 (-849 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-1070)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-962)) + (-5 *1 (-690))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) + (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1109))) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-540 *3)) (-5 *1 (-525 *5 *3 *6)) (-4 *6 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-383 *2)) (-4 *2 (-1144 *5)) - (-5 *1 (-746 *5 *2 *3 *6)) - (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) - (-4 *3 (-599 *2)) (-4 *6 (-599 *4)))) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *1) + (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) + (-5 *2 (-383 (-523))))) + ((*1 *2 *1) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-394 *3)) (-4 *3 (-508)) + (-4 *3 (-515)))) + ((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-383 (-523))))) + ((*1 *2 *1) + (-12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) + (-5 *2 (-383 (-523))))) + ((*1 *2 *1) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-772 *3)) (-4 *3 (-508)) + (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-779 *3)) (-4 *3 (-508)) + (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) + (-5 *2 (-383 (-523))))) + ((*1 *2 *3) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-936 *3)) (-4 *3 (-964 *2))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-834 *3)) (-4 *3 (-1016)) (-5 *2 (-1018 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1016)) (-5 *2 (-1018 (-589 *4))) (-5 *1 (-835 *4)) + (-5 *3 (-589 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1016)) (-5 *2 (-1018 (-1018 *4))) (-5 *1 (-835 *4)) + (-5 *3 (-1018 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1018 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) + (|:| |expense| (-355)) (|:| |accuracy| (-355)) + (|:| |intermediateResults| (-355)))) + (-5 *2 (-962)) (-5 *1 (-282))))) +(((*1 *2 *2) + (-12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) + (-4 *7 (-921 *4)) (-4 *2 (-627 *7 *8 *9)) + (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) + (-4 *8 (-349 *7)) (-4 *9 (-349 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2)) (-4 *2 (-284)))) + ((*1 *2 *2) + (-12 (-4 *3 (-284)) (-4 *3 (-158)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) + (-4 *2 (-627 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-976 *2 *3 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *2 *4)) (-4 *4 (-284))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-108)) (-5 *1 (-512))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-710) *2)) (-5 *4 (-710)) (-4 *2 (-1016)) + (-5 *1 (-619 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-710) *3)) (-4 *3 (-1016)) (-5 *1 (-622 *3))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-852)) (-5 *1 (-417 *2)) + (-4 *2 (-1145 (-523))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-852)) (-5 *4 (-710)) (-5 *1 (-417 *2)) + (-4 *2 (-1145 (-523))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *1 (-417 *2)) + (-4 *2 (-1145 (-523))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *5 (-710)) + (-5 *1 (-417 *2)) (-4 *2 (-1145 (-523))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *5 (-710)) + (-5 *6 (-108)) (-5 *1 (-417 *2)) (-4 *2 (-1145 (-523))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-589 (-383 *2))) (-4 *2 (-1144 *5)) - (-5 *1 (-746 *5 *2 *3 *6)) - (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) - (-4 *6 (-599 (-383 *2)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP)))) - (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) + (-12 (-5 *3 (-852)) (-5 *4 (-394 *2)) (-4 *2 (-1145 *5)) + (-5 *1 (-419 *5 *2)) (-4 *5 (-973))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3643 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) +(((*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-1098 *2)) (-4 *2 (-339))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1169 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) + (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) - (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-108))))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-523)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1169 (-1169 (-523)))) (-5 *3 (-852)) (-5 *1 (-441))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-629 (-383 (-883 (-523))))) - (-5 *2 (-629 (-292 (-523)))) (-5 *1 (-958))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-1126)) - (-4 *6 (-1144 (-383 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-318 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) - (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-906 *3 *4 *5 *6))))) + (-12 (-5 *3 (-523)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-973)) + (-5 *1 (-297 *4 *5 *2 *6)) (-4 *6 (-880 *2 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *4 *5 *6 *7)) - (-4 *4 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-4 *7 (-1122))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) - (-4 *3 (-1016))))) -(((*1 *2 *2) (-12 (-5 *2 (-364)) (-5 *1 (-412)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-364)) (-5 *1 (-412))))) + (-12 (-5 *3 (-383 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-515)) + (-4 *4 (-973)) (-4 *2 (-1160 *4)) (-5 *1 (-1163 *4 *5 *6 *2)) + (-4 *6 (-599 *5))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1109))) (-5 *2 (-108))))) +(((*1 *2) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-100))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-155 (-203)))) (-5 *2 (-962)) + (-5 *1 (-696))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) + ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) + ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1136 (-523))) (-4 *1 (-259 *3)) (-4 *3 (-1123)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-259 *3)) (-4 *3 (-1123))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-589 (-110)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-794))))) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1109) (-930))) + (-5 *1 (-161 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 (-225 *4 *5))) (-5 *2 (-225 *4 *5)) + (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-577 *4 *5))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-629 *3)) - (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) - (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-383 (-883 *5)) (-1077 (-1087) (-883 *5)))) - (-4 *5 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *5))))) - (-5 *1 (-269 *5)) (-5 *4 (-629 (-383 (-883 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) - (-4 *6 (-13 (-515) (-964 *5))) (-4 *5 (-515)) - (-5 *2 (-589 (-589 (-271 (-383 (-883 *6)))))) (-5 *1 (-965 *5 *6))))) -(((*1 *1) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108)))))) + (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) (((*1 *2 *3) - (-12 (-5 *3 (-883 *5)) (-4 *5 (-973)) (-5 *2 (-455 *4 *5)) - (-5 *1 (-875 *4 *5)) (-14 *4 (-589 (-1087)))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-805)) - (-5 *5 (-852)) (-5 *6 (-589 (-240))) (-5 *2 (-1169)) - (-5 *1 (-1172)))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *5 (-1145 *4)) (-5 *2 (-589 (-596 (-383 *5)))) + (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-383 *5)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) + (-5 *2 (-108)) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) + (-5 *2 (-589 (-589 (-874 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-589 (-589 (-874 *4)))) (-5 *3 (-108)) (-4 *4 (-973)) + (-4 *1 (-1048 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 (-589 (-874 *3)))) (-4 *3 (-973)) + (-4 *1 (-1048 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-589 (-589 (-589 *4)))) (-5 *3 (-108)) + (-4 *1 (-1048 *4)) (-4 *4 (-973)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-589 (-589 (-874 *4)))) (-5 *3 (-108)) + (-4 *1 (-1048 *4)) (-4 *4 (-973)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-589 (-589 (-589 *5)))) (-5 *3 (-589 (-157))) + (-5 *4 (-157)) (-4 *1 (-1048 *5)) (-4 *5 (-973)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-589 (-589 (-874 *5)))) (-5 *3 (-589 (-157))) + (-5 *4 (-157)) (-4 *1 (-1048 *5)) (-4 *5 (-973))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-108)) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-4 *3 (-13 (-27) (-1109) (-406 *6) (-10 -8 (-15 -1691 ($ *7))))) + (-4 *7 (-784)) + (-4 *8 + (-13 (-1147 *3 *7) (-339) (-1109) + (-10 -8 (-15 -3984 ($ $)) (-15 -2814 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) + (-5 *1 (-398 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1070)) (-4 *9 (-912 *8)) + (-14 *10 (-1087))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) + (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) + (-4 *8 (-786)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3781 (-589 *9)))) + (-5 *3 (-589 *9)) (-4 *1 (-1117 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-589 (-240))) - (-5 *2 (-1169)) (-5 *1 (-1172))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) - (-5 *2 (-962)) (-5 *1 (-692))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) + (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3781 (-589 *8)))) + (-5 *3 (-589 *8)) (-4 *1 (-1117 *5 *6 *7 *8))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087)) + (-12 (-4 *4 (-786)) (-5 *2 - (-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) - (|:| |singularities| (-1068 (-203))))) - (-5 *1 (-100))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1087)) - (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-540 *3)) (-5 *1 (-402 *5 *3)) - (-4 *3 (-13 (-1108) (-29 *5)))))) + (-2 (|:| |f1| (-589 *4)) (|:| |f2| (-589 (-589 (-589 *4)))) + (|:| |f3| (-589 (-589 *4))) (|:| |f4| (-589 (-589 (-589 *4)))))) + (-5 *1 (-1095 *4)) (-5 *3 (-589 (-589 (-589 *4))))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-710)) + (-4 *3 (-13 (-666) (-344) (-10 -7 (-15 ** (*3 *3 (-523)))))) + (-5 *1 (-224 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) - (-5 *2 (-629 *4)))) - ((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-629 *4)) (-5 *1 (-392 *3 *4)) - (-4 *3 (-393 *4)))) - ((*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *1 *1) - (-12 (-4 *2 (-325)) (-4 *2 (-973)) (-5 *1 (-652 *2 *3)) - (-4 *3 (-1144 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-589 (-589 *8))) (-5 *3 (-589 *8)) - (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) - (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-108)) - (-5 *1 (-855 *5 *6 *7 *8))))) + (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-876 *4 *3)) + (-4 *3 (-1145 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-219)) (-5 *3 (-1070)))) - ((*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-219)))) - ((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) - (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1)))) - (-5 *2 (-962)) (-5 *1 (-693))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) - (-4 *2 (-1159 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1144 *3)) - (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1159 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) - (-4 *2 (-1159 *3)))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-292 (-523)))) + (-5 *1 (-958))))) +(((*1 *1 *1) (-4 *1 (-575))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) - (-5 *1 (-1064 *3))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930) (-1109)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-515) (-786))) (-5 *2 (-155 *5)) + (-5 *1 (-552 *4 *5 *3)) (-4 *5 (-13 (-406 *4) (-930) (-1109))) + (-4 *3 (-13 (-406 (-155 *4)) (-930) (-1109)))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) +(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699))))) (((*1 *2) - (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) - (-4 *3 (-13 (-786) (-515)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-725))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-104)) (-5 *1 (-160)))) - ((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-104)) (-5 *1 (-1003))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-710)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) - (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-973)) (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) - (-4 *5 (-216 *3 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-394 *5)) (-4 *5 (-515)) - (-5 *2 - (-2 (|:| -2735 (-710)) (|:| -2935 *5) (|:| |radicand| (-589 *5)))) - (-5 *1 (-296 *5)) (-5 *4 (-710)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-523))))) -(((*1 *1 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) - ((*1 *1 *1) - (-12 (-5 *1 (-573 *2 *3 *4)) (-4 *2 (-786)) - (-4 *3 (-13 (-158) (-657 (-383 (-523))))) (-14 *4 (-852)))) - ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) - ((*1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) - ((*1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) - (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) - (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) - (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) - (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) - (-4 *4 (-325)) (-5 *2 (-1173)) (-5 *1 (-493 *4))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) - (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *3 (-203)) - (-5 *2 (-962)) (-5 *1 (-689))))) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) (((*1 *2 *2) - (-12 (-5 *2 (-589 (-455 *3 *4))) (-14 *3 (-589 (-1087))) - (-4 *4 (-427)) (-5 *1 (-577 *3 *4))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) (((*1 *1 *1) - (-12 (-4 *1 (-230 *2 *3 *4 *5)) (-4 *2 (-973)) (-4 *3 (-786)) - (-4 *4 (-243 *3)) (-4 *5 (-732))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-443)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) - (-5 *1 (-443))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-589 (-874 *4))) (-4 *1 (-1048 *4)) (-4 *4 (-973)) - (-5 *2 (-710))))) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-349 *2)) (-4 *2 (-1123)) + (-4 *2 (-786)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4249)) + (-4 *1 (-349 *3)) (-4 *3 (-1123))))) (((*1 *2 *3) - (-12 (-5 *3 (-883 (-523))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) - ((*1 *2 *3) - (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) - ((*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-940)) (-5 *2 (-589 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1083 (-523))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1083 (-383 (-523)))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) - ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-940)) (-5 *2 (-589 *1)))) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325)))) + ((*1 *1) (-4 *1 (-344))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1144 *4)) (-5 *2 (-589 *1)) - (-4 *1 (-989 *4 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-508))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-570 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3159 *4) (|:| |sol?| (-108))) - (-523) *4)) - (-4 *4 (-339)) (-4 *5 (-1144 *4)) (-5 *1 (-533 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) + (-12 (-5 *3 (-852)) (-5 *2 (-1169 *4)) (-5 *1 (-493 *4)) + (-4 *4 (-325)))) + ((*1 *1 *1) (-4 *1 (-508))) ((*1 *1) (-4 *1 (-508))) + ((*1 *1 *1) (-5 *1 (-523))) ((*1 *1 *1) (-5 *1 (-710))) + ((*1 *2 *1) (-12 (-5 *2 (-836 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-836 *4)) (-5 *1 (-835 *4)) + (-4 *4 (-1016)))) + ((*1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-508)) (-4 *2 (-515))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-1169 *5))) (-5 *4 (-523)) (-5 *2 (-1169 *5)) + (-5 *1 (-956 *5)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3310 *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *6 (-564 (-1087))) + (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *2 (-1077 (-589 (-883 *4)) (-589 (-271 (-883 *4))))) + (-5 *1 (-475 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) + (-5 *1 (-1072 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-523)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-973)) + (-14 *4 (-1087)) (-14 *5 *3)))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-699))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1083 *7)) + (-4 *5 (-973)) (-4 *7 (-973)) (-4 *2 (-1145 *5)) + (-5 *1 (-472 *5 *2 *6 *7)) (-4 *6 (-1145 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1003))) (-5 *1 (-268))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1169 (-292 (-203)))) (-5 *4 (-589 (-1087))) + (-5 *2 (-629 (-292 (-203)))) (-5 *1 (-185)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1016)) (-4 *6 (-831 *5)) (-5 *2 (-629 *6)) + (-5 *1 (-631 *5 *6 *3 *4)) (-4 *3 (-349 *6)) + (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4248))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1122)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) + ((*1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-824 *3)) (-4 *3 (-786))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1070)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) - (-4 *4 (-987 *6 *7 *8)) (-5 *2 (-1173)) - (-5 *1 (-715 *6 *7 *8 *4 *5)) (-4 *5 (-992 *6 *7 *8 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-427)) (-4 *4 (-786)) - (-4 *5 (-732)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-31 *3 *4)) - (-4 *4 (-406 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *1 (-110)))) - ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-110)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *4)) - (-4 *4 (-406 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-110)) (-5 *1 (-149)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *4)) - (-4 *4 (-13 (-406 *3) (-930))))) - ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-278 *3)) (-4 *3 (-279)))) - ((*1 *2 *2) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *4 (-786)) (-5 *1 (-405 *3 *4)) - (-4 *3 (-406 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *4)) - (-4 *4 (-406 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *4)) - (-4 *4 (-13 (-406 *3) (-930) (-1108)))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-1016))))) -(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) - ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1068 *2)) (-4 *2 (-284)) (-5 *1 (-159 *2))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-852)) (-4 *4 (-344)) (-4 *4 (-339)) (-5 *2 (-1083 *1)) - (-4 *1 (-305 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1083 *3)))) + ((*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) ((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-158)) (-4 *3 (-339)) - (-4 *2 (-1144 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-1083 *4)) - (-5 *1 (-493 *4))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-589 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-523))))) - (-4 *2 (-515)) (-5 *1 (-394 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-523)) - (|:| -1979 (-589 (-2 (|:| |irr| *4) (|:| -1227 (-523))))))) - (-4 *4 (-1144 (-523))) (-5 *2 (-394 *4)) (-5 *1 (-417 *4))))) + (|partial| -12 (-4 *1 (-311 *3 *4 *5 *2)) (-4 *3 (-339)) + (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4))) + (-4 *2 (-318 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-158)))) + ((*1 *1) (-12 (-4 *2 (-158)) (-4 *1 (-664 *2 *3)) (-4 *3 (-1145 *2))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1142 *5 *4)) (-4 *4 (-427)) (-4 *4 (-759)) + (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *5 (-344)) - (-5 *2 (-710))))) -(((*1 *2 *3) - (-12 (-4 *4 (-786)) (-5 *2 (-589 (-589 *4))) (-5 *1 (-1094 *4)) - (-5 *3 (-589 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-845 *3)) (-4 *3 (-284))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) - (-5 *2 (-589 (-203))) (-5 *1 (-282))))) -(((*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1070)) (-5 *1 (-282))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 (-1 *6 (-589 *6)))) - (-4 *5 (-37 (-383 (-523)))) (-4 *6 (-1159 *5)) (-5 *2 (-589 *6)) - (-5 *1 (-1161 *5 *6))))) + (-12 (-4 *1 (-302 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)) + (-4 *2 (-427)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-1145 (-523))) (-5 *2 (-589 (-523))) + (-5 *1 (-459 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-427)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *3 (-427))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-257))))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-108))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1087))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1016)) (-5 *2 (-820 *3 *5)) (-5 *1 (-816 *3 *4 *5)) - (-4 *3 (-1016)) (-4 *5 (-609 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *3 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-424 *4 *3 *5 *6)) (-4 *6 (-880 *4 *3 *5))))) +(((*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-629 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) - (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) - (-4 *6 (-732)) (-5 *2 (-108)) (-5 *1 (-855 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-629 *4)))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-629 *4)) (-5 *1 (-392 *3 *4)) + (-4 *3 (-393 *4)))) + ((*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *3 (-158)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1145 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-973)) (-4 *2 (-158))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-696))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *1 (-305 *3)) + (-4 *3 (-339))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-589 (-155 *4))) (-5 *1 (-143 *3 *4)) + (-4 *3 (-1145 (-155 (-523)))) (-4 *4 (-13 (-339) (-784))))) ((*1 *2 *3) - (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-284) (-136))) - (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-108)) - (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-779 *4)) (-5 *3 (-562 *4)) (-5 *5 (-108)) - (-4 *4 (-13 (-1108) (-29 *6))) - (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-202 *6 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-393 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) - (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6))))) + (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-155 *4))) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-155 *4))) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1145 (-155 *4)))))) +(((*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-589 *1)) (-4 *1 (-1048 *3))))) +(((*1 *1 *1) (-5 *1 (-203))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1 *1) (-5 *1 (-355))) ((*1 *1) (-5 *1 (-355)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-973)) (-4 *4 (-158)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)) + (-4 *3 (-158))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-252))))) +(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172)))) + ((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1172))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) - (-4 *2 (-1159 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1144 *3)) - (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1159 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) - (-4 *2 (-1159 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) - (-5 *1 (-1064 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-339)) (-4 *7 (-1144 *5)) (-4 *4 (-664 *5 *7)) - (-5 *2 (-2 (|:| -3392 (-629 *6)) (|:| |vec| (-1168 *5)))) - (-5 *1 (-750 *5 *6 *7 *4 *3)) (-4 *6 (-599 *5)) (-4 *3 (-599 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-629 (-203))) (-5 *5 (-108)) (-5 *6 (-203)) - (-5 *7 (-629 (-523))) - (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) - (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-693))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1126)) (-4 *5 (-1144 *3)) (-4 *6 (-1144 (-383 *5))) - (-5 *2 (-108)) (-5 *1 (-317 *4 *3 *5 *6)) (-4 *4 (-318 *3 *5 *6)))) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1087)) (-5 *1 (-540 *2)) (-4 *2 (-964 *3)) - (-4 *2 (-339)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-339)))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) + (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-576 *4 *2)) - (-4 *2 (-13 (-406 *4) (-930) (-1108))))) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-589 *7) (-589 *7))) (-5 *2 (-589 *7)) + (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-906 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-589 (-1 *4 (-589 *4)))) (-4 *4 (-1016)) + (-5 *1 (-109 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1009 *2)) (-4 *2 (-13 (-406 *4) (-930) (-1108))) - (-4 *4 (-13 (-786) (-515))) (-5 *1 (-576 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-889)) (-5 *2 (-1087)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-889))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4244)) (-4 *1 (-556 *4 *3)) (-4 *4 (-1016)) - (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) - ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-638))))) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1016)) + (-5 *1 (-109 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-110)) (-5 *2 (-589 (-1 *4 (-589 *4)))) + (-5 *1 (-109 *4)) (-4 *4 (-1016))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) - (-4 *6 (-732)) (-5 *2 (-589 *3)) (-5 *1 (-855 *4 *5 *6 *3)) - (-4 *3 (-880 *4 *6 *5))))) + (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) + (-5 *2 (-2 (|:| |num| (-1169 *4)) (|:| |den| *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) - (-4 *4 (-325)) (-5 *2 (-710)) (-5 *1 (-322 *4)))) - ((*1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) - (-14 *4 (-852)))) - ((*1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) - (-14 *4 - (-3 (-1083 *3) - (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034))))))))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-589 (-883 *4))))) ((*1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) - (-14 *4 (-852))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1087)) - (-4 *5 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) (-5 *1 (-516 *5 *3)) - (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) -(((*1 *2) - (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-319 *3 *4)) (-14 *3 (-852)) - (-14 *4 (-852)))) + (-12 (-4 *4 (-158)) (-5 *2 (-589 (-883 *4))) (-5 *1 (-392 *3 *4)) + (-4 *3 (-393 *4)))) ((*1 *2) - (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-320 *3 *4)) (-4 *3 (-325)) - (-14 *4 (-1083 *3)))) + (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-589 (-883 *3))))) ((*1 *2) - (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-321 *3 *4)) (-4 *3 (-325)) - (-14 *4 (-852))))) -(((*1 *2 *1) - (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-562 *1)) (-4 *1 (-279))))) + (-12 (-5 *2 (-589 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1169 (-428 *4 *5 *6 *7))) (-5 *2 (-589 (-883 *4))) + (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-515)) (-4 *4 (-158)) + (-14 *5 (-852)) (-14 *6 (-589 (-1087))) (-14 *7 (-1169 (-629 *4)))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-962)) (-5 *3 (-1087)) (-5 *1 (-244))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) - (-4 *3 (-1144 *2))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) - (-5 *1 (-687))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-888 (-1034))) - (-5 *1 (-322 *4))))) + (-12 (|has| *1 (-6 -4248)) (-4 *1 (-462 *3)) (-4 *3 (-1123)) + (-5 *2 (-589 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1016))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-523)) (-14 *6 (-710)) (-4 *7 (-158)) (-4 *8 (-158)) @@ -16525,1620 +14676,3474 @@ (-4 *8 (-973)) (-4 *2 (-880 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-732)) (-4 *4 (-880 *8 *6 *5))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-629 *4)) (-5 *3 (-710)) (-4 *4 (-973)) - (-5 *1 (-630 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-905 *4 *5 *3 *6)) (-4 *4 (-973)) (-4 *5 (-732)) - (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-108))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-383 (-523))) - (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) - (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4)))))) -(((*1 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1171)))) - ((*1 *2 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1171))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) -(((*1 *1 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) - ((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1) (-4 *1 (-800 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-731)) - (-4 *4 (-786))))) -(((*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-852)) (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) - (-4 *4 (-731)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-383 (-523))) (-4 *1 (-1149 *3)) (-4 *3 (-973))))) -(((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3643 *4)))) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1123)) (-4 *2 (-786)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1123)))) + ((*1 *2 *2) + (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) + (-4 *6 (-987 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -2733 *1) (|:| |upper| *1))) + (-4 *1 (-905 *4 *5 *3 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-523)) (-4 *5 (-325)) (-5 *2 (-394 (-1083 (-1083 *5)))) + (-5 *1 (-1122 *5)) (-5 *3 (-1083 (-1083 *5)))))) (((*1 *2 *1) - (-12 (-5 *2 (-589 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) - (-14 *4 (-710)) (-4 *5 (-158))))) -(((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) + (-5 *7 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1123)) (-5 *2 (-710))))) (((*1 *2 *3) - (-12 (-5 *3 (-858)) - (-5 *2 - (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) - (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) - (-5 *1 (-142)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-858)) (-5 *4 (-383 (-523))) - (-5 *2 - (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) - (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) - (-5 *1 (-142))))) + (-12 (-4 *4 (-325)) (-5 *2 (-888 (-1083 *4))) (-5 *1 (-333 *4)) + (-5 *3 (-1083 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-710)) (-4 *4 (-339)) (-4 *5 (-1144 *4)) (-5 *2 (-1173)) - (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1144 (-383 *5))) (-14 *7 *6)))) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) + (-4 *4 (-13 (-786) (-515)))))) +(((*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-1109)))) + ((*1 *2 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-562 *3)) (-4 *3 (-786))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) + (-14 *4 (-710)) (-4 *5 (-158))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-852)) (-5 *2 (-1083 *3)) (-5 *1 (-1097 *3)) - (-4 *3 (-339))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) - (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) - (|:| |abserr| (-203)) (|:| |relerr| (-203)))) - (-5 *2 - (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) - (|:| |expense| (-355)) (|:| |accuracy| (-355)) - (|:| |intermediateResults| (-355)))) - (-5 *1 (-742))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *2 (-962)) - (-5 *1 (-689))))) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) + (-5 *1 (-1043 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-13 (-284) (-786) (-136))) + (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1043 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-271 (-383 (-883 *5)))) (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) + (-5 *1 (-1043 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-271 (-383 (-883 *4)))) + (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) + (-5 *1 (-1043 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) + (-4 *5 (-13 (-284) (-786) (-136))) + (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-383 (-883 *4)))) + (-4 *4 (-13 (-284) (-786) (-136))) + (-5 *2 (-589 (-589 (-271 (-292 *4))))) (-5 *1 (-1043 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-271 (-383 (-883 *5))))) (-5 *4 (-589 (-1087))) + (-4 *5 (-13 (-284) (-786) (-136))) + (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-271 (-383 (-883 *4))))) + (-4 *4 (-13 (-284) (-786) (-136))) + (-5 *2 (-589 (-589 (-271 (-292 *4))))) (-5 *1 (-1043 *4))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1169 *5)) (-4 *5 (-731)) (-5 *2 (-108)) + (-5 *1 (-781 *4 *5)) (-14 *4 (-710))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-564 (-823 (-523)))) + (-4 *5 (-817 (-523))) + (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-526 *5 *3)) (-4 *3 (-575)) + (-4 *3 (-13 (-27) (-1109) (-406 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1087)) (-5 *4 (-779 *2)) (-4 *2 (-1051)) + (-4 *2 (-13 (-27) (-1109) (-406 *5))) + (-4 *5 (-564 (-823 (-523)))) (-4 *5 (-817 (-523))) + (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) + (-5 *1 (-526 *5 *2))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-710)) (-5 *1 (-1017 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3) (-12 (-5 *3 (-761)) (-5 *2 (-51)) (-5 *1 (-768))))) +(((*1 *2 *2) (-12 (-5 *2 (-292 (-203))) (-5 *1 (-190))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1174)) + (-5 *1 (-993 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1174)) + (-5 *1 (-1024 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1145 (-523)))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) - ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-339)) (-5 *1 (-827 *2 *3)) - (-4 *2 (-1144 *3))))) + (-12 (-5 *3 (-540 *2)) (-4 *2 (-13 (-29 *4) (-1109))) + (-5 *1 (-538 *4 *2)) + (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-540 (-383 (-883 *4)))) + (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *2 (-292 *4)) (-5 *1 (-543 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-1110 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-760))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-284)) (-4 *3 (-158)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) + (-5 *1 (-628 *3 *4 *5 *6)) (-4 *6 (-627 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-639 *3)) + (-4 *3 (-284))))) (((*1 *2 *3) - (-12 (-4 *4 (-427)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) - (-5 *2 (-589 *3)) (-5 *1 (-906 *4 *5 *6 *3)) - (-4 *3 (-987 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-37 (-383 (-523)))) - (-4 *2 (-158))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-589 *7) *7 (-1083 *7))) (-5 *5 (-1 (-394 *7) *7)) - (-4 *7 (-1144 *6)) (-4 *6 (-13 (-339) (-136) (-964 (-383 (-523))))) - (-5 *2 (-589 (-2 (|:| |frac| (-383 *7)) (|:| -1710 *3)))) - (-5 *1 (-748 *6 *7 *3 *8)) (-4 *3 (-599 *7)) - (-4 *8 (-599 (-383 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) - (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) - (-5 *2 - (-589 (-2 (|:| |frac| (-383 *6)) (|:| -1710 (-597 *6 (-383 *6)))))) - (-5 *1 (-751 *5 *6)) (-5 *3 (-597 *6 (-383 *6)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-523)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-500 *4 *2)) - (-4 *2 (-1159 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-523)) (-4 *4 (-13 (-339) (-344) (-564 *3))) - (-4 *5 (-1144 *4)) (-4 *6 (-664 *4 *5)) (-5 *1 (-504 *4 *5 *6 *2)) - (-4 *2 (-1159 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-523)) (-4 *4 (-13 (-339) (-344) (-564 *3))) - (-5 *1 (-505 *4 *2)) (-4 *2 (-1159 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-13 (-515) (-136))) - (-5 *1 (-1064 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1070)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1104)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1104))))) + (-12 (-4 *1 (-325)) (-5 *3 (-523)) (-5 *2 (-1097 (-852) (-710)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) +(((*1 *1) (-5 *1 (-413)))) (((*1 *2 *1) - (-12 - (-5 *2 - (-589 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203))))) - (-5 *1 (-518)))) + (|partial| -12 + (-5 *2 (-2 (|:| -2888 (-110)) (|:| |arg| (-589 (-823 *3))))) + (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-110)) (-5 *2 (-589 (-823 *4))) + (-5 *1 (-823 *4)) (-4 *4 (-1016))))) +(((*1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)) + (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -2922 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-560 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-5 *2 (-589 *3)))) + (-12 (-5 *2 (-589 (-2 (|:| -3474 *3) (|:| -2836 *4)))) + (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) ((*1 *2 *1) + (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-271 *2)) (-4 *2 (-666)) (-4 *2 (-1123))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-523)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-394 *2)) (-4 *2 (-515))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) (-5 *2 - (-589 - (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) - (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) - (|:| |abserr| (-203)) (|:| |relerr| (-203))))) - (-5 *1 (-742))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-108)) (-5 *1 (-106)))) - ((*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4235)) (-4 *1 (-380)))) - ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-629 *7)) (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) - (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) - (-4 *6 (-732)) (-5 *1 (-855 *4 *5 *6 *7))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4244)) (-4 *1 (-462 *4)) - (-4 *4 (-1122)) (-5 *2 (-108))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) - (-4 *2 (-406 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-629 (-203))) - (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) - (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) -(((*1 *2) - (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) - (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-589 (-2 (|:| -1820 (-1083 *6)) (|:| -2735 (-523))))) - (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) - (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973))))) -(((*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-973))))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-172))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 (-1141 *5 *4))) - (-5 *1 (-1030 *4 *5)) (-5 *3 (-1141 *5 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-710)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) - (-14 *4 *2) (-4 *5 (-158)))) - ((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-852)) (-5 *1 (-151 *3 *4)) - (-4 *3 (-152 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-852)))) - ((*1 *2) - (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) - (-5 *2 (-852)))) - ((*1 *2 *3) - (-12 (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) - (-5 *2 (-710)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-339)) - (-5 *2 (-710)) (-5 *1 (-610 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) - (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 (-710)) - (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) - (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-710)))) - ((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) - (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-628 *4 *5 *6 *3)) - (-4 *3 (-627 *4 *5 *6)))) + (-12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1145 *4)) + (-5 *2 (-2 (|:| |ans| (-383 *5)) (|:| |nosol| (-108)))) + (-5 *1 (-943 *4 *5)) (-5 *3 (-383 *5))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-1091)) (-5 *1 (-1090))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-1083 *3)) + (-4 *3 (-13 (-406 *6) (-27) (-1109))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-2 (|:| -1825 *3) (|:| |coeff| *3))) + (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-383 (-1083 *3))) + (-4 *3 (-13 (-406 *6) (-27) (-1109))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-2 (|:| -1825 *3) (|:| |coeff| *3))) + (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-523)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-710)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-732)) (-4 *4 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-786)) + (-5 *1 (-424 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) (-5 *2 (-108)) (-5 *1 (-419 *4 *3)) + (-4 *3 (-1145 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) - (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) - (-5 *2 (-710))))) -(((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-836 *3))))) +(((*1 *2) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *1 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284))))) (((*1 *2 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) - ((*1 *2) - (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-105))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 *5)) (-4 *5 (-339)) - (-4 *5 (-515)) (-5 *2 (-1168 *5)) (-5 *1 (-584 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 *5)) - (-3900 (-4 *5 (-339))) (-4 *5 (-515)) (-5 *2 (-1168 (-383 *5))) - (-5 *1 (-584 *5 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1070)) (-5 *1 (-725))))) -(((*1 *2 *3) - (-12 (-4 *4 (-37 (-383 (-523)))) - (-5 *2 (-2 (|:| -3711 (-1068 *4)) (|:| -3767 (-1068 *4)))) - (-5 *1 (-1074 *4)) (-5 *3 (-1068 *4))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-710)) (-5 *6 (-108)) (-4 *7 (-427)) (-4 *8 (-732)) - (-4 *9 (-786)) (-4 *3 (-987 *7 *8 *9)) + (-12 (-4 *3 (-973)) (-4 *4 (-1145 *3)) (-5 *1 (-150 *3 *4 *2)) + (-4 *2 (-1145 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1087)) (-5 *6 (-108)) + (-4 *7 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-4 *3 (-13 (-1109) (-889) (-29 *7))) (-5 *2 - (-2 (|:| |done| (-589 *4)) - (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) - (-5 *1 (-990 *7 *8 *9 *3 *4)) (-4 *4 (-992 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-197 *7 *3)) (-5 *5 (-779 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-589 (-721 *3))) (-5 *1 (-721 *3)) (-4 *3 (-515)) + (-4 *3 (-973))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1083 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-4 *4 (-284)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) + ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-523))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-339)) + (-4 *4 (-973)) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) - (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) - (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) - (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-710)) (-5 *6 (-108)) (-4 *7 (-427)) (-4 *8 (-732)) - (-4 *9 (-786)) (-4 *3 (-987 *7 *8 *9)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3643 *4)))))) + (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1142 *4 *5)) (-5 *3 (-589 *5)) (-14 *4 (-1087)) + (-4 *5 (-339)) (-5 *1 (-854 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *5)) (-4 *5 (-339)) (-5 *2 (-1083 *5)) + (-5 *1 (-854 *4 *5)) (-14 *4 (-1087)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-710)) (-4 *6 (-339)) + (-5 *2 (-383 (-883 *6))) (-5 *1 (-974 *5 *6)) (-14 *5 (-1087))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1068 (-203))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2464 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-518))))) +(((*1 *2 *1) + (-12 (-5 *2 (-157)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *3) + (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) + (-5 *2 (-455 *4 *5)) (-5 *1 (-875 *4 *5))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 *3)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) + (-4 *3 (-152 *6)) (-4 (-883 *6) (-817 *5)) + (-4 *6 (-13 (-817 *5) (-158))) (-5 *1 (-163 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-820 *4 *1)) (-5 *3 (-823 *4)) (-4 *1 (-817 *4)) + (-4 *4 (-1016)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 *6)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) + (-4 *6 (-13 (-1016) (-964 *3))) (-4 *3 (-817 *5)) + (-5 *1 (-862 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) + (-4 *3 (-13 (-406 *6) (-564 *4) (-817 *5) (-964 (-562 $)))) + (-5 *4 (-823 *5)) (-4 *6 (-13 (-515) (-786) (-817 *5))) + (-5 *1 (-863 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 (-523) *3)) (-5 *4 (-823 (-523))) (-4 *3 (-508)) + (-5 *1 (-864 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 *6)) (-5 *3 (-562 *6)) (-4 *5 (-1016)) + (-4 *6 (-13 (-786) (-964 (-562 $)) (-564 *4) (-817 *5))) + (-5 *4 (-823 *5)) (-5 *1 (-865 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-816 *5 *6 *3)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) + (-4 *6 (-817 *5)) (-4 *3 (-609 *6)) (-5 *1 (-866 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-820 *6 *3) *8 (-823 *6) (-820 *6 *3))) + (-4 *8 (-786)) (-5 *2 (-820 *6 *3)) (-5 *4 (-823 *6)) + (-4 *6 (-1016)) (-4 *3 (-13 (-880 *9 *7 *8) (-564 *4))) + (-4 *7 (-732)) (-4 *9 (-13 (-973) (-786) (-817 *6))) + (-5 *1 (-867 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) + (-4 *3 (-13 (-880 *8 *6 *7) (-564 *4))) (-5 *4 (-823 *5)) + (-4 *7 (-817 *5)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *8 (-13 (-973) (-786) (-817 *5))) (-5 *1 (-867 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) (-4 *3 (-921 *6)) + (-4 *6 (-13 (-515) (-817 *5) (-564 *4))) (-5 *4 (-823 *5)) + (-5 *1 (-870 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 (-1087))) (-5 *3 (-1087)) (-5 *4 (-823 *5)) + (-4 *5 (-1016)) (-5 *1 (-871 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-589 (-823 *7))) (-5 *5 (-1 *9 (-589 *9))) + (-5 *6 (-1 (-820 *7 *9) *9 (-823 *7) (-820 *7 *9))) (-4 *7 (-1016)) + (-4 *9 (-13 (-973) (-564 (-823 *7)) (-964 *8))) (-5 *2 (-820 *7 *9)) + (-5 *3 (-589 *9)) (-4 *8 (-13 (-973) (-786))) + (-5 *1 (-872 *7 *8 *9))))) +(((*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1123))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-629 (-523))) (-5 *5 (-108)) (-5 *7 (-629 (-203))) + (-5 *3 (-523)) (-5 *6 (-203)) (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *2) + (-12 (-5 *2 (-1169 (-1017 *3 *4))) (-5 *1 (-1017 *3 *4)) + (-14 *3 (-852)) (-14 *4 (-852))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-768))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *2 (-108)) + (-5 *1 (-240))))) +(((*1 *2 *3) + (-12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-589 *5)) + (-5 *1 (-821 *4 *5)) (-4 *5 (-1123))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |done| (-589 *4)) - (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) - (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1025 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) - (-4 *3 (-987 *6 *7 *8)) + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-306))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-697))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-1016)) + (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) + (-5 *1 (-995 *4 *5 *2)) + (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1016)) + (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) + (-5 *1 (-995 *3 *4 *2)) + (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3))))))) +(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-638))))) +(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-303 *3)) (-4 *3 (-1123)))) + ((*1 *2 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1123)) + (-14 *4 (-523))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| |done| (-589 *4)) - (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) - (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1025 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) + (-589 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-732)) (-4 *3 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) + (-5 *1 (-424 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1145 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1145 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)) + (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -2922 *4)))) + (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) - (-4 *3 (-987 *5 *6 *7)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-131 *4 *5 *3)) + (-4 *3 (-349 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-474 *4 *5 *6 *3)) (-4 *6 (-349 *4)) (-4 *3 (-349 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *5)) (-4 *5 (-921 *4)) (-4 *4 (-515)) + (-5 *2 (-2 (|:| |num| (-629 *4)) (|:| |den| *4))) + (-5 *1 (-632 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *6 (-1145 *5)) + (-5 *2 (-2 (|:| -2849 *7) (|:| |rh| (-589 (-383 *6))))) + (-5 *1 (-746 *5 *6 *7 *3)) (-5 *4 (-589 (-383 *6))) + (-4 *7 (-599 *6)) (-4 *3 (-599 (-383 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1138 *4 *5 *3)) + (-4 *3 (-1145 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-226))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-339)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1621 *1))) + (-4 *1 (-788 *3))))) +(((*1 *2) (-12 (-4 *3 (-158)) (-5 *2 (-1169 *1)) (-4 *1 (-343 *3))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1161 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) + (-14 *4 *2)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1136 (-523))) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-594 *3)) (-4 *3 (-1123))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-710)) (-4 *5 (-973)) (-4 *2 (-1145 *5)) + (-5 *1 (-1163 *5 *2 *6 *3)) (-4 *6 (-599 *2)) (-4 *3 (-1160 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108))))) +(((*1 *1) (-5 *1 (-1174)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *2 (-515)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *5 (-987 *2 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-540 *3)) (-5 *1 (-402 *5 *3)) + (-4 *3 (-13 (-1109) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-964 (-523)) (-136))) + (-5 *2 (-540 (-383 (-883 *5)))) (-5 *1 (-529 *5)) + (-5 *3 (-383 (-883 *5)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-108)) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-4 *3 (-13 (-27) (-1109) (-406 *6) (-10 -8 (-15 -1691 ($ *7))))) + (-4 *7 (-784)) + (-4 *8 + (-13 (-1147 *3 *7) (-339) (-1109) + (-10 -8 (-15 -3984 ($ $)) (-15 -2814 ($ $))))) (-5 *2 - (-2 (|:| |done| (-589 *4)) - (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) - (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-427)) (-4 *4 (-515)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -4117 *4))) (-5 *1 (-899 *4 *3)) - (-4 *3 (-1144 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-475 *3 *4 *5 *6))) (-4 *3 (-339)) (-4 *4 (-732)) - (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) - (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) - (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) - (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) - (-4 *1 (-992 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) - (-4 *1 (-992 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) + (-5 *1 (-398 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1070)) (-4 *9 (-912 *8)) + (-14 *10 (-1087))))) +(((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-523)) (-5 *1 (-459 *4)) + (-4 *4 (-1145 *2))))) +(((*1 *1 *1) + (-12 (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) + (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-938 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1105))))) (((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) - (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1016)) (-5 *1 (-894 *3 *2)) (-4 *3 (-1016))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-940)) (-5 *2 (-794))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-710)) (-5 *2 (-108)) (-5 *1 (-541 *3)) (-4 *3 (-508))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1087)) + (-4 *5 (-13 (-515) (-964 (-523)) (-136))) + (-5 *2 + (-2 (|:| -1825 (-383 (-883 *5))) (|:| |coeff| (-383 (-883 *5))))) + (-5 *1 (-529 *5)) (-5 *3 (-383 (-883 *5)))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-852)) (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) + ((*1 *2 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-339)))) + ((*1 *2 *1) + (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1145 *2)) (-4 *2 (-158)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-852)) (-4 *4 (-325)) + (-5 *1 (-493 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) + (-4 *5 (-216 *3 *2)) (-4 *2 (-973))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1154 *3 *4 *5)) (-5 *1 (-295 *3 *4 *5)) + (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1016)) (-5 *1 (-653 *3 *2 *4)) (-4 *3 (-786)) + (-14 *4 + (-1 (-108) (-2 (|:| -4013 *3) (|:| -1475 *2)) + (-2 (|:| -4013 *3) (|:| -1475 *2))))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-589 + (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 *3)) + (|:| |logand| (-1083 *3))))) + (-5 *1 (-540 *3)) (-4 *3 (-339))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1016)) (-5 *2 (-108)) (-5 *1 (-816 *3 *4 *5)) + (-4 *3 (-1016)) (-4 *5 (-609 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 (-589 (-589 *4)))) (-5 *2 (-589 (-589 *4))) + (-4 *4 (-786)) (-5 *1 (-1095 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *4 (-1087)) + (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-277))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-589 (-523))) (-5 *3 (-629 (-523))) (-5 *1 (-1026))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171)))) + ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1171))))) (((*1 *2 *3) - (-12 (-5 *3 (-710)) (-5 *2 (-629 (-883 *4))) (-5 *1 (-955 *4)) - (-4 *4 (-973))))) + (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-219)) (-5 *3 (-1070)))) + ((*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-219)))) + ((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) (((*1 *2 *3) - (-12 (-4 *4 (-515)) (-5 *2 (-1083 *3)) (-5 *1 (-40 *4 *3)) - (-4 *3 - (-13 (-339) (-279) - (-10 -8 (-15 -2785 ((-1039 *4 (-562 $)) $)) - (-15 -2797 ((-1039 *4 (-562 $)) $)) - (-15 -1458 ($ (-1039 *4 (-562 $)))))))))) + (-12 (-5 *3 (-523)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *2 (-1174)) (-5 *1 (-424 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-1144 (-383 (-523)))) (-5 *1 (-844 *3 *2)) - (-4 *2 (-1144 (-383 *3)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) - (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) - (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) - (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *1 *1) (-5 *1 (-133))) - ((*1 *1 *1) (-4 *1 (-1056)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-515)) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-629 (-203))) (-5 *6 (-108)) (-5 *7 (-629 (-523))) + (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS)))) + (-5 *3 (-523)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-1 (-1083 (-883 *4)) (-883 *4))) + (-5 *1 (-1177 *4)) (-4 *4 (-339))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) + (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-589 *3)) + (-5 *1 (-545 *5 *6 *7 *8 *3)) (-4 *3 (-1025 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) + (-589 (-2 (|:| -3558 (-1083 *5)) (|:| -2906 (-589 (-883 *5)))))) + (-5 *1 (-997 *5 *6)) (-5 *3 (-589 (-883 *5))) + (-14 *6 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-284) (-136))) + (-5 *2 + (-589 (-2 (|:| -3558 (-1083 *4)) (|:| -2906 (-589 (-883 *4)))))) + (-5 *1 (-997 *4 *5)) (-5 *3 (-589 (-883 *4))) + (-14 *5 (-589 (-1087))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) + (-5 *2 + (-589 (-2 (|:| -3558 (-1083 *5)) (|:| -2906 (-589 (-883 *5)))))) + (-5 *1 (-997 *5 *6)) (-5 *3 (-589 (-883 *5))) + (-14 *6 (-589 (-1087)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-113 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-523)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-802 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-14 *2 (-523)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-523)) (-14 *3 *2) (-5 *1 (-803 *3 *4)) + (-4 *4 (-800 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-523)) (-5 *1 (-803 *2 *3)) (-4 *3 (-800 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-523)) (-4 *1 (-1131 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-1160 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1131 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1160 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) + ((*1 *1 *1) + (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))))) + ((*1 *1 *1) + (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) + (-14 *3 (-589 (-1087))))) + ((*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1016)))) + ((*1 *1 *1) + (-12 (-14 *2 (-589 (-1087))) (-4 *3 (-158)) + (-4 *5 (-216 (-2810 *2) (-710))) + (-14 *6 + (-1 (-108) (-2 (|:| -4013 *4) (|:| -1475 *5)) + (-2 (|:| -4013 *4) (|:| -1475 *5)))) + (-5 *1 (-436 *2 *3 *4 *5 *6 *7)) (-4 *4 (-786)) + (-4 *7 (-880 *3 *5 (-796 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-786)))) + ((*1 *1 *1) + (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1145 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-973)))) + ((*1 *1 *1) + (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-786)) (-4 *2 (-973)) + (-4 *3 (-666)))) + ((*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-5 *1 (-1190 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1170))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-427)) (-4 *3 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) - (-5 *1 (-424 *4 *3 *5 *6)) (-4 *6 (-880 *4 *3 *5))))) + (|partial| -12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) + (-5 *2 (-1083 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) + (-5 *2 (-1083 *3))))) +(((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) (((*1 *2 *2) - (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) - (-5 *1 (-161 *3))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -3539)))) (-5 *2 (-962)) + (-5 *1 (-686))))) +(((*1 *1 *1) (-4 *1 (-575))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930) (-1109)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-973)) + (-5 *1 (-654 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-773 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) + (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))))) + ((*1 *1 *1) + (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) + (-14 *3 (-589 (-1087)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-880 *3 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) + (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3643 *1)))) + (-4 *1 (-992 *4 *5 *6 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-852)) (-4 *3 (-339)) + (-14 *4 (-922 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1145 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *1 *1) (|partial| -4 *1 (-662))) + ((*1 *1 *1) (|partial| -4 *1 (-666))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-989 *3 *2)) (-4 *3 (-13 (-784) (-339))) + (-4 *2 (-1145 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(((*1 *1) (-5 *1 (-1170)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-768))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-515)) (-4 *4 (-786)) + (-5 *1 (-532 *4 *2)) (-4 *2 (-406 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) + ((*1 *2 *1) + (-12 (-4 *2 (-973)) (-5 *1 (-49 *2 *3)) (-14 *3 (-589 (-1087))))) + ((*1 *2 *1) + (-12 (-5 *2 (-292 *3)) (-5 *1 (-201 *3 *4)) + (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) + ((*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-973)))) + ((*1 *2 *1) + (-12 (-14 *3 (-589 (-1087))) (-4 *5 (-216 (-2810 *3) (-710))) + (-14 *6 + (-1 (-108) (-2 (|:| -4013 *4) (|:| -1475 *5)) + (-2 (|:| -4013 *4) (|:| -1475 *5)))) + (-4 *2 (-158)) (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *4 (-786)) + (-4 *7 (-880 *2 *5 (-796 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1145 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-973)))) + ((*1 *2 *1) + (-12 (-4 *2 (-973)) (-5 *1 (-675 *2 *3)) (-4 *3 (-786)) + (-4 *3 (-666)))) + ((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) + ((*1 *2 *1) + (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *3 (-731)) (-4 *4 (-786)) + (-4 *2 (-973)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1016)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-421)) (-5 *3 (-523))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 (-589 (-155 *4))) - (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784)))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-629 (-1083 *8))) (-4 *5 (-973)) (-4 *8 (-973)) + (-4 *6 (-1145 *5)) (-5 *2 (-629 *6)) (-5 *1 (-472 *5 *6 *7 *8)) + (-4 *7 (-1145 *6))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-973)) (-4 *3 (-786)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2735 (-523)))) (-4 *1 (-406 *3)))) + (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) + (-5 *2 (-389 *4 (-383 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1169 *6)) (-4 *6 (-13 (-385 *4 *5) (-964 *4))) + (-4 *4 (-921 *3)) (-4 *5 (-1145 *4)) (-4 *3 (-284)) + (-5 *1 (-389 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1174)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-710)) (-4 *4 (-325)) + (-5 *1 (-493 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) + (-4 *2 (-406 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1009 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) + (-5 *1 (-145 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-147)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1016)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-823 *3)) (|:| -2735 (-823 *3)))) - (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) + (-4 *6 (-216 (-2810 *3) (-710))) + (-14 *7 + (-1 (-108) (-2 (|:| -4013 *5) (|:| -1475 *6)) + (-2 (|:| -4013 *5) (|:| -1475 *6)))) + (-5 *2 (-653 *5 *6 *7)) (-5 *1 (-436 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-786)) (-4 *8 (-880 *4 *6 (-796 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-666)) (-4 *2 (-786)) (-5 *1 (-675 *3 *2)) + (-4 *3 (-973)))) + ((*1 *1 *1) + (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-731)) + (-4 *4 (-786))))) +(((*1 *1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-349 *2)) (-4 *2 (-1123)))) + ((*1 *1 *1) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-412))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *1 (-1042 *3 *2)) (-4 *3 (-1145 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-4 *1 (-350 *3 *4)) + (-4 *4 (-158))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) + ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1016)) (-5 *2 (-108)) + (-5 *1 (-1124 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-394 (-1083 *1))) (-5 *1 (-292 *4)) (-5 *3 (-1083 *1)) + (-4 *4 (-427)) (-4 *4 (-515)) (-4 *4 (-786)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) - (-4 *7 (-880 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -2735 (-523)))) - (-5 *1 (-881 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-339) - (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) - (-15 -2797 (*7 $)))))))) + (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1))))) +(((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) ((*1 *1) (-4 *1 (-508))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) + ((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-710)) (-5 *2 (-1174))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) - (-5 *1 (-1191 *4)) (-4 *4 (-1122)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-589 (-1068 *5)) (-589 (-1068 *5)))) (-5 *4 (-523)) - (-5 *2 (-589 (-1068 *5))) (-5 *1 (-1191 *5)) (-4 *5 (-1122))))) -(((*1 *1 *2) + (-12 (-5 *3 (-562 *5)) (-4 *5 (-406 *4)) (-4 *4 (-964 (-523))) + (-4 *4 (-13 (-786) (-515))) (-5 *2 (-1083 *5)) (-5 *1 (-31 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-562 *1)) (-4 *1 (-973)) (-4 *1 (-279)) + (-5 *2 (-1083 *1))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) +(((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) +(((*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-786)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |mval| (-629 *3)) (|:| |invmval| (-629 *3)) - (|:| |genIdeal| (-475 *3 *4 *5 *6)))) - (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5))))) + (-589 + (-589 + (-3 (|:| -4198 (-1087)) + (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))))) + (-5 *1 (-1091))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1160 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-394 *3)) (-4 *3 (-508)) (-4 *3 (-515)))) - ((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) + (-5 *2 + (-2 (|:| -3847 (-710)) (|:| |curves| (-710)) + (|:| |polygons| (-710)) (|:| |constructs| (-710))))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) + (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-203))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1 *1 *1) (-5 *1 (-355))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-564 *2) (-158))) (-5 *2 (-823 *4)) + (-5 *1 (-156 *4 *5 *3)) (-4 *4 (-1016)) (-4 *3 (-152 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-1011 (-779 (-355))))) + (-5 *2 (-589 (-1011 (-779 (-203))))) (-5 *1 (-282)))) + ((*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-355)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-370)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-158)) (-4 *1 (-385 *3 *4)) + (-4 *4 (-1145 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1145 *3)) + (-5 *2 (-1169 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-158)) (-4 *1 (-393 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1169 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-394 *1)) (-4 *1 (-406 *3)) (-4 *3 (-515)) + (-4 *3 (-786)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-438 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-499)))) + ((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-1123)))) + ((*1 *1 *2) + (-12 (-4 *3 (-158)) (-4 *1 (-664 *3 *2)) (-4 *2 (-1145 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-909 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-984)))) + ((*1 *1 *2) + (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) + (-4 *5 (-564 (-1087))) (-4 *4 (-732)) (-4 *5 (-786)))) + ((*1 *1 *2) + (-3172 + (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) + (-12 (-4179 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) + (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) + (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) + ((*1 *1 *2) + (-12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)))) ((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-936 *3)) (-4 *3 (-964 (-383 (-523))))))) + (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3643 *8))) + (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1070)) + (-5 *1 (-990 *4 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1001)))) + ((*1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1123)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *2)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *2 (-1016)) (-4 *6 (-1016)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *2 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1019 *3 *2 *4 *5 *6)) (-4 *3 (-1016)) (-4 *2 (-1016)) + (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) + (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *1)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) + (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3643 *8))) + (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-1025 *4 *5 *6 *7)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1070)) + (-5 *1 (-1057 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1092)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-1104)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-1104)))) + ((*1 *2 *3) + (-12 (-5 *3 (-719 *4 (-796 *5))) + (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) + (-5 *2 (-719 *4 (-796 *6))) (-5 *1 (-1193 *4 *5 *6)) + (-14 *6 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-883 *4)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-883 (-951 (-383 *4)))) (-5 *1 (-1193 *4 *5 *6)) + (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-719 *4 (-796 *6))) + (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *6 (-589 (-1087))) + (-5 *2 (-883 (-951 (-383 *4)))) (-5 *1 (-1193 *4 *5 *6)) + (-14 *5 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-1083 (-951 (-383 *4)))) (-5 *1 (-1193 *4 *5 *6)) + (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) + ((*1 *2 *3) + (-12 + (-5 *3 (-1058 *4 (-495 (-796 *6)) (-796 *6) (-719 *4 (-796 *6)))) + (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *6 (-589 (-1087))) + (-5 *2 (-589 (-719 *4 (-796 *6)))) (-5 *1 (-1193 *4 *5 *6)) + (-14 *5 (-589 (-1087)))))) (((*1 *2 *3) - (-12 (-4 *4 (-325)) - (-5 *2 (-589 (-2 (|:| |deg| (-710)) (|:| -1992 *3)))) - (-5 *1 (-195 *4 *3)) (-4 *3 (-1144 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-1068 *7))) (-4 *6 (-786)) - (-4 *7 (-880 *5 (-495 *6) *6)) (-4 *5 (-973)) - (-5 *2 (-1 (-1068 *7) *7)) (-5 *1 (-1040 *5 *6 *7))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-219)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-589 (-1070))) (-5 *3 (-523)) (-5 *4 (-1070)) - (-5 *1 (-219)))) - ((*1 *1 *1) (-5 *1 (-794))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) - ((*1 *2 *1) (-12 (-4 *1 (-1146 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) - (-5 *6 (-203)) (-5 *2 (-962)) (-5 *1 (-692))))) -(((*1 *1 *2) - (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) - (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 (-589 (-203))) (-5 *1 (-184))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-115 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-710)) (-4 *6 (-339)) (-5 *4 (-1118 *6)) + (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1177 *6)) + (-5 *5 (-1068 *4))))) +(((*1 *1 *1) (-4 *1 (-221))) + ((*1 *1 *1) + (-12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1145 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-3172 (-12 (-5 *1 (-271 *2)) (-4 *2 (-339)) (-4 *2 (-1123))) + (-12 (-5 *1 (-271 *2)) (-4 *2 (-448)) (-4 *2 (-1123))))) + ((*1 *1 *1) (-4 *1 (-448))) + ((*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)) (-4 *2 (-339))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1016) (-964 *5))) - (-4 *5 (-817 *4)) (-4 *4 (-1016)) (-5 *2 (-1 (-108) *5)) - (-5 *1 (-862 *4 *5 *6))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 *3)))) - (-5 *4 (-710)) (-4 *3 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) - (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *3))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) - (-4 *2 (-1144 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1144 *3))))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-589 (-629 (-523)))) + (-5 *1 (-1026))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1018 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1018 *3)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) + (-4 *3 (-13 (-786) (-515)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-688))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-692))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1123))))) +(((*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-373))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-623 *4 *3)) (-4 *4 (-1016)) - (-4 *3 (-1016))))) -(((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1083 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) - (-5 *1 (-31 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) - (-4 *2 (-13 (-406 *3) (-1108)))))) + (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-786)) (-4 *3 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-883 *5)) (-4 *5 (-973)) (-5 *2 (-225 *4 *5)) - (-5 *1 (-875 *4 *5)) (-14 *4 (-589 (-1087)))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-617 (-203))) - (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-690))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-457 *3))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-589 (-562 *6))) (-5 *4 (-1087)) (-5 *2 (-562 *6)) - (-4 *6 (-406 *5)) (-4 *5 (-786)) (-5 *1 (-532 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-383 (-523))) (-5 *1 (-282))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-589 *5)) (-5 *4 (-523)) (-4 *5 (-784)) (-4 *5 (-339)) - (-5 *2 (-710)) (-5 *1 (-876 *5 *6)) (-4 *6 (-1144 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-589 (-710))) - (-5 *1 (-835 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-589 *7)) (-4 *7 (-786)) (-4 *5 (-840)) (-4 *6 (-732)) - (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-394 (-1083 *8))) - (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-1083 *8)))) + (-12 (-5 *3 (-1169 *4)) (-4 *4 (-325)) (-5 *2 (-1083 *4)) + (-5 *1 (-493 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-394 (-1083 (-523)))) (-5 *1 (-171)) (-5 *3 (-523))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3310 (-721 *3)) (|:| |coef2| (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-2 (|:| -3310 *1) (|:| |coef2| *1))) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-1145 *4)) + (-4 *5 (-1145 (-383 *3))) (-5 *2 (-108)))) ((*1 *2 *3) - (-12 (-4 *4 (-840)) (-4 *5 (-1144 *4)) (-5 *2 (-394 (-1083 *5))) - (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5))))) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-108))))) (((*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306))))) -(((*1 *2 *1) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) + (-4 *5 (-13 (-27) (-1109) (-406 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-383 (-523))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-271 *3)) (-5 *5 (-383 (-523))) + (-4 *3 (-13 (-27) (-1109) (-406 *6))) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-383 (-523)))) (-5 *4 (-271 *8)) + (-5 *5 (-1136 (-383 (-523)))) (-5 *6 (-383 (-523))) + (-4 *8 (-13 (-27) (-1109) (-406 *7))) + (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1136 (-383 (-523)))) + (-5 *7 (-383 (-523))) (-4 *3 (-13 (-27) (-1109) (-406 *8))) + (-4 *8 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-383 (-523))) (-4 *4 (-973)) (-4 *1 (-1152 *4 *3)) + (-4 *3 (-1129 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-589 - (-2 - (|:| -1853 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (|:| -2433 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1068 (-203))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3499 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-518)))) - ((*1 *2 *1) - (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) - (-5 *2 (-589 *4))))) + (-2 (|:| -3760 (-629 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-629 *3)))) + (-4 *3 (-13 (-284) (-10 -8 (-15 -4226 ((-394 $) $))))) + (-4 *4 (-1145 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) +(((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-383 *4))) (-5 *2 (-629 (-383 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1136 *3)) (-4 *3 (-1123))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-589 (-562 *3))) + (|:| |vals| (-589 *3)))) + (-5 *1 (-254 *5 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971))))) + (-12 (-4 *2 (-339)) (-4 *2 (-784)) (-5 *1 (-876 *2 *3)) + (-4 *3 (-1145 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-629 (-383 (-883 (-523))))) - (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958)) - (-5 *3 (-292 (-523)))))) + (-12 (-4 *4 (-339)) (-5 *2 (-589 (-1068 *4))) (-5 *1 (-262 *4 *5)) + (-5 *3 (-1068 *4)) (-4 *5 (-1160 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) + (-5 *1 (-475 *4 *5 *6 *2)) (-4 *2 (-880 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1109))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-355)) (-5 *2 (-1174)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-710)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-710))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) + (-4 *5 (-13 (-27) (-1109) (-406 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-523)) (-4 *5 (-13 (-427) (-786) (-964 *4) (-585 *4))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *6))) + (-4 *6 (-13 (-427) (-786) (-964 *5) (-585 *5))) (-5 *5 (-523)) + (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1136 (-523))) + (-4 *7 (-13 (-27) (-1109) (-406 *6))) + (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1136 (-523))) + (-4 *3 (-13 (-27) (-1109) (-406 *7))) + (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-523)) (-4 *4 (-973)) (-4 *1 (-1131 *4 *3)) + (-4 *3 (-1160 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1129 *3))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-508)))) +(((*1 *2 *1) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-1169 (-629 *4))) (-5 *1 (-88 *4 *5)) + (-5 *3 (-629 *4)) (-4 *5 (-599 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-1014 *3)))) + ((*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *6))) + (-4 *6 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-516 *6 *3))))) (((*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515)))))) -(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-383 *1)) (-4 *1 (-1144 *3)) (-4 *3 (-973)) - (-4 *3 (-515)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-515))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92))))) -(((*1 *1 *1) (-4 *1 (-982)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-110)) (-4 *4 (-973)) (-5 *1 (-654 *4 *2)) - (-4 *2 (-591 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-773 *2)) (-4 *2 (-973))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-857)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-857)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-858)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-858))))) +(((*1 *2 *1) + (-12 (-4 *3 (-211)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) + (-4 *6 (-732)) (-5 *2 (-1 *1 (-710))) (-4 *1 (-230 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) + (-5 *2 (-1 *1 (-710))) (-4 *1 (-230 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-243 *2)) (-4 *2 (-786))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-589 (-292 (-203)))) - (|:| |constraints| - (-589 - (-2 (|:| |start| (-203)) (|:| |finish| (-203)) - (|:| |grid| (-710)) (|:| |boundaryType| (-523)) - (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) - (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) - (|:| |tol| (-203)))) - (-5 *2 (-108)) (-5 *1 (-190))))) -(((*1 *2) - (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) - (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) - (-5 *1 (-917 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) - (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) - (-5 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6))))) + (-12 (-4 *4 (-786)) (-5 *2 (-1096 (-589 *4))) (-5 *1 (-1095 *4)) + (-5 *3 (-589 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) - (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) - (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) - (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) - (-5 *1 (-636))))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-710)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-710))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-158)) (-5 *1 (-135 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-158)) (-4 *2 (-1145 *4)) (-5 *1 (-162 *4 *2 *3)) + (-4 *3 (-664 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-383 (-883 *5)))) (-5 *4 (-1087)) + (-5 *2 (-883 *5)) (-5 *1 (-269 *5)) (-4 *5 (-427)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-383 (-883 *4)))) (-5 *2 (-883 *4)) + (-5 *1 (-269 *4)) (-4 *4 (-427)))) + ((*1 *2 *1) + (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1145 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-155 (-383 (-523))))) + (-5 *2 (-883 (-155 (-383 (-523))))) (-5 *1 (-704 *4)) + (-4 *4 (-13 (-339) (-784))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *4 (-1087)) + (-5 *2 (-883 (-155 (-383 (-523))))) (-5 *1 (-704 *5)) + (-4 *5 (-13 (-339) (-784))))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-883 (-383 (-523)))) + (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *4 (-1087)) + (-5 *2 (-883 (-383 (-523)))) (-5 *1 (-718 *5)) + (-4 *5 (-13 (-339) (-784)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) + (-4 *5 (-13 (-27) (-1109) (-406 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-710)) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1109) (-406 *5))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-271 *3)) (-5 *5 (-710)) + (-4 *3 (-13 (-27) (-1109) (-406 *6))) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-523))) (-5 *4 (-271 *6)) + (-4 *6 (-13 (-27) (-1109) (-406 *5))) + (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *6))) + (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1136 (-710))) + (-4 *7 (-13 (-27) (-1109) (-406 *6))) + (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1136 (-710))) + (-4 *3 (-13 (-27) (-1109) (-406 *7))) + (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1131 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1160 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-895))) (-5 *1 (-104)))) + ((*1 *2 *1) (-12 (-5 *2 (-44 (-1070) (-713))) (-5 *1 (-110))))) +(((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) + (-4 *3 (-880 *7 *5 *6)) + (-5 *2 + (-2 (|:| -1475 (-710)) (|:| -3474 *3) (|:| |radicand| (-589 *3)))) + (-5 *1 (-884 *5 *6 *7 *3 *8)) (-5 *4 (-710)) + (-4 *8 + (-13 (-339) + (-10 -8 (-15 -3316 (*3 $)) (-15 -3329 (*3 $)) (-15 -1691 ($ *3)))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-292 (-203))) (-5 *2 (-292 (-355))) (-5 *1 (-282))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-279)) (-4 *2 (-1123)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-562 *1))) (-5 *3 (-589 *1)) (-4 *1 (-279)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *1))) (-4 *1 (-279)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-271 *1)) (-4 *1 (-279))))) (((*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) - (-5 *2 (-589 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) - (-5 *2 (-589 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) - ((*1 *2 *1) - (-12 (-5 *2 (-589 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) + (-12 (-5 *2 (-589 (-874 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-731)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-49 *3 *4)) + (-14 *4 (-589 (-1087))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1123)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-523)) + (-14 *6 (-710)) (-4 *7 (-158)) (-4 *8 (-158)) + (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-155 *5)) (-4 *5 (-158)) + (-4 *6 (-158)) (-5 *2 (-155 *6)) (-5 *1 (-154 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-292 *3) (-292 *3))) (-4 *3 (-13 (-973) (-786))) + (-5 *1 (-201 *3 *4)) (-14 *4 (-589 (-1087))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-218 *5 *6)) (-14 *5 (-710)) + (-4 *6 (-1123)) (-4 *7 (-1123)) (-5 *2 (-218 *5 *7)) + (-5 *1 (-217 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-271 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-271 *6)) (-5 *1 (-270 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1123)) (-5 *1 (-271 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1070)) (-5 *5 (-562 *6)) + (-4 *6 (-279)) (-4 *2 (-1123)) (-5 *1 (-274 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-562 *5)) (-4 *5 (-279)) + (-4 *2 (-279)) (-5 *1 (-275 *5 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-562 *1)) (-4 *1 (-279)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-629 *5)) (-4 *5 (-973)) + (-4 *6 (-973)) (-5 *2 (-629 *6)) (-5 *1 (-281 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-292 *5)) (-4 *5 (-786)) + (-4 *6 (-786)) (-5 *2 (-292 *6)) (-5 *1 (-290 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-312 *5 *6 *7 *8)) (-4 *5 (-339)) + (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) + (-4 *9 (-339)) (-4 *10 (-1145 *9)) (-4 *11 (-1145 (-383 *10))) + (-5 *2 (-312 *9 *10 *11 *12)) + (-5 *1 (-309 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-318 *9 *10 *11)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-314 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1127)) (-4 *8 (-1127)) + (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-383 *6))) (-4 *9 (-1145 *8)) + (-4 *2 (-318 *8 *9 *10)) (-5 *1 (-316 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-318 *5 *6 *7)) (-4 *10 (-1145 (-383 *9))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1123)) (-4 *6 (-1123)) + (-4 *2 (-349 *6)) (-5 *1 (-347 *5 *4 *6 *2)) (-4 *4 (-349 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-1016)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-394 *5)) (-4 *5 (-515)) + (-4 *6 (-515)) (-5 *2 (-394 *6)) (-5 *1 (-381 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-383 *5)) (-4 *5 (-515)) + (-4 *6 (-515)) (-5 *2 (-383 *6)) (-5 *1 (-382 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-389 *5 *6 *7 *8)) (-4 *5 (-284)) + (-4 *6 (-921 *5)) (-4 *7 (-1145 *6)) + (-4 *8 (-13 (-385 *6 *7) (-964 *6))) (-4 *9 (-284)) + (-4 *10 (-921 *9)) (-4 *11 (-1145 *10)) + (-5 *2 (-389 *9 *10 *11 *12)) + (-5 *1 (-388 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-385 *10 *11) (-964 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) + (-4 *2 (-393 *6)) (-5 *1 (-391 *4 *5 *2 *6)) (-4 *4 (-393 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-515)) (-5 *1 (-394 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-973) (-786))) + (-4 *6 (-13 (-973) (-786))) (-4 *2 (-406 *6)) + (-5 *1 (-397 *5 *4 *6 *2)) (-4 *4 (-406 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) + (-4 *2 (-401 *6)) (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-401 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-462 *3)) (-4 *3 (-1123)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-479 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-786)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-540 *5)) (-4 *5 (-339)) + (-4 *6 (-339)) (-5 *2 (-540 *6)) (-5 *1 (-539 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -1825 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-339)) (-4 *6 (-339)) + (-5 *2 (-2 (|:| -1825 *6) (|:| |coeff| *6))) + (-5 *1 (-539 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-339)) (-4 *2 (-339)) (-5 *1 (-539 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-339)) (-4 *6 (-339)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-539 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-553 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-553 *6)) (-5 *1 (-550 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-553 *6)) (-5 *5 (-553 *7)) + (-4 *6 (-1123)) (-4 *7 (-1123)) (-4 *8 (-1123)) (-5 *2 (-553 *8)) + (-5 *1 (-551 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-553 *7)) + (-4 *6 (-1123)) (-4 *7 (-1123)) (-4 *8 (-1123)) (-5 *2 (-1068 *8)) + (-5 *1 (-551 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-553 *6)) (-5 *5 (-1068 *7)) + (-4 *6 (-1123)) (-4 *7 (-1123)) (-4 *8 (-1123)) (-5 *2 (-1068 *8)) + (-5 *1 (-551 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1123)) (-5 *1 (-553 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-589 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-589 *6)) (-5 *1 (-587 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-589 *7)) + (-4 *6 (-1123)) (-4 *7 (-1123)) (-4 *8 (-1123)) (-5 *2 (-589 *8)) + (-5 *1 (-588 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1123)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-973)) (-4 *8 (-973)) + (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *2 (-627 *8 *9 *10)) + (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) + (-4 *9 (-349 *8)) (-4 *10 (-349 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-973)) + (-4 *8 (-973)) (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) + (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-349 *8)) (-4 *10 (-349 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-515)) (-4 *7 (-515)) + (-4 *6 (-1145 *5)) (-4 *2 (-1145 (-383 *8))) + (-5 *1 (-649 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1145 (-383 *6))) + (-4 *8 (-1145 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-973)) (-4 *9 (-973)) (-4 *5 (-786)) + (-4 *6 (-732)) (-4 *2 (-880 *9 *7 *5)) + (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-732)) + (-4 *4 (-880 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-786)) (-4 *6 (-786)) (-4 *7 (-732)) + (-4 *9 (-973)) (-4 *2 (-880 *9 *8 *6)) + (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-732)) + (-4 *4 (-880 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-973)) + (-4 *6 (-973)) (-4 *7 (-666)) (-5 *2 (-675 *6 *7)) + (-5 *1 (-674 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-675 *3 *4)) (-4 *4 (-666)))) - ((*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-589 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-973)) (-5 *2 (-1068 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-721 *5)) (-4 *5 (-973)) + (-4 *6 (-973)) (-5 *2 (-721 *6)) (-5 *1 (-720 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) + (-4 *2 (-736 *6)) (-5 *1 (-737 *4 *5 *2 *6)) (-4 *4 (-736 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *1 (-771 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-779 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *1 (-778 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-808 *6)) (-5 *1 (-807 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-810 *6)) (-5 *1 (-809 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-820 *5 *6)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-820 *5 *7)) + (-5 *1 (-819 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-973)) + (-4 *6 (-973)) (-5 *2 (-883 *6)) (-5 *1 (-877 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-786)) + (-4 *8 (-973)) (-4 *6 (-732)) + (-4 *2 + (-13 (-1016) + (-10 -8 (-15 -4045 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710)))))) + (-5 *1 (-882 *6 *7 *8 *5 *2)) (-4 *5 (-880 *8 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-973)) + (-4 *6 (-973)) (-5 *2 (-874 *6)) (-5 *1 (-910 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-1 *2 (-883 *4))) (-4 *4 (-973)) + (-4 *2 (-880 (-883 *4) *5 *6)) (-4 *5 (-732)) + (-4 *6 + (-13 (-786) + (-10 -8 (-15 -1400 ((-1087) $)) + (-15 -2724 ((-3 $ "failed") (-1087)))))) + (-5 *1 (-913 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-515)) (-4 *6 (-515)) + (-4 *2 (-921 *6)) (-5 *1 (-919 *5 *6 *4 *2)) (-4 *4 (-921 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) + (-4 *2 (-925 *6)) (-5 *1 (-926 *4 *5 *2 *6)) (-4 *4 (-925 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-976 *3 *4 *5 *6 *7)) + (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-973)) (-4 *10 (-973)) + (-14 *5 (-710)) (-14 *6 (-710)) (-4 *8 (-216 *6 *7)) + (-4 *9 (-216 *5 *7)) (-4 *2 (-976 *5 *6 *10 *11 *12)) + (-5 *1 (-978 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-976 *5 *6 *7 *8 *9)) (-4 *11 (-216 *6 *10)) + (-4 *12 (-216 *5 *10)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-1011 *6)) (-5 *1 (-1007 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-784)) + (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-589 *6)) + (-5 *1 (-1007 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-1009 *6)) (-5 *1 (-1008 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1012 *4 *2)) (-4 *4 (-784)) + (-4 *2 (-1061 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-1068 *6)) (-5 *1 (-1066 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7)) + (-4 *6 (-1123)) (-4 *7 (-1123)) (-4 *8 (-1123)) (-5 *2 (-1068 *8)) + (-5 *1 (-1067 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-973)) + (-4 *6 (-973)) (-5 *2 (-1083 *6)) (-5 *1 (-1081 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1100 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1133 *5 *7 *9)) (-4 *5 (-973)) + (-4 *6 (-973)) (-14 *7 (-1087)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1133 *6 *8 *10)) (-5 *1 (-1128 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1087)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-1136 *6)) (-5 *1 (-1135 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5)) (-4 *5 (-784)) + (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-1068 *6)) + (-5 *1 (-1135 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1142 *5 *6)) (-14 *5 (-1087)) + (-4 *6 (-973)) (-4 *8 (-973)) (-5 *2 (-1142 *7 *8)) + (-5 *1 (-1137 *5 *6 *7 *8)) (-14 *7 (-1087)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-973)) (-4 *6 (-973)) + (-4 *2 (-1145 *6)) (-5 *1 (-1143 *5 *4 *6 *2)) (-4 *4 (-1145 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1154 *5 *7 *9)) (-4 *5 (-973)) + (-4 *6 (-973)) (-14 *7 (-1087)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1154 *6 *8 *10)) (-5 *1 (-1149 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1087)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-973)) (-4 *6 (-973)) + (-4 *2 (-1160 *6)) (-5 *1 (-1158 *5 *6 *4 *2)) (-4 *4 (-1160 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1123)) + (-4 *6 (-1123)) (-5 *2 (-1169 *6)) (-5 *1 (-1168 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1169 *5)) + (-4 *5 (-1123)) (-4 *6 (-1123)) (-5 *2 (-1169 *6)) + (-5 *1 (-1168 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-973)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-1190 *3 *4)) + (-4 *4 (-782))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *4 (-710)) - (-5 *2 (-629 (-203))) (-5 *1 (-244))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-1087)) (-4 *5 (-339)) (-5 *2 (-589 (-1118 *5))) + (-5 *1 (-1177 *5)) (-5 *4 (-1118 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) + (-5 *1 (-1192 *4)) (-4 *4 (-1123)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-589 (-1068 *5)) (-589 (-1068 *5)))) (-5 *4 (-523)) + (-5 *2 (-589 (-1068 *5))) (-5 *1 (-1192 *5)) (-4 *5 (-1123))))) +(((*1 *1) (-5 *1 (-413)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *3 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1109) (-406 *4)))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) - (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) - (-5 *2 (-962)) (-5 *1 (-688))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1016)) (-4 *2 (-831 *5)) (-5 *1 (-631 *5 *2 *3 *4)) - (-4 *3 (-349 *2)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244))))))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN)))) (-5 *2 (-962)) + (-5 *1 (-686))))) (((*1 *2 *1) - (-12 (-5 *2 (-1168 (-710))) (-5 *1 (-617 *3)) (-4 *3 (-1016))))) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-3 (-108) (-589 *1))) + (-4 *1 (-992 *4 *5 *6 *3))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33)))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2) + (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-840)) + (-5 *1 (-432 *3 *4 *2 *5)) (-4 *5 (-880 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-840)) + (-5 *1 (-837 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-840)) (-5 *1 (-838 *2 *3)) (-4 *3 (-1145 *2))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-687))))) +(((*1 *2 *3) + (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-284)) + (-5 *2 (-383 (-394 (-883 *4)))) (-5 *1 (-968 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) (((*1 *1 *1) - (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) - (-4 *4 (-786)) (-4 *2 (-427))))) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-284)) (-5 *1 (-430 *3 *2)) (-4 *2 (-1145 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-284)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1145 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-284)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-710))) + (-5 *1 (-502 *3 *2 *4 *5)) (-4 *2 (-1145 *3))))) +(((*1 *1) (-5 *1 (-268)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-394 *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-973)) (-5 *2 (-589 *6)) (-5 *1 (-419 *5 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) + (-5 *1 (-239 *2)) (-4 *2 (-1123)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *2 (-51)) + (-5 *1 (-240))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-562 *4)) (-5 *1 (-561 *3 *4)) (-4 *3 (-786)) - (-4 *4 (-786))))) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1) (-4 *1 (-1112)))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306))))) -(((*1 *2 *3) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1115 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1109)))))) +(((*1 *2 *1) (-12 - (-5 *3 - (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) - (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) - (|:| |abserr| (-203)) (|:| |relerr| (-203)))) - (-5 *2 (-355)) (-5 *1 (-185))))) + (-5 *2 + (-589 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-523))))) + (-5 *1 (-394 *3)) (-4 *3 (-515)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-710)) (-4 *3 (-325)) (-4 *5 (-1145 *3)) + (-5 *2 (-589 (-1083 *3))) (-5 *1 (-469 *3 *5 *6)) + (-4 *6 (-1145 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4249)) (-4 *1 (-222 *2)) (-4 *2 (-1123))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-1145 *4)) (-4 *4 (-973)) + (-5 *2 (-1169 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) - (-5 *2 (-589 (-383 (-523)))) (-5 *1 (-947 *4)) - (-4 *4 (-1144 (-523)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) - (-4 *2 (-786)))) - ((*1 *1 *1 *1) + (-12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1744 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-852))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *1 *2) (-12 (-5 *2 (-364)) (-5 *1 (-578))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133))))) +(((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-638)) (-5 *1 (-282))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-108)) + (-5 *1 (-820 *4 *5)) (-4 *5 (-1016)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-5 *2 (-108)) + (-5 *1 (-821 *5 *3)) (-4 *3 (-1123)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) + (-4 *6 (-1123)) (-5 *2 (-108)) (-5 *1 (-821 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) - (-5 *2 (-108))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-108)) + (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1109) (-406 (-155 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-108)) (-5 *1 (-1113 *4 *3)) + (-4 *3 (-13 (-27) (-1109) (-406 *4)))))) (((*1 *1 *1) - (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) - (-5 *2 (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3282 *1))) - (-4 *1 (-987 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) - (-5 *2 (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3282 *1))) - (-4 *1 (-987 *3 *4 *5))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-355)) (-5 *1 (-985))))) -(((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1122)) (-5 *2 (-108))))) + (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) + ((*1 *1 *1) (|partial| -4 *1 (-662)))) +(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *2 (-108)) (-5 *1 (-244))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-927 *3)) (-4 *3 (-158)) (-5 *1 (-738 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-279))) ((*1 *1 *1) (-4 *1 (-279)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1123)) (-5 *1 (-1046 *4 *2)) + (-4 *2 (-13 (-556 (-523) *4) (-10 -7 (-6 -4248) (-6 -4249)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-786)) (-4 *3 (-1123)) (-5 *1 (-1046 *3 *2)) + (-4 *2 (-13 (-556 (-523) *3) (-10 -7 (-6 -4248) (-6 -4249))))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| -3070 *1) (|:| -3969 *1))) (-4 *1 (-788 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-515)) (-4 *5 (-973)) + (-5 *2 (-2 (|:| -3070 *3) (|:| -3969 *3))) (-5 *1 (-789 *5 *3)) + (-4 *3 (-788 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133))))) (((*1 *2 *1) - (-12 (-5 *2 (-794)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 (-710)) - (-14 *4 (-710)) (-4 *5 (-158))))) -(((*1 *1) (-5 *1 (-1090)))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (|partial| -12 (-5 *2 (-1 (-499) (-589 (-499)))) (-5 *1 (-110)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-499) (-589 (-499)))) (-5 *1 (-110))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) + (-4 *2 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1145 *3)) + (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1160 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) + (-4 *2 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) + (-5 *1 (-1064 *3))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-973)))) + ((*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) - (-5 *2 (-962)) (-5 *1 (-696))))) + (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1123))))) (((*1 *2 *3) - (-12 (-5 *3 (-708)) - (-5 *2 - (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) - (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) - (-5 *1 (-524)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-708)) (-5 *4 (-985)) - (-5 *2 - (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) - (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) - (-5 *1 (-524)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-726)) (-5 *3 (-985)) - (-5 *4 - (-2 (|:| |fn| (-292 (-203))) - (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (-5 *2 - (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) - (|:| |extra| (-962)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-726)) (-5 *3 (-985)) - (-5 *4 - (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) - (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) - (|:| |relerr| (-203)))) - (-5 *2 - (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) - (|:| |extra| (-962)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-739)) (-5 *3 (-985)) - (-5 *4 - (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) - (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) - (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) - (|:| |abserr| (-203)) (|:| |relerr| (-203)))) - (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2773 (-589 (-203))))) + (-5 *2 (-589 (-1087))) (-5 *1 (-244)))) ((*1 *2 *3) - (-12 (-5 *3 (-747)) - (-5 *2 - (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) - (|:| |explanations| (-589 (-1070))))) - (-5 *1 (-744)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-747)) (-5 *4 (-985)) - (-5 *2 - (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) - (|:| |explanations| (-589 (-1070))))) - (-5 *1 (-744)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-775)) (-5 *3 (-985)) - (-5 *4 - (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) - (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-775)) (-5 *3 (-985)) - (-5 *4 - (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) - (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) - (|:| |ub| (-589 (-779 (-203)))))) - (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) + (-12 (-5 *3 (-1083 *7)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-973)) (-5 *2 (-589 *5)) + (-5 *1 (-297 *4 *5 *6 *7)))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-315 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-363)))) + ((*1 *2 *1) + (-12 (-4 *1 (-406 *3)) (-4 *3 (-786)) (-5 *2 (-589 (-1087))))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-589 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-777)) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) + (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *5)) + (-5 *1 (-881 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1018 (-1087))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) + ((*1 *2 *1) + (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-731)) + (-4 *5 (-786)) (-5 *2 (-589 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-589 (-1087))) + (-5 *1 (-969 *4))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-589 *6)) (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) + (-4 *3 (-515))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1169 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1127)) + (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-383 *4)))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1052 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) + (-4 *5 (-13 (-1016) (-33))) (-4 *6 (-13 (-1016) (-33))) + (-5 *2 (-108)) (-5 *1 (-1053 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 - (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) - (|:| |explanations| (-589 (-1070))))) - (-5 *1 (-776)))) + (-2 (|:| -3370 *4) (|:| -3460 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) + (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1145 *4)) (-5 *1 (-746 *4 *2 *3 *5)) + (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) + (-4 *5 (-599 (-383 *2))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-777)) (-5 *4 (-985)) - (-5 *2 - (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) - (|:| |explanations| (-589 (-1070))))) - (-5 *1 (-776)))) + (-12 (-4 *2 (-1145 *4)) (-5 *1 (-746 *4 *2 *5 *3)) + (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-599 *2)) + (-4 *3 (-599 (-383 *2)))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) + (-5 *1 (-688))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -2922 *4)))) + (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1083 (-383 (-1083 *2)))) (-5 *4 (-562 *2)) + (-4 *2 (-13 (-406 *5) (-27) (-1109))) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1016)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1083 *1)) (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *3 (-786)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1083 *4)) (-4 *4 (-973)) (-4 *1 (-880 *4 *5 *3)) + (-4 *5 (-732)) (-4 *3 (-786)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-826)) (-5 *3 (-985)) - (-5 *4 - (-2 (|:| |pde| (-589 (-292 (-203)))) - (|:| |constraints| - (-589 - (-2 (|:| |start| (-203)) (|:| |finish| (-203)) - (|:| |grid| (-710)) (|:| |boundaryType| (-523)) - (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) - (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) - (|:| |tol| (-203)))) - (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) + (-12 (-5 *3 (-383 (-1083 *2))) (-4 *5 (-732)) (-4 *4 (-786)) + (-4 *6 (-973)) + (-4 *2 + (-13 (-339) + (-10 -8 (-15 -1691 ($ *7)) (-15 -3316 (*7 $)) (-15 -3329 (*7 $))))) + (-5 *1 (-881 *5 *4 *6 *7 *2)) (-4 *7 (-880 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-1083 (-383 (-883 *5))))) (-5 *4 (-1087)) + (-5 *2 (-383 (-883 *5))) (-5 *1 (-969 *5)) (-4 *5 (-515))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1169 *5)) (-4 *5 (-731)) (-5 *2 (-108)) + (-5 *1 (-781 *4 *5)) (-14 *4 (-710))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-710)) (-5 *1 (-541 *2)) (-4 *2 (-508)))) ((*1 *2 *3) - (-12 (-5 *3 (-829)) - (-5 *2 - (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) - (|:| |explanations| (-589 (-1070))))) - (-5 *1 (-828)))) + (-12 (-5 *2 (-2 (|:| -1416 *3) (|:| -1475 (-710)))) (-5 *1 (-541 *3)) + (-4 *3 (-508))))) +(((*1 *2 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-710)) + (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) + (-5 *1 (-548 *3)) (-4 *3 (-973))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1016)) (-4 *6 (-1016)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-1016))))) +(((*1 *1 *1) + (-12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) + (-4 *2 (-427)))) + ((*1 *1 *1) + (-12 (-4 *1 (-318 *2 *3 *4)) (-4 *2 (-1127)) (-4 *3 (-1145 *2)) + (-4 *4 (-1145 (-383 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-427)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *3 (-427)))) + ((*1 *1 *1) + (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-284)) (-4 *3 (-515)) (-5 *1 (-1075 *3 *2)) + (-4 *2 (-1145 *3))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1145 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-158)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1125))))) +(((*1 *1 *1 *1) (-4 *1 (-604))) ((*1 *1 *1 *1) (-5 *1 (-1034)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-515) (-786))) + (-4 *2 (-13 (-406 (-155 *4)) (-930) (-1109))) + (-5 *1 (-552 *4 *3 *2)) (-4 *3 (-13 (-406 *4) (-930) (-1109)))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-589 (-852))) (-5 *1 (-141 *4 *2 *5)) (-14 *4 (-852)) + (-4 *2 (-339)) (-14 *5 (-922 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-653 *5 *6 *7)) (-4 *5 (-786)) + (-4 *6 (-216 (-2810 *4) (-710))) + (-14 *7 + (-1 (-108) (-2 (|:| -4013 *5) (|:| -1475 *6)) + (-2 (|:| -4013 *5) (|:| -1475 *6)))) + (-14 *4 (-589 (-1087))) (-4 *2 (-158)) + (-5 *1 (-436 *4 *2 *5 *6 *7 *8)) (-4 *8 (-880 *2 *6 (-796 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-786)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-515)) (-5 *1 (-570 *2 *4)) + (-4 *4 (-1145 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-648 *2)) (-4 *2 (-973)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-973)) (-4 *3 (-666)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *5)) (-5 *3 (-589 (-710))) (-4 *1 (-680 *4 *5)) + (-4 *4 (-973)) (-4 *5 (-786)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *2)) (-4 *4 (-973)) + (-4 *2 (-786)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-788 *2)) (-4 *2 (-973)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 (-710))) (-4 *1 (-880 *4 *5 *6)) + (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-880 *4 *5 *2)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *2 (-786)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 *5)) (-4 *1 (-902 *4 *5 *6)) + (-4 *4 (-973)) (-4 *5 (-731)) (-4 *6 (-786)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-902 *4 *3 *2)) (-4 *4 (-973)) (-4 *3 (-731)) + (-4 *2 (-786))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-523)) (-4 *7 (-880 *4 *5 *6)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-424 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1087)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-883 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1087)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-786) (-515))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-786) (-515))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-985)) - (-5 *2 - (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) - (|:| |explanations| (-589 (-1070))))) - (-5 *1 (-828))))) -(((*1 *2) - (-12 (-4 *3 (-973)) (-5 *2 (-888 (-652 *3 *4))) (-5 *1 (-652 *3 *4)) - (-4 *4 (-1144 *3))))) + (-12 (-5 *3 (-1083 *2)) (-5 *4 (-1087)) (-4 *2 (-406 *5)) + (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-786) (-515))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-852)) (-4 *1 (-940)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-852)) (-5 *4 (-794)) + (-4 *1 (-940)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-852)) (-4 *4 (-13 (-784) (-339))) + (-4 *1 (-989 *4 *2)) (-4 *2 (-1145 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-589 (-589 (-589 *4)))) (-5 *2 (-589 (-589 *4))) - (-5 *1 (-1094 *4)) (-4 *4 (-786))))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1174) (-1169 *5) (-1169 *5) (-355))) + (-5 *3 (-1169 (-355))) (-5 *5 (-355)) (-5 *2 (-1174)) + (-5 *1 (-727)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1174) (-1169 *5) (-1169 *5) (-355))) + (-5 *3 (-1169 (-355))) (-5 *5 (-355)) (-5 *2 (-1174)) + (-5 *1 (-727))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1160 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1131 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1129 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1152 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *1) (-5 *1 (-762)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-604))) ((*1 *1 *1 *1) (-5 *1 (-1034)))) +(((*1 *2 *3) + (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-768)) (-5 *3 (-1070))))) (((*1 *2 *1) - (-12 (-5 *2 (-589 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-540 *3)) (-4 *3 (-339))))) -(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) -(((*1 *2 *3 *4) (-12 - (-5 *3 + (-5 *2 (-589 - (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) - (|:| |wcond| (-589 (-883 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) - (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) - (-5 *4 (-1070)) (-4 *5 (-13 (-284) (-136))) (-4 *8 (-880 *5 *7 *6)) - (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-523)) - (-5 *1 (-855 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-589 (-108))) (-5 *5 (-629 (-203))) - (-5 *6 (-629 (-523))) (-5 *7 (-203)) (-5 *3 (-523)) (-5 *2 (-962)) - (-5 *1 (-694))))) + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -2464 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203))))) + (-5 *1 (-518)))) + ((*1 *2 *1) + (-12 (-4 *1 (-560 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-5 *2 (-589 *3)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-589 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1169 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203))))) + (-5 *1 (-742))))) (((*1 *2 *3) - (-12 (-5 *3 (-1083 *7)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) - (-4 *5 (-786)) (-4 *6 (-973)) (-5 *2 (-1083 *6)) - (-5 *1 (-297 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523))))) + (-12 (-5 *3 (-629 (-383 (-883 *4)))) (-4 *4 (-427)) + (-5 *2 (-589 (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4))))) + (-5 *1 (-269 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1131 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1160 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1))))) + (-12 (-5 *3 (-589 (-2 (|:| -2424 (-1083 *6)) (|:| -1475 (-523))))) + (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-523)) + (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-589 *1)) (-4 *1 (-851))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-599 *3)) (-4 *3 (-973)) (-4 *3 (-339)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-710)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) + (-5 *1 (-602 *5 *2)) (-4 *2 (-599 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1123)) + (-4 *5 (-349 *4)) (-4 *2 (-349 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *6 *7 *2)) (-4 *6 (-973)) + (-4 *7 (-216 *5 *6)) (-4 *2 (-216 *4 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +(((*1 *1 *1) (-4 *1 (-575))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930) (-1109)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-852)) (-5 *2 (-443)) (-5 *1 (-1170))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-629 *5))) (-4 *5 (-284)) (-4 *5 (-973)) + (-5 *2 (-1169 (-1169 *5))) (-5 *1 (-956 *5)) (-5 *4 (-1169 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1144 *2)) (-4 *2 (-1126)) (-5 *1 (-137 *2 *4 *3)) - (-4 *3 (-1144 (-383 *4)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1108))) - (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) - (-5 *2 (-540 *3)) (-5 *1 (-525 *5 *3 *6)) (-4 *6 (-1016))))) -(((*1 *2) - (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) - (-4 *3 (-343 *4)))) - ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) - (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4)))))) -(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) - ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) - ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-108)) - (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) - (-4 *3 (-13 (-27) (-1108) (-406 *6) (-10 -8 (-15 -1458 ($ *7))))) - (-4 *7 (-784)) - (-4 *8 - (-13 (-1146 *3 *7) (-339) (-1108) - (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $))))) + (-12 (-5 *3 (-589 *2)) (-5 *1 (-164 *2)) (-4 *2 (-284)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-589 (-589 *4))) (-5 *2 (-589 *4)) (-4 *4 (-284)) + (-5 *1 (-164 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 *8)) + (-5 *4 + (-589 + (-2 (|:| -3760 (-629 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-629 *7))))) + (-5 *5 (-710)) (-4 *8 (-1145 *7)) (-4 *7 (-1145 *6)) (-4 *6 (-325)) (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) - (-5 *1 (-398 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1070)) (-4 *9 (-912 *8)) - (-14 *10 (-1087))))) -(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) -(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-699))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) - (-4 *2 (-13 (-406 *3) (-930)))))) -(((*1 *1) (-5 *1 (-144)))) -(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) - ((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171))))) -(((*1 *2 *1) - (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) - (-4 *5 (-1144 (-383 *4))) - (-5 *2 (-2 (|:| |num| (-1168 *4)) (|:| |den| *4)))))) + (-2 (|:| -3760 (-629 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-629 *7)))) + (-5 *1 (-469 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) (((*1 *2 *3) - (-12 (-4 *4 (-325)) (-5 *2 (-888 (-1083 *4))) (-5 *1 (-333 *4)) - (-5 *3 (-1083 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-292 (-203))) (-5 *1 (-190))))) -(((*1 *1) (-5 *1 (-413)))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-1091)) (-5 *1 (-1090))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1087)) (-5 *6 (-108)) - (-4 *7 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) - (-4 *3 (-13 (-1108) (-889) (-29 *7))) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1109) (-930)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-1068 *7))) (-4 *6 (-786)) + (-4 *7 (-880 *5 (-495 *6) *6)) (-4 *5 (-973)) + (-5 *2 (-1 (-1068 *7) *7)) (-5 *1 (-1040 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-761))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 - (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-197 *7 *3)) (-5 *5 (-779 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1141 *4 *5)) (-5 *3 (-589 *5)) (-14 *4 (-1087)) - (-4 *5 (-339)) (-5 *1 (-854 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-589 *5)) (-4 *5 (-339)) (-5 *2 (-1083 *5)) - (-5 *1 (-854 *4 *5)) (-14 *4 (-1087)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-589 *6)) (-5 *4 (-710)) (-4 *6 (-339)) - (-5 *2 (-383 (-883 *6))) (-5 *1 (-974 *5 *6)) (-14 *5 (-1087))))) + (-589 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-710)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-732)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *5 (-786)) + (-5 *1 (-424 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-794) (-794))) (-5 *1 (-110)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-794) (-589 (-794)))) (-5 *1 (-110)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-794) (-589 (-794)))) (-5 *1 (-110)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1174)) (-5 *1 (-193 *3)) + (-4 *3 + (-13 (-786) + (-10 -8 (-15 -1937 ((-1070) $ (-1087))) (-15 -1239 (*2 $)) + (-15 -4048 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-370)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-370)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-473)))) + ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1174)) (-5 *1 (-650)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1104)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1174)) (-5 *1 (-1104))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-906 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-692))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-589 *11)) (-5 *5 (-589 (-1083 *9))) + (-5 *6 (-589 *9)) (-5 *7 (-589 *12)) (-5 *8 (-589 (-710))) + (-4 *11 (-786)) (-4 *9 (-284)) (-4 *12 (-880 *9 *10 *11)) + (-4 *10 (-732)) (-5 *2 (-589 (-1083 *12))) + (-5 *1 (-647 *10 *11 *9 *12)) (-5 *3 (-1083 *12))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) + (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-697))))) (((*1 *2 *3) - (-12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-589 *5)) - (-5 *1 (-821 *4 *5)) (-4 *5 (-1122))))) + (-12 (-5 *3 (-589 (-562 *5))) (-4 *4 (-786)) (-5 *2 (-562 *5)) + (-5 *1 (-532 *4 *5)) (-4 *5 (-406 *4))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-1083 (-883 *4))) (-5 *1 (-392 *3 *4)) + (-4 *3 (-393 *4)))) + ((*1 *2) + (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-4 *3 (-339)) + (-5 *2 (-1083 (-883 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1169 (-629 *3)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-523)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1123)) + (-4 *5 (-349 *4)) (-4 *3 (-349 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-794))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-203)) (-5 *2 (-962)) (-5 *1 (-692))))) (((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-131 *4 *5 *3)) - (-4 *3 (-349 *5)))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1145 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-396 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1109) (-406 *3))) + (-14 *4 (-1087)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-4 *2 (-13 (-27) (-1109) (-406 *3) (-10 -8 (-15 -1691 ($ *4))))) + (-4 *4 (-784)) + (-4 *5 + (-13 (-1147 *2 *4) (-339) (-1109) + (-10 -8 (-15 -3984 ($ $)) (-15 -2814 ($ $))))) + (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *6 (-912 *5)) (-14 *7 (-1087))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1145 *6)) + (-4 *6 (-13 (-27) (-406 *5))) + (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-4 *8 (-1145 (-383 *7))) + (-5 *2 (-540 *3)) (-5 *1 (-511 *5 *6 *7 *8 *3)) + (-4 *3 (-318 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158))))) +(((*1 *2 *3) + (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-131 *2 *4 *3)) + (-4 *3 (-349 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-474 *4 *5 *6 *3)) (-4 *6 (-349 *4)) (-4 *3 (-349 *5)))) + (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-474 *2 *4 *5 *3)) + (-4 *5 (-349 *2)) (-4 *3 (-349 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-629 *5)) (-4 *5 (-921 *4)) (-4 *4 (-515)) - (-5 *2 (-2 (|:| |num| (-629 *4)) (|:| |den| *4))) - (-5 *1 (-632 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) - (-4 *6 (-1144 *5)) - (-5 *2 (-2 (|:| -1710 *7) (|:| |rh| (-589 (-383 *6))))) - (-5 *1 (-746 *5 *6 *7 *3)) (-5 *4 (-589 (-383 *6))) - (-4 *7 (-599 *6)) (-4 *3 (-599 (-383 *6))))) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-921 *2)) (-4 *2 (-515)) + (-5 *1 (-632 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1137 *4 *5 *3)) - (-4 *3 (-1144 *5))))) -((-1199 . 725070) (-1200 . 724954) (-1201 . 724565) (-1202 . 724224) - (-1203 . 724151) (-1204 . 724123) (-1205 . 724064) (-1206 . 723959) - (-1207 . 723793) (-1208 . 723692) (-1209 . 723664) (-1210 . 723557) - (-1211 . 723507) (-1212 . 723455) (-1213 . 722964) (-1214 . 722818) - (-1215 . 722687) (-1216 . 722529) (-1217 . 722316) (-1218 . 722201) - (-1219 . 722117) (-1220 . 721980) (-1221 . 721816) (-1222 . 721630) - (-1223 . 721182) (-1224 . 721109) (-1225 . 720990) (-1226 . 720872) - (-1227 . 720765) (-1228 . 717480) (-1229 . 717343) (-1230 . 717314) - (-1231 . 717201) (-1232 . 717129) (-1233 . 717076) (-1234 . 717020) - (-1235 . 716946) (-1236 . 716617) (-1237 . 716532) (-1238 . 716437) - (-1239 . 716238) (-1240 . 716059) (-1241 . 715767) (-1242 . 715714) - (-1243 . 715628) (-1244 . 715532) (-1245 . 715425) (-1246 . 715314) - (-1247 . 715233) (-1248 . 715080) (-1249 . 714886) (-1250 . 714775) - (-1251 . 714272) (-1252 . 714170) (-1253 . 713993) (-1254 . 713806) - (-1255 . 713469) (-1256 . 713041) (-1257 . 712871) (-1258 . 712840) - (-1259 . 712770) (-1260 . 712504) (-1261 . 712392) (-1262 . 712250) - (-1263 . 712166) (-1264 . 710624) (-1265 . 710571) (-1266 . 710486) - (-1267 . 710169) (-1268 . 710098) (-1269 . 710025) (-1270 . 709921) - (-1271 . 709770) (-1272 . 709696) (-1273 . 709550) (-1274 . 709477) - (-1275 . 709271) (-1276 . 709145) (-1277 . 709036) (-1278 . 708921) - (-1279 . 708865) (-1280 . 708766) (-1281 . 708580) (-1282 . 708376) - (-1283 . 708210) (-1284 . 708126) (-1285 . 707996) (-1286 . 707913) - (-1287 . 707740) (-1288 . 707412) (-1289 . 707222) (-1290 . 707151) - (-1291 . 707012) (-1292 . 706364) (-1293 . 706128) (-1294 . 705859) - (-1295 . 705276) (-1296 . 705139) (-1297 . 705068) (-1298 . 704972) - (-1299 . 704873) (-1300 . 704726) (-1301 . 704615) (-1302 . 704452) - (-1303 . 704366) (-1304 . 703979) (-1305 . 703875) (-1306 . 703628) - (-1307 . 703528) (-1308 . 703375) (-1309 . 702423) (-1310 . 702275) - (-1311 . 702211) (-1312 . 700493) (-1313 . 700338) (-1314 . 700270) - (-1315 . 699951) (-1316 . 699895) (-1317 . 699726) (-1318 . 699641) - (-1319 . 698394) (-1320 . 698259) (-1321 . 698204) (-1322 . 697944) - (-1323 . 697671) (-1324 . 697284) (-1325 . 697041) (-1326 . 696977) - (-1327 . 696853) (-1328 . 696654) (-1329 . 696465) (-1330 . 695870) - (-1331 . 695761) (-1332 . 695694) (-1333 . 695169) (-1334 . 694598) - (-1335 . 694515) (-1336 . 694409) (-1337 . 694250) (-1338 . 694152) - (-1339 . 694100) (-1340 . 693963) (-1341 . 693763) (-1342 . 693284) - (-1343 . 693186) (-1344 . 693030) (-1345 . 692632) (-1346 . 692580) - (-1347 . 692464) (-1348 . 692408) (-1349 . 692158) (-1350 . 692072) - (-1351 . 691873) (-1352 . 691817) (-1353 . 691500) (-1354 . 691427) - (-1355 . 691312) (-1356 . 691142) (-1357 . 691001) (-1358 . 690896) - (-1359 . 690497) (-1360 . 690395) (-1361 . 690295) (-1362 . 690200) - (-1363 . 690135) (-1364 . 690055) (-1365 . 689757) (-1366 . 689516) - (-1367 . 689037) (-1368 . 688859) (-1369 . 688757) (-1370 . 688621) - (-1371 . 688536) (-1372 . 688481) (-1373 . 687950) (-1374 . 687665) - (-1375 . 687593) (-1376 . 687190) (-1377 . 686978) (-1378 . 686912) - (-1379 . 686466) (-1380 . 686328) (-1381 . 686233) (-1382 . 686010) - (-1383 . 685619) (-1384 . 685497) (-1385 . 685446) (-1386 . 685367) - (-1387 . 685312) (-1388 . 685263) (-1389 . 685156) (-1390 . 684985) - (-1391 . 684917) (-1392 . 684774) (-1393 . 684701) (-1394 . 684597) - (-1395 . 684440) (-1396 . 684069) (-1397 . 683694) (-1398 . 683470) - (-1399 . 683391) (-1400 . 683306) (-1401 . 683198) (-1402 . 683105) - (-1403 . 682069) (-1404 . 681914) (-1405 . 681717) (-1406 . 681215) - (-1407 . 680997) (-1408 . 680942) (-1409 . 680362) (-1410 . 680258) - (-1411 . 680155) (-1412 . 680063) (-1413 . 679946) (-1414 . 679831) - (-1415 . 679587) (-1416 . 679445) (-1417 . 679025) (-1418 . 678890) - (-1419 . 678517) (-1420 . 678287) (-1421 . 678057) (-1422 . 677892) - (-1423 . 677824) (-1424 . 677720) (-1425 . 677274) (-1426 . 677104) - (-1427 . 676918) (-1428 . 676694) (-1429 . 676597) (-1430 . 676544) - (-1431 . 676285) (-1432 . 676100) (-1433 . 675923) (-1434 . 675857) - (-1435 . 675805) (-1436 . 675678) (-1437 . 675398) (-1438 . 675272) - (-1439 . 675206) (-1440 . 675012) (-1441 . 674819) (-1442 . 674649) - (-1443 . 674580) (-1444 . 674521) (-1445 . 674427) (-1446 . 674322) - (-1447 . 674218) (-1448 . 674110) (-1449 . 673945) (-1450 . 673768) - (-1451 . 673542) (-1452 . 673422) (-1453 . 673290) (-1454 . 672997) - (-1455 . 672596) (-1456 . 672445) (-1457 . 672351) (-1458 . 649416) - (-1459 . 649364) (-1460 . 649261) (-1461 . 648688) (-1462 . 648530) - (-1463 . 648401) (-1464 . 648060) (-1465 . 647970) (-1466 . 647733) - (-1467 . 647599) (-1468 . 647390) (-1469 . 647234) (-1470 . 647161) - (-1471 . 646645) (-1472 . 643893) (-1473 . 643518) (-1474 . 643382) - (-1475 . 643003) (-1476 . 642901) (-1477 . 642789) (-1478 . 642692) - (-1479 . 642171) (-1480 . 642073) (-1481 . 642020) (-1482 . 641876) - (-1483 . 641632) (-1484 . 641536) (-1485 . 641059) (-1486 . 640981) - (-1487 . 640914) (-1488 . 640760) (-1489 . 640551) (-1490 . 640474) - (-1491 . 640373) (-1492 . 640202) (-1493 . 639963) (-1494 . 639837) - (-1495 . 639781) (-1496 . 639707) (-1497 . 639624) (-1498 . 639567) - (-1499 . 639487) (-1500 . 638202) (-1501 . 637987) (-1502 . 637956) - (-1503 . 637882) (-1504 . 637623) (-1505 . 637514) (-1506 . 637306) - (-1507 . 637206) (-1508 . 637067) (-1509 . 636958) (-1510 . 636800) - (-1511 . 636720) (-1512 . 636348) (-1513 . 636264) (-1514 . 636165) - (-1515 . 635778) (-1516 . 635723) (-1517 . 635611) (-1518 . 635279) - (-1519 . 635065) (-1520 . 634149) (-1521 . 634075) (-1522 . 633913) - (-1523 . 633735) (-1524 . 633607) (-1525 . 633464) (-1526 . 633357) - (-1527 . 633213) (-1528 . 632970) (-1529 . 632864) (-1530 . 632705) - (-1531 . 632634) (-1532 . 632502) (-1533 . 632159) (-1534 . 632036) - (-1535 . 631902) (-1536 . 631821) (-1537 . 631759) (-1538 . 631479) - (-1539 . 631080) (-1540 . 630976) (-1541 . 630923) (-1542 . 630857) - (-1543 . 630744) (-1544 . 630673) (-1545 . 630617) (-1546 . 630560) - (-1547 . 629687) (-1548 . 629588) (-1549 . 629514) (-1550 . 629465) - (-1551 . 629323) (-1552 . 629251) (-1553 . 629130) (-1554 . 628802) - (-1555 . 628622) (-1556 . 628492) (-1557 . 628299) (-1558 . 628139) - (-1559 . 628032) (-1560 . 627964) (-1561 . 627933) (-1562 . 627856) - (-1563 . 627828) (-1564 . 627741) (-1565 . 627534) (-1566 . 627441) - (-1567 . 627325) (-1568 . 627223) (-1569 . 627167) (-1570 . 627099) - (-1571 . 626986) (-1572 . 626895) (-1573 . 626800) (-1574 . 626603) - (-1575 . 626145) (-1576 . 626042) (-1577 . 625901) (-1578 . 625848) - (-1579 . 625727) (-1580 . 625597) (-1581 . 625472) (-1582 . 625384) - (-1583 . 625243) (-1584 . 625127) (-1585 . 625074) (-1586 . 623223) - (-1587 . 623129) (-1588 . 623063) (-1589 . 622716) (-1590 . 622606) - (-1591 . 622540) (-1592 . 622484) (-1593 . 622399) (-1594 . 622068) - (-1595 . 621818) (-1596 . 621456) (-1597 . 621345) (-1598 . 621286) - (-1599 . 621179) (-1600 . 621063) (-1601 . 620948) (-1602 . 620732) - (-1603 . 620386) (-1604 . 620180) (-1605 . 620072) (-1606 . 619937) - (-1607 . 619636) (-1608 . 619558) (-1609 . 619346) (-1610 . 619246) - (-1611 . 618798) (-1612 . 618738) (-1613 . 618653) (-1614 . 618520) - (-1615 . 618380) (-1616 . 618328) (-1617 . 618013) (-1618 . 617860) - (-1619 . 617807) (-1620 . 617706) (-1621 . 616850) (-1622 . 616715) - (-1623 . 616551) (-1624 . 616499) (-1625 . 616276) (-1626 . 616049) - (-1627 . 615911) (-1628 . 615825) (-1629 . 615583) (-1630 . 615474) - (-1631 . 615300) (-1632 . 615095) (-1633 . 614890) (-1634 . 614838) - (-1635 . 614756) (-1636 . 614677) (-1637 . 614443) (-1638 . 614366) - (-1639 . 614260) (-1640 . 612013) (-1641 . 610712) (-1642 . 610365) - (-1643 . 609982) (-1644 . 609795) (-1645 . 609259) (-1646 . 609192) - (-1647 . 609161) (-1648 . 609095) (-1649 . 608937) (-1650 . 608855) - (-1651 . 608796) (-1652 . 608501) (-1653 . 608424) (-1654 . 608146) - (-1655 . 607855) (-1656 . 607245) (-1657 . 607193) (-1658 . 606903) - (-1659 . 606664) (-1660 . 606555) (-1661 . 606478) (-1662 . 606425) - (-1663 . 606355) (-1664 . 606029) (-1665 . 605900) (-1666 . 605681) - (-1667 . 605347) (-1668 . 605246) (-1669 . 605140) (-1670 . 605082) - (-1671 . 604998) (-1672 . 604853) (-1673 . 604695) (-1674 . 604661) - (-1675 . 603992) (-1676 . 603602) (-1677 . 603214) (-1678 . 603061) - (-1679 . 602920) (-1680 . 602768) (-1681 . 602627) (-1682 . 602317) - (-1683 . 602264) (-1684 . 602049) (-1685 . 601972) (-1686 . 601718) - (-1687 . 601544) (-1688 . 601293) (-1689 . 601262) (-1690 . 601228) - (-1691 . 601114) (-1692 . 600904) (-1693 . 600851) (-1694 . 600421) - (-1695 . 600278) (-1696 . 600166) (-1697 . 599956) (-1698 . 599840) - (-1699 . 599788) (-1700 . 599641) (-1701 . 599444) (-1702 . 599236) - (-1703 . 598234) (-1704 . 598179) (-1705 . 597992) (-1706 . 597891) - (-1707 . 597814) (-1708 . 597611) (-1709 . 597541) (-1710 . 597385) - (-1711 . 597281) (-1712 . 597147) (-1713 . 597010) (-1714 . 596945) - (-1715 . 596846) (-1716 . 596780) (-1717 . 596260) (-1718 . 595913) - (-1719 . 595339) (-1720 . 595265) (-1721 . 595164) (-1722 . 594958) - (-1723 . 594818) (-1724 . 594765) (-1725 . 594655) (-1726 . 594561) - (-1727 . 594442) (-1728 . 593868) (-1729 . 593668) (-1730 . 593547) - (-1731 . 592973) (-1732 . 592754) (-1733 . 592443) (-1734 . 592314) - (-1735 . 591983) (-1736 . 591922) (-1737 . 591766) (-1738 . 591154) - (-1739 . 591098) (-1740 . 590801) (-1741 . 590727) (-1742 . 590661) - (-1743 . 590584) (-1744 . 589897) (-1745 . 589801) (-1746 . 589440) - (-1747 . 587310) (-1748 . 587175) (-1749 . 587022) (-1750 . 586944) - (-1751 . 586518) (-1752 . 586425) (-1753 . 586306) (-1754 . 586253) - (-1755 . 586149) (-1756 . 585951) (-1757 . 585264) (-1758 . 585020) - (-1759 . 584764) (-1760 . 584551) (-1761 . 584442) (-1762 . 583991) - (-1763 . 583929) (-1764 . 583839) (-1765 . 583742) (-1766 . 583655) - (-1767 . 583450) (-1768 . 582907) (-1769 . 582220) (-1770 . 581568) - (-1771 . 581506) (-1772 . 581408) (-1773 . 581309) (-1774 . 581239) - (-1775 . 581108) (-1776 . 580812) (-1777 . 580714) (-1778 . 580640) - (-1779 . 580563) (-1780 . 580425) (-1781 . 580240) (-1782 . 579665) - (-1783 . 579602) (-1784 . 579495) (-1785 . 579195) (-1786 . 577794) - (-1787 . 577485) (-1788 . 577433) (-1789 . 577354) (-1790 . 577208) - (-1791 . 576553) (-1792 . 576398) (-1793 . 575823) (-1794 . 575701) - (-1795 . 575552) (-1796 . 575341) (-1797 . 575032) (-1798 . 574930) - (-1799 . 574749) (-1800 . 574607) (-1801 . 574552) (-1802 . 574469) - (-1803 . 574334) (-1804 . 574161) (-1805 . 573586) (-1806 . 573523) - (-1807 . 572438) (-1808 . 572401) (-1809 . 572316) (-1810 . 572260) - (-1811 . 571050) (-1812 . 570892) (-1813 . 570819) (-1814 . 570741) - (-1815 . 570403) (-1816 . 570296) (-1817 . 570214) (-1818 . 569640) - (-1819 . 569046) (-1820 . 563539) (-1821 . 563449) (-1822 . 563349) - (-1823 . 563266) (-1824 . 563142) (-1825 . 562964) (-1826 . 562866) - (-1827 . 562310) (-1828 . 562152) (-1829 . 561963) (-1830 . 561389) - (-1831 . 561315) (-1832 . 560927) (-1833 . 560861) (-1834 . 560791) - (-1835 . 560696) (-1836 . 560644) (-1837 . 560578) (-1838 . 560515) - (-1839 . 559941) (-1840 . 559725) (-1841 . 559540) (-1842 . 559087) - (-1843 . 558287) (-1844 . 558165) (-1845 . 558091) (-1846 . 558021) - (-1847 . 557914) (-1848 . 557331) (-1849 . 557237) (-1850 . 557107) - (-1851 . 556967) (-1852 . 556393) (-1853 . 556239) (-1854 . 555960) - (-1855 . 555932) (-1856 . 555585) (-1857 . 555490) (-1858 . 555000) - (-1859 . 554881) (-1860 . 554751) (-1861 . 554538) (-1862 . 554458) - (-1863 . 554210) (-1864 . 553782) (-1865 . 553208) (-1866 . 552968) - (-1867 . 552389) (-1868 . 552309) (-1869 . 552004) (-1870 . 551976) - (-1871 . 551862) (-1872 . 551803) (-1873 . 551627) (-1874 . 551347) - (-1875 . 551225) (-1876 . 551166) (-1877 . 551079) (-1878 . 550810) - (-1879 . 550660) (-1880 . 550602) (-1881 . 550443) (-1882 . 550204) - (-1883 . 550175) (-1884 . 549746) (-1885 . 549523) (-1886 . 549424) - (-1887 . 549135) (-1888 . 548982) (-1889 . 548894) (-1890 . 548457) - (-1891 . 548350) (-1892 . 548316) (-1893 . 548228) (-1894 . 548075) - (-1895 . 548004) (-1896 . 547187) (-1897 . 547029) (-1898 . 546776) - (-1899 . 546748) (-1900 . 546693) (-1901 . 546102) (-1902 . 546047) - (-1903 . 545940) (-1904 . 545747) (-1905 . 545691) (-1906 . 545580) - (-1907 . 545499) (-1908 . 545433) (-1909 . 545346) (-1910 . 545214) - (-1911 . 545109) (-1912 . 544908) (-1913 . 544767) (-1914 . 544627) - (-1915 . 544400) (-1916 . 544039) (-1917 . 543883) (-1918 . 543830) - (-1919 . 543716) (-1920 . 543626) (-1921 . 543553) (-1922 . 543493) - (-1923 . 542029) (-1924 . 541920) (-1925 . 541525) (-1926 . 541427) - (-1927 . 541305) (-1928 . 541250) (-1929 . 541136) (-1930 . 541058) - (-1931 . 541007) (-1932 . 540864) (-1933 . 539245) (-1934 . 539189) - (-1935 . 539136) (-1936 . 539084) (-1937 . 538967) (-1938 . 538939) - (-1939 . 538284) (-1940 . 528754) (-1941 . 528648) (-1942 . 528535) - (-1943 . 528434) (-1944 . 528157) (-1945 . 527296) (-1946 . 527152) - (-1947 . 527086) (-1948 . 526925) (-1949 . 526672) (-1950 . 525768) - (-1951 . 525695) (-1952 . 525518) (-1953 . 525444) (-1954 . 524840) - (-1955 . 524774) (-1956 . 524718) (-1957 . 523351) (-1958 . 523170) - (-1959 . 523098) (-1960 . 523013) (-1961 . 522904) (-1962 . 522612) - (-1963 . 522529) (-1964 . 522338) (-1965 . 522264) (-1966 . 522000) - (-1967 . 521897) (-1968 . 521710) (-1969 . 521616) (-1970 . 521508) - (-1971 . 521474) (-1972 . 521422) (-1973 . 521106) (-1974 . 521010) - (-1975 . 520759) (-1976 . 520600) (-1977 . 520361) (-1978 . 520250) - (-1979 . 519798) (-1980 . 519764) (-1981 . 519709) (-1982 . 519585) - (-1983 . 519487) (-1984 . 519347) (-1985 . 519278) (-1986 . 518963) - (-1987 . 518798) (-1988 . 518628) (-1989 . 518316) (-1990 . 518161) - (-1991 . 518077) (-1992 . 517980) (-1993 . 517885) (-1994 . 517710) - (-1995 . 517676) (-1996 . 516511) (-1997 . 516321) (-1998 . 516225) - (-1999 . 515972) (-2000 . 515920) (-2001 . 515399) (-2002 . 515325) - (-2003 . 515146) (-2004 . 515005) (-2005 . 514864) (-2006 . 514791) - (-2007 . 513611) (-2008 . 513504) (-2009 . 513403) (-2010 . 513187) - (-2011 . 513024) (-2012 . 512699) (-2013 . 512354) (-2014 . 512150) - (-2015 . 510322) (-2016 . 510235) (-2017 . 510182) (-2018 . 509639) - (-2019 . 509502) (-2020 . 509303) (-2021 . 509166) (-2022 . 509129) - (-2023 . 508891) (-2024 . 508607) (-2025 . 508513) (-2026 . 508453) - (-2027 . 508324) (-2028 . 506823) (-2029 . 506792) (-2030 . 506718) - (-2031 . 506468) (-2032 . 506383) (-2033 . 505996) (-2034 . 505879) - (-2035 . 505727) (-2036 . 505562) (-2037 . 505090) (-2038 . 504490) - (-2039 . 504376) (-2040 . 504269) (-2041 . 504020) (-2042 . 503736) - (-2043 . 503708) (-2044 . 503637) (-2045 . 503571) (-2046 . 503477) - (-2047 . 503245) (-2048 . 502930) (-2049 . 502835) (-2050 . 502728) - (-2051 . 502436) (-2052 . 502144) (-2053 . 501874) (-2054 . 501788) - (-2055 . 501633) (-2056 . 501550) (-2057 . 501460) (-2058 . 501406) - (-2059 . 501335) (-2060 . 501267) (-2061 . 500452) (-2062 . 500172) - (-2063 . 499069) (-2064 . 498841) (-2065 . 498760) (-2066 . 498592) - (-2067 . 498334) (-2068 . 498208) (-2069 . 498122) (-2070 . 498048) - (-2071 . 497890) (-2072 . 497746) (-2073 . 497566) (-2074 . 497318) - (-2075 . 497287) (-2076 . 497221) (-2077 . 497022) (-2078 . 496953) - (-2079 . 496855) (-2080 . 496788) (-2081 . 496555) (-2082 . 496357) - (-2083 . 496279) (-2084 . 496208) (-2085 . 496151) (-2086 . 496064) - (-2087 . 495724) (-2088 . 495545) (-2089 . 495487) (-2090 . 495373) - (-2091 . 495032) (-2092 . 494682) (-2093 . 494308) (-2094 . 494255) - (-2095 . 494203) (-2096 . 494079) (-2097 . 493961) (-2098 . 493904) - (-2099 . 493777) (-2100 . 493639) (-2101 . 493524) (-2102 . 493364) - (-2103 . 493285) (-2104 . 493188) (-2105 . 492928) (-2106 . 492797) - (-2107 . 492731) (-2108 . 492694) (-2109 . 492662) (-2110 . 492500) - (-2111 . 492397) (-2112 . 491876) (-2113 . 491753) (-2114 . 491653) - (-2115 . 491582) (-2116 . 491478) (-2117 . 491320) (-2118 . 491249) - (-2119 . 491113) (-2120 . 490886) (-2121 . 489674) (-2122 . 489472) - (-2123 . 489371) (-2124 . 489193) (-2125 . 489140) (-2126 . 489088) - (-2127 . 488993) (-2128 . 488829) (-2129 . 488762) (-2130 . 486510) - (-2131 . 486431) (-2132 . 486225) (-2133 . 485846) (-2134 . 485538) - (-2135 . 485343) (-2136 . 485170) (-2137 . 484842) (-2138 . 484455) - (-2139 . 484284) (-2140 . 483985) (-2141 . 483878) (-2142 . 483732) - (-2143 . 483633) (-2144 . 483495) (-2145 . 483410) (-2146 . 482699) - (-2147 . 482541) (-2148 . 482401) (-2149 . 482294) (-2150 . 482172) - (-2151 . 482122) (-2152 . 482045) (-2153 . 481834) (-2154 . 481751) - (-2155 . 481607) (-2156 . 481522) (-2157 . 481435) (-2158 . 481217) - (-2159 . 480731) (-2160 . 480657) (-2161 . 480534) (-2162 . 480506) - (-2163 . 480384) (-2164 . 480241) (-2165 . 478931) (-2166 . 478860) - (-2167 . 478781) (-2168 . 478640) (-2169 . 478394) (-2170 . 478326) - (-2171 . 478219) (-2172 . 478136) (-2173 . 478056) (-2174 . 477938) - (-2175 . 477694) (-2176 . 477599) (-2177 . 477380) (-2178 . 476848) - (-2179 . 476631) (-2180 . 476554) (-2181 . 476501) (-2182 . 476424) - (-2183 . 476294) (-2184 . 476224) (-2185 . 475983) (-2186 . 475882) - (-2187 . 475756) (-2188 . 475659) (-2189 . 475532) (-2190 . 475394) - (-2191 . 475234) (-2192 . 475160) (-2193 . 474842) (-2194 . 474770) - (-2195 . 474626) (-2196 . 474341) (-2197 . 474256) (-2198 . 474086) - (-2199 . 473987) (-2200 . 473547) (-2201 . 473417) (-2202 . 473308) - (-2203 . 473191) (-2204 . 473051) (-2205 . 472981) (-2206 . 472633) - (-2207 . 472563) (-2208 . 472447) (-2209 . 472182) (-2210 . 472057) - (-2211 . 471972) (-2212 . 471860) (-2213 . 471751) (-2214 . 471527) - (-2215 . 471263) (-2216 . 471183) (-2217 . 471105) (-2218 . 471046) - (-2219 . 470530) (-2220 . 470368) (-2221 . 470159) (-2222 . 469946) - (-2223 . 469894) (-2224 . 469717) (-2225 . 469433) (-2226 . 469350) - (-2227 . 469060) (-2228 . 468939) (-2229 . 468798) (-2230 . 468450) - (-2231 . 468378) (-2232 . 468347) (-2233 . 468263) (-2234 . 468130) - (-2235 . 467756) (-2236 . 467645) (-2237 . 467447) (-2238 . 467020) - (-2239 . 466874) (-2240 . 466680) (-2241 . 466509) (-2242 . 465745) - (-2243 . 465655) (-2244 . 465583) (-2245 . 465309) (-2246 . 465256) - (-2247 . 465128) (-2248 . 465079) (-2249 . 464336) (-2250 . 464090) - (-2251 . 464031) (-2252 . 462735) (-2253 . 462635) (-2254 . 462542) - (-2255 . 462416) (-2256 . 462214) (-2257 . 461898) (-2258 . 461680) - (-2259 . 461565) (-2260 . 461114) (-2261 . 461027) (-2262 . 460904) - (-2263 . 460821) (-2264 . 460769) (-2265 . 460716) (-2266 . 460597) - (-2267 . 460265) (-2268 . 460184) (-2269 . 460089) (-2270 . 460021) - (-2271 . 459950) (-2272 . 459898) (-2273 . 459864) (-2274 . 458295) - (-2275 . 458191) (-2276 . 458077) (-2277 . 457914) (-2278 . 457813) - (-2279 . 457756) (-2280 . 457133) (-2281 . 457030) (-2282 . 456870) - (-2283 . 456717) (-2284 . 456522) (-2285 . 456317) (-2286 . 456148) - (-2287 . 456054) (-2288 . 455983) (-2289 . 455637) (-2290 . 455532) - (-2291 . 455088) (-2292 . 455032) (-2293 . 454912) (-2294 . 454846) - (-2295 . 454548) (-2296 . 454367) (-2297 . 454244) (-2298 . 454189) - (-2299 . 452089) (-2300 . 452020) (-2301 . 451933) (-2302 . 451660) - (-2303 . 451573) (-2304 . 451493) (-2305 . 451441) (-2306 . 451388) - (-2307 . 451117) (-2308 . 450990) (-2309 . 450797) (-2310 . 450275) - (-2311 . 450145) (-2312 . 450111) (-2313 . 450045) (-2314 . 449959) - (-2315 . 449882) (-2316 . 449810) (-2317 . 449655) (-2318 . 449584) - (-2319 . 449485) (-2320 . 449254) (-2321 . 449161) (-2322 . 448918) - (-2323 . 448535) (-2324 . 448462) (-2325 . 448369) (-2326 . 447745) - (-2327 . 447638) (-2328 . 447551) (-2329 . 447496) (-2330 . 447443) - (-2331 . 447170) (-2332 . 447052) (-2333 . 447000) (-2334 . 446934) - (-2335 . 446882) (-2336 . 446776) (-2337 . 446695) (-2338 . 446643) - (-2339 . 446501) (-2340 . 446188) (-2341 . 446048) (-2342 . 445975) - (-2343 . 445509) (-2344 . 445456) (-2345 . 445298) (-2346 . 445136) - (-2347 . 444892) (-2348 . 444818) (-2349 . 444744) (-2350 . 444692) - (-2351 . 444634) (-2352 . 444551) (-2353 . 443916) (-2354 . 443882) - (-2355 . 443816) (-2356 . 443690) (-2357 . 443591) (-2358 . 443454) - (-2359 . 443280) (-2360 . 443213) (-2361 . 443043) (-2362 . 442635) - (-2363 . 442554) (-2364 . 442282) (-2365 . 440707) (-2366 . 440595) - (-2367 . 440253) (-2368 . 440079) (-2369 . 439734) (-2370 . 439591) - (-2371 . 439518) (-2372 . 439437) (-2373 . 439296) (-2374 . 439147) - (-2375 . 438976) (-2376 . 438820) (-2377 . 438456) (-2378 . 437964) - (-2379 . 437785) (-2380 . 437477) (-2381 . 437222) (-2382 . 437104) - (-2383 . 437031) (-2384 . 435794) (-2385 . 435571) (-2386 . 435345) - (-2387 . 435316) (-2388 . 434690) (-2389 . 434546) (-2390 . 434451) - (-2391 . 433816) (-2392 . 433739) (-2393 . 433637) (-2394 . 433492) - (-2395 . 433436) (-2396 . 433320) (-2397 . 433265) (-2398 . 433142) - (-2399 . 433065) (-2400 . 432919) (-2401 . 432845) (-2402 . 432773) - (-2403 . 432559) (-2404 . 432417) (-2405 . 432295) (-2406 . 432210) - (-2407 . 431944) (-2408 . 431892) (-2409 . 431826) (-2410 . 431771) - (-2411 . 431612) (-2412 . 431514) (-2413 . 431391) (-2414 . 431282) - (-2415 . 431185) (-2416 . 431118) (-2417 . 428210) (-2418 . 428029) - (-2419 . 427169) (-2420 . 427024) (-2421 . 426934) (-2422 . 426839) - (-2423 . 426715) (-2424 . 426572) (-2425 . 426501) (-2426 . 426353) - (-2427 . 426298) (-2428 . 425452) (-2429 . 425329) (-2430 . 425245) - (-2431 . 425129) (-2432 . 425034) (-2433 . 423832) (-2434 . 423780) - (-2435 . 423573) (-2436 . 423464) (-2437 . 419854) (-2438 . 419475) - (-2439 . 419248) (-2440 . 419104) (-2441 . 418897) (-2442 . 418808) - (-2443 . 418694) (-2444 . 418642) (-2445 . 417827) (-2446 . 417716) - (-2447 . 417436) (-2448 . 417363) (-2449 . 417174) (-2450 . 417033) - (-2451 . 416955) (-2452 . 416857) (-2453 . 416777) (-2454 . 416498) - (-2455 . 416438) (-2456 . 416274) (-2457 . 416163) (-2458 . 415917) - (-2459 . 415865) (-2460 . 415756) (-2461 . 415672) (-2462 . 415617) - (-2463 . 415413) (-2464 . 415361) (-2465 . 415276) (-2466 . 415191) - (-2467 . 414650) (-2468 . 414504) (-2469 . 414406) (-2470 . 414256) - (-2471 . 414222) (-2472 . 414171) (-2473 . 414087) (-2474 . 413755) - (-2475 . 413661) (-2476 . 413442) (-2477 . 413216) (-2478 . 413048) - (-2479 . 412953) (-2480 . 412887) (-2481 . 412778) (-2482 . 412704) - (-2483 . 408544) (-2484 . 408401) (-2485 . 408025) (-2486 . 407923) - (-2487 . 407687) (-2488 . 407357) (-2489 . 407305) (-2490 . 406955) - (-2491 . 406797) (-2492 . 406650) (-2493 . 406537) (-2494 . 406369) - (-2495 . 406251) (-2496 . 406150) (-2497 . 406036) (-2498 . 405906) - (-2499 . 405823) (-2500 . 405671) (-2501 . 405440) (-2502 . 405019) - (-2503 . 404932) (-2504 . 404754) (-2505 . 404606) (-2506 . 404500) - (-2507 . 404175) (-2508 . 404095) (-2509 . 403609) (-2510 . 403184) - (-2511 . 403013) (-2512 . 402952) (-2513 . 402676) (-2514 . 402548) - (-2515 . 402395) (-2516 . 402217) (-2517 . 402162) (-2518 . 401966) - (-2519 . 401846) (-2520 . 401371) (-2521 . 401316) (-2522 . 401132) - (-2523 . 400723) (-2524 . 400582) (-2525 . 400200) (-2526 . 400129) - (-2527 . 400101) (-2528 . 399510) (-2529 . 399116) (-2530 . 398776) - (-2531 . 398653) (-2532 . 398532) (-2533 . 398423) (-2534 . 398329) - (-2535 . 398204) (-2536 . 398155) (-2537 . 398050) (-2538 . 397977) - (-2539 . 397725) (-2540 . 397613) (-2541 . 397530) (-2542 . 397478) - (-2543 . 397379) (-2544 . 397320) (-2545 . 397246) (-2546 . 397154) - (-2547 . 397101) (-2548 . 396930) (-2549 . 396823) (-2550 . 396444) - (-2551 . 396218) (-2552 . 396125) (-2553 . 396031) (-2554 . 395937) - (-2555 . 395846) (-2556 . 395775) (-2557 . 395176) (-2558 . 395089) - (-2559 . 394948) (-2560 . 394818) (-2561 . 394706) (-2562 . 394033) - (-2563 . 393932) (-2564 . 393776) (-2565 . 393702) (-2566 . 393645) - (-2567 . 393562) (-2568 . 393463) (-2569 . 393295) (-2570 . 393223) - (-2571 . 393165) (-2572 . 393083) (-2573 . 393023) (-2574 . 392703) - (-2575 . 392604) (-2576 . 392501) (-2577 . 392190) (-2578 . 392137) - (-2579 . 391816) (-2580 . 391730) (** . 388653) (-2582 . 388139) - (-2583 . 387265) (-2584 . 387178) (-2585 . 387054) (-2586 . 386973) - (-2587 . 386785) (-2588 . 386639) (-2589 . 386501) (-2590 . 386113) - (-2591 . 385946) (-2592 . 385873) (-2593 . 385669) (-2594 . 385560) - (-2595 . 385454) (-2596 . 385266) (-2597 . 384961) (-2598 . 384730) - (-2599 . 384656) (-2600 . 384537) (-2601 . 384471) (-2602 . 384412) - (-2603 . 384359) (-2604 . 384112) (-2605 . 383745) (-2606 . 383501) - (-2607 . 383449) (-2608 . 383277) (-2609 . 383211) (-2610 . 383042) - (-2611 . 382931) (-2612 . 382840) (-2613 . 382717) (-2614 . 382559) - (-2615 . 382382) (-2616 . 382297) (-2617 . 382095) (-2618 . 381915) - (-2619 . 381418) (-2620 . 380888) (-2621 . 380762) (-2622 . 380734) - (-2623 . 380647) (-2624 . 380521) (-2625 . 380347) (-2626 . 380060) - (-2627 . 379879) (-2628 . 379826) (-2629 . 379752) (-2630 . 378681) - (-2631 . 378541) (-2632 . 378404) (-2633 . 378241) (-2634 . 378155) - (-2635 . 378012) (-2636 . 377885) (-2637 . 377762) (-2638 . 377657) - (-2639 . 377328) (-2640 . 377273) (-2641 . 377129) (-2642 . 377077) - (-2643 . 376904) (-2644 . 376713) (-2645 . 376639) (-2646 . 376580) - (-2647 . 376481) (-2648 . 376257) (-2649 . 376184) (-2650 . 376135) - (-2651 . 375891) (-2652 . 375808) (-2653 . 375532) (-2654 . 375373) - (-2655 . 374735) (-2656 . 374299) (-2657 . 373910) (-2658 . 373839) - (-2659 . 373701) (-2660 . 373649) (-2661 . 373586) (-2662 . 373537) - (-2663 . 373121) (-2664 . 373066) (-2665 . 372530) (-2666 . 372302) - (-2667 . 372043) (-2668 . 371896) (-2669 . 371429) (-2670 . 371376) - (-2671 . 371263) (-2672 . 371192) (-2673 . 371021) (-2674 . 370935) - (-2675 . 370826) (-2676 . 370510) (-2677 . 370315) (-2678 . 370260) - (-2679 . 366272) (-2680 . 366163) (-2681 . 366054) (-2682 . 365767) - (-2683 . 365039) (-2684 . 364952) (-2685 . 364734) (-2686 . 364655) - (-2687 . 364522) (-2688 . 364247) (-2689 . 364135) (-2690 . 363784) - (-2691 . 363532) (-2692 . 363458) (-2693 . 363328) (-2694 . 363049) - (-2695 . 363000) (-2696 . 362947) (-2697 . 362852) (-2698 . 361832) - (-2699 . 361464) (-2700 . 360976) (-2701 . 360422) (-2702 . 360394) - (-2703 . 359722) (-2704 . 359644) (-2705 . 359546) (-2706 . 359361) - (-2707 . 359194) (-2708 . 358615) (-2709 . 358268) (-2710 . 358037) - (-2711 . 357917) (-2712 . 357670) (-2713 . 357555) (-2714 . 357442) - (-2715 . 357151) (-2716 . 357032) (-2717 . 356619) (-2718 . 356553) - (-2719 . 356471) (-2720 . 356353) (-2721 . 356266) (-2722 . 356172) - (-2723 . 355813) (-2724 . 355430) (-2725 . 355293) (-2726 . 355219) - (-2727 . 355167) (-2728 . 354919) (-2729 . 354820) (-2730 . 354791) - (-2731 . 354614) (-2732 . 354557) (-2733 . 354352) (-2734 . 354321) - (-2735 . 353840) (-2736 . 353787) (-2737 . 353438) (-2738 . 353367) - (-2739 . 353248) (-2740 . 353119) (-2741 . 353016) (-2742 . 352416) - (-2743 . 352160) (-2744 . 351773) (-2745 . 351661) (-2746 . 351590) - (-2747 . 351505) (-2748 . 351391) (-2749 . 351324) (-2750 . 351264) - (-2751 . 351106) (-2752 . 351010) (-2753 . 350854) (-2754 . 350766) - (-2755 . 350576) (-2756 . 350405) (-2757 . 350318) (-2758 . 350103) - (-2759 . 350043) (-2760 . 349950) (-2761 . 348886) (-2762 . 348780) - (-2763 . 348582) (-2764 . 348448) (-2765 . 348303) (-2766 . 348188) - (-2767 . 347941) (-2768 . 347844) (-2769 . 347386) (-2770 . 346966) - (-2771 . 346804) (-2772 . 346665) (-2773 . 346443) (-2774 . 346374) - (-2775 . 346259) (-2776 . 345866) (-2777 . 345768) (-2778 . 345148) - (-2779 . 344873) (-2780 . 344669) (-2781 . 344375) (-2782 . 344304) - (-2783 . 344106) (-2784 . 343916) (-2785 . 343217) (-2786 . 343084) - (-2787 . 342691) (-2788 . 342520) (-2789 . 342245) (-2790 . 342171) - (-2791 . 341991) (-2792 . 341752) (-2793 . 341675) (-2794 . 341578) - (-2795 . 341244) (-2796 . 341161) (-2797 . 340484) (-2798 . 340377) - (-2799 . 340160) (-2800 . 340046) (-2801 . 339930) (-2802 . 339747) - (-2803 . 339503) (-2804 . 339166) (-2805 . 338976) (-2806 . 338704) - (-2807 . 338619) (-2808 . 338510) (-2809 . 338458) (-2810 . 338340) - (-2811 . 338240) (-2812 . 338166) (-2813 . 337922) (-2814 . 337839) - (-2815 . 337415) (-2816 . 337381) (-2817 . 337263) (-2818 . 337193) - (-2819 . 337156) (-2820 . 336891) (-2821 . 336685) (-2822 . 336611) - (-2823 . 336189) (-2824 . 336064) (-2825 . 335951) (-2826 . 335655) - (-2827 . 335499) (-2828 . 335198) (-2829 . 335145) (-2830 . 335072) - (-2831 . 334954) (-2832 . 334862) (-2833 . 334755) (-2834 . 334669) - (-2835 . 334567) (-2836 . 334280) (-2837 . 333099) (-2838 . 333033) - (-2839 . 332959) (-2840 . 332905) (-2841 . 332841) (-2842 . 332781) - (-2843 . 332657) (-2844 . 332565) (-2845 . 332428) (-2846 . 332189) - (-2847 . 332033) (-2848 . 331830) (-2849 . 331760) (-2850 . 331644) - (-2851 . 331513) (-2852 . 331286) (-2853 . 331132) (-2854 . 331034) - (-2855 . 330949) (-2856 . 330857) (-2857 . 330675) (-2858 . 330643) - (-2859 . 330519) (-2860 . 330385) (-2861 . 330297) (-2862 . 329468) - (-2863 . 329236) (-2864 . 329084) (-2865 . 328904) (-2866 . 328643) - (-2867 . 328418) (-2868 . 328111) (-2869 . 328034) (-2870 . 327709) - (-2871 . 327551) (-2872 . 327483) (-2873 . 327431) (-2874 . 327321) - (-2875 . 327200) (-2876 . 326978) (-2877 . 326883) (-2878 . 326754) - (-2879 . 322692) (-2880 . 322564) (-2881 . 322505) (-2882 . 322380) - (-2883 . 322209) (-2884 . 322114) (-2885 . 321984) (-2886 . 321677) - (-2887 . 321381) (-2888 . 321318) (-2889 . 321209) (-2890 . 321069) - (-2891 . 320951) (-2892 . 320753) (-2893 . 320701) (-2894 . 320605) - (-2895 . 320496) (-2896 . 320423) (-2897 . 319173) (-2898 . 318921) - (-2899 . 318745) (-2900 . 318664) (-2901 . 318447) (-2902 . 317856) - (-2903 . 317800) (-2904 . 317772) (-2905 . 317670) (-2906 . 317479) - (-2907 . 317262) (-2908 . 317193) (-2909 . 317165) (-2910 . 316996) - (-2911 . 316912) (-2912 . 316811) (-2913 . 316704) (-2914 . 316130) - (-2915 . 316045) (-2916 . 313700) (-2917 . 313582) (-2918 . 313497) - (-2919 . 313429) (-2920 . 313206) (-2921 . 313119) (-2922 . 313057) - (-2923 . 312987) (-2924 . 312609) (-2925 . 312490) (-2926 . 312360) - (-2927 . 311994) (-2928 . 311846) (-2929 . 311533) (-2930 . 311418) - (-2931 . 311266) (-2932 . 309412) (-2933 . 309257) (-2934 . 309128) - (-2935 . 308773) (-2936 . 308645) (-2937 . 308593) (-2938 . 308213) - (-2939 . 307798) (-2940 . 307663) (-2941 . 307517) (-2942 . 307335) - (-2943 . 307307) (-2944 . 306197) (-2945 . 306079) (-2946 . 305956) - (-2947 . 305447) (-2948 . 305328) (-2949 . 305225) (-2950 . 305014) - (-2951 . 304852) (-2952 . 304770) (-2953 . 304559) (-2954 . 304398) - (-2955 . 304119) (-2956 . 303961) (-2957 . 303837) (-2958 . 303769) - (-2959 . 303686) (-2960 . 303549) (-2961 . 303447) (-2962 . 303365) - (-2963 . 303270) (-2964 . 303055) (-2965 . 302510) (-2966 . 301318) - (-2967 . 301235) (-2968 . 301148) (-2969 . 299702) (-2970 . 299628) - (-2971 . 299545) (-2972 . 299450) (-2973 . 299160) (-2974 . 299045) - (-2975 . 298631) (-2976 . 298537) (-2977 . 298471) (-2978 . 297952) - (-2979 . 297792) (-2980 . 297720) (-2981 . 297470) (-2982 . 297417) - (-2983 . 297070) (-2984 . 297012) (-2985 . 296911) (-2986 . 296735) - (-2987 . 296423) (-2988 . 296135) (-2989 . 296067) (-2990 . 295915) - (-2991 . 295848) (-2992 . 295680) (-2993 . 295583) (-2994 . 295531) - (-2995 . 295428) (-2996 . 294757) (-2997 . 294583) (-2998 . 294130) - (-2999 . 294047) (-3000 . 293888) (-3001 . 293836) (-3002 . 293641) - (-3003 . 293571) (-3004 . 293491) (-3005 . 293224) (-3006 . 293118) - (-3007 . 292875) (-3008 . 292776) (-3009 . 292584) (-3010 . 292410) - (-3011 . 292352) (-3012 . 292301) (-3013 . 292223) (-3014 . 292167) - (-3015 . 292089) (-3016 . 292040) (-3017 . 291945) (-3018 . 291884) - (-3019 . 291762) (-3020 . 291238) (-3021 . 291085) (-3022 . 290930) - (-3023 . 290827) (-3024 . 290771) (-3025 . 290645) (-3026 . 290516) - (-3027 . 290448) (-3028 . 290307) (-3029 . 290220) (-3030 . 290106) - (-3031 . 289828) (-3032 . 289661) (-3033 . 289515) (-3034 . 289405) - (-3035 . 289352) (-3036 . 289147) (-3037 . 289076) (-3038 . 288858) - (-3039 . 288686) (-3040 . 286924) (-3041 . 286866) (-3042 . 286763) - (-3043 . 286561) (-3044 . 286464) (-3045 . 286190) (-3046 . 286138) - (-3047 . 285941) (-3048 . 285754) (-3049 . 285592) (-3050 . 285433) - (-3051 . 285326) (-3052 . 284703) (-3053 . 284515) (-3054 . 284379) - (-3055 . 284180) (-3056 . 284085) (-3057 . 284012) (-3058 . 283901) - (-3059 . 283491) (-3060 . 283300) (-3061 . 283239) (-3062 . 283144) - (-3063 . 283067) (-3064 . 282520) (-3065 . 282376) (-3066 . 282076) - (-3067 . 281894) (-3068 . 281464) (-3069 . 281282) (-3070 . 281106) - (-3071 . 281057) (-3072 . 280995) (-3073 . 280943) (-3074 . 280837) - (-3075 . 280697) (-3076 . 280571) (-3077 . 280419) (-3078 . 280038) - (-3079 . 279969) (-3080 . 279816) (-3081 . 279603) (-3082 . 279451) - (-3083 . 279289) (-3084 . 279145) (-3085 . 278741) (-3086 . 278522) - (-3087 . 277182) (-3088 . 277098) (-3089 . 276726) (-3090 . 276591) - (-3091 . 276182) (-3092 . 276087) (-3093 . 275985) (-3094 . 275916) - (-3095 . 275834) (-3096 . 275624) (-3097 . 275354) (-3098 . 275062) - (-3099 . 274993) (-3100 . 274889) (-3101 . 274794) (-3102 . 274544) - (-3103 . 274432) (-3104 . 274404) (-3105 . 274348) (-3106 . 274018) - (-3107 . 273930) (-3108 . 273777) (-3109 . 273711) (-3110 . 273659) - (-3111 . 273475) (-3112 . 273301) (-3113 . 273088) (-3114 . 273011) - (-3115 . 272310) (-3116 . 272237) (-3117 . 271993) (-3118 . 271725) - (-3119 . 271340) (-3120 . 271182) (-3121 . 270736) (-3122 . 267955) - (-3123 . 267897) (-3124 . 267514) (-3125 . 267457) (-3126 . 267307) - (-3127 . 267230) (-3128 . 267165) (-3129 . 266943) (-3130 . 266838) - (-3131 . 266761) (-3132 . 266709) (-3133 . 266522) (-3134 . 266428) - (-3135 . 266379) (-3136 . 266326) (-3137 . 266208) (-3138 . 265826) - (-3139 . 265597) (-3140 . 265524) (-3141 . 265348) (-3142 . 264964) - (-3143 . 264898) (-3144 . 264788) (-3145 . 264714) (-3146 . 264627) - (-3147 . 263631) (-3148 . 263501) (-3149 . 263164) (-3150 . 262948) - (-3151 . 262588) (-3152 . 262532) (-3153 . 262334) (-3154 . 262247) - (-3155 . 262153) (-3156 . 261936) (-3157 . 261757) (-3158 . 261705) - (-3159 . 261368) (-3160 . 261264) (-3161 . 261149) (-3162 . 261030) - (-3163 . 260808) (-3164 . 260704) (-3165 . 260595) (-3166 . 260503) - (-3167 . 260256) (-3168 . 260103) (-3169 . 259517) (-3170 . 259451) - (-3171 . 259284) (-3172 . 259065) (-3173 . 258619) (-3174 . 258536) - (-3175 . 258502) (-3176 . 258371) (-3177 . 258266) (-3178 . 257902) - (-3179 . 257772) (-3180 . 257688) (-3181 . 257589) (-3182 . 257518) - (-3183 . 257339) (-3184 . 257266) (-3185 . 257114) (-3186 . 257085) - (-3187 . 256926) (-3188 . 256647) (-3189 . 255466) (-3190 . 255370) - (-3191 . 255308) (-3192 . 255141) (-3193 . 254825) (-3194 . 254740) - (-3195 . 254619) (-3196 . 254549) (-3197 . 254432) (-3198 . 254313) - (-3199 . 254233) (-3200 . 254128) (-3201 . 254097) (-3202 . 254002) - (-3203 . 253268) (-3204 . 252995) (-3205 . 252812) (-3206 . 252697) - (-3207 . 252427) (-3208 . 252148) (-3209 . 252063) (-3210 . 251824) - (-3211 . 251744) (-3212 . 251700) (-3213 . 251561) (-3214 . 251495) - (-3215 . 251408) (-3216 . 251336) (-3217 . 251160) (-3218 . 251031) - (-3219 . 250273) (-3220 . 250121) (-3221 . 250093) (-3222 . 250006) - (-3223 . 244907) (-3224 . 244563) (-3225 . 244404) (-3226 . 243797) - (-3227 . 243322) (-3228 . 243248) (-3229 . 243102) (-3230 . 242883) - (-3231 . 242854) (-3232 . 241935) (-3233 . 241792) (-3234 . 241574) - (-3235 . 241358) (-3236 . 240394) (-3237 . 240339) (-3238 . 240287) - (-3239 . 240185) (-3240 . 240102) (-3241 . 239888) (-3242 . 239821) - (-3243 . 239641) (-3244 . 239554) (-3245 . 239445) (-3246 . 239287) - (-3247 . 239087) (-3248 . 239018) (-3249 . 238756) (-3250 . 238673) - (-3251 . 238599) (-3252 . 238400) (-3253 . 238245) (-3254 . 238002) - (-3255 . 237916) (-3256 . 237735) (-3257 . 237677) (-3258 . 237625) - (-3259 . 236970) (-3260 . 236920) (-3261 . 236704) (-3262 . 236532) - (-3263 . 236405) (-3264 . 236252) (-3265 . 236200) (-3266 . 235867) - (-3267 . 235162) (-3268 . 235134) (-3269 . 234820) (-3270 . 234527) - (-3271 . 234118) (-12 . 233946) (-3273 . 233839) (-3274 . 233788) - (-3275 . 233472) (-3276 . 233349) (-3277 . 233055) (-3278 . 231955) - (-3279 . 231906) (-3280 . 231739) (-3281 . 231581) (-3282 . 231375) - (-3283 . 231157) (-3284 . 231025) (-3285 . 230141) (-3286 . 230061) - (-3287 . 229977) (-3288 . 229616) (-3289 . 229377) (-3290 . 229327) - (-3291 . 229242) (-3292 . 229183) (-3293 . 228579) (-3294 . 228367) - (-3295 . 228311) (-3296 . 228120) (-3297 . 227999) (-3298 . 227971) - (-3299 . 227870) (-3300 . 227706) (-3301 . 227574) (-3302 . 227392) - (-3303 . 227315) (-3304 . 226849) (-3305 . 226815) (-3306 . 226577) - (-3307 . 226436) (-3308 . 226049) (-3309 . 225831) (-3310 . 225749) - (-3311 . 225622) (-3312 . 225554) (-3313 . 224779) (-3314 . 224470) - (-3315 . 224332) (-3316 . 224280) (-3317 . 223984) (-3318 . 223917) - (-3319 . 223889) (-3320 . 223730) (-3321 . 223647) (-3322 . 223390) - (-3323 . 223132) (-3324 . 222800) (-3325 . 222696) (-3326 . 222445) - (-3327 . 222266) (-3328 . 222141) (-3329 . 222040) (-3330 . 221827) - (-3331 . 221775) (-3332 . 221598) (-3333 . 221513) (-3334 . 221369) - (-3335 . 221231) (-3336 . 221083) (-3337 . 221033) (-3338 . 220789) - (-3339 . 220529) (-3340 . 220476) (-3341 . 220351) (-3342 . 220261) - (-3343 . 220091) (-3344 . 219970) (-3345 . 219939) (-3346 . 219124) - (-3347 . 218940) (-3348 . 218639) (-3349 . 218190) (-3350 . 218103) - (-3351 . 218050) (-3352 . 217890) (-3353 . 217788) (-3354 . 217703) - (-3355 . 217634) (-3356 . 217425) (-3357 . 217311) (-3358 . 217258) - (-3359 . 217190) (-3360 . 217087) (-3361 . 216946) (-3362 . 216891) - (-3363 . 216734) (-3364 . 216521) (-3365 . 216361) (-3366 . 216203) - (* . 211680) (-3368 . 211615) (-3369 . 211074) (-3370 . 211009) - (-3371 . 210874) (-3372 . 210636) (-3373 . 210514) (-3374 . 210367) - (-3375 . 210165) (-3376 . 209972) (-3377 . 209899) (-3378 . 209814) - (-3379 . 209607) (-3380 . 209478) (-3381 . 209157) (-3382 . 209048) - (-3383 . 208975) (-3384 . 208925) (-3385 . 208800) (-3386 . 208717) - (-3387 . 208526) (-3388 . 208405) (-3389 . 208298) (-3390 . 208191) - (-3391 . 208000) (-3392 . 207896) (-3393 . 207740) (-3394 . 207189) - (-3395 . 207105) (-3396 . 206970) (-3397 . 206852) (-3398 . 206781) - (-3399 . 206691) (-3400 . 206621) (-3401 . 206593) (-3402 . 206503) - (-3403 . 206451) (-3404 . 206350) (-3405 . 206088) (-3406 . 206017) - (-3407 . 205961) (-3408 . 205840) (-3409 . 205243) (-3410 . 205068) - (-3411 . 205040) (-3412 . 204933) (-3413 . 204881) (-3414 . 204758) - (-3415 . 204641) (-3416 . 204503) (-3417 . 197549) (-3418 . 197370) - (-3419 . 197135) (-3420 . 197037) (-3421 . 196950) (-3422 . 196842) - (-3423 . 196465) (-3424 . 196394) (-3425 . 196366) (-3426 . 196310) - (-3427 . 196231) (-3428 . 196086) (-3429 . 195990) (-3430 . 195910) - (-3431 . 195410) (-3432 . 195248) (-3433 . 195123) (-3434 . 194951) - (-3435 . 194878) (-3436 . 194767) (-3437 . 194712) (-3438 . 194557) - (-3439 . 194462) (-3440 . 194377) (-3441 . 193768) (-3442 . 193544) - (-3443 . 193478) (-3444 . 193057) (-3445 . 192807) (-3446 . 192722) - (-3447 . 192673) (-3448 . 192525) (-3449 . 192408) (-3450 . 189993) - (-3451 . 189914) (-3452 . 189862) (-3453 . 189777) (-3454 . 189475) - (-3455 . 189310) (-3456 . 189226) (-3457 . 189192) (-3458 . 188966) - (-3459 . 188846) (-3460 . 188721) (-3461 . 188668) (-3462 . 188233) - (-3463 . 188124) (-3464 . 187609) (-3465 . 187346) (-3466 . 187281) - (-3467 . 187187) (-3468 . 187113) (-3469 . 186976) (-3470 . 186904) - (-3471 . 186827) (-3472 . 186757) (-3473 . 186597) (-3474 . 181280) - (-3475 . 181147) (-3476 . 180766) (-3477 . 180664) (-3478 . 180551) - (-3479 . 180386) (-3480 . 180088) (-3481 . 179972) (-3482 . 179839) - (-3483 . 179743) (-3484 . 179606) (-3485 . 179003) (-3486 . 178595) - (-3487 . 178425) (-3488 . 178366) (-3489 . 178229) (-3490 . 178073) - (-3491 . 177925) (-3492 . 177731) (-3493 . 177632) (-3494 . 177273) - (-3495 . 176994) (-3496 . 176866) (-3497 . 176767) (-3498 . 175883) - (-3499 . 175744) (-3500 . 175638) (-3501 . 175404) (-3502 . 175238) - (-3503 . 174798) (-3504 . 174661) (-3505 . 174469) (-3506 . 174342) - (-3507 . 173632) (-3508 . 173410) (-3509 . 173376) (-3510 . 173299) - (-3511 . 173184) (-3512 . 173004) (-3513 . 172886) (-3514 . 172676) - (-3515 . 172555) (-3516 . 172316) (-3517 . 167795) (-3518 . 167672) - (-3519 . 167615) (-3520 . 167562) (-3521 . 167427) (-3522 . 167319) - (-3523 . 165167) (-3524 . 165066) (-3525 . 164961) (-3526 . 164470) - (-3527 . 164173) (-3528 . 163575) (-3529 . 163377) (-3530 . 163305) - (-3531 . 163246) (-3532 . 163138) (-3533 . 163058) (-3534 . 162922) - (-3535 . 162792) (-3536 . 162685) (-3537 . 162390) (-3538 . 162333) - (-3539 . 162276) (-3540 . 162059) (-3541 . 161952) (-3542 . 161707) - (-3543 . 161574) (-3544 . 161490) (-3545 . 161411) (-3546 . 161359) - (-3547 . 160204) (-3548 . 159913) (-3549 . 159212) (-3550 . 159138) - (-3551 . 158888) (-3552 . 158546) (-3553 . 157986) (-3554 . 157710) - (-3555 . 157546) (-3556 . 157208) (-3557 . 156896) (-3558 . 156262) - (-3559 . 156162) (-3560 . 156050) (-3561 . 155777) (-3562 . 155720) - (-3563 . 155590) (-3564 . 155064) (-3565 . 154854) (-3566 . 154432) - (-3567 . 154355) (-3568 . 154258) (-3569 . 153933) (-3570 . 153818) - (-3571 . 153636) (-3572 . 153305) (-3573 . 153253) (-3574 . 153130) - (-3575 . 152827) (-3576 . 152718) (-3577 . 152644) (-3578 . 152528) - (-3579 . 152497) (-3580 . 151695) (-3581 . 151602) (-3582 . 151509) - (-3583 . 151410) (-3584 . 151359) (-3585 . 151031) (-3586 . 150725) - (-3587 . 150432) (-3588 . 150326) (-3589 . 150277) (-3590 . 150176) - (-3591 . 149675) (-3592 . 149572) (-3593 . 149298) (-3594 . 149227) - (-3595 . 149071) (-3596 . 148970) (-3597 . 148936) (-3598 . 148818) - (-3599 . 148468) (-3600 . 148440) (-3601 . 148335) (-3602 . 148301) - (-3603 . 148167) (-3604 . 147727) (-3605 . 147508) (-3606 . 147405) - (-3607 . 147272) (-3608 . 147151) (-3609 . 146821) (-3610 . 146750) - (-3611 . 146634) (-3612 . 132571) (-3613 . 132444) (-3614 . 131174) - (-3615 . 131119) (-3616 . 130697) (-3617 . 130574) (-3618 . 130425) - (-3619 . 130267) (-3620 . 129607) (-3621 . 129445) (-3622 . 129317) - (-3623 . 128958) (-3624 . 128623) (-3625 . 128313) (-3626 . 128009) - (-3627 . 127902) (-3628 . 127874) (-3629 . 127603) (-3630 . 127306) - (-3631 . 127082) (-3632 . 127012) (-3633 . 126770) (-3634 . 126718) - (-3635 . 126609) (-3636 . 126444) (-3637 . 126334) (-3638 . 126261) - (-3639 . 126008) (-3640 . 125942) (-3641 . 125440) (-3642 . 124833) - (-3643 . 124730) (-3644 . 124593) (-3645 . 124450) (-3646 . 124360) - (-3647 . 124140) (-3648 . 124109) (-3649 . 123996) (-3650 . 123923) - (-3651 . 123857) (-3652 . 123369) (-3653 . 123274) (-3654 . 123089) - (-3655 . 122774) (-3656 . 122721) (-3657 . 122650) (-3658 . 122404) - (-3659 . 122298) (-3660 . 122218) (-3661 . 122107) (-3662 . 121882) - (-3663 . 117179) (-3664 . 116957) (-3665 . 116891) (-3666 . 116832) - (-3667 . 116688) (-3668 . 116619) (-3669 . 116552) (-3670 . 116313) - (-3671 . 114948) (-3672 . 114871) (-3673 . 114770) (-3674 . 114682) - (-3675 . 114480) (-3676 . 114392) (-3677 . 114272) (-3678 . 114129) - (-3679 . 113816) (-3680 . 113757) (-3681 . 113677) (-3682 . 113559) - (-3683 . 113489) (-3684 . 113038) (-3685 . 112970) (-3686 . 111965) - (-3687 . 111913) (-3688 . 111830) (-3689 . 111498) (-3690 . 111442) - (-3691 . 111247) (-3692 . 111124) (-3693 . 111061) (-3694 . 110917) - (-3695 . 110698) (-3696 . 110645) (-3697 . 110501) (-3698 . 109538) - (-3699 . 109371) (-3700 . 109298) (-3701 . 109214) (-3702 . 109136) - (-3703 . 109065) (-3704 . 109012) (-3705 . 108942) (-3706 . 108697) - (-3707 . 108567) (-3708 . 108414) (-3709 . 108362) (-3710 . 108217) - (-3711 . 107476) (-3712 . 107309) (-3713 . 107225) (-3714 . 107063) - (-3715 . 106983) (-3716 . 106789) (-3717 . 105249) (-3718 . 105178) - (-3719 . 105021) (-3720 . 104889) (-3721 . 104819) (-3722 . 104720) - (-3723 . 104641) (-3724 . 104155) (-3725 . 103864) (-3726 . 103539) - (-3727 . 103045) (-3728 . 102814) (-3729 . 102664) (-3730 . 102586) - (-3731 . 102226) (-3732 . 102082) (-3733 . 101955) (-3734 . 101885) - (-3735 . 101638) (-3736 . 101092) (-3737 . 100908) (-3738 . 100172) - (-3739 . 99734) (-3740 . 99590) (-3741 . 99419) (-3742 . 99346) - (-3743 . 99155) (-3744 . 99100) (-3745 . 99049) (-3746 . 98194) - (-3747 . 97129) (-3748 . 97042) (-3749 . 96881) (-3750 . 96548) - (-3751 . 96348) (-3752 . 96196) (-3753 . 96127) (-3754 . 96000) - (-3755 . 95837) (-3756 . 95752) (-3757 . 95589) (-3758 . 95482) - (-3759 . 95122) (-3760 . 94996) (-3761 . 94940) (-3762 . 94869) - (-3763 . 94792) (-3764 . 94730) (-3765 . 94325) (-3766 . 94245) - (-3767 . 93504) (-3768 . 93323) (-3769 . 93226) (-3770 . 93143) - (-3771 . 92762) (-3772 . 92648) (-3773 . 92596) (-3774 . 91958) - (-3775 . 91857) (-3776 . 91678) (-3777 . 91534) (-3778 . 91345) - (-3779 . 91291) (-3780 . 90603) (-3781 . 90423) (-3782 . 90323) - (-3783 . 90157) (-3784 . 89954) (-3785 . 89813) (-3786 . 88653) - (-3787 . 88530) (-3788 . 88445) (-3789 . 88368) (-3790 . 87559) - (-3791 . 87528) (-3792 . 87398) (-3793 . 86822) (-3794 . 86337) - (-3795 . 86241) (-3796 . 86144) (-3797 . 86047) (-3798 . 85955) - (-3799 . 85841) (-3800 . 85789) (-3801 . 85712) (-3802 . 85466) - (-3803 . 85253) (-3804 . 84976) (-3805 . 84400) (-3806 . 84029) - (-3807 . 83845) (-3808 . 83692) (-3809 . 83642) (-3810 . 82519) - (-3811 . 82465) (-3812 . 82437) (-3813 . 82269) (-3814 . 82206) - (-3815 . 82172) (-3816 . 81596) (-3817 . 81543) (-3818 . 81435) - (-3819 . 81246) (-3820 . 81153) (-3821 . 81080) (-3822 . 80968) - (-3823 . 80760) (-3824 . 80732) (-3825 . 80588) (-3826 . 80443) - (-3827 . 80329) (-3828 . 79643) (-3829 . 79545) (-3830 . 79390) - (-3831 . 79303) (-3832 . 79167) (-3833 . 78983) (-3834 . 78826) - (-3835 . 78575) (-3836 . 78431) (-3837 . 78261) (-3838 . 77575) - (-3839 . 77495) (-3840 . 77392) (-3841 . 77249) (-3842 . 77178) - (-3843 . 77064) (-3844 . 76712) (-3845 . 76652) (-3846 . 74700) - (-3847 . 73951) (-3848 . 73879) (-3849 . 73770) (-3850 . 73632) - (-3851 . 73141) (-3852 . 72998) (-3853 . 72969) (-3854 . 72871) - (-3855 . 72776) (-3856 . 72669) (-3857 . 72413) (-3858 . 72311) - (-3859 . 71737) (-3860 . 71657) (-3861 . 71269) (-3862 . 71127) - (-3863 . 70459) (-3864 . 69711) (-3865 . 69614) (-3866 . 69473) - (-3867 . 69277) (-3868 . 69227) (-3869 . 68711) (-3870 . 68591) - (-3871 . 68347) (-3872 . 67597) (-3873 . 67545) (-3874 . 67493) - (-3875 . 67338) (-3876 . 67192) (-3877 . 66889) (-3878 . 66562) - (-3879 . 66308) (-3880 . 66018) (-3881 . 65795) (-3882 . 65764) - (-3883 . 65459) (-3884 . 65314) (-3885 . 65231) (-3886 . 65175) - (-3887 . 65078) (-3888 . 65022) (-3889 . 64994) (-3890 . 64935) - (-3891 . 64651) (-3892 . 62872) (-3893 . 62631) (-3894 . 62548) - (-3895 . 62403) (-3896 . 62308) (-3897 . 62253) (-3898 . 62197) - (-3899 . 62126) (-3900 . 62009) (-3901 . 61880) (-3902 . 61807) - (-3903 . 61748) (-3904 . 61617) (-3905 . 61407) (-3906 . 60610) - (-3907 . 60510) (-3908 . 60430) (-3909 . 60321) (-3910 . 59706) - (-3911 . 59623) (-3912 . 59540) (-3913 . 59488) (-3914 . 59161) - (-3915 . 59074) (-3916 . 58663) (-3917 . 58611) (-3918 . 58558) - (-3919 . 58392) (-3920 . 58300) (-3921 . 58228) (-3922 . 57911) - (-3923 . 57614) (-3924 . 57560) (-3925 . 57405) (-3926 . 57293) - (-3927 . 57186) (-3928 . 57088) (-3929 . 56956) (-3930 . 56857) - (-3931 . 56777) (-3932 . 56555) (-3933 . 56503) (-3934 . 56401) - (-3935 . 56272) (-3936 . 56156) (-3937 . 56049) (-3938 . 55994) - (-3939 . 55240) (-3940 . 55156) (-3941 . 55030) (-3942 . 54971) - (-3943 . 54877) (-3944 . 54225) (-3945 . 54120) (-3946 . 54040) - (-3947 . 53952) (-3948 . 53865) (-3949 . 53778) (-3950 . 53725) - (-3951 . 53645) (-3952 . 53486) (-3953 . 53375) (-3954 . 53210) - (-3955 . 53020) (-3956 . 52858) (-3957 . 52796) (-3958 . 52649) - (-3959 . 52597) (-3960 . 52418) (-3961 . 52091) (-3962 . 52035) - (-3963 . 51789) (-3964 . 51729) (-3965 . 51635) (-3966 . 51553) - (-3967 . 51336) (-3968 . 51286) (-3969 . 51133) (-3970 . 51059) - (-3971 . 51007) (-3972 . 50899) (-3973 . 50145) (-3974 . 49716) - (-3975 . 49629) (-3976 . 49472) (-3977 . 49410) (-3978 . 49287) - (-3979 . 49184) (-3980 . 48386) (-3981 . 48065) (-3982 . 47986) - (-3983 . 47718) (-3984 . 47530) (-3985 . 47457) (-3986 . 47363) - (-3987 . 47244) (-3988 . 46868) (-3989 . 46772) (-3990 . 46568) - (-3991 . 46515) (-3992 . 46400) (-3993 . 46372) (-3994 . 46341) - (-3995 . 46150) (-3996 . 45917) (-3997 . 45787) (-3998 . 45717) - (-3999 . 45624) (-4000 . 45551) (-4001 . 45456) (-4002 . 45347) - (-4003 . 45209) (-4004 . 45066) (-4005 . 45014) (-4006 . 44409) - (-4007 . 44103) (-4008 . 43678) (-4009 . 43627) (-4010 . 43542) - (-4011 . 43386) (-4012 . 43322) (-4013 . 43183) (-4014 . 43056) - (-4015 . 43007) (-4016 . 42808) (-4017 . 42649) (-4018 . 42579) - (-4019 . 42492) (-4020 . 42421) (-4021 . 42288) (-4022 . 41830) - (-4023 . 41747) (-4024 . 41679) (-4025 . 41570) (-4026 . 41415) - (-4027 . 41362) (-4028 . 41211) (-4029 . 40332) (-4030 . 40173) - (-4031 . 39995) (-4032 . 39345) (-4033 . 39294) (-4034 . 38802) - (-4035 . 38728) (-4036 . 38604) (-4037 . 38435) (-4038 . 37923) - (-4039 . 37718) (-4040 . 37662) (-4041 . 36797) (-4042 . 36745) - (-4043 . 36658) (-4044 . 36563) (-4045 . 36449) (-4046 . 36396) - (-4047 . 36343) (-4048 . 36240) (-4049 . 35800) (-4050 . 35745) - (-4051 . 35450) (-4052 . 35398) (-4053 . 35330) (-4054 . 34882) - (-4055 . 34741) (-4056 . 34577) (-4057 . 34465) (-4058 . 34423) - (-4059 . 34301) (-4060 . 34204) (-4061 . 34018) (-4062 . 33877) - (-4063 . 33804) (-4064 . 33697) (-4065 . 33594) (-4066 . 33458) - (-4067 . 33403) (-4068 . 33259) (-4069 . 33103) (-4070 . 32730) - (-4071 . 32652) (-4072 . 32341) (-4073 . 31503) (-4074 . 31406) - (-4075 . 30222) (-4076 . 30115) (-4077 . 29949) (-4078 . 29590) - (-4079 . 29370) (-4080 . 29285) (-4081 . 29213) (-4082 . 28942) - (-4083 . 28585) (-4084 . 28490) (-4085 . 28437) (-4086 . 28308) - (-4087 . 27130) (-4088 . 27102) (-4089 . 26999) (-4090 . 26902) - (-4091 . 26708) (-4092 . 26446) (-4093 . 26076) (-4094 . 26023) - (-4095 . 25765) (-4096 . 25576) (-4097 . 24390) (-4098 . 22192) - (-4099 . 22095) (-4100 . 21935) (-4101 . 21836) (-4102 . 21593) - (-4103 . 21471) (-4104 . 21278) (-4105 . 21178) (-4106 . 21054) - (-4107 . 20922) (-4108 . 20853) (-4109 . 20801) (-4110 . 20670) - (-4111 . 20116) (-4112 . 19683) (-4113 . 18259) (-4114 . 18012) - (-4115 . 17941) (-4116 . 17892) (-4117 . 17792) (-4118 . 17721) - (-4119 . 17495) (-4120 . 17386) (-4121 . 17301) (-4122 . 17230) - (-4123 . 17120) (-4124 . 16789) (-4125 . 16565) (-4126 . 16468) - (-4127 . 16298) (-4128 . 16135) (-4129 . 15942) (-4130 . 15890) - (-4131 . 15838) (-4132 . 15731) (-4133 . 15621) (-4134 . 15528) - (-4135 . 15430) (-4136 . 15329) (-4137 . 15245) (-4138 . 15178) - (-4139 . 15023) (-4140 . 14950) (-4141 . 14847) (-4142 . 14764) - (-4143 . 14691) (-4144 . 14614) (-4145 . 14541) (-4146 . 14411) - (-4147 . 14355) (-4148 . 14225) (-4149 . 14073) (-4150 . 13972) - (-4151 . 13898) (-4152 . 13821) (-4153 . 13738) (-4154 . 13631) - (-4155 . 13506) (-4156 . 13452) (-4157 . 13138) (-4158 . 12140) - (-4159 . 11976) (-4160 . 11782) (-4161 . 11699) (-4162 . 11449) - (-4163 . 11340) (-4164 . 11247) (-4165 . 11185) (-4166 . 10931) - (-4167 . 10850) (-4168 . 10660) (-4169 . 10488) (-4170 . 10339) - (-4171 . 10230) (-4172 . 9709) (-4173 . 9543) (-4174 . 9250) - (-4175 . 8913) (-4176 . 8833) (-4177 . 8660) (-4178 . 8008) - (-4179 . 7797) (-4180 . 7625) (-4181 . 7242) (-4182 . 7187) - (-4183 . 7150) (-4184 . 7032) (-4185 . 6958) (-4186 . 6930) - (-4187 . 6505) (-4188 . 6350) (-4189 . 6226) (-4190 . 5740) - (-4191 . 5568) (-4192 . 5510) (-4193 . 5397) (-4194 . 5363) - (-4195 . 5240) (-4196 . 5169) (-4197 . 4827) (-4198 . 4774) - (-4199 . 4662) (-4200 . 4413) (-4201 . 4320) (-4202 . 4217) - (-4203 . 4009) (-4204 . 3823) (-4205 . 3570) (-4206 . 3515) - (-4207 . 3391) (-4208 . 3282) (-4209 . 3096) (-4210 . 2941) - (-4211 . 2800) (-4212 . 2745) (-4213 . 2621) (-4214 . 2555) - (-4215 . 1259) (-4216 . 1181) (-4217 . 1041) (-4218 . 874) - (-4219 . 777) (-4220 . 681) (-4221 . 598) (-4222 . 475) (-4223 . 447) - (-4224 . 30))
\ No newline at end of file + (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-1138 *2 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1123)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1110 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1123)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-883 (-355))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-383 (-883 (-355)))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-292 (-355))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-883 (-523))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-383 (-883 (-523)))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-292 (-523))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-315 *3 *4 *5)) + (-14 *3 (-589 *2)) (-14 *4 (-589 *2)) (-4 *5 (-363)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-292 *5)) (-4 *5 (-363)) + (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-629 (-383 (-883 (-523))))) (-4 *1 (-360)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-629 (-383 (-883 (-355))))) (-4 *1 (-360)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-629 (-883 (-523)))) (-4 *1 (-360)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-629 (-883 (-355)))) (-4 *1 (-360)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-629 (-292 (-523)))) (-4 *1 (-360)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-629 (-292 (-355)))) (-4 *1 (-360)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-383 (-883 (-523)))) (-4 *1 (-372)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-383 (-883 (-355)))) (-4 *1 (-372)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-523))) (-4 *1 (-372)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-355))) (-4 *1 (-372)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-523))) (-4 *1 (-372)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-355))) (-4 *1 (-372)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1169 (-383 (-883 (-523))))) (-4 *1 (-416)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1169 (-383 (-883 (-355))))) (-4 *1 (-416)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1169 (-883 (-523)))) (-4 *1 (-416)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1169 (-883 (-355)))) (-4 *1 (-416)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1169 (-292 (-523)))) (-4 *1 (-416)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1169 (-292 (-355)))) (-4 *1 (-416)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-325)) (-4 *5 (-305 *4)) (-4 *6 (-1145 *5)) + (-5 *2 (-1083 (-1083 *4))) (-5 *1 (-716 *4 *5 *6 *3 *7)) + (-4 *3 (-1145 *6)) (-14 *7 (-852)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) + (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *1 (-905 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1123)))) + ((*1 *1 *2) + (|partial| -3172 + (-12 (-5 *2 (-883 *3)) + (-12 (-4179 (-4 *3 (-37 (-383 (-523))))) + (-4179 (-4 *3 (-37 (-523)))) (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786))) + (-12 (-5 *2 (-883 *3)) + (-12 (-4179 (-4 *3 (-508))) (-4179 (-4 *3 (-37 (-383 (-523))))) + (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786))) + (-12 (-5 *2 (-883 *3)) + (-12 (-4179 (-4 *3 (-921 (-523)))) (-4 *3 (-37 (-383 (-523)))) + (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786))))) + ((*1 *1 *2) + (|partial| -3172 + (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) + (-12 (-4179 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) + (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) + (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-253 *4 *3)) + (-4 *3 (-13 (-406 *4) (-930)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-1162 *4 *2)) + (-4 *4 (-37 (-383 (-523))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1170)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1171))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1123))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-203)) + (-5 *2 + (-2 (|:| |brans| (-589 (-589 (-874 *4)))) + (|:| |xValues| (-1011 *4)) (|:| |yValues| (-1011 *4)))) + (-5 *1 (-142)) (-5 *3 (-589 (-589 (-874 *4))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1070)) (-5 *2 (-523)) (-5 *1 (-1106 *4)) + (-4 *4 (-973))))) +(((*1 *2 *3) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) + (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-880 *6 *4 *5))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) + (-4 *5 (-13 (-1016) (-33))) (-4 *6 (-13 (-1016) (-33))) + (-5 *2 (-108)) (-5 *1 (-1052 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-339)) (-4 *3 (-973)) + (-5 *1 (-1072 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *1 (-1042 *3 *2)) (-4 *3 (-1145 *2))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-1105))))) +(((*1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-617 *3)) (-4 *3 (-973)) (-4 *3 (-1016))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-394 *3)) (-4 *3 (-515)) (-5 *1 (-395 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1109) (-930))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1127)) (-4 *5 (-1145 (-383 *2))) + (-4 *2 (-1145 *4)) (-5 *1 (-317 *3 *4 *2 *5)) + (-4 *3 (-318 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-318 *3 *2 *4)) (-4 *3 (-1127)) + (-4 *4 (-1145 (-383 *2))) (-4 *2 (-1145 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1109))))) +((-1200 . 726094) (-1201 . 725707) (-1202 . 725629) (-1203 . 725541) + (-1204 . 725477) (-1205 . 725347) (-1206 . 725249) (-1207 . 725194) + (-1208 . 725010) (-1209 . 724869) (-1210 . 724777) (-1211 . 724559) + (-1212 . 724503) (-1213 . 724444) (-1214 . 724285) (-1215 . 724198) + (-1216 . 724074) (-1217 . 723952) (-1218 . 723869) (-1219 . 723797) + (-1220 . 719276) (-1221 . 719135) (-1222 . 718713) (-1223 . 718658) + (-1224 . 718411) (-1225 . 718326) (-1226 . 717810) (-1227 . 717728) + (-1228 . 717641) (-1229 . 717504) (-1230 . 717331) (-1231 . 717276) + (-1232 . 717153) (-1233 . 716771) (-1234 . 716647) (-1235 . 716494) + (-1236 . 716163) (-1237 . 716036) (-1238 . 715874) (-1239 . 715120) + (-1240 . 714881) (-1241 . 714828) (-1242 . 714638) (-1243 . 714524) + (-1244 . 713938) (-1245 . 713789) (-1246 . 713718) (-1247 . 713574) + (-1248 . 713508) (-1249 . 713258) (-1250 . 713049) (-1251 . 712981) + (-1252 . 712778) (-1253 . 712698) (-1254 . 712540) (-1255 . 711945) + (-1256 . 711867) (-1257 . 711801) (-1258 . 711723) (-1259 . 711695) + (-1260 . 710954) (-1261 . 710888) (-1262 . 710526) (-1263 . 710313) + (-1264 . 709538) (-1265 . 709373) (-1266 . 709303) (-1267 . 707684) + (-1268 . 707517) (-1269 . 707451) (-1270 . 707400) (-1271 . 706740) + (-1272 . 706149) (-1273 . 706009) (-1274 . 705268) (-1275 . 705157) + (-1276 . 705105) (-1277 . 704967) (-1278 . 704777) (-1279 . 704661) + (-1280 . 703800) (-1281 . 703657) (-1282 . 703490) (-1283 . 703150) + (-1284 . 702988) (-1285 . 702300) (-1286 . 702081) (-1287 . 702022) + (-1288 . 701970) (-1289 . 701793) (-1290 . 701662) (-1291 . 701500) + (-1292 . 700133) (-1293 . 700077) (-1294 . 699949) (-1295 . 699373) + (-1296 . 699250) (-1297 . 699153) (-1298 . 698707) (-1299 . 698552) + (-1300 . 698442) (-1301 . 698158) (-1302 . 697862) (-1303 . 697800) + (-1304 . 697646) (-1305 . 697563) (-1306 . 697510) (-1307 . 697389) + (-1308 . 697030) (-1309 . 696454) (-1310 . 696358) (-1311 . 695983) + (-1312 . 695916) (-1313 . 695806) (-1314 . 695754) (-1315 . 695671) + (-1316 . 695524) (-1317 . 695426) (-1318 . 695343) (-1319 . 695291) + (-1320 . 694956) (-1321 . 694847) (-1322 . 694271) (-1323 . 694237) + (-1324 . 694014) (-1325 . 693878) (-1326 . 693850) (-1327 . 693560) + (-1328 . 693475) (-1329 . 693423) (-1330 . 693329) (-1331 . 693212) + (-1332 . 693081) (-1333 . 692771) (-1334 . 692085) (-1335 . 691962) + (-1336 . 691583) (-1337 . 691462) (-1338 . 691303) (-1339 . 691124) + (-1340 . 690942) (-1341 . 690638) (-1342 . 690610) (-1343 . 690341) + (-1344 . 690216) (-1345 . 676153) (-1346 . 675467) (-1347 . 675362) + (-1348 . 675260) (-1349 . 674981) (-1350 . 674898) (-1351 . 674757) + (-1352 . 674430) (-1353 . 674398) (-1354 . 674275) (-1355 . 672447) + (-1356 . 671362) (-1357 . 671118) (-1358 . 671011) (-1359 . 670906) + (-1360 . 670542) (-1361 . 670125) (-1362 . 670013) (-1363 . 669665) + (-1364 . 669408) (-1365 . 669279) (-1366 . 669155) (-1367 . 669099) + (-1368 . 669062) (-1369 . 667561) (-1370 . 667317) (-1371 . 667072) + (-1372 . 666801) (-1373 . 666728) (-1374 . 666598) (-1375 . 666501) + (-1376 . 666243) (-1377 . 666171) (-1378 . 666037) (-1379 . 665791) + (-1380 . 664251) (-1381 . 664166) (-1382 . 663914) (-1383 . 663617) + (-1384 . 663533) (-1385 . 663435) (-1386 . 663347) (-1387 . 663287) + (-1388 . 663231) (-1389 . 663119) (-1390 . 663049) (-1391 . 662950) + (-1392 . 662897) (-1393 . 662793) (-1394 . 662641) (-1395 . 662547) + (-1396 . 661811) (-1397 . 661653) (-1398 . 661570) (-1399 . 661328) + (-1400 . 656625) (-1401 . 655876) (-1402 . 655805) (-1403 . 655661) + (-1404 . 655503) (-1405 . 655329) (-1406 . 655247) (-1407 . 655067) + (-1408 . 654906) (-1409 . 654833) (-1410 . 654781) (-1411 . 654729) + (-1412 . 654550) (-1413 . 653976) (-1414 . 653732) (-1415 . 653661) + (-1416 . 653418) (-1417 . 653201) (-1418 . 652940) (-1419 . 652814) + (-1420 . 652736) (-1421 . 652162) (-1422 . 652089) (-1423 . 651993) + (-1424 . 651857) (-1425 . 651807) (-1426 . 651582) (-1427 . 650944) + (-1428 . 650606) (-1429 . 650509) (-1430 . 650475) (-1431 . 649901) + (-1432 . 649749) (-1433 . 649272) (-1434 . 649045) (-1435 . 648971) + (-1436 . 648894) (-1437 . 647734) (-1438 . 647627) (-1439 . 647512) + (-1440 . 647445) (-1441 . 646758) (-1442 . 646729) (-1443 . 646651) + (-1444 . 645439) (-1445 . 645387) (-1446 . 645062) (-1447 . 644948) + (-1448 . 644866) (-1449 . 644685) (-1450 . 644505) (-1451 . 644361) + (-1452 . 644202) (-1453 . 643515) (-1454 . 643448) (-1455 . 643246) + (-1456 . 643153) (-1457 . 642030) (-1458 . 641436) (-1459 . 640576) + (-1460 . 640458) (-1461 . 640179) (-1462 . 639492) (-1463 . 639338) + (-1464 . 639152) (-1465 . 639051) (-1466 . 639020) (-1467 . 638948) + (-1468 . 638858) (-1469 . 638713) (-1470 . 638592) (-1471 . 638017) + (-1472 . 637921) (-1473 . 637712) (-1474 . 637534) (-1475 . 637053) + (-1476 . 636944) (-1477 . 636519) (-1478 . 636419) (-1479 . 636180) + (-1480 . 636090) (-1481 . 635515) (-1482 . 635453) (-1483 . 635376) + (-1484 . 635323) (-1485 . 635185) (-1486 . 635132) (-1487 . 635049) + (-1488 . 634954) (-1489 . 634831) (-1490 . 634730) (-1491 . 634678) + (-1492 . 634187) (-1493 . 633838) (-1494 . 633714) (-1495 . 633685) + (-1496 . 633561) (-1497 . 633508) (-1498 . 633364) (-1499 . 633208) + (-1500 . 633037) (-1501 . 632942) (-1502 . 632871) (-1503 . 632728) + (-1504 . 632675) (-1505 . 631806) (-1506 . 631628) (-1507 . 631485) + (-1508 . 631350) (-1509 . 631050) (-1510 . 630811) (-1511 . 630647) + (-1512 . 630545) (-1513 . 630157) (-1514 . 630059) (-1515 . 629940) + (-1516 . 629425) (-1517 . 629309) (-1518 . 629211) (-1519 . 629140) + (-1520 . 629032) (-1521 . 628850) (-1522 . 628724) (-1523 . 628668) + (-1524 . 626416) (-1525 . 626287) (-1526 . 626192) (-1527 . 624896) + (-1528 . 624507) (-1529 . 623951) (-1530 . 623803) (-1531 . 623702) + (-1532 . 623520) (-1533 . 623464) (-1534 . 623385) (-1535 . 623278) + (-1536 . 623175) (-1537 . 622834) (-1538 . 622676) (-1539 . 622621) + (-1540 . 622516) (-1541 . 622340) (-1542 . 622266) (-1543 . 622060) + (-1544 . 621804) (-1545 . 621204) (-1546 . 621131) (-1547 . 620942) + (-1548 . 620451) (-1549 . 620328) (-1550 . 620279) (-1551 . 620196) + (-1552 . 619817) (-1553 . 619715) (-1554 . 619459) (-1555 . 619431) + (-1556 . 619357) (-1557 . 619273) (-1558 . 618976) (-1559 . 618924) + (-1560 . 618867) (-1561 . 618559) (-1562 . 618479) (-1563 . 618092) + (-1564 . 618033) (-1565 . 617967) (-1566 . 617858) (-1567 . 617260) + (-1568 . 617144) (-1569 . 617038) (-1570 . 615753) (-1571 . 615637) + (-1572 . 615442) (-1573 . 615330) (-1574 . 615188) (-1575 . 615083) + (-1576 . 614942) (-1577 . 614872) (-1578 . 614674) (-1579 . 614579) + (-1580 . 614439) (-1581 . 614010) (-1582 . 613795) (-1583 . 613396) + (-1584 . 613223) (-1585 . 613152) (-1586 . 612484) (-1587 . 612318) + (-1588 . 612223) (-1589 . 612171) (-1590 . 612112) (-1591 . 611986) + (-1592 . 611955) (-1593 . 611627) (-1594 . 611542) (-1595 . 610794) + (-1596 . 610693) (-1597 . 610641) (-1598 . 610533) (-1599 . 610326) + (-1600 . 610264) (-1601 . 610112) (-1602 . 609915) (-1603 . 609841) + (-1604 . 609454) (-1605 . 609357) (-1606 . 609243) (-1607 . 609215) + (-1608 . 609149) (-1609 . 609040) (-1610 . 608960) (-1611 . 608579) + (-1612 . 608320) (-1613 . 608149) (-1614 . 608082) (-1615 . 607941) + (-1616 . 607834) (-1617 . 607771) (-1618 . 607392) (-1619 . 607256) + (-1620 . 607187) (-1621 . 606578) (-1622 . 606469) (-1623 . 606170) + (-1624 . 606110) (-1625 . 605914) (-1626 . 605864) (-1627 . 605648) + (-1628 . 605421) (-1629 . 605291) (-1630 . 605138) (-1631 . 604488) + (-1632 . 604280) (-1633 . 604173) (-1634 . 604015) (-1635 . 603965) + (-1636 . 603913) (-1637 . 603728) (-1638 . 603584) (-1639 . 603477) + (-1640 . 603264) (-1641 . 603164) (-1642 . 603018) (-1643 . 602781) + (-1644 . 602685) (-1645 . 602169) (-1646 . 601678) (-1647 . 601626) + (-1648 . 600826) (-1649 . 600531) (-1650 . 600324) (-1651 . 600172) + (-1652 . 600033) (-1653 . 599981) (-1654 . 599882) (-1655 . 599726) + (-1656 . 599606) (-1657 . 599460) (-1658 . 599338) (-1659 . 599281) + (-1660 . 599192) (-1661 . 599030) (-1662 . 598921) (-1663 . 598783) + (-1664 . 598695) (-1665 . 598451) (-1666 . 598320) (-1667 . 598246) + (-1668 . 598194) (-1669 . 597977) (-1670 . 597573) (-1671 . 597415) + (-1672 . 597330) (-1673 . 596580) (-1674 . 596390) (-1675 . 596232) + (-1676 . 596162) (-1677 . 596055) (-1678 . 595240) (-1679 . 595021) + (-1680 . 594935) (-1681 . 594563) (-1682 . 593852) (-1683 . 593765) + (-1684 . 593713) (-1685 . 593500) (-1686 . 593393) (-1687 . 593148) + (-1688 . 593037) (-1689 . 591697) (-1690 . 591613) (-1691 . 568678) + (-1692 . 568626) (-1693 . 568486) (-1694 . 568419) (-1695 . 568204) + (-1696 . 568089) (-1697 . 568005) (-1698 . 567422) (-1699 . 567142) + (-1700 . 567009) (-1701 . 566935) (-1702 . 566878) (-1703 . 566779) + (-1704 . 564027) (-1705 . 563920) (-1706 . 563765) (-1707 . 563672) + (-1708 . 563588) (-1709 . 563382) (-1710 . 563288) (-1711 . 563204) + (-1712 . 563131) (-1713 . 562759) (-1714 . 562687) (-1715 . 562300) + (-1716 . 562178) (-1717 . 561114) (-1718 . 560968) (-1719 . 560940) + (-1720 . 560803) (-1721 . 560673) (-1722 . 560594) (-1723 . 560405) + (-1724 . 560270) (-1725 . 560213) (-1726 . 560158) (-1727 . 560108) + (-1728 . 560002) (-1729 . 559699) (-1730 . 559535) (-1731 . 559443) + (-1732 . 559303) (-1733 . 559251) (-1734 . 559110) (-1735 . 558701) + (-1736 . 558589) (-1737 . 558512) (-1738 . 558314) (-1739 . 558060) + (-1740 . 557874) (-1741 . 557595) (-1742 . 557503) (-1743 . 557425) + (-1744 . 556724) (-1745 . 556629) (-1746 . 556297) (-1747 . 556086) + (-1748 . 555952) (-1749 . 555662) (-1750 . 555214) (-1751 . 555186) + (-1752 . 555100) (-1753 . 555002) (-1754 . 554928) (-1755 . 554826) + (-1756 . 554612) (-1757 . 554529) (-1758 . 554384) (-1759 . 554161) + (-1760 . 554088) (-1761 . 553993) (-1762 . 553913) (-1763 . 553663) + (-1764 . 553581) (-1765 . 552665) (-1766 . 552521) (-1767 . 552406) + (-1768 . 552375) (-1769 . 552256) (-1770 . 551766) (-1771 . 551602) + (-1772 . 551260) (-1773 . 551050) (-1774 . 550888) (-1775 . 550803) + (-1776 . 550706) (-1777 . 550401) (-1778 . 550283) (-1779 . 550164) + (-1780 . 550053) (-1781 . 549493) (-1782 . 549223) (-1783 . 549045) + (-1784 . 548958) (-1785 . 548813) (-1786 . 548355) (-1787 . 548248) + (-1788 . 548118) (-1789 . 547842) (-1790 . 547596) (-1791 . 547304) + (-1792 . 547176) (-1793 . 546958) (-1794 . 546875) (-1795 . 546455) + (-1796 . 543170) (-1797 . 542957) (-1798 . 542905) (-1799 . 542741) + (-1800 . 542672) (-1801 . 542529) (-1802 . 542043) (-1803 . 541987) + (-1804 . 541825) (-1805 . 541688) (-1806 . 541608) (-1807 . 541270) + (-1808 . 541161) (-1809 . 541057) (-1810 . 540950) (-1811 . 540876) + (-1812 . 540779) (-1813 . 540640) (-1814 . 540611) (-1815 . 540363) + (-1816 . 540279) (-1817 . 539967) (-1818 . 539872) (-1819 . 539728) + (-1820 . 539605) (-1821 . 539383) (-1822 . 539327) (-1823 . 539214) + (-1824 . 538786) (-1825 . 538731) (-1826 . 538097) (-1827 . 537847) + (-1828 . 537604) (-1829 . 537576) (-1830 . 537507) (-1831 . 537479) + (-1832 . 537423) (-1833 . 537351) (-1834 . 537323) (-1835 . 536744) + (-1836 . 536644) (-1837 . 536592) (-1838 . 536277) (-1839 . 536165) + (-1840 . 536059) (-1841 . 535937) (-1842 . 535822) (-1843 . 535763) + (-1844 . 535458) (-1845 . 535373) (-1846 . 535261) (-1847 . 535233) + (-1848 . 535074) (-1849 . 533773) (-1850 . 533630) (-1851 . 533346) + (-1852 . 532953) (-1853 . 532894) (-1854 . 532866) (-1855 . 532781) + (-1856 . 532710) (-1857 . 532437) (-1858 . 532107) (-1859 . 532019) + (-1860 . 531948) (-1861 . 530638) (-1862 . 530540) (-1863 . 528761) + (-1864 . 528699) (-1865 . 528158) (-1866 . 528044) (-1867 . 527987) + (-1868 . 527655) (-1869 . 527567) (-1870 . 526562) (-1871 . 526343) + (-1872 . 526000) (-1873 . 525893) (-1874 . 525567) (-1875 . 525496) + (-1876 . 524876) (-1877 . 524635) (-1878 . 524576) (-1879 . 524405) + (-1880 . 524275) (-1881 . 524129) (-1882 . 524063) (-1883 . 523896) + (-1884 . 523817) (-1885 . 523542) (-1886 . 523459) (-1887 . 523255) + (-1888 . 523157) (-1889 . 522981) (-1890 . 522950) (-1891 . 522703) + (-1892 . 522177) (-1893 . 522125) (-1894 . 521958) (-1895 . 521854) + (-1896 . 521713) (-1897 . 521509) (-1898 . 521364) (-1899 . 521055) + (-1900 . 520775) (-1901 . 520625) (-1902 . 520415) (-1903 . 519929) + (-1904 . 519745) (-1905 . 519642) (-1906 . 519396) (-1907 . 519301) + (-1908 . 519007) (-1909 . 518698) (-1910 . 518576) (-1911 . 518542) + (-1912 . 518445) (-1913 . 518271) (-1914 . 518154) (-1915 . 518086) + (-1916 . 518031) (-1917 . 517960) (-1918 . 517635) (-1919 . 517584) + (-1920 . 517371) (-1921 . 517256) (-1922 . 517149) (-1923 . 517093) + (-1924 . 516903) (-1925 . 516774) (-1926 . 516690) (-1927 . 516575) + (-1928 . 516498) (-1929 . 516254) (-1930 . 516171) (-1931 . 516100) + (-1932 . 515967) (-1933 . 515542) (-1934 . 515427) (-1935 . 515096) + (-1936 . 514914) (-1937 . 509815) (-1938 . 509483) (-1939 . 508782) + (-1940 . 508640) (-1941 . 508560) (-1942 . 508431) (-1943 . 508038) + (-1944 . 507977) (-1945 . 507883) (-1946 . 507552) (-1947 . 507479) + (-1948 . 507252) (-1949 . 506832) (-1950 . 506661) (-1951 . 506588) + (-1952 . 506432) (-1953 . 506213) (-1954 . 506161) (-1955 . 506031) + (-1956 . 505787) (-1957 . 505652) (-1958 . 505598) (-1959 . 505539) + (-1960 . 505264) (-1961 . 504967) (-1962 . 504844) (-1963 . 504618) + (-1964 . 504350) (-1965 . 503977) (-1966 . 503906) (-1967 . 503832) + (-1968 . 503701) (-1969 . 503627) (-1970 . 503324) (-1971 . 503156) + (-1972 . 502771) (-1973 . 502541) (-1974 . 502473) (-1975 . 502263) + (-1976 . 502083) (-1977 . 502017) (-1978 . 501859) (-1979 . 501629) + (-1980 . 500526) (-1981 . 500449) (-1982 . 499652) (-1983 . 499575) + (-1984 . 499496) (-1985 . 498861) (-1986 . 496080) (-1987 . 495915) + (-1988 . 495687) (-1989 . 495587) (-1990 . 495490) (-1991 . 495394) + (-1992 . 495360) (-1993 . 495308) (-1994 . 495250) (-1995 . 495182) + (-1996 . 495130) (-1997 . 495049) (-1998 . 494940) (-1999 . 494857) + (-2000 . 494523) (-2001 . 494162) (-2002 . 494077) (-2003 . 494011) + (-2004 . 493628) (-2005 . 493524) (-2006 . 493356) (-2007 . 493221) + (-2008 . 493095) (-2009 . 492793) (-2010 . 492643) (-2011 . 492197) + (-2012 . 491939) (-2013 . 491795) (-2014 . 491742) (-2015 . 491624) + (-2016 . 491471) (-2017 . 491372) (-2018 . 491207) (-2019 . 491142) + (-2020 . 490972) (-2021 . 490846) (-2022 . 490733) (-2023 . 490544) + (-2024 . 490466) (-2025 . 490348) (-2026 . 490211) (-2027 . 490127) + (-2028 . 489905) (-2029 . 489681) (-2030 . 489595) (-2031 . 489442) + (-2032 . 489388) (-2033 . 489317) (-2034 . 489283) (-2035 . 489223) + (-2036 . 489130) (-2037 . 488956) (-2038 . 488837) (-2039 . 488740) + (-2040 . 488666) (-2041 . 488566) (-2042 . 488395) (-2043 . 488168) + (-2044 . 488049) (-2045 . 487982) (-2046 . 487756) (-2047 . 486332) + (-2048 . 485879) (-2049 . 485826) (-2050 . 485668) (-2051 . 485502) + (-2052 . 485416) (-2053 . 485184) (-2054 . 485131) (-2055 . 484961) + (-2056 . 484841) (-2057 . 484594) (-2058 . 484511) (-2059 . 484252) + (-2060 . 484108) (-2061 . 483724) (-2062 . 483521) (-2063 . 483412) + (-2064 . 483308) (-2065 . 482900) (-2066 . 482775) (-2067 . 482704) + (-2068 . 482545) (-2069 . 482360) (-2070 . 482180) (-2071 . 481985) + (-2072 . 481844) (-2073 . 481646) (-2074 . 481593) (-2075 . 481512) + (-2076 . 481460) (-2077 . 481411) (-2078 . 481234) (-2079 . 480986) + (-2080 . 480863) (-2081 . 480808) (-2082 . 480564) (-2083 . 480129) + (-2084 . 478554) (-2085 . 478359) (-2086 . 478259) (-2087 . 478193) + (-2088 . 478162) (-2089 . 478077) (-2090 . 477968) (-2091 . 477712) + (-2092 . 477600) (-2093 . 477491) (-2094 . 477420) (-2095 . 477350) + (-2096 . 477298) (-2097 . 477232) (-2098 . 477123) (-2099 . 477046) + (-2100 . 476833) (-2101 . 476570) (-2102 . 475996) (-2103 . 475654) + (-2104 . 474808) (-2105 . 474582) (-2106 . 474502) (-2107 . 474375) + (-2108 . 473194) (-2109 . 472995) (-2110 . 472708) (-2111 . 471899) + (-2112 . 471788) (-2113 . 471614) (-2114 . 471505) (-2115 . 471440) + (-2116 . 467830) (-2117 . 467724) (-2118 . 467615) (-2119 . 467541) + (-2120 . 467261) (-2121 . 467192) (-2122 . 467161) (-2123 . 466433) + (-2124 . 465982) (-2125 . 465888) (-2126 . 465543) (-2127 . 465444) + (-2128 . 465359) (-2129 . 465233) (-2130 . 465153) (-2131 . 465055) + (-2132 . 464570) (-2133 . 464483) (-2134 . 464423) (-2135 . 464333) + (-2136 . 464260) (-2137 . 464186) (-2138 . 463994) (-2139 . 463923) + (-2140 . 463857) (-2141 . 463801) (-2142 . 463734) (-2143 . 463654) + (-2144 . 463558) (-2145 . 463479) (-2146 . 463382) (-2147 . 463208) + (-2148 . 463071) (-2149 . 462990) (-2150 . 462869) (-2151 . 462538) + (-2152 . 462344) (-2153 . 462111) (-2154 . 462014) (-2155 . 461881) + (-2156 . 461632) (-2157 . 461545) (-2158 . 461404) (-2159 . 461332) + (-2160 . 461054) (-2161 . 460996) (-2162 . 460772) (-2163 . 460579) + (-2164 . 460523) (-2165 . 460391) (-2166 . 460193) (-2167 . 460070) + (-2168 . 459958) (-2169 . 459866) (-2170 . 459661) (-2171 . 459512) + (-2172 . 459435) (-2173 . 459338) (-2174 . 459287) (-2175 . 459117) + (-2176 . 459060) (-2177 . 458982) (-2178 . 458109) (-2179 . 458057) + (-2180 . 457706) (-2181 . 457163) (-2182 . 457093) (-2183 . 456922) + (-2184 . 456752) (-2185 . 456696) (-2186 . 456627) (-2187 . 456556) + (-2188 . 456304) (-2189 . 456227) (-2190 . 455575) (-2191 . 455415) + (-2192 . 455259) (-2193 . 455198) (-2194 . 455120) (-2195 . 454957) + (-2196 . 454898) (-2197 . 454841) (-2198 . 454595) (-2199 . 454521) + (-2200 . 453602) (-2201 . 453504) (-2202 . 453140) (-2203 . 453007) + (-2204 . 452958) (-2205 . 452765) (-2206 . 452671) (-2207 . 452584) + (-2208 . 452454) (-2209 . 452241) (-2210 . 452061) (-2211 . 451991) + (-2212 . 451499) (-2213 . 451118) (-2214 . 451066) (-2215 . 450971) + (-2216 . 450866) (-2217 . 450526) (-2218 . 450249) (-2219 . 449970) + (-2220 . 449839) (-2221 . 449737) (-2222 . 449558) (-2223 . 449506) + (-2224 . 449445) (-2225 . 449393) (-2226 . 449289) (-2227 . 449084) + (-2228 . 448905) (-2229 . 448534) (-2230 . 448485) (-2231 . 448189) + (-2232 . 447881) (-2233 . 447768) (-2234 . 447661) (-2235 . 447539) + (-2236 . 447508) (-2237 . 447400) (-2238 . 447342) (-2239 . 447158) + (-2240 . 447105) (-2241 . 447046) (-2242 . 446972) (-2243 . 446717) + (-2244 . 446552) (-2245 . 446028) (-2246 . 445935) (-2247 . 445770) + (-2248 . 445656) (-2249 . 445561) (-2250 . 445408) (-2251 . 445331) + (-2252 . 445033) (-2253 . 444915) (-2254 . 444817) (-2255 . 444664) + (-2256 . 444487) (-2257 . 444146) (-2258 . 444096) (-2259 . 443076) + (-2260 . 442938) (-2261 . 442865) (-2262 . 442749) (-2263 . 442594) + (-2264 . 442493) (-2265 . 442267) (-2266 . 441917) (-2267 . 441863) + (-2268 . 441495) (-2269 . 441350) (-2270 . 441165) (-2271 . 440939) + (-2272 . 440806) (-2273 . 440703) (-2274 . 440619) (-2275 . 440499) + (-2276 . 440125) (-2277 . 440097) (-2278 . 439543) (-2279 . 439512) + (-2280 . 439449) (-2281 . 439353) (-2282 . 439324) (-2283 . 439198) + (-2284 . 439131) (-2285 . 438913) (-2286 . 438781) (-2287 . 438728) + (-2288 . 438560) (-2289 . 438532) (-2290 . 438472) (-2291 . 438365) + (-2292 . 438228) (-2293 . 438084) (-2294 . 437955) (-2295 . 437800) + (-2296 . 437507) (-2297 . 437455) (-2298 . 437377) (-2299 . 437314) + (-2300 . 437014) (-2301 . 436899) (-2302 . 436296) (-2303 . 435661) + (-2304 . 435588) (-2305 . 435520) (-2306 . 434945) (-2307 . 434544) + (-2308 . 434420) (-2309 . 434386) (-2310 . 434288) (-2311 . 434236) + (-2312 . 434098) (-2313 . 432861) (-2314 . 432453) (-2315 . 432376) + (-2316 . 432235) (-2317 . 432132) (-2318 . 431558) (-2319 . 431348) + (-2320 . 431197) (-2321 . 431079) (-2322 . 431026) (-2323 . 430841) + (-2324 . 430762) (-2325 . 430624) (-2326 . 430522) (-2327 . 430352) + (-2328 . 430265) (-2329 . 430182) (-2330 . 429608) (-2331 . 429514) + (-2332 . 429457) (-2333 . 429290) (-2334 . 429182) (-2335 . 429105) + (-2336 . 428959) (-2337 . 428900) (-2338 . 428755) (-2339 . 428641) + (-2340 . 428564) (-2341 . 427990) (-2342 . 427887) (-2343 . 427853) + (-2344 . 427726) (-2345 . 427537) (-2346 . 426958) (-2347 . 426881) + (-2348 . 426226) (-2349 . 426170) (-2350 . 426033) (-2351 . 425960) + (-2352 . 425793) (-2353 . 425219) (-2354 . 424646) (-2355 . 422516) + (-2356 . 422378) (-2357 . 422285) (-2358 . 421938) (-2359 . 421840) + (-2360 . 421763) (-2361 . 421608) (-2362 . 421492) (-2363 . 421336) + (-2364 . 421206) (-2365 . 421060) (-2366 . 420486) (-2367 . 420328) + (-2368 . 420213) (-2369 . 420140) (-2370 . 419909) (-2371 . 419787) + (-2372 . 419399) (-2373 . 419251) (-2374 . 419196) (-2375 . 419140) + (-2376 . 419030) (-2377 . 418901) (-2378 . 418839) (-2379 . 418679) + (-2380 . 418432) (-2381 . 418224) (-2382 . 418075) (-2383 . 417881) + (-2384 . 417758) (-2385 . 417553) (-2386 . 417423) (-2387 . 417082) + (-2388 . 417003) (-2389 . 415602) (-2390 . 415487) (-2391 . 415459) + (-2392 . 415360) (-2393 . 415149) (-2394 . 414525) (-2395 . 413523) + (-2396 . 413023) (-2397 . 412880) (-2398 . 412803) (-2399 . 412732) + (-2400 . 412580) (-2401 . 412490) (-2402 . 412217) (-2403 . 412120) + (-2404 . 412007) (-2405 . 411862) (-2406 . 411760) (-2407 . 411614) + (-2408 . 411255) (-2409 . 411154) (-2410 . 410936) (-2411 . 410802) + (-2412 . 410688) (-2413 . 410428) (-2414 . 410290) (-2415 . 409999) + (-2416 . 409818) (-2417 . 409744) (-2418 . 409465) (-2419 . 407703) + (-2420 . 407629) (-2421 . 407420) (-2422 . 407289) (-2423 . 407017) + (-2424 . 401510) (-2425 . 401391) (-2426 . 401293) (-2427 . 401151) + (-2428 . 400539) (-2429 . 400411) (-2430 . 400339) (-2431 . 400262) + (-2432 . 400204) (-2433 . 400134) (-2434 . 399925) (-2435 . 399852) + (-2436 . 399786) (-2437 . 399398) (-2438 . 399243) (-2439 . 398830) + (-2440 . 398775) (-2441 . 398349) (-2442 . 398135) (-2443 . 398036) + (-2444 . 397933) (-2445 . 397850) (-2446 . 397334) (-2447 . 397297) + (-2448 . 396844) (-2449 . 396757) (-2450 . 396691) (-2451 . 396608) + (-2452 . 396546) (-2453 . 396378) (-2454 . 395494) (-2455 . 395352) + (-2456 . 395245) (-2457 . 395148) (-2458 . 395116) (-2459 . 394769) + (-2460 . 394633) (-2461 . 394551) (-2462 . 394452) (-2463 . 394317) + (-2464 . 394178) (-2465 . 394056) (-2466 . 393782) (-2467 . 393657) + (-2468 . 393458) (-2469 . 393378) (-2470 . 393216) (-2471 . 393032) + (-2472 . 392914) (-2473 . 392741) (-2474 . 392656) (-2475 . 392550) + (-2476 . 392498) (-2477 . 392444) (-2478 . 392388) (-2479 . 392285) + (-2480 . 392128) (-2481 . 392041) (-2482 . 390839) (-2483 . 390776) + (-2484 . 390542) (-2485 . 390276) (-2486 . 390079) (-2487 . 389765) + (-2488 . 389448) (-2489 . 389159) (-2490 . 388638) (-2491 . 388387) + (-2492 . 388293) (-2493 . 388241) (-2494 . 388075) (-2495 . 387888) + (-2496 . 386890) (-2497 . 386817) (-2498 . 386694) (-2499 . 386335) + (-2500 . 386191) (-2501 . 385781) (-2502 . 385711) (-2503 . 385271) + (-2504 . 385205) (** . 382128) (-2506 . 381964) (-2507 . 381802) + (-2508 . 381687) (-2509 . 381587) (-2510 . 381417) (-2511 . 381034) + (-2512 . 380905) (-2513 . 380697) (-2514 . 380098) (-2515 . 379961) + (-2516 . 379906) (-2517 . 379747) (-2518 . 379553) (-2519 . 379383) + (-2520 . 379312) (-2521 . 379175) (-2522 . 379095) (-2523 . 378761) + (-2524 . 378569) (-2525 . 378410) (-2526 . 378303) (-2527 . 378220) + (-2528 . 378079) (-2529 . 378027) (-2530 . 377993) (-2531 . 377821) + (-2532 . 377718) (-2533 . 377574) (-2534 . 377473) (-2535 . 377152) + (-2536 . 377054) (-2537 . 376927) (-2538 . 376739) (-2539 . 376489) + (-2540 . 376384) (-2541 . 376288) (-2542 . 376040) (-2543 . 375897) + (-2544 . 375799) (-2545 . 375693) (-2546 . 375555) (-2547 . 374845) + (-2548 . 374722) (-2549 . 374613) (-2550 . 374477) (-2551 . 374375) + (-2552 . 374122) (-2553 . 374023) (-2554 . 373952) (-2555 . 373894) + (-2556 . 373672) (-2557 . 373563) (-2558 . 373364) (-2559 . 373110) + (-2560 . 373010) (-2561 . 372958) (-2562 . 372844) (-2563 . 372738) + (-2564 . 372709) (-2565 . 372625) (-2566 . 372544) (-2567 . 372449) + (-2568 . 372354) (-2569 . 371833) (-2570 . 371481) (-2571 . 371304) + (-2572 . 371146) (-2573 . 371090) (-2574 . 370983) (-2575 . 370910) + (-2576 . 370720) (-2577 . 370655) (-2578 . 370581) (-2579 . 370476) + (-2580 . 370082) (-2581 . 370022) (-2582 . 369965) (-2583 . 369931) + (-2584 . 369811) (-2585 . 369704) (-2586 . 369555) (-2587 . 369444) + (-2588 . 369364) (-2589 . 369185) (-2590 . 368980) (-2591 . 367028) + (-2592 . 366359) (-2593 . 366168) (-2594 . 366102) (-2595 . 365911) + (-2596 . 365802) (-2597 . 365504) (-2598 . 365363) (-2599 . 365310) + (-2600 . 365206) (-2601 . 364816) (-2602 . 364756) (-2603 . 364458) + (-2604 . 364363) (-2605 . 363842) (-2606 . 363601) (-2607 . 363460) + (-2608 . 363407) (-2609 . 363238) (-2610 . 363085) (-2611 . 362929) + (-2612 . 362748) (-2613 . 362582) (-2614 . 362505) (-2615 . 362026) + (-2616 . 361355) (-2617 . 361282) (-2618 . 361171) (-2619 . 361041) + (-2620 . 360900) (-2621 . 360777) (-2622 . 360693) (-2623 . 360400) + (-2624 . 359853) (-2625 . 359586) (-2626 . 359408) (-2627 . 358228) + (-2628 . 358137) (-2629 . 357984) (-2630 . 357832) (-2631 . 357777) + (-2632 . 357642) (-2633 . 357506) (-2634 . 356691) (-2635 . 356584) + (-2636 . 356461) (-2637 . 356409) (-2638 . 356268) (-2639 . 356150) + (-2640 . 354050) (-2641 . 353921) (-2642 . 353868) (-2643 . 353783) + (-2644 . 353682) (-2645 . 353537) (-2646 . 353379) (-2647 . 353205) + (-2648 . 352895) (-2649 . 352824) (-2650 . 352755) (-2651 . 352652) + (-2652 . 352524) (-2653 . 352469) (-2654 . 352253) (-2655 . 352169) + (-2656 . 351992) (-2657 . 351939) (-2658 . 351781) (-2659 . 351694) + (-2660 . 351604) (-2661 . 351552) (-2662 . 351112) (-2663 . 350581) + (-2664 . 350418) (-2665 . 350256) (-2666 . 350171) (-2667 . 350094) + (-2668 . 350007) (-2669 . 349937) (-2670 . 349882) (-2671 . 349502) + (-2672 . 349217) (-2673 . 348892) (-2674 . 348812) (-2675 . 348610) + (-2676 . 348536) (-2677 . 348282) (-2678 . 348254) (-2679 . 348174) + (-2680 . 347879) (-2681 . 347464) (-2682 . 347392) (-2683 . 347212) + (-2684 . 346867) (-2685 . 346729) (-2686 . 346535) (-2687 . 346361) + (-2688 . 346309) (-2689 . 346219) (-2690 . 346084) (-2691 . 346016) + (-2692 . 345613) (-2693 . 345409) (-2694 . 345338) (-2695 . 344841) + (-2696 . 344590) (-2697 . 344537) (-2698 . 344485) (-2699 . 344339) + (-2700 . 343891) (-2701 . 343679) (-2702 . 343592) (-2703 . 343435) + (-2704 . 342905) (-2705 . 342791) (-2706 . 342520) (-2707 . 342419) + (-2708 . 342237) (-2709 . 342096) (-2710 . 342030) (-2711 . 341977) + (-2712 . 341851) (-2713 . 341719) (-2714 . 341509) (-2715 . 341435) + (-2716 . 341173) (-2717 . 341046) (-2718 . 340882) (-2719 . 339772) + (-2720 . 339326) (-2721 . 339298) (-2722 . 338755) (-2723 . 338685) + (-2724 . 338197) (-2725 . 338144) (-2726 . 338073) (-2727 . 337880) + (-2728 . 337768) (-2729 . 337650) (-2730 . 337512) (-2731 . 337375) + (-2732 . 337288) (-2733 . 337189) (-2734 . 336759) (-2735 . 336703) + (-2736 . 336181) (-2737 . 336058) (-2738 . 336016) (-2739 . 335921) + (-2740 . 335722) (-2741 . 335431) (-2742 . 335305) (-2743 . 334633) + (-2744 . 334490) (-2745 . 334369) (-2746 . 334239) (-2747 . 334117) + (-2748 . 333608) (-2749 . 333385) (-2750 . 333248) (-2751 . 332961) + (-2752 . 332636) (-2753 . 332524) (-2754 . 331927) (-2755 . 331893) + (-2756 . 331796) (-2757 . 331693) (-2758 . 331428) (-2759 . 331037) + (-2760 . 331000) (-2761 . 330819) (-2762 . 330325) (-2763 . 330209) + (-2764 . 330181) (-2765 . 330115) (-2766 . 329904) (-2767 . 329718) + (-2768 . 329667) (-2769 . 329429) (-2770 . 329376) (-2771 . 329145) + (-2772 . 329093) (-2773 . 328970) (-2774 . 328863) (-2775 . 328777) + (-2776 . 328636) (-2777 . 328474) (-2778 . 328395) (-2779 . 328111) + (-2780 . 328037) (-2781 . 327887) (-2782 . 327740) (-2783 . 327688) + (-2784 . 327616) (-2785 . 327543) (-2786 . 327332) (-2787 . 327277) + (-2788 . 327183) (-2789 . 327105) (-2790 . 326034) (-2791 . 325837) + (-2792 . 325682) (-2793 . 325559) (-2794 . 325452) (-2795 . 325291) + (-2796 . 325165) (-2797 . 325116) (-2798 . 325056) (-2799 . 324916) + (-2800 . 324556) (-2801 . 324501) (-2802 . 324363) (-2803 . 324292) + (-2804 . 324134) (-2805 . 323998) (-2806 . 323891) (-2807 . 323762) + (-2808 . 323618) (-2809 . 323481) (-2810 . 323165) (-2811 . 322978) + (-2812 . 318990) (-2813 . 318891) (-2814 . 311937) (-2815 . 311882) + (-2816 . 311758) (-2817 . 311587) (-2818 . 311513) (-2819 . 311386) + (-2820 . 311223) (-2821 . 311122) (-2822 . 310943) (-2823 . 310712) + (-2824 . 310644) (-2825 . 310500) (-2826 . 310432) (-2827 . 310182) + (-2828 . 310112) (-2829 . 310026) (-2830 . 309949) (-2831 . 309856) + (-2832 . 309621) (-2833 . 309465) (-2834 . 309382) (-2835 . 309239) + (-2836 . 308966) (-2837 . 308881) (-2838 . 308738) (-2839 . 308491) + (-2840 . 308288) (-2841 . 308190) (-2842 . 307947) (-2843 . 307810) + (-2844 . 307437) (-2845 . 307364) (-2846 . 306977) (-2847 . 306431) + (-2848 . 306304) (-2849 . 306148) (-2850 . 306036) (-2851 . 305973) + (-2852 . 305903) (-2853 . 305816) (-2854 . 305433) (-2855 . 305355) + (-2856 . 305253) (-2857 . 305149) (-2858 . 305032) (-2859 . 304909) + (-2860 . 304725) (-2861 . 304624) (-2862 . 304520) (-2863 . 304447) + (-2864 . 304339) (-2865 . 304028) (-2866 . 303946) (-2867 . 303865) + (-2868 . 303708) (-2869 . 303556) (-2870 . 303118) (-2871 . 303013) + (-2872 . 302847) (-2873 . 302713) (-2874 . 302336) (-2875 . 302243) + (-2876 . 301405) (-2877 . 301310) (-2878 . 300939) (-2879 . 300774) + (-2880 . 300630) (-2881 . 300301) (-2882 . 300164) (-2883 . 300057) + (-2884 . 299986) (-2885 . 299889) (-2886 . 299674) (-2887 . 299299) + (-2888 . 299221) (-2889 . 298749) (-2890 . 298694) (-2891 . 298523) + (-2892 . 298458) (-2893 . 298430) (-2894 . 298343) (-2895 . 298236) + (-2896 . 297691) (-2897 . 297467) (-2898 . 296867) (-2899 . 296723) + (-2900 . 296650) (-2901 . 296555) (-2902 . 296456) (-2903 . 296401) + (-2904 . 296345) (-2905 . 296179) (-2906 . 294987) (-2907 . 294908) + (-2908 . 294794) (-2909 . 293965) (-2910 . 293913) (-2911 . 293722) + (-2912 . 293566) (-2913 . 293500) (-2914 . 293421) (-2915 . 293368) + (-2916 . 293285) (-2917 . 292926) (-2918 . 292841) (-2919 . 292734) + (-2920 . 292679) (-2921 . 292506) (-2922 . 291296) (-2923 . 291143) + (-2924 . 290623) (-2925 . 290478) (-2926 . 290360) (-2927 . 290140) + (-2928 . 290053) (-2929 . 289945) (-2930 . 289661) (-2931 . 289610) + (-2932 . 289536) (-2933 . 289189) (-2934 . 289137) (-2935 . 289041) + (-2936 . 287595) (-2937 . 287510) (-2938 . 287417) (-2939 . 287389) + (-2940 . 287330) (-2941 . 286265) (-2942 . 286191) (-2943 . 286125) + (-2944 . 286045) (-2945 . 285774) (-2946 . 285700) (-2947 . 284664) + (-2948 . 284593) (-2949 . 284494) (-2950 . 284407) (-2951 . 284293) + (-2952 . 284087) (-2953 . 284035) (-2954 . 283873) (-2955 . 283790) + (-2956 . 283433) (-2957 . 283278) (-2958 . 283212) (-2959 . 282879) + (-2960 . 282655) (-2961 . 282560) (-2962 . 282420) (-2963 . 282295) + (-2964 . 282189) (-2965 . 282094) (-2966 . 281941) (-2967 . 281744) + (-2968 . 281650) (-2969 . 281450) (-2970 . 281377) (-2971 . 280968) + (-2972 . 280915) (-2973 . 280863) (-2974 . 280691) (-2975 . 280401) + (-2976 . 280348) (-2977 . 279846) (-2978 . 279614) (-2979 . 279565) + (-2980 . 279413) (-2981 . 279303) (-2982 . 279161) (-2983 . 279088) + (-2984 . 278973) (-2985 . 278945) (-2986 . 278727) (-2987 . 278658) + (-2988 . 278343) (-2989 . 278099) (-2990 . 276635) (-2991 . 276583) + (-2992 . 276489) (-2993 . 276378) (-2994 . 276065) (-2995 . 275962) + (-2996 . 275548) (-2997 . 275493) (-2998 . 275398) (-2999 . 275279) + (-3000 . 275152) (-3001 . 275069) (-3002 . 274950) (-3003 . 274756) + (-3004 . 274701) (-3005 . 274561) (-3006 . 274351) (-3007 . 274257) + (-3008 . 273677) (-3009 . 273570) (-3010 . 273407) (-3011 . 273131) + (-3012 . 272557) (-3013 . 272484) (-3014 . 272329) (-3015 . 271959) + (-3016 . 271893) (-3017 . 271601) (-3018 . 271516) (-3019 . 271357) + (-3020 . 270871) (-3021 . 270671) (-3022 . 270576) (-3023 . 270110) + (-3024 . 270057) (-3025 . 269538) (-3026 . 269467) (-3027 . 269175) + (-3028 . 269068) (-3029 . 268430) (-3030 . 268345) (-3031 . 268224) + (-3032 . 267966) (-3033 . 267913) (-3034 . 267753) (-3035 . 266598) + (-3036 . 266459) (-3037 . 266189) (-3038 . 265753) (-3039 . 265393) + (-3040 . 265174) (-3041 . 265016) (-3042 . 264792) (-3043 . 264720) + (-3044 . 264531) (-3045 . 263883) (-3046 . 263711) (-3047 . 263625) + (-3048 . 263569) (-3049 . 263180) (-3050 . 263114) (-3051 . 262952) + (-3052 . 262702) (-3053 . 261516) (-3054 . 261280) (-3055 . 261108) + (-3056 . 260953) (-3057 . 260882) (-3058 . 260811) (-3059 . 260704) + (-3060 . 260460) (-3061 . 260039) (-3062 . 259692) (-3063 . 259532) + (-3064 . 258949) (-3065 . 258777) (-3066 . 258694) (-3067 . 258642) + (-3068 . 258580) (-3069 . 258464) (-3070 . 258214) (-3071 . 258140) + (-3072 . 258041) (-3073 . 257983) (-3074 . 257846) (-3075 . 257674) + (-3076 . 257584) (-3077 . 257179) (-3078 . 257130) (-3079 . 257077) + (-3080 . 256962) (-3081 . 256877) (-3082 . 256803) (-3083 . 256560) + (-3084 . 256459) (-3085 . 256388) (-3086 . 256308) (-3087 . 255892) + (-3088 . 255676) (-3089 . 255624) (-3090 . 255575) (-3091 . 255453) + (-3092 . 255277) (-3093 . 255181) (-3094 . 255153) (-3095 . 255098) + (-3096 . 254917) (-3097 . 254571) (-3098 . 254513) (-3099 . 254365) + (-3100 . 254053) (-3101 . 253860) (-3102 . 253761) (-3103 . 253106) + (-3104 . 252570) (-3105 . 252487) (-3106 . 252281) (-3107 . 252198) + (-3108 . 249783) (-3109 . 249495) (-3110 . 249395) (-3111 . 249248) + (-3112 . 239718) (-3113 . 239490) (-3114 . 239109) (-3115 . 239001) + (-3116 . 238933) (-3117 . 238809) (-3118 . 238698) (-3119 . 238592) + (-3120 . 238333) (-3121 . 238219) (-3122 . 238084) (-3123 . 237980) + (-3124 . 237949) (-3125 . 237817) (-3126 . 237665) (-3127 . 237502) + (-3128 . 237389) (-3129 . 237288) (-3130 . 237141) (-3131 . 236840) + (-3132 . 236661) (-3133 . 236577) (-3134 . 236508) (-3135 . 236411) + (-3136 . 236344) (-3137 . 236258) (-3138 . 236157) (-3139 . 235690) + (-3140 . 235511) (-3141 . 235320) (-3142 . 235242) (-3143 . 235117) + (-3144 . 234984) (-3145 . 234932) (-3146 . 234764) (-3147 . 234667) + (-3148 . 234280) (-3149 . 234003) (-3150 . 233791) (-3151 . 233690) + (-3152 . 233316) (-3153 . 233185) (-3154 . 233088) (-3155 . 232642) + (-3156 . 232538) (-3157 . 232394) (-3158 . 232114) (-3159 . 232005) + (-3160 . 231906) (-3161 . 231707) (-3162 . 231607) (-3163 . 231394) + (-3164 . 231283) (-3165 . 231231) (-3166 . 230677) (-3167 . 230430) + (-3168 . 230371) (-3169 . 230305) (-3170 . 230140) (-3171 . 229514) + (-3172 . 229342) (-3173 . 228894) (-3174 . 228842) (-3175 . 228644) + (-3176 . 228541) (-3177 . 228108) (-3178 . 228008) (-3179 . 227847) + (-3180 . 227737) (-3181 . 227663) (-12 . 227491) (-3183 . 227431) + (-3184 . 227254) (-3185 . 226827) (-3186 . 226552) (-3187 . 226399) + (-3188 . 226146) (-3189 . 226054) (-3190 . 225981) (-3191 . 225896) + (-3192 . 225750) (-3193 . 225665) (-3194 . 225507) (-3195 . 225399) + (-3196 . 224447) (-3197 . 224194) (-3198 . 223290) (-3199 . 220382) + (-3200 . 220211) (-3201 . 220078) (-3202 . 219934) (-3203 . 219740) + (-3204 . 219672) (-3205 . 219585) (-3206 . 219437) (-3207 . 219364) + (-3208 . 219257) (-3209 . 218755) (-3210 . 218615) (-3211 . 218444) + (-3212 . 218296) (-3213 . 218139) (-3214 . 218029) (-3215 . 217965) + (-3216 . 217788) (-3217 . 217181) (-3218 . 216802) (-3219 . 216750) + (-3220 . 215986) (-3221 . 215936) (-3222 . 215815) (-3223 . 215692) + (-3224 . 213974) (-3225 . 213900) (-3226 . 213674) (-3227 . 213571) + (-3228 . 213404) (-3229 . 213089) (-3230 . 213017) (-3231 . 212773) + (-3232 . 212670) (-3233 . 212448) (-3234 . 212328) (-3235 . 212173) + (-3236 . 211569) (-3237 . 211476) (-3238 . 211339) (-3239 . 211060) + (-3240 . 210744) (-3241 . 210591) (-3242 . 210331) (-3243 . 210057) + (-3244 . 209259) (-3245 . 209164) (-3246 . 209096) (-3247 . 209030) + (-3248 . 208936) (-3249 . 208793) (-3250 . 208708) (-3251 . 208655) + (-3252 . 208602) (-3253 . 208549) (-3254 . 208420) (-3255 . 208099) + (-3256 . 207780) (-3257 . 207724) (-3258 . 207630) (-3259 . 207540) + (-3260 . 207470) (-3261 . 207369) (-3262 . 207241) (-3263 . 207116) + (-3264 . 206988) (-3265 . 206909) (-3266 . 206853) (-3267 . 206672) + (-3268 . 206452) (-3269 . 206361) (-3270 . 206242) (* . 201719) + (-3272 . 200863) (-3273 . 200814) (-3274 . 200724) (-3275 . 200599) + (-3276 . 200411) (-3277 . 200242) (-3278 . 200155) (-3279 . 199885) + (-3280 . 199813) (-3281 . 199742) (-3282 . 199711) (-3283 . 199631) + (-3284 . 199496) (-3285 . 199326) (-3286 . 198583) (-3287 . 198412) + (-3288 . 198339) (-3289 . 198254) (-3290 . 198169) (-3291 . 198096) + (-3292 . 198009) (-3293 . 197904) (-3294 . 197740) (-3295 . 197494) + (-3296 . 197373) (-3297 . 197279) (-3298 . 197184) (-3299 . 197049) + (-3300 . 196940) (-3301 . 196799) (-3302 . 196311) (-3303 . 196216) + (-3304 . 196164) (-3305 . 196105) (-3306 . 196074) (-3307 . 195944) + (-3308 . 195825) (-3309 . 195770) (-3310 . 194670) (-3311 . 194378) + (-3312 . 194248) (-3313 . 194153) (-3314 . 193419) (-3315 . 193196) + (-3316 . 192497) (-3317 . 191682) (-3318 . 190386) (-3319 . 190079) + (-3320 . 189703) (-3321 . 189342) (-3322 . 189082) (-3323 . 188999) + (-3324 . 188784) (-3325 . 188599) (-3326 . 188487) (-3327 . 188214) + (-3328 . 187987) (-3329 . 187310) (-3330 . 187210) (-3331 . 187026) + (-3332 . 186730) (-3333 . 186634) (-3334 . 186521) (-3335 . 186493) + (-3336 . 186220) (-3337 . 186029) (-3338 . 185958) (-3339 . 185857) + (-3340 . 185674) (-3341 . 185432) (-3342 . 185131) (-3343 . 185038) + (-3344 . 184834) (-3345 . 184771) (-3346 . 184384) (-3347 . 184310) + (-3348 . 184154) (-3349 . 183908) (-3350 . 183793) (-3351 . 183684) + (-3352 . 183419) (-3353 . 182970) (-3354 . 182768) (-3355 . 182659) + (-3356 . 182631) (-3357 . 182388) (-3358 . 182124) (-3359 . 182050) + (-3360 . 181944) (-3361 . 181665) (-3362 . 181558) (-3363 . 181384) + (-3364 . 181297) (-3365 . 180981) (-3366 . 180790) (-3367 . 180650) + (-3368 . 180586) (-3369 . 180483) (-3370 . 180172) (-3371 . 180092) + (-3372 . 180035) (-3373 . 179950) (-3374 . 179745) (-3375 . 179527) + (-3376 . 179474) (-3377 . 179241) (-3378 . 179123) (-3379 . 178999) + (-3380 . 178812) (-3381 . 178729) (-3382 . 178618) (-3383 . 178379) + (-3384 . 178287) (-3385 . 178082) (-3386 . 177922) (-3387 . 177807) + (-3388 . 177609) (-3389 . 177479) (-3390 . 177280) (-3391 . 177186) + (-3392 . 177087) (-3393 . 176862) (-3394 . 176782) (-3395 . 176700) + (-3396 . 176393) (-3397 . 175942) (-3398 . 175857) (-3399 . 175787) + (-3400 . 175735) (-3401 . 175546) (-3402 . 175438) (-3403 . 175270) + (-3404 . 175048) (-3405 . 175004) (-3406 . 170942) (-3407 . 170863) + (-3408 . 170776) (-3409 . 170662) (-3410 . 170566) (-3411 . 170473) + (-3412 . 170364) (-3413 . 170312) (-3414 . 170246) (-3415 . 170174) + (-3416 . 170035) (-3417 . 169801) (-3418 . 169718) (-3419 . 169665) + (-3420 . 169556) (-3421 . 169483) (-3422 . 169416) (-3423 . 169100) + (-3424 . 169018) (-3425 . 168959) (-3426 . 168893) (-3427 . 168787) + (-3428 . 168735) (-3429 . 168667) (-3430 . 168594) (-3431 . 168499) + (-3432 . 167974) (-3433 . 167878) (-3434 . 167734) (-3435 . 167414) + (-3436 . 167327) (-3437 . 165080) (-3438 . 165027) (-3439 . 164924) + (-3440 . 164815) (-3441 . 163565) (-3442 . 162994) (-3443 . 162743) + (-3444 . 162674) (-3445 . 162575) (-3446 . 162503) (-3447 . 162328) + (-3448 . 159983) (-3449 . 159462) (-3450 . 159115) (-3451 . 158974) + (-3452 . 158855) (-3453 . 158712) (-3454 . 158460) (-3455 . 158377) + (-3456 . 158218) (-3457 . 158115) (-3458 . 158048) (-3459 . 157872) + (-3460 . 157563) (-3461 . 157180) (-3462 . 157125) (-3463 . 156793) + (-3464 . 156741) (-3465 . 156565) (-3466 . 156459) (-3467 . 156220) + (-3468 . 155981) (-3469 . 155670) (-3470 . 155541) (-3471 . 155459) + (-3472 . 155208) (-3473 . 155021) (-3474 . 154666) (-3475 . 154509) + (-3476 . 154428) (-3477 . 154347) (-3478 . 153742) (-3479 . 153583) + (-3480 . 153472) (-3481 . 153419) (-3482 . 152054) (-3483 . 151296) + (-3484 . 151243) (-3485 . 150707) (-3486 . 150612) (-3487 . 150399) + (-3488 . 149974) (-3489 . 149757) (-3490 . 149659) (-3491 . 149207) + (-3492 . 149121) (-3493 . 149044) (-3494 . 148892) (-3495 . 148825) + (-3496 . 148757) (-3497 . 148597) (-3498 . 148512) (-3499 . 147921) + (-3500 . 147869) (-3501 . 147835) (-3502 . 147321) (-3503 . 147220) + (-3504 . 147133) (-3505 . 146975) (-3506 . 146909) (-3507 . 146838) + (-3508 . 141521) (-3509 . 141465) (-3510 . 141309) (-3511 . 141172) + (-3512 . 141117) (-3513 . 141066) (-3514 . 140864) (-3515 . 139990) + (-3516 . 139646) (-3517 . 139488) (-3518 . 139423) (-3519 . 139371) + (-3520 . 139343) (-3521 . 139279) (-3522 . 139079) (-3523 . 138955) + (-3524 . 138904) (-3525 . 138817) (-3526 . 138729) (-3527 . 138570) + (-3528 . 138488) (-3529 . 137947) (-3530 . 136378) (-3531 . 136276) + (-3532 . 136137) (-3533 . 135658) (-3534 . 135518) (-3535 . 135467) + (-3536 . 135343) (-3537 . 135223) (-3538 . 134616) (-3539 . 134539) + (-3540 . 134422) (-3541 . 134318) (-3542 . 134259) (-3543 . 134194) + (-3544 . 134166) (-3545 . 133975) (-3546 . 133848) (-3547 . 133750) + (-3548 . 133681) (-3549 . 133538) (-3550 . 133457) (-3551 . 132982) + (-3552 . 132687) (-3553 . 132573) (-3554 . 132335) (-3555 . 132286) + (-3556 . 132069) (-3557 . 131913) (-3558 . 131598) (-3559 . 131410) + (-3560 . 131097) (-3561 . 131023) (-3562 . 130745) (-3563 . 130582) + (-3564 . 130460) (-3565 . 130261) (-3566 . 130192) (-3567 . 129794) + (-3568 . 129629) (-3569 . 128382) (-3570 . 128302) (-3571 . 128156) + (-3572 . 128010) (-3573 . 127982) (-3574 . 127691) (-3575 . 127544) + (-3576 . 127443) (-3577 . 127284) (-3578 . 127214) (-3579 . 127158) + (-3580 . 126988) (-3581 . 126600) (-3582 . 126482) (-3583 . 126263) + (-3584 . 125653) (-3585 . 125596) (-3586 . 125394) (-3587 . 125324) + (-3588 . 125155) (-3589 . 125082) (-3590 . 124832) (-3591 . 124520) + (-3592 . 124353) (-3593 . 124283) (-3594 . 124254) (-3595 . 124202) + (-3596 . 124009) (-3597 . 123386) (-3598 . 123302) (-3599 . 123169) + (-3600 . 123083) (-3601 . 122928) (-3602 . 122855) (-3603 . 122404) + (-3604 . 122261) (-3605 . 121971) (-3606 . 121898) (-3607 . 121795) + (-3608 . 121337) (-3609 . 121236) (-3610 . 121152) (-3611 . 120948) + (-3612 . 120880) (-3613 . 120662) (-3614 . 120423) (-3615 . 120338) + (-3616 . 120178) (-3617 . 120095) (-3618 . 119988) (-3619 . 119935) + (-3620 . 119838) (-3621 . 119786) (-3622 . 119680) (-3623 . 119464) + (-3624 . 119355) (-3625 . 119148) (-3626 . 118995) (-3627 . 118927) + (-3628 . 118842) (-3629 . 118786) (-3630 . 118691) (-3631 . 118569) + (-3632 . 118486) (-3633 . 118298) (-3634 . 117334) (-3635 . 117205) + (-3636 . 117152) (-3637 . 116957) (-3638 . 116888) (-3639 . 116770) + (-3640 . 116661) (-3641 . 116612) (-3642 . 116538) (-3643 . 116476) + (-3644 . 116301) (-3645 . 116245) (-3646 . 115940) (-3647 . 115885) + (-3648 . 115455) (-3649 . 115134) (-3650 . 114929) (-3651 . 114876) + (-3652 . 114791) (-3653 . 114462) (-3654 . 114428) (-3655 . 114233) + (-3656 . 114002) (-3657 . 113950) (-3658 . 113816) (-3659 . 113709) + (-3660 . 113600) (-3661 . 113431) (-3662 . 113363) (-3663 . 113212) + (-3664 . 113127) (-3665 . 111962) (-3666 . 111899) (-3667 . 111780) + (-3668 . 111678) (-3669 . 111597) (-3670 . 111503) (-3671 . 111426) + (-3672 . 111353) (-3673 . 111130) (-3674 . 110251) (-3675 . 110156) + (-3676 . 109966) (-3677 . 109747) (-3678 . 109681) (-3679 . 109467) + (-3680 . 109405) (-3681 . 109334) (-3682 . 109209) (-3683 . 109122) + (-3684 . 108944) (-3685 . 108745) (-3686 . 108692) (-3687 . 108633) + (-3688 . 108342) (-3689 . 108275) (-3690 . 107995) (-3691 . 107912) + (-3692 . 107566) (-3693 . 107515) (-3694 . 107453) (-3695 . 107274) + (-3696 . 107215) (-3697 . 107159) (-3698 . 107106) (-3699 . 106962) + (-3700 . 106738) (-3701 . 106629) (-3702 . 106230) (-3703 . 106039) + (-3704 . 105962) (-3705 . 105857) (-3706 . 105787) (-3707 . 105295) + (-3708 . 105003) (-3709 . 104916) (-3710 . 104588) (-3711 . 104475) + (-3712 . 104228) (-3713 . 103265) (-3714 . 102843) (-3715 . 102685) + (-3716 . 102581) (-3717 . 102460) (-3718 . 102016) (-3719 . 101942) + (-3720 . 101564) (-3721 . 101511) (-3722 . 101242) (-3723 . 101040) + (-3724 . 100967) (-3725 . 100600) (-3726 . 100400) (-3727 . 100348) + (-3728 . 100295) (-3729 . 100171) (-3730 . 100041) (-3731 . 99955) + (-3732 . 99805) (-3733 . 99182) (-3734 . 99098) (-3735 . 98854) + (-3736 . 98785) (-3737 . 98719) (-3738 . 98601) (-3739 . 97946) + (-3740 . 97777) (-3741 . 97411) (-3742 . 97315) (-3743 . 97257) + (-3744 . 97205) (-3745 . 97127) (-3746 . 96865) (-3747 . 96752) + (-3748 . 96702) (-3749 . 96458) (-3750 . 96402) (-3751 . 96254) + (-3752 . 96147) (-3753 . 95988) (-3754 . 95917) (-3755 . 95851) + (-3756 . 95768) (-3757 . 95669) (-3758 . 95574) (-3759 . 95358) + (-3760 . 94493) (-3761 . 94180) (-3762 . 94149) (-3763 . 94038) + (-3764 . 93799) (-3765 . 93725) (-3766 . 93651) (-3767 . 93524) + (-3768 . 93305) (-3769 . 93210) (-3770 . 93058) (-3771 . 92977) + (-3772 . 92823) (-3773 . 92794) (-3774 . 92699) (-3775 . 92590) + (-3776 . 92435) (-3777 . 92386) (-3778 . 92284) (-3779 . 92131) + (-3780 . 91599) (-3781 . 91542) (-3782 . 89688) (-3783 . 89574) + (-3784 . 89421) (-3785 . 89181) (-3786 . 88752) (-3787 . 88678) + (-3788 . 88612) (-3789 . 88369) (-3790 . 88227) (-3791 . 88010) + (-3792 . 87958) (-3793 . 87905) (-3794 . 87822) (-3795 . 87769) + (-3796 . 87614) (-3797 . 87420) (-3798 . 87197) (-3799 . 87081) + (-3800 . 86972) (-3801 . 86886) (-3802 . 86553) (-3803 . 86481) + (-3804 . 86346) (-3805 . 86269) (-3806 . 86158) (-3807 . 86099) + (-3808 . 86071) (-3809 . 85972) (-3810 . 85941) (-3811 . 85867) + (-3812 . 85686) (-3813 . 85636) (-3814 . 85515) (-3815 . 85462) + (-3816 . 84757) (-3817 . 84142) (-3818 . 84035) (-3819 . 83532) + (-3820 . 83379) (-3821 . 82577) (-3822 . 78417) (-3823 . 78359) + (-3824 . 78031) (-3825 . 77954) (-3826 . 77403) (-3827 . 77375) + (-3828 . 77292) (-3829 . 77075) (-3830 . 76973) (-3831 . 76903) + (-3832 . 76815) (-3833 . 76672) (-3834 . 76579) (-3835 . 76502) + (-3836 . 76450) (-3837 . 76270) (-3838 . 76140) (-3839 . 75826) + (-3840 . 75743) (-3841 . 75629) (-3842 . 75452) (-3843 . 75373) + (-3844 . 75036) (-3845 . 74599) (-3846 . 74223) (-3847 . 74130) + (-3848 . 74000) (-3849 . 73930) (-3850 . 73637) (-3851 . 73310) + (-3852 . 73194) (-3853 . 73007) (-3854 . 72973) (-3855 . 72636) + (-3856 . 72537) (-3857 . 72435) (-3858 . 72098) (-3859 . 72021) + (-3860 . 71828) (-3861 . 71587) (-3862 . 71178) (-3863 . 70995) + (-3864 . 70908) (-3865 . 70791) (-3866 . 70454) (-3867 . 70366) + (-3868 . 70315) (-3869 . 70079) (-3870 . 69906) (-3871 . 69854) + (-3872 . 69694) (-3873 . 69587) (-3874 . 69486) (-3875 . 69075) + (-3876 . 68738) (-3877 . 68310) (-3878 . 68157) (-3879 . 67827) + (-3880 . 67499) (-3881 . 66847) (-3882 . 66660) (-3883 . 66553) + (-3884 . 66427) (-3885 . 66376) (-3886 . 66186) (-3887 . 66134) + (-3888 . 65964) (-3889 . 65893) (-3890 . 65841) (-3891 . 65535) + (-3892 . 65441) (-3893 . 65230) (-3894 . 65199) (-3895 . 65131) + (-3896 . 65034) (-3897 . 64718) (-3898 . 64446) (-3899 . 64393) + (-3900 . 64362) (-3901 . 63545) (-3902 . 63365) (-3903 . 63072) + (-3904 . 62722) (-3905 . 62339) (-3906 . 62290) (-3907 . 62259) + (-3908 . 62132) (-3909 . 62009) (-3910 . 61924) (-3911 . 61832) + (-3912 . 61762) (-3913 . 61604) (-3914 . 61446) (-3915 . 61340) + (-3916 . 61222) (-3917 . 61167) (-3918 . 61090) (-3919 . 60952) + (-3920 . 60658) (-3921 . 60549) (-3922 . 60477) (-3923 . 60211) + (-3924 . 59958) (-3925 . 59811) (-3926 . 59762) (-3927 . 59380) + (-3928 . 59343) (-3929 . 59256) (-3930 . 58924) (-3931 . 58875) + (-3932 . 58715) (-3933 . 58663) (-3934 . 58346) (-3935 . 58234) + (-3936 . 58206) (-3937 . 58093) (-3938 . 57992) (-3939 . 57763) + (-3940 . 57645) (-3941 . 57377) (-3942 . 57170) (-3943 . 56852) + (-3944 . 56685) (-3945 . 56567) (-3946 . 56270) (-3947 . 56128) + (-3948 . 56073) (-3949 . 55955) (-3950 . 55454) (-3951 . 55256) + (-3952 . 55182) (-3953 . 55109) (-3954 . 55016) (-3955 . 54944) + (-3956 . 54786) (-3957 . 54631) (-3958 . 54531) (-3959 . 54313) + (-3960 . 54229) (-3961 . 53638) (-3962 . 53535) (-3963 . 53434) + (-3964 . 53406) (-3965 . 53230) (-3966 . 52924) (-3967 . 52847) + (-3968 . 52731) (-3969 . 52525) (-3970 . 52381) (-3971 . 52269) + (-3972 . 52195) (-3973 . 50653) (-3974 . 50598) (-3975 . 50484) + (-3976 . 50210) (-3977 . 49971) (-3978 . 49816) (-3979 . 49750) + (-3980 . 49663) (-3981 . 49378) (-3982 . 49276) (-3983 . 49144) + (-3984 . 46992) (-3985 . 46909) (-3986 . 46802) (-3987 . 46749) + (-3988 . 46556) (-3989 . 46485) (-3990 . 46355) (-3991 . 46231) + (-3992 . 46121) (-3993 . 45962) (-3994 . 45845) (-3995 . 45777) + (-3996 . 45692) (-3997 . 44808) (-3998 . 44710) (-3999 . 44286) + (-4000 . 44201) (-4001 . 44145) (-4002 . 43989) (-4003 . 43906) + (-4004 . 43832) (-4005 . 43346) (-4006 . 43259) (-4007 . 42404) + (-4008 . 42291) (-4009 . 42121) (-4010 . 42041) (-4011 . 41909) + (-4012 . 41875) (-4013 . 41548) (-4014 . 41231) (-4015 . 41120) + (-4016 . 41019) (-4017 . 40867) (-4018 . 40809) (-4019 . 40722) + (-4020 . 40559) (-4021 . 40468) (-4022 . 40384) (-4023 . 40285) + (-4024 . 40248) (-4025 . 40149) (-4026 . 40078) (-4027 . 39997) + (-4028 . 39963) (-4029 . 39732) (-4030 . 38736) (-4031 . 38623) + (-4032 . 38526) (-4033 . 38431) (-4034 . 37991) (-4035 . 37752) + (-4036 . 37672) (-4037 . 37598) (-4038 . 37525) (-4039 . 37473) + (-4040 . 37407) (-4041 . 36986) (-4042 . 36868) (-4043 . 36738) + (-4044 . 36704) (-4045 . 35520) (-4046 . 35470) (-4047 . 35012) + (-4048 . 34590) (-4049 . 34460) (-4050 . 34238) (-4051 . 34169) + (-4052 . 34089) (-4053 . 33985) (-4054 . 33898) (-4055 . 33811) + (-4056 . 33461) (-4057 . 33338) (-4058 . 33122) (-4059 . 33025) + (-4060 . 31847) (-4061 . 31744) (-4062 . 31659) (-4063 . 31550) + (-4064 . 31498) (-4065 . 31373) (-4066 . 31241) (-4067 . 31090) + (-4068 . 31010) (-4069 . 30957) (-4070 . 30929) (-4071 . 30751) + (-4072 . 30680) (-4073 . 30320) (-4074 . 28122) (-4075 . 27981) + (-4076 . 27377) (-4077 . 27260) (-4078 . 27158) (-4079 . 26862) + (-4080 . 26788) (-4081 . 26683) (-4082 . 26535) (-4083 . 26430) + (-4084 . 26374) (-4085 . 26032) (-4086 . 25979) (-4087 . 25839) + (-4088 . 25627) (-4089 . 25498) (-4090 . 25342) (-4091 . 25196) + (-4092 . 24995) (-4093 . 24670) (-4094 . 24636) (-4095 . 24438) + (-4096 . 24326) (-4097 . 24205) (-4098 . 24135) (-4099 . 24079) + (-4100 . 23778) (-4101 . 23662) (-4102 . 23589) (-4103 . 23455) + (-4104 . 23314) (-4105 . 23065) (-4106 . 22985) (-4107 . 22898) + (-4108 . 22225) (-4109 . 22095) (-4110 . 21747) (-4111 . 21556) + (-4112 . 21449) (-4113 . 21396) (-4114 . 21190) (-4115 . 21132) + (-4116 . 20992) (-4117 . 20552) (-4118 . 20381) (-4119 . 20287) + (-4120 . 20194) (-4121 . 20069) (-4122 . 19948) (-4123 . 19878) + (-4124 . 19823) (-4125 . 19750) (-4126 . 19624) (-4127 . 19263) + (-4128 . 19044) (-4129 . 18983) (-4130 . 18766) (-4131 . 18663) + (-4132 . 18575) (-4133 . 18459) (-4134 . 18358) (-4135 . 17604) + (-4136 . 17512) (-4137 . 17403) (-4138 . 17247) (-4139 . 16971) + (-4140 . 16868) (-4141 . 16660) (-4142 . 16481) (-4143 . 16365) + (-4144 . 16201) (-4145 . 16076) (-4146 . 15990) (-4147 . 15906) + (-4148 . 15791) (-4149 . 15738) (-4150 . 15687) (-4151 . 15634) + (-4152 . 15506) (-4153 . 15373) (-4154 . 15187) (-4155 . 15135) + (-4156 . 15082) (-4157 . 14997) (-4158 . 14865) (-4159 . 14763) + (-4160 . 14637) (-4161 . 14581) (-4162 . 14467) (-4163 . 14396) + (-4164 . 14275) (-4165 . 14097) (-4166 . 13993) (-4167 . 13740) + (-4168 . 11889) (-4169 . 11707) (-4170 . 11595) (-4171 . 11308) + (-4172 . 11249) (-4173 . 11150) (-4174 . 11060) (-4175 . 10730) + (-4176 . 10675) (-4177 . 10560) (-4178 . 10505) (-4179 . 10388) + (-4180 . 10294) (-4181 . 9828) (-4182 . 9719) (-4183 . 9625) + (-4184 . 8444) (-4185 . 8341) (-4186 . 8155) (-4187 . 8082) + (-4188 . 8011) (-4189 . 7815) (-4190 . 7696) (-4191 . 7572) + (-4192 . 7506) (-4193 . 7472) (-4194 . 7248) (-4195 . 6596) + (-4196 . 6530) (-4197 . 6326) (-4198 . 5814) (-4199 . 5754) + (-4200 . 5638) (-4201 . 5518) (-4202 . 5296) (-4203 . 5187) + (-4204 . 4840) (-4205 . 4602) (-4206 . 4338) (-4207 . 4233) + (-4208 . 4159) (-4209 . 3993) (-4210 . 3731) (-4211 . 3622) + (-4212 . 3495) (-4213 . 3020) (-4214 . 2834) (-4215 . 2730) + (-4216 . 2640) (-4217 . 2530) (-4218 . 2389) (-4219 . 2309) + (-4220 . 2229) (-4221 . 2175) (-4222 . 2091) (-4223 . 2014) + (-4224 . 1619) (-4225 . 1564) (-4226 . 294) (-4227 . 185) + (-4228 . 30))
\ No newline at end of file |